
國立交通大學  
資訊管理研究所 

碩  士  論  文   
 
 

工作階段知識支援： 
探勘與支援工作相關知識 

 
 

 
Task-stage K-Support: 

Mining and Supporting Task-relevant Knowledge 
 
 
 

 
 

 
 

              研 究 生： 陳 韋 孝  

              指導教授： 劉 敦 仁 博士 
 

中華民國九十四年七月  

 



 
工作階段知識支援： 

探勘與支援工作相關知識 
 

 
Task-stage K-Support: 

Mining and Supporting Task-relevant Knowledge 
 

 

研 究 生：陳 韋 孝 Student: Wei-Hsiao Chen 

指導教授：劉 敦 仁 Advisor: Duen-Ren Liu 

 

 

 

國立交通大學 

資訊管理研究所 

碩士論文 

 

A Thesis 

Submitted to Institute of Information Management 

College of Management 

National Chiao Tung University 

in Partial Fulfillment of the Requirements 

for the Degree of 

Master of Business Administration 

in 

Information Management 

July 2004 

Hsinchu, Taiwan, the Republic of China 

 

中華民國九十四年七月 
 

 

 



 
Task-stage K-Support:  

Mining and Supporting Task-relevant Knowledge 
 

Student: Wei-Hsiao Chen                         Advisor: Duen-Ren Liu 

Institute of Information Management 

National Chiao Tung University 

Abstract 

 

Organizations mainly conduct knowledge-intensive tasks to achieve organizational 

goals. In such task-based environments, knowledge workers usually accomplish their tasks 

by stages, while their task-needs may be different at various stages of task performance. 

Accordingly, an important issue of deploying Knowledge Management Systems is to 

extract knowledge from the historical task and further support task-relevant knowledge 

according to workers’ task-needs at different task-stages. This work proposed a task-stage 

mining method for discovering task-stage needs from historical task executions. The 

proposed method adopts information retrieval techniques and a modified hierarchical 

agglomerative clustering (HAC) algorithm to identify task-stage needs by analyzing 

codified knowledge (documents) accessed or generated during task performance. 

Task-stage profiles are generated to model workers’ task-stage needs and are used for 

delivering task-relevant knowledge at various task stages. Finally, we conduct empirical 

evaluations to demonstrate that the proposed method provides effective knowledge 

support based on task-stages. 

 

Keywords: Knowledge management, Knowledge support based on task-stage, 
Hierarchical agglomerative clustering, Text mining, Task-stage profile 
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摘要 

組織主要是處理知識密集工作來達成組織目標，而在工作為基礎的環境中，知識

工作者常常以階段性完成工作。在工作執行過程中，不同階段有不同的工作需求。

因此如何根據知識工作者在不同工作階段之需求，提供工作相關知識，為建構知識

管理系統之重要議題。本研究改良階層式凝聚分群演算法，提出一工作階段探勘方

法，從歷史工作資料發掘工作階段知識需求。依據所萃取之工作階段知識需求，進

而建構工作階段需求特徵檔，提供知識工作者執行工作時各階段之相關知識。本文

最後進行實驗比較以評估所提的方法在提供知識支援之有效性。 

 
關鍵字：知識管理、工作階段知識支援、階層式凝聚分群、文件探勘、工作階段需

求特徵檔 
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1. Introduction 

1.1. Research Background & Motivation 

In task-based business environments, an important issue in deploying Knowledge 
Management Systems (KMSs) is providing task-relevant information to fulfill the information 
needs of knowledge workers. As the operations and management activities of enterprises are 
mainly task-based, Knowledge Management Systems (KMSs) focus on providing 
task-relevant knowledge to workers engaged in knowledge-intensive tasks (Abecker et al., 
2000; Fenstermacher, 2002; Fischer & Ostwald, 2001; Staab & Schnurr, 2000). The KMS 
developed in the KnowMore project is an example of proactive delivery of task-specific 
knowledge according to the contexts of tasks within a process (Abecker et al., 2000). The 
Kabiria system supports knowledge-based document retrieval in office environments, 
allowing users to conduct document retrieval according to the operational context of 
task-associated procedures (Celentano et al., 1995) 

Among different type of knowledge, the repository of structured and explicit knowledge, 
especially in document form, is a codified strategy for managing knowledge (Davenport & 
Prusak, 1998; Wei et al., 2004; Zack 1999). Empirical findings indicate that codifying 
intellectual content into a knowledge repository makes workers highly exploit existing 
organizational resources (Gray, 2001). The Gartner Group (1999) noted that knowledge 
retrieval is a core component of KMSs.  

This work focuses on providing knowledge support for knowledge-intensive tasks within 
organizations. Examples of knowledge-intensive tasks include thesis works and research 
projects in academic organizations, project management in firms, research work and product 
development in R&D departments, and the like. In such task-based environments, reusing 
knowledge assets extracted from historical task executions is the key to providing effective 
knowledge support for conducting tasks. In our previous study, we built a knowledge support 
system from the perspective of task execution. Information Retrieval techniques are adopted 
to generate task profiles from text documents accessed and generated by historical task 
executions. The task profiles model workers’ task needs, and can be used as the kernel of 
knowledge retrieval to provide needed task relevant knowledge during task performance. 
Moreover, the system identifies task-based peer groups to provide a communication portal of 
knowledge sharing among knowledge workers. Consequently, knowledge reuse can be 
achieved through knowledge retrieval and knowledge sharing (Liu et al., 2005). Figure 1 
illustrates the concepts of our proposed task-based organizational environments (Yang, 2004). 
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Figure 1: Concept of Task-based Organizational Environment 

Moreover, we found that knowledge workers usually require a longer time to accomplish 
knowledge-intensive tasks. For such long-term tasks, the information needs of knowledge 
workers may vary according to different stages of progress towards task performance. 
Namely, with the growth understanding of perceived task, the worker’s information needs and 
information seeking activates will change throughout various stages of task performance. This 
observation is in accordance with the pilot studies of task-based information retrieval 
(Kuhlthau, 1993; Vakkari 2000, 2003). Therefore, the aim of this work is to support 
task-relevant knowledge according to workers’ task-needs at different task-stages.  

1.2. Research Objectives 

This work investigates the issues of deploying knowledge support systems based on 
task-stages. The research directions mainly include: 
 Investigating the characteristics of knowledge-intensive tasks, and further proposing a 

system framework of supporting task-relevant knowledge based on task-stages; 
 Employing data mining and information retrieval techniques to analyze workers’ 

task-needs, which are modeled as profiles, at different task-stages; 
 Conducting the experiments to evaluate the effectiveness of the proposed methods. 

Our previous work did not consider knowledge workers’ stages of progress towards task 
performance. Accordingly, this work proposed a task-stage mining method for discovering 
task-stage needs from historical task executions. The proposed method adopts information 
retrieval techniques and a modified hierarchical agglomerative clustering (HAC) algorithm to 
identify task-stage needs by analyzing codified knowledge (documents) accessed or generated 
during task performance. Task-stage profiles are generated to model workers’ task-stage needs 
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and are used for delivering task-relevant knowledge at various task stages. A task-stage 
profile specifies the key subjects of a task stage, and is constructed to model the information 
needs of knowledge workers during a task stage of task execution. Finally, we conduct 
empirical evaluations to demonstrate that the proposed method provides effective knowledge 
support based on task-stages. Experiments are executed to verify the effectiveness of the 
proposed task-stage method compared with task-based, called non-stage method. 

1.3. Thesis Organization 

This paper is organized as follows: The literature review is given in Section 2. Section 3 
describes the process of task-stage knowledge support. The method of mining task stage 
needs is described in Section 4. An illustrative example to explain the proposed idea is 
presented in Section 5. The experimental evaluations are presented in Section 6. Conclusions 
and future works are finally made in Section 7. 
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2. Related Work 

2.1 Task-based Knowledge Management 

Managing Knowledge within and across organizations is considered as a prominent 
activity for creating sustainable competitive advantages in today’s business environments. 
Knowledge Management (KM) is a cycle, sometimes repeated process, which generally 
includes creation, management and sharing activities (Davenport & Prusak 1998; Gray 2001; 
Wiig 1993). The operations and management activities of enterprises are mainly based on 
tasks, in which organizational workers perform various tasks to achieve business goals. In 
task-based business environments, an important issue of deploying KMS is how to support 
task-relevant knowledge by considering the characteristics of tasks in organizations (Abecker 
et al., 2000; Fenstermacher, 2002; Fischer & Ostwald, 2001; Liu ea al, 2005, Staab & Schnurr, 
2000). 

Organizations mainly conduct knowledge-intensive tasks to achieve organizational goals. 
In such task-based environments, knowledge workers usually accomplish their tasks by stages, 
while their task-needs may be different at various stages of task performance. Accordingly, 
another challenge of deploying KMS is how to support task-relevant knowledge according to 
workers’ task-needs at different task-stages. The Vakkari studies (2000), which focus on a 
user’s information seeking activities during task performance (e.g., writing a proposal, 
completing a project, etc.), show that information needs vary according to different task 
stages. Namely, with the growth understanding of perceived task, the worker’s information 
needs and information seeking activates will change throughout various stages of task 
performance. For example, the type of information needed may vary from general to specific 
information, and the choice of search terms may vary from broader terms to specific terms.  

Accordingly, the aim of this work is to support task-relevant knowledge according to 
workers’ task-needs at different task-stages by the proposed mining technique. Furthermore, 
this work tries to explore the possible application to adopt the proposed task-stage knowledge 
support method in knowledge-intensive tasks, such as project management activities, 
academic research, and industry analysis. 

