
國立交通大學
資訊管理研究所

碩 士 論 文

工作階段知識支援：
探勘與支援工作相關知識

Task-stage K-Support:

Mining and Supporting Task-relevant Knowledge

 研 究 生： 陳 韋 孝

 指導教授： 劉 敦 仁 博士

中華民國九十四年七月

工作階段知識支援：

探勘與支援工作相關知識

Task-stage K-Support:

Mining and Supporting Task-relevant Knowledge

研 究 生：陳 韋 孝 Student: Wei-Hsiao Chen

指導教授：劉 敦 仁 Advisor: Duen-Ren Liu

國立交通大學

資訊管理研究所

碩士論文

A Thesis

Submitted to Institute of Information Management

College of Management

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Business Administration

in

Information Management

July 2004

Hsinchu, Taiwan, the Republic of China

中華民國九十四年七月

Task-stage K-Support:

Mining and Supporting Task-relevant Knowledge

Student: Wei-Hsiao Chen Advisor: Duen-Ren Liu

Institute of Information Management

National Chiao Tung University

Abstract

Organizations mainly conduct knowledge-intensive tasks to achieve organizational

goals. In such task-based environments, knowledge workers usually accomplish their tasks

by stages, while their task-needs may be different at various stages of task performance.

Accordingly, an important issue of deploying Knowledge Management Systems is to

extract knowledge from the historical task and further support task-relevant knowledge

according to workers’ task-needs at different task-stages. This work proposed a task-stage

mining method for discovering task-stage needs from historical task executions. The

proposed method adopts information retrieval techniques and a modified hierarchical

agglomerative clustering (HAC) algorithm to identify task-stage needs by analyzing

codified knowledge (documents) accessed or generated during task performance.

Task-stage profiles are generated to model workers’ task-stage needs and are used for

delivering task-relevant knowledge at various task stages. Finally, we conduct empirical

evaluations to demonstrate that the proposed method provides effective knowledge

support based on task-stages.

Keywords: Knowledge management, Knowledge support based on task-stage,
Hierarchical agglomerative clustering, Text mining, Task-stage profile

工作階段知識支援：
探勘與支援工作相關知識

研究生：陳 韋 孝 指導教授: 劉敦仁 博士

國立交通大學資訊管理所

摘要

組織主要是處理知識密集工作來達成組織目標，而在工作為基礎的環境中，知識

工作者常常以階段性完成工作。在工作執行過程中，不同階段有不同的工作需求。

因此如何根據知識工作者在不同工作階段之需求，提供工作相關知識，為建構知識

管理系統之重要議題。本研究改良階層式凝聚分群演算法，提出一工作階段探勘方

法，從歷史工作資料發掘工作階段知識需求。依據所萃取之工作階段知識需求，進

而建構工作階段需求特徵檔，提供知識工作者執行工作時各階段之相關知識。本文

最後進行實驗比較以評估所提的方法在提供知識支援之有效性。

關鍵字：知識管理、工作階段知識支援、階層式凝聚分群、文件探勘、工作階段需

求特徵檔

誌謝

首先非常感謝指導教授劉敦仁老師，在這兩年來給予許多建議與指導，不管是學

業上或是論文研究上，使我能夠順利完成碩士學位。也要感謝口試委員李瑞庭博士

與楊千博士在口試時給予許多寶貴的意見，讓本篇論文得以更加完善。

另外也要感謝同實驗室的學長姐們，美玉、志坤、孟蓉、怡瑾、嘉源、昆學、錦

慧，在生活上與課業上對我的提攜與幫助，尤其特別感謝怡瑾學姊與昆學學長，在

平常與非常時期一直對我非常的照顧；感謝實驗室的同學們，桄瑋、秋雯、柏村，

一起研究課業，分享學習心得，共同分擔在學期間所遭遇到的問題。

最後，要感謝我的家人與朋友，支持我往自己感興趣的方向發展，讓我得以順利

完成碩士學位。

Table of Content

Table of Content ... iv

1. Introduction .. 1

1.1. Research Background & Motivation... 1
1.2. Research Objectives .. 2
1.3. Thesis Organization... 3

2. Related Works... 4
2.1 Task-based Knowledge Management... 4
2.2 Information Retrieval and Information Filtering.. 4
2.3 Document Clustering.. 6

3. Task-stage Knowledge Support ... 8
3.1. Problem Formulation... 8
3.2. Process of Mining Task-stage Needs... 9
3.3. Term Definition ... 10

4. Mining of Task-stage Needs ... 12

4.1. Data Pre-processing... 12
4.2. Process of Mining Task-stage Needs... 13

5. An Illustrative Example and Discussion... 20

5.1. Example 1.. 20
5.2. Example 2.. 22

6. Experiments .. 25

6.1. Experimental Setup ... 25
6.2. Experimental Result .. 27

7. Conclusions and Future Works ... 39
References ... 39
Appendix A1 .. 42
Appendix A2-1 .. 43
Appendix A2-2 .. 44

1. Introduction

1.1. Research Background & Motivation

In task-based business environments, an important issue in deploying Knowledge
Management Systems (KMSs) is providing task-relevant information to fulfill the information
needs of knowledge workers. As the operations and management activities of enterprises are
mainly task-based, Knowledge Management Systems (KMSs) focus on providing
task-relevant knowledge to workers engaged in knowledge-intensive tasks (Abecker et al.,
2000; Fenstermacher, 2002; Fischer & Ostwald, 2001; Staab & Schnurr, 2000). The KMS
developed in the KnowMore project is an example of proactive delivery of task-specific
knowledge according to the contexts of tasks within a process (Abecker et al., 2000). The
Kabiria system supports knowledge-based document retrieval in office environments,
allowing users to conduct document retrieval according to the operational context of
task-associated procedures (Celentano et al., 1995)

Among different type of knowledge, the repository of structured and explicit knowledge,
especially in document form, is a codified strategy for managing knowledge (Davenport &
Prusak, 1998; Wei et al., 2004; Zack 1999). Empirical findings indicate that codifying
intellectual content into a knowledge repository makes workers highly exploit existing
organizational resources (Gray, 2001). The Gartner Group (1999) noted that knowledge
retrieval is a core component of KMSs.

This work focuses on providing knowledge support for knowledge-intensive tasks within
organizations. Examples of knowledge-intensive tasks include thesis works and research
projects in academic organizations, project management in firms, research work and product
development in R&D departments, and the like. In such task-based environments, reusing
knowledge assets extracted from historical task executions is the key to providing effective
knowledge support for conducting tasks. In our previous study, we built a knowledge support
system from the perspective of task execution. Information Retrieval techniques are adopted
to generate task profiles from text documents accessed and generated by historical task
executions. The task profiles model workers’ task needs, and can be used as the kernel of
knowledge retrieval to provide needed task relevant knowledge during task performance.
Moreover, the system identifies task-based peer groups to provide a communication portal of
knowledge sharing among knowledge workers. Consequently, knowledge reuse can be
achieved through knowledge retrieval and knowledge sharing (Liu et al., 2005). Figure 1
illustrates the concepts of our proposed task-based organizational environments (Yang, 2004).

 1

Figure 1: Concept of Task-based Organizational Environment

Moreover, we found that knowledge workers usually require a longer time to accomplish
knowledge-intensive tasks. For such long-term tasks, the information needs of knowledge
workers may vary according to different stages of progress towards task performance.
Namely, with the growth understanding of perceived task, the worker’s information needs and
information seeking activates will change throughout various stages of task performance. This
observation is in accordance with the pilot studies of task-based information retrieval
(Kuhlthau, 1993; Vakkari 2000, 2003). Therefore, the aim of this work is to support
task-relevant knowledge according to workers’ task-needs at different task-stages.

1.2. Research Objectives

This work investigates the issues of deploying knowledge support systems based on
task-stages. The research directions mainly include:
 Investigating the characteristics of knowledge-intensive tasks, and further proposing a

system framework of supporting task-relevant knowledge based on task-stages;
 Employing data mining and information retrieval techniques to analyze workers’

task-needs, which are modeled as profiles, at different task-stages;
 Conducting the experiments to evaluate the effectiveness of the proposed methods.

Our previous work did not consider knowledge workers’ stages of progress towards task
performance. Accordingly, this work proposed a task-stage mining method for discovering
task-stage needs from historical task executions. The proposed method adopts information
retrieval techniques and a modified hierarchical agglomerative clustering (HAC) algorithm to
identify task-stage needs by analyzing codified knowledge (documents) accessed or generated
during task performance. Task-stage profiles are generated to model workers’ task-stage needs

 2

and are used for delivering task-relevant knowledge at various task stages. A task-stage
profile specifies the key subjects of a task stage, and is constructed to model the information
needs of knowledge workers during a task stage of task execution. Finally, we conduct
empirical evaluations to demonstrate that the proposed method provides effective knowledge
support based on task-stages. Experiments are executed to verify the effectiveness of the
proposed task-stage method compared with task-based, called non-stage method.

1.3. Thesis Organization

This paper is organized as follows: The literature review is given in Section 2. Section 3
describes the process of task-stage knowledge support. The method of mining task stage
needs is described in Section 4. An illustrative example to explain the proposed idea is
presented in Section 5. The experimental evaluations are presented in Section 6. Conclusions
and future works are finally made in Section 7.

 3

2. Related Work

2.1 Task-based Knowledge Management

Managing Knowledge within and across organizations is considered as a prominent
activity for creating sustainable competitive advantages in today’s business environments.
Knowledge Management (KM) is a cycle, sometimes repeated process, which generally
includes creation, management and sharing activities (Davenport & Prusak 1998; Gray 2001;
Wiig 1993). The operations and management activities of enterprises are mainly based on
tasks, in which organizational workers perform various tasks to achieve business goals. In
task-based business environments, an important issue of deploying KMS is how to support
task-relevant knowledge by considering the characteristics of tasks in organizations (Abecker
et al., 2000; Fenstermacher, 2002; Fischer & Ostwald, 2001; Liu ea al, 2005, Staab & Schnurr,
2000).

Organizations mainly conduct knowledge-intensive tasks to achieve organizational goals.
In such task-based environments, knowledge workers usually accomplish their tasks by stages,
while their task-needs may be different at various stages of task performance. Accordingly,
another challenge of deploying KMS is how to support task-relevant knowledge according to
workers’ task-needs at different task-stages. The Vakkari studies (2000), which focus on a
user’s information seeking activities during task performance (e.g., writing a proposal,
completing a project, etc.), show that information needs vary according to different task
stages. Namely, with the growth understanding of perceived task, the worker’s information
needs and information seeking activates will change throughout various stages of task
performance. For example, the type of information needed may vary from general to specific
information, and the choice of search terms may vary from broader terms to specific terms.

Accordingly, the aim of this work is to support task-relevant knowledge according to
workers’ task-needs at different task-stages by the proposed mining technique. Furthermore,
this work tries to explore the possible application to adopt the proposed task-stage knowledge
support method in knowledge-intensive tasks, such as project management activities,
academic research, and industry analysis.

