FHCRBIL B oat ffEe 22 HiEn

An Effective Method for Solving L.arge Binary Programs and
Its,Applications

SRS £

PoE R4 s oE R

2 STHIEE RS PR

An Effective Method for Solving Large Binary Programs and
Its Applications

Foyod i miEs Student : Hao-Chun Lu

iR WA Advisor : Han-Lin Li

A'Dissertation
Submitted to Institute of Information Management
College of Management
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy
n
Information Management
June 2008
Hsinchu, Taiwan, Republic of China

PERRA LS ER

il

BUREXRR

MXOBEEREER

A AWMERE AL g B

Frigse s (P) #patlzHus iRy EARER

(3) An Effective Method for Solving Large Binary Programs and Its

licati

SR EREAL - FRALZAFHRET -
oREH

PERA L+t FE XA =8

il

5 ZEMM AR T R R MM P F(Piecewise Linearization) #-Ji 4o B AL A 1 2 fiF

TEEREE A CEATREACF S DRl T L ERFEF I RERAM LK
ﬁ,aﬁpzﬁiﬁ%m—3:@&%&@ﬁ&%ﬁ%@MﬂUQ%%@Hﬁﬁﬁﬁ

ArE 2 2 R EE UFIN o B B mrl B¢ SRR T Sl > G 2 iR E
MM HHELEF Flm B REE A B S AR D2 22 R G [logym |
Boie iz 8+8log,m | B AHsS ol FEART Y » BIRBBF EREL BT LEP

g o o

MaEF: - i, ERMLL.

iv

An Effective Method for Solving Large Binary Programs
and Its Applications

Student : Hao-Chun Lu Advisor: Han-Lin Li

Institute of Information Management

National Chiao Tung University

ABSTRACT
Many nonlinear programs can be linearized approximately as piecewise linear programs by
adding extra binary variables. For the last four decades, several techniques of formulating a
piecewise linear function have been' 'developed. This study develops a Superior
Representation of Binary Variables (SRB)and applied in many applications. For expressing
a piecewise linear function with m +1 break points; the existing methods, which incurs
heavy computation when m is large, require to use m additional binary variables and

4m constraints while the SRB only uses [log,m | binary variables and 8+ 8[log, m |

additive constraints. Various numerical experiments of applications demonstrate the

proposed method is more computationally efficient than the existing methods.

Keywords: Binary variable, Piecewise Linearization

LR

LA B L g A

Christodoulos A. Floudas ##: miﬁ@ﬂ Fiwme vt o ¥
= 1% b A

FAREF DY o SR R 2 IR R 2 YinyuYe ik %
VA F o (sl RERp NG HRT AL

AT L RL o
_"E'

| R kg X2
GGP e >k p 2 E 8 £ 47 7 > Piecewise » &_% p 3t
b 878 R PR I

e

jL .

% ok 3]
rfbl:;[{&‘]‘#'#}ﬂ'

)

:?cgomt/zn;,J.ycli\.m_g:—a—r]{z}ahﬁ—u_g /E.j-—:’g‘\l’vhil%ai\.
R

RE ek v ¢ T ik B BAE L anflei g R o AR JT A 3
P FHE L F

SAEE o B A PR AN AE SR EAR Ap A

AR

e
R ERFAEAFFRMeA R PR
hEARRER S 2 EFEERY 50 R
BITEEARY F FF T]f E%
B R BRAZ L LMl R b oS- RS EE o R

43 2008/06/10

vi

Contents

BB B s iv
A B ST RACT ettt b bbbt e bbbttt e et b e e nnes %
U oSO R SUP TR UTROPSRRRSRPRRN Vi
CONTBNTS ... vii
TADIES ... bbb viii
FIQUIES et bbbttt h et b b bbb bRttt b bbb IX
Chapter 1 INErOQUCTION ... 1
1.1 Research Background...........c.oooiiiiiiiiiiiieiiecee e 1
1.2 Research Motivation and PUIPOSEceeviiieriieiiiieeiieeeeeeeee et 4
1.3 2521 141 0] (T S USSP 5
1.4 Structure of the DiSSEItatioNceccuiiieiiiieciie ettt e ree e 6
Chapter 2 A Superior Representation Method for Piecewise Linear Functions........... 8
2.1 Introduction to Piecewise Linear FUNCHIONScoceviiriiniiiiiinieiccceeeee e 8
2.2 Superior Representation of Binary Variables (SRB) ..o, 10
23 The Proposed Linear Approximation Method..............ccccoceiiiiiiiniiinnniine 15
2.4 Numerical EXamples. ... it et 18
Chapter 3 Extension 1— Solving:Generalized Geometric Programs Problems.......... 28
3.1 Introduction to Generalized ‘Geometric Programmingcoccevceeveivieniencnnicnnns 28
3.2 The Proposed Linear Approximation Method...........c.coceveiiiniiiiiiniiiciecceieee 33
33 Treatment of Discrete Function in GGP (Approach 2).........cccoeeveeviienieecivenieeneenne 40
34 Treatment of Continuous Function in GGP...........ccccoiiiiiiiiiinicee 44
3.5 Numerical EXampPIes........coceeviiiiiiiiiiiiiiiiieecsccceeeeesee e 49
Chapter 4 Extension 2—Solving Task Allocation Problem..........c.cccccooovivevviiiiicieenn, 59
4.1 Introduction to Task Allocation Problem............ccceeeiiiiiiieeiiieecieeceeecee e 59
4.2 The Proposed Mathematical Programming Formula.............ccccoooviiiinniininnnnnns 60
4.3 Experiment RESUILS.cccuiiiiiiiiiiiieiece e e 65
Chapter 5 Discussion and Concluding REMArKScccccveviiiieiieie i 66
5.1 DDISCUSSION. ..ttt ettt ettt ettt et e et e bt e sab e e bt e sabe e bt e sabeenbeeenbeenees 66
52 Concluding Remarksccoceeiiiiiniiiiiiiiieceeceeeete e 67
RETEIEICES. ...ttt 69

vii

Table 2.1

Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 2.6
Table 3.1
Table 3.2
Table 3.3
Table 4.1

Tables

List of |G(0)], ¢y a0d Ap(0) cooooreeieveeicsceeeceeceesseeeseee s 11
Experiment 1 (o, =0.4, B,=2, a,=1.85, ,=2, b=5) cccccccececen. 20
Experiment 2 (for different combinations of «,, f,, «,, B, and b).......... 22
Experiment result of Example 2.2cccoooiiiiiiiiiiiiieiieceeeeee e 24
Experiment results with discrete function in ILOG CPLEXcccccoceviiienien. 26
Experiment results with continuous function in ILOG CPLEX.......................... 27
Way of expressing ¥ € {d,,.c.,d, } eooeeiiniiiiiiiiiiiicicee e 43
Experiment result of Example 3.3cooiiiiiiiiiiiieiccececeee e 56
Comparisons of existing methods with proposed method...........ccceevveennnnnnne. 58
Experiment result Of TAPccooiiiii e 65

viii

Figure 1.1
Figure 2.1

Figure 2.2

Figures

Structure of the diSSertationcceeeciieeiiiieiie e 7
Piecewise linear function f(X) ..cceoceeeviieiieeie et 9
Contour map of the three-humped camelback function...........cccccecvvveeiirnnennn. 23

X

Chapter 1 Introduction

1.1 Research Background

Optimization has many applications in various fields, such as finance (Sharpe 1971; Young
1998), allocation and location problem (Chen et al. 1995; Faina 2000), engineering design
(Duffin et al. 1967; Fu et al. 1991; Sandgren 1990), system design and database problems
(Lin and Orlowska 1995; Rotem et al. 1993; Sarathy et al. 1997), chemical engineering
(Floudas 1999; Ryoo and Sahinidis 1995), and molecular biology (Ecker et al. 2002). Those
optimization problems most are either nonlinear program or mixed-integer program and
involve continuous and/or discrete variables. Guaranteed to obtain global optimization and
improve the efficiency of algorithm are two important and necessary areas of research in

optimization.

There are two categories-of approaches for optimization field: deterministic and
heuristic. Deterministic approaches take-advantage of analytical properties of the problem to
generate a sequence of points that converge to obtain a global optimization. There are three
methods for deterministic approaches from recent literatures as follows.

(i) Difference of Convex functions (DC): The DC optimization method is important in
solving optimal problems and has been studied extensively by Horst and Tuy (1996),
Floudas and Pardalos (1996), Tuy (1998), and Floudas (2000), etc. By utilizing
logarithmic or exponential transformations, the initial GGP program can be reduced to
a DC program. A global optimum can be found by successively refining a convex

relaxation and the subsequent solutions of a series of nonlinear convex problems. A

1

major difficulty in applying this method for solving optimal problems is that the lower

bounds of variables are not permitted to less than zero.

(i) Multilevel Single Linkage Technique (MSLT): Rinnooy and Timmer (1987) proposed

MSLT for finding the global optimum of a nonlinear program. Li and Chou (1994)

also solved a design optimization problem using MSLT to obtain a global solution at a

given confidence level. However, the difficulty of MSLT is that it has to solve

numerous nonlinear optimization problems based on various starting points.

(iii) Reformation Linearization Technique (RLT): RLT was developed by Sherali and

Tuncbilek (1992) to solve a polynomial problem. Their algorithm generate nonlinear

implied constraints by takingithe products of thé bounding terms in the constraint set

to a suitable order. The resulting problem is.subsequently linearized by defining new

variables. By incorporating appropriate bound factor products in their RLT scheme,

and employing a suitable partitioning technique, they developed a convergent branch

and bound algorithm has been developed. Although the RLT algorithm is very

promising in solving optimization problems, a major associate difficulty is that it may

generate a huge amount of new constraints.

The other category approaches, heuristic method, can get solution quickly, but the
quality of the solution cannot be guaranteed as a global optimization. Meta-heuristic is a

advanced heuristic method for solving a very general class of computational problems by

combining user given black-box procedures in a hopefully efficient way. Meta-heuristics are

generally applied to problems for which there is no satisfactory problem-specific algorithm or

heuristic; or when it is not practical to implement such a method. Most commonly used

meta-heuristics are targeted to combinatorial optimization problems. Those popular

meta-heuristic methods are listed as follows.

(@)

(i)

(iii)

(iv)

Genetic Algorithm (GA): GA (Goldberg 1989) is based on the idea of the survival of

the fittest, as observed in nature. It maintains a pool of solutions rather than just one.

The process of finding superior solutions mimics that of evolution, with solutions

being combined or mutated to alter the pool of solutions, with solutions of inferior

quality being discarded.

Simulated Annealing (SA): SA is a related’ global optimization technique which

traverses the search space by generating neighboring solutions of the existing solution.

The Hide-and-Seek algorithm (Romeijn and Smith 1994) is the first SA algorithm for

solving optimization problems.

Tabu Search (TS): The idea of the TS (Glover and Laguna 1997) is similar to SA, in

which both traverse the solution space by testing mutations of an individual solution.

While SA generates only one mutated solution, TS generates many mutated solutions

and moves to the solution with the lowest fitness of those generated.

Ant Colony Optimization (ACO): ACO first introduced by Marco Dorigo in his PhD

thesis and published in Colorni et al. (1992), is a probabilistic technique for solving

computational problems which can be reduced to finding good paths through graphs.

They are inspired by the behaviors of ants in finding paths from the colony to food.

The main challenge of the above meta-heuristic methods is to guarantee convergence in
the solution; accordingly, the quality of the solution is not ensured.

Those two categories of optimum approaches have different advantages and weaknesses;
consequently, integrating deterministic and heuristic approaches is an appropriate way to
solve large scale optimal problems. For example, heuristic algorithms are applied to find an
initial solution to enhance the efficiency of finding the optimal solution; then, deterministic

approaches are utilized to transcend the incumbent solution.

1.2 Research Motivation and Purpose

Traditional deterministic optimization ‘approaches have been very successful in obtaining
global optimization; nevertheless, thete are still-lacks of efficient method to some nonlinear

problems, especially for large mixed-integer problems. Consider the following equation:

m

D uy =1lu, €{0,1}. (1.1)

0=1

It means that there is one and only one binary variable can be active in the all given
binary variable. Equation (1.1) is frequently appeared in numerous classic optimal problems,
especially in the integer and combinatorial optimal problems. For instance, Task Allocation
Problem (TAP) is one of the fundamental combinatorial optimization problems in the branch
of optimization or operations research in mathematics. The primitive form of TAP is listed in
Example 1.2, which first constraint (1.4) is similar as Equation (1.1). Another example is to
decompose the separated discrete nonlinear term, introduced by Floudas (2000), in Example

1.1. The constraint (1.3) is same as Equation (1.1). There are also numerous applications of
4

using Equation (1.1) in optimization problem.

This study focuses on developing a Superior Representation of Binary Variables (SRB)
method to replace the traditionally binary variables and apply in the various applications. The
major advantages of the proposed approach over existing optimization methods are reducing

the traditional binary variables number from O(m) to O(log, m) with 4|—10g2 m—‘+1 new

additive constraints and easily applying in any mixed-integer problems. We also applied SRB
in some applications, such as Generalized Geometric Programming (GGP) and Task

Assignment Problem (TAP), and obtained the global optimization efficiently.

1.3 Examples

ExXAMPLE 1.1 Linearization Form of Discrete Nonlinear Function

This example is a linearization reSult of discréte nonlinear function (1.2)
g =y yeld ...d,}. (1.2)
The decomposing program (DP),. introduced in Floudas (2000), utilities m binary

variables to linearization (1.2). The mathematical form is listed below.