2.2 Information Retrieval and Information Filtering 

Information retrieval (IR) deals with the representation, storage, organization of, and 

access to information items (Baeza-Yates & Ribeiro-Neto, 1999). In the past twenty years, 

Information Retrieval technology mainly focused on two dimensions: indexing and searching 
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from a large number of documents. Document pre-processing is important before indexing 

documents, including term transformation and term weighting (Salton, 1988). Term 

transformation includes case-folding, stemming and stop word omission or further thesaurus 

substitution. By the empirical study of Salton (1988), the most effective term-weighting 

approach considers three factors, which are term frequency, inverse document frequency and 

normalization. The vector model accomplishes the term weighting work by assigning 

non-binary term weight to each index term in documents (Baeza-Yates & Ribeiro-Neto, 1999). 

It is easy to represent documents in the form of vectors in vector space through the document 

preprocessing. Usually, users accomplish search by conducting query, represented as a set of 

keywords. The keyword set represents the user information needs. The query vector can be 

defined as  and the document vector can be defined 

 where n is the total index terms in the system. Documents can be 

retrieved and presented to users according to the degree of similarity calculated by cosine 

similarity measure. 

1, 2, , ,{ , , }q q n qq w w w= K
r

1, 2, ,{ , , ,
j j jj d d n dd w w w= K

ur
}

In the past few years, research subjects discussed in the field of Information Retrieval 
were more general, like Document Classification, Document Categorization, User Modeling, 
Information Filtering, User Interfaces and so on. The Information Filtering technology is 
acknowledged to be an effective way to reduce the information overload and provide 
personalized information. With the dynamically changed environments, uncertainties 
associated with changing information needs of the user and the dynamic information stream 
must be handled efficiently. Information filtering stresses on maintaining a promising user 
profile, in which the system routes the proper information relevant to the user profile 
(Baeza-Yates & Ribeiro-Neto, 1999; Shapira, Shoval & Hanani, 1999). Information filtering 
technology relies on the support of traditional kernel technology of information retrieval, but 
this technology put more emphasis on methods to maintain and learn user profiles to find 
relevant documents (Baeza-Yates & Ribeiro-Neto, 1999; Widyantoro, Ioerger, &Yen, 2001). 
Various method for learning user interests or preferences from text documents or Web pages 
has been proposed in real-world applications in recommender systems, for example: 
e-mail-filtering systems (Mostafa et al., 1997), personalized online newspaper (Billsus & 
Pazzani, 1999), and so on.  

Information retrieval and information filtering technologies applied in document 
management systems are generally the first pace of knowledge management initiatives, since 
textual data such as articles, reports, manual, know-how documents and so on are treated as 
valuable and explicit knowledge within organizations (Nonaka, 1994). Information retrieval 
and information filtering are considered as the core techniques to achieve knowledge retrieval. 
In addition, information retrieval provides not only text processing technique, but also 
document classification technology to help organizations collect and process documents to 
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achieve the goal of knowledge reuse (Sebastiani, 1999). With the evolution of information 
filtering, it not only reduces the problem of information overloading but also provides 
relevant and needed information to users to accomplish their tasks. Accordingly, maintaining 
and learning user profiles is important in modern Knowledge Management Systems. 

2.3 Document Clustering 

Clustering is an unsupervised process of grouping the data (objects) into classes or clusters. 
The data (objects) within a cluster have similarity in comparison to one another, whereas 
dissimilar to data (objects) in other clusters (Han and Kamber ,2000; Jain et al., 1999). The 
clustering technique have been addressed in many contexts and by researchers in many 
domains such as pattern recognition, text categorization, image processing, market research 
and so on. Therefore, clustering is a useful tool to analyze data items and has been applied 
broadly.  

Generally, clustering techniques can be divided into two classes: one is partitioning 
clustering and the other is hierarchical clustering (Jain et al., 1999). Partition method outputs 
only one partition while hierarchical method produces a nested partitions. K-means clustering 
which is commonly used to partition a set of data into groups is one of examples of partition 
method (MacQueen, 1967). The clustering procedure follows a way to classify the given data 
(object) through a certain number of clusters, i.e. k clusters. The main idea is first to define k 
centroids, one for each cluster. After k new centroids have been selected, a loop has been 
generated. The algorithm assigns a data sample di to the cluster cj such that the distance from 
di to the center of cj is the minimum over all k clusters. The k centroids will change their 
location step by step until no more changes are done. The hierarchical clustering method 
creates a hierarchical decomposition of the given data set (Johnson, 1967). From the 
viewpoint of algorithmic structure and operation, there are two types of clustering approach, 
one is agglomerative and another is divisive. The agglomerative method starts with each data 
item as singleton cluster. It continuously merges clusters together according to the merging 
criterion until a stopping condition is satisfied. The divisive method starts with all data items 
as only one cluster. It divides until coming to a stopping condition. Since we adopt 
Hierarchical agglomerative clustering (HAC) in this work, we take length to introduce the 
method. 

Hierarchical agglomerative clustering (HAC) is a class of clustering approaches. This 
method produces clusters by merging, depended upon similarity of two existing clusters. The 
process repeats combining the two most proximity clusters; likes a binary tree, starts at leaves 
and grows up to root. The operations of HAC can be summarized into three steps as the 
following. 

(1) Each data item is considered as a singleton item initially 
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(2) Select the nearest pair of clusters and merge them 
(3) Repeat step 2 until meeting the stopping condition 

In step 2, we have to find the nearest pair. Therefore, a similarity measure has to be chosen. 
The similarity between any pair of cluster Ci and Cj, there are four well-known inter-cluster 
similarity function can be used to measure the similarity. 

• The single-linkage function computes the largest similarity between two 
objects in the pair of clusters. 

• The complete-linkage function computes the smallest similarity between two 
objects in the pair of clusters. 

• The average-linkage function computes the average of all similarities among 
all objects in the pair of clusters. 

• The centroid function computes the similarity between the centroid of the two 
clusters. 

Generally, the single-linkage method produces isolated and may not be cohesive clusters. 
Inversely, the complete-linkage method produces cohesive and may not be isolated clusters. 
The average-linkage method is a trade-off between single-linkage and complete-linkage 
method. Another commonly used measure is the centroid method, especially for text 
clustering. 

In this work, data items are time-variant. In order to consider the time factor, we 
modified the traditional HAC algorithm by setting a time window to select candidates for 
merging. Only the clusters in the time window can be merged (perform the merging 
operation).  
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3. Task-stage Knowledge Support 

Section 3.1 presents the problem formulation. Section 3.2 describes an overview of the 
process of mining task-stage needs. The terms and notations used in this work are defined in 
Section 3.3. 

3.1. Problem Formulation 

This work broadly refers to a task as a unit of work in organizations, such as a project, 
research work, or activity. Moreover, this work uses profiling approach to model workers’ 
task-stage needs, namely information needs (profiles) on task-stages. Task-stage profiles are 
generated to model worker’s task-stage needs and are used further to provide task-relevant 

knowledge at various task stages. A task-stage profile specifies the key subjects of a task 
stage and can be represented as a feature vector of weighted terms. The profile is used to 
retrieve relevant codified knowledge in the repository. The key contents of codified 
knowledge (textual data; documents), namely document profiles, are also represented as a 
feature vector of weighted terms. Relevant documents can be retrieved to provide knowledge 
support for task execution according to the similarity measures (e.g. cosine measures) 
between task-stage profiles and document profiles.  

A task class is defined to specify a type of tasks with similar properties (similar tasks, for 
brevity). Task classes are identified based on existing tasks. A task that belongs to a task class 
is called a task instance of the task class. Task class/instance resembles the concept of object 
class/instance. Tasks in different task classes generally have different task-stage needs, while 
tasks belonging to the same task class may have similar task-stage needs. Accordingly, 
task-stage profiles generated by analyzing existing similar tasks of the same task class are 
useful to provide needed relevant knowledge in supporting the execution of on-going tasks. 

The term virtual task is used to represent a task class of similar tasks. A virtual task may 
have more than one task instances. For example, a virtual task “Research on recommender 
systems” has several task instances including “Hybrid approaches for product 
recommendations” and “Comparisons of collaborative filtering for recommendations”. Each 
existing task instance is associated with documents accessed/generated during task 
performance. Accordingly, the problem of identifying task-stage needs of a virtual task is 
described as follows.  

Given a virtual task and a set of task instances with associated documents, find the number 
of task stages and the corresponding profile of each task-stage.  
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3.2. Process of Mining Task-stage Needs  

This work employs information retrieval techniques to conduct text processing and data 
mining techniques to analyze workers’ task-needs, which are modeled as profiles at different 
task-stages. Figure 2 illustrates the process of mining task-stage needs. The operational 
procedure is described as follows. 

The document database and the system log record the historical tasks with associated 
documents and usage data. The documents of a task are preprocessed and organized as a task 
document sequence (TDS) according to their accessed/generated time during task 
performance. Notably, each task has its own task document sequence.  

Clustering and information retrieval techniques are then employed to cluster the task 
document sequences of similar tasks belonging to the same task class. A task-stage 
hierarchical clustering (TSHC) algorithm is proposed to cluster the task document sequences 
based on similarity measures and retrieval time of documents. Each cluster represents a task 
stage with associated documents of a task. More details are addressed in Section 4.2. Finally, 
the feature vector of each task stage is extracted from each cluster of documents to construct 
the task-stage profile. The task-stage knowledge retrieval module can then retrieve relevant 
codified knowledge (documents) to provide knowledge support for task execution according 
to the similarity measures (e.g. cosine measures) between task-stage profiles and document 
profiles. 

Incom ing D ata
(F iles, W eb pages, 

D ocum ents...)

Log D ata
(user, session, 

transaction 
identification )

Task D ocum ent-
Sequences (TD Ss)

M ining of T ask-stage 
N eeds

T ask-stage Profiles

T ask-O riented 
K now ledge 
R epository

T ask-stage 
K now ledge R etrieval

A  U ser A ctive Session  
w ith a  Specific T ask

 
Figure 2. Process of discovering task-stage needs 
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3.3. Term Definition 

This section lists the definitions of terms used in this work. 

(1) Definition I: Task 

The task is the fundamental unit in business. This work broadly refers to a task as a unit of 
work in organizations, such as a project, research work, or activity.  