2.2 Information Retrieval and Information Filtering

Information retrieval (IR) deals with the representation, storage, organization of, and

access to information items (Baeza-Yates & Ribeiro-Neto, 1999). In the past twenty years,

Information Retrieval technology mainly focused on two dimensions: indexing and searching

 4

from a large number of documents. Document pre-processing is important before indexing

documents, including term transformation and term weighting (Salton, 1988). Term

transformation includes case-folding, stemming and stop word omission or further thesaurus

substitution. By the empirical study of Salton (1988), the most effective term-weighting

approach considers three factors, which are term frequency, inverse document frequency and

normalization. The vector model accomplishes the term weighting work by assigning

non-binary term weight to each index term in documents (Baeza-Yates & Ribeiro-Neto, 1999).

It is easy to represent documents in the form of vectors in vector space through the document

preprocessing. Usually, users accomplish search by conducting query, represented as a set of

keywords. The keyword set represents the user information needs. The query vector can be

defined as and the document vector can be defined

 where n is the total index terms in the system. Documents can be

retrieved and presented to users according to the degree of similarity calculated by cosine

similarity measure.

1, 2, , ,{ , , }q q n qq w w w= K
r

1, 2, ,{ , , ,
j j jj d d n dd w w w= K

ur
}

In the past few years, research subjects discussed in the field of Information Retrieval
were more general, like Document Classification, Document Categorization, User Modeling,
Information Filtering, User Interfaces and so on. The Information Filtering technology is
acknowledged to be an effective way to reduce the information overload and provide
personalized information. With the dynamically changed environments, uncertainties
associated with changing information needs of the user and the dynamic information stream
must be handled efficiently. Information filtering stresses on maintaining a promising user
profile, in which the system routes the proper information relevant to the user profile
(Baeza-Yates & Ribeiro-Neto, 1999; Shapira, Shoval & Hanani, 1999). Information filtering
technology relies on the support of traditional kernel technology of information retrieval, but
this technology put more emphasis on methods to maintain and learn user profiles to find
relevant documents (Baeza-Yates & Ribeiro-Neto, 1999; Widyantoro, Ioerger, &Yen, 2001).
Various method for learning user interests or preferences from text documents or Web pages
has been proposed in real-world applications in recommender systems, for example:
e-mail-filtering systems (Mostafa et al., 1997), personalized online newspaper (Billsus &
Pazzani, 1999), and so on.

Information retrieval and information filtering technologies applied in document
management systems are generally the first pace of knowledge management initiatives, since
textual data such as articles, reports, manual, know-how documents and so on are treated as
valuable and explicit knowledge within organizations (Nonaka, 1994). Information retrieval
and information filtering are considered as the core techniques to achieve knowledge retrieval.
In addition, information retrieval provides not only text processing technique, but also
document classification technology to help organizations collect and process documents to

 5

achieve the goal of knowledge reuse (Sebastiani, 1999). With the evolution of information
filtering, it not only reduces the problem of information overloading but also provides
relevant and needed information to users to accomplish their tasks. Accordingly, maintaining
and learning user profiles is important in modern Knowledge Management Systems.

2.3 Document Clustering

Clustering is an unsupervised process of grouping the data (objects) into classes or clusters.
The data (objects) within a cluster have similarity in comparison to one another, whereas
dissimilar to data (objects) in other clusters (Han and Kamber ,2000; Jain et al., 1999). The
clustering technique have been addressed in many contexts and by researchers in many
domains such as pattern recognition, text categorization, image processing, market research
and so on. Therefore, clustering is a useful tool to analyze data items and has been applied
broadly.

Generally, clustering techniques can be divided into two classes: one is partitioning
clustering and the other is hierarchical clustering (Jain et al., 1999). Partition method outputs
only one partition while hierarchical method produces a nested partitions. K-means clustering
which is commonly used to partition a set of data into groups is one of examples of partition
method (MacQueen, 1967). The clustering procedure follows a way to classify the given data
(object) through a certain number of clusters, i.e. k clusters. The main idea is first to define k
centroids, one for each cluster. After k new centroids have been selected, a loop has been
generated. The algorithm assigns a data sample di to the cluster cj such that the distance from
di to the center of cj is the minimum over all k clusters. The k centroids will change their
location step by step until no more changes are done. The hierarchical clustering method
creates a hierarchical decomposition of the given data set (Johnson, 1967). From the
viewpoint of algorithmic structure and operation, there are two types of clustering approach,
one is agglomerative and another is divisive. The agglomerative method starts with each data
item as singleton cluster. It continuously merges clusters together according to the merging
criterion until a stopping condition is satisfied. The divisive method starts with all data items
as only one cluster. It divides until coming to a stopping condition. Since we adopt
Hierarchical agglomerative clustering (HAC) in this work, we take length to introduce the
method.

Hierarchical agglomerative clustering (HAC) is a class of clustering approaches. This
method produces clusters by merging, depended upon similarity of two existing clusters. The
process repeats combining the two most proximity clusters; likes a binary tree, starts at leaves
and grows up to root. The operations of HAC can be summarized into three steps as the
following.

(1) Each data item is considered as a singleton item initially

 6

(2) Select the nearest pair of clusters and merge them
(3) Repeat step 2 until meeting the stopping condition

In step 2, we have to find the nearest pair. Therefore, a similarity measure has to be chosen.
The similarity between any pair of cluster Ci and Cj, there are four well-known inter-cluster
similarity function can be used to measure the similarity.

• The single-linkage function computes the largest similarity between two
objects in the pair of clusters.

• The complete-linkage function computes the smallest similarity between two
objects in the pair of clusters.

• The average-linkage function computes the average of all similarities among
all objects in the pair of clusters.

• The centroid function computes the similarity between the centroid of the two
clusters.

Generally, the single-linkage method produces isolated and may not be cohesive clusters.
Inversely, the complete-linkage method produces cohesive and may not be isolated clusters.
The average-linkage method is a trade-off between single-linkage and complete-linkage
method. Another commonly used measure is the centroid method, especially for text
clustering.

In this work, data items are time-variant. In order to consider the time factor, we
modified the traditional HAC algorithm by setting a time window to select candidates for
merging. Only the clusters in the time window can be merged (perform the merging
operation).

 7

3. Task-stage Knowledge Support

Section 3.1 presents the problem formulation. Section 3.2 describes an overview of the
process of mining task-stage needs. The terms and notations used in this work are defined in
Section 3.3.

3.1. Problem Formulation

This work broadly refers to a task as a unit of work in organizations, such as a project,
research work, or activity. Moreover, this work uses profiling approach to model workers’
task-stage needs, namely information needs (profiles) on task-stages. Task-stage profiles are
generated to model worker’s task-stage needs and are used further to provide task-relevant

knowledge at various task stages. A task-stage profile specifies the key subjects of a task
stage and can be represented as a feature vector of weighted terms. The profile is used to
retrieve relevant codified knowledge in the repository. The key contents of codified
knowledge (textual data; documents), namely document profiles, are also represented as a
feature vector of weighted terms. Relevant documents can be retrieved to provide knowledge
support for task execution according to the similarity measures (e.g. cosine measures)
between task-stage profiles and document profiles.

A task class is defined to specify a type of tasks with similar properties (similar tasks, for
brevity). Task classes are identified based on existing tasks. A task that belongs to a task class
is called a task instance of the task class. Task class/instance resembles the concept of object
class/instance. Tasks in different task classes generally have different task-stage needs, while
tasks belonging to the same task class may have similar task-stage needs. Accordingly,
task-stage profiles generated by analyzing existing similar tasks of the same task class are
useful to provide needed relevant knowledge in supporting the execution of on-going tasks.

The term virtual task is used to represent a task class of similar tasks. A virtual task may
have more than one task instances. For example, a virtual task “Research on recommender
systems” has several task instances including “Hybrid approaches for product
recommendations” and “Comparisons of collaborative filtering for recommendations”. Each
existing task instance is associated with documents accessed/generated during task
performance. Accordingly, the problem of identifying task-stage needs of a virtual task is
described as follows.

Given a virtual task and a set of task instances with associated documents, find the number
of task stages and the corresponding profile of each task-stage.

 8

3.2. Process of Mining Task-stage Needs

This work employs information retrieval techniques to conduct text processing and data
mining techniques to analyze workers’ task-needs, which are modeled as profiles at different
task-stages. Figure 2 illustrates the process of mining task-stage needs. The operational
procedure is described as follows.

The document database and the system log record the historical tasks with associated
documents and usage data. The documents of a task are preprocessed and organized as a task
document sequence (TDS) according to their accessed/generated time during task
performance. Notably, each task has its own task document sequence.

Clustering and information retrieval techniques are then employed to cluster the task
document sequences of similar tasks belonging to the same task class. A task-stage
hierarchical clustering (TSHC) algorithm is proposed to cluster the task document sequences
based on similarity measures and retrieval time of documents. Each cluster represents a task
stage with associated documents of a task. More details are addressed in Section 4.2. Finally,
the feature vector of each task stage is extracted from each cluster of documents to construct
the task-stage profile. The task-stage knowledge retrieval module can then retrieve relevant
codified knowledge (documents) to provide knowledge support for task execution according
to the similarity measures (e.g. cosine measures) between task-stage profiles and document
profiles.

Incom ing D ata
(F iles, W eb pages,

D ocum ents...)

Log D ata
(user, session,

transaction
identification)

Task D ocum ent-
Sequences (TD Ss)

M ining of T ask-stage
N eeds

T ask-stage Profiles

T ask-O riented
K now ledge
R epository

T ask-stage
K now ledge R etrieval

A U ser A ctive Session
w ith a Specific T ask

Figure 2. Process of discovering task-stage needs

 9

3.3. Term Definition

This section lists the definitions of terms used in this work.

(1) Definition I: Task

The task is the fundamental unit in business. This work broadly refers to a task as a unit of
work in organizations, such as a project, research work, or activity.

T: task set A task is either an executing-task (on-going task) or an existing task in
the task-based working environment. T = {t1, t2,…, tr, …, tn}

tr: existing-task An existing-task is a historical task accomplished within the organization.

tv: virtual task A virtual task represents a task class of similar tasks

task instance A task instance of tv is an existing-task that belongs to the class of tv.

Tv: set of task
instances

A set of task instances of the virtual task tv

(2) Definition II: Task Document Sequence

A task document sequence is a sequence of documents retrieved (accessed or generated)
during task performance. Documents are sorted according to their retrieval time. Each task
instance has its own task document sequence.

TDS(tr): Task Document
Sequence of tr

A sequence of documents accessed/generated while conducting a
task tr. TDS(tr)=<d1, d2,…,dm>

(3) Definition III: Task Stage

Task document sequences of task instances are clustered into stages based on similarity
measures and retrieval time of documents. The clustering result forms task stages of a task.

TS(tr): task-stages of a
task instance

A task tr comprises several task stages. TS(tr)=<tsr[1], tsr[2],…,
tsr[k]>, where tsr[i] denotes the task-stage i of tr .

