
Chen-Sheng Wang, Po-Yu Yang, Min-Jen Tsai

The Fifth International Conference on Electronic Business, Hong Kong, December 5-9, 2005

A WEB-SERVICES-BASED P2P COMPUTING-POWER SHARING

ARCHITECTURE

Chen-Sheng Wang, Po-Yu Yang, Min-Jen Tsai

Institute of Information Management

National Chiao Tung University

1001 Ta Hsueh Road, Hsinchu, Taiwan

Phone: 886-3-571-2121 ext 57417 Fax: 886-3-572-3792

cswang.iim92g@nctu.edu.tw, pyang.iim92g@nctu.edu.tw, mjtsai@cc.nctu.edu.tw

mailto:cswang.iim92g@nctu.edu.tw
mailto:pyang.iim92g@nctu.edu.tw
mailto:mjtsai@cc.nctu.edu.tw

Chen-Sheng Wang, Po-Yu Yang, Min-Jen Tsai

The Fifth International Conference on Electronic Business, Hong Kong, December 5-9, 2005

A WEB-SERVICES-BASED P2P COMPUTING-POWER SHARING

ARCHITECTURE

ABSTRACT

As demands of data processing and computing are
increasing, current information system
architectures become insufficient. Some
organizations try to keep their systems work
without purchasing new hardware and software. A
peer-to-peer (P2P) model which shares the
resource over the network will be proposed to
meet this requirement in this paper.

In addition, this paper discusses some problems
about security, motivation, flexibility,
compatibility and workflow management for the
traditional P2P power sharing models. Thus, we
propose a new computing architecture Computing
Power Services (CPS) that aims to solve the
problems discovered. It utilizes Web Services and
Business Process Execution Language (BPEL) to
overcome the shortcomings about flexibility,
compatibility and workflow management. CPS is
limited to a trust network where peer and peer
trust each other. Thus, the concerns about security
and motivation are negated.

CPS is a lightweight Web-Services-based P2P
power sharing environment, and suitable for
executing computing works which are able to run
in batch in a trusty network. The architecture
relies on BPEL which provides a visualized
development environment and workflow control
management.

INTRODUCTION

In the past mainframe systems, almost everything
is done by mainframe computers. Processing in
the mainframe becomes a bottleneck in the

information systems. It forces enterprises to keep
pumping money into mainframe upgrades in order
to maintain efficiency of information system under
increasing processing demands. Client/server
architecture is an alternative to improve
mainframe system. Client/server architectures
shift processing burden to the client computer.
Through workload sharing, client/server systems can
maintain efficiency of the information systems while
reducing the budget for computing resources.

Client/server architectures have gained wide
acceptance, but many companies are searching for
ways to improve their processing power again
without more investment in new hardware and
software in a competitive market. Some people try
to think about how to use current resource in the
origination, like idle computers or free storage
space to reach the goal. This new approach is
called peer-to-peer systems. It allows users to
make use of collective power in the network. The
benefits are lower costs and faster processing times
for everyone involved.

Since P2P model is a system that allows users to
share their resources with each other over the
network, it is a matter to think about what kinds of
computer resources can be shared. Some computer
resources, such as files system, network
bandwidth and computing power are shared in
some current P2P models. But there are still some
problems in current P2P models, like lack of
ability to customize computing tasks, workflow
control management and etc.

According to these problems, the paper presents a
lightweight Web-Services-based P2P power

Chen-Sheng Wang, Po-Yu Yang, Min-Jen Tsai

The Fifth International Conference on Electronic Business, Hong Kong, December 5-9, 2005

sharing environment, and suitable for executing
computing works which are able to run in batch in
a trusty network. The architecture relies on BPEL
which provides a visualized development
environment and workflow control management.