DP
Min) u,dg

=1

st Y uy=1,u,€{0,1},V0, (1.3)

=1

EXAMPLE 1.2 Task Assignment Problem

This example is primitive form of Task Assignment Problem (TAP), which has n tasks
that must be accomplished by using only m agents. Each agent performs better at some

tasks and worse at others and obviously some agents are better than others at certain tasks.

5

The goal is to minimize the total cost for accomplishing all tasks or, stated differently, to

maximize the overall output of all the agents as a whole.

TAP
Min Z Z di,Hui,é’
i=l 6=1
8.L Zuiﬁ =1’ i=1,...,l’l, (14)
0-1
Zaiﬂui,e <b,, 0=1,..,m,
i=1
where

(i) d,, be the execution cost of task i ifitis assigned to agent &,

(i) b, be the capacity for agent &,

(iii) a,, be the resource required of task 7 ifitis assigned to agent &,

(vi) u,, €1{0,1} Vi,0 andwhen u,, =1 ifand only if task i is allocated to

agent 4.

1.4 Structure of the Dissertation
The structure of this dissertation is depicted in Figure 1.1 and briefly introduced as follows.
Chapter 2 develops the core technique of this dissertation, Superior Representation of

Binary Variables (SRB), which only uses !_log2 m—| binary variables to replace m original

traditional binary variables (u,,...,u,) with ZMH =1. It can effectively reduce the
=1

traditional binary variables number from O(m) to O(log, m) and easily applies in any
mixed-integer problems. By using SRB, this chapter proposes a superior way of expressing
the same piecewise linear function, where only |_log2 m—| binary variables and 8+ 8|_log2 m_|
additive constraints are used. Various numerical experiments demonstrate that the proposed
method is more computationally efficient than existing methods.

6

Chapter 3 extends SRB to apply Generalized Geometric Programs Problems. Based on
the SRB, this chapter proposes a novel method for handling a GGP problem with free-signed

continuous and discrete variables. We first use !_log2 r—‘ binary variables to express a discrete

function containing r discrete values, and utilize convexification and concavification
strategies to treat the continuous signomial function. Comparing with existing GGP methods,
the proposed method can solve the problem to reach approximate global optimum using less
number of binary variables and constraints.

Chapter 4 is another extension of SRB for solving the task allocation problem (TAP).
For example, a TAP with n agents and m tasks requires nm binary variables in existing
deterministic approaches to obtain global solution while our method, based on SRB, only

needs !_log2 nm—‘ binary variables. We try to find an efficient method to conquer the classic

TAP.

(Chapter 1)
Introduction

y

(Chapter 2)
Develops the core technique -SRB.

Y v v

(Chapter 2) (Chapter 3) (Chapter 4)
Application with SRB Application with SRB Application with SRB
in linearization piecewise. in GGP problems. in TAP problems.

y

(Chapter 5)
Discussion and concluding remarks

Figure 1.1 Structure of the dissertation

Chapter 2 A Superior Representation Method for
Piecewise Linear Functions

Many nonlinear programs can be linearized approximately as piecewise linear programs by
adding extra binary variables. For the last four decades, several techniques of formulating a
piecewise linear function have been developed. For expressing a piecewise linear function
with m+1 break points, existing methods require to use m additional binary variables
and 4m constraints, which causes heavy computation when m 1is large. This chapter
proposes a superior way of expressing the same piecewise linear function, where only

[log,m| binary variables and 8+8[log,m| additive constraints are used. Various

numerical experiments demonstrate that the proposed method is more computationally

efficient than existing methods.

2.1 Introduction to Piecewise Linear Functions

Piecewise linear functions have been applied in.numerous optimization problems, such as
data fitting, network analysis, logistics, and production planning (Bazaraa et al. 1993).
Since 1950, it has been widely recognized that a nonlinear program can be piecewisely
linearized as a mixed 0-1 program by introducing extra 0-1 variables (Dantzing 1960). Most
textbooks (Bazaraa et al. 1999, Floudas 2000, Vajda 1964) in Operations Research offer
some methods of expressing piecewise linear functions. Many methods of piecewisely
linearizing general nonlinear functions have also been developed in recent literature
(Croxton et al. 2003, Li 1996, Li and Lu 2008, Padberg 2000, Topaloglu and Powell 2003).
Some methods of piecewisely linearizing a specific concave function have also been

discussed (Kontogiorgis 2000). For expressing a piecewise linear function f(x) of a

single variable x with m+1 break points, most of the methods in the textbooks and

literatures mentioned above require to add extra m binary variables and 4m constraints,
which may cause heavy computational burden when m 1is large. This study proposes a
superior method for representing f(x), which only requires to add extra |—10g2 m_| binary
variables and 8+8!_log2 m—| constraints.

Consider a general nonlinear function g(x) of a single variable x, g(x) is
continuous and x is within the interval [a,,a,]. Let f(x) be a piecewise linear function
of g(x), where the interval [a,,a,] is partitioned into m small intervals via the break
points a,,...,a, , where a,<a, <...<a, asshown in Figure 2.1 It is assumed in this study

that the locations of the break points are pre-specified by the user. This study does not

consider how to pick break points that result in small approximation error between g(x)

and f(x).

g(x)

’
L.

ao ai o ag Ao+ am

f(x) is apiecewise linear function of g(x)

Figure 2.1 Piecewise linear function f(x)

As indicated by Croxton et al. (2003), most models of expressing a piecewise linear

function are equivalent with each other. Here, a general form of pressing a piecewise linear
function by the existing methods, as in the textbook of Bazaraa et al. (1993), Floudas (2000),
and Vajda (1964) or in the articles of Croxton et al. (2003), Li (1996), Li and Lu (2008),

Padberg (2000), and Topaloglu and Powell (2003), are formulated below:

First introducing m binary variables A4,,4,,...,4, , to express the inequalities:

> "m-1
a,—(a,—a)(1-4)<x<a,, +(,—-a)(1-4,), 6=0,..,.m-1, (2.1)

where

-1
Ay =1, A,e{01}. (2.2)

0

3

Ny
Il

There is one and only one €=k (over 8€{0,...,m—1}), in which A, =1. That
means, only one interval [a,,q,,,] isactivated, which resultsin a, <x<a,,,.

Following Expression (2.1), the piecewise’linear function f(x) can be expressed as:

flay)+s,(x—a,)-M(1-4,)) T f(x)=f(a,)+s,x—a,)+M(1-4,), 0=0,...m—1(2.3)

where M :mgax{f(aa)‘*‘sg(am =ay), f(a,)+s,(a,—a,)}

_main{f(ae)"'sg(am —ay), fay)+s,(a,—a,)},

_ Sf(ag,,)—f(ay) . (2.4)

Ao — 4y

and s,

REMARK 2.1 Expressing f(x) by (2.1) through (2.4) requires m binary variables
Agse-sA,, and 4m constraints (i.e., inequalities (2.1) —(2.3)), where m+1 1is the

*2 7 m—1

number of break points.

2.2 Superior Representation of Binary Variables (SRB)

Let 6 beaninteger, 0 <6 <m—1, expressed as:

10

h
0= Z}Z"_l”p h=[log,m], u; € {0.1}. 2.5)
<

Givena 6 €{0,...,m—1}, there is a unique set of {u,} meets (2.5). Let G(0) < {L...,h}

be the subset of indices such that:

2 =6 (2.6)

j€G(8)

For instance, G(0)=¢, G(1)={1}, G(2)={2}, G(3)={1,2}, etc. Let |G(6’)| denote

G(0)|=0,

the number of elements in G(#). For instance, G(3)|=2, etc. Define m

functions A4,(6") (0 =0,...,m—1) based on a binary vector U’ = (u,,...,u,) as follows:
h hoo
A,(0)=|G(O)+ D ey i, 6= 27", (2.7)
j=1 J=1
where the coefficients Co) 0=0,.3m-1, j=l,...,h are defined by

g {—1, jeGo), 2.8

1, .otherwise.

Table2.1 Listof |G(8)
|G(9)| Con Co2 Co3 Cou 4,(0)

y o, oand A4,(0)

0 0,

0 0 1 1 1 I O+u +uy+ul +u,
1 1 -1 1 1 I T—u +u) +u+u,
2 1 1 -1 1 I T4u) —u) +ul +u,
3002 -1 -1 11 2—u il
4 1 1 L =11 T+u +u)—u}+u
5 02 -1 1 -1 1 2—u+d—d+ul
6 2 1 -1 -1 1 2+u —u)—u}+u,
7 3 -1 -1 -1 1 3—wu—u)—u;+u,
8 1 1 1 I =1 T+u +u)+u;—u,
9 2 -1 1 1 -1 2—u+ul+u-ul
10 2 1 -1 1 -1 24d—u+iu—d
3 -1 =1 1 -1 3 —ul+u—u
12 2 1 I -1 =1 2+u+u)—u;—u,

11

For instance, given an arbitrary number m =13, a list of all values of |G(6) , Cp;»and
A4,(8) for given @ are shown in Table 2.1. |G(9)| and ¢, in (2.7) are not intuitive

forms, then it can be rewritten more intuitive as follows.

PROPOSITION 2.1 |G(9)| and ¢, in(2.7) can be rewritten as follows:

G(6)|= o.szh“(l—(—l)UJ),e =0,...,m—1,h=[log,m]| , (2.9)
Cy, :(—1)LFJ,9 =0,...,m—1,j=1,..[log, m] . (2.10)

PROOF In (2.7), where ¢, =-1 if jeG(0), otherwise ¢, =1.

Obviously:
el %
=0T
ey = (D
G(0) - (1—c971)+(1—c9;)+...+(1—cg,,,) =0.5./_Zh;(1—(-1){m)
This proposition is then proven. .

Then we have following main theorem:

THEOREM 2.1 For an integer 0 in (2.5) and (2.6), given a binary vector U = (u,,...,u,),

there is one and only one k, 0<k <m-1, such that

() 4,(0)=0 if 6 =k,

12

(i) A4,(0)>1, otherwise.

h
PROOF There is one and only one &, such that & = ZZj"luj +1.
Jj=1

(i) If k=6 that u, =u,V j, which results in

Zu] = Zuj = G(k)and Zu/ = Zuj =0.

jeGk) jeG(k) jgGk) jeGk)

Thus to have A4,(6)=0.

(i) If k=6 then

G@)|= D u,and D u, >1,

JeG (k) JeG (k)

therefore 4,(6)>1.

For instance, given U = (u;...,1,)/=(0,1,0,1) "in Table 2.1, we have
A,(60") = |GO)+ uj + s+ ul 4+ u,+=0+0+1+0+1=2,

A4(0) =|GO)| - vl Fus+usFu,+=1-0+1+0+1=3,

A,,(0) =|GAO) +u —us +uf —uj+=2+0-1+0-1=0,
A,(0) =|GAD| —u) —ub +ul —uj+=3-0-1+0-1=1,
A4,(0) =|GA2)| +u] +us —uy —uf+=2+0+1-0-1=2,

Here A4,,(0')=0; 4,(6')=0 for 0<8<12and & #10.

PROPOSITION 2.2 For a set of non-negative continuous variables (r,,...,r,), if

13

(2.11)

m—1
D r,d,(0) =0, (2.12)
0=0
then the values of r,,0=0,....m—1, are either 0 or 1, where A,(0") are defined by (2.6)
—(2.8).

PROOF By referring to THEOREM 2.1, there is one and only one k, 0<k <m—1, such

that A4,(6)=0 and A4,(6)>1 for 0<Od<m-1 and H=#k . Since r,20 ,
0<6d<m-1, the only solution to satisfy (2.11) and (2.12) is r, =1 and r, =0 for

0 # k . The proposition is then proven. i

Expression (2.12) is nonlinear and needs to be linearized. We have

—_

3

1y A4,(0")

0

S
Il

=7, (|G(0)| G, L . .

(2.13)
+7, (|G(m - 1)| +Cp gl F o Cpy)
m—1 m—1 m—1
= r9|G(<9)| + ulZ:r@cg,1 +...+u, ngcg,h =0
=0 6=0 =0
Denote
m—1
z, =1\ 1,y V] (2.14)
6=0

We then have following proposition:

m=1
PROPOSITION 2.3 The nonlinear expression ZI’HAH(@') =0 in (2.12) can be replaced
6=0

by the following linear system:

-1

3

h
r5|G(l9)|+Zl:zj =0, (2.15)
=

N
Il

0

14

—uy <z <up, upe{0l, =10, (2.16)

J

m—1 m

—1
Do, — (=)< z, <D e, +(-ul), j=1,...h. (2.17)
0=0 0=0

PROOF By referring to (2.14), (2.13) can be converted into (2.15). According to (2.8) and

PROPOSITION 2.2 we have c¢,;e{l,-1} and r,€{0,]} , which cause —-1<z <I.

Expression (2.14) therefore can be linearized by (2.16) and (2.17). Two cases can be check

for each u; :

(i) If u}=0,then z, =0 referring to (2.16),

m—1

(i) If u,=1,then z, =) ry,, referringto (2.17).
6=0

m—1
Both (i) and (ii) imply that z; =u/ ngclg, ; - Expression (2.14) can be replaced by
0=0

(2.15)—(2.17). o

2.3 The Proposed Linear Approximation Method

Consider the same piecewise linear function f(x) described in Figure 2.1, where x is
within the interval [a,,a,], and there are m+1 break points a,<a, <...<a, within
la,,a,]. By referring to PROPOSITION 2.2 and PROPOSITION 2.3, f(x) with division of the

interval [a,,a,] into m subintervals can be expressed as:

m—1

m—1
ZFQae SxSZreaM , (2.18)
60 0=0

f(x) = mzra(f(aa)"‘ So(X—a, +a,—a,))
=0 (2.19)

= mZ(f(ag) —s,(a, —ay)r, + mz_:s@rg(x -a,)

=0

15

where s, areslopesof f(x) asdefinedin (2.4).