TS(tv): task-stages of a
virtual task

Task-stages of a virtual task tv which are derived from task stages

of task instances in Tv. TS(tv)=<tsv[1], tsv[2],…, tsv[k] >

(4) Definition IV: Task Stage Documents and Profiles

Each cluster of documents represents a task stage with associated documents, named task
stage documents. Documents in task stage k of task tr is denoted as tsr[k].docs, while
documents in task stage k of virtual task tv is denoted as tsv[k].docs. Each task-stage profile
can be derived from the feature vectors of documents in each task-stage. Let tsr[k].profile
denote the profile of task stage k of task tr, and tsv[k].profile denote the profile of task stage k

 10

of virtual task tv.

tsr[k].docs: task-stage
documents

Documents in task stage k of task tr.

d.profile The feature vector (profile) of document d.

tsr[k].profile: task-stage
profile

The profile of task stage k of task tr. A task-stage profile is the
vector obtained by averaging the feature vectors of documents in

tsr[k].docs.

tsv[k].docs: task-stage
documents

Documents in task stage k of virtual task tv.

tsv[k].profile: virtual
task-stage profile

The profile of task stage k of virtual task tv. A virtual task-stage
profile is the vector obtained by averaging the feature vectors of

documents in tsv[k].docs.

 11

4. Mining of Task-stage Needs
For mining the task-stage needs, Section 4.1 presents how to collect and analyze the

contents of documents and workers’ usage data. Section 4.2 illustrates the proposed task-stage
hierarchical clustering (TSHC) algorithm that is used to cluster the task document sequences
based on similarity measures and retrieval time of documents.

4.1. Data Pre-processing

The data pre-processing phase is the most fundamental step of knowledge discovery
process. Two types of valuable information sources of knowledge acquisition: content data
and usage data are addressed as follows.

Content Data: The key contents of a codified knowledge item (document) can be represented
as a feature vector of weighted terms in n-dimensional space. The term transforming and term
weighting steps are employed to find the most discriminating words among a set of
documents (Baeza-Yates & Ribeiro-Neto 1999). The term transforming step includes case
folding, stemming, and stop word removing. The tf-idf approach is a well-known approach for
term weighting in the information retrieval literature (Salton 1988). Let the term frequency
tfi,d be the occurrence frequency of term kwi in d, and let the document frequency dfi represent
the number of documents that contain term kwi. The importance of term kwi to a document d,
wi,d is proportional to the term frequency and inversely proportional to the document
frequency, which is expressed as Eq. 1. According to the empirical experiments of Salton
(1988), if there are many technical vocabularies in the data collection and the vocabulary is
not very varied, normalized term frequency is a proper term weighting component. We use
the normalized term frequency to derive the term weight, as shown in Eq. 1.

,

,

, ,

0.5
(0.5 (log 1)

max
)i d

i d

i d i d

t N

t

f

f df
w

×
= + × +

(1)

where N is the number of documents, and log(N/dfi) is the inverse document frequency, idfi.

The feature vector of document d is represented as d
r

= <w1,d, w2,d, …, wn,d >.

Usage Data: Each log record is parsed to extract important information, such as user name,
role type, TaskID, DocID, request type and system time. Usage log processing engine is
useful to collect and manage task-relevant information by tracking user’s document access
behaviors in conducting a specific task. Similar tasks of the same task class are identified.
Moreover, task document sequences of task instances are generated according to the usage
log records. A time interval may be specified to select documents from usage logs.
Documents with retrieval time within a specified time interval are collected to generate task
document sequences.

 12

4.2. Process of Mining Task-stage Needs

Given a virtual task tv and a set of task instances with associated documents, the mining
process identifies the number of task stages and the corresponding profile of each task-stage
for tv. Notably, a virtual task tv denotes a task class of similar tasks and has several task
instances. A task instance of tv is an existing-task that belongs to the class of tv. The
documents of a task instance are preprocessed and organized as a task document sequence
(TDS) according to their accessed/generated time during task performance.

There are four steps to discover task-stage needs, as shown in Fig. 3. The mining
procedure is described step by step. An example is given to explain the proposed idea.

Step1. Identifying task-stages of each task instance

This step identifies the task-stages of each task instance. A TSHC algorithm, task-stage
hierarchical clustering algorithm, is proposed to cluster each task document sequence into
task stages. The proposed algorithm modifies the hierarchical agglomerative clustering
(HAC) algorithm by considering time variant to determine clusters. Table 1 shows the TSHC
algorithm. Let TDS(tr)=<d1, d2,…,dm> be the task document sequence of a task instance tr.
The task document sequence is clustered into several clusters, which represent the stage

information of the target task tr. A task tr comprises several task stages. TS(tr)=<tsr[1],
tsr[2],…, tsr[k]>, where tsr[i] denotes the task-stage i of tr . Each cluster represents a task stage
with associated documents, where tsr[i].docs denotes documents in task stage i of task tr.

Step 1: Partition Set of Task D ocum ent
Sequence by TSH C algorithm

Step 2: M erge task-stages
3 cases to proceed m erge function

Step 3: R em oving noisy docum ents and
noisy task stage

Extracting
Tem poral

stage features

Task-stages
profiles

Step 4: Task-stage feature extraction w ith
associated docum ent set

Figure 3: Process of mining task-stage needs

 13

Figure 4: An example of clustering result

 Fig. 4 illustrates the clustering result. Three clusters are generated after conducting the
proposed clustering algorithm; namely, three stages are identified. In the following, we will
explain the TSHC algorithm in detail.

TSHC algorithm: The traditional Hierarchical Agglomerative Clustering (HAC) algorithms
start with each individual item in its own cluster and iteratively merge clusters until all items
belong in one cluster. For each level, the HAC algorithms determine new clusters by merging
clusters from the previous level. Several techniques can used to determine if two clusters are
to be merged according to the distance threshold and the distance between any two points in
the two target clusters. Two clusters are merged, if the minimum (maximum or average)
distance between any two points in the two target clusters is less than or equal to the distance
threshold. The HAC algorithm examines all clusters in the previous level to determine new
clusters, and does not consider the time dimension.

The proposed TSHC algorithm adopts the HAC algorithm by considering the time
dimension, since the task document sequence (TDS) is generated by ordering documents
based on their retrieval time during task performance. A time window size w is set to define
the scope of candidate clusters to be merged. Notably, the index position in the sequence
rather than the actual time is used to decide if the candidate cluster is within the time window.

Initially, each document in the TDS forms its own cluster. The TSHC algorithm then
iteratively merges clusters until the number of clusters is less than or equal to MinNumStages
(minimum number of stages). The algorithm finds clustering result with number of stages no
less than MinNumStages and no greater than MaxNumStages (maximum number of stages).
Due to the characteristics of our research problem, we prefer to cluster each TDS into three to
six clusters. A clustering examination procedure is conducted to select the level of clustering
that can derive the best clustering result by intra-similarities and inter-similarities examination.

 14

In the following, we explain the algorithm line by line. Note that the algorithm is listed in
Table 1.

During the procedure of clustering, each document is regarded as a single cluster initially.
Accordingly, TDS is a sequence of clusters. For merging two target clusters ci and cj into a
new cluster c’, where i < j, the index position of c’ is set to i. A new sequence of clusters is
generated by ordering the new clusters according to their index positions. A specified time
window size w is used as the scope to select candidate clusters for merging. For each cluster ci,
clusters with index positions within the time window size from i - w to i + w are the
candidates to be merged with ci (line 3 to 8). For a cluster cj within the time window of ci, if
the similarity between ci and cj is greater than the Threshold, ci and cj are regarded as a pair of
merging candidates; and they are added to the merging list with their similarity measure (line
8). The similarity measure between two cluster ci and cj is defined as the average of all
pairwise similarities among the documents in ci and cj. The similarity between two documents
is derived using the cosine of their feature vectors.

The time window is moved from the first cluster to the last one in TDS to determine the
merging candidates for each cluster. Then, all merging candidates will be merged as follows.
In the merging process (line 9 to 12), the pair of merging candidates with maximum similarity
will be selected from the merge list. If both merging candidates in the selected pair had not
been merged with another merging candidate in any other pair, then the corresponding two in
TDS are merged. If there is no clusters can be merged during the iteration, the Threshold is
decreased by a constant (In our case, the constant is set to 0.01); otherwise, the threshold is
not changed (line 13 to 14). The step avoids that the similarity between a cluster and a merged
cluster is higher than the decreased threshold.

The algorithm performs hierarchical clustering; thus various levels of clustering result can
be derived. The algorithm records those levels of clustering results with the number of
clusters within MinNumStages to MaxNumStages. As mentioned previously, we prefer to
cluster each task document sequence (TDS) into three to six clusters. The quality measure, Q
value, is derived to indicate the quality of each clustering result (line 15 to 17). We select the
clustering result (among three to six clusters) that leads to the best quality value. The clusters
of TSHC algorithm are the stages of a task instance. The profile of each task stage can be
derived by averaging the feature vectors of documents in the corresponding cluster. Notably,
the task-stage profile specifies the key subjects of a task stage.

In the following, we explain the Q value that is used verify the quality of clusters.

• Clustering quality: Let C be the set of clusters derived from a particular level of
clustering. The best clustering result is to maximize the intra-similarities of all those
clusters and minimize the inter-similarities among the clusters produced at the level
(Chuang & Chien, 2004). Let the inter-similarity between two cluster ci and cj be
defined as the average of all pairwise similarities among the documents in ci and cj,

 15

which is denoted as sim(ci, cj). Let the intra-similarity within the cluster ci be defined
as the average of all pairwise similarities within ci, denoted as sim(ci, ci).

kiki
Cc ii

ii cc where
ccsim
ccsim

C
CQ

i

≠
∈

∪== ∑),(
),(

||
1)(

(2)

Table 1. Algorithm of Task Stage Hierarchy-based Clustering with Time-variant

Input: TDS(tr): Task Document Sequence of tr
Output: Task stages of target task
 function TSHC(TDS) {
1 Set a constant offset be 0.01;
2 do {
3 foreach cluster ci in TDS {
4 ctemp = {ci-w, ci-w+1, ..., ci-1, ci , ci+1, ..., ci+w-1, ci+w};
 // According to time window size to determine clusters

5 foreach cluster cj in ctemp where ci <> cj {
6 Calculate similarity of ci and cj as similarity;
7 if (similarity is greater than Threshold) then
8 add {ci, cj, similarity} to the merge_list;
 }
 }

9 do while (merge_list is not empty) {
10 Select and remove the pair (ci, cj) with maximum similarity from merge_list;
11 if (ci and cj had not been merged with another cluster) then
12 Merge ci and cj in TDS

 }
13 if (there's no cluster merged) then
14 decrease the Threshold by offset;

15 if (number of clusters in TDS ≤ MaxNumStages) then {
16 Let Q value be the quality of clustering value of TDS;
17 Add {TDS, Q} to the list result;
 }
 }
18 while (number of clusters in TDS > MinNumStages)

19 return result;
 }

Step2. Merging Task-stages.

Step 1 uses the TSHC algorithm to generate the task stages of each task instance. This step
generates the task stages of the virtual task tv by merging the stages of task instances of tv.