T: task set A task is either an executing-task (on-going task) or an existing task in 
the task-based working environment. T = {t1, t2,…, tr, …, tn} 

tr: existing-task An existing-task is a historical task accomplished within the organization.

tv: virtual task A virtual task represents a task class of similar tasks 

task instance A task instance of tv is an existing-task that belongs to the class of tv.

Tv: set of task 
instances 

A set of task instances of the virtual task tv

(2) Definition II: Task Document Sequence 

A task document sequence is a sequence of documents retrieved (accessed or generated) 
during task performance. Documents are sorted according to their retrieval time. Each task 
instance has its own task document sequence. 

TDS(tr): Task Document 
Sequence of tr

A sequence of documents accessed/generated while conducting a 
task tr. TDS(tr)=<d1, d2,…,dm> 

(3) Definition III: Task Stage  

Task document sequences of task instances are clustered into stages based on similarity 
measures and retrieval time of documents. The clustering result forms task stages of a task. 

TS(tr): task-stages of a 
task instance 

A task tr comprises several task stages. TS(tr)=<tsr[1], tsr[2],…, 
tsr[k]>, where tsr[i] denotes the task-stage i of tr . 

TS(tv): task-stages of a 
virtual task 

Task-stages of a virtual task tv which are derived from task stages 

of task instances in Tv. TS(tv)=<tsv[1], tsv[2],…, tsv[k] > 

(4) Definition IV: Task Stage Documents and Profiles 

Each cluster of documents represents a task stage with associated documents, named task 
stage documents. Documents in task stage k of task tr is denoted as tsr[k].docs, while 
documents in task stage k of virtual task tv is denoted as tsv[k].docs. Each task-stage profile 
can be derived from the feature vectors of documents in each task-stage. Let tsr[k].profile 
denote the profile of task stage k of task tr, and tsv[k].profile denote the profile of task stage k 
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of virtual task tv. 

tsr[k].docs: task-stage 
documents 

Documents in task stage k of task tr. 

d.profile The feature vector (profile) of document d. 

tsr[k].profile: task-stage 
profile 

The profile of task stage k of task tr. A task-stage profile is the 
vector obtained by averaging the feature vectors of documents in 

tsr[k].docs.  

tsv[k].docs: task-stage 
documents 

Documents in task stage k of virtual task tv. 

tsv[k].profile: virtual 
task-stage profile 

The profile of task stage k of virtual task tv. A virtual task-stage 
profile is the vector obtained by averaging the feature vectors of 

documents in tsv[k].docs. 
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4. Mining of Task-stage Needs  
For mining the task-stage needs, Section 4.1 presents how to collect and analyze the 

contents of documents and workers’ usage data. Section 4.2 illustrates the proposed task-stage 
hierarchical clustering (TSHC) algorithm that is used to cluster the task document sequences 
based on similarity measures and retrieval time of documents.  

4.1. Data Pre-processing  

The data pre-processing phase is the most fundamental step of knowledge discovery 
process. Two types of valuable information sources of knowledge acquisition: content data 
and usage data are addressed as follows. 

Content Data: The key contents of a codified knowledge item (document) can be represented 
as a feature vector of weighted terms in n-dimensional space. The term transforming and term 
weighting steps are employed to find the most discriminating words among a set of 
documents (Baeza-Yates & Ribeiro-Neto 1999). The term transforming step includes case 
folding, stemming, and stop word removing. The tf-idf approach is a well-known approach for 
term weighting in the information retrieval literature (Salton 1988). Let the term frequency 
tfi,d be the occurrence frequency of term kwi in d, and let the document frequency dfi represent 
the number of documents that contain term kwi. The importance of term kwi to a document d, 
wi,d is proportional to the term frequency and inversely proportional to the document 
frequency, which is expressed as Eq. 1. According to the empirical experiments of Salton 
(1988), if there are many technical vocabularies in the data collection and the vocabulary is 
not very varied, normalized term frequency is a proper term weighting component. We use 
the normalized term frequency to derive the term weight, as shown in Eq. 1.  

,

,

, ,

0.5
(0.5 (log 1)

max
)i d

i d

i d i d

t N

t

f

f df
w

×
= + × +

 

(1)

where N is the number of documents, and log(N/dfi) is the inverse document frequency, idfi. 

The feature vector of document d is represented as d
r

= <w1,d, w2,d, …, wn,d >. 

Usage Data: Each log record is parsed to extract important information, such as user name, 
role type, TaskID, DocID, request type and system time. Usage log processing engine is 
useful to collect and manage task-relevant information by tracking user’s document access 
behaviors in conducting a specific task. Similar tasks of the same task class are identified. 
Moreover, task document sequences of task instances are generated according to the usage 
log records. A time interval may be specified to select documents from usage logs. 
Documents with retrieval time within a specified time interval are collected to generate task 
document sequences. 
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4.2. Process of Mining Task-stage Needs 

Given a virtual task tv and a set of task instances with associated documents, the mining 
process identifies the number of task stages and the corresponding profile of each task-stage 
for tv.  Notably, a virtual task tv denotes a task class of similar tasks and has several task 
instances. A task instance of tv is an existing-task that belongs to the class of tv. The 
documents of a task instance are preprocessed and organized as a task document sequence 
(TDS) according to their accessed/generated time during task performance.  

There are four steps to discover task-stage needs, as shown in Fig. 3. The mining 
procedure is described step by step. An example is given to explain the proposed idea. 

Step1. Identifying task-stages of each task instance 

This step identifies the task-stages of each task instance. A TSHC algorithm, task-stage 
hierarchical clustering algorithm, is proposed to cluster each task document sequence into 
task stages.  The proposed algorithm modifies the hierarchical agglomerative clustering 
(HAC) algorithm by considering time variant to determine clusters. Table 1 shows the TSHC 
algorithm. Let TDS(tr)=<d1, d2,…,dm> be the task document sequence of a task instance tr. 
The task document sequence is clustered into several clusters, which represent the stage 

information of the target task tr. A task tr comprises several task stages. TS(tr)=<tsr[1], 
tsr[2],…, tsr[k]>, where tsr[i] denotes the task-stage i of tr . Each cluster represents a task stage 
with associated documents, where tsr[i].docs denotes documents in task stage i of task tr. 

Step 1: Partition Set of Task D ocum ent 
Sequence by TSH C  algorithm

Step 2: M erge task-stages
3 cases to  proceed  m erge function

Step  3: R em oving noisy docum ents and 
noisy task stage

Extracting 
Tem poral 

stage features

Task-stages 
profiles

Step 4: Task-stage feature extraction w ith 
associated docum ent set

 

Figure 3: Process of mining task-stage needs 
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Figure 4: An example of clustering result 

  Fig. 4 illustrates the clustering result. Three clusters are generated after conducting the 
proposed clustering algorithm; namely, three stages are identified. In the following, we will 
explain the TSHC algorithm in detail. 

TSHC algorithm: The traditional Hierarchical Agglomerative Clustering (HAC) algorithms 
start with each individual item in its own cluster and iteratively merge clusters until all items 
belong in one cluster. For each level, the HAC algorithms determine new clusters by merging 
clusters from the previous level. Several techniques can used to determine if two clusters are 
to be merged according to the distance threshold and the distance between any two points in 
the two target clusters. Two clusters are merged, if the minimum (maximum or average) 
distance between any two points in the two target clusters is less than or equal to the distance 
threshold. The HAC algorithm examines all clusters in the previous level to determine new 
clusters, and does not consider the time dimension.  

The proposed TSHC algorithm adopts the HAC algorithm by considering the time 
dimension, since the task document sequence (TDS) is generated by ordering documents 
based on their retrieval time during task performance. A time window size w is set to define 
the scope of candidate clusters to be merged. Notably, the index position in the sequence 
rather than the actual time is used to decide if the candidate cluster is within the time window. 

Initially, each document in the TDS forms its own cluster. The TSHC algorithm then 
iteratively merges clusters until the number of clusters is less than or equal to MinNumStages 
(minimum number of stages). The algorithm finds clustering result with number of stages no 
less than MinNumStages and no greater than MaxNumStages (maximum number of stages). 
Due to the characteristics of our research problem, we prefer to cluster each TDS into three to 
six clusters. A clustering examination procedure is conducted to select the level of clustering 
that can derive the best clustering result by intra-similarities and inter-similarities examination. 
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In the following, we explain the algorithm line by line. Note that the algorithm is listed in 
Table 1. 

During the procedure of clustering, each document is regarded as a single cluster initially. 
Accordingly, TDS is a sequence of clusters. For merging two target clusters ci and cj into a 
new cluster c’, where i < j, the index position of c’ is set to i. A new sequence of clusters is 
generated by ordering the new clusters according to their index positions. A specified time 
window size w is used as the scope to select candidate clusters for merging. For each cluster ci, 
clusters with index positions within the time window size from i - w to i + w are the 
candidates to be merged with ci (line 3 to 8). For a cluster cj within the time window of ci, if 
the similarity between ci and cj is greater than the Threshold, ci and cj are regarded as a pair of 
merging candidates; and they are added to the merging list with their similarity measure (line 
8). The similarity measure between two cluster ci and cj is defined as the average of all 
pairwise similarities among the documents in ci and cj. The similarity between two documents 
is derived using the cosine of their feature vectors.  

The time window is moved from the first cluster to the last one in TDS to determine the 
merging candidates for each cluster. Then, all merging candidates will be merged as follows. 
In the merging process (line 9 to 12), the pair of merging candidates with maximum similarity 
will be selected from the merge list. If both merging candidates in the selected pair had not 
been merged with another merging candidate in any other pair, then the corresponding two in 
TDS are merged. If there is no clusters can be merged during the iteration, the Threshold is 
decreased by a constant (In our case, the constant is set to 0.01); otherwise, the threshold is 
not changed (line 13 to 14). The step avoids that the similarity between a cluster and a merged 
cluster is higher than the decreased threshold.  