PEER-TO-PEER MODEL

The term “peer-to-peer” (P2P) refers to a class of
systems and applications that employ distributed
resources to perform a critical function in a
decentralized manner. The resources encompass
computing power, data (storage and content),
network bandwidth, and presence (computers,
human, and other resources) [1]. Generally, there
are three features in the P2P system: [2]

n Computers can now act as both clients and
servers

n P2P system allows users to make use of the
collective power in the network

n The benefits of P2P system are lower costs and
faster processing times for everyone involved

It can combine current resources to more powerful
one by using P2P model. For the origination, using
P2P system can integrate existing resources to
satisfy increasing demands and economize on
processing power upgrades. No matter how old
the computers are, how narrow the bandwidth is
and how less the storage is, many little may make
a mickle by using P2P system. It is what P2P
model want to do.

There are two kinds of P2P systems at present.
One is file sharing model, another is distributed
computing. [2]

File sharing model

Content storage and exchange is one of the areas
where P2P technology has been most successful.
Distributed storage systems based on P2P

technologies are taking advantage of the existing
infrastructure. Some systems provide the user with
a potentially unlimited storage area by taking
advantage of redundancy. The duplication and
redundancy in P2P systems help ensuring
reliability of data. [1]

Napster is the first P2P file sharing application
that jump started the P2P area. Napster uses the
centralized directory model to maintain a list of
music files, where the files are added and removed
as individual users connect and disconnect from
the system. Users submit search requests based on
keywords such as “title,” “artist,” etc. Napster has
been quite popular. It has had more than forty
million client downloads and has led to numerous
variants of file-sharing applications. [1] Famous
model like E-Donkey, eMule and Bittorrent are
other examples of P2P file sharing systems.

Distributed computing

Another model is distributed computing. This
model tries to combine computing power to satisfy
processing demands. It can shorten a long
processing time without processing equipments
upgrades. For example, in January 1999, a system
with the help of several tens of thousands of
Internet computers broke the RSA challenge
[DES-III] in less than 24 hours using a distributed
computing approach. [1]

Distributed computing is implemented in
large-scale scientific researches. A famous one is
SETI@home [SETI@home 2001]. Now, it has a
consolidated power of about 25 Tflop/s
(Thousands of Billions of floating point operation
per second), collected from more than three
million registered user machines. [1]

Generally, a distributed computing system works
which needs to split the computational problems
to be solved into small independent parts. Each of

Chen-Sheng Wang, Po-Yu Yang, Min-Jen Tsai

The Fifth International Conference on Electronic Business, Hong Kong, December 5-9, 2005

the parts is done by individual computer and the
results are collected by a central server. Individual
can participates in the project by downloading
participant software from central server.

Distributed computing is very successfully used
by P2P systems. Many systems like SETI@home,
United Devices, Einstein@Home and etc, have
thousands of participators and contribute much in
scientific researches.

PROBLEMS ANALYSIS

Problems about distributed computing

Distributed computing can integrate computing
power over network to meet high processing
demands, such as large-scale scientific computing.
Using distributed computing system can raise
efficiency of processing and make it possible to
computing complex task. But there are some
problems for small scale organizations which are
hard to pursue. These issues are discussed as
follows.

l Security

Security of running distributed computing system
is based on trusty. Participants must completely
trust the research organization before they
download the programs. Allowing program
running on computer is greatly increases
vulnerability to security breaches. A malicious
attacker may add or delete files on the computer,
or connect to other computers and perform illegal
operations by attacking vulnerability on the
computer. It is very difficult to secure P2P
applications against such misuses, but if the
sponsors of P2P project are famous like Intel and
the University of Oxford sponsor the Cancer
Research Project in UD. It can give participants
enough trusty to assure them the safety of their
network.

l Motivation

Participants who participate distributed computing
only want to make some contribution to world and
do not ask any repayment. In many companies,
there are thousands of idle computers on 5:00 PM
between 9:00 AM. Why do we use them to process
something? Some scholars present that there may
be an exclusive property in companies. These
companies use their assets to do nothing that
helpless to their selves. Similarly, general
participants do not hope to join the projects that
have commercial purposes. Some famous P2P
systems like the Cancer Research Project in UD,
announce their research results do not belong to
any commercial originations and it can improve
the participant's confidence.

l Flexibility

The participant program of the P2P distributed
computing system is important. Participants must
download and install it on their computers and
donate their processing time. Once, if the
programs need to be updated, the tightly coupled
of procedure language would make it hard to
update all the programs efficiently. In addition, it
is impossible for participants simply to sponsor
project to be computed. Some grid computing
provide a command line mode to reach such a goal,
but not a visual interface that people feel more
friendly.