By referring to PROPOSITION 2.2, r, €{0,1} and Z’”e =1, Expressions (2.18) and
4

(2.19) imply that: if r,=Lkefl,....m-1}, then a, <x<a,, and

m—1

f(x)=f(a,)+s,(x—a,). The nonlinear term Zaerg(x—al) in (2.19) can then be

6=1
linearized as follows.

Denote w, =r,(x—a,), since there is one and only one k,k €{0,...,m—1} such that

r, =1 and A4,(6")=0, itis clear that:

ZWH =x-a,, (2.20)
0=0
mk
> w,4,(05.=0. (2.21)
9=0

m=1 m—1 h m—1
By referring to (2.15), we-then have ZW9A9 (@) = Z wg|G(9)| + Zu;(z Wy) =0.
6=0, 6=0 Jj=1 6=0

m=1 m—1
Denote 0, :u;z%c&j for all j, the ‘term ZWHAQ(H’) can be expressed as below
=0 0=0

referring to PROPOSITION 2.2:

3

h
w,|G(O)|+ chj =0, (2.22)
=

N
Il

0
—(a, —a)u'’, <5, <(a, —a'’;, j=1,...,h, (2.23)

m—1

m—1
D wycy, —(a, —a)1—u')< S, <D wye, +(a, —a)1-u"), j=l...,h. (2.24)
6=0 6=0

We then deduce our main result:

THEOREM 2.2 Let f(x) be a piecewise linear function defined in a given interval
x €la,,a,] with m subintervals by m+1 break points: a,<a, <...<a,. f(x) can

be expressed by the following linear system:
16

m—1 m—1
ngcg’j -(1-u’)<z, < ngcg’j +(1-u), j=1...
6=0 6=0

m—1
Z WyCy; = (
=0

m—1 m—1
Zré,ag <x< Zr5a9+l ,
0=0 6=0

£ = X (F(@) =550 =)y + 35w,

m—1 h

RGO+ z, =0,

6=0 =1

! ! .
—u; <z, <u, j=1,...h,

_(am _ao)u; S5] S(am _aO)u;ﬁ jzl,...,h,

m—1

h

i—1
22-’ u; <m.
=1

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

a, —a)1-u')<35, <D wye, +(a, —a)1-u), j=1...h, (234)
6=0

(2.35)

where (2.25) and (2.26) come from (2.18) and (2.19), (2.27) from (2.11), (2.28)—(2.30)

from PROPOSITION 2.3, and (2.31)—(2.34) from (2.21)—(2.24).

REMARK 2.2 Expressing f(x) with m+1 break points by THEOREM 2.2 uses]—log2 m—‘

binary variables, 8+8[log,m | constraints, 2m non-negative continuous variables, and

2[log, m| free-signed continuous variables.

17

Comparing REMARK 2.1 with REMARK 2.2 to know that, in expressing f(x) with large

number of break points, the proposed method uses much less number of binary variables and

constraints than being used in the existing methods.

2.4 Numerical Examples

ExXAMPLE 2.1

Consider the following nonlinear programming problem:

P1

Min x{ —x/

st X —6x, +x <b,
X, +x, <8,
1<x,£74, 1<x,€74,
where «,, f,, a,, [, and b “are fixed constants:

Various «,, f,, a,, B, and b values are specified in this experiment to compare
the computational efficiency of expressing the piecewise linear functions by the existing
method (i.e., (2.1)—(2.4)) and by our proposed method (i.e., THEOREM 2.2).

For the first experiment given, o, =04, £, =2, a,=185, pB,=2, b=5, the
nonlinear terms x* and —x; are concave and required to be linearized, while the other

convex terms xl1 ®

and x; do not need linearization. Suppose m+1 equal-distance break
points are chosen to linearize each of x* and —x;, denoted as a,=1, a,=1+6.40/m,
a,=74,for =1,...,m—1. Then existing methods (i.e., (2.1)—(2.4)) require to use 2m

binary variables and 8m extra constraints to piecewisely linearize x/* and —x; . However,

by piecewisely linearize the same convex terms, our proposed method (i.e., THEOREM 2.2)
18

only uses 2[log, m| binary variables, 14+ 16[log,m | extra constraints, 4m non-negative

continuous variables, and 2[log, m | free-signed continuous variables. The linearization of

x}* by the proposed method is described below:

Denote f(x,)=x*. By THEOREM 2.2, f(x,) with m =64 is expressed by the

following linear equations and inequalities:

63 63
zreae Sx s Z’”eaen)
0=0 =0

f(x)= i(ag'4 —sp(ay —ay)r, + i's&wg 5

6=0

63 6
DGO+ 2,=0,
6=0

=

A 1 .
—u; SZUSu, j=1...,6,

63 63
Zr‘gcg’j —(l-u})<z, < ngcg’j +(1=-u), j=1,...
6=0 =0

63 6
S w6+ 3.5, =0.
6=0 j=1

—6.4u!, <5, <6.4u, j=1,..6,

63 63
;wgcg’j -64(1-u’)<9, < Z;wgcg,j +6.4(1-u’), j=

04 0.4
a,,—a
_ e+l [! .
where s, =————, u; €{0,1},V).
gy — 4y

L...,6,

Similarly, — x> can be piecewisely linearized by THEOREM 2.2. The original program

19

is then converted into a mixed 0-1 convex program. We solve this program on LINGO (2004)
by both the existing methods and the proposed method. The related solutions, CPU time,
number of iterations, number of binary variables, number of constraints, and gap to the upper
and lower bound objective value are listed in Table 2.2.

Table 2.2 Experiment 1 (o, =04, S,=2, a,=185, p,=2, b=5)

Gap to the upper and
lower bound objective

Proposed Existing

m+1 Item method method

value
CPU Time (second) 28 57
Number of iterations 103,090 229,521
Number of binary variables 12 128
65 Number of constraints 110 514
Solution (x,,x,) (3.849203, 3.998877)
Objective Value —14.27649 0.00001
CPU Time (second) 329 4298
Number of iterations 452,721 5,153,692
Number of binary variables 16 512
257 Number of constraints 142 2050
Solution (x,,x,) (31852642, 3,998955)
Objective Value —14.27648 <0.00001

* The reference upper bound selution is (x;; X,) = (3:852642, 3.998955)
with objective value —14.27648

The gaps between the upper and lower bounds can be computed as follows.

(1) Solve the nonlinear program P1 directly by a nonlinear optimization software (such as
LINGO). The solution is X" = (x/,x)) = (3.852642,3.998955) with objective value
—14.27648. X° is one of the local optima of P1. But it is unknown about the gap

between X° and the global optimum. X° is regarded as the upper bound solution.
(i) Divide the ranges of both x, and x, into 65 break points. Let (x,x;) replace the
nearest break point (3.8, 4.0) in the existing 65 break points. Solving the program by

both the proposed method and the existing method to obtain

20

x* =(3.849203,3.998877) with objective value —14.27649. x* is a lower bound

solution of P1. The gap between the objective values of x° and x* is 0.00001.

(7i7) Reiterate to (ii), divide the ranges of both x, and x, into 257 break points. Solving
the program by both methods to obtain the solution (3.852642, 3.998955), which is the
same as X".

Various combinations of «,, f,, a,, B, and b are specified to test the

computation results of the existing methods and the proposed method. Parts of the results are
displayed in Table 2.3. All these experiments demonstrate that the proposed method is much

faster than the existing method especially when m becomes large.

EXAMPLE 2.2

This example, modified from Dixon and Szego (1975), is to find the approximated global

optimum of the following program:

P2
Min 2x; -1.081x; +%xl6 —x,%, +x; +0.01x,
st. —2<x,<2,i=12,
where the object function is a non-symmetrical three-humped camelback function.
Figure 2.2 shows a contour map of this function under —2<x, <2 and -2<x,<2.Herea
reference upper bound solution is (x;,x,)=(-1.802271,-0.9011357) with objective
value —0.02723789. For solving this program, let x; =x, +2.1>0 and x,=x,+2.1>0 to

have xx, =xx;—2.1x/ —2.1x; +4.41. Replace x/x;, by exp(y), P2 then becomes P3

below:

21

Table 2.3 Experiment 2 (for different combinations of ¢«,, B,, «,, £, and b)
a,pey, m+l Ttem Proposed Existing giger to b(ﬁii d up(}))g .recgrécel
Bo.b method method value)

A reference upper bound solution is (x,, x,)=(2.289561, 5.710439) with

objective value —0.8765232

CPU Time (second) 5 13
65 Number of iterations 15,616 84,036
Solution (x,,x,) (2.289561, 5.710439)
a, =05, Objective Value —0.8765229 0.0000003
B, =0.5, CPU Time (second) 12 54
a, =038, 129 Number of iterations 43,830 216,577
B, =009, Solution (x,,x,) (2.289561, 5.710439)
Objective Value —0.876523 0.0000002
CPU Time (second) 69 464
257 Number of iterations 113,591 1,296,464
Solution (x,,x,) (2.28956, 5.71044)
Objective Value —0.8765232 <0.0000001
A reference upper boundsolution is (%, x,)=(4.087383, 3.8) with
objective value —12.68378
CPU Time (second) 15 17
65 Number of iterations 68,759 141,519
a, =04, Solution (x,,x;) (4.153399,3.846601)
B =2, Objective Value —13.03136 0.34758
a, =038, CPU Time (second) 62 428
B, =2, 129 Number of iterations 207,894 1,243,751
-7 Solution (x,,x,) (4.153402, 3.846598)
Objective Value —-13.02896 0.34518
CPU Time (second) 299 1350
557 Number of iterations 557,043 2,490,405
Solution (x,,x,) (4.153401, 3.846599)
Objective Value —13.02889 0.34511

22

Figure 2.2 Contour map of the three-humped camelback function

P3

Min 2x? —1.081x* + éxf ~— expOVER $2.11x, + 2.1x, +4.41

st y=Inxj+Inx;, = L=]

J— ’_

x, =x—-2.1,
_ !

X, =x,—2.1,

-2<x,<2, i=12.

1

The terms —

x;, —exp(y), Inx] and Inx) in P3 are non-convex, here we use —z,,

z,, y, and y, to respectively as piecewise linear function to approximate those

non-convex terms. We then obtain the following mixed-integer program:

P4

Min 2x12 —-1.081z, +%xl6 -z, +x22 +2.11x, +2.1x, +4.41

23

s.t. The same constraints as in P3, but replace Inx; and Inx), by y, and y,
respectively.

We take 41 equal-distance break points for the value range of x, and x, ([-2, 2]),
denoted as a,=-2, a,=-19, a,=-18,...,a,,=2.1t is clear that the break points for x|
and x, are (0.1,0.2,...,4.1). Base on THEOREM 2.2, each of z,, y,, and y, is linearized
with 6 binary variables and 55 constrains. Since y=y,+y,, the region of y 1is
[[n0.1+1n0.1, In4.1+1n4.1] =[In0.01, In16.81] . We take m+1 equal-distance break

points for the value range of y, denoted as b,=1n0.01, b, =In(0.01+16.80/m),

b,=In16.81, for 8=1.2,.,m—1. z, =€’ can then be piecewisely linearized under various
y values.

Problem P4 is converted into-a mixed 0-1 convex program. We solve this program using
LINGO (2004) with the existing methods and-the proposed method. The related solutions,
CPU time, number of iterations, number of binary variables, number of constraints, and gaps

to the upper and lower bound objective values are reported in Table 2.4.

Table 2.4 Experiment result of Example 2.2

Proposed Existing Gap to the upper and lower

m+1 - ltem method method bound objective value
CPU Time (second) 239 834
Number of iterations 2,387,868 3,675,444
Number of binary variables 17 112
33 Number of constraints 161 532
Solution (x,,x,) (—1.849207, -0.9925797)
Objective Value —0.2269442 0.19970631
CPU Time (second) 882 2,277
Number of iterations 1,610,422 7,467,149
Number of binary variables 18 144
65 Number of constraints 169 660
Solution (x,,x,) (-1.7657,-0.8942029)
Objective Value —0.08396288 0.05672499

* The reference upper bound solution is (x,,x,) = (-1.802271, -0.9011357)
with objective value —0.02723789

24

EXAMPLE 2.3

This example is used to illustrate the process of solving discrete functions, consider

following program:

Min x’ —1.8x7* +0.8x% —x2' +x7° —3.5x0° —0.3x}"

st oxt+xyt <8,
X7 —xy <2,
x;'—x)7 =45,
x;).s _ x;).% >_3,
x? —x' > 0.1,

where x, are discrete variables for all' iy, x e {l,1+c,....1+mc}={d,,...,d,}, where
c 1s the discreteness of x;, and7m + 1" i5the numberof discrete points.

The existing method solves' this._example by linearizing a nonlinear function

x“,xeld,,...d,} as

X =dE+ Y A, (dg —dO),

6=1

> A <1, 4, €013,

o=1

where m binary variables are used.

THEOREM 2.2 can be applied to solve a discrete function x“,xe{d,,...,d,} where
f(x) in(2.26) is replaced by x“ as
x% = Zd;’ Ty,
6=0

and all other constraints in (2.27)—(2.30) and (2.35) are kept as the same with
25

6 =0,..,m. For treating a discrete function, the proposed method uses log,(m+1) binary
variables, 4+4(10g2(m+1ﬂ constraints, m+1 non-negative continuous variables, and
]_logz(m + 1)—‘ free-signed continuous variables.

Table 2.5 is the computational result with ILOG CPLEX 9.0. It illustrates that the
proposed method needs to use more constraints than the existing method; however, the

proposed method is computationally more efficient then existing method for large m .

