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Abstract

Admitting both transient chaotic phase and convergent phase, the transiently chaotic neural network (TCNN) pro-
vides superior performance than the classical networks in solving combinatorial optimization problems. We derive con-
crete parameter conditions for these two essential dynamic phases of the TCNN with piecewise linear output function.
The confirmation for chaotic dynamics of the system results from a successful application of the Marotto theorem
which was recently clarified. Numerical simulation on applying the TCNN with piecewise linear output function is car-
ried out to find the optimal solution of a travelling salesman problem. It is demonstrated that the performance is even
better than the previous TCNN model with logistic output function.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Solving combinatorial optimization problems such as the travelling salesman problem (TSP) has been one of the
main motifs for the development of neural networks [1]. While iterations in the classical Hopfield model may be trapped
at local minimum and fail to reach global minimum of the objective functions, the transiently chaotic neural network
(TCNN) was developed to provide a global searching ability and thus achieved better performance in solving combi-
natorial optimization problems [2–8]. The TCNN model employed in [2–4] is
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xiðt þ 1Þ ¼ lxiðtÞ � xiiðtÞ½yiðtÞ � a0i� þ a
Xn

j¼1;j–i

xijyj þ vi

" #
; ð1Þ

jxiiðt þ 1Þj ¼ jð1� bÞxiiðtÞj ð2Þ
for i ¼ 1; . . . ; n; t 2 N (positive integers), where xi is the internal state of neuron i; yi is the output of neuron i, which
corresponds to xi through an output function; the output function adopted therein is the logistic function given by
779/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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yiðtÞ ¼ 1=½1þ expð�xiðtÞ=eÞ�; l is the damping factor of nerve membrane; xii is the self-feedback connection weight; a0i

is the self-recurrent bias of neuron i; xij is the connection weight from neuron j to neuron i; vi is the input bias of neuron
i; b with 0 < b < 1, is the damping factor for xii. Eq. (2) represents an exponential cooling schedule in the annealing
procedure.

There are chaotic phase and convergent phase for the TCNN with different parameters. The purpose of this presen-
tation is to provide in-depth understanding on the dynamics of the TCNN. In particular, we present detailed analysis
and concrete parameter conditions for the chaotic and convergent phases of the TCNN with piecewise linear output
functions:
yiðtÞ ¼ geðxiðtÞÞ :¼ 2þ xiðtÞ
e
þ 1

���� ����� xiðtÞ
e
� 1

���� ����� ��
4; e > 0: ð3Þ
Notably, piecewise linear output functions have been employed in various neural networks, cf. [9–13]. There are several
advantages for the use of piecewise linear output function in the TCNN. In this presentation, it will be demonstrated
that the mathematical description on the chaotic phase for the TCNN with output function (3) is more succinct than
with the logistic one, cf. [14]. Subsequently, the parameter conditions derived are more concise. In addition, the model
considered herein is a successful application of the Marotto’s theorem [15,16] in concluding chaotic dynamics for multi-
dimensional and high dimensional maps. Moreover, there also exists a Lyapunov function which is Lipschitz though
not differentiable, for such a TCNN model. Theoretical confirmations for convergence of iterations or evolutions of
the network system to a steady state can then be established. Moreover, the parameters can be controlled so that
the output component of the network tends to either exact one or zero. This consequence, for example, provides a lucid
signal to further tune the parameters if the outcome is not feasible in the computation task of solving combinatorial
optimization problems.

As an extension of the Li and York theorem on the one-dimensional maps, Marotto [15] established a significant
theorem in confirming the chaotic dynamics for multi-dimensional systems. With presence of the so-called ‘‘snap-back
repeller’’, the phase space possesses a topological structure which includes infinitely many periodic points and a scram-
bled set. Very erratic behaviors of the system then occur, including the lack of global stability for solutions, and the
existence of an uncountable collection of orbits which do not eventually approach any periodic points. The definition
of snap-back repellers is further clarified for rigorousness recently in [16]. It will be demonstrated that the formulations
and analysis in the considered model, i.e., the TCNN with piecewise linear output function, fit into the new definition of
snap-back repellers in [16] pertinently.

We discuss the chaotic dynamics in Section 2, and the convergent dynamics in Section 3, for the TCNN. We will then
make use of the TCNN properties to select suitable parameters for the computation of solving a travelling salesman
problem. The task of solving the TSP via neural networks is to search for the minimizer of an objective function
through iterations or evolutions of the network system. We arrange the setting for the application of the TCNN to
the TSP in Section 4. Some numerical simulations are performed in Section 5.
2. Chaotic dynamics for the TCNN with piecewise linear output function

In this section, we plan to investigate the transiently chaotic behaviors for the TCNN with piecewise linear output
functions. We consider the following system:
xiðt þ 1Þ ¼ lxiðtÞ þ x½yiðtÞ � a0i� þ
Xn

j¼1

xijyjðtÞ þ vi; ð4Þ
where t 2 N, and yiðtÞ ¼ geðxiðtÞÞ; i ¼ 1; . . . ; n, is the piecewise linear output function defined in (3), and illustrated in
Fig. 1. Eqs. (1) and (2) are in fact a skew system of Eq. (4) over Eq. (2), cf. [17]. We denote by xðt þ 1Þ ¼ FðxðtÞÞ the
iterations generated by Eq. (4) with x ¼ ðx1; . . . ; xnÞ and F ¼ ðF 1; . . . ; F nÞ. We shall analyze the chaotic dynamics of the
network from a geometrical observation on Eq. (4). These chaotic dynamics correspond to the transiently chaotic
behaviors in the annealing process of the TCNN.