l Compatibility

Compatibility across different platforms is another
problem. Some participant programs, such as UD
are only works on NT-compatible platforms. There
are a large number of workstations that use Unix
or other operating systems. It is a pity that
workstations cannot join this project due to

Chen-Sheng Wang, Po-Yu Yang, Min-Jen Tsai

The Fifth International Conference on Electronic Business, Hong Kong, December 5-9, 2005

compatibility problems. Some distributed
computing systems like seti@home solve the
compatibility problem by using different versions
for different platforms, but it increases the cost of
maintenance as many versions must be kept and
updated.

l Workflow Control

What most Grid or P2P distributed computing
middleware focuses on is performance, workload
balance or stability but hardly workflow control
management. Workflow control management can
execute a complicated workflow which is
composted by parallel or dependent sequence. At
present, it is not natively supported by most
models.

Available Solutions

According to the issues mentioned above, the
paper presents some available solutions or
technologies to address these problems.

Asynchronous Web Services

Web Services is a solution of distributed Services
Oriented Architecture (SOA). A Web
Services-Based system can inherent the features of
Web Services which are loosely coupled and open
standard. A distributed computing system
implemented by Web Services can improve
flexibility of software updates of system because
of loosely coupled.

Figure 3–1 Architecture of Web Services
[4]

Web Services is a message-based architecture and
the interaction between services is based on
messages exchanges. General synchronous Web
Services is not suitable for distributed computing
because it is hard to estimate the processing time
of the distributed computing systems and it may
cause over-time exception. So, it is an answer to
utilize asynchronous Web Services to avoid
over-time exception. Besides, asynchronous Web
Services that response until tasks finished is more
reasonable in distributed computing environment.
It solves the problem of flexibility that use
asynchronous Web Services to implement
distributed computing system.

Business Process Execution Language (BPEL)

BPEL is a standard of Web Services composition
and integrated by IBM and Microsoft from WSFL
and XLANG they released before. It has
characteristics like visualization, workflow control
management, exception and transaction handling
and compatible with Web Services. [6] BPEL is
wide accepted in the industry.

It provides a sample and visual development
environment that using BPEL and BPEL design

Chen-Sheng Wang, Po-Yu Yang, Min-Jen Tsai

The Fifth International Conference on Electronic Business, Hong Kong, December 5-9, 2005

tools to plan the workflow of distributed
computing task. Addition to, a complicated
workflow composed by parallel or dependent
sequence can be executed by BPEL engine.
Finally, BPEL utilized in the distributed
computing systems improves the flexibility of
computing task designed and provides the ability
of workflow control management.

Implementation in a trusty network

Security of running distributed computing system
is based on trusty and fame. So, it is easy for
famous and large originations to sponsor P2P
distributed computing project but not for small
and medium scale businesses. The reason is that it
is hard for them to be trusted by masses. No harm
in thinking conversely, how about using idle
computers in the origination to process what the
origination want to compute. In other words, it is
implementation in a trusty network.

Trusty network defined in this paper is a network
where peer and peer trust each other. No matter
the intranet of an origination or computer network
of the friends, it can be classified as trusty
network if the peers in the network trust each other.
A lightweight distributed computing system is
limited to implementation in a trusty network.
Thus, the concerns about security and motivation
can be negated.

THE ARCHITECTURE OF
COMPUTING POWER SERVICES

Based on the possible solutions in last section, this
paper proposes the architecture of Computing
Power Services (CPS), which is a
Web-services-based P2P architecture. It provides
users a platform to design the business processes
and control workflow of the processes by using
the graphicable characteristics of BPEL. The
architecture is assumed to be implemented in the

trusted network to execute the
computation-intensive tasks by using the idle
computing power in the enterprises.

The Model of Web-Services-Based Power
Sharing

The key point of CPS is how to assign the jobs in
distributed computing environment. Intuitively,
the computing requester should search for the
computing units and give them the tasks to do. If
CPS is implemented so, each computing unit will
need to publish a Web service as accessing point.
It will mean an application server will be
necessary to host a Web service.