Table 2.5 Experiment results with discrete function in ILOG CPLEX
(m+1)/d Ttem Proposed method Existing method
CPU Time (second) 3.89 1.27

Number of iterations 17,181 2,935
256 / Number of binary variables 40 1,275
0.025 Number of constraints 187 22

Solution (x,,x, , X5 , X;3%4) (3.725,4.2,1.85,5.075,7.2)

Objective Value —35.49859275

CPU Time (second) 3.58 7.85

Number of iterations 12,418 14,103
512 / Number of binary variables 45 2,555
0.0125 Number of constraints 207 22

Solution (x,,x, , X35X, , Xs) (3:75,4.1375, 1.875, 4.9625, 7.1375)

Objective Value —35.51962643

CPU Time (second) 7.45 66.92

Number of iterations 17,671 60,603
1024 / Number of binary variables 50 5,115
0.00625 Number of constraints 227 22

Solution (x,,x,,X;, X, ,Xs)
Objective Value

(3.6688, 4.35, 1.8188, 5.3688, 7.3937)

—35.55043719

26

EXAMPLE 2.4

This example uses the same program in Example 2.3 but specifying all x; as continuous
variables, where 1<x, <7.4 with m+1 break points for all i. The comparison of the

proposed method and the existing method, solving with ILOG CPLEX 9.0, is shown in
Table 5. It demonstrates that the proposed method is also superior to the existing method for

the continuous case.

Table 2.6 Experiment results with continuous function in ILOG CPLEX
Proposed Existin Gap to the upper and lower
m+l Item meI:hod methodg b bound O%I;ective value
CPU Time (second) 4.23 39.86
Number of iterations 47,896 155,309
Number of binary variables 25 160
33 Number of constraints 347 1,098

Solution (x,,x,)
Solution (x,,x,,X;)

(3.67117699, 4.34398332)
(1.8176404, 5.35913745, 7.4)

Objective Value —35:56181842 0.00766842
CPU Time (second) 40.29 919.22
Number of iterations 250,747 1,437,056
Number of binary variables 30 320
65 Number of constraints 407 2,186
Solution (x,,x,) (3.67115433, 4.34402387)
Solution (x,,x,,X5) (1.81765758, 5.3591112, 7.4)
Objective Value —35.56160283 0.00745283
CPU Time (second) 454.21 4354.26
Number of iterations 2,128,203 8,090,141
Number of binary variables 35 640
129 Number of constraints 467 4,362
Solution (x,,x,) (3.67116282, 4.34402387)
Solution (x5, x, , X5) (1.81767335, 5.3591112, 7.4)
Objective Value —35.56112235 0.00697235

* The reference upper bound solution is x, =3.668, x, =4.352, x, =1.816,
x, =5.373, x,=7.4 with objective value —35.55415

27

Chapter 3 Extension 1—Solving Generalized Geometric
Programs Problems

Many optimization problems are formulated as Generalized Geometric Programming (GGP)

containing signomial terms f(X)-g(y) where X and Yy are continuous and discrete
free-sign vectors respectively. By effectively convexifying f(X) and linearizing g(y),

this chapter globally solves a GGP with less number of binary variables than are used in
existing GGP methods. Numerical experiments demonstrate the computational efficiency of

the proposed method.

3.1 Introduction to Generalized Geometric Programming

Generalized Geometric Programming (GGP) methods have been applied to solve problems
in various fields, such as heat exchanger network design (Duffin and Peterson 1966), capital
investment (Hellinckx and Rijckaert 1971), optimal design of cooling towers (Ecker and
Wiebking 1978), batch plant modeling, (Salomone and Iribarren 1992), competence sets
expansion (Li 1999), smoothing splines {Cheng et al. 2005), and digital circuit (Boyd 2005).
These GGP problems often contain continuous and discrete functions where the discrete
variables may represent the sizes of components, thicknesses of steel plates, diameters of
pipes, lengths of springs, and elements in a competence set etc. Many local optimization
algorithms for solving GGP problems have been developed, which include linearization
method (Duffin 1970), separable programming (Kochenberger et al. 1973), and a concave
simplex algorithm (Beck and Ecker 1975). Pardalos and Romeijn (2002) provided an
impressive overview of these GGP algorithms. Among existing GGP algorithms, the
techniques developed by Maranas and Floudas (1997), Floudas et al. (1999), Floudas (2000)
(these three methods are called Floudas’s methods in this study) are the most popular

approaches for solving GGP problems. Floudas’s methods, however, can not be applied to

28

treat non-positive variables and discrete functions. Recently, Li and Tsai (2005) developed
another method to modify Floudas’s methods thus to treat continuous variables containing
zero values; however, Li and Tsai’s method is incapable of effectively handling
mixed-integer variables. This study proposes a novel method to globally solve a GGP
program with mixed integer free-sign variables. A free-sign variable is one which can be
positive, negative, or zero.

The GGP program discussed in this study is expressed below:

GGP
7,
Min Y f,(X)-G(y)
p=l
T,
st Y f,,00-G, (W<, w=1.,s,
q=1
where

€l f,0=c, [[x™, p=lls
i=1
(C2) f‘w,q(x):hw,qlnxiawvw ’ W:L...,S, qzlr",Tw,
i=1
©€3) 6,=]]g,,(v), p=1...T,,
j=1

€4 G, N=[]gn.,), w=loos, ¢=1..T,,
J=1

(C5) x=(x,,...,x,),1s a vector with free-sign continuous variables x,, where x,
can be positive, negative, or zero, x, <x; <X,, x, and X, are constants,
(C6) y=(»,5.--»¥,)» 1s a vector with free-sign discrete variables
VY, € {dj,l""’dj,rj} where d,, can be positive, negative, or zero,

(C7) g,;(y;)and g, .(y;) arenonlinear functions of y,,

29

9 a,,,,,:,¢,,h,,,and [, are constants,

(C9) «,; and ¢, , areintegersif the lower bounds of x, are negative.

Floudas’s method can solve a specific GGP problem containing continuous functions

with positive variables, as illustrated below:

GGP1 (with continuous functions and positive variables)

Min ifp (X)

1 —1

T,
s.t. wa’q(x)ﬁlw, w=L..,s, X=(x,...,x,), x;<x,<X,, Vx,>0,
q=1

where conditions (C1) and (C2) in GGP hold.
For solving GGP1, Floudas’s method denotes x, =¢" with 7, =Inx, and group all
monomials with identical sign. GGP1 is rewritten by Floudas’s method as follows:
Min /7" (1) - fo (D) \
st for()—f ()< Law=hoas,

" Iy (1)
fO (t)zch'e ta

CF>0

fr=>-c, ",

¢, <0

hy () =Sa,,1,.9p. (3.1)

+ _ hyy 4 (1)
f‘w (t) - Zhw,q e s

hy 4>0

— B hyy g (1)
f‘w (t) - z_ hw,q e 4

h, 4<0

hW,CI (t) = ;aw,q,i ’ tiavwaq . j

GGP1 is a signomial geometric program containing posynomial functions f; (t),

30

f.o(t) and signomial functions — f,(t), —f, (t) where t=(¢,...,¢,) is a positive
variable vector. A posynomial term is a monomial with positive coefficient, while a signomial
term is a monomial with negative coefficient (Bazaraa et el. 1993; Floudas 2000). Supports all
signomial terms in GGP1 are removed then we have a posynomial geometric program below:
Min £y (t)
st fr<l ,w=1..s.

Posynomial geometric program laid the foundation for the theory of generalized
geometric program. Duffin and Peterson (1966) pioneered the initial work on posynomial
geometric programs, which derived the dual based on the arithmetic geometric inequality.
This dual involves the maximization of a separable concave function subject to linear
constraints. Unlike posynomial geometric ‘problems, signomial geometric problems remain
nonconvex and much more difficult to' solve.:Floudas's method employs an exponential
variable transformation to the=initial signomial geometric program to reduce it into a
decomposition program. A conveX relaxation is‘then obtained based on the linear lower
bounding of the concave parts. Floudas's method can reach e-convergence to the global
minimum by successively refining a convex relaxation of a series of nonlinear convex
optimization problems. The & —convergence to the global minimum (& —global minimum),
as defined in Floudas (2000, page 58) is stated below: Suppose that X" is a feasible solution,

£>0 is a small predescribed tolerance, and f(X)> f(X)—¢ for all feasible X, then X
i1s an ¢ —global minimum. However, the usefulness of Floudas's method is limited by the
difficulty that x, must be strictly positive. This restriction prohibits many applications where
x, can be zero or negative values (such as temperature, growth rate, etc.).

In order to overcome the difficulty of Floudas’s methods, recently, Li and Tsai (2005)
proposed another method for solving GGP1 where x, may be negative or zero. Li and Tsai

31

n n
first transfer x'7 and x4+ into convex and concave functions, then approximate
1 1 9

i=1 i=1
the concave functions by piecewise linear techniques. Li and Tsai’s method can also reach
finite e-convergence to the global minimum. Both Floudas’s methods and Li & Tsai’s method
use the exponential-based decomposition technique to decompose the objective function and
constraints into convex and concave functions. Decomposition programs have good properties
for finding a global optimum (Horst and Tuy, 1996). A convex relaxation of the
decomposition can be computed conveniently based on the linear lower bound of the concave
parts of the objective functions and constraints.
Two difficulties of direct application of Floudas’s method or Li & Tsai method to

globally solve a GGP problem are discussed below:

(1) The major difficulty is that .# =1 binary.variables are used in expressing a discrete
variable with » values. For _mstance, “to linearize a signomial term
G(Y)=g,(y) g, (y,)=y"" 95 where y e {djyl,djyz,...,dj,,j}Vj, r;, by taking the
logarithm of G(y) one obtains

2 iy
InG(y)=a,Iny, +a,Iny, = Zaj[lndj,l +zuj,,{(1ndj,k —Ind;,)]
k=2

I=

where ZM <1, u,, €{01}.
k=2

Jk =

It require 7, +r, —2 binary variables to linearly decompose G(Yy). If the number of 7,

is large then it will cause a heavy computational burden.

(i) Another difficulty is the treatment of taking logarithms of y,. If y, may take on a
negative or zero value then we can not take logarithmic directly.

32

This study proposes a novel method to globally solve GGP programs. The advantages of
the proposed method are listed as below:

Less number of binary variables and constraints are used in solving a GGP program. Only

Z(Iog2 rj—‘ binary variables are required to linearize g, (y,) and g, ;(y;) in GGP. It

r=l
is capable of treating non-positive variables in the discrete and continuous functions in
GGP.

This study is organized as follows. Section 3.2 develops the first approach of treating
discrete functions in GGP. Section 3.3 describes another approach of treating discrete
functions. Section 3.4 proposes a method for handling continuous functions. Numerical

examples are analyzed in Section 3.5.

3.2 The Proposed Linear Approximation Method

Form the basic of THEOREM 2.1, we develop two approaches to express a discrete variable
y with r values. The first approach, as described in this section, use |_10g2 r—‘ binary
variables and 2r extra constraints to express y. The second approach, as described in the

next section, use [log, 7| binary variables but only 3+4|log, | constraints to express

v . The first approach is good at treating product terms f (X)H g;(y,), while the second

J=1

approach is more effective in treating additive terms z g;(y)-
j

REMARK 3.1 A discrete free-sign variable y,y €{d,,d,,....d.} can be expressed as:
di—M-A, <y<d +M-4, k=1,.,r (3.2)

where

33

(i) k& issameas € in(2.5)and 4, issameas 4,(0') in(2.7).
(i) M 1s abig enough positive value,
M =max{l,d,,...,d .} —min{0,d,,...,d .} . (3.3)

PROOF (i)If 4, =0 then y=4d,,

(i) If 4, 21 then d, —M -4, <min{0,d,,...,d,} <y <max{0,d,,....d, } <d, + M - 4, .

Therefore (3.2) is still correct. m

Take Table 2.1 for instance, for y € {-1,0,1,4,5,6,7.5,8,9,10}, y can be expressed by
linear inequalities below:
—1-MO+u +uy+uy+uy) S y<—-1+MO+u +u, +u;+u,),

0-M—u +usFuy+u) S V< 0+M(1—u +uy +ul +u,),

10-M(2—u] +u; Fus—uy) <y <AO+ M(2—u) +us +ul —uy),
where M =10+1=11.
In this case r=10and there are 2x10=20 constraints being used to express y. Since
depending on the final u/,u,,u;, and u, assignments, only two of 20 inequalities will turn
into equalities which indicate the discrete choice made of y, while the rest of 18

inequalities turn into redundant constraints.

REMARK 3.2 Expression (3.2) uses |—10g2 r—‘ binary variables and 2r constraints to

express a discrete variable with » values.

34

PROPOSITION 3.1 Given a function g(y) where ye{d,d,,..,d },d, are discrete

free-sign values, g(y) can be expressed by following linear inequalities:
gd)-M- -4, <g(y)<sgld)+M-4, k=L..r
where y, A4, ,and k are specified in REMARK 3.1, and

M = max{l, g(dl)r"’ g(dr)} - min{O, g(dl)r"’ g(dr)} .

(3.4)

PROPOSITION 3.2 A4 product term z= f(X)-g(y), where f(X):cHx;’" as being

i=1

specified in GGP, x,<x,<X,, c is a free-sign constant, and yeld,,...d.}, can be

expressed by following inequalities:
f(X)-gld)-M'" A <28 (%) -g(d)+ M- A, k=1,.,r

where
(1) y,4,,and k are spectfied in PROPOSITION.3.1.

() M'=f(x)-M,for

f(X):maX{1,|c|Hin}, where x; =max{|x" |,x, <x, <XVi}.

i=1

PROOF It is clear that M'>M|f(X)|] for x,<x,<Xx, . Since

-M4, <-Mf(X)4, and M4, > Mf(X)A4,. Two cases are discussed.