The algorithm performs hierarchical clustering; thus various levels of clustering result can 
be derived. The algorithm records those levels of clustering results with the number of 
clusters within MinNumStages to MaxNumStages. As mentioned previously, we prefer to 
cluster each task document sequence (TDS) into three to six clusters. The quality measure, Q 
value, is derived to indicate the quality of each clustering result (line 15 to 17). We select the 
clustering result (among three to six clusters) that leads to the best quality value. The clusters 
of TSHC algorithm are the stages of a task instance. The profile of each task stage can be 
derived by averaging the feature vectors of documents in the corresponding cluster. Notably, 
the task-stage profile specifies the key subjects of a task stage. 

In the following, we explain the Q value that is used verify the quality of clusters. 

• Clustering quality: Let C be the set of clusters derived from a particular level of 
clustering. The best clustering result is to maximize the intra-similarities of all those 
clusters and minimize the inter-similarities among the clusters produced at the level 
(Chuang & Chien, 2004). Let the inter-similarity between two cluster ci and cj be 
defined as the average of all pairwise similarities among the documents in ci and cj, 
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which is denoted as sim(ci, cj). Let the intra-similarity within the cluster ci be defined 
as the average of all pairwise similarities within ci, denoted as sim(ci, ci). 
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Table 1. Algorithm of Task Stage Hierarchy-based Clustering with Time-variant 

Input: TDS(tr): Task Document Sequence of tr
Output: Task stages of target task 
 function TSHC(TDS) { 
1  Set a constant offset be 0.01; 
2  do { 
3   foreach cluster ci in TDS { 
4    ctemp = {ci-w, ci-w+1, ..., ci-1, ci , ci+1, ..., ci+w-1, ci+w}; 
    // According to time window size to determine clusters 

5    foreach cluster cj in ctemp where ci <> cj { 
6     Calculate similarity of ci and cj as similarity; 
7     if (similarity is greater than Threshold) then 
8      add {ci, cj, similarity} to the merge_list; 
    } 
   } 

9   do while (merge_list is not empty) { 
10    Select and remove the pair (ci, cj) with maximum similarity from merge_list; 
11    if (ci and cj had not been merged with another cluster) then 
12     Merge ci and cj in TDS 

   } 
13   if (there's no cluster merged) then 
14    decrease the Threshold by offset; 
 
15   if (number of clusters in TDS ≤ MaxNumStages) then { 
16    Let Q value be the quality of clustering value of TDS; 
17    Add {TDS, Q} to the list result; 
   } 
  } 
18  while (number of clusters in TDS > MinNumStages) 
 
19  return result; 
 } 

 

Step2. Merging Task-stages.  

Step 1 uses the TSHC algorithm to generate the task stages of each task instance. This step 
generates the task stages of the virtual task tv by merging the stages of task instances of tv.  

Tv is the set of task instances of tv. A kernel task instance tr is selected as the representative of 
the virtual task tv. Then, the stages of other task instances are merged to the stages of tr. The 
kernel task is the task instance with the best average Q value of clusters among task instances. 
During the merging process, documents from the stages of other task instances are merged to 
the stages of the kernel task instance.  
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Task Stage Merging algorithm: The algorithm is shown in Table 2. First, the task instance tr 
with the best average Q value of clusters is chosen as the kernel task (line 1). Then, for each 
other task instance tf, documents from the stages of tf are merged to the stages of tr. Let nr and 
nf be the number of stages (clusters) of tr and tf, respectively. Let tsf[i].docs be the documents 
in task stage i of task tf and tsr[k].profile denote the profile of task stage k of tr. Notably, 
tsr[k].profile is the vector obtained by averaging the feature vectors of documents in 
tsr[k].docs.  

Generally, several candidate stages in tr are possible to merge a document of tf. For each 
stage i of tf, each document d in tsf[i].docs is merged into the candidate stage k of tr that has 
the maximum similarity measure cos(d.profile, tsr[k].profile). There are three cases to select 
the candidate stages of tr for merging a stage i of tf. 

Case 1: nf > nf : The number of stages of tf is greater than the number of stages of tr. The 
candidate stages of tr selected are from stages i to i+(nr-nf), where nr – nf + 1 stages of tf are 
chosen as the candidate stages. Figure 5 is an illustrative example of Case 1, where nf = 3 and 
nr = 4. Two stages of tr are selected as the candidate stages to merge the documents of tf. For 
example, stages 2 and 3 of tr are the candidate stages to merge the documents in stage 2 of tf. 

Case 2: nf = nf : The number of stages of tf is equal to the number of stages of tr. The 
candidate stages of tr selected are from stages i-1 to i+1, where three stages of tf are chosen as 
the candidate stages.  

Case 3: nf > nf : The number of stages of tf is less than the number of stages of tr. The 
candidate stages of tr selected are from stages max(1, i-(nf -nr)) to min(i, nr). Figure 5-2 is an 
illustrative example of Case 3, where nf = 5 and nr = 3. For example, stages 1 and 2 of tr are 
the candidate stages to merge the documents in stage 2 of tf. Stages 1 to 3 of tr are the 
candidate stages to merge the documents in stage 3 of tf. Stages 2 and 3 of tr are the candidate 
stages to merge the documents in stage 4 of tf. 

Once the stage k with maximum similarity measure is determined, the pair (d, tsr[k]) is 
added to the merge list indicating that document d will be merged to stage k of tr (line 7, 14, 
20). After the merging stages of all documents from other task instances are decided, the 
merging process conducts the merge (e.g. adding a document d to tsr[k].docs) according to the 
merge list (line 25). The final documents and corresponding task stages of the kernel task 
instance tr are regarded as the documents and stages of the virtual task tv. Note that the 
number of task stage of tv is equal to the number of stages of tr. 
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Figure 5: An illustrative example of task stage merge of Case 1. 

 

Table 2. Algorithm of Task Stage Merge 
Input: Tv // a set of task instances of tv
Ouput: TaskStages of tv // TS(tv) 
 
 function TaskStagesMerge(Tv) { 
1  Select the kernel task instance which has the best Q value as tr from Tv; 
2  foreach task tf in Tv { 
3   Let nr and nf be the number of stages in tr and tf, respectively. 
4   case 1: (nr > nf) 
5    foreach task stage i in tf { 
6     foreach document d in tsf[i].docs { 
7 Add (d, tsr[k]) to the merge_list where cos(d.profile, tsr[k].profile) is 

maximum for i ≤ k ≤ i + (nr – nf) 
8     } 
9    } 

11   case 2: (nr = nf) 
12    foreach task stage i in tf { 
13     foreach document d in tsf[i].docs { 
14 Add (d, tsr[k]) to the merge_list where cos(d.profile, tsr[k].profile) is 

maximum for i - 1 ≤ k ≤ i + 1 
15     } 
16    } 
17   case 3: (nr < nf) 
18    foreach task stage i in tf { 
19     foreach document d in tsf[i].docs { 
20 Add (d, tsr[k]) to the merge_list where cos(d.profile, tsr[k].profile) is 

maximum for max(1, i-(nf -nr)) ≤ k ≤ min(i, nr) 
21     } 
22    } 
23   } 
24  } 
25  Merge all documents in the merge_list to the corresponding task stage; 
 
26  return TS(tf) as TS(tv); 
 } 
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Step3. Reassigning documents. 

This step reorganizes the documents in task stages of tv to enhance the homogeneousness of 
each task-stage. Documents may be reassigned to other task stages according to the similarity 
measures (cosine measures) of document profiles and task-stage profiles. A document d is 
assigned to the stage k of tv that has the maximum similarity measure, i.e., cos(d.profile, 
tsv[k].profile), among all task stages of tv. Some noisy or irrelevant documents may be 
removed from tv, if their maximum similarity measures are below a defined threshold. After 
the reassignment, task stages with zero or one document will be removed. Consequently, we 
derive the final document set at each task stage of the virtual task tv. Notably, for some 
application domains, knowledge workers may need different types (categories) of codified 
knowledge during a particular stage of task performance. In such scenarios, documents need 
to be categorized to generate different categories of profiles at each task-stage. Accordingly, 
the process of mining task-stage needs must be modified to tackle such scenarios. It will be 
interesting to explore such issues in future work. 

Step 4: Extracting Task-stage profiles.  

The profile of each task stage can be derived by averaging the feature vectors of documents 
in the corresponding stage. Notably, the task-stage profile specifies the key subjects of a task 
stage. For a stage k of virtual task tv, a task-stage profile tsv[k].profile is the vector obtained by 

averaging the feature vectors of documents in tsv[k].docs.  
 

4.3. Knowledge Support 

Relevant documents can be retrieved to provide knowledge support for task executions 
according to the similarity measures (e.g. cosine measures) between task-stage profiles and 
document profiles. For conducting an on-going task te, the system first identifies the task class 
tv that te belongs to. Then, the task-stage profiles of tv are used to provide task-relevant 
knowledge at each stage of executing te. A document d is provided to knowledge workers at 
the stage of k, if the similarity measure cos(d.profile, tsv[k].profile) is greater than a defined 
threshold. Alternatively, top-N approach can be used to provide N documents with N-highest 
similarity measures at each task stage. 
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5. An Illustrative Example and Discussion 

We give two examples to explain the proposed task-stage knowledge support approaches. 
The first example sets time window to 1 (w=1), whereas the second example sets time 
window=2 (w=2). Example one illustrates the case 3 of the task-merge algorithm and example 
two explains the case 1 of the task-merge algorithm. We explain the proposed approach step 
by step as follows. 

5.1. Example 1 

A virtual task 3 named “Task-based knowledge support model and system” is adopted as 
the illustrative example to explain the proposed idea. Two task instances belonging to this 
virtual task are listed in Table 3. We will explain how to extract task stage needs according to 
the proposed task-stage mining approach. 