Tv is the set of task instances of tv. A kernel task instance tr is selected as the representative of
the virtual task tv. Then, the stages of other task instances are merged to the stages of tr. The
kernel task is the task instance with the best average Q value of clusters among task instances.
During the merging process, documents from the stages of other task instances are merged to
the stages of the kernel task instance.

 16

Task Stage Merging algorithm: The algorithm is shown in Table 2. First, the task instance tr
with the best average Q value of clusters is chosen as the kernel task (line 1). Then, for each
other task instance tf, documents from the stages of tf are merged to the stages of tr. Let nr and
nf be the number of stages (clusters) of tr and tf, respectively. Let tsf[i].docs be the documents
in task stage i of task tf and tsr[k].profile denote the profile of task stage k of tr. Notably,
tsr[k].profile is the vector obtained by averaging the feature vectors of documents in
tsr[k].docs.

Generally, several candidate stages in tr are possible to merge a document of tf. For each
stage i of tf, each document d in tsf[i].docs is merged into the candidate stage k of tr that has
the maximum similarity measure cos(d.profile, tsr[k].profile). There are three cases to select
the candidate stages of tr for merging a stage i of tf.

Case 1: nf > nf : The number of stages of tf is greater than the number of stages of tr. The
candidate stages of tr selected are from stages i to i+(nr-nf), where nr – nf + 1 stages of tf are
chosen as the candidate stages. Figure 5 is an illustrative example of Case 1, where nf = 3 and
nr = 4. Two stages of tr are selected as the candidate stages to merge the documents of tf. For
example, stages 2 and 3 of tr are the candidate stages to merge the documents in stage 2 of tf.

Case 2: nf = nf : The number of stages of tf is equal to the number of stages of tr. The
candidate stages of tr selected are from stages i-1 to i+1, where three stages of tf are chosen as
the candidate stages.

Case 3: nf > nf : The number of stages of tf is less than the number of stages of tr. The
candidate stages of tr selected are from stages max(1, i-(nf -nr)) to min(i, nr). Figure 5-2 is an
illustrative example of Case 3, where nf = 5 and nr = 3. For example, stages 1 and 2 of tr are
the candidate stages to merge the documents in stage 2 of tf. Stages 1 to 3 of tr are the
candidate stages to merge the documents in stage 3 of tf. Stages 2 and 3 of tr are the candidate
stages to merge the documents in stage 4 of tf.

Once the stage k with maximum similarity measure is determined, the pair (d, tsr[k]) is
added to the merge list indicating that document d will be merged to stage k of tr (line 7, 14,
20). After the merging stages of all documents from other task instances are decided, the
merging process conducts the merge (e.g. adding a document d to tsr[k].docs) according to the
merge list (line 25). The final documents and corresponding task stages of the kernel task
instance tr are regarded as the documents and stages of the virtual task tv. Note that the
number of task stage of tv is equal to the number of stages of tr.

 17

Figure 5: An illustrative example of task stage merge of Case 1.

Table 2. Algorithm of Task Stage Merge
Input: Tv // a set of task instances of tv
Ouput: TaskStages of tv // TS(tv)

 function TaskStagesMerge(Tv) {
1 Select the kernel task instance which has the best Q value as tr from Tv;
2 foreach task tf in Tv {
3 Let nr and nf be the number of stages in tr and tf, respectively.
4 case 1: (nr > nf)
5 foreach task stage i in tf {
6 foreach document d in tsf[i].docs {
7 Add (d, tsr[k]) to the merge_list where cos(d.profile, tsr[k].profile) is

maximum for i ≤ k ≤ i + (nr – nf)
8 }
9 }

11 case 2: (nr = nf)
12 foreach task stage i in tf {
13 foreach document d in tsf[i].docs {
14 Add (d, tsr[k]) to the merge_list where cos(d.profile, tsr[k].profile) is

maximum for i - 1 ≤ k ≤ i + 1
15 }
16 }
17 case 3: (nr < nf)
18 foreach task stage i in tf {
19 foreach document d in tsf[i].docs {
20 Add (d, tsr[k]) to the merge_list where cos(d.profile, tsr[k].profile) is

maximum for max(1, i-(nf -nr)) ≤ k ≤ min(i, nr)
21 }
22 }
23 }
24 }
25 Merge all documents in the merge_list to the corresponding task stage;

26 return TS(tf) as TS(tv);
 }

 18

Step3. Reassigning documents.

This step reorganizes the documents in task stages of tv to enhance the homogeneousness of
each task-stage. Documents may be reassigned to other task stages according to the similarity
measures (cosine measures) of document profiles and task-stage profiles. A document d is
assigned to the stage k of tv that has the maximum similarity measure, i.e., cos(d.profile,
tsv[k].profile), among all task stages of tv. Some noisy or irrelevant documents may be
removed from tv, if their maximum similarity measures are below a defined threshold. After
the reassignment, task stages with zero or one document will be removed. Consequently, we
derive the final document set at each task stage of the virtual task tv. Notably, for some
application domains, knowledge workers may need different types (categories) of codified
knowledge during a particular stage of task performance. In such scenarios, documents need
to be categorized to generate different categories of profiles at each task-stage. Accordingly,
the process of mining task-stage needs must be modified to tackle such scenarios. It will be
interesting to explore such issues in future work.

Step 4: Extracting Task-stage profiles.

The profile of each task stage can be derived by averaging the feature vectors of documents
in the corresponding stage. Notably, the task-stage profile specifies the key subjects of a task
stage. For a stage k of virtual task tv, a task-stage profile tsv[k].profile is the vector obtained by

averaging the feature vectors of documents in tsv[k].docs.

4.3. Knowledge Support

Relevant documents can be retrieved to provide knowledge support for task executions
according to the similarity measures (e.g. cosine measures) between task-stage profiles and
document profiles. For conducting an on-going task te, the system first identifies the task class
tv that te belongs to. Then, the task-stage profiles of tv are used to provide task-relevant
knowledge at each stage of executing te. A document d is provided to knowledge workers at
the stage of k, if the similarity measure cos(d.profile, tsv[k].profile) is greater than a defined
threshold. Alternatively, top-N approach can be used to provide N documents with N-highest
similarity measures at each task stage.

 19

5. An Illustrative Example and Discussion

We give two examples to explain the proposed task-stage knowledge support approaches.
The first example sets time window to 1 (w=1), whereas the second example sets time
window=2 (w=2). Example one illustrates the case 3 of the task-merge algorithm and example
two explains the case 1 of the task-merge algorithm. We explain the proposed approach step
by step as follows.

5.1. Example 1

A virtual task 3 named “Task-based knowledge support model and system” is adopted as
the illustrative example to explain the proposed idea. Two task instances belonging to this
virtual task are listed in Table 3. We will explain how to extract task stage needs according to
the proposed task-stage mining approach.

Table 3. Information of the virtual task 3
Virtual task 3: Task-based knowledge support model and system
T3={t31,t47}

t31

2003/09/15
~

2004/04/13
A Collaborative Relevance Feedback Approach to Task-driven

Recommendation

t47

2003/09/18
~

2004/05/18
Implementation of Task-based Knowledge Support System

Step1. Identifying Task-stages. Five and six stages are identified from the task document
sequences (TDS) of task 47 and task 31, respectively. The clustering process of task 47 is
illustrated in Figure 6.

• Cluster examination: We adopted the proposed TSHC algorithm listed in Table 1 to
conduct the clustering.

198 498335494334292 316 464504 386 388 421 323 508

1, sim=0.079

2, sim=0.104

3, sim=0.061

4, sim=0.069

5, sim=0.057
6, sim=0.051

7, sim=0.062

7, sim=0.058

Stage 1
198, 292, 334, 494, 335

Stage 2
498

Stage 4
316,464,386,388

ts47[1] ts47[2] ts47[3]

Stage 3
504

Stage 5
421

Stage 6
323, 508

ts47[4] ts47[5] ts47[6]

Stage 1
198, 292, 334, 494, 335

Stage 2
498

Stage 3
504, 316,464,386,388

ts47[1] ts47[2] ts47[3]

Stage 4
421

Stage 5
323, 508

ts47[4] ts47[5]

5 stages
TS(t47)

6 stages
TS(t47)

Q(C)=0.0388

8, sim=0.057

Q(C)=0.0387

Figure 6: Clustering process of task 47 (Step 1)

 20

Table 4. Clustering examination

Quality value of stages Task 31 Task 47

Q(C) of 6 stages 0.168 0.039

Q(C) of 5 stages 0.191 0.038

Q(C) of 4 stages 0.280 0.050

Q(C) of 3 stages 0.478 0.123

Step2. Merging Task-stages. Task 47 is selected as the kernel task, since it has the best Q
value. The process of merging the stages of task 31 to the stages of task 47 is shown in Figure
7.

Stage 1
196

Stage 2
293

Stage 3
442, 291, 296,

339, 340

ts31[1] ts31[2] ts31[3]

Stage 4
468

Stage 5
467, 442, 400, 401 355, 402, 492,

407, 404, 412, 413

ts31[4] ts31[5]

Task 31

196

339

296291442293 347 468

340

467 442 400 401

492323

355 354446

385374 404407

355

412354 347

Stage 1
198, 292, 334, 494, 335

Stage 2
498

Stage 3
504, 316,464,386,388

ts47[1] ts47[2] ts47[3]

Stage 4
421

Stage 5
323, 508

ts47[4] ts47[5]

Task 47

Stage 1
196, 198, 292, 334, 494,

335, 293

Stage 2
498, 340

Stage 4
413, 468, 421, 402,

401, 467

Stage 3
291, 504, 339, 385, 355, 347, 446, 323, 388,

354, 316, 442, 374, 296, 386, 464

Stage 5
508 492 404 412

407 400 323

TTS(2)

402

413

Stage 4
347. 446, 354, 355, 323, 374, 385,

354, 347

Case 3: The clusters number of kernel task is less than the clusters number of the other tasks
 Task 31 is merged to task 47

Figure 7: Task stage merge process (Step 2)

Step3. Reassigning documents. The reassigned result is shown in Table 5. Notably, in this
case, no document or stage is removed. The details of stage document set are listed in
Appendix A(2).
Step 4. Extracting Task-stages profiles. Finally, the feature set of each task stage is
extracted from each cluster.

Table 5. Final document set at each task stage of the virtual task 3 (Step 3)

TS(t3)

ts3[1].docs
D0000000335 D0000000494 D0000000198 D0000000334 D0000000292 D0000000196
D0000000293

ts3[2].docs D0000000498 D0000000340

ts3[3].docs
D0000000386 D0000000316 D0000000464 D0000000388 D0000000504 D0000000291
D0000000296 D0000000442 D0000000339 D0000000347 D0000000354 D0000000355
D0000000385 D0000000446 D0000000374

ts3[4].docs D0000000421 D0000000468

ts3[5].docs
D0000000508 D0000000323 D0000000402 D0000000412 D0000000407 D0000000400
D0000000492 D0000000404 D0000000413 D0000000401 D0000000467

 21

5.2. Example 2

A virtual task 2 named “Context-aware knowledge service and application” is adopted as
the illustrative example to explain the proposed idea. Two task instances belonging to this
virtual task are listed in Table 6.