(1) Casel for f(x)=0.From Proposition 3 to have

J(X)-gd)=Mf(X)- 4, < f(X)(y) < f(X)-g(d,)+Mf(X)- 4, .

We then have

JOgld)—M" A4, < f(X)g(y)< f(X)gd)+ M- 4.

(i) Case 2 for f(x)<0.From Proposition 3 to have
35

J(X)-gd)=Mf(X)- 4, = f(X)g(y) 2 f(X)-g(d,)+Mf(X)- 4, .

Similar to Case 1, it is clear that
S¥)g(d)-M" 4, < f(X)g(y) < f(X)g(d,)+M'"- 4.

The proposition is then proven.

REMARK 3.3 For a constraint z= f(X)-g(y)<a where a is constant, f(X) and g(»)
are the same as in PROPOSITION 3.2. The constraint z <a can be expressed by following
inequalities:

fX)-gd)-M"-A, <a, k=1,..,r,
where M’ is same in PROPOSITION 3.2. There are r constraints used to describe z<a;

where only one of the constraints .i§ activated(ie., A, =0) which indicates the discrete

choice made by y, while the rest of .'# =1 inequalities turn into redundant constraints.

We then deduce the main result below:

THEOREM 3.1 Denote z,=f(X)-g,(y,) and z,=z,,-g,(v,)=/)-[]g,(»,) for
J=l

n
_ — Q; ¥ ; ;
o=2,..,m where f(X)—cl le. , X, <x,£X;, ¢ is a free-sign constant, and y, are
i=1

discrete free-sign variables, y, e{d,,,d d..}. The terms z,,z,,.,z, can be

FR IR m
expressed by the following inequalities:

(C1) f(x)'gl(dl,k)_Ml, 'Al,k <z Sf(x)'gl(dl,k)+M1, 'Al,k k=1,..n

(C2) z,-8,(dy) —M) Ay <z, <28, (dy)+ My - Ay k=1,...r,

36

(Cm) Zm—l .gm(dm,k)_M/'n .Am,k SZm SZm—l .gm(dm,k)—i_M;,n .Am,k s k:1 sees
where
i) d;,—-M,-A, <y, <d, +M,-A,,, j=L..m, k=1,.,r,

.
WIJ)+i((_l)LwllJ u,,), 0=1,.. ,[logz —‘forall J.k,
w=1

i) 4, = o.5f(1—(—1)b

w=l

‘10820‘

(i) k=1+ D 2""u
w=1

(iv) M;=m~ﬁq, F(x) is specified in (3.5),)

i=1

o, = mkaX{Lgi(di,k)} _mkin{oagi(di,k)} , (3.6) >

J=Le,m, k=L...r,. p

PROOF (i) Consider (Cl1). Since M} >M">M.=o,, where M' and M are specified

in PROPOSITION 3.2, (C1) is ture.
(i) Consider (C2). It is clear M; = %-0102.
If f(X)=0 then z -g,(d,,)— M- Ay <z08,(dy) - f(X)o0, - 4y < z,-8,(d,,)
and z,-g,(d,,)<z-g,(d,,)+ f(X)o,0,-4,, <z,-g,(d,,)+ M- A4,,
If f(x)<0
z, gz(de)+M' Ay 22,-2,(dy)- f(X)o0,-4,, 22,-g,(d,,) and
z,-8,(dy,) 22, 8,(dy)+ [(X)0,0, - 4y 22, -g,(dy)~ M) - Ay,
We then have z,-g,(d,,)-M;-A4,,<z,<z-g,(d,,)+ M, -4,, for 4,, >1.

(i11)) Similar for (C3) to (Cm).

The theorem is then proven. i

37

p m
REMARK 3.4 A Constraint ny (X)H g,;(y)<a , where a is constant
j=1

s=1

n
and fS(X):cSHxia"“' , X, <x,<X,, c¢ is a free-sign constant, can be expressed by
i=1

following inequalities:

Zs,mfl ’ gs,m (dm,k) - Ms,m ’ A < Zs,mvs’ k’

s,mk —
Zs,m—2 ’ gs,m—l (dm—l,k) - Ms,m—l ’ As,m—l,k < Zs,m—l < Zs,m—2 ’ gs,m—l (dm—l,k) + Ms,mfl ' As,m—l,kvs7 k’
Ze2 "85 (dz,k) - Ms,z : As,z,k Sz2,52,°8 (dz,k) + Ms,l : As,z,kvs7k’

fs(X)'gs,l(dl,k) -M,, 'As,l,k Sz = fs(X)'gs,l(dl,k) +M,, 'As,l,kvs’k’
where

i

)il

M, =f,()[]o.: f,(x)=maxfl| € P>}, x5 = max{|x
i=1

Jj=1

o,; = max{l, g, (di,k)} —min{0, g, (dl.’k)}.

For instance, a single nonlinear constraint xy, +y,y, <a where 0<x<5, y,y, are

integer variables, 1< y,,y, <32, can be converted into a linear system as follows.
(i) Denote y, €{l,...32}={d,,....dy,} . Since [log,32]|=5 , five binary variables
u,u,,u;,u,, and u, are used to express y,.Specifying k as:

k=1+u, +2u, +2%u; + 2 u, +2%u;.

Referring to (3.2), y, is expressed as

d—M,- A, <y <d, +M, - A, k=1,..32, (3.8)

38

where M, =32 and 4, are specified as

Ay =uy +uy +uy+uy, +ug,

AL2 =1—u, +u, +u; +u, +us,

Ay =5~y —uy —us —u, —us.

Similarly, denote y, €({L....,32} =1{b,,...,bs,}, five binary variables v,,v,,v,,v,, and v

are used to express y, . Specifying ¢ as:

g=1+v,+2v, +27v, + 2%y, +2%v,.

v, 1s expressed in the same way asin y, :

b~ M, A€y, <b +M, - 4,,,q=1,..32, (3.9)

where M, =32. Specifying 4, - as

Ay = ViV, FV; 0+ v,

Ay, =1=v +v, + vy +v, +vg,

Az,sz =5-v, =V, =V, -V, —Vs.

(ii) Treating the first termxy, in the constraint. Denote z, =xy,. From Theorem 1 to

have:

xedi M- Ay <2,k =132,

where M, =5%(32% —0)=5120

(11) The second term y,y, in constraint is treated similarly. Denote z, =y,y,. To form

39

the inequalities as

Wb, —-M;-4,,<z,,9=1,..32,

where M, =32%32=1024.

The original constraint then becomes z, +z, <a where there are additional 10 binary

variables and two continuous variables. By utilizing Theorem 1 to express this constraint in
linear form requires 192 additive constraints (where 64 come from (3.8), 64 come from
(3.9)). Another approach, developed based on Theorem 1, can be used to reduce the number

of constraints from 192 to 64+2(3+ 4|_10g2 32—‘) =110.

3.3 Treatment of Discrete Function:in, GGP (Approach 2)
PROPOSITION 3.1 uses [log, 7| binary variablesiand: 27 additive constraints to express a
discrete function g(y) variable with %" walues. 'Here we use PROPOSITION 2.2 and
PROPOSITION 2.3 to express the same discrete - variable where only 3+ 4ﬂog2 r—| additive
constraints are required. Such an expression is computationally more efficient to treat g(y)
in a GGP program.

We use p, and o, to instead of r, and z, in PROPOSITION 2.2 and PROPOSITION
2.3 in this section respectively. For instance, given ye{-1,0,1,4,5,6,7.5,8,9,10}, referring

to Table 2.1 to have

40

10
ZpkAk =p(u +uy+u; +u)+p,(1—u, +u, +u, +uy)+..+p (2 —u, +u, +uy; —u,)
k=1

=u(p,— P, +Ps— Pyt Ps—DPs+ P~ Ps+ Py~ Po)

+uy(py+ Py — D3 — Py +Ds+Ds— D7~ DPs + Do+ Do)

tus(py+ Pyt Ps+ Py —Ps—Ps—P7—Ps+ Pyt Pyo)

tu,(p,+p,+ P3P+ Ps+Pet+ Pyt Py — Py~ Py) =0.

The discrete variable y can be expressed by following linear equation and linear

inequalities:

y=-p +p;+4p,+5ps;+6p+7.5p, +8p, +9p, +10p,,

0, +0, +o34+0, +pstp, +...+2p,, =0,

Py =Pyt Dy — =Py R UrSOrE pi=py + py -

Dyt Dy —Ps— =Py~ 1FU; R0, S p+py—ps——

Ditpy Pyt —p—l+u, <6, <p +p,+p;+.

10
> b =1, p, 20.

k=1

It is convenient to check: If u, =1 and u, =u, =u, =0

Oy =P+t Py =Py =Pyt Ds+Ps—P7—DPs+ Dot P

Since 6, + p, + py +2p, + ps +2ps +2p; +3pg + py +2py, =

=P +t1l-u,

Do +1—u,,

= Py +1-uy,

\

> (3.10)

J

then 6, =0, =0, =0 and

10
D +2p, +p,+2ps +3ps+ p; +2ps +2py +3p,, =10, p, >0, and Zpk=1,it is clear

k=1

DI=Py=Py=DPs=DPs=D;=DPs=Py=p,=0, 6,+p;=0, 6,=-1 and p,=1. We

41

then have y = p, =1.

REMARK 3.5 [log, 7| binary variables, 3+4|log, | constraints, and r+][log, r]

continuous variables are used in PROPOSITION 2.2 and PROPOSITION 2.3 to express a discrete

variable with » wvalues.

REMARK 3.6 Given a function g(y) where ye{d,,...d }, g(»y) can be expressed by

following expressions.

g(d,) = ig(dupk

where Zpk =1, p, 20,and ZpkAk =0 are specified similarly.
k=1 k=1

For instance, a function g(y)=(10=»)/(1+ y*) can be expressed by the following

expressions:

(10-d,
g(y)—kzzz,(o dl]pk,
Suppose u, =u; =u, =0 and u, =1 then k=2,p,=1,y=0 and g(y)=10.
Table 3.1 is a comparison of the three ways for expressing a discrete variable y with

r values. A numerical example is given in Example 3.4 to compare their computational

effeciency.

42

Table 3.1 Way of expressing ye{d,,...,d,}

Floudas’s Method, Approach 1 Approach 2
Li&Tsai’s Method ~ REMARK 3.1 PROPOSITION 2.2
u y=d, —MA,, u u
= u d = d ’ = 1,
g kzzl: o y<d,+M4,. g kZ:l: P kZ:l:pk
Expression - k=1 .
u, =1,Vu, {0, S pd, =0,
(= k=1
No. of binary variables r |_10g2 r—‘ !—log2 r_|
No. of additional constraints 2 2r 3+ 4[log, r]
No. of additional continuous variables 0 0 r+ !—log 5 I”—I

Now consider Condition (i) in THEOREM 3.1, where y; are expressed by Approach 1
using 2r; constraints. That condition can be replaced by PROPOSITION 2.2 and PROPOSITION

2.3 where only 3+4|_10g2 r—‘ constraints _are required. This is described as following
proposition:

PROPOSITION 3.3 Replacing Condition (i)-in-THEOREM 3.1 by following expressions:

Y= Zdj,kpj,kaj =1,..,m
k=1

where ij’k =1, p,;20, and ij’kAj,k:O for all j,k. The total number of
k=1 k=1

variables and constraints used to express y,z,,..,z, using (Cl), (C2),...,(Cm) in

THEOREM 3.1 are listed below:

(1) no. of binary variables: Z‘Ilog2 rj—‘,

j=1

(i) no. of constraints for g (y,): 3m+ Z‘Ilog2 rj—‘,
Jj=1

(ii1) no. of constraints for z,,z,,...,z, in(Cl), (C2),...,(Cm): 42 T
j=1

(iv) no. of continuous variables: z (r, + D+ Z‘Ilog2 rj—‘.
Jj=1 j=1
43

3.4 Treatment of Continuous Function in GGP

Consider the signomial form f(X) = cH x/, according to Li and Tsai (2005), we illustrate

i=1

the technique of treating f(X), X=(x,,X,,....x,),x, as free-sign variables, x;, <x, <X,
and c¢ is a constant. Introducing new binary variables 6,4, and a positive continuous
variable 0<x! <max{-x,,X,} which are specified below:

(1) x, =0 ifandonlyif 4 =0,

(i) x,>0,x, =x/,0<x’ <% ifandonlyif 4 =land@, =0,

(iii) x <0,x, =—x,x, <-x’ <0 ifand onlyif A =land@, =1

The above conditions can be represented by.a set of linear inequalities below:

(i) 0<x’ <M,
(ii) 0<x, <x(0-60)-x0,
nglo Smax{_zia)_‘-i}a
= (iif) x) —M6O'< x, <x' + M0,

x, =x"A.(1-20).
V) —x' —M(1-6)<x <—x"+M(1-6),

(v) 2,0, €{0,1}.
Here M =2max{-x,,X,}.Now denote f(x) and f’(X) asbelow:
f(X)= cﬁ x“ and f°(X)= cﬁ (x))% where x are positive variables mentioned
i=1 i=1
above, it is clear that
700 =°00- T[4 (1-26)" , 4.6,€40,1} (3.11)
i1
Expression (3.11) implies:

(1) If A4 =0Vi then f(X)=0,

44

(i) If A, =16 =l,ande, isodd forall ie{l,2,..,n} then f(X)=—f"(X).