However, such environment will be too
complicated for users to provide computation and
it will discourage users to participate the project.
Hence, to comply with the concept of thin client
and encourage users to provide their computing
power, this paper makes the computing unit as
service requester and

Internet/Intranet

Web Service

Task
Queue

Computing Power Requester

Contract
Subtask

Result

Contract

Computing
Service Unit

Subtask
Result

Contract

Computing
Service Unit

Subtask
Result

Contract

Computing
Service Unit

Subtask
Result

Figure 4.1 The diagram of CPS

Architecture

The Roles of CPS Architecture

Because CPS bases on the architecture of Web

Chen-Sheng Wang, Po-Yu Yang, Min-Jen Tsai

The Fifth International Conference on Electronic Business, Hong Kong, December 5-9, 2005

services, it will inherit the characteristics of SOA
(Service Oriented Architecture) which consists of
3 participants that are service requester, service
provider and service broker. However, in order to
make the program developed in CPS as thin as
possible, 3 participating roles will be changed
slightly to meet the requirement discussed in last
section. The description of 3 roles will be
explained in the following section.

l The role of Coordinator

The coordinator acts as a service broker to fairly
mediate between the computing unit (service
requester) and computing requester (service
provider). Its main function is to maintain a list
which records the URL and requirement of
computing requester. This list will be created
when the computing requester publishes its Web
service in the coordinator. If computing unit asks
for the subtasks through the coordinator, the
coordinator will assign the URL of computing
requester in the list to computing unit by
round-robin mechanism. Afterward, the
computing unit will use the specified URL to
communicate with the computing requester
directly.

In addition, the function of account and auditing
management will be implemented at the end of
coordinator. This role is corresponding to the role
of UDDI in SOA.

l The role of Computing Power Requester

The requesters design their processes by a BPEL
graphical environment. After designing, the
requester will publish their requirement at the end
of coordinator. If computing unit asks for the
subtasks through the coordinator, the coordinator
will assign the URL of computing requester in the
list to computing unit by round-robin mechanism.

Afterward, the computing unit will use the
specified URL to communicate with the
computing requester directly.

In addition, the function of account and auditing
management will be implemented at the end of
coordinator. This role is corresponding to the role
of UDDI in SOA.

l The role of Computing Unit

This role is responsible for execute computation.
It will inquire the coordinator to ask for the job
when it is idle. After getting back the requester’s
URL of Web services, it negotiates with the
requester to download the task and required files
for that task. Then, it starts to execute the task and
respond the result to the requester when the task is
finished. The whole procedure will continue until
all tasks are done.

The interaction among roles and the operating
procedures of CPS are described by the figure
below.

Coordinator

1. Registry request

2. Accept request

Requester
Database

3. Provide Computing Power

4. Response Requester IP

5.
Co

nt
ra

ct

6.
 S

ub
tas

k

7.
Re

su
lt

8. Cancel the request

Requester

Computing Unit

0. Download Computing Unit application

Figure 4.2 The operation diagram of CPS

The System Architecture of CPS

The figure 4-3 is the diagram of CPS architecture.
By functionality, the architecture is divided into 5
layers, which are the User Layer, the Power

Chen-Sheng Wang, Po-Yu Yang, Min-Jen Tsai

The Fifth International Conference on Electronic Business, Hong Kong, December 5-9, 2005

Sharing Layer, the Communication Layer, the Contract Layer and the Discovery Layer.

Executor

Profile

Contract

Computing Unit

User Interface

Personalize Module

Find Requester

Get Subtasks

Execute Subtasks

Response Results

Contract

Requester
Web

Services
Instances

Contract Contract Contract

Flow Designer Visual
Interface

Task Workflow

TaskUnit
Asynchronous

Control

B
PEL

w
orkflow

controler

Invoke

Requester

ExpClient
Subtasks Generator

Subtasks Assigner

Results Collector

R
ule controller

Queue

Results
Rule Remove request

Coordinator

Request Register

Request Match

Request Remover

Log

Request

Log

U
ser Layer

Pow
er

Sharing
Layer

C
om

m
unication

Layer
Contract

Layer
D

iscovery Layer

SOAP
Message
Internet

P2P Pow
er Sharing M

iddlew
are

Figure 4.3 The layer diagram of CPS Architecture

P2P Power Sharing Middleware

Excluding the User Layer, the other 4 layers
comprise the P2P Power Sharing middleware

which is the core of CPS. Because CPS is based
on Web services, the middleware is also
established by the protocols of Web services as the
following figure depicts.