Table 3. Information of the virtual task 3 
Virtual task 3: Task-based knowledge support model and system  
T3={t31,t47} 

t31

2003/09/15 
~ 

2004/04/13 
A Collaborative Relevance Feedback Approach to Task-driven 

Recommendation 

t47

2003/09/18 
~ 

2004/05/18 
Implementation of Task-based Knowledge Support System 

Step1. Identifying Task-stages. Five and six stages are identified from the task document 
sequences (TDS) of task 47 and task 31, respectively. The clustering process of task 47 is 
illustrated in Figure 6.  

• Cluster examination: We adopted the proposed TSHC algorithm listed in Table 1 to 
conduct the clustering. 
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Figure 6: Clustering process of task 47 (Step 1) 
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Table 4. Clustering examination 

Quality value of stages Task 31 Task 47 

Q(C) of 6 stages 0.168 0.039 

Q(C) of 5 stages 0.191 0.038 

Q(C) of 4 stages 0.280 0.050 

Q(C) of 3 stages 0.478 0.123 

Step2. Merging Task-stages. Task 47 is selected as the kernel task, since it has the best Q 
value. The process of merging the stages of task 31 to the stages of task 47 is shown in Figure 
7. 
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Case 3: The clusters number of kernel task is less than the clusters number of the other tasks
              Task 31 is merged to task 47

 
Figure 7: Task stage merge process (Step 2) 

Step3. Reassigning documents. The reassigned result is shown in Table 5. Notably, in this 
case, no document or stage is removed. The details of stage document set are listed in 
Appendix A(2). 
Step 4. Extracting Task-stages profiles. Finally, the feature set of each task stage is 
extracted from each cluster. 

Table 5. Final document set at each task stage of the virtual task 3 (Step 3) 

TS(t3) 

ts3[1].docs 
D0000000335 D0000000494 D0000000198 D0000000334 D0000000292 D0000000196
D0000000293 

ts3[2].docs D0000000498  D0000000340 

ts3[3].docs 
D0000000386 D0000000316 D0000000464 D0000000388 D0000000504 D0000000291
D0000000296 D0000000442 D0000000339 D0000000347 D0000000354 D0000000355
D0000000385  D0000000446   D0000000374 

ts3[4].docs D0000000421   D0000000468 

ts3[5].docs 
D0000000508 D0000000323 D0000000402 D0000000412 D0000000407 D0000000400
D0000000492   D0000000404  D0000000413   D0000000401  D0000000467  

 21



 

5.2. Example 2 

A virtual task 2 named “Context-aware knowledge service and application” is adopted as 
the illustrative example to explain the proposed idea. Two task instances belonging to this 
virtual task are listed in Table 6.  

Table 6. Information of the virtual task 2 
Virtual task 12: Context-aware knowledge service and application 
T2={t43,t48} 

t43

2003/09/16 
~ 

2004/06/21 
Applying Topic Maps and Data Mining to Deploy Composite E-service 

Platform 

t48

2003/09/23 
~ 

2004/04/30 
Implementation of Personalized Recommendations for Composite E-service 

 

Step1. Identifying Task-stages. Three and four stages are identified from the task document 
sequence of task 48 and task 43, respectively. The clustering process of task 48 is illustrated 
in Figure 8.  
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Figure 8: Task stage clustering process (Step 2) 
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• Cluster examination: We adopted the proposed TSHC algorithm listed in Table 1 to 
conduct the clustering. 

Step2. Merging Task-stages. Task 43 is selected as the kernel task, since it has the best Q 
value. The process of merging the stages of task 48 to the stages of task 43 is shown in Figure 
9. 

Table 7. Clustering examination 

Quality value of stages Task 43 Task 48 

Q(C) of 6 stages 0.125 0.088 

Q(C) of 5 stages 0.139 0.084 

Q(C) of 4 stages 0.074 0.082 

Q(C) of 3 stages 0.110 0.076 
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Figure 9. Task stage merge process (Step 2) 

 

Step3. Reassigning documents: The reassigned result is shown in Table 8. In this case, one 
stage is removed. Stage 3 contains only one document D0000000343. After calculating the 
similarity between neighborhoods, the document D0000000343 is merged to the stage 4. 
Then the stage 3 is removed. 
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Table 8. Final document set at each task stage of target task 1 (Step 3) 

TS(t2) 

ts2[1].docs 

D0000000499 D0000000326 D0000000366 D0000000347 D0000000346 D0000000377 
D0000000430 D0000000436 D0000000D437 D0000000384 D0000000495 D0000000503 
D0000000336 D0000000355 D0000000492 D0000000500 D0000000331 D0000000354 
D0000000337 D0000000446 

ts2[2].docs D0000000361  D0000000357 D0000000358 D0000000356 

ts2[3].docs 
D0000000327 D0000000382 D0000000505 D0000000429 D0000000435 D0000000428 
D0000000343 

 
Step 4. Extracting Task-stages profiles: Finally, the feature set of each task stage is 
extracted from each cluster. 
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6. Experiments 

6.1. Experimental Setup 

Three experiments were performed to evaluate whether the proposed task-stage knowledge 
support approach based on the TSHC algorithm can achieve better performance than our 
previous task-based knowledge support approach (Liu et al., 2005). Section 6.1.1 reviews the 
objective of the experiments and the experimental design. Meanwhile, Section 6.1.2 and 
Section 6.1.3 describe the data, participants, and evaluation metrics, respectively. 

6.1.1. Overview of the experimental objective and design 

Three experiments are conducted to evaluate the effectiveness of the proposed task-stage 
mining method for supporting task-relevant knowledge. The objectives of experimental 
evaluations were threefold: (1) Experiment one evaluates the impact of our proposed method 
with different time window size; (2) the experiment two evaluates the effectiveness of 
knowledge support based on task-stage compared with the baseline method, non-stage 
knowledge support (task-based knowledge support). In this work, we refer our previous 
task-based knowledge support as non-stage knowledge support; and (3) experiment three is 
similar to experiment two except we use different answering set for evaluating the 
effectiveness of the proposed method under different condition. Note that the knowledge 
support based on task-stage means that a virtual task with task-stage profiles can be used to 
deliver task-relevant knowledge for an executing task belonging to the task class of the virtual 
task. Our baseline method, task-based knowledge support uses the task profile of the virtual 
task to deliver task-relevant knowledge for an executing task belonging to the task class of the 
virtual task. 

Two kinds of answering set of needed documents are prepared. The first is the 

task-answering set of a virtual task. The second is the stage-answering set for each stage of a 

virtual task. Note that the task-answering set is the union of the stage-answering sets. Section 

6.1.2 explains the procedure to acquire the answering set in detail. Accordingly, experiment 

two compares task-stage knowledge support with non-stage knowledge support based on the 

task-answering set (named overall match). Experiment three compares stage knowledge 

support with non-stage knowledge support based on the stage-answering set (named stage 

match).  
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6.1.2. Data and participants 

Experiments were conducted using a real application domain on conducting research tasks in 

a laboratory of a research institute. The tasks concerned are writing research papers or 

conducting research projects. The real application domain restricts the sample size of the data 

and participants in the experiments.  

The test document set used in our experiment is collected from the laboratory in the 

institute of information management department. Over 600 task-related documents were 

collected. The smallest meaningful components of document information elements, such as 

title, abstract, journal and author, were extracted from documents. Each document contained 

an average of ninety distinct terms after information extraction, and document pre-processing 

(e.g. case folding, stemming, and stop word removal).  

Three virtual tasks are selected from our research domain to evaluate the effectiveness of 

the proposed method, including “Change mining and application”, “Context-aware 

knowledge service and application”, and “Task-based knowledge support model and system”. 

Each virtual task has its own needed kernel documents. The task-answering set of a virtual 

task is derived from the knowledge workers who have executed similar tasks and domain 

experts who have the knowledge of the virtual task. Furthermore, we asked the domain expert 

to select the needed documents at each stage of a virtual task. Consequently, the 

stage-answering set can be acquired. The limitation of this work is that it is not easy to 

identify the stage-answering sets of each virtual task. Therefore, only three stages of 

answering set of each virtual task are acquired from domain experts. 

6.1.3. Evaluation metrics 

The effectiveness of knowledge support is measured in terms of precision, recall and 
F1-measure, as in the research area of information retrieval. 

Precision and recall.  Precision is the fraction of retrieved items (tasks or documents) that 

are relevant, while recall is the fraction of total known relevant items that are retrieved, 

defined as follows. 
    

  
retrieved items that are relevant

total retrieved items
precision =  

(3) 

    
  

    relevant items that are retrieved
total known relevant items

recall =  
(4) 

F-Measure. The F-metric (van Rijsbergen, 1979; Riloff & Lehnert, 1994) could be used to 
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balance the trade-off between precision and recall. F1 metric assigned equal weight to 
precision and recall and was given by, 

ββ
β

+ × ×
− =

× +

2(1 )
( )

2 r

precision recall
F measure

p ecision recall  (5) 

The value of β is used to adjust the relative importance of the recall in comparison to the 
precision. In this experiment, we set β=1 such that the recall and precision have the same 
importance. 

6.2. Experimental Result 

6.2.1. Experiment one: effect on task-stage knowledge support with 
different size of time window  

(1) Objective 

The objective of this experiment is to evaluate the effectiveness of our proposed method 
with different time window size. As we have mentioned in Section 4.2, a time window size w 
is set to define the scope of candidate clusters to be merged. The smaller the time window 
size is, the higher the timeliness is. When time window size is equal to n (the number of 
documents in TDS of a task instance), the proposed TSHC algorithm is the same as standard 
hierarchical clustering algorithm (HAC). Thus, we conduct experiment to evaluate the impact 
of the time window parameter. And then the best time window size w will be selected for the 
usage of the proposed stage knowledge support method. 

(2) Experimental Result and Observations 

Table 9 shows the experimental results with different time window size in terms of 
precision, recall, and F1-measure. Four window sizes are evaluated: w=1, w=2, w=3 and w=n. 
Three virtual tasks are evaluated. In addition, we also evaluated the effectiveness of the 
proposed method under various top-N (N=10, 20, and 30) knowledge support, i.e., providing 
top-N documents with N-highest ranked similarity measures. 