Table 6. Information of the virtual task 2
Virtual task 12: Context-aware knowledge service and application
T2={t43,t48}

t43

2003/09/16
~

2004/06/21
Applying Topic Maps and Data Mining to Deploy Composite E-service

Platform

t48

2003/09/23
~

2004/04/30
Implementation of Personalized Recommendations for Composite E-service

Step1. Identifying Task-stages. Three and four stages are identified from the task document
sequence of task 48 and task 43, respectively. The clustering process of task 48 is illustrated
in Figure 8.

15, sim=0.046

14, sim=0.080

13, sim=0.133

331 347446354336492 356 358357500 331 384 347 499 377 337 428

2, sim=0.208

3, sim=0.190

4, sim=0.184

5, sim=0.163

1, sim=0.220

6, sim=0.150

7, sim=0.123

8, sim=0.085

9, sim=0.092

355

10, sim=0.081

11, sim=0.394

12, sim=0.071

Stage 1
331,492,336,355,446,347,500

ts48[1] ts48[2] ts48[3] ts48[4] ts48[5]

5 stages
TS(t48)

Stage 2
354

Stage 3
356,357,358

Stage 4
384,499,377,337

Stage 5
428

Stage 1
331,492,336,355

Stage 2
354

Stage 4
356,357,358 6 stages

TS(t48)ts48[1] ts48[2] ts48[3]

Stage 3
446,347,500,331

Stage 5
384,499,377,337

Stage 6
428

ts48[4] ts48[5] ts48[6]

Stage 1
331,492,336,355,446,347,500,354,384,499,377,337

ts48[1] ts48[2] ts48[3]

3 stages
TS(t48)

Stage 3
356,357,358

Stage 5
428

Stage 1
331,492,336,355,446,347,500

ts48[1] ts48[2] ts48[3] ts48[4]

4 stages
TS(t48)

Stage 3
356,357,358

Stage 4
354,384,499,377,337

Stage 5
428

Figure 8: Task stage clustering process (Step 2)

 22

• Cluster examination: We adopted the proposed TSHC algorithm listed in Table 1 to
conduct the clustering.

Step2. Merging Task-stages. Task 43 is selected as the kernel task, since it has the best Q
value. The process of merging the stages of task 48 to the stages of task 43 is shown in Figure
9.

Table 7. Clustering examination

Quality value of stages Task 43 Task 48

Q(C) of 6 stages 0.125 0.088

Q(C) of 5 stages 0.139 0.084

Q(C) of 4 stages 0.074 0.082

Q(C) of 3 stages 0.110 0.076

Stage 1
331,492,336,355,446,347,500,354,384,499,377,337

ts48[1] ts48[2] ts48[3]

Stage 3
356,357,358

Stage 5
428

Task 48

355492 446331 336 347 500 354 384 499 337377 356 357

Stage 1
499,326,366,347,346,377,430,436,437,384,495,503,336,355,492,500,331,354,337,446

Stage 2
361,357,358,356

Stage 3
327,382,505,429,435,428,343

TTS(2)

358 428

Case 3: The clusters number of kernel task is greater than the clusters number of the other tasks
 Task 48 is merged to task 43

Stage 1
326,327,499,346,347,495,366,503,377,384,430,436,437

Stage 2
361

ts43[1] ts43[2] ts43[3]

Stage 3
343

Stage 4
327,505,382,429,435

ts43[4]

Task 43

Figure 9. Task stage merge process (Step 2)

Step3. Reassigning documents: The reassigned result is shown in Table 8. In this case, one
stage is removed. Stage 3 contains only one document D0000000343. After calculating the
similarity between neighborhoods, the document D0000000343 is merged to the stage 4.
Then the stage 3 is removed.

 23

Table 8. Final document set at each task stage of target task 1 (Step 3)

TS(t2)

ts2[1].docs

D0000000499 D0000000326 D0000000366 D0000000347 D0000000346 D0000000377
D0000000430 D0000000436 D0000000D437 D0000000384 D0000000495 D0000000503
D0000000336 D0000000355 D0000000492 D0000000500 D0000000331 D0000000354
D0000000337 D0000000446

ts2[2].docs D0000000361 D0000000357 D0000000358 D0000000356

ts2[3].docs
D0000000327 D0000000382 D0000000505 D0000000429 D0000000435 D0000000428
D0000000343

Step 4. Extracting Task-stages profiles: Finally, the feature set of each task stage is
extracted from each cluster.

 24

6. Experiments

6.1. Experimental Setup

Three experiments were performed to evaluate whether the proposed task-stage knowledge
support approach based on the TSHC algorithm can achieve better performance than our
previous task-based knowledge support approach (Liu et al., 2005). Section 6.1.1 reviews the
objective of the experiments and the experimental design. Meanwhile, Section 6.1.2 and
Section 6.1.3 describe the data, participants, and evaluation metrics, respectively.

6.1.1. Overview of the experimental objective and design

Three experiments are conducted to evaluate the effectiveness of the proposed task-stage
mining method for supporting task-relevant knowledge. The objectives of experimental
evaluations were threefold: (1) Experiment one evaluates the impact of our proposed method
with different time window size; (2) the experiment two evaluates the effectiveness of
knowledge support based on task-stage compared with the baseline method, non-stage
knowledge support (task-based knowledge support). In this work, we refer our previous
task-based knowledge support as non-stage knowledge support; and (3) experiment three is
similar to experiment two except we use different answering set for evaluating the
effectiveness of the proposed method under different condition. Note that the knowledge
support based on task-stage means that a virtual task with task-stage profiles can be used to
deliver task-relevant knowledge for an executing task belonging to the task class of the virtual
task. Our baseline method, task-based knowledge support uses the task profile of the virtual
task to deliver task-relevant knowledge for an executing task belonging to the task class of the
virtual task.

Two kinds of answering set of needed documents are prepared. The first is the

task-answering set of a virtual task. The second is the stage-answering set for each stage of a

virtual task. Note that the task-answering set is the union of the stage-answering sets. Section

6.1.2 explains the procedure to acquire the answering set in detail. Accordingly, experiment

two compares task-stage knowledge support with non-stage knowledge support based on the

task-answering set (named overall match). Experiment three compares stage knowledge

support with non-stage knowledge support based on the stage-answering set (named stage

match).

 25

6.1.2. Data and participants

Experiments were conducted using a real application domain on conducting research tasks in

a laboratory of a research institute. The tasks concerned are writing research papers or

conducting research projects. The real application domain restricts the sample size of the data

and participants in the experiments.

The test document set used in our experiment is collected from the laboratory in the

institute of information management department. Over 600 task-related documents were

collected. The smallest meaningful components of document information elements, such as

title, abstract, journal and author, were extracted from documents. Each document contained

an average of ninety distinct terms after information extraction, and document pre-processing

(e.g. case folding, stemming, and stop word removal).

Three virtual tasks are selected from our research domain to evaluate the effectiveness of

the proposed method, including “Change mining and application”, “Context-aware

knowledge service and application”, and “Task-based knowledge support model and system”.

Each virtual task has its own needed kernel documents. The task-answering set of a virtual

task is derived from the knowledge workers who have executed similar tasks and domain

experts who have the knowledge of the virtual task. Furthermore, we asked the domain expert

to select the needed documents at each stage of a virtual task. Consequently, the

stage-answering set can be acquired. The limitation of this work is that it is not easy to

identify the stage-answering sets of each virtual task. Therefore, only three stages of

answering set of each virtual task are acquired from domain experts.

6.1.3. Evaluation metrics

The effectiveness of knowledge support is measured in terms of precision, recall and
F1-measure, as in the research area of information retrieval.

Precision and recall. Precision is the fraction of retrieved items (tasks or documents) that

are relevant, while recall is the fraction of total known relevant items that are retrieved,

defined as follows.

retrieved items that are relevant

total retrieved items
precision =

(3)

 relevant items that are retrieved
total known relevant items

recall =
(4)

F-Measure. The F-metric (van Rijsbergen, 1979; Riloff & Lehnert, 1994) could be used to

 26

balance the trade-off between precision and recall. F1 metric assigned equal weight to
precision and recall and was given by,

ββ
β

+ × ×
− =

× +

2(1)
()

2 r

precision recall
F measure

p ecision recall (5)

The value of β is used to adjust the relative importance of the recall in comparison to the
precision. In this experiment, we set β=1 such that the recall and precision have the same
importance.

6.2. Experimental Result

6.2.1. Experiment one: effect on task-stage knowledge support with
different size of time window

(1) Objective

The objective of this experiment is to evaluate the effectiveness of our proposed method
with different time window size. As we have mentioned in Section 4.2, a time window size w
is set to define the scope of candidate clusters to be merged. The smaller the time window
size is, the higher the timeliness is. When time window size is equal to n (the number of
documents in TDS of a task instance), the proposed TSHC algorithm is the same as standard
hierarchical clustering algorithm (HAC). Thus, we conduct experiment to evaluate the impact
of the time window parameter. And then the best time window size w will be selected for the
usage of the proposed stage knowledge support method.

(2) Experimental Result and Observations

Table 9 shows the experimental results with different time window size in terms of
precision, recall, and F1-measure. Four window sizes are evaluated: w=1, w=2, w=3 and w=n.
Three virtual tasks are evaluated. In addition, we also evaluated the effectiveness of the
proposed method under various top-N (N=10, 20, and 30) knowledge support, i.e., providing
top-N documents with N-highest ranked similarity measures.

Observation 1: Generally, the best performance can be achieved when time window equals
to one (w=1). Bold type denotes the best performance with different time window size.
Specifically, when conducting top-30 knowledge support, time window equals to one (w=1)
has the best performance. In addition, it is also apparently that the greater the time window,
the lower effectiveness of the proposed method.

Observation 2: Interestingly, the virtual task 3 has the same performance no matter w=1 or
w=2. It implies that the time effect is not obvious in this virtual task. On the other hand, w=1

 27

not always leading to best performance for virtual task 1. It indicates that higher variant of
TDS (task document sequence) exists for task instances of virtual task 1.