Chen-Sheng Wang, Po-Yu Yang, Min-Jen Tsai

The Fifth International Conference on Electronic Business, Hong Kong, December 5-9, 2005

Web Services
Instance

Requester
Web

Services
Instances

Web Services
Instance

Web Services
Instance

Web
Services
Instance

SOAP
Message
Internet

UDDI

Services Providers Services Requesters
C

om
m

unication
Layer

C
onversation

Layer
D

escription Layer
D

iscovery Layer

Figure 4.4 The diagram of P2P middleware in the CPS architecture

l The Power Sharing Layer

This layer corresponds to the Description Layer of
Web services. It describes the interaction between
the requester and the computing unit.

l The Communication Layer

This layer uses the communication mechanism of
Web services, i.e. SOAP.

l The Contract Layer

The conversation between a computing unit and
the requester will be defined by the contract in this
layer.

l The Layer of Service Discovery

The coordinator operates in this layer as a broker
agent for the requester and computing unit. The

coordinator will not involve the c

l The User Layer

The users access the whole architecture in this
layer. This layer will be implemented at the end of
requester and computing unit. While, at the end of
computing unit, it provides an interface to control
the execution of the program, it will allow user to
design the BPEL process at the end of the
requester. Besides, it also provide GUI interface to
facilitate the designing and managing the
workflow of the process.

The Interaction between User Layer and P2P
CPS Middleware

By using BPEL as a language to develop the
process, CPS provides the environment of visual
development and the capability of workflow
control. However, BPEL doesn’t support the
distributed computing. Therefore, this paper

Chen-Sheng Wang, Po-Yu Yang, Min-Jen Tsai

The Fifth International Conference on Electronic Business, Hong Kong, December 5-9, 2005

develops a TaskUnit program which interacts with
P2P CPS middleware to address this issue.

Actually, TaskUnit is a process developed by
using BPEL. It can be viewed as the process of
task dispatcher to provide the capability of
distributing computing. It comprises of 2 modules.

While One module is to invoke a ExpClient Web
service, another module will asynchronous
receives the result sending by P2P CPS
middleware.

The following figure 4.4 describe the interaction
between TaskUnit and P2P CPS middleware.

Coordinator

1. Registry request

2. Accept request

Requester
Database

3. Provide Computing Power

4. Response Requester IP

5.
Co

nt
ra

ct

6.
 S

ub
tas

k

7.
 R

es
ul

t
8. Cancel the request

TaskUnit invoke

Requester
(ExpClient)

Computing Unit

0. Download Computing Unit application

Asynchronous response

Figure 4.4 The interaction between TaskUnit and P2P middleware

The Mechanism of Exception Handling

There are two possible exceptions when CPS
operates. The one is that a user closes the program
at the end of computing unit, the other is that the
computing unit can not finish the task before
time-out. To address both exceptions, CPS
employs the mechanism of task reassigning after
time-out and roll-back at the end of computing
end.

The Assigning Rule at the End of Requester

The flowchart of assigning subtasks at the end of
requester is indicated in the figure 4.5. In general,
the mechanism of assigning subtasks will
distribute the unassigned subtasks to the
computing unit. If all subtasks are assigned, the
requester will use the mechanism of reassigning
subtasks to find the time-out tasks. The length of
time-out timer will be defined in the assigning
rules.

Although CPS can handle the breach of contracts
by using the mechanism of reassigning subtasks, it
will cost more resources to redo the tasks.

