
國 立 交 通 大 學

資訊管理研究所
博 士 論 文

整數規劃之高效率求解方法及其運用

An Effective Method for Solving Large Binary Programs and
Its Applications

研 究 生：盧浩鈞

指導教授：黎漢林 講座教授

中 華 民 國 九 十 七 年 六 月

 ii

整數規劃之高效率求解方法及其運用

An Effective Method for Solving Large Binary Programs and
Its Applications

研 究 生：盧浩鈞 Student：Hao-Chun Lu

指導教授：黎漢林 Advisor：Han-Lin Li

國 立 交 通 大 學

資訊管理研究所

博 士 論 文

A Dissertation
Submitted to Institute of Information Management

College of Management
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy
in

Information Management
June 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年六月

 iii

 iv

整數規劃之高效率求解方法及其運用

學生：盧浩鈞 指導教授 : 黎漢林

國立交通大學資訊管理研究所博士班

摘 要

許多非線性問題需要逐段線性技術(Piecewise Linearization)將原始問題線性化以求得

全域最佳解，而這過程需要加入許多二進位變數。近四十年來發展許多逐段線性之技

術，而本研究就是發展出一套二進位變數的超級展現法(SRB)以便降低逐段線性技術

所需之二進位變數其限制式。當一個擁有 1+m 個中斷點的線性化函數時，現有之逐段

線性技術必須用到m個二進位變數及 m4 個限制式，而本研究提出之方法只需 ⎡ ⎤m2log

個二進位變數及 ⎡ ⎤m2log88+ 個限制式。同時本研究也展現數個實際問題之應用以證明

它的高效率。

關鍵字: 二進位變數, 逐段線性化.

 v

An Effective Method for Solving Large Binary Programs
and Its Applications

Student：Hao-Chun Lu Advisor: Han-Lin Li

Institute of Information Management

National Chiao Tung University

ABSTRACT

Many nonlinear programs can be linearized approximately as piecewise linear programs by

adding extra binary variables. For the last four decades, several techniques of formulating a

piecewise linear function have been developed. This study develops a Superior

Representation of Binary Variables (SRB) and applied in many applications. For expressing

a piecewise linear function with 1+m break points, the existing methods, which incurs

heavy computation when m is large, require to use m additional binary variables and

m4 constraints while the SRB only uses ⎡ ⎤m2log binary variables and ⎡ ⎤m2log88+

additive constraints. Various numerical experiments of applications demonstrate the

proposed method is more computationally efficient than the existing methods.

Keywords: Binary variable, Piecewise Linearization

 vi

誌 謝

首先感謝 黎漢林老師的費心指導，這些成果完全仰賴指導教授，及 Yinyu Ye 教授 及

Christodoulos A. Floudas 教授的鼓勵，還有論文口試委員的指導使本論文更加完善。

寫論文時，很多想法來自於實驗室的傳承，其中類 0-1 變數的概念來自於黎老師與胡

念祖學長的概念，GGP的動機完全來自於蔡榮發學長的研究，Piecewise也是來自於張

錦特學長的論文。自己的想法不多加上我的英文並不好，所以要感謝大家與上天，我

只是最後那一根稻草時間到了研究結果就水到渠成。

在求學的歲月中，研究室的同學也給我許多的幫助與關懷。耀輝常幫忙我，在此

向你致謝；也常麻煩昶瑞開車；宇謙學長，實驗室的大好人，常常關心我；還有明賢、

大姐等。感謝你們陪我走過這段過程，不管是在做學問上、 生活上及娛樂上，有了你

們才使我在這段過程中常保有愉快的笑聲。

最後要感謝家人及女友的體諒，使我能夠專心一意完成學業，總之謝謝你們。

浩鈞 2008/06/10.

 vii

Contents

摘 要 ...iv

ABSTRACT ..v

誌 謝 ...vi

Contents...vii

Tables ..viii

Figures ..ix

Chapter 1 Introduction ..1

1.1 Research Background...1

1.2 Research Motivation and Purpose ..4

1.3 Examples ..5

1.4 Structure of the Dissertation ...6

Chapter 2 A Superior Representation Method for Piecewise Linear Functions...........8

2.1 Introduction to Piecewise Linear Functions ...8

2.2 Superior Representation of Binary Variables (SRB) ..10

2.3 The Proposed Linear Approximation Method..15

2.4 Numerical Examples...18

Chapter 3 Extension 1－Solving Generalized Geometric Programs Problems..........28

3.1 Introduction to Generalized Geometric Programming ...28

3.2 The Proposed Linear Approximation Method..33

3.3 Treatment of Discrete Function in GGP (Approach 2)...40

3.4 Treatment of Continuous Function in GGP..44

3.5 Numerical Examples...49

Chapter 4 Extension 2－Solving Task Allocation Problem...59

4.1 Introduction to Task Allocation Problem..59

4.2 The Proposed Mathematical Programming Formula..60

4.3 Experiment Results...65

Chapter 5 Discussion and Concluding Remarks ...66

5.1 Discussion...66

5.2 Concluding Remarks ..67

References..69

 viii

Tables

Table 2.1 List of)(θG , jc ,θ , and)('θθA .. 11

Table 2.2 Experiment 1 (4.01 =α , 21 =β , 85.12 =α , 22 =β , 5=b)20

Table 2.3 Experiment 2 (for different combinations of 1α , 1β , 2α , 2β and b)22

Table 2.4 Experiment result of Example 2.2 ...24

Table 2.5 Experiment results with discrete function in ILOG CPLEX26

Table 2.6 Experiment results with continuous function in ILOG CPLEX..........................27

Table 3.1 Way of expressing },...,{ 1 rddy∈ ...43

Table 3.2 Experiment result of Example 3.3 ...56

Table 3.3 Comparisons of existing methods with proposed method...................................58

Table 4.1 Experiment result of TAP ..65

 ix

Figures

Figure 1.1 Structure of the dissertation ...7

Figure 2.1 Piecewise linear function)(xf ..9

Figure 2.2 Contour map of the three-humped camelback function.....................................23

 1

Chapter 1 Introduction
1.1 1.2 1.3 1.4

1.1 Research Background

Optimization has many applications in various fields, such as finance (Sharpe 1971; Young

1998), allocation and location problem (Chen et al. 1995; Faina 2000), engineering design

(Duffin et al. 1967; Fu et al. 1991; Sandgren 1990), system design and database problems

(Lin and Orlowska 1995; Rotem et al. 1993; Sarathy et al. 1997), chemical engineering

(Floudas 1999; Ryoo and Sahinidis 1995), and molecular biology (Ecker et al. 2002). Those

optimization problems most are either nonlinear program or mixed-integer program and

involve continuous and/or discrete variables. Guaranteed to obtain global optimization and

improve the efficiency of algorithm are two important and necessary areas of research in

optimization.

There are two categories of approaches for optimization field: deterministic and

heuristic. Deterministic approaches take advantage of analytical properties of the problem to

generate a sequence of points that converge to obtain a global optimization. There are three

methods for deterministic approaches from recent literatures as follows.

(i) Difference of Convex functions (DC): The DC optimization method is important in

solving optimal problems and has been studied extensively by Horst and Tuy (1996),

Floudas and Pardalos (1996), Tuy (1998), and Floudas (2000), etc. By utilizing

logarithmic or exponential transformations, the initial GGP program can be reduced to

a DC program. A global optimum can be found by successively refining a convex

relaxation and the subsequent solutions of a series of nonlinear convex problems. A

 2

major difficulty in applying this method for solving optimal problems is that the lower

bounds of variables are not permitted to less than zero.

(ii) Multilevel Single Linkage Technique (MSLT): Rinnooy and Timmer (1987) proposed

MSLT for finding the global optimum of a nonlinear program. Li and Chou (1994)

also solved a design optimization problem using MSLT to obtain a global solution at a

given confidence level. However, the difficulty of MSLT is that it has to solve

numerous nonlinear optimization problems based on various starting points.

(iii) Reformation Linearization Technique (RLT): RLT was developed by Sherali and

Tuncbilek (1992) to solve a polynomial problem. Their algorithm generate nonlinear

implied constraints by taking the products of the bounding terms in the constraint set

to a suitable order. The resulting problem is subsequently linearized by defining new

variables. By incorporating appropriate bound factor products in their RLT scheme,

and employing a suitable partitioning technique, they developed a convergent branch

and bound algorithm has been developed. Although the RLT algorithm is very

promising in solving optimization problems, a major associate difficulty is that it may

generate a huge amount of new constraints.

The other category approaches, heuristic method, can get solution quickly, but the

quality of the solution cannot be guaranteed as a global optimization. Meta-heuristic is a

advanced heuristic method for solving a very general class of computational problems by

 3

combining user given black-box procedures in a hopefully efficient way. Meta-heuristics are

generally applied to problems for which there is no satisfactory problem-specific algorithm or

heuristic; or when it is not practical to implement such a method. Most commonly used

meta-heuristics are targeted to combinatorial optimization problems. Those popular

meta-heuristic methods are listed as follows.

(i) Genetic Algorithm (GA): GA (Goldberg 1989) is based on the idea of the survival of

the fittest, as observed in nature. It maintains a pool of solutions rather than just one.

The process of finding superior solutions mimics that of evolution, with solutions

being combined or mutated to alter the pool of solutions, with solutions of inferior

quality being discarded.

(ii) Simulated Annealing (SA): SA is a related global optimization technique which

traverses the search space by generating neighboring solutions of the existing solution.

The Hide-and-Seek algorithm (Romeijn and Smith 1994) is the first SA algorithm for

solving optimization problems.

(iii) Tabu Search (TS): The idea of the TS (Glover and Laguna 1997) is similar to SA, in

which both traverse the solution space by testing mutations of an individual solution.

While SA generates only one mutated solution, TS generates many mutated solutions

and moves to the solution with the lowest fitness of those generated.

(iv) Ant Colony Optimization (ACO): ACO first introduced by Marco Dorigo in his PhD

thesis and published in Colorni et al. (1992), is a probabilistic technique for solving

 4

computational problems which can be reduced to finding good paths through graphs.

They are inspired by the behaviors of ants in finding paths from the colony to food.

The main challenge of the above meta-heuristic methods is to guarantee convergence in

the solution; accordingly, the quality of the solution is not ensured.

Those two categories of optimum approaches have different advantages and weaknesses;

consequently, integrating deterministic and heuristic approaches is an appropriate way to

solve large scale optimal problems. For example, heuristic algorithms are applied to find an

initial solution to enhance the efficiency of finding the optimal solution; then, deterministic

approaches are utilized to transcend the incumbent solution.

1.2 Research Motivation and Purpose

Traditional deterministic optimization approaches have been very successful in obtaining

global optimization; nevertheless, there are still lacks of efficient method to some nonlinear

problems, especially for large mixed-integer problems. Consider the following equation:

 }1,0{,1
1

∈=∑
=

θ
θ

θ uu
m

. (1.1)

It means that there is one and only one binary variable can be active in the all given

binary variable. Equation (1.1) is frequently appeared in numerous classic optimal problems,

especially in the integer and combinatorial optimal problems. For instance, Task Allocation

Problem (TAP) is one of the fundamental combinatorial optimization problems in the branch

of optimization or operations research in mathematics. The primitive form of TAP is listed in

Example 1.2, which first constraint (1.4) is similar as Equation (1.1). Another example is to

decompose the separated discrete nonlinear term, introduced by Floudas (2000), in Example

1.1. The constraint (1.3) is same as Equation (1.1). There are also numerous applications of

 5

using Equation (1.1) in optimization problem.

This study focuses on developing a Superior Representation of Binary Variables (SRB)

method to replace the traditionally binary variables and apply in the various applications. The

major advantages of the proposed approach over existing optimization methods are reducing

the traditional binary variables number from)(mO to)(log2 mO with ⎡ ⎤ 1log4 2 +m new

additive constraints and easily applying in any mixed-integer problems. We also applied SRB

in some applications, such as Generalized Geometric Programming (GGP) and Task

Assignment Problem (TAP), and obtained the global optimization efficiently.

1.3 Examples

EXAMPLE 1.1 Linearization Form of Discrete Nonlinear Function

This example is a linearization result of discrete nonlinear function (1.2)

 },...,{,)(1 mddyyyg ∈= α . (1.2)

The decomposing program (DP), introduced in Floudas (2000), utilities m binary

variables to linearization (1.2). The mathematical form is listed below.

DP

Min ∑
=

m

du
1θ

α
θθ

s.t. θθ
θ

θ ∀∈=∑
=

 },1,0{ ,1
1

uu
m

, (1.3)

EXAMPLE 1.2 Task Assignment Problem

This example is primitive form of Task Assignment Problem (TAP), which has n tasks

that must be accomplished by using only m agents. Each agent performs better at some

tasks and worse at others and obviously some agents are better than others at certain tasks.

 6

The goal is to minimize the total cost for accomplishing all tasks or, stated differently, to

maximize the overall output of all the agents as a whole.

TAP

Min ∑∑
= =

n

i

m

ii ud
1 1

,,
θ

θθ

s.t. niu
m

i ,...,1 ,1
1

, ==∑
=θ

θ , (1.4)

 ,...,mbua
n

i
ii 1 ,

1
,, =≤∑

=

θθθθ ,

where

(i) θ,id be the execution cost of task i if it is assigned to agent θ ,

(ii) θb be the capacity for agent θ ,

(iii) θ,ia be the resource required of task i if it is assigned to agent θ ,

(vi) θθ , }1,0{, iui ∀∈ and when 1, =θiu if and only if task i is allocated to

agent θ .

1.4 Structure of the Dissertation

The structure of this dissertation is depicted in Figure 1.1 and briefly introduced as follows.

Chapter 2 develops the core technique of this dissertation, Superior Representation of

Binary Variables (SRB), which only uses ⎡ ⎤m2log binary variables to replace m original

traditional binary variables),...,(1 muu with 1
1

=∑
=

m

u
θ

θ . It can effectively reduce the

traditional binary variables number from)(mO to)(log2 mO and easily applies in any

mixed-integer problems. By using SRB, this chapter proposes a superior way of expressing

the same piecewise linear function, where only ⎡ ⎤m2log binary variables and ⎡ ⎤m2log88+

additive constraints are used. Various numerical experiments demonstrate that the proposed

method is more computationally efficient than existing methods.

 7

Chapter 3 extends SRB to apply Generalized Geometric Programs Problems. Based on

the SRB, this chapter proposes a novel method for handling a GGP problem with free-signed

continuous and discrete variables. We first use ⎡ ⎤r2log binary variables to express a discrete

function containing r discrete values, and utilize convexification and concavification

strategies to treat the continuous signomial function. Comparing with existing GGP methods,

the proposed method can solve the problem to reach approximate global optimum using less

number of binary variables and constraints.

Chapter 4 is another extension of SRB for solving the task allocation problem (TAP).

For example, a TAP with n agents and m tasks requires nm binary variables in existing

deterministic approaches to obtain global solution while our method, based on SRB, only

needs ⎡ ⎤nm2log binary variables. We try to find an efficient method to conquer the classic

TAP.