2.1. Single neuron maps

Let us consider the following family of single neuron maps. For a fixed h > 0 and a0 2 R, let f1 : R! R be a function
defined by
f1ðnÞ ¼ lnþ x½geðnÞ � a0� þ 1; ð5Þ



Fig. 1. The piecewise linear output function ge with e > 0.
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where �h 6 1 6 h. We set hi ¼
Pn

j¼1jxijj þ jvij, for each i ¼ 1; . . . ; n, and define the upper map f̂ i and the lower map �f i

as
f̂ iðnÞ ¼ lnþ x½geðnÞ � a0i� þ hi; �f iðnÞ ¼ lnþ x½geðnÞ � a0i� � hi: ð6Þ
Then for i ¼ 1; . . . ; n,
�f iðxiÞ 6 F iðxÞ 6 f̂ iðxiÞ; for all x ¼ ðx1; . . . ; xnÞ 2 Rn: ð7Þ
In the following discussions, we shall propose a sequence of parameter conditions which guarantee the existence of
repelling fixed points and chaotic behaviors for each f1 in Eq. (5). These conditions are based on geometrical observa-
tions on the configurations of the maps f1. In our considerations, there are two sets of parameter conditions labelled as
(P1-) and (P2-), which correspond to two types of configurations for single neuron maps f1, as depicted in Figs. 2a and b
and 3, respectively.

For a fixed e > 0, we partition the real line into the left (‘), middle (m), right (r) parts; namely,
X‘ :¼ ð�1;�eÞ; Xm :¼ ½�e; e�; Xr :¼ ðe;1Þ: ð8Þ
The following parameter conditions are concerned with the existence of fixed point for every member in the family of
single neuron maps (5).

(P1-i) l < minf�1� ½xa0 þ h�=e;�1� ½xð1� a0Þ þ h�=eg.
(P2-i)

(a) x > 0, 0 < 1�l
x < 1

2e, �
1�l
x e� h

xþ a0 > 0, 1�l
x eþ h

xþ a0 < 1,
(b) x < 0, 1�l

x < 1
2e, �

1�l
x eþ h

xþ a0 > 0, 1�l
x e� h

xþ a0 < 1.

We remark that Fig. 2a and b correspond to the configurations of f1 satisfying (P1-i), while Fig. 3 corresponds to the
configuration of f1 satisfying (P2-i). The following proposition relies upon observations on the graphs of f1 and ge. Its
proof is sketched in Appendix A.

Proposition 1. Consider the single neuron maps f1 with �h 6 1 6 h defined in Eq. (5). (i) If the parameters ðl;x; e; a0; hÞ
satisfy (P1-i), then there exists a fixed point �xm

1 2 Xm for f1. (ii) If the parameters ðl;x; e; a0; hÞ satisfy (P2-i) (a) or (P2-

i) (b), then there exist three fixed points �xr
1 2 Xr, �xm

1 2 Xm and �x‘1 2 X‘ for f1.

Let us recall the notion of snap-back repeller [15,16]. Consider a map x#FðxÞ where x 2 Rn, and F is C1 or piece-
wise C1. Suppose �x is a fixed point of F with all eigenvalues of DFð�xÞ exceeding 1 in magnitude, and there exists a point
x0–�x in a repelling neighborhood of �x, such that Fmðx0Þ ¼ �x and detðDFmðx0ÞÞ–0, for some positive integer m. Then �x
is called a snap-back repeller of F. A scenario for such a snap-back repeller is depicted in Fig. 4. The chaotic dynamics
induced by the presence of a snap-back repeller have been established in Marotto’s theorem quoted in Appendix B.

The following parameter conditions are concerned with the existence of snap-back repellers for every member in the
family of single neuron maps (5).



Fig. 2. The configurations for the graphs of fh, f�h and the relative positions of certain points which correspond to the inequality in
condition (P1-i). (a) B1 : ð0;�le� xa0 � hÞ, B2 : ð0; ð�eþ xa0 � hÞ=lÞ, B3 : ð0; leþ xð1� a0Þ þ hÞ, B4 : ð0; eÞ. (b)
B1 : ð0;�le� xa0 þ hÞ, B2 : ð0; ðe� xð1� a0Þ þ hÞ=lÞ, B3 : ð0;leþ xð1� a0Þ � hÞ, B4 : ð0;�eÞ.
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(P1-ii) l > 0; 1
l ðe� xa0 þ hÞ < �le� xð1� a0Þ � h.

(P1-iii) l > 0, 1
l ðe� xð1� a0Þ þ hÞ < �le� xa0 þ h.

Notably, (P1-ii) (resp. (P1-iii)) is formulated for finding preimages of fixed points from the left (resp. right) part of the
graph of f1; Fig. 2a (resp. Fig. 2b) corresponds to condition (P1-ii) (resp. (P1-iii)).

Proposition 2. If the parameters ðl;x; e; a0; hÞ satisfy ðP1-iÞ and ðP1-iiÞ or ðP1-iiiÞ, then the fixed point �xm
1 2 Xm is a snap-

back repeller for f1 with �h 6 1 6 h.

Proof. We develop a scheme for constructing preimages of a repelling fixed point, and confirm that this fixed point is a
snap-back repeller. We only explain the case satisfying (P1-i) and (P1-ii), with configuration illustrated in Fig. 2a. Nota-
bly, the following quantities ‘‘bi’’ correspond to the vertical coordinates of points ‘‘Bi’’ in Fig. 2a. Since (P1-i) holds,
there exists a fixed point �xm

1 lying in Xm, for each f1 with �h 6 1 6 h. In addition, (P1-i) also implies lþ x
2e < �1; sub-

sequently, there exists a point xð�1Þ
1 2 X‘ such that f1ðxð�1Þ

1 Þ ¼ �xm
1 , if l > 0. Let b2 ¼ ð�eþ xa0 � hÞ=l with l > 0, then



Ω

Fig. 3. The configurations for the graphs of fh, f�h and the relative positions of certain points which correspond to the inequality in
condition (P2-i). B1 : ðeþ ðx� 2hÞ=l; 0Þ, B2 : ð�le� xa0i � h; 0Þ, B3 : ð�le� xa0i þ h; 0Þ, B4 : ððð1

2
x� xa0i � hÞ=

ð1� l� x
2eÞ þ xa0i þ hÞ=l; 0Þ, B5 : ðð1

2
x� xa0i þ hÞ=ð1� l� x

2eÞ; ð12 x� xa0i þ hÞ=ð1� l� x
2eÞÞ, B6 : ðð1

2
x� xa0i � hÞ=ð1� l� x

2eÞ;
ð1

2
x� xa0i � hÞ=ð1� l� x

2eÞÞ, B7 : ðð1
2
x� xa0i þ hÞ=ð1� l� x

2eÞ � xð1� a0iÞ � hÞ=l; 0Þ, B8 : ðleþ xð1� a0iÞ � h; 0Þ, B9 :

ðleþ xð1� a0iÞ þ h; 0Þ, B10 : ð�e� ðx� 2hÞ=l; 0Þ.