Observation 1: Generally, the best performance can be achieved when time window equals 
to one (w=1). Bold type denotes the best performance with different time window size. 
Specifically, when conducting top-30 knowledge support, time window equals to one (w=1) 
has the best performance. In addition, it is also apparently that the greater the time window, 
the lower effectiveness of the proposed method.  

Observation 2: Interestingly, the virtual task 3 has the same performance no matter w=1 or 
w=2. It implies that the time effect is not obvious in this virtual task. On the other hand, w=1 
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not always leading to best performance for virtual task 1. It indicates that higher variant of 
TDS (task document sequence) exists for task instances of virtual task 1. 

Table 9. Result of knowledge support with different time window for three virtual tasks 

Parameters Virtual Task 1 Virtual Task 2 Virtual Task 3 

Top-N w Pre. Re. F1-measure Pre. Re. F1-measure Pre. Re. F1-measure

w=1 0.267 0.203 0.231 0.231 0.084 0.171 0.344 0.175 0.232 

w=2 0.255 0.161 0.197 0.166 0.065 0.127 0.344 0.175 0.232 

w=3 None None None 0.156 0.063 0.121 0.244 0.124 0.165 
Top-30 

w=n 0.167 0.116 0.137 0.133 0.019 0.033 None None None 

w=1 0.267 0.126 0.171 0.217 0.069 0.152 0.350 0.118 0.177 

w=2 0.350 0.152 0.212 0.156 0.049 0.118 0.350 0.118 0.177 

w=3 None None None 0.133 0.037 0.088 0.250 0.085 0.126 
Top-20 

w=n 0.167 0.079 0.107 0.150 0.039 0.062 None None None 

w=1 0.333 0.080 0.129 0.300 0.047 0.144 0.433 0.074 0.126 

w=2 0.367 0.080 0.132 0.200 0.026 0.085 0.433 0.074 0.126 

w=3 None None None 0.167 0.023 0.074 0.333 0.056 0.096 
Top-10 

w=n 0.200 0.050 0.080 0.156 0.059 0.086 None None None 

Note: “None” denotes the proposed method is unable to generate 3 stages (clusters)  

Table 10 shows the knowledge support results with different time window size of different 
task stages in terms of precision, recall, and F1-measure. As we have mentioned in Section 
5.1.2, due to the limitation of stage answering set, only three stages of each virtual task are 
identified. According to previous pilot study (Vakkari 2000, 2003), stage one indicates the 
task pre-focus stage; stage two indicates the task focus formulation stage; and stage three 
indicates the task post-focus stage. Note that the measure of each stage is the average of three 
virtual tasks. 

Observation 3: Generally, the best performance can be achieved for all virtual task at stage 2 
and stage 3 while conducting Top-20 and Top-10 knowledge support, when the time window 
size is set to one (w=1). Bold type denotes the best performance with different time window 
size. However, for the same top-N knowledge support, the best performance of different task 
stage is achieved in different time window size. 

Observation 4: Generally, the greater the time window size, the lower effectiveness of the 
proposed method, especially for stage 2 and stage 3. However, stage 1 seems abnormal 
compared with stage 2 and stage 3. That is the greater the time window size, the higher 
effectiveness of the proposed method, especially in providing more documents. 
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Table 10. Result of knowledge support under different time window size for task stages 

Parameters Stage1 Stage 2 Stage3 

Top-N w Pre. Re. F-measure Pre. Re. F-measure Pre. Re. F-measure

w=1 0.333 0.183 0.119 0.222 0.131 0.163 0.233 0.147 0.176 

w=2 0.366 0.195 0.251 0.233 0.098 0.137 0.167 0.107 0.126 

w=3 0.234 0.095 0.133 0.117 0.055 0.075 0.250 0.132 0.172 
Top-30 

w=n 0.367 0.253 0.200 0.084 0.034 0.067 0.033 0.029 0.018 

w=1 0.333 0.122 0.177 0.283 0.112 0.159 0.217 0.080 0.116 

w=2 0.433 0.249 0.179 0.283 0.080 0.125 0.167 0.060 0.088 

w=3 0.225 0.064 0.098 0.125 0.040 0.060 0.117 0.055 0.075 
Top-20 

w=n 0.350 0.184 0.128 0.075 0.021 0.046 0.050 0.029 0.022 

w=1 0.400 0.070 0.119 0.400 0.080 0.133 0.267 0.049 0.083 

w=2 0.433 0.089 0.147 0.367 0.054 0.094 0.200 0.036 0.061 

w=3 0.350 0.053 0.091 0.250 0.040 0.068 0.150 0.027 0.029 
Top-10 

w=n 0.350 0.111 0.067 0.050 0.007 0.020 0.100 0.029 0.028 

(3) Implications: 

This experiment evaluates the impact of the time window size in the proposed TSHC 
algorithm. The result reveals that generally the smaller the time window size, the better the 
effectiveness (the higher precision, recall, and F-measure) of knowledge support. Accordingly, 
we set time window size to one (w=1) in the proposed algorithm.  

Interestingly, when time window size is equal to n (number of document TDS of a task 
instance), the proposed TSHC algorithm is the same as standard hierarchical clustering 
algorithm (HAC). The time effect disappeared when time window size is equal to n. The 
result is similar to topics clustering, i.e., documents within the same cluster may discuss a 
similar topic without considering the effect of stage.  
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6.2.2 Experiment two: comparing task-stage knowledge support with 
non-stage knowledge support based on overall match 

(1) Objective 

The objective of this experiment is to evaluate the effectiveness of task-stage mining 
method for knowledge support. Task-stage profiles are generated to model workers’ task-stage 
needs and are used for delivering task-relevant knowledge at various task stages. The task 
stage knowledge support method is compared with the baseline method, non-stage knowledge 
support method (task-based knowledge support). The task-stage knowledge support denotes 
providing needed documents based on task-stage profiles, whereas non-stage knowledge 
support denotes providing knowledge support based on task profiles. The task-stage profiles 
or task profiles are used to deliver task-relevant knowledge for an executing task that is 
similar to the virtual task. Note that this experiment compares task-stage knowledge support 
with non-stage knowledge support according to the task-answering set of a virtual task 
(named overall match). On the other hand, the experiment three compares task-stage 
knowledge support with non-stage knowledge support according to the stage answering set of 
a virtual task (named stage match). 

(2) Result and Observations 

Table 11 shows the result of task-stage knowledge support method and non-stage 
knowledge support method in terms of precision, recall, and F1-measure. Notably, three 
virtual tasks are evaluated under various top-N (N=10, 20, and 30) document supports. Table 
12 shows the average result of task-stage knowledge support method and non-stage 
knowledge support method. 

Observation 1: The precision, recall and F1-measure of task stage knowledge support 

method are greater than the non-stage method for virtual task one and two. However, for 

virtual task three, the precision, recall and F1-measure of task stage knowledge support 

method are lesser than non-stage method. The precision of non-stage method under Top-30 

support is greater than that of the task stage knowledge support method. 

Observation 2: Notably, for task stage knowledge support method, the fewer number of 

supporting documents, the higher precision value is. The rank of precision value is Top-10 > 

Top-20 > Top-30. The observation doest not apply to the non-stage knowledge support 

method. The precision values of task stage knowledge support method are greater than those 

of the non-stage method under top-10 knowledge support for three virtual tasks. The result 

reveals that task stage knowledge support method can provide more effective knowledge 
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support than the non-stage knowledge support method when providing fewer number of 

task-stage relevant documents.  

Table 11. Compare task stage knowledge support method with none-stage knowledge support 
method for three virtual tasks 

  Task Stage Knowledge Support Non-Stage (Task-based) Knowledge Support

  Pre. Re. F-measure Pre. Re. F-measure 

Top-10 0.667 0.082 0.146 0.600 0.078 0.138 

Top-20 0.633 0.165 0.261 0.600 0.156 0.248 

Top-30 0.578 0.225 0.324 0.567 0.220 0.317 

Virtual 

Task 1 

Average 0.626 0.157 0.244 0.589 0.151 0.234 

Top-10 0.433 0.03 0.06 0.300 0.021 0.039 

Top-20 0.350 0.05 0.09 0.400 0.056 0.098 

Top-30 0.322 0.07 0.11 0.400 0.085 0.140 

Virtual 

Task 2 

Average 0.369 0.050 0.086 0.367 0.054 0.093 

Top-10 0.567 0.060 0.109 0.500 0.053 0.096 

Top-20 0.467 0.099 0.163 0.450 0.096 0.158 

Top-30 0.444 0.142 0.215 0.567 0.181 0.274 

Virtual 

Task 3 

Average 0.493 0.100 0.162 0.506 0.110 0.176 

Observation 3: Table 11 shows the details of the experiment result, which shows that virtual 

task one has best result. This may result from that the best clustering number for virtual task 

one is 3, but clustering number for virtual task two and three are not 3. As we have addressed 

in step 1 of Section 4.2, we use the Q value to determine the cluster quality for deciding the 

number of clusters of each task. 

Observation 4: Table 12 shows the result of task stage knowledge support method and 
non-stage knowledge support method. The average precision, recall and F1-measure of task 
stage knowledge support method are greater than those of the non-stage method under top-10 
and top-20 knowledge support. Meanwhile, for task stage knowledge support method, the 
fewer number of supporting documents, the higher precision value is. The rank of precision 
value is Top-10 > Top-20 > Top-30. For non- stage knowledge support method, the fewer 
number of supporting documents, the lower precision value is. The rank of precision value is 
Top-30 > Top-20 > Top-10. 
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 Table 12. Results of knowledge support by overall match 

 Stage knowledge support Non- stage knowledge support 

β=1 Precision Recall F1-measure Precision Recall F1-measure

Top-10 0.556 0.058 0.104 0.467 0.051 0.091 

Top-20 0.483 0.104 0.171 0.483 0.103 0.168 

Top-30 0.448 0.145 0.217 0.511 0.162 0.244 

Average 0.496 0.102 0.164 0.487 0.105 0.168 

 
Table 13, and Figure 10 (A), (B), and (C) shows the results of task stage knowledge support 

method with none-stage knowledge support method of different task stages. Note that the 
none-stage knowledge support method of different task stages has the same performance 
value. The reason is that the non-stage knowledge support method only has one task profile. 
In addition, this experiment evaluates the performance of two methods according to the 
task-answering set (named overall match) not the stage answering sets. 