By specifying three new variables A, 6,and¢ defined below:
(i) A4,

(11) 0=26’i—2t,I={i|)_cl.<0 and ¢, isodd forall i,

iel

(i) 0<r<0.5.6,+1),

iel
where 4,60 € {0,1},and¢ is an integer variable.
It is clear that if A=0 then f(X)=0; if §=0 then f(X)=f°(x); and if 8=1

then f(x)=—/"(x). We then have following proposition:

PROPOSITION 3.4 Consider a signomial continuous function f(X):cHxl.“”

i=1

where

X=(X,,X,y,....,X,), X, are free-signi-variables,;| X, <X, <X,, and c is a constant. f(X) can be
expressed with the following inequalities:
“MAL f(X)EMA,
FPO)-MO<fx)<) +M9,
=[P -M'1-0)< f) <=/ (X)+M'(1-0),

6=>0-2,

iel

0<1<0.5>.6,,

iel

> A -(n-1)-2<0,
i=1

45

x) —M6, <x,<x) +MO,VieJ,
—x} -M(1-0)<x,<-x] +M(1-0,),VieJ,

0<x'<X,igJ,

where
(i f°(><)=c]i[(x?)“",
(i) 4,0,4.,0.€{0,1}, M =2max{-x,,X,},
(iii) ¢ is an integer variable,
(iv) J 1s a set containing all 1 where the lower bound of x, areis negative, and I
denotes a set of all i where i eJ andmey.is odd, J and I are expressed as
J={i|x, <0Vi} and

I={i|x, <0 and ¢, i1soddVi .

PROOF Referring to Li and Tsai (2005). O

In order to globally solve a GGP problem, f°(X) in PROPOSITION 3.4 should be
approximately linearized. The most convenient approach to linearizing f°(X) is to take

logarithms to reformulate f°(X) as the differences of some convex functions in (3.1) as

proposed by Floudas’s method. Such an approach, however, requires that we add numerous

new binary variables. For instance, to treat a constraint
z=x"x,'x; <10 where 1<x,,x,,x,<5. (3.12)
Floudas’s method first denotes z, =logx,, z, =logx,,and z, = log x;, then to reformulates

z<10 as the following linear inequalities:
46

-0.5z, =z, +2z, <loglO0,
L(logx,) <z, <logx,, i=123.
Since logx, are concave functions, linearizing L(logx,) with m break points requires
the addition of 3(m —1) binary variables for piecewise linearization. Here we propose

some converxification and concavification strategies to reduce the number of binary

variables required to linearize L(logx,). Consider the following propositions:
PROPOSITION 3.5 A4 piecewise linearized function L(f(x)) of a concave function f(x) with
m break points b, <b, <...<b, can be expressed as

(Cl) b —M-A <x<b,+M-A,, k=1.,m-1,

(C2) f(b)+s,(x=b)—M A, <L(f(x)Sf(b)+s,(x=b)+M-A,, k=1..,m-1

where

— f(bk+1)_f(bk)

1) s
1) s, b —b,

1

(1) A, are specified as the similazway in (2.7),
(iii)) M is a large enough positive value.
Obviously, only |_10g2(m—1)—| binary variables are required to create the piecewise

linear function L(f(x)).

PROOF Referring to Tsai et al. (2002). O

PROPOSITION 3.6 A twice-differentiable function f(X)=cx{"xy*..x",x, 20Vi=1,..n,

o 27V
is a convex function in one of the following conditions:

(Cl) ¢>0, a, <0Vi,

(C2) ¢<0, a,>0Vi, Y o <I.
i=1

47

PROOF Referring to Tsai et al. (2002). i

To simplify the expression, here we use a signomial term with three variables as
instances to illustrate the convexification and concaveification techniques.

CONVEXIFICATION AND CONCAVIFICATION STRATEGIES 1
Consider a constraint z=x;"x;"x;" <constant with x,>20G=1,2,3), ¢, a,<0,
o, > 0. This constraint can be converted into the following inequalities:

-

X/ x52w;“ < constant ,
-1 -1
X, Swy <L(xy)
—ay -1

where x{xw;®,x;' are convex (following (C1) of PROPOSITION 3.6, and L(x;') is a

piecewise linear function by PROPOSITION 3.5.

Take the example in (3.12) as an introduction./ The constraint z <10 is converted into

the following inequalities base on CONVEXIFICATION AND CONCAVIFICATION STRATEGIES 1:
x 7 xy'wy? <10,
X <wy < L(x;),

where only |_10g2(m — 1)_| binary variables are used instead of the 3(m—1) binary

variables required by conventional methods.

CONVEXIFICATION AND CONCAVIFICATION STRATEGIES 2
A constraint z=—x"x"x;° <constant with x, >20G=1,2,3), «,,,,a;,<0 . This

constraint can be converted into following inequalities:

1 1 1
—w)w;wj < constant,

48

xf“" <w, SL(xf“") for i=1,2,3,

1 1 1
— w3 w3 w3
where —wiw;wj,x

3a;
i

are convex (following (C2) of PROPOSITION 3.6), and L(x;“) is a

piecewise linear function by PROPOSITION 3.5.

3.5 Numerical Examples

ExAMPLE 3.1 GGP with Linear Continuous Function

Consider following program with one continuous free-sign variable x and two discrete

variables y, andy,:

PROGRAM 1

Min xy.y, +xp,y;
s.t. (Cl) xy! +y,y,<=500,
(C2) —xy, + ¥, ys <500,
(C3) -5<x<5,
(C4) y,e{-1,0,1, 4,5,6,7.5,8,9,10},
(C5) y,e{-27, -18, -9, -7,-4,-1, 1,3,4,5}.
Program 1 can not be solved by Floudas’s methods (1997, 1999, 2000) or Li and Tasi’s

(2005) approach, since there are zero and negative values for continuous and discrete

variables. Our solution proceeds as follows:
(1) Denote y, €{-1,0,1,4,5,6,7.5,8,9,10} ={d,,...,d,,} . Since |_10g2 10—‘ =4, four binary

variables u,,u,,u,,andu, are used to express y,.Specifying k as:

k=1+u, +2u, +2%u, +2°u, <10. (3.13)

¥, can be expressed as in (3.10) where y is replaced by y, and p, are replaced
49

by . Specifying 4,, as
Ay =uytuy tugtug, A, =1—u +uy tuytug,, Ao =2—u +uy +u; —u,. (3.14)
Similarly, denote y, € {-27, —18, -9, -7,-4,-1, 1,3,4,5}={b,,...,b,,} , four binary
variables v,,v,,v;,and v, are used to express y,. Specifying g as:
qg=1+v +2v,+2%v, +2’y, <10. (3.15)
¥, 1s expressed in the same way as in y,:

Vo = _27p2,1 _18172,2 _9p2,3 _7p2,4 _4p2,5 —Prst Doy +3p2,8 +4p2,9 +5p2,107

52,1 +52,2 +52,3 +52,4 t Dot Pas +---+2p2,10 =0,

Doy = Dan ¥ Doy == Dyygim b4y, < = Psy — Doyt Doy == Dajot1-v, (3.16)

Doyt Pany+ Posten = Pygg —LEWISO,S Doy F poy + Py +o= Pogo 104,

10
sz’q =10 129 >0.

g=1

Specify 4,, as

Az,1 =V, +v, +V, +v4,A252 =1-v, +v, +v, +v4,...,A2JO =2-v+v,+v;-v,. (3.17)

(ii) Now treat the term x);y, in the objective function.

Denote z, = xy,y, and z,, = x); . From Theorem 1 to have:

z,b,-M;-4,, <z,q9=1,..]10,
(3.18)
x-a’,f _MI"Al,k <z Sx'dl? +M1"A1,k=k:19---,10-

where M, are the same as in (3.6). Since x 1is a continuous free-sign variable, here

x’,A,and @ are introduced to form following inequalities based on PROPOSITION 3.4:

50

0<x’ <MA,

0<x"<x(1-6)-x0,
(3.19)
x'—MO<x<x"+ M8,

—x'-MA-0)<x<—x"+M(1-6),

where 6,4 € {0,1}.

(ii1)) Other nonconvex terms are treated similarly as in (3.18) and (3.19). These terms are

_ 2 _ 2 _ _)
denoted as z, =x,y,y,, Z; =X,);, Z, =V V,, Zs =X y,and zg =y y,.

The original problem is then converted into a mixed 0-1 linear program below, which

contains 162 linear constraints and 8 binary variables.

PROGRAM 2

Min z, +z,

s.t. (Cl) z;+z, <-500,
(C2) —zs+2z,<500,
(C3) -5<x<5,

(C4) (3.10), (3.13)—(3.19),

where z,,z,,z,,25,z, are expressed similar to (3.18) and (3.19),
U Uy Uy Uy, Vi, Vs, Vs, vy, 4,0 € {01}, and M is a big value.

Solving Program 2 to obtain the globally optimal solution as (x,y,,y,)=(-4.9,10,-1)

with the objective value 4851.

EXAMPLE 3.2 GGP with Signomial Continuous Function

51

Here we use a signomial continuous function x;x, to replace x in Program 1. The

example is formulated below:

PrROGRAM 3

Min (The same objective function in Program 1)

s.t. (C1) The same constraints in Program 1 but erase the constraint: —5 < x <5,
(C2) x=x'x,, —5<x,<5, -5<x,<5.
Compared with the solution process of Program 2, the extra work is to treat the equality

constraint x = x;x, as follows:
(1) Expressing free-sign variables x, and x, by PROPOSITION 3.4 as inequalities below:
0<x <MA,
0 <! < X (h=8) —%:0,,
xP =100, <x <x’ +108,, i=12 (3.20)

—x!—10(1=8,) < x, <—x#10(1-6,),

AL A,

1

0=0+6,-2t,

0<1<0.5(6, +6,),
(3.21)
/11 —|—/12 —l_ﬂ«soa

~MA<x<MA,

where 4,,4,,4,6,,60,,0{0,1},and ¢ is a integer variable.
(i) Let x’=(x)’(x)), expressing the relationship between xandx’ as the following

inequalities based on Proposition 5:

X' -MO<x<x"+M'0,
52

X' -M'1-)<x<—x"+M'(1-6).

(ii1) Using Convexification and Concavification Strategies to convert the inequalities in (ii)

as follows:

wiw, = MO < x <wiPw)T + M,
(3.22)
—wiw, =M'(1-0) < x <—ww,' + M'(1-0),

() < w <L),
() <wy <L((x)),

(3.23)
() <wy <L((x)°),

(x2)* <w, <L((x;))"),
where
(@) w’w;' is convex form of x° and“w;w, 1s a concave form of x’,
(b) L)), L(x)H™), LG)sand £((x))*) are piecewise linear functions of
)LD, (), and (x))*, respectively.
(c) M= 2% , m is specified in (3.5).
The whole program is reformulated as the following mixed 0-1 convex program:
PROGRAM 4
Min z, +z,
s.t. (C1) The same constraints in Program 2,
(C2) Constraints in (3.20) —(3.23).
This is a mixed binary convex program which can be solved to reach finite & -convergence

to the global optimal solution as

(x;,%,,7,,,)=(—4.9051, 4.75, 1, —27) with the objective value -369954.

53

ExamMpPLE 3.3 Comparisons of Computational Efficiency for Signomial Function

This example is used to compare the computational efficiency between the proposed

method and Floudas’s methods. Consider following GGP problem:

PrROGRAM 5

n n
Min [T -3 [T
i=1

j=li=l.n
i#j

where x; are positive integer variables, 1<x, <m Vi,

o, and b are constants.

a

Forn =2, the objective function of the above problem becomes x"x;? —x/" —x5°.
For n=3 , the objective function of above problem becomes
XXy x = x1 Xy —x7 x5 — x' %5 . ‘Reforming this problem with n=3 by Floudas’s
method to have the following convex integer program:

PROGRAM 6

; s Zay,
Ya;y; i=1.3

Min e® =) ¢

zay;

3 i=1.3
st. (Cl) b<) e” <2b,
j=1
(C2) Yi= z(ui,j 'lndi,j Vi,
j=1

(C3) > (u,;)=1Vi, u,, €{0,1} Vi, .

j=1
Resolving this problem with n =3 by the proposed method to have the following linear

mixed binary program:
54

PROGRAM 7

Min z,; -z, -z, -2z,

st. (Cl) b<z,+zy;+2z,;<2b,

m

(C2) z,=>.d"p.;, D.pi;A4,=0,>p,; =1 p, ;>0 i=123,
Jj=1 Jj=1 Jj=1

(C3) z,+d) —M -4, ,<z,<z-d+M-4,; Vj,
(C4) z,°d —M -4y <z <zy-d+ M- 4, ; V),
(CS) zd—-M -4, <z;<z-d+M-4;; Vj,
(C6) z,-dss—M A, ; <z <z,-d5+M- 4, V],

ﬂng ’"1

€7 Y@M u) <mvi, u,, € 01}Vik.
k=1

All M! come from (3.7). By sspecifying various wvalues for m and b, we solve both

programs using LINGO (2004). The jrelated CPU time, number of binary variables, and
number of constraints are reported m Table 3.2.

Table 3.2 indicates that both methods reach the same & — global optimum for &£=10".
The number of binary variables used in Floudas’s method is larger than the proposed method,
while the proposed method uses more constraints than Floudas’s method. The CPU time
demonstrates that the proposed method is much more computationally efficient than

Floudas’s methods.

55

Table 3.2 Experiment result of Example 3.3

Experiment Conditions Proposed Floudas’s
method method
1 m=4 CPU Time Isec Imin 27sec
p=3 Number of binary variables 6 12
Number of constraints 55 9
Objective Value —5.389143
2 m=8 CPU Time 3sec 1min 44sec
p =4 Number of binary variables 9 24
Number of constraints 0 3
Objective Value —7.452201
3 m=16 CPU Time 11sec 6min 28sec
p—=10 Number of binary variables 12 48
Number of constraints 223 9
Objective Value —19.73737
4 m =32 CPU Time 2min 12sec 32min 45sec
p =131 Number of binary variables 15 96
Number of constraints 447 9
Objective Value —61.78579

*(a,a,,a,)=(-2, 0.5, 1.2)

EXAMPLE 3.4 Comparison of Computational Efficiency for Discrete Variables with Large
Sizes

Consider following program with three “discrete -variables y,,y, and y,, where y,

contains 8 possible values and y,, y, both contain 128 possible values.