Figure 1.1 Structure of the dissertation

 8

Chapter 2 A Superior Representation Method for
Piecewise Linear Functions

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23

2.24 2.25 2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.34 2.35

Many nonlinear programs can be linearized approximately as piecewise linear programs by

adding extra binary variables. For the last four decades, several techniques of formulating a

piecewise linear function have been developed. For expressing a piecewise linear function

with 1+m break points, existing methods require to use m additional binary variables

and m4 constraints, which causes heavy computation when m is large. This chapter

proposes a superior way of expressing the same piecewise linear function, where only

⎡ ⎤m2log binary variables and ⎡ ⎤m2log88+ additive constraints are used. Various

numerical experiments demonstrate that the proposed method is more computationally

efficient than existing methods.

2.1 Introduction to Piecewise Linear Functions

Piecewise linear functions have been applied in numerous optimization problems, such as

data fitting, network analysis, logistics, and production planning (Bazaraa et al. 1993).

Since 1950, it has been widely recognized that a nonlinear program can be piecewisely

linearized as a mixed 0-1 program by introducing extra 0-1 variables (Dantzing 1960). Most

textbooks (Bazaraa et al. 1999, Floudas 2000, Vajda 1964) in Operations Research offer

some methods of expressing piecewise linear functions. Many methods of piecewisely

linearizing general nonlinear functions have also been developed in recent literature

(Croxton et al. 2003, Li 1996, Li and Lu 2008, Padberg 2000, Topaloglu and Powell 2003).

Some methods of piecewisely linearizing a specific concave function have also been

discussed (Kontogiorgis 2000). For expressing a piecewise linear function)(xf of a

single variable x with 1+m break points, most of the methods in the textbooks and

 9

literatures mentioned above require to add extra m binary variables and m4 constraints,

which may cause heavy computational burden when m is large. This study proposes a

superior method for representing)(xf , which only requires to add extra ⎡ ⎤m2log binary

variables and ⎡ ⎤m2log88+ constraints.

Consider a general nonlinear function)(xg of a single variable x ,)(xg is

continuous and x is within the interval],[0 maa . Let)(xf be a piecewise linear function

of)(xg , where the interval],[0 maa is partitioned into m small intervals via the break

points maa ,,0 K , where maaa <<< K10 as shown in Figure 2.1 It is assumed in this study

that the locations of the break points are pre-specified by the user. This study does not

consider how to pick break points that result in small approximation error between)(xg

and)(xf .

)(xf is a piecewise linear function of)(xg

Figure 2.1 Piecewise linear function)(xf

As indicated by Croxton et al. (2003), most models of expressing a piecewise linear

a0 a1 aθ a 1+θ

g(x)

f(x)

g(x)

am

 10

function are equivalent with each other. Here, a general form of pressing a piecewise linear

function by the existing methods, as in the textbook of Bazaraa et al. (1993), Floudas (2000),

and Vajda (1964) or in the articles of Croxton et al. (2003), Li (1996), Li and Lu (2008),

Padberg (2000), and Topaloglu and Powell (2003), are formulated below:

First introducing m binary variables 110 ,,, −mλλλ K to express the inequalities:

),1)(()1)((010 θθθθ λλ −−+≤≤−−− + aaaxaaa mm 1,,0 −= mKθ , (2.1)

where

 ∑
−

=

=
1

0

1
m

θ
θλ , }1,0{∈θλ . (2.2)

There is one and only one k=θ (over }1,,0{ −∈ mKθ), in which 1=kλ . That

means, only one interval],[1+kk aa is activated, which results in 1+≤≤ kk axa .

Following Expression (2.1), the piecewise linear function)(xf can be expressed as:

 1,,0),1()()()()1()()(−=−+−+≤≤−−−+ mMaxsafxfMaxsaf Kθλλ θθθθθθθθ (2.3)

)},()(),()({min

)}()(),()({max where

0

0

θθθθθθθ

θθθθθθθ

aasafaasaf

aasafaasafM

m

m

−+−+−

−+−+=

 and
θθ

θθ
θ aa

afafs
−
−

=
+

+

1

1)()(. (2.4)

REMARK 2.1 Expressing)(xf by (2.1) through (2.4) requires m binary variables

10 ,, −mλλ K and m4 constraints (i.e., inequalities (2.1)－ (2.3)), where 1+m is the

number of break points.

2.2 Superior Representation of Binary Variables (SRB)

Let θ be an integer, 10 −≤≤ mθ , expressed as:

 11

 ⎡ ⎤ }.1,0{ , log ,2 2
1

1 ∈== ∑
=

−
j

h

j
j

j umhuθ (2.5)

Given a }1,,0{ −∈ mKθ , there is a unique set of }{ ju meets (2.5). Let },,1{)(hG K⊆θ

be the subset of indices such that:

 .2
)(

1 θ
θ

=∑
∈

−

Gj

j (2.6)

For instance, φ=)0(G , }1{)1(=G , }2{)2(=G , }2,1{)3(=G , etc. Let)(θG denote

the number of elements in)(θG . For instance, 0)0(=G , 2)3(=G , etc. Define m

functions)1,,0()(−=′ mA Kθθθ based on a binary vector),,(1 huu ′′=′ Ku as follows:

 ∑∑
=

−

=

′=′′+=′
h

j
j

j
h

j
jj uucGA

1

1

1
, 2 ,)()(θθθ θθ . (2.7)

where the coefficients jc ,θ , 1,,0 −= mKθ , hj ,,1K= are defined by

⎩
⎨
⎧ ∈−

=
otherwise.,1

),(,1
,

θ
θ

Gj
c j (2.8)

Table 2.1 List of)(θG , jc ,θ , and)('θθA

θ)(θG 1,θc 2,θc 3,θc 4,θc)('θθA

0 0 1 1 1 1 43210 uuuu ′+′+′+′+
1 1 –1 1 1 1 43211 uuuu ′+′+′+′−
2 1 1 –1 1 1 43211 uuuu ′+′+′−′+
3 2 –1 –1 1 1 43212 uuuu ′+′+′−′−
4 1 1 1 –1 1 43211 uuuu ′+′−′+′+
5 2 –1 1 –1 1 43212 uuuu ′+′−′+′−
6 2 1 –1 –1 1 43212 uuuu ′+′−′−′+
7 3 –1 –1 –1 1 43213 uuuu ′+′−′−′−
8 1 1 1 1 –1 43211 uuuu ′−′+′+′+
9 2 –1 1 1 –1 43212 uuuu ′−′+′+′−
10 2 1 –1 1 –1 43212 uuuu ′−′+′−′+
11 3 –1 –1 1 –1 43213 uuuu ′−′+′−′−
12 2 1 1 –1 –1 43212 uuuu ′−′−′+′+

 12

For instance, given an arbitrary number ,13=m a list of all values of)(θG , jc ,θ , and

)('θθA for given θ are shown in Table 2.1.)(θG and jc ,θ in (2.7) are not intuitive

forms, then it can be rewritten more intuitive as follows.

PROPOSITION 2.1)(θG and jc ,θ in (2.7) can be rewritten as follows:

 ∑
=

⎥⎦
⎥

⎢⎣
⎢

−
−−=

h

j

jG
1

2))1(1(5.0)(1
θ

θ , 1,,0 −= mKθ , ⎡ ⎤ log2 mh = , (2.9)

 ⎥⎦
⎥

⎢⎣
⎢

−
−=

12
,)1(j

jc
θ

θ , 1,,0 −= mKθ , ⎡ ⎤ log,...,1 2 mj = . (2.10)

PROOF In (2.7), where 1, −=jcθ if)(θGj∈ , otherwise 1, =jcθ .

Obviously:

 ⎥⎦
⎥

⎢⎣
⎢

⎥⎦
⎥

⎢⎣
⎢

−=−=
021

1,)1()1(
θθ

θc

 ⎥⎦
⎥

⎢⎣
⎢

⎥⎦
⎥

⎢⎣
⎢

−=−=
122

2,)1()1(
θθ

θc

 M

 ⎥⎦
⎥

⎢⎣
⎢

−
−=

12
,)1(h

hc
θ

θ

 ∑
=

⎥⎦
⎥

⎢⎣
⎢

−
−−=

−++−+−
=

h

j

h hccc
G

1

2,2,1,))1(1(5.0
2

)1(...)1()1(
)(1

θ
θθθθ

This proposition is then proven. □

Then we have following main theorem:

THEOREM 2.1 For an integer θ in (2.5) and (2.6), given a binary vector),,(''
1

'
huu K=u ,

there is one and only one k , 10 −≤≤ mk , such that

(i) 0)(' =θkA if k='θ ,

 13

(ii) 1)(' ≥θkA , otherwise.

PROOF There is one and only one k , such that 12
1

1 += ∑
=

−
h

j
j

j uk .

(i) If 'θ=k that juu jj ' ∀= , which results in

 0 and)(
)()(

'

)()(

' ==== ∑∑∑∑
∉∉∈∈ kGj

j
kGj

j
kGj

j
kGj

j uukGuu .

Thus to have 0)(' =θkA .

(ii) If 'θ≠k then

 ∑∑
∉∈

≥≥
)(

'

)(

' 1 and)(
kGj

j
kGj

j uuG θ ,

therefore 1)(' ≥θθA . □

For instance, given)1,0,1,0(),,(''
1

' == huu Ku in Table 2.1, we have

 210100)0()(43210 =++++=+′+′+′+′+=′ uuuuGA θ ,

 310101)1()(43211 =+++−=+′+′+′+′−=′ uuuuGA θ ,

 M

 010102)10()(432110 =−+−+=+′−′+′−′+=′ uuuuGA θ ,

 110103)11()(432111 =−+−−=+′−′+′−′−=′ uuuuGA θ ,

 210102)12()(432112 =−−++=+′−′−′+′+=′ uuuuGA θ ,

Here 0)(10 =′θA ; 0)(≥′θθA for 10 and 120 ≠≤≤ θθ .

PROPOSITION 2.2 For a set of non-negative continuous variables),,(10 −mrr K , if

 1
1

0

=∑
−

=

m

r
θ

θ , (2.11)

 14

 0)(
1

0

=′∑
−

=

m

Ar
θ

θθ θ , (2.12)

then the values of 1,,0 , −= mr Kθθ , are either 0 or 1, where)(θθ ′A are defined by (2.6)

－(2.8).

PROOF By referring to THEOREM 2.1, there is one and only one k , 10 −≤≤ mk , such

that 0)(=′θkA and 1)(≥′θθA for 10 −≤≤ mθ and k≠θ . Since 0≥θr ,

,10 −≤≤ mθ the only solution to satisfy (2.11) and (2.12) is 1=kr and 0=θr for

k≠θ . The proposition is then proven. □

Expression (2.12) is nonlinear and needs to be linearized. We have

0)(

))1((

))0((

)(

1

0
,

1

0
1,1

1

0

,111,11

,011,00

1

0

=′++′+=

′++′+−+

+′++′+=

′

∑∑∑

∑

−

=

−

=

−

=

−−−

−

=

m

hh

mm

hhmmm

hh

m

crucruGr

ucucmGr

ucucGr

Ar

θ
θθ

θ
θθ

θ
θ

θ
θθ

θ

θ

K

K

KK

 (2.13)

Denote

 jcruz
m

jjj ∀′= ∑
−

=

1

0
, ,

θ
θθ (2.14)

We then have following proposition:

PROPOSITION 2.3 The nonlinear expression 0)(
1

0

=′∑
−

=

m

Ar
θ

θθ θ in (2.12) can be replaced

by the following linear system:

 0)(
1

1

0
=+∑∑

=

−

=

h

j
j

m

zGr
θ

θ θ , (2.15)

 15

 hjuuzu jjjj ,,1},1,0{ , K=∈′′≤≤′− , (2.16)

 hjucrzucr j

m

jjj

m

j ,,1),1()1(
1

0
,

1

0
, K=′−+≤≤′−− ∑∑

−

=

−

= θ
θθ

θ
θθ . (2.17)

PROOF By referring to (2.14), (2.13) can be converted into (2.15). According to (2.8) and

PROPOSITION 2.2 we have }1,1{, −∈jcθ and }1,0{∈θr , which cause 11 ≤≤− jz .

Expression (2.14) therefore can be linearized by (2.16) and (2.17). Two cases can be check

for each ju′ :

(i) If 0=′ju , then 0=jz referring to (2.16),

(ii) If 1=′ju , then ∑
−

=

=
1

0
,

m

jj crz
θ

θθ referring to (2.17).

Both (i) and (ii) imply that ∑
−

=

′=
1

0
,

m

jjj cruz
θ

θθ . Expression (2.14) can be replaced by

(2.15)－(2.17). □

2.3 The Proposed Linear Approximation Method

Consider the same piecewise linear function)(xf described in Figure 2.1, where x is

within the interval],[0 maa , and there are 1+m break points maaa <<< K10 within

],[0 maa . By referring to PROPOSITION 2.2 and PROPOSITION 2.3,)(xf with division of the

interval],[0 maa into m subintervals can be expressed as:

 ∑∑
−

=
+

−

=

≤≤
1

0
1

1

0

mm

arxar
θ

θθ
θ

θθ , (2.18)

∑∑

∑
−

=

−

=

−

=

−+−−=

−+−+=

1

0
0

1

0
0

1

0
00

)())()((

))()(()(
mm

m

axrsraasaf

aaaxsafrxf

θ
θθ

θ
θθθθ

θ
θθθθ

 (2.19)

 16

where θs are slopes of)(xf as defined in (2.4).

By referring to PROPOSITION 2.2, }1 ,0{∈θr and 1=∑
θ

θr , Expressions (2.18) and

(2.19) imply that: if },1,,1{ ,1 −∈= mkrk K then 1+≤≤ kk axa and

)()()(kkk axsafxf −+= . The nonlinear term)(
1

1
1∑

−

=

−
m

axra
θ

θθ in (2.19) can then be

linearized as follows.

Denote)(0axrw −= θθ , since there is one and only one }1,,0{, −∈ mkk K such that

1=kr and 0)(=′θkA , it is clear that:

 0

1

0

axw
m

−=∑
−

=θ
θ , (2.20)

 0)(
1

0

=′∑
−

=

m

Aw
θ

θθ θ . (2.21)

By referring to (2.15), we then have 0)()()(
1

1

0
,

1

0

1

0

=′+=′ ∑ ∑∑∑
=

−

=

−

=

−

=

h

j

m

jj

mm

cwuGwAw
θ

θθ
θ

θ
θ

θθ θθ .