Table 9. Result of knowledge support with different time window for three virtual tasks

Parameters Virtual Task 1 Virtual Task 2 Virtual Task 3

Top-N w Pre. Re. F1-measure Pre. Re. F1-measure Pre. Re. F1-measure

w=1 0.267 0.203 0.231 0.231 0.084 0.171 0.344 0.175 0.232

w=2 0.255 0.161 0.197 0.166 0.065 0.127 0.344 0.175 0.232

w=3 None None None 0.156 0.063 0.121 0.244 0.124 0.165
Top-30

w=n 0.167 0.116 0.137 0.133 0.019 0.033 None None None

w=1 0.267 0.126 0.171 0.217 0.069 0.152 0.350 0.118 0.177

w=2 0.350 0.152 0.212 0.156 0.049 0.118 0.350 0.118 0.177

w=3 None None None 0.133 0.037 0.088 0.250 0.085 0.126
Top-20

w=n 0.167 0.079 0.107 0.150 0.039 0.062 None None None

w=1 0.333 0.080 0.129 0.300 0.047 0.144 0.433 0.074 0.126

w=2 0.367 0.080 0.132 0.200 0.026 0.085 0.433 0.074 0.126

w=3 None None None 0.167 0.023 0.074 0.333 0.056 0.096
Top-10

w=n 0.200 0.050 0.080 0.156 0.059 0.086 None None None

Note: “None” denotes the proposed method is unable to generate 3 stages (clusters)

Table 10 shows the knowledge support results with different time window size of different
task stages in terms of precision, recall, and F1-measure. As we have mentioned in Section
5.1.2, due to the limitation of stage answering set, only three stages of each virtual task are
identified. According to previous pilot study (Vakkari 2000, 2003), stage one indicates the
task pre-focus stage; stage two indicates the task focus formulation stage; and stage three
indicates the task post-focus stage. Note that the measure of each stage is the average of three
virtual tasks.

Observation 3: Generally, the best performance can be achieved for all virtual task at stage 2
and stage 3 while conducting Top-20 and Top-10 knowledge support, when the time window
size is set to one (w=1). Bold type denotes the best performance with different time window
size. However, for the same top-N knowledge support, the best performance of different task
stage is achieved in different time window size.

Observation 4: Generally, the greater the time window size, the lower effectiveness of the
proposed method, especially for stage 2 and stage 3. However, stage 1 seems abnormal
compared with stage 2 and stage 3. That is the greater the time window size, the higher
effectiveness of the proposed method, especially in providing more documents.

 28

Table 10. Result of knowledge support under different time window size for task stages

Parameters Stage1 Stage 2 Stage3

Top-N w Pre. Re. F-measure Pre. Re. F-measure Pre. Re. F-measure

w=1 0.333 0.183 0.119 0.222 0.131 0.163 0.233 0.147 0.176

w=2 0.366 0.195 0.251 0.233 0.098 0.137 0.167 0.107 0.126

w=3 0.234 0.095 0.133 0.117 0.055 0.075 0.250 0.132 0.172
Top-30

w=n 0.367 0.253 0.200 0.084 0.034 0.067 0.033 0.029 0.018

w=1 0.333 0.122 0.177 0.283 0.112 0.159 0.217 0.080 0.116

w=2 0.433 0.249 0.179 0.283 0.080 0.125 0.167 0.060 0.088

w=3 0.225 0.064 0.098 0.125 0.040 0.060 0.117 0.055 0.075
Top-20

w=n 0.350 0.184 0.128 0.075 0.021 0.046 0.050 0.029 0.022

w=1 0.400 0.070 0.119 0.400 0.080 0.133 0.267 0.049 0.083

w=2 0.433 0.089 0.147 0.367 0.054 0.094 0.200 0.036 0.061

w=3 0.350 0.053 0.091 0.250 0.040 0.068 0.150 0.027 0.029
Top-10

w=n 0.350 0.111 0.067 0.050 0.007 0.020 0.100 0.029 0.028

(3) Implications:

This experiment evaluates the impact of the time window size in the proposed TSHC
algorithm. The result reveals that generally the smaller the time window size, the better the
effectiveness (the higher precision, recall, and F-measure) of knowledge support. Accordingly,
we set time window size to one (w=1) in the proposed algorithm.

Interestingly, when time window size is equal to n (number of document TDS of a task
instance), the proposed TSHC algorithm is the same as standard hierarchical clustering
algorithm (HAC). The time effect disappeared when time window size is equal to n. The
result is similar to topics clustering, i.e., documents within the same cluster may discuss a
similar topic without considering the effect of stage.

 29

6.2.2 Experiment two: comparing task-stage knowledge support with
non-stage knowledge support based on overall match

(1) Objective

The objective of this experiment is to evaluate the effectiveness of task-stage mining
method for knowledge support. Task-stage profiles are generated to model workers’ task-stage
needs and are used for delivering task-relevant knowledge at various task stages. The task
stage knowledge support method is compared with the baseline method, non-stage knowledge
support method (task-based knowledge support). The task-stage knowledge support denotes
providing needed documents based on task-stage profiles, whereas non-stage knowledge
support denotes providing knowledge support based on task profiles. The task-stage profiles
or task profiles are used to deliver task-relevant knowledge for an executing task that is
similar to the virtual task. Note that this experiment compares task-stage knowledge support
with non-stage knowledge support according to the task-answering set of a virtual task
(named overall match). On the other hand, the experiment three compares task-stage
knowledge support with non-stage knowledge support according to the stage answering set of
a virtual task (named stage match).

(2) Result and Observations

Table 11 shows the result of task-stage knowledge support method and non-stage
knowledge support method in terms of precision, recall, and F1-measure. Notably, three
virtual tasks are evaluated under various top-N (N=10, 20, and 30) document supports. Table
12 shows the average result of task-stage knowledge support method and non-stage
knowledge support method.

Observation 1: The precision, recall and F1-measure of task stage knowledge support

method are greater than the non-stage method for virtual task one and two. However, for

virtual task three, the precision, recall and F1-measure of task stage knowledge support

method are lesser than non-stage method. The precision of non-stage method under Top-30

support is greater than that of the task stage knowledge support method.

Observation 2: Notably, for task stage knowledge support method, the fewer number of

supporting documents, the higher precision value is. The rank of precision value is Top-10 >

Top-20 > Top-30. The observation doest not apply to the non-stage knowledge support

method. The precision values of task stage knowledge support method are greater than those

of the non-stage method under top-10 knowledge support for three virtual tasks. The result

reveals that task stage knowledge support method can provide more effective knowledge

 30

support than the non-stage knowledge support method when providing fewer number of

task-stage relevant documents.

Table 11. Compare task stage knowledge support method with none-stage knowledge support
method for three virtual tasks

 Task Stage Knowledge Support Non-Stage (Task-based) Knowledge Support

 Pre. Re. F-measure Pre. Re. F-measure

Top-10 0.667 0.082 0.146 0.600 0.078 0.138

Top-20 0.633 0.165 0.261 0.600 0.156 0.248

Top-30 0.578 0.225 0.324 0.567 0.220 0.317

Virtual

Task 1

Average 0.626 0.157 0.244 0.589 0.151 0.234

Top-10 0.433 0.03 0.06 0.300 0.021 0.039

Top-20 0.350 0.05 0.09 0.400 0.056 0.098

Top-30 0.322 0.07 0.11 0.400 0.085 0.140

Virtual

Task 2

Average 0.369 0.050 0.086 0.367 0.054 0.093

Top-10 0.567 0.060 0.109 0.500 0.053 0.096

Top-20 0.467 0.099 0.163 0.450 0.096 0.158

Top-30 0.444 0.142 0.215 0.567 0.181 0.274

Virtual

Task 3

Average 0.493 0.100 0.162 0.506 0.110 0.176

Observation 3: Table 11 shows the details of the experiment result, which shows that virtual

task one has best result. This may result from that the best clustering number for virtual task

one is 3, but clustering number for virtual task two and three are not 3. As we have addressed

in step 1 of Section 4.2, we use the Q value to determine the cluster quality for deciding the

number of clusters of each task.

Observation 4: Table 12 shows the result of task stage knowledge support method and
non-stage knowledge support method. The average precision, recall and F1-measure of task
stage knowledge support method are greater than those of the non-stage method under top-10
and top-20 knowledge support. Meanwhile, for task stage knowledge support method, the
fewer number of supporting documents, the higher precision value is. The rank of precision
value is Top-10 > Top-20 > Top-30. For non- stage knowledge support method, the fewer
number of supporting documents, the lower precision value is. The rank of precision value is
Top-30 > Top-20 > Top-10.

 31

 Table 12. Results of knowledge support by overall match

 Stage knowledge support Non- stage knowledge support

β=1 Precision Recall F1-measure Precision Recall F1-measure

Top-10 0.556 0.058 0.104 0.467 0.051 0.091

Top-20 0.483 0.104 0.171 0.483 0.103 0.168

Top-30 0.448 0.145 0.217 0.511 0.162 0.244

Average 0.496 0.102 0.164 0.487 0.105 0.168

Table 13, and Figure 10 (A), (B), and (C) shows the results of task stage knowledge support

method with none-stage knowledge support method of different task stages. Note that the
none-stage knowledge support method of different task stages has the same performance
value. The reason is that the non-stage knowledge support method only has one task profile.
In addition, this experiment evaluates the performance of two methods according to the
task-answering set (named overall match) not the stage answering sets.

Observation 5: Generally, task stage knowledge support method has better performance than
non-stage method under top-10 knowledge support for three task stages. In addition, no
matter top-10, 20 or 30 knowledge supports, task stage knowledge support method has better
performance than non-stage method in task pre-focus stage (stage 1).

Table 13: Compare task stage knowledge support method with none-stage knowledge support
method under different task stages

 Task Stage-based Knowledge Support Non-Stage (Task-based) Knowledge Support

 Pre. Re. F-measure Pre. Re. F-measure

Top-10 0.567 0.064 0.218 0.467 0.051 0.177

Top-20 0.517 0.120 0.309 0.483 0.103 0.278

Top-30 0.522 0.181 0.376 0.511 0.162 0.357

Stage 1

(Pre-focus)

Average 0.535 0.122 0.301 0.487 0.105 0.270

Top-10 0.500 0.051 0.179 0.467 0.051 0.177

Top-20 0.417 0.091 0.240 0.483 0.103 0.278

Top-30 0.311 0.101 0.217 0.511 0.162 0.357

Stage 2

(Focus)

Average 0.409 0.081 0.212 0.487 0.105 0.270

Top-10 0.600 0.059 0.209 0.467 0.051 0.177

Top-20 0.517 0.102 0.281 0.483 0.103 0.278

Top-30 0.511 0.153 0.343 0.511 0.162 0.357

Stage 3

(Post-focus)

Average 0.543 0.105 0.277 0.487 0.105 0.270

Note: The details of stage knowledge support of each group are listed in Appendix B1

 32

Observation 6: Figure 10(A), (B), and (C) depict the result of knowledge support based on
various number of top-N knowledge support. Interestingly, stage 1 and stage 3 of task-stage
knowledge support method has better performance than non-stage knowledge support.
However, stage 2 of task-stage knowledge support method is not always better than non-stage
knowledge support method under various top-N knowledge supports.

Top-10 Knowledge Support

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Precision Recall F-measure

Stage 1

Stage 2

Stage 3

Non-stage

Figure 10(A): Result of top-10 knowledge support

Top-20 Knowledge Support

0

0.1

0.2

0.3

0.4

0.5

0.6

Precision Recall F-measure

Stage 1

Stage 2

Stage 3

Non-stage

Figure 10(B): Result of top-20 knowledge support

 33

Top-30 Knowledge Support

0

0.1

0.2

0.3

0.4

0.5

0.6

Precision Recall F-measure

Stage 1

Stage 2

Stage 3

Non-stage

Figure 10(C): Result of top-30 knowledge support

(3) Implications:

This experiment evaluates the effectiveness of the proposed task-stage mining method for
knowledge support. The experimental result reveals that generally the task stage knowledge
support method is better than the baseline method, non-stage knowledge support method
(task-based knowledge support). Notably, for task stage knowledge support method, the fewer
number of supporting documents, the higher precision value is (Top-10 > Top-20 > Top-30).
The result revels that the proposed stage mining method can provide more effective
knowledge support. Meanwhile, knowledge workers generally do not need a lot of documents
at each task stage; therefore, the system needs to determine appropriate number of needed
documents to support task-execution. The experimental result is useful to suggest the number
of supporting documents at each task stage.