Observation 5: Generally, task stage knowledge support method has better performance than 
non-stage method under top-10 knowledge support for three task stages. In addition, no 
matter top-10, 20 or 30 knowledge supports, task stage knowledge support method has better 
performance than non-stage method in task pre-focus stage (stage 1). 
 

Table 13: Compare task stage knowledge support method with none-stage knowledge support 
method under different task stages 

  Task Stage-based Knowledge Support Non-Stage (Task-based) Knowledge Support

  Pre. Re. F-measure Pre. Re. F-measure

Top-10 0.567 0.064 0.218 0.467 0.051 0.177 

Top-20 0.517 0.120 0.309 0.483 0.103 0.278 

Top-30 0.522 0.181 0.376 0.511 0.162 0.357 

Stage 1 

(Pre-focus) 

Average 0.535 0.122 0.301 0.487 0.105 0.270 

Top-10 0.500 0.051 0.179 0.467 0.051 0.177 

Top-20 0.417 0.091 0.240 0.483 0.103 0.278 

Top-30 0.311 0.101 0.217 0.511 0.162 0.357 

Stage 2 

(Focus) 

Average 0.409 0.081 0.212 0.487 0.105 0.270 

Top-10 0.600 0.059 0.209 0.467 0.051 0.177 

Top-20 0.517 0.102 0.281 0.483 0.103 0.278 

Top-30 0.511 0.153 0.343 0.511 0.162 0.357 

Stage 3 

(Post-focus) 

Average 0.543 0.105 0.277 0.487 0.105 0.270 

Note: The details of stage knowledge support of each group are listed in Appendix B1 

 32



 

Observation 6: Figure 10(A), (B), and (C) depict the result of knowledge support based on 
various number of top-N knowledge support. Interestingly, stage 1 and stage 3 of task-stage 
knowledge support method has better performance than non-stage knowledge support. 
However, stage 2 of task-stage knowledge support method is not always better than non-stage 
knowledge support method under various top-N knowledge supports. 
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Figure 10(A): Result of top-10 knowledge support 
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Figure 10(B): Result of top-20 knowledge support 
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Figure 10(C): Result of top-30 knowledge support 

(3) Implications: 

This experiment evaluates the effectiveness of the proposed task-stage mining method for 
knowledge support. The experimental result reveals that generally the task stage knowledge 
support method is better than the baseline method, non-stage knowledge support method 
(task-based knowledge support). Notably, for task stage knowledge support method, the fewer 
number of supporting documents, the higher precision value is (Top-10 > Top-20 > Top-30). 
The result revels that the proposed stage mining method can provide more effective 
knowledge support. Meanwhile, knowledge workers generally do not need a lot of documents 
at each task stage; therefore, the system needs to determine appropriate number of needed 
documents to support task-execution. The experimental result is useful to suggest the number 
of supporting documents at each task stage. 
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6.2.3. Experiment three: comparing task-stage knowledge support 
with non-stage knowledge support method based on stage 
match 

(1) Objective 

The objective of this experiment is to evaluate the effectiveness of task-stage mining method 
for knowledge support. Experiment three compares task stage knowledge support with 
non-stage knowledge support according to the stage answering set (named stage match). This 
experiment is similar to experiment two except that we use different answering set (stage 
answering set) for evaluating the effectiveness of the proposed method.  

(2) Result and Observations 
Table 14 shows the result of task stage knowledge support method and non-stage 

knowledge support method in terms of precision, recall, and F1-measure. Notably, three 
virtual tasks are evaluated under various top-N (N=10, 20, and 30) document supports. Table 
15 shows the average result of task stage knowledge support method and non-stage 
knowledge support method, respectively. 

Observation 1: The average precision, recall and F1-measure of task stage knowledge 

support method are greater than non-stage method for virtual task two and three. However, for 

virtual task one, the average precision, recall and F1-measure of task stage knowledge support 

method are lesser than the non-stage method. Only top-10 document support of task stage 

knowledge support method is better than the non-stage method. 

Observation 2: Notably, for task stage knowledge support method, the fewer number of 

supporting documents, the higher precision value is. The rank of precision value is Top-10 > 

Top-20 > Top-30. On the other hand, this observation does not apply to the non-stage 

knowledge support method. The precision values of task stage knowledge support method are 

greater than those of the non-stage method under top-10 knowledge support for three virtual 

tasks. The result reveals that task stage knowledge support method can provide more effective 

knowledge support than the non-stage knowledge support method when supporting fewer 

number of task-stage relevant documents. This result is in accordance with the result of 

experiment two. 

Observation 3: Table 15 shows the average result of task stage knowledge support method 
and non-stage knowledge support method. The average precision, recall and F1-measure of 
task stage knowledge support method are all greater than those of the non-stage method. 
Notably, if we compare this result with experiment 2 (Table 12), the performance value is not 
better than experiment 2. This result is reasonably because the number of documents of each 
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stage answering set is far fewer than the number of documents of the task answering set. This 
experiment uses the stage-answering sets, whereas the experiment two uses only one task 
answering set. The task answering set of a virtual task is the union of stage answering sets of 
a virtual task. 

Table 14. Compare task-stage knowledge support method with none-stage knowledge support 
method for three virtual tasks 

  Task Stage Knowledge Support Non-Stage (Task-based) Knowledge Support

  Pre. Re. F-measure Pre. Re. F-measure 

Top-10 0.333 0.080 0.128 0.300 0.074 0.128 

Top-20 0.267 0.126 0.171 0.317 0.162 0.171 

Top-30 0.267 0.203 0.229 0.289 0.229 0.229 

Virtual 

Task 1 

Average 0.289 0.136 0.176 0.302 0.155 0.176 

Top-10 0.300 0.047 0.080 0.233 0.033 0.133 

Top-20 0.217 0.069 0.104 0.167 0.051 0.117 

Top-30 0.231 0.084 0.113 0.178 0.079 0.122 

Virtual 

Task 2 

Average 0.249 0.067 0.099 0.193 0.055 0.124 

Top-10 0.433 0.074 0.135 0.233 0.039 0.167 

Top-20 0.350 0.118 0.194 0.300 0.102 0.200 

Top-30 0.344 0.175 0.232 0.367 0.253 0.233 

Virtual 

Task 3 

Average 0.376 0.122 0.187 0.300 0.131 0.200 

Table 15. Average results of knowledge support for three virtual tasks by stage match 

 Stage knowledge support Non- stage knowledge support 

β=1 Precision Recall F1-measure Precision Recall F1-measure 

Top-10 0.356 0.067 0.115 0.256 0.049 0.143 

Top-20 0.278 0.105 0.156 0.261 0.105 0.163 

Top-30 0.281 0.154 0.191 0.278 0.187 0.195 

Average 0.305 0.108 0.154 0.265 0.114 0.167 

 
Table 16 shows the results of task stage knowledge support method with none-stage 

knowledge support method under different task stages.  

Observation 4: Generally, task stage knowledge support method has better performance than 
the non-stage method under top-10 or top-20 knowledge support for three task stages. In 
addition, no matter top-10, 20 or 30 knowledge supports, task stage knowledge support 
method has better performance than the non-stage method in task pre-focus stage (stage 1).  

Table 16. Compare task stage knowledge support method with none-stage knowledge support 
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method under different task stages (Stage match) 

  Task Stage-based Knowledge Support Non-Stage (Task-based) Knowledge Support

  Pre. Re. F-measure Pre. Re. F-measure

Top-10 0.400 0.070 0.119 0.367 0.066 0.111 

Top-20 0.333 0.122 0.177 0.333 0.126 0.181 

Top-30 0.333 0.183 0.234 0.333 0.248 0.277 

Stage 1 

(Pre-focus) 

Average 0.355 0.125 0.176 0.344 0.147 0.190 

Top-10 0.400 0.080 0.133 0.233 0.043 0.072 

Top-20 0.283 0.112 0.159 0.233 0.091 0.129 

Top-30 0.222 0.131 0.163 0.267 0.153 0.192 

Stage 2 

(Focus) 

Average 0.302 0.108 0.151 0.244 0.096 0.131 

Top-10 0.267 0.049 0.083 0.167 0.033 0.057 

Top-20 0.217 0.080 0.116 0.217 0.102 0.152 

Top-30 0.233 0.147 0.176 0.234 0.186 0.247 

Stage 3 

(Post-focus) 

Average 0.239 0.092 0.125 0.206 0.107 0.152 

Note: The details of stage knowledge support of each group are listed in Appendix B2-1 and B2-2 

(3) Implications: 

This experiment evaluates the effectiveness of the proposed task-stage mining method for 
knowledge support. The results prove that the effectiveness of task stage knowledge support 
method by the TSHC algorithm is better than the non-stage method. This experiment has more 
significant improvement in precision by task stage knowledge support than that of experiment 
2. Table 17 shows the comparison of Table 12 and Table 15 in experiment 2 and 3, 
respectively. Notably, in average, the recall value of non-stage knowledge support is better 
than that of the task stage knowledge support. But if we took further analysis, the recall value 
of top-30 task stage knowledge support is much lower than that of non-stage knowledge 
support. This result implies that the system can deliver more task-relevant documents by 
providing top-30 documents based on task profiles and providing top-10 or top-20 documents 
based on task-stage profiles. 