Fig. 4. Illustration of a snap-back repeller �x with a snapback point x0.
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fhðb2Þ ¼ �e. It follows from (P1-ii) that b2 > b3 ¼ fhðeÞ ¼ leþ xð1� a0Þ þ h. Thus there exists xð�2Þ
1 2 Xm such that

f1ðxð�2Þ
1 Þ ¼ xð�1Þ

1 . Let b1 ¼ �le� xa0 � h, then b1 ¼ fhð�eÞ > b4 ¼ e, due to (P1-i). Hence, there exists a sequence of
points fxð�iÞ

1 ji ¼ 3; 4; 5 . . .g lying in region Xm, which are successive preimages of �xm
1 under f1. Consequently, �xm

1 is a
snap-back repeller lying in Xm and fxð�iÞ

1 ji ¼ 1; 2; . . .g is a homoclinic orbit for f1. h

There are also conditions for the fixed points in Proposition 1(ii) to be snap-back repellers; namely

(P2-ii) (a) leþ xð1� a0Þ � h > 1
l ½ð12 x� xa0 þ hÞ=ð1� l� x

2eÞ � xþ xa0 � h�,

(b) leþ xa0 � h > � 1

l ½ð12 x� xa0 � hÞ=ð1� l� x
2eÞ þ xa0 þ h�.
Proposition 3. If the parameters ðl;x; e; a0; hÞ satisfy either ðP2-iÞðaÞ and ðP2-iiÞðaÞ or ðP2-iÞðbÞ and ðP2-iiÞðbÞ, then the

fixed points in Proposition 1(ii) are snap-back repellers for the single neuron maps f1 with �h 6 1 6 h.

Boundedness of iterations are necessary in the applications of TCNN. For the case 0 < l < 1, i.e., the situations of
Fig. 2a and b, interval [�M,M] is a trapping region for map (5), provided M > 0 is large enough. For the case l < �1,
the following condition is needed:
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(P2-iii) eþ 1
l ðx� 2hÞ < minf�le� xa0 � h;�le� xð1� a0Þ � hg.

Proposition 4. Assume that the parameters ðl;x; e; a0; hÞ satisfy l < �1, ðP2-iÞðaÞ and ðP2-iiiÞ, then interval

½eþ x
l � 2h

l ;�e� x
l þ 2h

l � is a trapping region for the single neuron maps f1 with �h 6 1 6 h.
2.2. Multi-dimensional chaotic neural networks

We shall apply Propositions 2 and 3 for single neuron maps to establish the chaotic behaviors for the n-dimensional
neural networks (4). Note that Rn can be written as the direct sum of the following subsets:
Xq1 ���qn
¼ fðx1; . . . ; xnÞ 2 Rnjxi 2 Xqi

; qi ¼ \r"; \m"; \‘"; i ¼ 1; . . . ; ng; ð9Þ
as illustrated in Fig. 5 for n = 2. Xm���m is called the interior region; each Xq1 ���qn
, with qi ¼ \‘"; \r", for all i, is called a

saturated region; each Xq1 ���qn
, with qi ¼ \‘", or ‘‘r’’, for some i, and qj ¼ \m" for some j, is called a mixed region.

We derive the following theorem on the existence of fixed point for system (4). Recall hi ¼
Pn

j¼1jxijj þ jvij.

Theorem 1. If the parameters ðl;x; e; a0i; hiÞ, i ¼ 1; . . . ; n, satisfy ðP1-iÞ (resp. ðP2-iÞðaÞ), then there exists one fixed point

(resp. 3n fixed points) in Xm���m (resp. the 3n regions Xq1 ���qn
defined in (9)) for system (4).

Proof. We prove the case that (P2-i)(a) holds for parameters ðl;x; e; a0i; hiÞ, i ¼ 1; . . . ; n. For a given ð~n1; . . . ; ~nnÞ 2 Rn,
by Proposition 1(ii), there exist points n‘i 2 X‘, nm

i 2 Xm, nr
i 2 Xr such that
n�i ¼ ln�i þ x½geðn�i Þ � a0i� þ
Xn

j¼1

xijgeð~njÞ þ vi; ð10Þ
where � ¼ \‘"; \m"; \r" for each i. Restated, each n�i is a fixed point of the one-dimensional map ni #lniþ
x½geðniÞ � a0i� þ

Pn
j¼1xijgeð~njÞ þ vi. In fact, each of these ðn�1; . . . ; n�n) lies in a compact proper subset X�q1 ���qn

of
Xq1 ���qn

, according to our formation in Section 2.1. Consider a fixed region X�q1 ���qn
for certain qi ¼ \‘"; \m"; \r"

(i ¼ 1; . . . ; n). Let H : X�q1 ���qn
#X�q1 ���qn

be defined by Hð~n1; . . . ; ~nnÞ ¼ ðnq1
1 ; . . . ; nqn

n Þ. We shall show that there exists a fixed
point for H. Define G : X�q1 ���qn

�X�q1 ���qn
! X�q1 ���qn

, G ¼ ðG1; . . . ;GnÞ, by
Gið~x; xÞ ¼ xi � lxi � x½geðxiÞ � a0i� �
Xn

j¼1

xijgeð~xjÞ � vi;
where ~x ¼ ð~x1; . . . ;~xnÞ, i ¼ 1; . . . ; n. Notably, Gðex;Hð~xÞÞ ¼ 0 for every ~x 2 Xq1 ���qn
, by Eq. (10). Now,
oG

ox
¼ diag½v1; . . . ; vn�;
Fig. 5. Illustration of Xq1q2
in R2, where q1 and q2 are ‘‘‘’’ or ‘‘m’’ or ‘‘r’’.
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where vi ¼ 1� l� xg0eðxiÞ, i ¼ 1; . . . ; n. Note that g0e ¼ 0 in regions Xr, X‘, and g0e ¼ 1
2e in the interior region Xm. For

x ¼ ðx1; . . . ; xnÞ 2 X�q1 ���qn
, we have vi ¼ 1� l� x

2e or 1� l for each i, which are nonzero due to
0 < ð1� lÞ=x < 1=ð2eÞ. It follows that H is a C1 function on region X�q1 ���qn