Denote ∑
−

=

′=
1

0
,

m

jjj cwu
θ

θθδ for all j , the term ∑
−

=

′
1

0

)(
m

Aw
θ

θθ θ can be expressed as below

referring to PROPOSITION 2.2:

 0)(
1

1

0

=+∑∑
=

−

=

h

j
j

m

Gw δθ
θ

θ , (2.22)

 hjuaauaa jmjjm ,,1 ,)()(00 K=′−≤≤′−− δ , (2.23)

 hjuaacwuaacw jm

m

jjjm

m

j ,,1),1)(()1)((0

1

0
,0

1

0
, K=′−−+≤≤′−−− ∑∑

−

=

−

= θ
θθ

θ
θθ δ . (2.24)

We then deduce our main result:

THEOREM 2.2 Let)(xf be a piecewise linear function defined in a given interval

],[0 maax∈ with m subintervals by 1+m break points: maaa <<< K10 .)(xf can

be expressed by the following linear system:

 17

 ∑∑
−

=
+

−

=

≤≤
1

0
1

1

0

mm

arxar
θ

θθ
θ

θθ , (2.25)

 ∑∑
−

=

−

=

+−−=
1

0

1

0
0))()(()(

mm

wsraasafxf
θ

θθ
θ

θθθθ , (2.26)

 ∑
−

=

≥=
1

0

0 ,1
m

rr
θ

θθ , (2.27)

 0)(
1

1

0

=+∑∑
=

−

=

h

j
j

m

zGr
θ

θ θ , (2.28)

 hjuzu jjj ,,1 , K=′≤≤′− , (2.29)

 hjucrzucr j

m

jjj

m

j ,,1),1()1(
1

0
,

1

0
, K=′−+≤≤′−− ∑∑

−

=

−

= θ
θθ

θ
θθ , (2.30)

 0

1

0

axw
m

−=∑
−

=θ
θ , (2.31)

 0)(
1

1

0

=+∑∑
=

−

=

h

j
j

m

Gw δθ
θ

θ , (2.32)

 hjuaauaa jmjjm ,,1 ,)()(00 K=′−≤≤′−− δ , (2.33)

 hjuaacwuaacw jm

m

jjjm

m

j ,,1),1)(()1)((0

1

0
,0

1

0
, K=′−−+≤≤′−−− ∑∑

−

=

−

= θ
θθ

θ
θθ δ , (2.34)

 mu
h

j
j

j ≤′∑
=

−

1

12 . (2.35)

where (2.25) and (2.26) come from (2.18) and (2.19), (2.27) from (2.11), (2.28)－(2.30)

from PROPOSITION 2.3, and (2.31)－(2.34) from (2.21)－(2.24).

REMARK 2.2 Expressing)(xf with 1+m break points by THEOREM 2.2 uses ⎡ ⎤m2log

binary variables, ⎡ ⎤m2log88+ constraints, m2 non-negative continuous variables, and

⎡ ⎤m2log2 free-signed continuous variables.

 18

Comparing REMARK 2.1 with REMARK 2.2 to know that, in expressing)(xf with large

number of break points, the proposed method uses much less number of binary variables and

constraints than being used in the existing methods.

2.4 Numerical Examples

EXAMPLE 2.1

Consider the following nonlinear programming problem:

P1
Min 11

21
βα xx −

s.t. ,6 22
211 bxxx ≤+− βα

 ,821 ≤+ xx

 ,4.71 1 ≤≤ x 4.71 2 ≤≤ x ,

where 1α , 1β , 2α , 2β and b are fixed constants.

Various 1α , 1β , 2α , 2β and b values are specified in this experiment to compare

the computational efficiency of expressing the piecewise linear functions by the existing

method (i.e., (2.1)－(2.4)) and by our proposed method (i.e., THEOREM 2.2).

For the first experiment given, 4.01 =α , 21 =β , 85.12 =α , 22 =β , 5=b , the

nonlinear terms 4.0
1x and 2

2x− are concave and required to be linearized, while the other

convex terms 85.1
1x and 2

2x do not need linearization. Suppose 1+m equal-distance break

points are chosen to linearize each of 4.0
1x and 2

2x− , denoted as 10 =a , ma /4.61 θθ += ,

4.7=ma , for 1,,1 −= mKθ . Then existing methods (i.e., (2.1)－(2.4)) require to use m2

binary variables and m8 extra constraints to piecewisely linearize 4.0
1x and 2

2x− . However,

by piecewisely linearize the same convex terms, our proposed method (i.e., THEOREM 2.2)

 19

only uses ⎡ ⎤m2log2 binary variables, ⎡ ⎤m2log1614 + extra constraints, m4 non-negative

continuous variables, and ⎡ ⎤m2log2 free-signed continuous variables. The linearization of

4.0
1x by the proposed method is described below:

Denote 4.0
11)(xxf = . By THEOREM 2.2,)(1xf with 64=m is expressed by the

following linear equations and inequalities:

 ∑∑
=

+
=

≤≤
63

0
11

63

0 θ
θθ

θ
θθ arxar ,

 ∑∑
==

+−−=
63

0

63

0
0

4.0
1))(()(

θ
θθ

θ
θθθθ wsraasaxf ,

 ∑
=

≥=
63

0

0 ,1
θ

θθ rr ,

 1
63

0
−=∑

=

xw
θ

θ ,

 0)(
6

1

63

0
=+∑∑

== j
jzGr

θ
θ θ ,

 6,,1 , K=′≤≤′− juzu jjj ,

 6,,1),1()1(
63

0
,

63

0
, K=′−+≤≤′−− ∑∑

==

jucrzucr jjjjj
θ

θθ
θ

θθ ,

 0)(
6

1

63

0

=+∑∑
== j

jGw δθ
θ

θ ,

 6,,1 ,4.64.6 K=′≤≤′− juu jjj δ ,

 6,,1),1(4.6)1(4.6
63

0
,

63

0
, K=′−+≤≤′−− ∑∑

==

jucwucw jjjjj
θ

θθ
θ

θθ δ ,

 where
θθ

θθ
θ aa

aas
−
−

=
+

+

1

4.04.0
1 , ju j ∀∈′ , }1,0{ .

Similarly, 2
2x− can be piecewisely linearized by THEOREM 2.2. The original program

 20

is then converted into a mixed 0-1 convex program. We solve this program on LINGO (2004)

by both the existing methods and the proposed method. The related solutions, CPU time,

number of iterations, number of binary variables, number of constraints, and gap to the upper

and lower bound objective value are listed in Table 2.2.

Table 2.2 Experiment 1 (4.01 =α , 21 =β , 85.12 =α , 22 =β , 5=b)

1+m Item Proposed
method

Existing
method

Gap to the upper and
lower bound objective
value

CPU Time (second) 28 57
Number of iterations 103,090 229,521
Number of binary variables 12 128
Number of constraints 110 514
Solution (1x , 2x) (3.849203, 3.998877)

65

Objective Value –14.27649 0.00001
CPU Time (second) 329 4298
Number of iterations 452,721 5,153,692
Number of binary variables 16 512
Number of constraints 142 2050
Solution (1x , 2x) (3.852642, 3.998955)

257

Objective Value –14.27648 <0.00001
* The reference upper bound solution is (1x , 2x) = (3.852642, 3.998955)

with objective value －14.27648

The gaps between the upper and lower bounds can be computed as follows.

(i) Solve the nonlinear program P1 directly by a nonlinear optimization software (such as

LINGO). The solution is)998955.3 ,852642.3(),(0
2

0
1

0 == xxx with objective value

－14.27648. 0x is one of the local optima of P1. But it is unknown about the gap

between 0x and the global optimum. 0x is regarded as the upper bound solution.

(ii) Divide the ranges of both 1x and 2x into 65 break points. Let),(0
2

0
1 xx replace the

nearest break point (3.8, 4.0) in the existing 65 break points. Solving the program by

both the proposed method and the existing method to obtain

 21

)998877.3 ,849203.3(=∆x with objective value －14.27649. ∆x is a lower bound

solution of P1. The gap between the objective values of 0x and ∆x is 0.00001.

(iii) Reiterate to (ii), divide the ranges of both 1x and 2x into 257 break points. Solving

the program by both methods to obtain the solution (3.852642, 3.998955), which is the

same as ∆x .

Various combinations of 1α , 1β , 2α , 2β and b are specified to test the

computation results of the existing methods and the proposed method. Parts of the results are

displayed in Table 2.3. All these experiments demonstrate that the proposed method is much

faster than the existing method especially when m becomes large.

EXAMPLE 2.2

This example, modified from Dixon and Szegö (1975), is to find the approximated global

optimum of the following program:

P2

Min 1
2
221

6
1

4
1

2
1 01.0

6
1081.12 xxxxxxx ++−+−

s.t. 22 ≤≤− ix , 2,1=i ,

where the object function is a non-symmetrical three-humped camelback function.

Figure 2.2 shows a contour map of this function under 22 1 ≤≤− x and 22 2 ≤≤− x . Here a

reference upper bound solution is)9011357.0,802271.1(),(21 −−=xx with objective

value –0.02723789. For solving this program, let 01.211 >+=′ xx and 01.222 >+=′ xx to

have 41.41.21.2 212121 +′−′−′′= xxxxxx . Replace 21xx ′′ by)exp(y , P2 then becomes P3

below:

 22

Table 2.3 Experiment 2 (for different combinations of 1α , 1β , 2α , 2β and b)

,,, 211 αβα
b, 2β

1+m
 Item Proposed

method
Existing
method

Gap to the upper and
lower bound objective
value

A reference upper bound solution is (1x , 2x)=(2.289561, 5.710439) with
objective value –0.8765232

CPU Time (second) 5 13
Number of iterations 15,616 84,036
Solution (1x , 2x) (2.289561, 5.710439) 65

Objective Value –0.8765229 0.0000003
CPU Time (second) 12 54
Number of iterations 43,830 216,577
Solution (1x , 2x) (2.289561, 5.710439) 129

Objective Value –0.876523 0.0000002
CPU Time (second) 69 464
Number of iterations 113,591 1,296,464
Solution (1x , 2x) (2.28956, 5.71044)

5.01 =α ,
5.01 =β ,
8.02 =α ,
9.02 =β ,

257

Objective Value –0.8765232 <0.0000001

A reference upper bound solution is (1x , 2x)=(4.087383, 3.8) with
objective value –12.68378

CPU Time (second) 15 17
Number of iterations 68,759 141,519
Solution (1x , 2x) (4.153399, 3.846601) 65

Objective Value –13.03136 0.34758
CPU Time (second) 62 428
Number of iterations 207,894 1,243,751
Solution (1x , 2x) (4.153402, 3.846598) 129

Objective Value –13.02896 0.34518
CPU Time (second) 299 1350
Number of iterations 557,043 2,490,405
Solution (1x , 2x) (4.153401, 3.846599)

4.01 =α ,
21 =β ,

8.02 =α ,
22 =β ,
7−=b

257

Objective Value –13.02889 0.34511

 23

Figure 2.2 Contour map of the three-humped camelback function

P3

Min 41.41.211.2)exp(
6
1081.12 21

2
2

6
1

4
1

2
1 ++++−+− xxxyxxx

s.t. 21 lnln xxy ′+′= ,

 1.211 −′= xx ,

 1.222 −′= xx ,

 22 ≤≤− ix , 2,1=i .

The terms 4
1x− ,)exp(y− , 1ln x′ and 2ln x′ in P3 are non-convex, here we use 1z− ,

2z− , 1y and 2y to respectively as piecewise linear function to approximate those

non-convex terms. We then obtain the following mixed-integer program:

P4

Min 41.41.211.2
6
1081.12 21

2
22

6
11

2
1 ++++−+− xxxzxzx

 24

s.t. The same constraints as in P3, but replace 1ln x′ and 2ln x′ by 1y and 2y

respectively.

We take 41 equal-distance break points for the value range of 1x and 2x ([-2, 2]),

denoted as ,20 −=a 9.11 −=a , .2,...,8.1 402 =−= aa It is clear that the break points for 1x′

and 2x′ are)1.4,...,2.0 ,1.0(. Base on THEOREM 2.2, each of 1z , 1y , and 2y is linearized

with 6 binary variables and 55 constrains. Since 21 yyy += , the region of y is

]1.4ln1.4ln ,1.0ln1.0[ln ++]ln16.81 ,01.0[ln= . We take 1+m equal-distance break

points for the value range of y , denoted as 01.0ln0 =b ,)/8.1601.0ln(mb θθ += ,

81.16ln=mb , for 1,...,2,1 −= mθ . yez =2 can then be piecewisely linearized under various

y values.

Problem P4 is converted into a mixed 0-1 convex program. We solve this program using

LINGO (2004) with the existing methods and the proposed method. The related solutions,

CPU time, number of iterations, number of binary variables, number of constraints, and gaps

to the upper and lower bound objective values are reported in Table 2.4.

Table 2.4 Experiment result of Example 2.2

1+m Item Proposed
method

Existing
method

Gap to the upper and lower
bound objective value

CPU Time (second) 239 834
Number of iterations 2,387,868 3,675,444
Number of binary variables 17 112
Number of constraints 161 532
Solution (1x , 2x) (–1.849207, –0.9925797)

33

Objective Value –0.2269442 0.19970631
CPU Time (second) 882 2,277
Number of iterations 1,610,422 7,467,149
Number of binary variables 18 144
Number of constraints 169 660
Solution (1x , 2x) (–1.7657, –0.8942029)

65

Objective Value –0.08396288 0.05672499
* The reference upper bound solution is (1x , 2x) = (–1.802271, –0.9011357)
 with objective value –0.02723789

 25

EXAMPLE 2.3

This example is used to illustrate the process of solving discrete functions, consider

following program:

Min 1.1
5

8.0
4

5.0
3

1.2
2

2.2
2

8.2
1

3
1 3.05.38.08.1 xxxxxxx −−+−+−

s.t. 88.0
2

2.1
1 ≤+ xx ,

 27.1
3

2.1
1 ≤− xx ,

 5.47.1
4

1.2
2 ≥− xx ,

 396.0
5

8.0
4 −≥− xx ,

 1.01.1
5

2.2
2 −≥− xx ,

 where ix are discrete variables for all i , },...,{}1 ..., ,1 ,1{ 0 mi ddmccx =++∈ , where

c is the discreteness of ix , and 1+m is the number of discrete points.

The existing method solves this example by linearizing a nonlinear function

},...,{, 0 mddxx ∈α as

 ,)(
1

00 ∑
=

−+=
m

dddx
θ

αα
θθ

αα λ

 },1,0{ ,1
1

∈≤∑
=

θ
θ

θ λλ
m

where m binary variables are used.

THEOREM 2.2 can be applied to solve a discrete function },...,{ , 0 mddxx ∈α where

)(xf in (2.26) is replaced by αx as

 ,
0
∑
=

=
m

rdx
θ

θ
α
θ

α

and all other constraints in (2.27)－(2.30) and (2.35) are kept as the same with

 26

m,...,0=θ . For treating a discrete function, the proposed method uses)1(log2 +m binary

variables, ⎡ ⎤)1(log44 2 ++ m constraints, 1+m non-negative continuous variables, and

⎡ ⎤)1(log2 +m free-signed continuous variables.

Table 2.5 is the computational result with ILOG CPLEX 9.0. It illustrates that the

proposed method needs to use more constraints than the existing method; however, the

proposed method is computationally more efficient then existing method for large m .

Table 2.5 Experiment results with discrete function in ILOG CPLEX
(m +1)/d Item Proposed method Existing method

CPU Time (second) 3.89 1.27
Number of iterations 17,181 2,935
Number of binary variables 40 1,275
Number of constraints 187 22
Solution (1x , 2x , 3x , 4x , 5x) (3.725, 4.2, 1.85, 5.075, 7.2)

256 /
0.025

Objective Value –35.49859275
CPU Time (second) 3.58 7.85
Number of iterations 12,418 14,103
Number of binary variables 45 2,555
Number of constraints 207 22
Solution (1x , 2x , 3x , 4x , 5x) (3.75, 4.1375, 1.875, 4.9625, 7.1375)

512 /
0.0125

Objective Value –35.51962643
CPU Time (second) 7.45 66.92
Number of iterations 17,671 60,603
Number of binary variables 50 5,115
Number of constraints 227 22
Solution (1x , 2x , 3x , 4x , 5x) (3.6688, 4.35, 1.8188, 5.3688, 7.3937)

1024 /
0.00625

Objective Value –35.55043719

 27

EXAMPLE 2.4

This example uses the same program in Example 2.3 but specifying all ix as continuous

variables, where 4.71 ≤≤ ix with 1+m break points for all i . The comparison of the

proposed method and the existing method, solving with ILOG CPLEX 9.0, is shown in

Table 5. It demonstrates that the proposed method is also superior to the existing method for

the continuous case.

