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整數規劃之高效率求解方法及其運用 

 

學生：盧浩鈞 指導教授 : 黎漢林 

 

國立交通大學資訊管理研究所博士班 

 

摘   要 

許多非線性問題需要逐段線性技術(Piecewise Linearization)將原始問題線性化以求得

全域最佳解，而這過程需要加入許多二進位變數。近四十年來發展許多逐段線性之技

術，而本研究就是發展出一套二進位變數的超級展現法(SRB)以便降低逐段線性技術

所需之二進位變數其限制式。當一個擁有 1+m 個中斷點的線性化函數時，現有之逐段

線性技術必須用到m個二進位變數及 m4 個限制式，而本研究提出之方法只需 ⎡ ⎤m2log

個二進位變數及 ⎡ ⎤m2log88+ 個限制式。同時本研究也展現數個實際問題之應用以證明

它的高效率。 

 

 

 

 

 

 

關鍵字: 二進位變數, 逐段線性化. 
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ABSTRACT 

Many nonlinear programs can be linearized approximately as piecewise linear programs by 

adding extra binary variables. For the last four decades, several techniques of formulating a 

piecewise linear function have been developed. This study develops a Superior 

Representation of Binary Variables (SRB) and applied in many applications. For expressing 

a piecewise linear function with 1+m  break points, the existing methods, which incurs 

heavy computation when m  is large, require to use m  additional binary variables and 

m4  constraints while the SRB only uses ⎡ ⎤m2log  binary variables and ⎡ ⎤m2log88+  

additive constraints. Various numerical experiments of applications demonstrate the 

proposed method is more computationally efficient than the existing methods.  
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Chapter 1 Introduction 
1.1 1.2 1.3 1.4 
 

1.1 Research Background 

Optimization has many applications in various fields, such as finance (Sharpe 1971; Young 

1998), allocation and location problem (Chen et al. 1995; Faina 2000), engineering design 

(Duffin et al. 1967; Fu et al. 1991; Sandgren 1990), system design and database problems 

(Lin and Orlowska 1995; Rotem et al. 1993; Sarathy et al. 1997), chemical engineering 

(Floudas 1999; Ryoo and Sahinidis 1995), and molecular biology (Ecker et al. 2002). Those 

optimization problems most are either nonlinear program or mixed-integer program and 

involve continuous and/or discrete variables. Guaranteed to obtain global optimization and 

improve the efficiency of algorithm are two important and necessary areas of research in 

optimization.  

There are two categories of approaches for optimization field: deterministic and 

heuristic. Deterministic approaches take advantage of analytical properties of the problem to 

generate a sequence of points that converge to obtain a global optimization. There are three 

methods for deterministic approaches from recent literatures as follows.  

(i) Difference of Convex functions (DC): The DC optimization method is important in 

solving optimal problems and has been studied extensively by Horst and Tuy (1996), 

Floudas and Pardalos (1996), Tuy (1998), and Floudas (2000), etc. By utilizing 

logarithmic or exponential transformations, the initial GGP program can be reduced to 

a DC program. A global optimum can be found by successively refining a convex 

relaxation and the subsequent solutions of a series of nonlinear convex problems. A 
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major difficulty in applying this method for solving optimal problems is that the lower 

bounds of variables are not permitted to less than zero.  

(ii) Multilevel Single Linkage Technique (MSLT): Rinnooy and Timmer (1987) proposed 

MSLT for finding the global optimum of a nonlinear program. Li and Chou (1994) 

also solved a design optimization problem using MSLT to obtain a global solution at a 

given confidence level. However, the difficulty of MSLT is that it has to solve 

numerous nonlinear optimization problems based on various starting points.  

(iii) Reformation Linearization Technique (RLT): RLT was developed by Sherali and 

Tuncbilek (1992) to solve a polynomial problem. Their algorithm generate nonlinear 

implied constraints by taking the products of the bounding terms in the constraint set 

to a suitable order. The resulting problem is subsequently linearized by defining new 

variables. By incorporating appropriate bound factor products in their RLT scheme, 

and employing a suitable partitioning technique, they developed a convergent branch 

and bound algorithm has been developed. Although the RLT algorithm is very 

promising in solving optimization problems, a major associate difficulty is that it may 

generate a huge amount of new constraints.  

 

The other category approaches, heuristic method, can get solution quickly, but the 

quality of the solution cannot be guaranteed as a global optimization. Meta-heuristic is a 

advanced heuristic method for solving a very general class of computational problems by 
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combining user given black-box procedures in a hopefully efficient way. Meta-heuristics are 

generally applied to problems for which there is no satisfactory problem-specific algorithm or 

heuristic; or when it is not practical to implement such a method. Most commonly used 

meta-heuristics are targeted to combinatorial optimization problems. Those popular 

meta-heuristic methods are listed as follows.  