, by the implicit function theorem. Thus,
there exists one fixed point �x of H in X�q1 ���qn

, which is also a fixed point of system (4), by the Brouwer’s fixed point the-
orem. Consequently, there are 3n fixed points of system (4) in Rn. h

Theorem 2. If the parameters ðl;x; e; a0i; hiÞ, i ¼ 1; . . . ; n, satisfy ðP1-iÞ, and ðP1-iiÞ or ðP1-iiiÞ, then there exists a snap-

back repeller in the interior region Xm���m for system (4).

Proof. By Theorem 1, there exists a fixed point �x ¼ ð�x1; . . . ;�xnÞ in Xm���m such that F ið�xÞ ¼ �xi, i ¼ 1; . . . ; n. To find pre-
images of �x under F for the system, we need to solve F iðxÞ ¼ �xi; i ¼ 1; . . . ; n. To achieve this, recall Eq. (7) that
�f iðxiÞ 6 F iðxÞ 6 f̂ iðxiÞ; i ¼ 1; . . . ; n: We observe that for a given ð~x1; . . . ;~xnÞ 2 X‘���‘, one can always find
ðx1; . . . ; xnÞ 2 X‘���‘ satisfying
�xi ¼ lxi þ x½geðxiÞ � a0i� þ
Xn

j¼1

xijgeð~xjÞ þ vi; ð11Þ
if the parameters ðl;x; e; a0i; hiÞ; i ¼ 1; . . . ; n, satisfy conditions (P1-i), and (P1-ii), according to our previous formula-
tions and Proposition 2. Define a map G : X‘���‘ �X‘���‘ ! Rn by
Gið~x; xÞ ¼ �xi � lxi � x½geðxiÞ � a0i� �
Xn

j¼1

xijgeð~xjÞ � vi;
where G ¼ ðG1; . . . ;GnÞ. Then ðoG=oxÞð~x; xÞ ¼ diag½v1; . . . ; vn�, where vi ¼ �l� xg0eðxiÞ, i ¼ 1; . . . ; n. Thus,
detðoG=oxÞð~x; xÞ–0: By similar arguments as the ones in the proof of Theorem 1, there exists a point x 2 X‘���‘ such
that Gðx; xÞ ¼ 0. Denoting �xð�1Þ ¼ x, it follows that Fð�xð�1ÞÞ ¼ �x. Successively, by similar arguments, we also obtain
�xð�2Þ in Xm���m with F ið�xð�2ÞÞ ¼ �xð�1Þ

i ; i ¼ 1; . . . ; n, and then a sequence f�xð�kÞjk P 3; k 2 Ng in Xm���m with
F ið�x�ðkþ1ÞÞ ¼ �xð�kÞ

i ; i ¼ 1; . . . ; n. Furthermore, the entries for the Jacobian matrix of F in Xm���m are
½DF�ij ¼ lþ xþ xii

2e
; if i ¼ j; ¼ xij

2e
; if i–j:
Notably, lþ x
2eþ 1

2e maxi¼1;...;nð
Pn

j¼1jxijjÞ < �1, due to conditions (P1-i), and (P1-ii). Thus, the absolute values of all
eigenvalues of DF are greater than one, by the Gerschgorin’s theorem. Therefore, F is expanding in Xm���m. Hence,
the sequence f�xð�kÞjk ¼ 1; 2; . . .g approaches the fixed point in Xm���m and thus the fixed point �x is a snap-back
repeller. h

Theorem 3. If the parameters ðl;x; e; a0i; hiÞ, i ¼ 1; . . . ; n, satisfy ðP2-iÞðaÞ, and ðP2-iiÞðaÞ or ðP2-iiÞðbÞ, then there exists a

snap-back repeller for the multi-dimensional neural network (4).

The proof employs Proposition 3 and resembles the one of Theorem 2.
3. Stability analysis for the TCNN

We plan to study the asymptotic behaviors for the TCNN in this section. Analogous to the TCNN with logistic out-
put function, there also exists a time-dependent Lyapunov function for the TCNN with piecewise linear output function
(3). We shall derive this Lyapunov function in Section 3.1 and employ the non-autonomous discrete-time LaSalle’s
invariant principle to analyze the convergence of the TCNN. In Section 3.2, we analyze the instability of the fixed points
in the interior region and the mixed regions so that the evolutions of TCNN, with suitably chosen parameters, settle at
saturated regions from almost all initial points.

3.1. Lyapunov function for the TCNN

We consider the TCNN with more general cooling schedule, namely
xiðt þ 1Þ ¼ lxiðtÞ þ ð1� bÞqðtÞx½geðxiðtÞÞ � a0i� þ
Xn

j¼1

xijgeðxjðtÞÞ þ vi; ð12Þ
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where i ¼ 1; . . . ; n, 0 < b < 1; ge is defined in (3); qðtÞ satisfies the condition that there exists an n1 2 N such that
qðtÞ � t P 0 for all t > n1. The standard cooling process simply takes q(t) = t. Correspondingly, we define
F iðt; xÞ ¼ lxi þ ð1� bÞqðtÞx½geðxiÞ � a0i� þ
Xn