Chen-Sheng Wang, Po-Yu Yang, Min-Jen Tsai

The Fifth International Conference on Electronic Business, Hong Kong, December 5-9, 2005

Start Load assigning rule

Find unassigned
subtasks

Find assigned
subtask without

response result for
a long time

Generate subtask
lists

Assign subtask lists End

No

Yes

No

Yes

Figure 4.5 The flow chart of assigning subtasks at the end of requester

The Roll-Back Mechanism at the End of
Computing Unit

As Figure 4.6 depicts, the program at the end of
Computing Unit will perform computation
according to the contract. After finishing the
subtask, it will reply the result to the requester,
terminate the contract and remove results. If the

program is abnormally terminated, the contract
still exists at the end of Computing Unit.
Therefore, as soon as the program starts, it will
verify existence of the contract. If it does, the
program will remove the previous result and do
computation again. Although this paper adopts the
conservative way to roll back the computation, it
guarantees finishing the contract.

Chen-Sheng Wang, Po-Yu Yang, Min-Jen Tsai

The Fifth International Conference on Electronic Business, Hong Kong, December 5-9, 2005

Start

Check If Contract
exists?

Remove Result
DirectoryFind Requester

Contract Load Subtask

Run Subtask Reply Result

Remove “Old”
Contract

Remove “Old”
Result Directory

Yes
No

Roll Back

End

Figure 4.6 The flow chart of executing subtasks and roll-back at the end of computing unit

IMPLEMENTATION AND RESULT

System Implementation

As the diagram depicts, CPS is implemented in the
trusted network to utilize the idle computing
power. The coordinator publishes a Web service to
provide the list of requiring computing power as
the access point of CPS. As for the requester, it

uses Oracle Process Manager Server to host BEPL
engine and Oracle PM designer with Eclipse to
provide GUI interface for designing and
management. Meanwhile, a low-priority program
is run at the end of the computing unit to execute
the task from the requestor. The purpose to lower
the priority of a program is to avoid impacting the
routine work of the computing unit.

Chen-Sheng Wang, Po-Yu Yang, Min-Jen Tsai

The Fifth International Conference on Electronic Business, Hong Kong, December 5-9, 2005

Trusty Network

Coordinator
(協調者)

Requester/Computing Unit

Requester DB

Requester(需求者)

Computing Unit(運算者)

Figure 5.1 The deployment diagram of CPS

Result

To verify the architecture, a lab is arranged to test
CPS on executing the program from [5]. This
program will extract the watermark by using
76,177 filers which will be grouped into several
subtasks with a group having 100 filters. By using

the similar computers at the end of computing unit,
the total computing time versus the number of
computers involved to finish the lab is graphed in
the figure 5.1.

Chen-Sheng Wang, Po-Yu Yang, Min-Jen Tsai

The Fifth International Conference on Electronic Business, Hong Kong, December 5-9, 2005

Total Computing Time

21:12

10:57
07:40

05:58 04:59 03:54
00:00

04:48

09:36

14:24

19:12

00:00

1 2 3 4 5 6

Number of Computing Units

H
ou

rs

Figure 5.2 The computing time to finish the lab

According to [5], one computer will spend about
20 hours to finish the specified lab. If the number
of filters is increased to 1,628,250 and each group
consists of 500 filters, one computer will need 18
days to finish the lab. However, CPS will shorten
the computing time to 2 days 14 hours 13 seconds
to do the same lab. The deducting ratio is almost
1/9. As a result, CPS indeed helps executing a
computation-intensive task.

CONCLUSIONS

This paper presents the architecture of CPS which
employs the protocols of Web services to address
the flexibility issues of current P2P computing,
uses BPEL to control the workflow of the process
and provides a user-friendly environment to
design the process. In addition, the architecture is
assumed to perform in the trusted network to
avoid the security issue.

Such a lightweight architecture is especially
applicable to the batch programs which need

intensive computing power and appropriate to the
enterprises which can efficiently utilize their
computing power after the office hours. Besides, it
also provides a graphical designing and
management environment to the enterprises.