Table 2.6 Experiment results with continuous function in ILOG CPLEX

1+m Item Proposed
method

Existing
method

Gap to the upper and lower
bound objective value

CPU Time (second) 4.23 39.86
Number of iterations 47,896 155,309
Number of binary variables 25 160
Number of constraints 347 1,098
Solution (1x , 2x) (3.67117699, 4.34398332)
Solution (3x , 4x , 5x) (1.8176404, 5.35913745, 7.4)

33

Objective Value –35.56181842 0.00766842
CPU Time (second) 40.29 919.22
Number of iterations 250,747 1,437,056
Number of binary variables 30 320
Number of constraints 407 2,186
Solution (1x , 2x) (3.67115433, 4.34402387)
Solution (3x , 4x , 5x) (1.81765758, 5.3591112, 7.4)

65

Objective Value –35.56160283 0.00745283
CPU Time (second) 454.21 4354.26
Number of iterations 2,128,203 8,690,141
Number of binary variables 35 640
Number of constraints 467 4,362
Solution (1x , 2x) (3.67116282, 4.34402387)
Solution (3x , 4x , 5x) (1.81767335, 5.3591112, 7.4)

129

Objective Value –35.56112235 0.00697235
* The reference upper bound solution is 668.31 =x , 352.42 =x , 816.13 =x ,

373.54 =x , 4.75 =x with objective value –35.55415

 28

Chapter 3 Extension 1－Solving Generalized Geometric
Programs Problems

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20
3.21 3.22 3.23
Many optimization problems are formulated as Generalized Geometric Programming (GGP)

containing signomial terms)()(yx gf ⋅ where x and y are continuous and discrete

free-sign vectors respectively. By effectively convexifying)(xf and linearizing)(yg ,

this chapter globally solves a GGP with less number of binary variables than are used in

existing GGP methods. Numerical experiments demonstrate the computational efficiency of

the proposed method.

3.1 Introduction to Generalized Geometric Programming

Generalized Geometric Programming (GGP) methods have been applied to solve problems

in various fields, such as heat exchanger network design (Duffin and Peterson 1966), capital

investment (Hellinckx and Rijckaert 1971), optimal design of cooling towers (Ecker and

Wiebking 1978), batch plant modeling (Salomone and Iribarren 1992), competence sets

expansion (Li 1999), smoothing splines (Cheng et al. 2005), and digital circuit (Boyd 2005).

These GGP problems often contain continuous and discrete functions where the discrete

variables may represent the sizes of components, thicknesses of steel plates, diameters of

pipes, lengths of springs, and elements in a competence set etc. Many local optimization

algorithms for solving GGP problems have been developed, which include linearization

method (Duffin 1970), separable programming (Kochenberger et al. 1973), and a concave

simplex algorithm (Beck and Ecker 1975). Pardalos and Romeijn (2002) provided an

impressive overview of these GGP algorithms. Among existing GGP algorithms, the

techniques developed by Maranas and Floudas (1997), Floudas et al. (1999), Floudas (2000)

(these three methods are called Floudas’s methods in this study) are the most popular

approaches for solving GGP problems. Floudas’s methods, however, can not be applied to

 29

treat non-positive variables and discrete functions. Recently, Li and Tsai (2005) developed

another method to modify Floudas’s methods thus to treat continuous variables containing

zero values; however, Li and Tsai’s method is incapable of effectively handling

mixed-integer variables. This study proposes a novel method to globally solve a GGP

program with mixed integer free-sign variables. A free-sign variable is one which can be

positive, negative, or zero.

The GGP program discussed in this study is expressed below:

GGP

Min ∑
=

⋅
0

1
)()(

T

p
pp Gf yx

s.t. w

T

q
qwqw lGf

w

≤⋅∑
=1

,,)()(yx , sw ,...,1= ,

where

(C1) ∏
=

⋅=
n

i
ipp

ipxcf
1

,)(αx , 0,...,1 Tp = ,

(C2) ∏
=

⋅=
n

i
iqwqw

iqwxhf
1

,,
,,)(αx , sw ,...,1= , wTq ,...,1= ,

(C3) ∏
=

=
m

j
jjpp ygG

1
,)()(y , 0,...,1 Tp = ,

(C4) ∏
=

=
m

j
jjqwqw ygG

1
,,,)()(y , sw ,...,1= , wTq ,...,1= ,

(C5)),...,(1 nxx=x , is a vector with free-sign continuous variables ix , where ix

can be positive, negative, or zero, iii xxx ≤≤ , ix and ix are constants,

(C6)),...,(1 myy=y , is a vector with free-sign discrete variables

jy , },...,{ ,1, jrjjj ddy ∈ where kjd , can be positive, negative, or zero,

(C7))(and)(,,, jjqwjjp ygyg are nonlinear functions of jy ,

 30

(C8) wqwpiqwip lhc and , , , , ,,,, αα are constants,

(C9) ip,α and iqw ,,α are integers if the lower bounds of ix are negative.

Floudas’s method can solve a specific GGP problem containing continuous functions

with positive variables, as illustrated below:

GGP1 (with continuous functions and positive variables)

Min ∑
=

0

1

)(
T

p
pf x

s.t. w

T

q
qw lf

w

≤∑
=1

,)(x , sw ,...,1= ,),...,(1 nxx=x , iii xxx ≤≤ , 0>∀ ix ,

where conditions (C1) and (C2) in GGP hold.

For solving GGP1, Floudas’s method denotes ii
t

i xtex i ln with == and group all

monomials with identical sign. GGP1 is rewritten by Floudas’s method as follows:

Min)()(00 tt −+ − ff

s.t. swlff www ,...,1,)()(=≤− −+ tt ,

 ∑
>

+ ⋅=
0

)(
0)(

p

p

c

h
p ecf tt ,

 ∑
<

− ⋅−=
0

)(
0)(

p

p

c

h
p ecf tt ,

 pth
i

iipp ∀∑ ⋅= ,)(,αt , (3.1)

 ∑
>

+ ⋅=
0

)(
,

,

,)(
qw

qw

h

h
qww ehf tt ,

 ∑
<

− ⋅−=
0

)(
,

,

,)(
qw

qw

h

h
qww ehf tt ,

 qwth
i

iiqwqw ,,)(,,, ∀∑ ⋅= αt .

GGP1 is a signomial geometric program containing posynomial functions)(0 t+f ,

 31

)(t+
wf and signomial functions)(0 t−− f ,)(t−− wf where),...,(1 ntt=t is a positive

variable vector. A posynomial term is a monomial with positive coefficient, while a signomial

term is a monomial with negative coefficient (Bazaraa et el. 1993; Floudas 2000). Supports all

signomial terms in GGP1 are removed then we have a posynomial geometric program below:

Min)(0 t+f

s.t. swlf ww ,...,1,)(=≤+ t .

Posynomial geometric program laid the foundation for the theory of generalized

geometric program. Duffin and Peterson (1966) pioneered the initial work on posynomial

geometric programs, which derived the dual based on the arithmetic geometric inequality.

This dual involves the maximization of a separable concave function subject to linear

constraints. Unlike posynomial geometric problems, signomial geometric problems remain

nonconvex and much more difficult to solve. Floudas's method employs an exponential

variable transformation to the initial signomial geometric program to reduce it into a

decomposition program. A convex relaxation is then obtained based on the linear lower

bounding of the concave parts. Floudas's method can reach ε-convergence to the global

minimum by successively refining a convex relaxation of a series of nonlinear convex

optimization problems. The −ε convergence to the global minimum (−ε global minimum),

as defined in Floudas (2000, page 58) is stated below: Suppose that *x is a feasible solution,

0≥ε is a small predescribed tolerance, and ε−≥)()(*xx ff for all feasible x , then *x

is an −ε global minimum. However, the usefulness of Floudas's method is limited by the

difficulty that ix must be strictly positive. This restriction prohibits many applications where

ix can be zero or negative values (such as temperature, growth rate, etc.).

In order to overcome the difficulty of Floudas’s methods, recently, Li and Tsai (2005)

proposed another method for solving GGP1 where ix may be negative or zero. Li and Tsai

 32

first transfer ∏
=

n

i
i

ipx
1

,α and ∏
=

n

i
i

iqwx
1

,,α into convex and concave functions, then approximate

the concave functions by piecewise linear techniques. Li and Tsai’s method can also reach

finite ε-convergence to the global minimum. Both Floudas’s methods and Li & Tsai’s method

use the exponential-based decomposition technique to decompose the objective function and

constraints into convex and concave functions. Decomposition programs have good properties

for finding a global optimum (Horst and Tuy, 1996). A convex relaxation of the

decomposition can be computed conveniently based on the linear lower bound of the concave

parts of the objective functions and constraints.

Two difficulties of direct application of Floudas’s method or Li & Tsai method to

globally solve a GGP problem are discussed below:

(i) The major difficulty is that 1−r binary variables are used in expressing a discrete

variable with r values. For instance, to linearize a signomial term

21
212211)()()(αα yyygygG ⋅=⋅=y where jrjjjj rjdddy

j
 ,},...,,{ ,2,1, ∀∈ , by taking the

logarithm of)(yG one obtains

 2211 lnln)(ln yyG αα +=y ∑ ∑
= =

−−+=
2

1 2
1,,,1,])ln(ln[ln

j

r

k
kjkjkjjj

j

ddudα

 where }1,0{ ,1 ,
2

, ∈≤∑
=

kj

r

k
kj uu

j

.

It require 221 −+ rr binary variables to linearly decompose)(yG . If the number of jr

is large then it will cause a heavy computational burden.

(ii) Another difficulty is the treatment of taking logarithms of jy . If jy may take on a

negative or zero value then we can not take logarithmic directly.

 33

This study proposes a novel method to globally solve GGP programs. The advantages of

the proposed method are listed as below:

Less number of binary variables and constraints are used in solving a GGP program. Only

⎡ ⎤∑
=

m

r
jr

1
2log binary variables are required to linearize)(, jjp yg and)(,, jjqw yg in GGP. It

is capable of treating non-positive variables in the discrete and continuous functions in

GGP.

This study is organized as follows. Section 3.2 develops the first approach of treating

discrete functions in GGP. Section 3.3 describes another approach of treating discrete

functions. Section 3.4 proposes a method for handling continuous functions. Numerical

examples are analyzed in Section 3.5.

3.2 The Proposed Linear Approximation Method

Form the basic of THEOREM 2.1, we develop two approaches to express a discrete variable

y with r values. The first approach, as described in this section, use ⎡ ⎤r2log binary

variables and r2 extra constraints to express y . The second approach, as described in the

next section, use ⎡ ⎤r2log binary variables but only ⎡ ⎤r2log43+ constraints to express

y . The first approach is good at treating product terms ∏
=

m

j
jj ygf

1

)()(x , while the second

approach is more effective in treating additive terms ∑
j

jj yg)(.

REMARK 3.1 A discrete free-sign variable },...,,{, 21 rdddyy ∈ can be expressed as:

 kkkk AMdyAMd ⋅+≤≤⋅− , rk ,...,1= (3.2)

where

 34

(i) k is same as θ in (2.5) and kA is same as)(θθ ′A in (2.7).

(ii) M is a big enough positive value,

 },...,,0min{},...,,1max{ 11 rr ddddM −= . (3.3)

PROOF (i) If 0=kA then kdy = ,

(ii) If 1≥kA then kkrrkk AMdddyddAMd ⋅+≤≤≤≤⋅− },...,,0max{},...,,0min{ 11 .

Therefore (3.2) is still correct. □

Take Table 2.1 for instance, for }10 ,9 ,8 ,5.7 ,6 ,5 ,4 ,1 ,0 ,1{−∈y , y can be expressed by

linear inequalities below:

)(01)(01 43214321 uuuuMyuuuuM ′+′+′+′++−≤≤′+′+′+′+−− ,

)1010 43214321 uuuuM(y)uuuuM(′+′+′+′−+≤≤′+′+′+′−− ,

 M

)uuuuM(y)uuuuM(43214321 210210 ′−′+′+′−+≤≤′−′+′+′−− ,

 where 11110 =+=M .

In this case 10=r and there are 20102 =× constraints being used to express y . Since

depending on the final 321 ,, uuu ′′′ , and 4u′ assignments, only two of 20 inequalities will turn

into equalities which indicate the discrete choice made of y , while the rest of 18

inequalities turn into redundant constraints.

REMARK 3.2 Expression (3.2) uses ⎡ ⎤r2log binary variables and r2 constraints to

express a discrete variable with r values.

 35

PROPOSITION 3.1 Given a function)(yg where kr ddddy },,...,,{ 21∈ are discrete

free-sign values,)(yg can be expressed by following linear inequalities:

 kkkk AMdgygAMdg ⋅+≤≤⋅−)()()(, rk ,...,1=

where y , kA ,and k are specified in REMARK 3.1, and

)}(),...,(,0min{)}(),...,(,1max{ 11 rr dgdgdgdgM −= . (3.4)

PROPOSITION 3.2 A product term)()(ygfz ⋅= x , where ∏
=

=
n

i
i

ixcf
1

)(αx as being

specified in GGP, iii xxx ≤≤ , c is a free-sign constant, and },...,{ 1 rddy∈ , can be

expressed by following inequalities:

 kkkk AMdgfzAMdgf ⋅′+⋅≤≤⋅′−⋅)()()()(xx , rk ,...,1=

where

(i) y , kA ,and k are specified in PROPOSITION 3.1.

(ii) MfM ⋅=′)(x , for

 }||,1max{)(
1
∏
=

=
n

i

U
ixcf x , where }|,max{| ixxxxx iiii

U
i

i ∀≤≤= α . (3.5)

PROOF It is clear that |)(| xfMM ≥′ for iii xxx ≤≤ . Since 0≥kA ,

kk AMfAM)(x−≤′− and kk AMfAM)(x≥′ . Two cases are discussed.

(i) Case 1 for 0)(≥xf . From Proposition 3 to have

 kkkk AMfdgfygfAMfdgf ⋅+⋅≤≤⋅−⋅)()()()()()()()(xxxxx .

 We then have

 kkkk AMdgfygfAMdgf ⋅′+≤≤⋅′−)()()()()()(xxx .

(ii) Case 2 for 0)(<xf . From Proposition 3 to have

 36

 kkkk AMfdgfygfAMfdgf ⋅+⋅≥≥⋅−⋅)()()()()()()()(xxxxx .

Similar to Case 1, it is clear that

 kkkk AMdgfygfAMdgf ⋅′+≤≤⋅′−)()()()()()(xxx .

The proposition is then proven. □

REMARK 3.3 For a constraint aygfz ≤⋅=)()(x where a is constant,)(xf and)(yg

are the same as in PROPOSITION 3.2. The constraint az ≤ can be expressed by following

inequalities:

 aMdgf kk ≤⋅′−⋅ A)()(x , rk ,...,1= ,

where M ′ is same in PROPOSITION 3.2. There are r constraints used to describe az ≤ ;

where only one of the constraints is activated(i.e., 0A =k) which indicates the discrete

choice made by y , while the rest of 1−r inequalities turn into redundant constraints.