PROGRAM 8

2 _.0.816

L D e
s.t. (C1) ylo'8 +y3'9 +y;)'5 >16,
(C2) ¥ +yy +y57 <31,
where v, €{1.1,3.2,5.3,7.4,9.5,12.6,14.7,16.8} ,

Yy, Vs €4 1.1,1.2,1.3,1.4,1.5,2.0,2.6,2.7,2.8,2.9,
3.1,3.2,3.3,3.4,3.5,4.0,4.6,4.7,4.8,4.9,

23.1,23.2,23.3,23.4,23.5,24.0,24.6,24.7,24.8,24.9,
25.1,25.2,25.3,25.4,25.5,26.0,26.6,26.7,26.8, 26.9}.

56

Floudas's method (or Li and Tsai's method) converts this program into following form:
PROGRAM 9
Min e2in»i+0816n, _yo.s _y1.2
2 3

s.t. (C1),(C2),
where Iny, =u, Inl.1+u,In3.2+...+u,Inl6.8,
Iny, =v,Inl.1+v,In1.2+...4v,,,1n26.7,
v =11% +32%, +..+16.8%uy, =0.8,-1.5,
Y =117y, +1.2% v, +..+26.7" v, £=0.5,09,1.7,
y; =11 w+12"w, +..+26.7" w,, y=12,0.5,
8 128 128
Zui =1, ZV‘/ =1, ZWk =L Vu,,v,,w, € {0,1}.
i=1 = fi=l

J

Our proposed method (i.e., THEOREM 3.1 and PROPOSITION 3.3) transforms this program

into following form:

PrRoGrRAM 10

Min z-yy° —yl?
st (C1),(C2),
1.1z, -M'(p, -1 < z<1.1°z, + M'(p, - 1),

3.2%z -M'(p,-1)<z<32° 2, +M'(p, -1),

16.87z, —M'(p, —1)<z2<16.8°z, + M'(ps 1),
where z, = 1.10'8”’ql +1.20'816q2 +...+26.7O'816q128)
Y =1.1p, +3.2% p, +..+16.8% p,,s, ¢ =0.8,-1.5,

vl =1.17¢,+1.27 ¢, +..+26.7" q,s, $=0.5,09,1.7,

57

y;=11s +1.27s, +..426.7" 5,4, ¥y =12,0.5,

8
Zpl. =1, ZpiAi =0,Vp, 20, A, composed of 3 binary variables,

i=1 i=1

128 128

Zq_/ =1, Zin[’ =0,Vq, 20, 4, composed of 7 binary variables,
j=1 j=1

128 128
Zsi =1, ZSI.A;': 0,Vs, >0, A, composed of 7 binary variables,
k=1

k=1
M'=16.8"x26.7"%°.

The number of binary variables, constraints, continuous variables, as well as the number
of iterations and CPU time are listed in Table 3.3. Table 3.3 illustractes that both programs
obtain the same global optimum with y, =16.8,y, =3.1, y, =14, and objective value is
685.0155 as solved by LINGO (2004).:However, the proposed method is more computational
effecient than Floudas's method and Li&Tsai's method.

Table 3.3 Compartsons of existing methods with proposed method

No. of binary No-of No. of continuous ~ No.of CPU time

variables constraints variables iterations (second)
Floudas's method and 264 13 3 53588 72
Li&Tsai's method
Proposed method 17 30 269 11139 3

58

Chapter 4 Extension 2—Solving Task Allocation
Problem

The task allocation problem (TAP) is one where a number of tasks or modules need to be
assigned to a set of processors or machines at minimum overall cost. The overall cost
includes the communication cost between tasks that are assigned to different processors and
other costs such as the assignment cost and the fixed cost of using processors. Processors
may have limited or unlimited capacities to perform tasks. Task allocation has been applied
to the design of distributed computing systems and also in auto-manufacturing contexts. We
try to find an efficient method to conquer the classic problems based on SRB. We also

report some computational experience for the TAP.

4.1 Introduction to Task AHocatien-Problem

The task allocation problem (TAP) is to assign a set of tasks or modules to a set of
processors or machines so that the overall cost'is minimized. The overall cost may include the
task assignment cost and the interprocessor communication cost, among others. And each
processor has a limited capacity or memory. The TAP is an important problem that arises in
distributed computing systems (see Stone 1977) and has also been applied in the automobile
manufacturing industry in Rao (1992). Many heuristic and exact algorithms have been
designed for solving various versions of the TAP. Heuristic algorithms are developed in Dutta
et al. (1982), Kopidakis et al. (1997), Lo (1988), Ma et al. (1982), Milis (1995), and Sarje and
Sagar (1991); metaheuristic algorithms such as simulated annealing, tabu search, and genetic
algorithms are proposed in Chen and Lin (2000), Hadj-Alouane et al. (1999), and Hamam and
Hindi (2000); and exact mathematical programming and/or branch-and-bound approaches are
used in Billionnet et al. (1992), Magirou and Milis (1989), Sinclair (1987), and Stone (1977).

Because of the complexity of the TAP, none of the above-mentioned algorithms, with

59

the exception of Billionnet et al. (1992), are capable of solving some real-world applications
optimally. Most versions of the TAP can be formulated as integer quadratic programs (see
Hadj-Alouane et al. 1999, Hamam and Hindi 2000). The potential of mathematical
programming approaches has not been fully explored for solving the TAP. In the last decade,
great progress has been made both in computational power and computational technology of
mathematical programming. Column generation and branch-and-price are two most important
approaches to conquer the classic large binary problems; however, we proposed a different
method and try to find an efficient exact mathematical programming formula.

For example, a TAP with n agents and m tasks requires nm binary variables in
deterministic approaches to obtain global solution while our method, based on SRB

introduced in Chapter 2, only needs !_log2 nm—‘ binary variables.
4.2 The Proposed Mathematical:Programming Formula

n agents are used to perform 2. tasks,each-of which is assigned to exactly one processor.

Let d;, be the execution cost of task ‘7 "if"it'is assigned to agent k. Let b, and s, be
the capacity and the fixed cost for agent k, respectively. Let a;, be the amount of the
resource required from its assigned processor for task i. If two tasks i and j are
assigned to two different agents, then the cost of communication between i and ; is
¢, ;(we assume that ¢, =c;, and ¢;; =0). Define the binary variables. x,, =1 if and
only if task i is allocated to agent k. Define y, to be a binary variable so that y, =1 if
and only if agent k is assigned at least one task. The TAP can be cast as an integer

quadratic program:

TAP
60

m-1 m n

Min z ZCI.J(I - sz’k) + zz dl.,kxl.,k + ZSkyk

=l j=it] k=1 =1 k=1 k=1
m—1 m n m n n
Min Z Zci,j (I- in,kxj,k) + szi,kxi,k + zskyk
=l j=it] k=1 i=1 k=1 k=1
n
s.t. le.qk =1, i=1..m, 4.1)
k=1
Zal.,kxl.,k <by., k=1..n, (4.2)
i=1
X Sy <Ll i=l.,m, k=1,.,n, 4.3)

where (i) s, be the fixed cost for agent £,

(i) d,, be the execution cost of task 7 ifitis assigned to agent k,

(iti) ¢, ; be the communication cost between two task 7 and task j
assigned to two different proeessors (assume that ¢, , =c,, and

(iv) b, be the capacity foragent" k ,

(v) a,, be theresource required of task i ifitis assigned to agent k,

(vi) x;, €{0,]} Vi,k and when x,, =1 ifand only if task i is allocated
to agent k,

(vit) y, =1 ifand only if agent ; is assigned at least one task.

The TAP is an integer program with quadratic terms x,,x,, . It is generally
computationally expensive to find optimal solutions of integer quadratic programs. Let z,;,
be the three-index binary variable (i=1,....m—1, j=i+1,..,m, k=1,..,n), and z =1 if

and only if both task i and task ; assigned to agent k.Basedon z, ,, the quadratic term

61

in TAP has been replaced by a linear term in the TAP3 through the three-index variable

Zi ik
TAP3
Min chlj(l zzljk)+zzd1kxk+zskyk
i=l j=i+l i=l k=1
s.t. (4.1),(4.2),(4.3),
Zix $Xy, i=leom=1 j=i+l..m, k=1..,n,
Zix SXp i=Loom=1 j=i+l..,m, k=1,..,n,
where conditions (i)~(vii) in TAP are hold and z, ;, > 0Vi, j,k.
. . m(m—1) . .
REMARK 4.1 nm binary variables, T+ n continuous variables, and

nm’ +2n+m constraints are used in TAP3.

Even though TAP3 do not have the.quadratic term present in the TAP, TAP3 is still a
formidable task to solve integer linear programs with many variables when m and n are
large. Therefore, it is desirable to propose formulations with two indices, Ernst et al (2006) let

u;, and v,, be a nonnegative variable representing the total communication cost via agent

k between task i and all other tasks and the total communication cost between task i and
all tasks assigned to agent k& when i is not assigned to agent k respectively. The

following is a two-index formulation TAP2A:

TAP2A

Min zz (U, +vlk)+zzd,kx,k +ZSkJ’k

11k1 i=1 k=l

st (4.1),(4.2), (4.3),

62

m

U —Vig = ZCij‘].(xijk =X) UiV, 20, i=1,m, k=1..,n,
=1

where conditions (7)~(vii) in TAP are hold.

REMARK 4.2 nm binary variables, 2nm+n continuous variables, and 2nm+2n+m

constraints are used in TAP2A.

Based on TAP2A, we also proposed another two-index formulation TAP2B following:

TAP2B
m=1 n m n n
Min C =Y > u, +>.>d x, + > 50
i=l k=l i=l k=l =
s.t. (4.1),(4.2),(4.3),
Uy < Zci,jxj,k7 i=lL.m=1 k=L..,n,
J=i+l
u, <x,C, i=L.m=lk=hi n.
m=l m m
Where Cl - z zci’f > Ci = zcl}j’i =1,..,m-1, Xk € {Oal}aui,k >0 Vik.
i=l j=i+l J=i+l

REMARK 4.3 nm binary variables, nm continuous variables, and 3nm+m constraints

are used in TAP2B.

We apply the SRB for the above two-index formulations to reduce the number of binary

variables. Use continuous nonnegative variables p, to replace the original binary variables

x, and convert TAP2A and TAP2B to SRB2A and SRB2B respectively.

SRB2A

63

. i 1
Min z 1 (1 +V1k)+zzdzkpzk +ZSkJ’k

k=1 i=l k=l

s.t. =1 i=l..m, (4.4)
.
a,.p <by., k=1..n, (4.5)
i=1
pi,k S yk S la i: 1,...,1’]’1, k = 1,...,1’1) (46)

m
U —Vip = ZCI.J (Pix —Pjs)s UigsVig>PissPjs 20, i=1om, k=1,....n,

Jj=1
llog,]
D 2%, <n-1, i=l,..,m, (4.7)
6=1
Mogan
Zp,k|G(k)|+ Zzlg i=1,...m, (4.8)
~Xy<2,,5X,, 0= L. [log,m] i=1,mm, 4.9)

zp,kc“ (- x9)<z,9_zp,kc9k+(1 xX,), 0=1,..[log,n] i=1,.,m(4.10)

k=1 k=1
where x!, €{0,1}Vi,0, |G(k)| are same in (2.9), c,, are same in (2.10), and

conditions (i)~(vii) in TAP are hold.

REMARK 4.4 m|log,n| binary variables, 3nm+n+m[log,n| continuous variables, and

2nm+2n+3m+4m[log, n| constraints are used in SRB2A.

SRB2B

Min C, - ZZu,k+ZZd,kp,k+Zskyk

i=1 k=l i=1 k=l

uk_ch/pjk, i=L..m-1, k=1..n

J=i+l

64

u, <p,C, i=lL.,m-1k=L..,n.

(4.4)—(4.10),

REMARK 4.5 m|log,n| binary variables, 2nm+m|log,n| continuous variables, and

3nm +3m+4m|log, n| constraints are used in SRB2B.

4.3 Experiment Results

Table 4.1 is the experiment result of all method proposed in previous section in different
combination of n agents and m qtasks. Although SRB2A and SRB2B use less binary
variables, its take much more time to obtain. global solution. We will continue to find a
efficient method to conquer this dpen guestion in our future research.

Table 4.1 = Experiment result of TAP

nl/m Conditions Method
TAP3 TAP2A TAP2B SRB2A SRB2B
8/8 CPU Time 2.64 sec 0.63 sec 0.64sec 1.62sec 1.8 sec
Iterations 8196 8300 4201 17449 16983
brance-bound node 316 495 236 941 921
Solution 7454
10/10 CPU Time 7.47 sec 2.14 sec 2.5 sec 10.14 sec 11.78 sec
Iterations 20825 23537 21704 86338 90765
brance-bound node 589 951 1025 3998 4313
Solution 10827
12/12 CPU Time 268 sec 115 sec 106 sec 562 sec 590 sec
Iterations 921084 1086282 846251 3436776 3143365
brance-bound node 18749 31479 25799 104852 87886
Solution 13544
14/14 CPU Time 2054 sec 1597 sec 1724 sec 6857 sec 6082 sec
Iterations 5132526 9447065 7447914 35883840 25079947
brance-bound node 62476 257220 182813 988543 645217
Solution 16588

65

Chapter 5 Discussion and Concluding Remarks

5.1 Discussion

In this study, we develops the core technique of this dissertation, Superior Representation of

Binary Variables (SRB), which uses only !_log2 m_| binary variables to replace m original

traditional binary variables (u,...,u,) with Zug =1. It can effectively reduce the
=1

traditional binary variables number from O(m) to O(log, m) and easily applies in any

mixed-integer problems.