j¼1

xijgeðxjÞ þ vi: ð13Þ
Let us recall the notion of Lyapunov function for discrete-time non-autonomous system, cf. [18]. Let N be the set of
positive integers. For a given continuous function F : N� Rn ! Rn, we consider the non-autonomous dynamical
equation
xðt þ 1Þ ¼ Fðt; xðtÞÞ: ð14Þ
A sequence of points fxðtÞjt ¼ 1; 2; . . .g in Rn is a solution of (14) if xðt þ 1Þ ¼ Fðt; xðtÞÞ, for all t 2 N. Let Ox ¼ fxðtÞjt 2
N; xð1Þ ¼ xg be the orbit of x. p is an x-limit point of Ox if there exists a sequence of positive integers ftkg with tk !1
as k !1, such that p ¼ limk!1xðtkÞ. Denote by xðxÞ the set of all x-limit points of Ox. Let ni be a positive integer, and
let Ni denote the set of all positive integers larger than ni. Denote by X the closure of X # Rn. For a function
V : N0 � X! R, we define _V ðt; xÞ ¼ V ðt þ 1;Fðt; xÞÞ � V ðt; xÞ so that if fxðtÞg is a solution of Eq. (14), then
_V ðt; xðtÞÞ ¼ V ðt þ 1; xðt þ 1ÞÞ � V ðt; xðtÞÞ. V is said to be a Lyapunov function for (14) if (i) each V ðt; �Þ is continuous,
and (ii) for each p 2 X, there exists a neighborhood U of p such that V ðt; xÞ is bounded below for x 2 U \ X and t 2 N1,
n1 P n0, and (iii) there exists a non-degenerate continuous function Q0 : X! R such that _V ðt; xÞ 6 �Q0ðxÞ 6 0 for all
x 2 X and for all t 2 N2, n2 P n1, or (iii) 0 there exist a non-degenerate continuous function Q0 : X! R and an equi-
continuous family of functions Qðt; �Þ : X! R such that limt!1jQðt; xÞ � Q0ðxÞj ¼ 0 for all x 2 X and _V ðt; xÞ 6
�Qðt; xÞ 6 0 for all ðt; xÞ 2 N2 � X, n2 P n1. Define
S0 ¼ fx 2 X : Q0ðxÞ ¼ 0g: ð15Þ
We recall the following theorem for the asymptotic behaviors of solutions to Eq. (14).

Theorem 4 [19]. Let n0 2 N, V : N0 � X! R be a Lyapunov function for Eq. (14) and Ox be an orbit of Eq. (14) lying in

X for all t 2 N1. Then limt!1Qðt; xðtÞÞ ¼ 0, and xðxÞ � S0.

Further properties for xðxÞ can be derived if there exists a limiting map FðxÞ for Fðt; xÞ, i.e., there exists a continuous
map F : Rn ! Rn such that limt!1jFðt; xÞ � FðxÞj ¼ 0, for all x 2 Rn. The following theorem generalizes Theorem 2.2 in
[19].

Theorem 5. Assume that FðxÞ is the limiting map of Fðt; xÞ, and the orbit Ox is bounded, then xðxÞ is positively invariant

under F; moreover, if the x-limit set xðxÞ of Ox is contained in the set of fixed points of F, then xðxÞ is connected. Under

this circumstances, if F has only finitely many fixed points, then the orbit Ox approaches some single fixed point of F, as time

tends to infinity.

Let us define the limiting mapping F ¼ ðF 1; . . . ; F nÞ of F in (13) by
F iðxÞ ¼ lxi þ
Xn

j¼1

xijgeðxjÞ þ vi; i ¼ 1; . . . ; n: ð16Þ
It follows that jFðxÞ � Fðt; xÞj converges uniformly to zero in x 2 Rn as t !1, since j1� bj < 1, jFðxÞ � Fðt; xÞj2 ¼Pn
i¼1jð1� bÞqðtÞxðyi � a0iÞj2 and

Pn
i¼1jxðyi � a0iÞj2 is bounded. Let us consider the function
V ðt; xÞ ¼ � 1

2

Xn

i¼1

Xn

j¼1

xijyiyj �
Xn

i¼1

viyi � ðl� 1Þe
Xn

i¼1

ðy2
i � yiÞ þ ct; ð17Þ
where yi ¼ geðxiÞ, for i ¼ 1; . . . ; n, 0 < c < 1. Note that V is globally Lipschitz, but not C1. Let W ¼ ½xij�n�n.

Theorem 6. If 0 6 l 6 1, e > 0, j 1�b
c j < 1 and the matrix W þ 2eð1� lÞI is positive-definite, then there exists

n2 2 N; n2 > n1 so that V ðt þ 1; xðt þ 1ÞÞ 6 V ðt; xðtÞÞ for t P n2 and V is a Lyapunov function for system (12) on N2 � Rn.
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Proof.
V ðt þ 1; xðt þ 1ÞÞ � V ðt; xðtÞÞ ¼ � 1

2

Xn

i¼1

Xn

j¼1

xijDtyiDtyj � ðl� 1Þe
Xn

i¼1

½y2
i ðt þ 1Þ � y2

i ðtÞ � yiðt þ 1Þ þ yiðtÞ�

þ
Xn

i¼1

½lxiðtÞ � xiðt þ 1Þ�Dtyi þ
Xn

i¼1

ð1� bÞqðtÞx½yiðtÞ � a0i�Dtxi þ ctþ1 � ct

¼ � 1

2

Xn

i¼1

Xn

j¼1

xijDtyiDtyj � ðl� 1Þe
Xn

i¼1

½y2
i ðt þ 1Þ � y2

i ðtÞ � yiðt þ 1Þ þ yiðtÞ�

þ l
Xn

i¼1

½xiðtÞ � xiðt þ 1Þ�Dtyi þ ðl� 1Þ
Xn

i¼1

xiðt þ 1ÞDtyi þ
Xn

i¼1

ð1� bÞqðtÞx½yiðtÞ

� a0i�Dtyi þ ctþ1 � ct ¼ � 1

2

Xn

i¼1

Xn

j¼1

xijDtyiDtyj � l
Xn

i¼1

½xiðt þ 1Þ � xiðtÞ�Dtyi

þ ðl� 1Þ
Xn

i¼1

fxiðt þ 1ÞDtyi � e½y2
i ðt þ 1Þ � y2

i ðtÞ� þ eDtyig þ
Xn

i¼1

ð1� bÞqðtÞx½yiðtÞ

� a0i�Dtyi þ ctþ1 � ct: ð18Þ
where Dty ¼ ðDty1; . . . ;DtynÞ with Dtyi ¼ geðxiðt þ 1ÞÞ � geðxiðtÞÞ. Let us compute the term in the bracket of (18). Set
Ci ¼ CiðxiðtÞ; xiðt þ 1ÞÞ :¼ xiðt þ 1ÞDtyi � e½y2
i ðt þ 1Þ � y2