(i) Genetic Algorithm (GA): GA (Goldberg 1989) is based on the idea of the survival of 

the fittest, as observed in nature. It maintains a pool of solutions rather than just one. 

The process of finding superior solutions mimics that of evolution, with solutions 

being combined or mutated to alter the pool of solutions, with solutions of inferior 

quality being discarded.  

(ii) Simulated Annealing (SA): SA is a related global optimization technique which 

traverses the search space by generating neighboring solutions of the existing solution. 

The Hide-and-Seek algorithm (Romeijn and Smith 1994) is the first SA algorithm for 

solving optimization problems.  

(iii) Tabu Search (TS): The idea of the TS (Glover and Laguna 1997) is similar to SA, in 

which both traverse the solution space by testing mutations of an individual solution. 

While SA generates only one mutated solution, TS generates many mutated solutions 

and moves to the solution with the lowest fitness of those generated.  

(iv) Ant Colony Optimization (ACO): ACO first introduced by Marco Dorigo in his PhD 

thesis and published in Colorni et al. (1992), is a probabilistic technique for solving 
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computational problems which can be reduced to finding good paths through graphs. 

They are inspired by the behaviors of ants in finding paths from the colony to food.  

 

The main challenge of the above meta-heuristic methods is to guarantee convergence in 

the solution; accordingly, the quality of the solution is not ensured.  

Those two categories of optimum approaches have different advantages and weaknesses; 

consequently, integrating deterministic and heuristic approaches is an appropriate way to 

solve large scale optimal problems. For example, heuristic algorithms are applied to find an 

initial solution to enhance the efficiency of finding the optimal solution; then, deterministic 

approaches are utilized to transcend the incumbent solution.  

 

1.2 Research Motivation and Purpose 

Traditional deterministic optimization approaches have been very successful in obtaining 

global optimization; nevertheless, there are still lacks of efficient method to some nonlinear 

problems, especially for large mixed-integer problems. Consider the following equation:  

 }1,0{,1
1

∈=∑
=

θ
θ

θ uu
m

. (1.1) 

It means that there is one and only one binary variable can be active in the all given 

binary variable. Equation (1.1) is frequently appeared in numerous classic optimal problems, 

especially in the integer and combinatorial optimal problems. For instance, Task Allocation 

Problem (TAP) is one of the fundamental combinatorial optimization problems in the branch 

of optimization or operations research in mathematics. The primitive form of TAP is listed in 

Example 1.2, which first constraint (1.4) is similar as Equation (1.1). Another example is to 

decompose the separated discrete nonlinear term, introduced by Floudas (2000), in Example 

1.1. The constraint (1.3) is same as Equation (1.1). There are also numerous applications of 
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using Equation (1.1) in optimization problem.  

This study focuses on developing a Superior Representation of Binary Variables (SRB) 

method to replace the traditionally binary variables and apply in the various applications. The 

major advantages of the proposed approach over existing optimization methods are reducing 

the traditional binary variables number from )(mO  to )(log2 mO  with ⎡ ⎤ 1log4 2 +m  new 

additive constraints and easily applying in any mixed-integer problems. We also applied SRB 

in some applications, such as Generalized Geometric Programming (GGP) and Task 

Assignment Problem (TAP), and obtained the global optimization efficiently.  

 

1.3 Examples 

EXAMPLE 1.1  Linearization Form of Discrete Nonlinear Function 

This example is a linearization result of discrete nonlinear function (1.2) 

 },...,{,)( 1 mddyyyg ∈= α . (1.2)  

The decomposing program (DP), introduced in Floudas (2000), utilities m  binary 

variables to linearization (1.2). The mathematical form is listed below.  

DP 

Min ∑
=

m

du
1θ

α
θθ  

s.t. θθ
θ

θ ∀∈=∑
=

 },1,0{  ,1
1

uu
m

, (1.3) 

 

EXAMPLE 1.2 Task Assignment Problem 

This example is primitive form of Task Assignment Problem (TAP), which has n  tasks 

that must be accomplished by using only m  agents. Each agent performs better at some 

tasks and worse at others and obviously some agents are better than others at certain tasks. 
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The goal is to minimize the total cost for accomplishing all tasks or, stated differently, to 

maximize the overall output of all the agents as a whole.  

TAP 

Min ∑∑
= =

n

i

m

ii ud
1 1

,,
θ

θθ  

s.t. niu
m

i ,...,1    ,1
1

, ==∑
=θ

θ , (1.4)  

 ,...,mbua
n

i
ii 1    ,

1
,, =≤∑

=

θθθθ , 

where   

(i) θ,id  be the execution cost of task i  if it is assigned to agent θ , 

(ii) θb  be the capacity for agent θ , 

(iii) θ,ia  be the resource required of task i  if it is assigned to agent θ , 

(vi) θθ ,  }1,0{, iui ∀∈  and when 1, =θiu  if and only if task i  is allocated to 

agent θ . 