We then deduce the main result below:

THEOREM 3.1 Denote)()(111 ygfz ⋅= x and ∏
=

− ⋅=⋅=
σ

σσσσ
1

1)()()(
j

jj ygfygzz x for

m,...,2=σ where ∏
=

=
n

i
i

ixcf
1

)(αx , iii xxx ≤≤ , c is a free-sign constant, and jy are

discrete free-sign variables, },...,,{ ,2,1, jrjjjj dddy ∈ . The terms mzzz ,...,, 21 can be

expressed by the following inequalities:

(C1) kkkk MdgfzMdgf ,11,111,11,11 A)()(A)()(⋅′+⋅≤≤⋅′−⋅ xx , 1,...,1 rk = ,

(C2) kkkk MdgzzMdgz ,22,2212,22,221 A)(A)(⋅′+⋅≤≤⋅′−⋅ , 2,...,1 rk = ,

…

 37

(Cm) kmmkmmmmkmmkmmm MdgzzMdgz ,,1,,1 A)(A)(⋅′+⋅≤≤⋅′−⋅ −− , mrk ,...,1= .

where

(i) kjjkjjkjjkj MdyMd ,,,, AA ⋅+≤≤⋅− , mj ,...,1= , jrk ,...,1= ,

(ii) ∑∑
=

⎥⎦
⎥

⎢⎣
⎢ −

=

⎥⎦
⎥

⎢⎣
⎢ −

⋅−+−−=
−−

θθ

1
,

2
1

1

2
1

,))1(())1(1(5.0 11

w
wj

k

w

k

kj uA ww , ⎡ ⎤jr2log,...,1=θ for all kj , ,

(iii)
⎡ ⎤

j

r

w
wj

w ruk
j

≤+= ∑
=

−
2log

1
,

121 ,

(iv))(,)(
1

xx ffM
j

i
ij ∏

=

⋅=′ σ is specified in (3.5),

)}(,0{min)}(,1{max ,, kiikkiiki dgdg −=σ , (3.6)

 .,...,1 ,,...,1 jrkmj ==

PROOF (i) Consider (C1). Since 11 σ=≥′≥′ MMM , where M ′ and M are specified

in PROPOSITION 3.2, (C1) is ture.

(ii) Consider (C2). It is clear 212 σσ)f(M ⋅=′ x .

If 0)(≥xf then)()()()(,221,221,221,22,221 kkkkk dgzAfdgzAMdgz ⋅≤⋅−⋅≤⋅′−⋅ σσx

and kkkkk AMdgzAfdgzdgz ,22,221,221,221,221)()()()(⋅′+⋅≤⋅+⋅≤⋅ σσx .

If 0)(<xf

)()()()(,221,221,221,22,221 kkkkk dgzAfdgzAMdgz ⋅≥⋅−⋅≥⋅′+⋅ σσx and

kkkkk AMdgzAfdgzdgz ,22,221,221,221,221)()()()(⋅′−⋅≥⋅+⋅≥⋅ σσx .

We then have kkkk AMdgzzAMdgz ,22,2212,22,221)()(⋅′+⋅≤≤⋅′−⋅ for 1,2 ≥kA .

(iii) Similar for (C3) to (Cm).

The theorem is then proven. □

 38

REMARK 3.4 A Constraint ∑ ∏
= =

≤
p

s

m

j
ijss aygf

1 1
,)()(x , where a is constant

and ∏
=

=
n

i
iss

sixcf
1

,)(αx , iii xxx ≤≤ , c is a free-sign constant, can be expressed by

following inequalities:

 ∑
=

≤
p

s
ms az

1
, ,

 ,,)(,,,,,,1, kszAMdgz mskmsmskmmsms ∀≤⋅−⋅−

 ,,)()(,1,1,,11,2,1,,1,1,,11,2, ksAMdgzzAMdgz kmsmskmmsmsmskmsmskmmsms ∀⋅+⋅≤≤⋅−⋅ −−−−−−−−−−−

 M

 ,,)()(,2,2,,22,2,2,,2,2,,22,2, ksAMdgzzAMdgz kssksssksskss ∀⋅+⋅≤≤⋅−⋅

 ,,)()()()(,1,1,,11,1,,1,1,,11, ksAMdgXfzAMdgXf kssksssksskss ∀⋅+⋅≤≤⋅−⋅

where

,,}|,max{| },||,1max{)(,)(,
,

1
,

1
,, isxxxxxxCffM iiii

U
is

n

i

U
isss

i

j
issis

is ∀≤≤==⋅= ∏∏
==

ασ xx (3.7)

)}.(,0min{)}(,1max{ ,,,,, kiiskiisis dgdg −=σ

For instance, a single nonlinear constraint ayyxy ≤+ 21
2
1 where 50 ≤≤ x , 21, yy are

integer variables, 32,1 21 ≤≤ yy , can be converted into a linear system as follows.

(i) Denote },...,{}32,...,1{ 3211 ddy =∈ . Since ⎡ ⎤ 532log2 = , five binary variables

,,,, 4321 uuuu and 5u are used to express 1y . Specifying k as:

 5
4

4
3

3
2

21 22221 uuuuuk +++++= .

Referring to (3.2), 1y is expressed as

 ,32,...,1,,111,11 =⋅+≤≤⋅− kAMdyAMd kkkk (3.8)

 39

where 321 =M and kA ,1 are specified as

.5

,1

,

5432132,1

543212,1

543211,1

uuuuuA

uuuuuA

uuuuuA

−−−−−=

++++−=

++++=

M

Similarly, denote },...,{}32,...,1{ 3212 bby =∈ , five binary variables ,,,, 4321 vvvv and 5v

are used to express 2y . Specifying q as:

 5
4

4
3

3
2

21 22221 vvvvvq +++++= .

2y is expressed in the same way as in 1y :

 ,32,...,1,,222,22 =⋅+≤≤⋅− qAMbyAMb qqqq (3.9)

where 322 =M . Specifying qA ,2 as

.5

,1

,

5432132,2

543212,2

543211,2

vvvvvA

vvvvvA

vvvvvA

−−−−−=

++++−=

++++=

M

(ii) Treating the first term 2
1xy in the constraint. Denote 2

13 xyz = . From Theorem 1 to

have:

 ,32,...,1,3,11
2 =≤⋅′−⋅ kzAMdx kk

 where 5120)032(*5 2
1 =−=M&

(iii) The second term 21yy in constraint is treated similarly. Denote 214 yyz = . To form

 40

the inequalities as

 ,32,...,1,4,221 =≤⋅′−⋅ qzAMby qq

 where .102432*322 ==M&

The original constraint then becomes azz ≤+ 43 where there are additional 10 binary

variables and two continuous variables. By utilizing Theorem 1 to express this constraint in

linear form requires 192 additive constraints (where 64 come from (3.8), 64 come from

(3.9)). Another approach, developed based on Theorem 1, can be used to reduce the number

of constraints from 192 to ⎡ ⎤ 110)32log43(264 2 =++ .

3.3 Treatment of Discrete Function in GGP (Approach 2)

PROPOSITION 3.1 uses ⎡ ⎤r2log binary variables and r2 additive constraints to express a

discrete function)(yg variable with r values. Here we use PROPOSITION 2.2 and

PROPOSITION 2.3 to express the same discrete variable where only ⎡ ⎤r2log43+ additive

constraints are required. Such an expression is computationally more efficient to treat)(yg

in a GGP program.

We use kp and wδ to instead of θr and jz in PROPOSITION 2.2 and PROPOSITION

2.3 in this section respectively. For instance, given }10 ,9 ,8 ,5.7 ,6 ,5 ,4 ,1 ,0 ,1{−∈y , referring

to Table 2.1 to have

 41

.0)(

)(

)(

)(

)2(...)1()(

109876543214

109876543213

109876543212

109876543211

4321104321243211

10

1

=−−++++++++

++−−−−++++

++−−++−−++

−+−+−+−+−=

−++−+++++−++++=∑
=

ppppppppppu

ppppppppppu

ppppppppppu

ppppppppppu

uuuupuuuupuuuupAp
k

kk

The discrete variable y can be expressed by following linear equation and linear

inequalities:

.0 ,1

,1...1...

,1...1...

,1...1...

,4,...,1,

,02...

,10985.7654

10

1

4103214410321

2103212210321

1103211110321

10324321

1098765431

≥=

−+−+++≤≤+−−+++

−+−−−+≤≤+−−−−+

−+−−+−≤≤+−−−+−

=≤≤−

=+++++++

++++++++−=

∑
=

k
k

k

www

pp

uppppupppp

uppppupppp

uppppupppp

wuu

ppp

pppppppppy

δ

δ

δ

δ

δδδδ

M

 (3.10)

It is convenient to check: If 12 =u and 0431 === uuu then 0431 === δδδ and

109876543212 pppppppppp ++−−++−−+=δ .

Since =+++++++++ 10987654322 23222 pppppppppδ

10322322 1098765421 =++++++++ ppppppppp , 0≥kp , and 1
10

1

=∑
=k

kp , it is clear

01098765421 ========= ppppppppp , 032 =+ pδ , 12 −=δ and 13 =p . We

 42

then have 13 == py .

REMARK 3.5 ⎡ ⎤r2log binary variables, ⎡ ⎤r2log43+ constraints, and ⎡ ⎤rr 2log+

continuous variables are used in PROPOSITION 2.2 and PROPOSITION 2.3 to express a discrete

variable with r values.

REMARK 3.6 Given a function)(yg where },...,{ 1 rddy∈ ,)(yg can be expressed by

following expressions.

 ∑
=

=
r

k
kkk pdgdg

1
)()(

 where 1
1

=∑
=

r

k
kp , 0≥kp , and 0

1
=∑

=

r

k
kk Ap are specified similarly.

For instance, a function)1/()10()(2yyyg +−= can be expressed by the following

expressions:

 ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
10

1
21

10)(
k

k
k

k p
d
dyg ,

Suppose 0432 === uuu and 11 =u then 0 ,1 ,2 2 === ypk and 10)(=yg .

Table 3.1 is a comparison of the three ways for expressing a discrete variable y with

r values. A numerical example is given in Example 3.4 to compare their computational

effeciency.

 43

Table 3.1 Way of expressing },...,{ 1 rddy∈
 Floudas’s Method,

Li&Tsai’s Method
Approach 1
REMARK 3.1

Approach 2
PROPOSITION 2.2

Expression
}1,0{,1

1

1

∈∀=

=

∑

∑

=

=

k

r

k
k

r

k
kk

uu

duy

.,...,1
,
,

rk
MAdy
MAdy

kk

kk

=
+≤
−≥

.0

,1,

1

11

=

==

∑

∑∑

=

==

r

k
kk

r

k
k

r

k
kk

Ap

ppdy

No. of binary variables r ⎡ ⎤r2log ⎡ ⎤r2log

No. of additional constraints 2 r2 ⎡ ⎤r2log43 +

No. of additional continuous variables 0 0 ⎡ ⎤rr 2log+

Now consider Condition (i) in THEOREM 3.1, where jy are expressed by Approach 1

using jr2 constraints. That condition can be replaced by PROPOSITION 2.2 and PROPOSITION

2.3 where only ⎡ ⎤r2log43 + constraints are required. This is described as following

proposition:

PROPOSITION 3.3 Replacing Condition (i) in THEOREM 3.1 by following expressions:

 mjpdy
jr

k
kjkjj ,...,1,

1
,, ==∑

=

where 1
1

, =∑
=

jr

k
kjp , 0, ≥kjp , and 0

1
,, =∑

=

jr

k
kjkj Ap for all kj, . The total number of

variables and constraints used to express mzzy ,...,, 1 using (C1), (C2),…,(Cm) in

THEOREM 3.1 are listed below:

(i) no. of binary variables: ⎡ ⎤∑
=

m

j
jr

1
2log ,

(ii) no. of constraints for)(jj yg : ⎡ ⎤∑
=

+
m

j
jrm

1
2log3 ,

(iii) no. of constraints for mzzz ,...,, 21 in (C1), (C2),…,(Cm): ∑
=

m

j
jr

1
4 ,

(iv) no. of continuous variables: ⎡ ⎤∑∑
==

++
m

j
j

m

j
j rr

1
2

1
log)1(.

 44

3.4 Treatment of Continuous Function in GGP

Consider the signomial form ∏
=

=
n

i
i

ixcf
1

)(αx , according to Li and Tsai (2005), we illustrate

the technique of treating)(xf , in xxxx),,...,,(21=x as free-sign variables, ii xxx i ≤≤ ,

and c is a constant. Introducing new binary variables ii λθ , and a positive continuous

variable },max{0 0
iii xxx −≤≤ which are specified below:

(i) 0=ix if and only if 0=iλ ,

(ii) iiii xxxxx i ≤<=> 00 0 , ,0 if and only if 0 and 1 == ii θλ ,

(iii) 0 , ,0 00 <−≤−=< iii xxxxx ii if and only if 1 and 1 == ii θλ

The above conditions can be represented by a set of linear inequalities below:

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

∈

−+−≤≤−−−

+≤≤−

−−≤≤

≤≤

⇔
−=

−≤≤

}.1,0{,

),1()1(

,

,)1(0

,0

)(

)(

)(

)(

)(

).21(

},,max{0

00

00

0

0

0

0

ii

iiiii

iiiii

iiiii

ii

iiii

iii

MxxMx

MxxMx

xxx

Mx

v

iv

iii

ii

i

xx

xxx

θλ

θθ

θθ

θθ

λ

θλ

Here },max{2 ii xxM −= . Now denote)(xf and)(0 xf as below:

∏
=

=
n

i
i

ixcf
1

)(αx and ∏
=

=
n

i
i

ixcf
1

00)()(αx where 0
ix are positive variables mentioned

above, it is clear that

 ∏
=

−⋅=
n

i
ii

iiff
1

0)21()()(αα θλxx , }1 , 0{, ∈ii θλ (3.11)

Expression (3.11) implies:

(i) If ii ∀= 0λ then 0)(=xf ,

 45

(ii) If iii αθλ and ,1 ,1 == is odd for all },...,2,1{ ni∈ then)()(0 xx ff −= .

By specifying three new variables t and , ,θλ defined below:

(i) iλλ ≤ ,

(ii) ∑
∈

−=
Ii

i t2θθ , I={i | 0<ix and iα is odd for all i ,

(iii))1(5.00 ∑
∈

+≤≤
Ii

it θ ,

where t and },1,0{ , ∈θλ is an integer variable.