i ðtÞ� þ eDtyi

¼ F iðxðtÞÞDtyi � eDtyi½geðF iðxðtÞÞÞ þ geðxiðtÞÞ � 1�:
We shall justify that Ci P eðDtyiÞ
2 in Appendix C. On the other hand, ½xiðt þ 1Þ � xiðtÞ�½geðxiðt þ 1ÞÞ � geðxiðtÞÞ�P 0,

due to that ge is non-decreasing for e > 0. Let eW ¼ W þ 2eð1� lÞI . Then,
V ðt þ 1; xðt þ 1ÞÞ � V ðt; xðtÞÞ 6 � 1

2
ðDtyÞT eW DtyþMð1� bÞqðtÞ þ ctþ1 � ct;
where M ¼ 1
n maxn

i¼1fsupt2N;y2Rn jxðyi � a0iÞDtyijg: Since j 1�b
c j < 1 and qðtÞ � t P 0 for all t > n1, there exists n2 2 N such

that Mð1� bÞqðtÞ þ ctþ1 � ct ¼ ct½Mð1� bÞqðtÞ�tð1�b
c Þ

t þ c� 1� < ct½Mð1�b
c Þ

t þ c� 1� < 0 if t P n2. Hence,
V ðt þ 1; xðt þ 1ÞÞ � V ðt; xðtÞÞ 6 � 1

2
ðDtyÞT eW Dty 6 0:
Define
Qðt; xÞ ¼ � 1

2
ðDtyÞT eW Dty; Q0ðxÞ ¼ �

1

2
ðDyÞT eW Dy;
where Dy ¼ ðDy1; . . . ;DynÞ, Dyi ¼ geðF iðxÞÞ � geðxiÞ. Notice that
lim
t!1
jQðt; xÞ � Q0ðxÞj ¼ 0
for all x 2 Rn. Thus, V ðt þ 1; xðt þ 1ÞÞ 6 V ðt; xðtÞÞ for t P n2. h

Accordingly, under the assumption of Theorem 6,
xðxÞ � S0 ¼ fz : geðF iðzÞÞ � geðziÞ ¼ 0; i ¼ 1; . . . ; ng
for any x 2 Rn, due to Theorem 4. We observe that the only points which are positively invariant under F are fixed
points of F, in respecting the definition of the limiting map F defined in Eq. (16). Thus, xðxÞ is connected and contained
in the set of fixed points of F. If, furthermore, F has only finitely many fixed points, then every orbit Ox tends to a single
fixed point of F.

3.2. Instability for fixed points in the interior and mixed regions

For the previous TCNN models in the literatures, there is a situation that the output component tends to a value
which is neither close to one nor to zero. For example, a numerical simulation for the TCNN with logistic output func-
tion exhibiting such a phenomenon is illustrated in Fig. 6.

In this section, we discuss the parameter conditions so that almost every trajectory generated by F tends to a stable
fixed point of F, which lies in a saturated region. Restated, starting from almost all initial points, every entry of the



Fig. 6. An example that the TCNN with the logistic output function has an infeasible solution, i.e., there exists an output entry yi

which approaches 0.6012, neither close to 1 nor to 0, after 1400 iterations.
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output matrix ½yijðtÞ�n�n tends to 0 or 1 as t !1. This convergence then corresponds to a possible route as the TCNN is
applied to solve the TSP.

For a mixed region Xq1 ...qn
, we define the index sets
J 0 ¼ fi 2 f1; . . . ; ngjjxij 6 eg; J 1 ¼ fi 2 f1; . . . ; ngjjxij > eg;
and denote by jJ 0j, jJ 1j their cardinalities. Let W0 be the jJ 0j � jJ 0j submatrix of W, which is obtained by deleting the jth
row and the jth column of W, for all j 2 J 1. The linear part DF of F restricted to a mixed region Xq1 ���qn

, after rearrang-
ing the indices, can be represented in the matrix form:
DF ¼
B �
0 D

� �
; ð19Þ
where * is an jJ 1j � jJ 0j matrix, B ¼ lI1 and D ¼ lI0 þ 1
2e W 0 with I1 (resp. I0) being the identity matrix of size jJ 1j (resp.

jJ 0j). Thus, the eigenvalues of matrix (19) are the eigenvalues of B and D. Note that W0 is symmetric. If W0 has a non-
zero eigenvalue, which holds generically, then there exists an eigenvalue of DF with moduli greater than one, provided e
is sufficiently small. By similar reasoning, it can be seen that the fixed point in the interior region Xm���m is unstable, if e is
sufficiently small. On the other hand, a fixed point in a saturated region is always stable if 0 < l < 1, due to that the
linear part of F restricted to a saturated region is lIn�n.