 34

6.2.3. Experiment three: comparing task-stage knowledge support
with non-stage knowledge support method based on stage
match

(1) Objective

The objective of this experiment is to evaluate the effectiveness of task-stage mining method
for knowledge support. Experiment three compares task stage knowledge support with
non-stage knowledge support according to the stage answering set (named stage match). This
experiment is similar to experiment two except that we use different answering set (stage
answering set) for evaluating the effectiveness of the proposed method.

(2) Result and Observations
Table 14 shows the result of task stage knowledge support method and non-stage

knowledge support method in terms of precision, recall, and F1-measure. Notably, three
virtual tasks are evaluated under various top-N (N=10, 20, and 30) document supports. Table
15 shows the average result of task stage knowledge support method and non-stage
knowledge support method, respectively.

Observation 1: The average precision, recall and F1-measure of task stage knowledge

support method are greater than non-stage method for virtual task two and three. However, for

virtual task one, the average precision, recall and F1-measure of task stage knowledge support

method are lesser than the non-stage method. Only top-10 document support of task stage

knowledge support method is better than the non-stage method.

Observation 2: Notably, for task stage knowledge support method, the fewer number of

supporting documents, the higher precision value is. The rank of precision value is Top-10 >

Top-20 > Top-30. On the other hand, this observation does not apply to the non-stage

knowledge support method. The precision values of task stage knowledge support method are

greater than those of the non-stage method under top-10 knowledge support for three virtual

tasks. The result reveals that task stage knowledge support method can provide more effective

knowledge support than the non-stage knowledge support method when supporting fewer

number of task-stage relevant documents. This result is in accordance with the result of

experiment two.

Observation 3: Table 15 shows the average result of task stage knowledge support method
and non-stage knowledge support method. The average precision, recall and F1-measure of
task stage knowledge support method are all greater than those of the non-stage method.
Notably, if we compare this result with experiment 2 (Table 12), the performance value is not
better than experiment 2. This result is reasonably because the number of documents of each

 35

stage answering set is far fewer than the number of documents of the task answering set. This
experiment uses the stage-answering sets, whereas the experiment two uses only one task
answering set. The task answering set of a virtual task is the union of stage answering sets of
a virtual task.

Table 14. Compare task-stage knowledge support method with none-stage knowledge support
method for three virtual tasks

 Task Stage Knowledge Support Non-Stage (Task-based) Knowledge Support

 Pre. Re. F-measure Pre. Re. F-measure

Top-10 0.333 0.080 0.128 0.300 0.074 0.128

Top-20 0.267 0.126 0.171 0.317 0.162 0.171

Top-30 0.267 0.203 0.229 0.289 0.229 0.229

Virtual

Task 1

Average 0.289 0.136 0.176 0.302 0.155 0.176

Top-10 0.300 0.047 0.080 0.233 0.033 0.133

Top-20 0.217 0.069 0.104 0.167 0.051 0.117

Top-30 0.231 0.084 0.113 0.178 0.079 0.122

Virtual

Task 2

Average 0.249 0.067 0.099 0.193 0.055 0.124

Top-10 0.433 0.074 0.135 0.233 0.039 0.167

Top-20 0.350 0.118 0.194 0.300 0.102 0.200

Top-30 0.344 0.175 0.232 0.367 0.253 0.233

Virtual

Task 3

Average 0.376 0.122 0.187 0.300 0.131 0.200

Table 15. Average results of knowledge support for three virtual tasks by stage match

 Stage knowledge support Non- stage knowledge support

β=1 Precision Recall F1-measure Precision Recall F1-measure

Top-10 0.356 0.067 0.115 0.256 0.049 0.143

Top-20 0.278 0.105 0.156 0.261 0.105 0.163

Top-30 0.281 0.154 0.191 0.278 0.187 0.195

Average 0.305 0.108 0.154 0.265 0.114 0.167

Table 16 shows the results of task stage knowledge support method with none-stage

knowledge support method under different task stages.

Observation 4: Generally, task stage knowledge support method has better performance than
the non-stage method under top-10 or top-20 knowledge support for three task stages. In
addition, no matter top-10, 20 or 30 knowledge supports, task stage knowledge support
method has better performance than the non-stage method in task pre-focus stage (stage 1).

Table 16. Compare task stage knowledge support method with none-stage knowledge support

 36

method under different task stages (Stage match)

 Task Stage-based Knowledge Support Non-Stage (Task-based) Knowledge Support

 Pre. Re. F-measure Pre. Re. F-measure

Top-10 0.400 0.070 0.119 0.367 0.066 0.111

Top-20 0.333 0.122 0.177 0.333 0.126 0.181

Top-30 0.333 0.183 0.234 0.333 0.248 0.277

Stage 1

(Pre-focus)

Average 0.355 0.125 0.176 0.344 0.147 0.190

Top-10 0.400 0.080 0.133 0.233 0.043 0.072

Top-20 0.283 0.112 0.159 0.233 0.091 0.129

Top-30 0.222 0.131 0.163 0.267 0.153 0.192

Stage 2

(Focus)

Average 0.302 0.108 0.151 0.244 0.096 0.131

Top-10 0.267 0.049 0.083 0.167 0.033 0.057

Top-20 0.217 0.080 0.116 0.217 0.102 0.152

Top-30 0.233 0.147 0.176 0.234 0.186 0.247

Stage 3

(Post-focus)

Average 0.239 0.092 0.125 0.206 0.107 0.152

Note: The details of stage knowledge support of each group are listed in Appendix B2-1 and B2-2

(3) Implications:

This experiment evaluates the effectiveness of the proposed task-stage mining method for
knowledge support. The results prove that the effectiveness of task stage knowledge support
method by the TSHC algorithm is better than the non-stage method. This experiment has more
significant improvement in precision by task stage knowledge support than that of experiment
2. Table 17 shows the comparison of Table 12 and Table 15 in experiment 2 and 3,
respectively. Notably, in average, the recall value of non-stage knowledge support is better
than that of the task stage knowledge support. But if we took further analysis, the recall value
of top-30 task stage knowledge support is much lower than that of non-stage knowledge
support. This result implies that the system can deliver more task-relevant documents by
providing top-30 documents based on task profiles and providing top-10 or top-20 documents
based on task-stage profiles.

Table 17. Average results of knowledge support for three virtual tasks by stage match

 37

 Stage knowledge support Non- stage knowledge support

β=1 Precision Recall F1-measure Precision Recall F1-measure

Average results of knowledge support for three virtual tasks by stage match

Top-10 0.356 0.067 0.115 0.256 0.049 0.143

Top-20 0.278 0.105 0.156 0.261 0.105 0.163

Top-30 0.281 0.154 0.191 0.278 0.187 0.195

Average
0. 305

(+15.09%)
0. 108

(-5.26%)
0. 154

 0.265 0.114 0.167

Average results of knowledge support for three virtual tasks by overall match

Top-10 0.556 0.058 0.104 0.467 0.051 0.091

Top-20 0.483 0.104 0.171 0.483 0.103 0.168

Top-30 0.448 0.145 0.217 0.511 0.162 0.244

Average
0.496

(+1.85%)
0.102

(-2.94%) 1. 0.164 0.487 0.105 0.168

 38

7. Conclusions and Future Works

Codifying knowledge into explicit form is a widely adopted strategy in contemporary
knowledge management systems (KMS) to facilitate knowledge reuse. However, workers still
encounter difficulty in accessing information from vast amount of codified knowledge. This
work proposed a task-stage mining technique to tackle the problem. The valuable knowledge
of each task-stage is extracted to build the task-stage profile for delivering task-relevant
knowledge at various stages. Several experiments have been conducted to demonstrate the
effectiveness of the proposed task-stage knowledge support approach.

In our ongoing work, we have proposed a task-stage identification model to determine the
changes of a worker’s task-stage (Wu et al., 2005). Accordingly, we will integrate the
proposed task-stage mining technique with the task-stage identification model to investigate
the contribution of the task-stage knowledge support model empirically. Meanwhile, we are
seeking other application domain to apply the proposed model.

References

[1] A. Abecker, A. Bernardi, H. Maus, M. Sintek, and C. Wenzel, (2000), “Information
Supply for Business Processes: Coupling Workflow with Document Analysis and
Information Retrieval,” Knowledge Based Systems, 13(1), pp. 271-284.

[2] R. Baeza-Yates, and B. Ribeiro-Neto, (1999), Modern Information Retrieval, Reading,

MA: Addison-Wesley.A.

[3] A. Celentano, M.G. Fugini, and S. Pozzi, (1995), “Knowledge-based Document

Retrieval in Office Environment: The Kabiria System,” ACM Transactions
on Information Systems, 13(3), pp.237-268.

[4] S.-L. Chuang, and L.-F. Chien (2004), “A practical web-based approach to generating

topic hierarchy for text segments,” CIKM, pp.127-136

[5] T. H. Davenport, and L. Prusak, (1998), Working knowledge: How Organizations

Manages What They Know. Boston MA: Harvard Business School Press.

[6] Kurt D. Fenstermacher, (2002), “Process-Aware Knowledge Retrieval,” Proc. of the

35th Hawaii Intl. Conf. on System Sciences, Hawaii, USA.

[7] G. Fischer, and J. Ostwald, (2001), “Knowledge Management: Problems, Promises,

Realities, and Challenges,” IEEE Intelligent Systems, 16(1), pp.60–73.

[8] J. Han, and M. Kamber, (2000) Data Mining: Concepts and Techniques, Morgan

Kaufmann Publisher, San Francisco.

 39

[9] A.K. Jain，M.N，Murty and P.J Flynn, (1999), ”Data Clustering：A Review,” ACM

computing Surveys, 131(3).

[10] S. C. Johnson (1967) "Hierarchical Clustering Schemes," Psychometrika, 2:241-254

[11] C. Kuhlthau, (1993), Seeking Meaning: A Process Approach to Library and Information

Services, Norwood, NJ: Ablex Publishing Corp.

[12] Gartner Group (Summer 1999), Knowledge Management Reports.

[13] P.H. Gray (2001), “Problem-solving Perspective on Knowledge Management Practices,”

Decision Support Systems, 31(1), pp.87-102.

[14] D.-R. Liu, I.-C. Wu, and K.-S. Yang (2005), “Task-based K-Support System:

Disseminating and Sharing Task-relevant Knowledge,” Expert Systems with
Applications, 29 (2), pp.408-423.