It is clear that if 0=λ then 0)(=xf ; if 0=θ then)()(0 xx ff = ; and if 1=θ

then)()(0 xx ff −= . We then have following proposition:

PROPOSITION 3.4 Consider a signomial continuous function ∏
=

=
n

i
i

ixcf
1

)(αx where

in xxxx),,...,,(21=x are free-sign variables, ii xxx i ≤≤ , and c is a constant.)(xf can be

expressed with the following inequalities:

 λλ MfM ′≤≤′−)(x ,

 θθ MffMf ′+≤≤′−)()()(00 xxx ,

)1()()()1()(00 θθ −′+−≤≤−′−− MffMf xxx ,

 ∑
∈

−=
Ii

i t2θθ ,

 ∑
∈

≤≤
Ii

it θ5.00 ,

 0)1(
1

≤−−−∑
=

λλ n
n

i
i ,

 nii ,...,1, =≤ λλ ,

 niMx ii ,...,1,0 0 =≤≤ λ ,

 Jixxx iiiii ∈∀−−≤≤ ,)1(0 0 θθ ,

 46

 JiMxxMx iiiii ∈∀+≤≤− ,00 θθ ,

 JiMxxMx iiiii ∈∀−+−≤≤−−−),1()1(00 θθ ,

 Jixx ii ∉≤< ,0 0 ,

 Jixx ii ∉= ,0 ,

where

(i) ∏
=

=
n

i
i

ixcf
1

00)()(αx ,

(ii) },1 , 0{,,, ∈ii θλθλ },max{2 ii xxM −= ,

(iii) t is an integer variable,

(iv) J is a set containing all i where the lower bound of ix areis negative, and I

denotes a set of all i where Ji∈ and iα is odd, J and I are expressed as

J={i | ixi ∀< 0 } and

I={i | 0<ix and iα is odd i∀ }.

PROOF Referring to Li and Tsai (2005). □

In order to globally solve a GGP problem,)(0 xf in PROPOSITION 3.4 should be

approximately linearized. The most convenient approach to linearizing)(0 xf is to take

logarithms to reformulate)(0 xf as the differences of some convex functions in (3.1) as

proposed by Floudas’s method. Such an approach, however, requires that we add numerous

new binary variables. For instance, to treat a constraint

 102
3

1
2

5.
1 ≤= −− xxxz where 5,,1 321 ≤≤ xxx . (3.12)

Floudas’s method first denotes 332211 log and ,log ,log xzxzxz === , then to reformulates

10≤z as the following linear inequalities:

 47

 10log25.0 321 ≤+−− zzz ,

 iii xzxL log)(log ≤≤ , 3,2,1=i .

Since ixlog are concave functions, linearizing)(log ixL with m break points requires

the addition of)1(3 −m binary variables for piecewise linearization. Here we propose

some converxification and concavification strategies to reduce the number of binary

variables required to linearize)(log ixL . Consider the following propositions:

PROPOSITION 3.5 A piecewise linearized function))((xfL of a concave function)(xf with

m break points mbbb <<< ...21 can be expressed as

(C1) kkkk MbxMb AA 1 ⋅+≤≤⋅− + , 1,...,1 −= mk ,

(C2) kkkkkkkk MbxsbfxfLMbxsbf A)()())((A)()(⋅+−+≤≤⋅−−+ , 1,...,1 −= mk

where

(i)
kk

kk
k bb

bfbfs
−
−

=
+

+

1

1)()(,

(ii) kA are specified as the similar way in (2.7),

(iii) M is a large enough positive value.

Obviously, only ⎡ ⎤)1(log2 −m binary variables are required to create the piecewise

linear function))((xfL .

PROOF Referring to Tsai et al. (2002). □

PROPOSITION 3.6 A twice-differentiable function nixxxcxf in
n ,...,10,...)(21

21 =∀≥= αααx ,

is a convex function in one of the following conditions:

(C1) 0≥c , ii 0∀<α ,

(C2) 0<c , ii 0∀>α , 1
1

≤∑
=

n

i
iα .

 48

PROOF Referring to Tsai et al. (2002). □

To simplify the expression, here we use a signomial term with three variables as

instances to illustrate the convexification and concaveification techniques.

CONVEXIFICATION AND CONCAVIFICATION STRATEGIES 1

Consider a constraint constant321
321 ≤= ααα xxxz with)3 ,2 ,1(0 =≥ ixi , ,0, 21 <αα

03 >α . This constraint can be converted into the following inequalities:

 constant321
321 ≤−ααα wxx ,

)(1
33

1
3

−− ≤≤ xLwx

where 1
3321 ,321 −− xwxx ααα are convex (following (C1) of PROPOSITION 3.6, and)(1

3
−xL is a

piecewise linear function by PROPOSITION 3.5.

Take the example in (3.12) as an introduction. The constraint 10≤z is converted into

the following inequalities base on CONVEXIFICATION AND CONCAVIFICATION STRATEGIES 1:

 102
3

1
2

5.0
1 ≤−−− wxx ,

)(1
33

1
3

−− ≤≤ xLwx ,

where only ⎡ ⎤)1(log2 −m binary variables are used instead of the)1(3 −m binary

variables required by conventional methods.

CONVEXIFICATION AND CONCAVIFICATION STRATEGIES 2

A constraint constant321
321 ≤−= ααα xxxz with)3 ,2 ,1(0 =≥ ixi , 0,, 321 <ααα . This

constraint can be converted into following inequalities:

 constant3
1

3
3
1

2
3
1

1 ≤− www ,

 49

)(33 ii
iii xLwx αα ≤≤ for 3 ,2 ,1=i ,

where i
ixwww α33

1

3
3
1

2
3
1

1 ,− are convex (following (C2) of PROPOSITION 3.6), and)(3 i
ixL α is a

piecewise linear function by PROPOSITION 3.5.

3.5 Numerical Examples

EXAMPLE 3.1 GGP with Linear Continuous Function

Consider following program with one continuous free-sign variable x and two discrete

variables 21 y and y :

PROGRAM 1

Min 2
212

3
1 yxyyxy +

s.t. (C1) 50021
2
1 −≤+ yyxy ,

 (C2) 5002
2
11 ≤+− yyxy ,

 (C3) 55 ≤≤− x ,

 (C4) 10} 9, 8, 7.5, 6, 5, 4, ,1 ,0 ,1{1 −∈y ,

 (C5) 5} 4, 3, 1, ,1 ,4 ,7 ,9 ,18 ,27{2 −−−−−−∈y .

Program 1 can not be solved by Floudas’s methods (1997, 1999, 2000) or Li and Tasi’s

(2005) approach, since there are zero and negative values for continuous and discrete

variables. Our solution proceeds as follows:

(i) Denote },...,{10} 9, 8, 7.5, 6, 5, 4, ,1 ,0 ,1{ 1011 ddy =−∈ . Since ⎡ ⎤ 410log2 = , four binary

variables 4321 and ,,, uuuu are used to express 1y . Specifying k as:

 102221 4
3

3
2

21 ≤++++= uuuuk . (3.13)

1y can be expressed as in (3.10) where y is replaced by 1y and kp are replaced

 50

by . Specifying kA ,1 as

 432110,143212,143211,1 2,...,1, uuuuAuuuuAuuuuA −++−=+++−=+++= . (3.14)

Similarly, denote },...,{5} 4, 3, 1, ,1 ,4 ,7 ,9 ,18 ,27{ 1012 bby =−−−−−−∈ , four binary

variables 4321 and ,,, vvvv are used to express 2y . Specifying q as:

 102221 4
3

3
2

21 ≤++++= vvvvq . (3.15)

2y is expressed in the same way as in 1y :

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

≥=

−+−+++≤≤+−−+++

−+−−+−≤≤+−−−+−

=≤≤−

=+++++++

++++−−−−−−=

∑
=

.0 ,1

,1...1...

,1...1...

,4,...,1,

,02...

,5434791827

,2

10

1
,2

410,23,22,21,24410,23,22,21,2

110,23,22,21,21110,23,22,21,2

,2

10,23,22,24,23,22,21,2

10,29,28,27,26,25,24,23,22,21,22

q
q

q

www

pp

vppppvpppp

vppppvpppp

wvv

ppp

ppppppppppy

δ

δ

δ

δδδδ

M

 (3.16)

Specify qA ,2 as

 432110,243212,243211,2 2,...,1, vvvvAvvvvAvvvvA −++−=+++−=+++= . (3.17)

(ii) Now treat the term 2
3
1 yxy in the objective function.

Denote 3
1112

3
11 and y xyzxyz == . From Theorem 1 to have:

⎪
⎭

⎪
⎬

⎫

=⋅′+⋅≤≤⋅′−⋅

=≤⋅′−⋅

.10,...,1 ,

,10,...,1 ,

11
3

1111
3

12211

kAMdxzAMdx

qzAMbz

,kk,kk

,qq

 (3.18)

where jM ′ are the same as in (3.6). Since x is a continuous free-sign variable, here

θλ and ,,0x are introduced to form following inequalities based on PROPOSITION 3.4:

 51

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

−+−≤≤−−−

+≤≤−

−−≤≤

≤≤

),1()1(

,

,)1(0

,0

00

00

0

0

θθ

θθ

θθ

λ

MxxMx

MxxMx

xxx

Mx

 (3.19)

 where }1,0{ , ∈λθ .

(iii) Other nonconvex terms are treated similarly as in (3.18) and (3.19). These terms are

denoted as 2
2112 yyxz = , 2

113 yxz = , 214 yyz = , 115 yxz = , and 2
2
16 yyz = .

The original problem is then converted into a mixed 0-1 linear program below, which

contains 162 linear constraints and 8 binary variables.

PROGRAM 2

Min 21 zz +

s.t. (C1) 50043 −≤+ zz ,

 (C2) 50065 ≤+− zz ,

 (C3) 55 ≤≤− x ,

 (C4) (3.10), (3.13)－(3.19),

where 65432 ,,,, zzzzz are expressed similar to (3.18) and (3.19),

}1,0{ , , , , , , , , , 43214321 ∈θλvvvvuuuu , and M is a big value.

Solving Program 2 to obtain the globally optimal solution as)1 ,10 ,9.4(),,(21 −−=yyx

with the objective value 4851.

EXAMPLE 3.2 GGP with Signomial Continuous Function

 52

Here we use a signomial continuous function 2
3
1 xx to replace x in Program 1. The

example is formulated below:

PROGRAM 3

Min (The same objective function in Program 1)

s.t. (C1) The same constraints in Program 1 but erase the constraint: 55 ≤≤− x ,

 (C2) 2
3
1 xxx = , 55 1 ≤≤− x , 55 2 ≤≤− x .

Compared with the solution process of Program 2, the extra work is to treat the equality

constraint 2
3
1 xxx = as follows:

(i) Expressing free-sign variables 21 and xx by PROPOSITION 3.4 as inequalities below:

 2 ,1

,

),1(10)1(10

,1010

,)1(0

,0

00

00

0

0

=

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

≤

−+−≤≤−−−

+≤≤−

−−≤≤

≤≤

i

xxx

xxx

xxx

Mx

i

iiiii

iiiii

iiiii

ii

λλ

θθ

θθ

θθ

λ

 (3.20)

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

′≤≤′−

≤−−+

+≤≤

−+=

,

,01

),(5.00

,2

21

21

21

λλ

λλλ

θθ

θθθ

MxM

t

t

 (3.21)

where }1,0{ , , , , , 2121 ∈θθθλλλ , and t is a integer variable.

(ii) Let)()(0
2

30
1

0 xxx = , expressing the relationship between 0 and xx as the following

inequalities based on Proposition 5:

 θθ MxxMx ′+≤≤′− 00 ,

 53

)1()1(00 θθ −′+−≤≤−′−− MxxMx .

(iii) Using Convexification and Concavification Strategies to convert the inequalities in (ii)

as follows:

⎪⎭

⎪
⎬

⎫

−′+−≤≤−′−−

′+≤≤′−

−−

−−

),1()1(

,

1
2

3
1

5.
4

5.
3

5.0
4

5.0
3

1
2

3
1

θθ

θθ

MwwxMww

MwwxMww
 (3.22)

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

≤≤

≤≤

≤≤

≤≤

−−

−−

),)(()(

),)(()(

),)(()(

),)(()(

20
24

20
2

60
13

60
1

10
22

10
2

10
11

10
1

xLwx

xLwx

xLwx

xLwx

 (3.23)

where

(a) 1
2

3
1

−− ww is convex form of 0x and 5.
4

5.
3 ww is a concave form of 0x ,

(b)))((and),)((),)((),)((20
2

60
1

10
2

10
1 xLxLxLxL −− are piecewise linear functions of

20
2

60
1

10
2

10
1)(and ,)(,)(,)(xxxx −− , respectively.

(c))(2 xfM = ,)(xf is specified in (3.5).

The whole program is reformulated as the following mixed 0-1 convex program:

PROGRAM 4

Min 21 zz +

s.t. (C1) The same constraints in Program 2,

 (C2) Constraints in (3.20)－(3.23).

This is a mixed binary convex program which can be solved to reach finite ε -convergence

to the global optimal solution as

)27 ,1 ,75.4 ,9051.4(),,,(2121 −−=yyxx with the objective value -369954.

 54

EXAMPLE 3.3 Comparisons of Computational Efficiency for Signomial Function

This example is used to compare the computational efficiency between the proposed

method and Floudas’s methods. Consider following GGP problem:

PROGRAM 5

Min ∑∏∏
=

≠
==

−
n

1 ..11 j
ji

ni
i

n

i
i

ii xx αα

s.t. bxb
j

ji
ni

i
i 2

n

1 ..1

≤≤∑∏
=

≠
=

α ,

where ix are positive integer variables, imxi ∀≤≤ 1 ,

 bi and α are constants.

For 2=n , the objective function of the above problem becomes 2121
2121
αααα xxxx −− .

For 3=n , the objective function of above problem becomes

313221321
313221321
ααααααααα xxxxxxxxx −−− . Reforming this problem with 3=n by Floudas’s

method to have the following convex integer program:

PROGRAM 6

Min ∑
=

∑
∑

≠
=

= −
3

1

3..1
3

1

j

y
y

ji
i

ii

i
ii

ee
α

α

s.t. (C1) beb
j

y
ji

i
ii

2
3

1

3..1

≤≤∑
=

∑
≠
=
α

,

 (C2) iduy
m

jijii ∀⋅=∑
=1j

,,)ln(,

 (C3) jiuiu ji

m

ji , }1,0{ ,1)(,
1j

, ∀∈∀=∑
=

.

Resolving this problem with 3=n by the proposed method to have the following linear

mixed binary program:

 55

PROGRAM 7

Min 132312123 zzzz −−−

s.t. (C1) bzzzb 2132312 ≤++≤ ,

 (C2) 321 ,0 ,1 ,0 , ,
1

,
1

,,
1

,, ,,ippAppdz ji

m

j
ji

m

j
jiji

m

j
jijii

i =≥=== ∑∑∑
===

α ,

 (C3) jAMdzzAMdz jjjj ∀⋅+⋅≤≤⋅−⋅ ,2,2112,2,21
22 αα ,

 (C4) jAMdzzAMdz jjjj ∀⋅+⋅≤≤⋅−⋅ ,3,3223,3,32
33 αα ,

 (C5) jAMdzzAMdz jjjj ∀⋅+⋅≤≤⋅−⋅ ,3,3113,3,31
33 αα ,

 (C6) jAMdzzAMdz jjjj ∀⋅+⋅≤≤⋅−⋅ ,3,312123,3,312
33 αα ,

 (C7)
⎡ ⎤

i,kuimu ki

m

k
ki

k- ∀∈∀≤⋅∑
=

}1,0{ ,)2(,

log

1
,

1
2

.

All xM ′ come from (3.7). By specifying various values for m and b , we solve both

programs using LINGO (2004). The related CPU time, number of binary variables, and

number of constraints are reported in Table 3.2.

Table 3.2 indicates that both methods reach the same −ε global optimum for 810−=ε .

The number of binary variables used in Floudas’s method is larger than the proposed method,

while the proposed method uses more constraints than Floudas’s method. The CPU time

demonstrates that the proposed method is much more computationally efficient than

Floudas’s methods.