Moreover, it is possible to impose a condition so that the fixed points of F in certain mixed regions do not exist. For
example, let us consider a mixed region Xq1 ���qn

with jJ 0j ¼ 1. Without loss of generality, we suppose that qk ¼ \m". It is
computed that if x ¼ ð�x1; . . . ;�xnÞ is a fixed point of F in this region, then
�xk ¼
Pn

j¼1xkjyj þ vk

1� l
;

where yj ¼ 1 or 0. Hence, if j
Pn

j¼1xkjyj þ vk j=j1� lj > e, which is more likely to hold for smaller e, there does not exist
any fixed point of F in this region. Our discussions above have demonstrated that almost every trajectory generated by
F converges to a fixed point of F in a saturated region, under conditions described in Section 3.1 and that e > 0 is small
enough.
4. Application to the TSP

We will make use of the properties derived in previous sections to choose suitable parameters for the TCNN to solv-
ing the TSP. The task of solving the TSP via neural networks is to search for the minimizer of an objective function
through evolutions of the network system. The objective function proposed by Hopfield and Tank [1] consists of
two parts which are both quadratic functions, namely,
E ¼ E1 þ Ed ; ð20Þ
where
E1 ¼
c1

2

Xn

i¼1

Xn

j¼1

yij � 1

 !2

þ
Xn

j¼1

Xn

i¼1

yij � 1

 !2
24 35;

Ed ¼
c2

2

Xn

i¼1

Xn

k¼1

Xn

j¼1

ðykðjþ1Þ þ ykðj�1ÞÞyijdik ;
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yij 2 ½0; 1�; i; j ¼ 1; . . . ; n, is the probability for the ith city to be visited the jth time, and dik is the distance between city i

and city k. We call Y ¼ ½yij�n�n the output matrix. Note that E1 attains its minimal value, i.e., zero, at a permutation
matrix. Ed is related to the tour distance of the TSP. Therefore, 2Ed=c2 gives the tour length when Y is a permutation
matrix. In our setting of solving the TSP through the TCNN computations, the meaningful asymptotic output matrix
should be a permutation matrix. Notably, if the global minimum of E is attained at a permutation matrix Y, then it is
attained at all permutations to Y, which give the same value to E.

To apply the TCNN to the TSP, we change the setting of the TSP with two-dimensional indices into the one-dimen-
sional form. Restated, by letting sði; jÞ ¼ jþ ði� 1Þn, where n is the number of cities for the TSP, Eq. (20) becomes
EðyÞ ¼ � 1

2
yW yT � 2c1In2�n2 yþ c1n: ð21Þ
Herein, In2�n2 is the identity matrix of size n2 � n2, y ¼ ðy1; . . . ; ysði;jÞ; . . . ; yn2Þ and
W ¼ �c1½In�n � 1n�n þ 1n�n � In�n� � c2D� B; ð22Þ
1n�n is the matrix whose entries are all one, D ¼ ½dij�T and B ¼ ½bij� with bi;j ¼ 0 except that bi;iþ1 ¼bi;i�1 ¼b1;n ¼bn;1 ¼ 1;
the n2 � n2 block matrix A� B is defined by the formula ½A� B�ij ¼ ½aijB�, where A = [aij] and B = [bij]. We consider the
TCNN
xiðt þ 1Þ ¼ lxiðtÞ þ ð1� bÞqðtÞx½yiðtÞ � a0i� þ
Xn2

j¼1

W ijyjðtÞ þ 2c1; ð23Þ
where W ¼ ½W ij� :¼ W � diag½W �=2, i ¼ 1; . . . ; n2. According to previous discussions, there is a Lyapunov function for
Eq. (23):
V ðt; yÞ ¼ � 1

2

Xn2

i¼1

Xn2

j¼1

W ijyiyj �
Xn2

i¼1

2c1yi � ðl� 1Þe
Xn2

i¼1

ðy2
i � yiÞ þ ct; ð24Þ
where y ¼ ðy1; . . . ; yn2Þ. The conditions for chaotic and convergent dynamical phases of the TCNN are all computable.
The range of the parameters satisfying these conditions can also be depicted numerically. We shall describe how we
choose parameters in the numerical simulations for solving a TSP via the TCNN in the next section.
5. Numerical simulations

We present numerical simulations for solving the TSP via the evolutions of the TCNN (23). We employ the ten-city
TSP problem by Hopfield and Tank to illustrate the performance. The ten-city data is illustrated in Fig. 7.

Let us describe how to choose parameters in the numerical simulations. We first take an l with 0 < l < 1 for bound-
edness of iterations for the TCNN. Set x = 0, and take e; a0i; hi; i ¼ 1; . . . ; n2, so that the TCNN with these parameters is
Fig. 7. The Hopfield-Tank original data.



Fig. 8. The iterations of components x1;1; . . . ; x1;10, and E for the TCNN in solving a 10-city TSP. The iteration is synchronous
updating in (a) and cyclic updating in (b).
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in convergent phase, where hi ¼
Pn2

k¼1fjW ik j þ 2jc1jg. We then let jxj increase from 0 to see whether if parameters
ðl; e;x; a0i; hiÞ enter the chaotic regime. These computations can be assisted by a computer programming. In our illus-
tration, the parameters are set as l = 0.9, b = 0.005, e = 0.01, a0i = 0.65, x = �0.08, c1 ¼ 0:015, c2 = 0.015 and q(t) = t.
The iterations are demonstrated in Fig. 8, with the synchronously updating mode, in accordance with our theory. We
also employ the cyclic updating iterations in Fig. 8b. Our simulation indicates that the best route for this TSP is
2! 3! 1! 4! 5! 6! 7! 8! 9! 10! 2. The other best route such as 8! 7! 6! 5! 4! 1!
3! 2! 10! 9! 8 and 9! 10! 2! 3! 1! 4! 5! 6! 7! 8! 9 also have the same value E ¼ 2:7257.
In fact, all of them represent the same loop. Under these parameters, 100% of 3000 initial conditions lead to the optimal
route with E ¼ 2:7257 in the evolutions of system (23).
6. Conclusion

In this presentation, we have analyzed the dynamics for the chaotic phase and the convergent phase for the TCNN
with piecewise linear output function. The analysis provides concrete and computable parameter conditions for the
respective dynamic phase. The investigation makes use of the structure of piecewise linear output function. The param-
eter conditions thus derived are much simpler than the ones for logistic output functions. We have also observed that
the TCNN with piecewise linear output function has even better performance than with the logistic output function in
the applications. For example, with suitably chosen parameters, the output component of the TCNN with piecewise
linear output function tends to either one or zero, with the objective function decreasing, as the system evolves. If
the output matrix does not tend to a permutation matrix, one can enlarge slightly the parameter c1 in Eq. (22). The
investigation demonstrates a skillful employ of the Marotto’s theorem for the n-dimensional TCNN map and is
expected to contribute toward applications of the TCNN as an annealing machine in solving various combinatorial
optimization problems.
Appendix A. Proof of Proposition 1