By using SRB, we proposes a superior way of expressing the same piecewise linear
function. A less number of binary variables and additive constraints are used. It is easy to
use in various fields required piecewise, such-as.data fitting, network analysis, logistics, and

production planning (Bazaraa et al. 1999). For expressing a function f(x) with m+1
break points, the existing methods réquire~mbinary variables and 4m constraints (i.e.,

inequalities while proposed methods" require only flog2 m—| binary variables and
8+8log,m| constraints. The numerical examples demonstrate the computational

efficiency of the proposed method over the existing methods especially when the number of
break points is large.

We also extend SRB to apply Generalized Geometric Programs Problems. Based on
SRB, we propose a novel method for handling a GGP problem with free-sign continuous
and discrete variables. Since proposed method can treat free-sign and mixed-integer
variables of GGP, it is possible to obtain the global optimization effectively in all
applications with GGP, such as heat exchanger network design (Duffin and Peterson 1966),
capital investment (Hellinckx and Rijckaert 1971), optimal design of cooling towers (Ecker

and Wiebking 1978), batch plant modeling (Salomone and Iribarren 1992), competence sets
66

expansion (Li 1999), smoothing splines (Cheng et al. 2005), and digital circuit (Boyd 2005).

We first use |_10g2 r_| binary variables to express a discrete function containing 7 discrete

values, and utilize convexification and concavification strategies to treat the continuous
signomial function. Comparing with of existing GGP methods, the proposed method can
solve the problem to reach approximated global optimum using less number of binary
variables and constraints.

The main issue on the above proposed method is that the original binary variables

(u,,...,u,) must satisfy the following constraint:

m

Actually, the proposed method is not appropriate for some practice applications which do

not meet the above constraint.

5.2 Concluding Remarks

This study develops the Superior Representation of Binary Variables (SRB) core technique.
It can effectively reduce the traditional binary variables number from O(m) to O(log, m)

and easily applies in any mixed-integer problems; moreover, it has some directions for

future research are described below:

(i) Task allocation problem (TAP): For example, a TAP with n agents and m tasks
requires nm binary variables in existing deterministic approaches to obtain global
solution while our method, based on SRB, only needs |_10g2 nm—| binary variables.
We try to find an efficient method to conquer the classic TAP. Furthermore, it is

appropriate to solve the Multilevel Generalized Assignment Problem.

67

(i)

(iii)

Haplotype inference: This is the optimal haplotype inference (OHI) problem as given

a set of genotypes and a set of related haplotypes, find a minimum subset of

haplotypes that can resolve all the genotypes in biology, which is also NP-hard and

can be formulated as an integer quadratic programming (IQP) problem. We also want

to find an efficient method through our SRB approach.

Integrating deterministic and heuristic approaches: It is an appropriate way to solve

large scale optimal problems under the following strategy:

(a) Use the heuristic algorithms to find an initial solution to enhance the efficiency of

finding the optimal solution:

(b) Then, use deterministicapproaches are utilized to transcend the incumbent

solution.

68

References

Bazaraa, M.S., H.D. Sherali, C.M. Shetty. 1993. Nonlinear Programming: Theory and
Algorithms, 2e. Whiley, New York.

Beck, P.A., Ecker, J.G. 1975. A modified concave simplex algorithm for geometric
programming. Journal of Optimization Theory and Applications 15 189-202.

Boyd, S.P., Kim, S.J., Patil, D.D., Horowitz, M.A. 2005. Digital Circuit Optimization via
Geometric Programming. Operations Research 53 899-932.

Billionnet, A., Costa, M.C. Sutter, A. 1992. An efficient algorithm for a task allocation
problem. Journal of the Association for Computing Machinery 39 502—518.

Chen, C.S., Lee, S.M., Shen, Q.S. 1995. An analytical model for the container loading
problem. European Journal of Operational Research 80 68 —76.

Chen, W., Lin, C. 2000. A hybrid heuristic to Selve a task allocation problem. European
Journal of Operational Research 27 287-303.

Cheng, H., Fang, S.C., Lavery, J.E. 2005. A Geometric Programming Framework for
Univariate Cubic L1 Smoothing Splines. Annals of Operations Research 133 229-248.

Colorni, A., Dorigo, M., Maniezzo, V. 1992. Distributed Optimization by Ant Colonies. In
F. J. Varela and P. Bourgine, editors, Towards a Practice of Autonomous Systems:
Proceedings of the First European Conference on Artificial Life. MIT Press, Cambridge,
MA, 134-142.

Croxton, K.L., B. Gendron, T.L. Magnanti. 2003. A comparison of mixed-integer
programming models for nonconvex piecewise linear cost minimization problems.

Management Science 49 1268—-1273.

Dantzing, G.B. 1960. On the significance of solving linear programming problems with

some integer variables. Econometrica 28 30—44.

Dixon, L.C.W., G.P. Szegd. 1975. Towards Global Optimization. North-Holland,

Amsterdam.

69

Dutta, A., Koehler,G., Whinston, A. 1982. On optimal allocation in a distributed processing

environment. Management Science 28 839—-853.
Duffin, R.J. 1970. Linearizing geometric programming. SIAM Review 12 211-227.

Duffin, R.J., Peterson, E.L. 1966. Duality theory for geometric programming. SIAM Journal
on Applied Mathematics 14 1307-1349.

Duffin, R.J., Peterson, E.L., Zener, C. 1967. Geometric Programming: Theory and
Application. John Wiley & Sons, New York.

Ecker, J.G., Kupferschmid, M., Lawrence, C.E., Reilly, A.A., Scott, A.C.H. 2002. An
application of nonlinear optimization in molecular biology. European Journal of

Operational Research 138 452 —458.

Ecker, J.G., Wiebking, R.D. 1978. Optimal Design of a Dry-Type Natural-Draft Cooling
Tower by Geometric Programming. Journal of Optimization Theory and Applications
26 305-323.

Faina, L. 2000. A global optimization algorithm for the three-dimensional packing problem.
European Journal of Operational Research 126 340 —354.

Floudas, C.A. 1999. Global optimization in design and control of chemical process systems.

Journal of Process Control 10 125—134.

Floudas, C.A. 2000. Deterministic Global Optimization: Theory, Methods and Applcations.

Kluwer Academic Publishers.

Floudas, C.A., Akrotirianakis, I.G., Caratzoulas, S., Meyer, C.A., Kallrath, J. 2005. Global
optimization in the 21st century: Advances and challenges. Computers and Chemical

Engineering 29 1185-1202

Floudas, C.A., Pardalos, P.M. 1996. State of the Art in Global Optimization: Computational
Methods and Applications. Kluwer Academic Publishers.

Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus, Z.H., Harding S.T.,
Klepeis, J.L., Meyer, C.A. and Schweiger, C.A. 1999. Handbook of Test Problems in
Local and Global Optimization. Kluwer Academic Publishers, Boston, 85-105.

70

Fu, J.F., Fenton, R.G., Cleghorn, W.L. 1991. A mixed integer-discrete-continuous
programming method and its application to engineering design optimization.

Engineering Optimization 17 263 —280.

Glover, F., Laguna, M. 1997. Tabu Search. Kluwer Academic Publishers, Boston, MA.

Goldberg, D. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, San Mateo, CA.

Hadj-Alouane, A.B., Bean, J.C., Murty, K.G. 1999. A hybrid genetic optimization
algorithm for a task allocation problem. Journal of Scheduling 2 189-201.

Hamam, Y., Hindi, K.S. 2000. Assignment of program modules to processors: A simulated

annealing approach. European Journal of Operational Research 122 509-513.

Hellinckx, L.J., Rijckaert, M.J. 1971. Minimization of capital investment for batch
processes. Industrial & Engineering Chemistry Process Design and Development 10

422-423.

Horst, R., Tuy, H. 1996. Global -Optimization. Deterministic Approaches, 3" ed. Springer,

Berlin, Germany.

Kochenberger, A., Woolsey, R.E‘D.; McCarl, BJA. 1973. On the solution of geometric

programs via separable programming. Operations Research 24 285-294.

Kontogiorgis, S. 2000. Practical Piecewise-Linear Approximation for Monotropic

Optimization. INFORMS Journal on Computing 12 324-340.

Kopidakis, Y., Laman,M., Zissimopoulos, V. 1997. On the task assignment problem: Two
new efficient heuristic algorithms. Journal of Parallel and Distributed Computing 42

21-29.

Li, H.L. 1996. Notes: an efficient method for solving linear goal programming problems.

Journal of Optimization Theory and Applications 90 465-469.

Li, H.L. 1999. Incorporating Competence Sets of Decision Makers by Deduction Graphs.
Operations Research 47 209-220.

71

Li, H.L., Chang, C.T., Tsai, J.F. 2002. An approximately global optimization for assortment
problems using piecewise linearization techniques. European Journal of Operational

Research 140 584 —589.

Li, H.L., Chou, C.T. 1994. A Global Approach for Nonlinear Mixed Discrete Programming
in Design Optimization. Engineering Optimization 22 109 —122.

Li, H.L., Lu, H.C. 2008. Optimization for Generalized Geometric Programs with Mixed
Free-Sign Variables. Operations Research (was accepted, 21/01/2008).

Li, H.L., Tsai, J.F. 2005. Treating free-sign variables in Generalized geometric global

optimization programs. Journal of Global Optimization 33 1-13.

Lin, X., Orlowska, M. 1995. An integer linear programming approach to data allocation

with minimum total communication. Information Sciences 85 1—10.

LINGO. 2004. Release. 9. Lindo System Inc., Chicago.

Lo, V.M. 1988. Heuristic algorithms foi;task assignment in distributed systems. /EEE
Transactions on Computers 37 1384—1397.

Ma, P.Y.R,, Lee, E.Y.S. Tsuchiya, M. T:++1982: A task allocation model for distributed
computing systems. /[EEE Transactions on Computers C-31 41-47.

Magirou, V.F., Milis, J.Z. 1989. An algorithm for the multiprocessor assignment problem.
Operations Research Letters 8 351-356.

Maranas, C.D., Floudas, C.A. 1997. Global optimization in generalized geometric

programming. Computer and Chemical Engineering 21 351-370.

Milis, 1. 1995. Task assignment in distributed systems using network flow methods. Lecture

Notes in Computer Science 1120. Springer-Verlag, London, UK, 396—405.

Padberg, M. 2000. Approximating separable nonlinear functions via mixed zero-one

programs. Operations Research Letters 27 1-5.

Pardalos, P.M. and Romeijn, H.E., ed. 2002. Handbook of Global Optimization-Volumn 2:
Heuristic Approaches. Kluwer Academic Publishers, Boston, 515-569.

Rao, K.N. 1992. Optimal synthesis of microcomputers for GM vehicles. Technical report.

72

Rinnooy, K., Timmer, G. 1987. Towards global optimization methods (I and II).
Mathematical Programming 39 27 —178.

Romeijn. H.E., Smith, R.L. 1994. Simulated annealing for constrained global optimization.

Journal of Global Optimization 5 101 —126.

Rotem, D., Schloss, G.A., Segev, A. 1993. Data allocation for multidisk database. IEEE
Transactions on Knowledge and Data Engineering 5 882 — 887.

Ryoo, H.S., Sahinidis, N.V. 1995. Global optimization of nonconvex NLPs and MINLPs

with applications in process design. Computers and Chemical Engineering 19 551 —

566.

Salomone, H.E., Iribarren, O.A. 1992. Posynomial modeling of batch plants: A procedure to

include. process decision variables. Computers and Chemical Engineering 16 173—184.

Sandgren, E. 1990. Nonlinear integer and discrete programming in mechanical design

optimization. Journal of Mechanical Design 112 223 —229.

Sarathy, R., Shetty, B., Sen, A. 1997. A constrained nonlinear 0-1 program for data
allocation. European Journal-of Operational-Research 102 626 —647.

Sarje, A.K., Sagar, G. 1991. Heuristic model for task allocation in distributed computer

systems. /[EE Proceedings E-138 313-318.

Sharpe, W. 1971. A Linear Programming Approximation for the General Portfolio Analysis.
Journal of Financial and Quantitative Analysis 6 1263 —1275.

Sherali, H., Tuncbilek, C. 1992. A global optimization algorithm for polynomial
programming problems using a reformulation linearization technique. Journal of Global

Optimization 2 101 —112.

Sinclair, J.B. 1987. Efficient computation of optimal assignments for distributed tasks.

Journal of Parallel and Distributed Computing 4 342—-362.

Stone, H.S. 1977. Multiprocessor scheduling with the aid of network flow algorithms. /EEE
Transactions on Software Engineering SE-3 85-93.

Tasi, J.F., Li H.L., Hu, N.Z. 2002. Global optimization for signomial discrete programming

73

problems in engineering design. Engineering Optimization 34 613-622.

Topaloglu, H., W.B. Powell. 2003. An algorithm for approximating piecewise linear

concave functions from sample gradients. Operations Research Letters 31 66-76.

Tuy, H. 1998. Convex Analysis and Global Optimization. Kluwer Academic Publishers,
Dordrecht, The Netherlands.

Vajda, S. 1964. Mathematical Programming. Addison-Wesley, New York.

Young, M.R. 1998. A minimax portfolio selection rule with linear programming solution.

Maganement Science 44 673 — 683.

74