[15] J. B. MacQueen (1967): "Some Methods for classification and Analysis of Multivariate

Observations,” Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and
Probability", Berkeley, University of California Press, 1:281-297.

[16] J. Mostafa, S. Mukhopadhyay, W. Lam, and M. Palakal, (1997), "A Multi-level

Approach to Intelligent Information Filtering: Model, System and Evaluation," ACM
Transactions on Information Systems, 15(4), pp. 368-399.

[17] I. Nonaka, (1994), “A Dynamic Theory of Organizational Knowledge Creation,”

Organization Science, 5(1), pp.14–37.

[18] M. Pazzani, D. Billsus, (1997), “Learning and Revising User Profiles: The Identification

of Interesting Web Sites,” Machine Learning, 27, pp. 313–331.
[19] van Rijsbergen, C.J., (1979). Information Retrieval, Second ed. Butterworths, London.

[20] E. Riloff and W. Lehnert. (1994), “Information Extraction as a Basis for High Precision

Text Classification,” ACM Transaction on Information System, 12(3), pp.296-333.

[21] G. Salton, and C. Buckley (1988), “Term Weighting Approaches in Automatic Text

Retrieval,” Information Processing & Management, 24(5), pp. 513–523.

[22] F. Sebastiani, (1999), “Machine Learning in Automated Text Categorization: a Survey,”

Technical report, Istituto di Elaborazione dell'Informazione, C.N.R., Pisa, Italy.

[23] S. Staab, and H.-P. Schnurr, (2000), “Smart Task Support through Proactive Access to

Organizational Memory,” Knowledge-Based Systems, 13(5), pp. 251-260.

[24] B. Shapira, P. Shoval and U. Hanani, (1999), "Experimentation with an Information

Filtering System that Combines Cognitive and Sociological Filtering Integrated with
User Stereotypes," Decision Support Systems, 27, pp.5–24.

 40

 41

[25] P. Vakkari (2000), “Cognition and changes of search terms and tactics during task

performance: A longitudinal case study,” Proceedings of the RIAO'2000 Conference.
Paris: C.I.D., pp.894-907.

[26] P. Vakkari (2003), “Changes of Search Terms and Tactics While Writing a Research

Proposal: A Longitudinal Case Study,” Information Processing and Management, 39(3),
pp. 445-463.

[27] H. Widyantoro, T. R. Ioerger, and J. Yen, (2001), “Learning User Interest Dynamics

with a Three-Descriptor Representation,” Journal of the American Society for
Information Science, 52(3), pp.212-225.

[28] Wiig, K (1993), Knowledge Management Foundation. Schema Press.

[29] I.-C. Wu, D.-R. Liu, and W.-H. Chen (2005), “Task-stage Knowledge Support Model:

Coupling User Information Needs with Task Stage Identification,” Proc. of the IEEE
International Conference on Information Reuse and Integration (IRI), Las Vegas, USA.

[30] C. Wei, P. Hu, and H. H. Chen (2002), “Design and Evaluation of A Knowledge

Management System,” IEEE Software, 19(3), pp.56-59.

[31] K.-S. Yang (2004), “Implementation of Task-based Knowledge Support System”,

NCTU, Master Thesis.

[32] M.H. Zack (1999). Managing codified knowledge. Sloan Management Review, 40(4),

45-58.

Appendix A1
(comparing stage knowledge support with non-stage knowledge support method of overall match)
Stage knowledge support results (Group 1)

 Stage 1 Stage 2 Stage 3

 Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re.

Top-10 0.900 0.385 0.207 0.142 0.117 0.700 0.270 0.140 0.095 0.078 0.400 0.171 0.092 0.063 0.052

Top-20 0.900 0.574 0.371 0.275 0.234 0.600 0.382 0.248 0.183 0.156 0.400 0.255 0.165 0.122 0.104

Top-30 0.867 0.660 0.486 0.385 0.338 0.433 0.330 0.243 0.192 0.169 0.433 0.330 0.243 0.192 0.169

Average 0.889 0.540 0.355 0.267 0.230 0.578 0.327 0.210 0.157 0.134 0.411 0.252 0.167 0.126 0.108

Stage knowledge support results (Group 2)

 Stage 1 Stage 2 Stage 3

 Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re.

Top-10 0.300 0.082 0.039 0.026 0.021 0.300 0.082 0.039 0.026 0.021 0.700 0.194 0.093 0.061 0.050

Top-20 0.150 0.067 0.037 0.025 0.021 0.300 0.137 0.075 0.052 0.043 0.600 0.271 0.149 0.103 0.085

Top-30 0.167 0.095 0.058 0.042 0.035 0.233 0.135 0.082 0.059 0.050 0.567 0.325 0.198 0.142 0.120

Average 0.206 0.082 0.045 0.031 0.026 0.278 0.118 0.066 0.046 0.038 0.622 0.264 0.147 0.102 0.085

Stage knowledge support results (Group 3)

 Stage 1 Stage 2 Stage 3

 Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re.

Top-10 0.500 0.186 0.096 0.065 0.053 0.500 0.186 0.096 0.065 0.053 0.700 0.260 0.134 0.090 0.074

Top-20 0.500 0.287 0.175 0.126 0.106 0.350 0.200 0.122 0.088 0.074 0.550 0.316 0.193 0.139 0.117

Top-30 0.533 0.373 0.258 0.197 0.170 0.267 0.187 0.129 0.098 0.085 0.533 0.373 0.258 0.197 0.170

Average 0.511 0.282 0.176 0.129 0.110 0.372 0.191 0.116 0.084 0.071 0.594 0.317 0.195 0.142 0.120

 42

Appendix A2-1
(comparing stage knowledge support with non-stage knowledge support method of stage match)
Stage knowledge support results (Group 1)

 Stage 1 Stage 2 Stage 3

 Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re.

Top-10 0.500 0.294 0.182 0.131 0.111 0.500 0.316 0.204 0.150 0.128 0.000 0.000 0.000 0.000 0.000

Top-20 0.450 0.360 0.277 0.225 0.200 0.350 0.294 0.237 0.198 0.179 0.000 0.000 0.000 0.000 0.000

Top-30 0.433 0.394 0.347 0.310 0.289 0.267 0.252 0.232 0.215 0.205 0.100 0.103 0.107 0.112 0.115

Average 0.461 0.349 0.268 0.222 0.200 0.372 0.287 0.224 0.188 0.171 0.033 0.034 0.036 0.037 0.038

Stage knowledge support results (Group 2)

 Stage 1 Stage 2 Stage 3

 Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re.

Top-10 0.300 0.115 0.059 0.040 0.033 0.200 0.088 0.048 0.033 0.027 0.400 0.222 0.133 0.095 0.080

Top-20 0.150 0.088 0.054 0.039 0.033 0.200 0.131 0.086 0.064 0.055 0.300 0.231 0.171 0.136 0.120

Top-30 0.133 0.095 0.066 0.051 0.044 0.167 0.129 0.097 0.077 0.068 0.233 0.206 0.175 0.152 0.140

Average 0.194 0.099 0.060 0.043 0.037 0.189 0.116 0.077 0.058 0.050 0.311 0.220 0.160 0.128 0.113

Stage knowledge support results (Group 3)

 Stage 1 Stage 2 Stage 3

 Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re.

Top-10 0.400 0.201 0.114 0.080 0.067 0.500 0.255 0.147 0.103 0.086 0.400 0.202 0.145 0.082 0.068

Top-20 0.400 0.285 0.200 0.153 0.133 0.300 0.217 0.154 0.119 0.103 0.350 0.252 0.228 0.137 0.119

Top-30 0.433 0.361 0.289 0.241 0.217 0.233 0.197 0.159 0.134 0.121 0.367 0.307 0.247 0.206 0.186

Average 0.411 0.282 0.201 0.158 0.139 0.344 0.223 0.153 0.119 0.103 0.372 0.254 0.207 0.142 0.124

 43

Appendix A2-2
(comparing stage knowledge support with non-stage knowledge support method of stage match)
Non-Stage knowledge support results (Group 1)

 Stage 1 Stage 2 Stage 3

 Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re.

Top-10 0.600 0.352 0.218 0.158 0.133 0.200 0.126 0.081 0.060 0.051 0.100 0.075 0.055 0.043 0.038

Top-20 0.550 0.440 0.338 0.275 0.244 0.250 0.210 0.169 0.142 0.128 0.150 0.141 0.130 0.121 0.115

Top-30 0.433 0.394 0.347 0.310 0.289 0.267 0.252 0.232 0.215 0.205 0.167 0.171 0.179 0.186 0.192

Average 0.528 0.395 0.301 0.247 0.222 0.239 0.196 0.161 0.139 0.128 0.139 0.129 0.121 0.117 0.115

Non-Stage knowledge support results (Group 2)

 Stage 1 Stage 2 Stage 3

 Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re.

Top-10 0.300 0.115 0.059 0.040 0.033 0.200 0.088 0.048 0.033 0.027 0.200 0.111 0.067 0.048 0.040

Top-20 0.150 0.088 0.054 0.039 0.033 0.150 0.098 0.064 0.048 0.041 0.200 0.154 0.114 0.091 0.080

Top-30 0.167 0.120 0.084 0.065 0.056 0.200 0.155 0.116 0.093 0.082 0.167 0.147 0.125 0.109 0.100

Average 0.206 0.107 0.066 0.048 0.041 0.183 0.114 0.076 0.058 0.050 0.189 0.137 0.102 0.082 0.073

Non-Stage knowledge support results (Group 3)

 Stage 1 Stage 2 Stage 3

 Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re. Pre. β=0.5 β=1 β=2 Re.

Top-10 0.200 0.099 0.057 0.040 0.033 0.300 0.154 0.088 0.062 0.052 0.200 0.099 0.058 0.040 0.033

Top-20 0.300 0.214 0.150 0.115 0.100 0.300 0.217 0.154 0.119 0.103 0.300 0.216 0.152 0.118 0.102

Top-30 0.400 0.400 0.400 0.400 0.400 0.333 0.280 0.227 0.190 0.172 0.367 0.307 0.247 0.206 0.186

Average 0.300 0.238 0.202 0.185 0.178 0.311 0.217 0.156 0.124 0.109 0.289 0.208 0.152 0.121 0.107

 44

	 Table of Content
	1. Introduction
	1.1. Research Background & Motivation
	1.2. Research Objectives
	1.3. Thesis Organization
	2.1 Task-based Knowledge Management
	2.2 Information Retrieval and Information Filtering
	2.3 Document Clustering
	3.1. Problem Formulation
	3.2. Process of Mining Task-stage Needs
	3.3. Term Definition
	4.1. Data Pre-processing
	4.2. Process of Mining Task-stage Needs
	 5. An Illustrative Example and Discussion
	5.1. Example 1
	Quality value of stages

	5.2. Example 2
	Quality value of stages

	 6. Experiments
	6.1. Experimental Setup
	6.2. Experimental Result
	 6.2.2 Experiment two: comparing task-stage knowledge support with non-stage knowledge support based on overall match

	7. Conclusions and Future Works
	References
	Appendix A1
	 Appendix A2-1
	

	 Appendix A2-2