�n is a fixed point of the single neuron map f1, �h 6 1 6 h if and only if �n ¼ l�nþ x½geð�nÞ � a0� þ 1. To find a fixed
point in Xm for the single neuron map f1, we seek for �n with �e 6 �n 6 e satisfying ½ð1� lÞ�n� 1�=xþ a0 ¼ geð�nÞ. Equiv-
alently, we look for an intersection of equations g ¼ ½ð1� lÞn� 1�=xþ a0 and g ¼ geðnÞ in Xm. Notably, (P1-i):
l < minf�1� ðxa0 þ hÞ=e;�1� ½xð1� a0Þ � h�=eg is equivalent to f�hð�eÞ > e and fhðeÞ < �e. Thus, under condition
(P1-i), there exists a fixed point of f1 in Xm, with reference of Fig. 2a. Let x > 0 and L1ðxÞ :¼ ½ð1� lÞx� 1�=xþ a0. Then
L�h (resp. Lh) is the upper (resp. lower) line in Fig. 9. Note that LhðxÞ 6 L1ðxÞ 6 L�hðxÞ with �h 6 1 6 h for all x 2 R. If



Fig. 9. The configuration explains condition (P1-i)(a). The quantities 1�l
x eþ h

xþ a0 and 1�l
x ð�eÞ � h

xþ a0 correspond to the y-
coordinates of two dotted points, respectively.
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L�hðeÞ 6 1 and Lhð�eÞP 0, then it is obvious that there exists a fixed point �n 2 Xm for L1 with �h 6 1 6 h. Actually,
under this circumstances, there exist three fixed points of f1 for �h 6 1 6 h. h
Appendix B. Marotto’s Theorem

Consider a dynamical system: x#FðxÞ, x 2 Rn and F is in C1ðRn;RnÞ or piecewise C1. Suppose that �x is a fixed point
of F with all eigenvalues of DFð�xÞ exceeding 1 in magnitude, and suppose there exists a point x0–�x in a repelling neigh-
borhood of �x, such that Fmðx0Þ ¼ �x and detðDFmðx0ÞÞ–0, for some 1 < m 2 N. Then �x is called a snap-back repeller [16]
of F, as depicted in Fig. 4. If F has a snap-back repeller, then the system of F is chaotic in the following sense: (i) There
exists a positive integer m0 such that F has p-periodic points for each integer p P m0. (ii) There exists a scrambled set,
that is, an uncountable set L containing no periodic points so that the following pertains: (a) FðLÞ � L; (b) for every
y 2 L and any periodic point x of F,
lim sup
m!1

kFmðyÞ � FmðxÞk > 0;
(c) for every x, y 2 L with x–y,
lim sup
m!1

kFmðyÞ � FmðxÞk > 0;
(iii) There exists an uncountable subset L0 of L such that for every x, y 2 L0,
lim inf
m!1

kFmðyÞ � FmðxÞk ¼ 0:
Marotto first reported this theorem in 1978. The theorem has been applied to justify chaotic behaviors for several
dynamical systems [20]. The original definition of snap-back repeller employed the notion that there exists a real number
r > 0 and x0 2 Bð�x; rÞ with x0–�x, called snap-back point, such that all eigenvalues of DF ðxÞ exceed unity in norm for all
x 2 Bð�x; rÞ. This condition does not imply that x0 lies in an expanding neighborhood of �x. Such a definition then leads
to an insufficiency in the proof of the theorem. The definition of snap-back repeller is then revised recently [16]. There
were other related discussions in [20,21].
Appendix C. Supplemental proof for Theorem 6

When no confusion arises, we will omit the variable t in Ci. We arrange the justification into three cases: F iðxÞP e,
jF iðxÞj < e and F iðxÞ 6 e.

Case I: F iðxÞP e,
Ci ¼ F iðxÞDtyi � eDtyi � geðxiÞ ¼ Dtyi½F iðxÞ � egeðxiÞ� ¼ ½1� geðxiÞ�½F iðxÞ � egeðxiÞ�P ½1� geðxiÞ�½e� egeðxiÞ�

¼ e½1� geðxiÞ�2 ¼ eðDtyiÞ
2
:
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Case II: F iðxÞ 6 �e,
Ci ¼ �F iðxÞgeðxiÞ þ egeðxiÞ½geðxiÞ � 1� ¼ geðxiÞ½�F iðxÞ � eþ egeðxiÞ�P eðgeðxiÞÞ2 ¼ eðDtyiÞ
2:
Case III: jF iðxÞj < e,
Ci ¼ F iðxÞDtyi � eDtyi
1

2e
F iðxÞ þ

1

2
þ geðxiÞ � 1

� �
¼ 1

2
F iðxÞDtyi þ

e
2
Dtyi � eDtyi � geðxiÞ

¼ 1

2
½F iðxÞ þ e�Dtyi � eDtyi � geðxiÞ ¼

1

2e
F iðxÞ þ

1

2
� geðxiÞ

� �
1

2
ðF iðxÞ þ eÞ � egeðxiÞ

� �
¼: �:
For case III, we consider three subcases: xi P e, jxij < e and xi 6 e.
Subcase III(a): xi P e,
� ¼ 1

2e
F iðxÞ þ

1

2
� 1

� �
1

2
ðF iðxÞ þ eÞ � e

� �
¼ 1

4e
½F iðxÞ � e�2 ¼ eðDtyiÞ

2
:

Subcase III(b): xi 6 �e,
� ¼ 1

2e
F iðxÞ þ

1

2

� �
1

2
ðF iðxÞ þ eÞ

� �
¼ 1

4e
½F iðxÞ þ e�2 ¼ eðDtyiÞ

2:
Subcase III(c): jxij < e,
� ¼ 1

2e
F iðxÞ þ

1

2
� 1

2e
xi �

1

2

� �
1

2
ðF iðxÞ þ eÞ � e

1

2e
xi þ

1

2

� �� �
¼ 1

4e
½F iðxÞ � xi�2 ¼ eðDtyiÞ

2:
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