 56

Table 3.2 Experiment result of Example 3.3
Experiment Conditions Proposed

method
Floudas’s
method

CPU Time 1sec 1min 27sec
Number of binary variables 6 12
Number of constraints 55 9

1
3
4

=
=

b
m

Objective Value －5.389143
CPU Time 3sec 1min 44sec
Number of binary variables 9 24
Number of constraints 0 3

2
4
8

=
=

b
m

Objective Value －7.452201
CPU Time 11sec 6min 28sec
Number of binary variables 12 48
Number of constraints 223 9

3
10
16

=
=

b
m

Objective Value －19.73737
CPU Time 2min 12sec 32min 45sec
Number of binary variables 15 96
Number of constraints 447 9

4
31
32

=
=

b
m

Objective Value －61.78579

*)2.1 ,5.0 ,2() , ,(321 −=ααα

EXAMPLE 3.4 Comparison of Computational Efficiency for Discrete Variables with Large

Sizes

Consider following program with three discrete variables 21 , yy and 3y , where 1y

contains 8 possible values and 32 , yy both contain 128 possible values.

PROGRAM 8

Min 2.1
3

5.0
2

816.0
2

2
1 yyyy −−

s.t. (C1) 165.0
3

9.0
2

8.0
1 ≥++ yyy ,

 (C2) 312.1
3

7.1
2

5.1
1 ≤++− yyy ,

where }8.16 ,7.14 ,6.12 ,5.9 ,4.7 ,3.5 ,2.3 ,1.1{1 ∈y ,

}.9.26 ,8.26 ,7.26 ,6.26 ,26.0 ,5.25 ,4.25 ,3.25 ,2.25 ,1.25
,9.24 ,8.24 ,7.24 ,6.24 ,24.0 ,5.23 ,4.23 ,3.23 ,2.23 ,1.23

,9.4 ,8.4 ,7.4 ,6.4 ,4.0 ,5.3 ,4.3 ,3.3 ,2.3 ,1.3
,9.2 ,8.2 ,7.2 ,6.2 ,2.0 ,5.1 ,4.1 ,3.1 ,2.1 ,1.1{, 32

M

∈yy

 57

Floudas's method (or Li and Tsai's method) converts this program into following form:

PROGRAM 9

Min 2.1
3

5.0
2

ln816.0ln2 21 yye yy −−+

s.t. (C1), (C2),

where 8.16ln...2.3ln1.1lnln 8211 uuuy +++= ,

 7.26ln...2.1ln1.1lnln 128212 vvvy +++= ,

 5.1,8.0 ,8.16...2.31.1 8211 −=+++= ααααα uuuy ,

 7.1 ,9.0 ,5.0 ,7.26...2.11.1 128212 =+++= βββββ vvvy ,

 5.0 ,2.1 ,7.26...2.11.1 128213 =+++= γγγγγ wwwy ,

 }1,0{,, ,1 ,1 ,1
128

1

128

1

8

1
∈∀=== ∑∑∑

===
kji

k
k

j
j

i
i wvuwvu .

Our proposed method (i.e., THEOREM 3.1 and PROPOSITION 3.3) transforms this program

into following form:

PROGRAM 10

Min 2.1
3

5.0
2 yyz −−

s.t. (C1), (C2),

)1(1.1)1(1.1 11
2

11
2 −′+≤≤−′− pMzzpMz ,

)1(2.3)1(2.3 21
2

21
2 −′+≤≤−′− pMzzpMz ,

 M

)1(8.16)1(8.16 81
2

81
2 −′+≤≤−′− pMzzpMz ,

where 128
816.0

2
816.0

1
816.0

1 7.26...2.11.1 qqqz +++= ,

 5.1 ,8.0 ,8.16...2.31.1 128211 −=+++= ααααα pppy ,

 7.1 ,9.0 ,5.0 ,7.26...2.11.1 128212 =+++= βββββ qqqy ,

 58

 5.0 ,2.1 ,7.26...2.11.1 128213 =+++= γγγγγ sssy ,

 iablesbinary var 3 of composed ,0 ,0 ,1
8

1

8

1
ii

i
ii

i
i ApApp ≥∀== ∑∑

==

,

 iablesbinary var 7 of composed ,0 ,0 ,1
128

1

128

1
jj

j
ii

j
j AqAqq ′≥∀=′= ∑∑

==

,

 iablesbinary var 7 of composed ,0 ,0 ,1
128

1

128

1
kk

k
ii

k
i AsAss ′′≥∀=′′= ∑∑

==

,

 816.02 7.268.16 ×=′M .

The number of binary variables, constraints, continuous variables, as well as the number

of iterations and CPU time are listed in Table 3.3. Table 3.3 illustractes that both programs

obtain the same global optimum with 14 ,1.3 ,8.16 321 === yyy , and objective value is

685.0155 as solved by LINGO (2004). However, the proposed method is more computational

effecient than Floudas's method and Li&Tsai's method.

Table 3.3 Comparisons of existing methods with proposed method
 No. of binary

variables
No. of

constraints
No. of continuous

variables
No. of

iterations
CPU time
(second)

Floudas's method and
Li&Tsai's method

264 13 3 53588 72

Proposed method 17 30 269 11139 3

 59

Chapter 4 Extension 2－Solving Task Allocation
Problem

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10

The task allocation problem (TAP) is one where a number of tasks or modules need to be

assigned to a set of processors or machines at minimum overall cost. The overall cost

includes the communication cost between tasks that are assigned to different processors and

other costs such as the assignment cost and the fixed cost of using processors. Processors

may have limited or unlimited capacities to perform tasks. Task allocation has been applied

to the design of distributed computing systems and also in auto-manufacturing contexts. We

try to find an efficient method to conquer the classic problems based on SRB. We also

report some computational experience for the TAP.

4.1 Introduction to Task Allocation Problem

The task allocation problem (TAP) is to assign a set of tasks or modules to a set of

processors or machines so that the overall cost is minimized. The overall cost may include the

task assignment cost and the interprocessor communication cost, among others. And each

processor has a limited capacity or memory. The TAP is an important problem that arises in

distributed computing systems (see Stone 1977) and has also been applied in the automobile

manufacturing industry in Rao (1992). Many heuristic and exact algorithms have been

designed for solving various versions of the TAP. Heuristic algorithms are developed in Dutta

et al. (1982), Kopidakis et al. (1997), Lo (1988), Ma et al. (1982), Milis (1995), and Sarje and

Sagar (1991); metaheuristic algorithms such as simulated annealing, tabu search, and genetic

algorithms are proposed in Chen and Lin (2000), Hadj-Alouane et al. (1999), and Hamam and

Hindi (2000); and exact mathematical programming and/or branch-and-bound approaches are

used in Billionnet et al. (1992), Magirou and Milis (1989), Sinclair (1987), and Stone (1977).

Because of the complexity of the TAP, none of the above-mentioned algorithms, with

 60

the exception of Billionnet et al. (1992), are capable of solving some real-world applications

optimally. Most versions of the TAP can be formulated as integer quadratic programs (see

Hadj-Alouane et al. 1999, Hamam and Hindi 2000). The potential of mathematical

programming approaches has not been fully explored for solving the TAP. In the last decade,

great progress has been made both in computational power and computational technology of

mathematical programming. Column generation and branch-and-price are two most important

approaches to conquer the classic large binary problems; however, we proposed a different

method and try to find an efficient exact mathematical programming formula.

For example, a TAP with n agents and m tasks requires nm binary variables in

deterministic approaches to obtain global solution while our method, based on SRB

introduced in Chapter 2, only needs ⎡ ⎤nm2log binary variables.

4.2 The Proposed Mathematical Programming Formula

n agents are used to perform m tasks, each of which is assigned to exactly one processor.

Let kid , be the execution cost of task i if it is assigned to agent k . Let kb and ks be

the capacity and the fixed cost for agent k , respectively. Let kia , be the amount of the

resource required from its assigned processor for task i . If two tasks i and j are

assigned to two different agents, then the cost of communication between i and j is

jic , (we assume that ijji cc ,, = and 0, =iic). Define the binary variables. 1, =kix if and

only if task i is allocated to agent k . Define ky to be a binary variable so that 1=ky if

and only if agent k is assigned at least one task. The TAP can be cast as an integer

quadratic program:

TAP

 61

Min ∑∑∑∑∑ ∑
== =

−

= += =

++−
n

k
kk

m

i

n

k
kiki

m

i

m

ij

n

k
kjiji ysxdzc

11 1
,,

1

1 1 1
,,,)1(

Min ∑∑∑∑∑ ∑
== =

−

= += =

++−
n

k
kk

m

i

n

k
kiki

m

i

m

ij

n

k
kjkiji ysxdxxc

11 1
,,

1

1 1 1
,,,)1(

s.t. mix
n

k
ki ,...,1 ,1

1
, ==∑

=

, (4.1)

 ,...,nkybxa kk

m

i
kiki 1 ,

1
,, =≤∑

=

, (4.2)

 nkmiyx kki ,...,1 ,,...,1 ,1, ==≤≤ , (4.3)

where (i) ks be the fixed cost for agent k ,

(ii) kid , be the execution cost of task i if it is assigned to agent k ,

(iii) jic , be the communication cost between two task i and task j

assigned to two different processors (assume that ijji cc ,, = and

0, =iic),

(iv) kb be the capacity for agent k ,

(v) kia , be the resource required of task i if it is assigned to agent k ,

(vi) kix ki , }1,0{, ∀∈ and when 1, =kix if and only if task i is allocated

to agent k ,

(vii) 1=ky if and only if agent j is assigned at least one task.

The TAP is an integer program with quadratic terms kjki xx ,, . It is generally

computationally expensive to find optimal solutions of integer quadratic programs. Let kjiz ,,

be the three-index binary variable (nkmijmi ,...,1 ,,...,1 ,1,...,1 =+=−=), and 1,, =kjiz if

and only if both task i and task j assigned to agent k . Based on kjiz ,, , the quadratic term

 62

in TAP has been replaced by a linear term in the TAP3 through the three-index variable

kjiz ,, .

TAP3

Min ∑∑∑∑∑ ∑
== =

−

= += =

++−
n

k
kk

m

i

n

k
kiki

m

i

m

ij

n

k
kjiji ysxdzc

11 1
,,

1

1 1 1
,,,)1(

s.t. (4.1), (4.2), (4.3),

 nkmijmixz kikji ,...,1 ,,...,1 ,1,...,1 ,,,, =+=−=≤ ,

 nkmijmixz kjkji ,...,1 ,,...,1 ,1,...,1 ,,,, =+=−=≤ ,

where conditions (i)~(vii) in TAP are hold and kjiz kji ,,0,, ∀≥ .

REMARK 4.1 nm binary variables, nmm
+

−
2

)1(continuous variables, and

mnnm ++ 22 constraints are used in TAP3.

Even though TAP3 do not have the quadratic term present in the TAP, TAP3 is still a

formidable task to solve integer linear programs with many variables when m and n are

large. Therefore, it is desirable to propose formulations with two indices, Ernst et al (2006) let

kiu , and kiv , be a nonnegative variable representing the total communication cost via agent

k between task i and all other tasks and the total communication cost between task i and

all tasks assigned to agent k when i is not assigned to agent k respectively. The

following is a two-index formulation TAP2A:

TAP2A

Min ∑∑∑∑∑
== == =

+++
n

k
kk

m

i

n

k
kiki

m

i

n

k
kiki ysxdvu

11 1
,,

1 1
,,)(

4
1

s.t. (4.1), (4.2), (4.3),

 63

 nkmivuxxcvu kiki

m

j
kjkijikiki ,...,1 ,,...,1 0,, ,)(,,

1
,,,,, ==≥−=− ∑

=

,

where conditions (i)~(vii) in TAP are hold.

REMARK 4.2 nm binary variables, nnm +2 continuous variables, and mnnm ++ 22

constraints are used in TAP2A.

Based on TAP2A, we also proposed another two-index formulation TAP2B following:

TAP2B

Min ∑∑∑∑∑
== =

−

= =

++−
n

k
kk

m

i

n

k
kiki

m

i

n

k
ki ysxduC

11 1
,,

1

1 1
,1

s.t. (4.1), (4.2), (4.3),

 nkmixcu
m

ij
kjjiki ,...,1 ,1,...,1 ,

1
,,, =−=≤ ∑

+=

,

 nkmiCxu ikiki ,...,1 ,1,...,1 ,,, =−=≤ .

where ∑∑
−

= +=

=
1

1 1
,1

m

i

m

ij
jicC , 1,...,1,

1
, −== ∑

+=

micC
m

ij
jii , kiux kiki , 0},1,0{ ,, ∀≥∈ .

REMARK 4.3 nm binary variables, nm continuous variables, and mnm +3 constraints

are used in TAP2B.

We apply the SRB for the above two-index formulations to reduce the number of binary

variables. Use continuous nonnegative variables ikp to replace the original binary variables

ikx and convert TAP2A and TAP2B to SRB2A and SRB2B respectively.

SRB2A

 64

Min ∑∑∑∑∑
== == =

+++
n

k
kk

m

i

n

k
ikik

m

i

n

k
ikik yspdvu

11 11 1

)(
4
1

s.t. mip
n

k
ki ,...,1 ,1

1
, ==∑

=

, (4.4)

 ,...,nkybpa kk

m

i
kiki 1 ,

1
,, =≤∑

=

, (4.5)

 nkmiyp kki ,...,1 ,,...,1 ,1, ==≤≤ , (4.6)

 nkmippvuppcvu kjkikiki

m

j
kjkijikiki ,...,1 ,,...,1 0,,,, ,)(,,,,

1
,,,,, ==≥−=− ∑

=

,

⎡ ⎤

minx
n

i ,...,1 ,12
2log

1
,

1 =−≤′∑
=

−

θ
θ

θ , (4.7)

⎡ ⎤

mizkGp
n

i

n

k
ki ,...,1 ,0)(

2log

1
,

1
, ==+ ∑∑

== θ
θ , (4.8)

 ⎡ ⎤ minxzx iii ,...,1 ,log,...,1 , 2,,, ==′≤≤′− θθθθ , (4.9)

 ⎡ ⎤ minxcpzxcp i

n

k
kkiii

n

k
kki ,...,1 ,log,...,1),1()1(2,

1
,,,,

1
,, ==′−+≤≤′−− ∑∑

==

θθθθθθ ,(4.10)

where θθ ,}1,0{, ixi ∀∈′ ,)(kG are same in (2.9), kc ,θ are same in (2.10), and

conditions (i)~(vii) in TAP are hold.

REMARK 4.4 ⎡ ⎤nm 2log binary variables, ⎡ ⎤nmnnm 2log3 ++ continuous variables, and

⎡ ⎤nmmnnm 2log4322 +++ constraints are used in SRB2A.

SRB2B

Min ∑∑∑∑∑
== =

−

= =

++−
n

k
kk

m

i

n

k
kiki

m

i

n

k
ki yspduC

11 1
,,

1

1 1
,1

s.t. nkmipcu
m

ij
kjjiki ,...,1 ,1,...,1 ,

1
,,, =−=≤ ∑

+=

,

 65

 nkmiCpu ikiki ,...,1 ,1,...,1 ,,, =−=≤ .