 
 
 
 
 
 

Table 17. Average results of knowledge support for three virtual tasks by stage match 
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 Stage knowledge support Non- stage knowledge support 

β=1 Precision Recall F1-measure Precision Recall F1-measure 

Average results of knowledge support for three virtual tasks by stage match 

Top-10 0.356  0.067 0.115 0.256 0.049 0.143 

Top-20 0.278 0.105 0.156 0.261 0.105 0.163 

Top-30 0.281 0.154 0.191 0.278 0.187 0.195 

Average 
0. 305 

(+15.09%) 
0. 108 

(-5.26%) 
0. 154 

 0.265 0.114 0.167 

Average results of knowledge support for three virtual tasks by overall match 

Top-10 0.556 0.058 0.104 0.467 0.051 0.091 

Top-20 0.483 0.104 0.171 0.483 0.103 0.168 

Top-30 0.448 0.145 0.217 0.511 0.162 0.244 

Average 
0.496 

(+1.85%) 
0.102 

(-2.94%) 1. 0.164 0.487 0.105 0.168 
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7. Conclusions and Future Works 

Codifying knowledge into explicit form is a widely adopted strategy in contemporary 
knowledge management systems (KMS) to facilitate knowledge reuse. However, workers still 
encounter difficulty in accessing information from vast amount of codified knowledge. This 
work proposed a task-stage mining technique to tackle the problem. The valuable knowledge 
of each task-stage is extracted to build the task-stage profile for delivering task-relevant 
knowledge at various stages. Several experiments have been conducted to demonstrate the 
effectiveness of the proposed task-stage knowledge support approach.  

In our ongoing work, we have proposed a task-stage identification model to determine the 
changes of a worker’s task-stage (Wu et al., 2005). Accordingly, we will integrate the 
proposed task-stage mining technique with the task-stage identification model to investigate 
the contribution of the task-stage knowledge support model empirically. Meanwhile, we are 
seeking other application domain to apply the proposed model.  
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Appendix A1 
(comparing stage knowledge support with non-stage knowledge support method of overall match) 
Stage knowledge support results (Group 1) 

 Stage 1 Stage 2 Stage 3 

  Pre. β=0.5      β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. 

Top-10 0.900 0.385 0.207 0.142 0.117 0.700 0.270 0.140 0.095 0.078 0.400 0.171 0.092 0.063 0.052 

Top-20 0.900 0.574 0.371 0.275 0.234 0.600 0.382 0.248 0.183 0.156 0.400 0.255 0.165 0.122 0.104 

Top-30 0.867 0.660 0.486 0.385 0.338 0.433 0.330 0.243 0.192 0.169 0.433 0.330 0.243 0.192 0.169 

Average 0.889 0.540 0.355 0.267 0.230 0.578 0.327 0.210 0.157 0.134 0.411 0.252 0.167 0.126 0.108 

Stage knowledge support results (Group 2) 

 Stage 1 Stage 2 Stage 3 

  Pre. β=0.5      β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. 

Top-10 0.300 0.082 0.039 0.026 0.021 0.300 0.082 0.039 0.026 0.021 0.700 0.194 0.093 0.061 0.050 

Top-20 0.150 0.067 0.037 0.025 0.021 0.300 0.137 0.075 0.052 0.043 0.600 0.271 0.149 0.103 0.085 

Top-30 0.167 0.095 0.058 0.042 0.035 0.233 0.135 0.082 0.059 0.050 0.567 0.325 0.198 0.142 0.120 

Average 0.206 0.082 0.045 0.031 0.026 0.278 0.118 0.066 0.046 0.038 0.622 0.264 0.147 0.102 0.085 

Stage knowledge support results (Group 3) 

 Stage 1 Stage 2 Stage 3 

  Pre. β=0.5      β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. 

Top-10 0.500 0.186 0.096 0.065 0.053 0.500 0.186 0.096 0.065 0.053 0.700 0.260 0.134 0.090 0.074 

Top-20 0.500 0.287 0.175 0.126 0.106 0.350 0.200 0.122 0.088 0.074 0.550 0.316 0.193 0.139 0.117 

Top-30 0.533 0.373 0.258 0.197 0.170 0.267 0.187 0.129 0.098 0.085 0.533 0.373 0.258 0.197 0.170 

Average 0.511 0.282 0.176 0.129 0.110 0.372 0.191 0.116 0.084 0.071 0.594 0.317 0.195 0.142 0.120 
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Appendix A2-1  
(comparing stage knowledge support with non-stage knowledge support method of stage match) 
Stage knowledge support results (Group 1) 

 Stage 1 Stage 2 Stage 3 

  Pre. β=0.5      β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. 

Top-10 0.500 0.294 0.182 0.131 0.111 0.500 0.316 0.204 0.150 0.128 0.000 0.000 0.000 0.000 0.000 

Top-20 0.450 0.360 0.277 0.225 0.200 0.350 0.294 0.237 0.198 0.179 0.000 0.000 0.000 0.000 0.000 

Top-30 0.433 0.394 0.347 0.310 0.289 0.267 0.252 0.232 0.215 0.205 0.100 0.103 0.107 0.112 0.115 

Average 0.461 0.349 0.268 0.222 0.200 0.372 0.287 0.224 0.188 0.171 0.033 0.034 0.036 0.037 0.038 

Stage knowledge support results (Group 2) 

 Stage 1 Stage 2 Stage 3 

  Pre. β=0.5      β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. 

Top-10 0.300 0.115 0.059 0.040 0.033 0.200 0.088 0.048 0.033 0.027 0.400 0.222 0.133 0.095 0.080 

Top-20 0.150 0.088 0.054 0.039 0.033 0.200 0.131 0.086 0.064 0.055 0.300 0.231 0.171 0.136 0.120 

Top-30 0.133 0.095 0.066 0.051 0.044 0.167 0.129 0.097 0.077 0.068 0.233 0.206 0.175 0.152 0.140 

Average 0.194 0.099 0.060 0.043 0.037 0.189 0.116 0.077 0.058 0.050 0.311 0.220 0.160 0.128 0.113 

Stage knowledge support results (Group 3) 

 Stage 1 Stage 2 Stage 3 

  Pre. β=0.5      β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. 

Top-10 0.400 0.201 0.114 0.080 0.067 0.500 0.255 0.147 0.103 0.086 0.400 0.202 0.145 0.082 0.068 

Top-20 0.400 0.285 0.200 0.153 0.133 0.300 0.217 0.154 0.119 0.103 0.350 0.252 0.228 0.137 0.119 

Top-30 0.433 0.361 0.289 0.241 0.217 0.233 0.197 0.159 0.134 0.121 0.367 0.307 0.247 0.206 0.186 

Average 0.411 0.282 0.201 0.158 0.139 0.344 0.223 0.153 0.119 0.103 0.372 0.254 0.207 0.142 0.124 
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Appendix A2-2 
(comparing stage knowledge support with non-stage knowledge support method of stage match) 
Non-Stage knowledge support results (Group 1) 

 Stage 1 Stage 2 Stage 3 

  Pre. β=0.5      β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. 

Top-10 0.600 0.352  0.218  0.158 0.133 0.200 0.126 0.081 0.060  0.051 0.100 0.075 0.055 0.043 0.038  

Top-20 0.550 0.440  0.338  0.275 0.244 0.250 0.210 0.169 0.142  0.128 0.150 0.141 0.130 0.121 0.115  

Top-30 0.433 0.394  0.347  0.310 0.289 0.267 0.252 0.232 0.215  0.205 0.167 0.171 0.179 0.186 0.192  

Average 0.528 0.395  0.301  0.247 0.222 0.239 0.196 0.161 0.139  0.128 0.139 0.129 0.121 0.117 0.115  

Non-Stage knowledge support results (Group 2) 

 Stage 1 Stage 2 Stage 3 

  Pre. β=0.5      β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. 

Top-10 0.300 0.115 0.059 0.040 0.033 0.200 0.088 0.048 0.033 0.027 0.200 0.111 0.067 0.048 0.040 

Top-20 0.150 0.088 0.054 0.039 0.033 0.150 0.098 0.064 0.048 0.041 0.200 0.154 0.114 0.091 0.080 

Top-30 0.167 0.120 0.084 0.065 0.056 0.200 0.155 0.116 0.093 0.082 0.167 0.147 0.125 0.109 0.100 

Average 0.206 0.107 0.066 0.048 0.041 0.183 0.114 0.076 0.058 0.050 0.189 0.137 0.102 0.082 0.073 

Non-Stage knowledge support results (Group 3) 

 Stage 1 Stage 2 Stage 3 

  Pre. β=0.5      β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. 

Top-10 0.200 0.099 0.057 0.040 0.033 0.300 0.154 0.088 0.062 0.052 0.200 0.099 0.058 0.040 0.033 

Top-20 0.300 0.214 0.150 0.115 0.100 0.300 0.217 0.154 0.119 0.103 0.300 0.216 0.152 0.118 0.102 

Top-30 0.400 0.400 0.400 0.400 0.400 0.333 0.280 0.227 0.190 0.172 0.367 0.307 0.247 0.206 0.186 

Average 0.300 0.238 0.202 0.185 0.178 0.311 0.217 0.156 0.124 0.109 0.289 0.208 0.152 0.121 0.107 

 

 44


	 Table of Content 
	1. Introduction 
	1.1. Research Background & Motivation 
	1.2. Research Objectives 
	1.3. Thesis Organization 
	2.1 Task-based Knowledge Management 
	2.2 Information Retrieval and Information Filtering 
	2.3 Document Clustering 
	3.1. Problem Formulation 
	3.2. Process of Mining Task-stage Needs  
	3.3. Term Definition 
	4.1. Data Pre-processing  
	4.2. Process of Mining Task-stage Needs 
	 5. An Illustrative Example and Discussion 
	5.1. Example 1 
	Quality value of stages

	5.2. Example 2 
	Quality value of stages


	 6. Experiments 
	6.1. Experimental Setup 
	6.2. Experimental Result 
	 6.2.2 Experiment two: comparing task-stage knowledge support with non-stage knowledge support based on overall match 


	7. Conclusions and Future Works 
	References 
	Appendix A1 
	 Appendix A2-1  
	 

	 Appendix A2-2 