Future Works

l Workflow Management

Currently, the mechanism of Roll-Back will redo
the unfinished task when an exception occurs. The
purpose to do so is to guarantee the contract is
performed exactly. However, it will consume more
resources to finish the same task. Therefore, how
to efficiently continue the interrupted task will be
a future work to address.

l Process Optimization

Although CPS shortens the computing time, is it
an optimized solution? In the following figure 6.1,
there are 4 computing units A, B, C and D
assigned to execute a process. Each colored block

Chen-Sheng Wang, Po-Yu Yang, Min-Jen Tsai

The Fifth International Conference on Electronic Business, Hong Kong, December 5-9, 2005

means the computing time needed to finish one
subtask. If A and D ask the requester to assign a
new subtasks at the same time when only 2
subtasks are left to finish, the requester will assign
one subtask to A and D when the round-robin
mechanism is used. Then, the total computing
time will be depicted in the figure 6.1(a). However,

if the dynamic mechanism such as assigning the
subtask according to the previous computing time,
both subtasks should be assigned to D because it
finishes the subtask faster. Then, the more
optimized solution is concluded in the figure
6.1(b).

C
D

A
B

Time

C
D

A
B

Time

Finishing time

(a) If requester assigns one to A, another to D

C
D

A
B

Time

(b) If requester assigns both to D, finish time is optimal.

A and D request for new subtask when Requester still
has 2 subtasks to assign

Finishing time

Figure 6.1 The optimized task assignments of a process

In addition, BPEL provide the capability to run the
subtasks in parallel. Hence, the work to find the
more optimized solution which finishes the
parallel process is a topic deserved to research.

l BPEL Virtual Machine

In essence, BPEL could be though as
programming language of the process. Therefore,
BPEL virtual machine could be designed to
execute the process. Doing so, the BPEL virtual
machine will be downloaded to the computing unit
and the subtask will be the fragment of BPEL
document that could be executed in the virtual
machine. Then, the issue of cross platform could
be addressed.

REFERENCES

[1] Dejan S. Milojicic “Peer-to-Peer Computing”

HP Laboratories Palo Alto March 2002

[2] Alfred W. Loo “The Future of Peer-to-peer

Computing” Communications of The ACM

September 2003 Vol.46,No.9 P.57-.61

[3] Dan Gisolfsi, Web Services Architect ,

Solutions Architect, IBM jStart Emerging

Technologies 01 Apr 2001

http://www-106.ibm.com/developerworks/webser

vices/library/ws-arc1/

http://www-106.ibm.com/developerworks/webser

Chen-Sheng Wang, Po-Yu Yang, Min-Jen Tsai

The Fifth International Conference on Electronic Business, Hong Kong, December 5-9, 2005

[4] Tony Andrew, Francisco Curbera, Hitesh

Dholakia, Yaron Goland, Johannes Klein et al.

“Business Process Execution Language for Web

Services”

http://www-106.ibm.com/developerworks/webser

vices/library/ws-bpel/

[5] Tseng, L. H. (2003). The wavelet packet

transform based watermarking for the digital

image ownership verification. Unpublished

master’s thesis, National Chiao-Tung University,

Taiwan

[6] Biplav Srivastava, Jana Koehler “Web

Service Composition - Current Solutions and

Open Problems”

[7] Holt Adams “Asynchronous operations and

Web services: A primer on asynchronous

transactions”

http://www-106.ibm.com/developerworks/library/

ws-asynch1.html , 2002

[8] Oracle Lab Segments “Oracle BPEL Process

Manager Training” http://otn.oracle.com/bpel ,

August 2004

[9] Nikola Milanovic and Miroslaw

Malek“Current Solutions for Web Service

Composition” IEEE INTERNET COMPUTING

NOVEMBER DECEMBER 2004, P.51-59

[10] Matt Powell “Asynchronous Web Service

Calls over HTTP with the .NET Framework”

http://msdn.microsoft.com/library/en-us/dnservice

/html/service09032002.asp?frame=true September

9, 2002

[11] Matt Powell “Server-side Asynchronous Web

Methods”

http://msdn.microsoft.com/library/en-us/dnservice

/html/service10012002.asp?frame=true October 2,

2002

http://www-106.ibm.com/developerworks/webser
http://www-106.ibm.com/developerworks/library/
http://otn.oracle.com/bpel
http://msdn.microsoft.com/library/en-us/dnservice
http://msdn.microsoft.com/library/en-us/dnservice