 (4.4)－(4.10),

where ∑∑
−

= +=

=
1

1 1
,1

m

i

m

ij
jicC , 1,...,1,

1
, −== ∑

+=

micC
m

ij
jii , and all conditions in SRB2A are hold.

REMARK 4.5 ⎡ ⎤nm 2log binary variables, ⎡ ⎤nmnm 2log2 + continuous variables, and

⎡ ⎤nmmnm 2log433 ++ constraints are used in SRB2B.

4.3 Experiment Results

Table 4.1 is the experiment result of all method proposed in previous section in different

combination of n agents and m tasks. Although SRB2A and SRB2B use less binary

variables, its take much more time to obtain global solution. We will continue to find a

efficient method to conquer this open question in our future research.

Table 4.1 Experiment result of TAP
Method mn / Conditions

TAP3 TAP2A TAP2B SRB2A SRB2B
CPU Time 2.64 sec 0.63 sec 0.64sec 1.62sec 1.8 sec
Iterations 8196 8300 4201 17449 16983
brance-bound node 316 495 236 941 921

8/8

Solution 7454
CPU Time 7.47 sec 2.14 sec 2.5 sec 10.14 sec 11.78 sec
Iterations 20825 23537 21704 86338 90765
brance-bound node 589 951 1025 3998 4313

10/10

Solution 10827
CPU Time 268 sec 115 sec 106 sec 562 sec 590 sec
Iterations 921084 1086282 846251 3436776 3143365
brance-bound node 18749 31479 25799 104852 87886

12/12

Solution 13544
CPU Time 2054 sec 1597 sec 1724 sec 6857 sec 6082 sec
Iterations 5132526 9447065 7447914 35883840 25079947
brance-bound node 62476 257220 182813 988543 645217

14/14

Solution 16588

 66

Chapter 5 Discussion and Concluding Remarks

5.1 Discussion

In this study, we develops the core technique of this dissertation, Superior Representation of

Binary Variables (SRB), which uses only ⎡ ⎤m2log binary variables to replace m original

traditional binary variables),...,(1 muu with 1
1

=∑
=

m

u
θ

θ . It can effectively reduce the

traditional binary variables number from)(mO to)(log2 mO and easily applies in any

mixed-integer problems.

By using SRB, we proposes a superior way of expressing the same piecewise linear

function. A less number of binary variables and additive constraints are used. It is easy to

use in various fields required piecewise, such as data fitting, network analysis, logistics, and

production planning (Bazaraa et al. 1999). For expressing a function)(xf with 1+m

break points, the existing methods require m binary variables and m4 constraints (i.e.,

inequalities while proposed methods require only ⎡ ⎤m2log binary variables and

⎡ ⎤m2log88+ constraints. The numerical examples demonstrate the computational

efficiency of the proposed method over the existing methods especially when the number of

break points is large.

We also extend SRB to apply Generalized Geometric Programs Problems. Based on

SRB, we propose a novel method for handling a GGP problem with free-sign continuous

and discrete variables. Since proposed method can treat free-sign and mixed-integer

variables of GGP, it is possible to obtain the global optimization effectively in all

applications with GGP, such as heat exchanger network design (Duffin and Peterson 1966),

capital investment (Hellinckx and Rijckaert 1971), optimal design of cooling towers (Ecker

and Wiebking 1978), batch plant modeling (Salomone and Iribarren 1992), competence sets

 67

expansion (Li 1999), smoothing splines (Cheng et al. 2005), and digital circuit (Boyd 2005).

We first use ⎡ ⎤r2log binary variables to express a discrete function containing r discrete

values, and utilize convexification and concavification strategies to treat the continuous

signomial function. Comparing with of existing GGP methods, the proposed method can

solve the problem to reach approximated global optimum using less number of binary

variables and constraints.

The main issue on the above proposed method is that the original binary variables

),...,(1 muu must satisfy the following constraint:

 1
1

=∑
=

m

u
θ

θ .

Actually, the proposed method is not appropriate for some practice applications which do

not meet the above constraint.

5.2 Concluding Remarks

This study develops the Superior Representation of Binary Variables (SRB) core technique.

It can effectively reduce the traditional binary variables number from)(mO to)(log2 mO

and easily applies in any mixed-integer problems; moreover, it has some directions for

future research are described below:

(i) Task allocation problem (TAP): For example, a TAP with n agents and m tasks

requires nm binary variables in existing deterministic approaches to obtain global

solution while our method, based on SRB, only needs ⎡ ⎤nm2log binary variables.

We try to find an efficient method to conquer the classic TAP. Furthermore, it is

appropriate to solve the Multilevel Generalized Assignment Problem.

 68

(ii) Haplotype inference: This is the optimal haplotype inference (OHI) problem as given

a set of genotypes and a set of related haplotypes, find a minimum subset of

haplotypes that can resolve all the genotypes in biology, which is also NP-hard and

can be formulated as an integer quadratic programming (IQP) problem. We also want

to find an efficient method through our SRB approach.

(iii) Integrating deterministic and heuristic approaches: It is an appropriate way to solve

large scale optimal problems under the following strategy:

(a) Use the heuristic algorithms to find an initial solution to enhance the efficiency of

finding the optimal solution.

(b) Then, use deterministic approaches are utilized to transcend the incumbent

solution.

 69

References

Bazaraa, M.S., H.D. Sherali, C.M. Shetty. 1993. Nonlinear Programming: Theory and

Algorithms, 2e. Whiley, New York.

Beck, P.A., Ecker, J.G. 1975. A modified concave simplex algorithm for geometric

programming. Journal of Optimization Theory and Applications 15 189-202.

Boyd, S.P., Kim, S.J., Patil, D.D., Horowitz, M.A. 2005. Digital Circuit Optimization via

Geometric Programming. Operations Research 53 899-932.

Billionnet, A., Costa, M.C. Sutter, A. 1992. An efficient algorithm for a task allocation

problem. Journal of the Association for Computing Machinery 39 502–518.

Chen, C.S., Lee, S.M., Shen, Q.S. 1995. An analytical model for the container loading

problem. European Journal of Operational Research 80 68－76.

Chen, W., Lin, C. 2000. A hybrid heuristic to solve a task allocation problem. European

Journal of Operational Research 27 287–303.

Cheng, H., Fang, S.C., Lavery, J.E. 2005. A Geometric Programming Framework for

Univariate Cubic L1 Smoothing Splines. Annals of Operations Research 133 229-248.

Colorni, A., Dorigo, M., Maniezzo, V. 1992. Distributed Optimization by Ant Colonies. In

F. J. Varela and P. Bourgine, editors, Towards a Practice of Autonomous Systems:

Proceedings of the First European Conference on Artificial Life. MIT Press, Cambridge,

MA, 134-142.

Croxton, K.L., B. Gendron, T.L. Magnanti. 2003. A comparison of mixed-integer

programming models for nonconvex piecewise linear cost minimization problems.

Management Science 49 1268–1273.

Dantzing, G.B. 1960. On the significance of solving linear programming problems with

some integer variables. Econometrica 28 30–44.

Dixon, L.C.W., G.P. Szegö. 1975. Towards Global Optimization. North-Holland,

Amsterdam.

 70

Dutta, A., Koehler,G., Whinston, A. 1982. On optimal allocation in a distributed processing

environment. Management Science 28 839–853.

Duffin, R.J. 1970. Linearizing geometric programming. SIAM Review 12 211-227.

Duffin, R.J., Peterson, E.L. 1966. Duality theory for geometric programming. SIAM Journal

on Applied Mathematics 14 1307-1349.

Duffin, R.J., Peterson, E.L., Zener, C. 1967. Geometric Programming: Theory and

Application. John Wiley & Sons, New York.

Ecker, J.G., Kupferschmid, M., Lawrence, C.E., Reilly, A.A., Scott, A.C.H. 2002. An

application of nonlinear optimization in molecular biology. European Journal of

Operational Research 138 452－458.

Ecker, J.G., Wiebking, R.D. 1978. Optimal Design of a Dry-Type Natural-Draft Cooling

Tower by Geometric Programming. Journal of Optimization Theory and Applications

26 305-323.

Faina, L. 2000. A global optimization algorithm for the three-dimensional packing problem.

European Journal of Operational Research 126 340－354.

Floudas, C.A. 1999. Global optimization in design and control of chemical process systems.

Journal of Process Control 10 125－134.

Floudas, C.A. 2000. Deterministic Global Optimization: Theory, Methods and Applcations.

Kluwer Academic Publishers.

Floudas, C.A., Akrotirianakis, I.G., Caratzoulas, S., Meyer, C.A., Kallrath, J. 2005. Global

optimization in the 21st century: Advances and challenges. Computers and Chemical

Engineering 29 1185-1202

Floudas, C.A., Pardalos, P.M. 1996. State of the Art in Global Optimization: Computational

Methods and Applications. Kluwer Academic Publishers.

Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus, Z.H., Harding S.T.,

Klepeis, J.L., Meyer, C.A. and Schweiger, C.A. 1999. Handbook of Test Problems in

Local and Global Optimization. Kluwer Academic Publishers, Boston, 85-105.

 71

Fu, J.F., Fenton, R.G., Cleghorn, W.L. 1991. A mixed integer-discrete-continuous

programming method and its application to engineering design optimization.

Engineering Optimization 17 263－280.

Glover, F., Laguna, M. 1997. Tabu Search. Kluwer Academic Publishers, Boston, MA.

Goldberg, D. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley, San Mateo, CA.

Hadj-Alouane, A.B., Bean, J.C., Murty, K.G. 1999. A hybrid genetic optimization

algorithm for a task allocation problem. Journal of Scheduling 2 189–201.

Hamam, Y., Hindi, K.S. 2000. Assignment of program modules to processors: A simulated

annealing approach. European Journal of Operational Research 122 509–513.

Hellinckx, L.J., Rijckaert, M.J. 1971. Minimization of capital investment for batch

processes. Industrial & Engineering Chemistry Process Design and Development 10

422-423.

Horst, R., Tuy, H. 1996. Global Optimization: Deterministic Approaches, 3rd ed. Springer,

Berlin, Germany.

Kochenberger, A., Woolsey, R.E.D., McCarl, B.A. 1973. On the solution of geometric

programs via separable programming. Operations Research 24 285-294.

Kontogiorgis, S. 2000. Practical Piecewise-Linear Approximation for Monotropic

Optimization. INFORMS Journal on Computing 12 324-340.

Kopidakis, Y., Laman,M., Zissimopoulos, V. 1997. On the task assignment problem: Two

new efficient heuristic algorithms. Journal of Parallel and Distributed Computing 42

21–29.

Li, H.L. 1996. Notes: an efficient method for solving linear goal programming problems.

Journal of Optimization Theory and Applications 90 465–469.

Li, H.L. 1999. Incorporating Competence Sets of Decision Makers by Deduction Graphs.

Operations Research 47 209-220.

 72

Li, H.L., Chang, C.T., Tsai, J.F. 2002. An approximately global optimization for assortment

problems using piecewise linearization techniques. European Journal of Operational

Research 140 584－589.

Li, H.L., Chou, C.T. 1994. A Global Approach for Nonlinear Mixed Discrete Programming

in Design Optimization. Engineering Optimization 22 109－122.

Li, H.L., Lu, H.C. 2008. Optimization for Generalized Geometric Programs with Mixed

Free-Sign Variables. Operations Research (was accepted, 21/01/2008).

Li, H.L., Tsai, J.F. 2005. Treating free-sign variables in Generalized geometric global

optimization programs. Journal of Global Optimization 33 1-13.

Lin, X., Orlowska, M. 1995. An integer linear programming approach to data allocation

with minimum total communication. Information Sciences 85 1－10.

LINGO. 2004. Release. 9. Lindo System Inc., Chicago.

Lo, V.M. 1988. Heuristic algorithms for task assignment in distributed systems. IEEE

Transactions on Computers 37 1384–1397.

Ma, P.Y.R., Lee, E.Y.S. Tsuchiya, M.T. 1982. A task allocation model for distributed

computing systems. IEEE Transactions on Computers C-31 41–47.

Magirou, V.F., Milis, J.Z. 1989. An algorithm for the multiprocessor assignment problem.

Operations Research Letters 8 351–356.

Maranas, C.D., Floudas, C.A. 1997. Global optimization in generalized geometric

programming. Computer and Chemical Engineering 21 351–370.

Milis, I. 1995. Task assignment in distributed systems using network flow methods. Lecture

Notes in Computer Science 1120. Springer-Verlag, London, UK, 396–405.

Padberg, M. 2000. Approximating separable nonlinear functions via mixed zero-one

programs. Operations Research Letters 27 1–5.

Pardalos, P.M. and Romeijn, H.E., ed. 2002. Handbook of Global Optimization-Volumn 2:

Heuristic Approaches. Kluwer Academic Publishers, Boston, 515-569.

Rao, K.N. 1992. Optimal synthesis of microcomputers for GM vehicles. Technical report.

 73

Rinnooy, K., Timmer, G. 1987. Towards global optimization methods (I and II).

Mathematical Programming 39 27－78.

Romeijn. H.E., Smith, R.L. 1994. Simulated annealing for constrained global optimization.

Journal of Global Optimization 5 101－126.

Rotem, D., Schloss, G.A., Segev, A. 1993. Data allocation for multidisk database. IEEE

Transactions on Knowledge and Data Engineering 5 882－887.

Ryoo, H.S., Sahinidis, N.V. 1995. Global optimization of nonconvex NLPs and MINLPs

with applications in process design. Computers and Chemical Engineering 19 551－

566.

Salomone, H.E., Iribarren, O.A. 1992. Posynomial modeling of batch plants: A procedure to

include. process decision variables. Computers and Chemical Engineering 16 173–184.

Sandgren, E. 1990. Nonlinear integer and discrete programming in mechanical design

optimization. Journal of Mechanical Design 112 223－229.

Sarathy, R., Shetty, B., Sen, A. 1997. A constrained nonlinear 0-1 program for data

allocation. European Journal of Operational Research 102 626－647.

Sarje, A.K., Sagar, G. 1991. Heuristic model for task allocation in distributed computer

systems. IEE Proceedings E-138 313–318.

Sharpe, W. 1971. A Linear Programming Approximation for the General Portfolio Analysis.

Journal of Financial and Quantitative Analysis 6 1263－1275.

Sherali, H., Tuncbilek, C. 1992. A global optimization algorithm for polynomial

programming problems using a reformulation linearization technique. Journal of Global

Optimization 2 101－112.

Sinclair, J.B. 1987. Efficient computation of optimal assignments for distributed tasks.

Journal of Parallel and Distributed Computing 4 342–362.

Stone, H.S. 1977. Multiprocessor scheduling with the aid of network flow algorithms. IEEE

Transactions on Software Engineering SE-3 85–93.

Tasi, J.F., Li H.L., Hu, N.Z. 2002. Global optimization for signomial discrete programming

 74

problems in engineering design. Engineering Optimization 34 613-622.

Topaloglu, H., W.B. Powell. 2003. An algorithm for approximating piecewise linear

concave functions from sample gradients. Operations Research Letters 31 66–76.

Tuy, H. 1998. Convex Analysis and Global Optimization. Kluwer Academic Publishers,

Dordrecht, The Netherlands.

Vajda, S. 1964. Mathematical Programming. Addison-Wesley, New York.

Young, M.R. 1998. A minimax portfolio selection rule with linear programming solution.

Maganement Science 44 673－683.