 

1.4 Structure of the Dissertation 

The structure of this dissertation is depicted in Figure 1.1 and briefly introduced as follows.  

Chapter 2 develops the core technique of this dissertation, Superior Representation of 

Binary Variables (SRB), which only uses ⎡ ⎤m2log  binary variables to replace m  original 

traditional binary variables ),...,( 1 muu  with 1
1

=∑
=

m

u
θ

θ . It can effectively reduce the 

traditional binary variables number from )(mO  to )(log2 mO  and easily applies in any 

mixed-integer problems. By using SRB, this chapter proposes a superior way of expressing 

the same piecewise linear function, where only ⎡ ⎤m2log  binary variables and ⎡ ⎤m2log88+  

additive constraints are used. Various numerical experiments demonstrate that the proposed 

method is more computationally efficient than existing methods. 
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Chapter 3 extends SRB to apply Generalized Geometric Programs Problems. Based on 

the SRB, this chapter proposes a novel method for handling a GGP problem with free-signed 

continuous and discrete variables. We first use ⎡ ⎤r2log  binary variables to express a discrete 

function containing r  discrete values, and utilize convexification and concavification 

strategies to treat the continuous signomial function. Comparing with existing GGP methods, 

the proposed method can solve the problem to reach approximate global optimum using less 

number of binary variables and constraints. 

Chapter 4 is another extension of SRB for solving the task allocation problem (TAP). 

For example, a TAP with n  agents and m  tasks requires nm  binary variables in existing 

deterministic approaches to obtain global solution while our method, based on SRB, only 

needs ⎡ ⎤nm2log  binary variables. We try to find an efficient method to conquer the classic 

TAP. 

 

Figure 1.1   Structure of the dissertation 
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Chapter 2 A Superior Representation Method for 
Piecewise Linear Functions 

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23 

2.24 2.25 2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.34 2.35 

Many nonlinear programs can be linearized approximately as piecewise linear programs by 

adding extra binary variables. For the last four decades, several techniques of formulating a 

piecewise linear function have been developed. For expressing a piecewise linear function 

with 1+m  break points, existing methods require to use m  additional binary variables 

and m4  constraints, which causes heavy computation when m  is large. This chapter 

proposes a superior way of expressing the same piecewise linear function, where only 

⎡ ⎤m2log  binary variables and ⎡ ⎤m2log88+  additive constraints are used. Various 

numerical experiments demonstrate that the proposed method is more computationally 

efficient than existing methods.  

2.1 Introduction to Piecewise Linear Functions 

Piecewise linear functions have been applied in numerous optimization problems, such as 

data fitting, network analysis, logistics, and production planning (Bazaraa et al. 1993). 

Since 1950, it has been widely recognized that a nonlinear program can be piecewisely 

linearized as a mixed 0-1 program by introducing extra 0-1 variables (Dantzing 1960). Most 

textbooks (Bazaraa et al. 1999, Floudas 2000, Vajda 1964) in Operations Research offer 

some methods of expressing piecewise linear functions. Many methods of piecewisely 

linearizing general nonlinear functions have also been developed in recent literature 

(Croxton et al. 2003, Li 1996, Li and Lu 2008, Padberg 2000, Topaloglu and Powell 2003). 

Some methods of piecewisely linearizing a specific concave function have also been 

discussed (Kontogiorgis 2000). For expressing a piecewise linear function )(xf  of a 

single variable x  with 1+m  break points, most of the methods in the textbooks and 
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literatures mentioned above require to add extra m  binary variables and m4  constraints, 

which may cause heavy computational burden when m  is large. This study proposes a 

superior method for representing )(xf , which only requires to add extra ⎡ ⎤m2log  binary 

variables and ⎡ ⎤m2log88+  constraints.  

Consider a general nonlinear function )(xg  of a single variable x , )(xg  is 

continuous and  x  is within the interval ],[ 0 maa . Let )(xf  be a piecewise linear function 

of )(xg , where the interval ],[ 0 maa  is partitioned into m  small intervals via the break 

points maa ,,0 K , where maaa <<< K10  as shown in Figure 2.1 It is assumed in this study 

that the locations of the break points are pre-specified by the user. This study does not 

consider how to pick break points that result in small approximation error between  )(xg  

and )(xf . 

 

)(xf  is a piecewise linear function of )(xg  

Figure 2.1   Piecewise linear function )(xf  
 

As indicated by Croxton et al. (2003), most models of expressing a piecewise linear 

a0 a1 aθ  a 1+θ  

g(x) 

f(x)

g(x)

am 
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function are equivalent with each other. Here, a general form of pressing a piecewise linear 

function by the existing methods, as in the textbook of Bazaraa et al. (1993), Floudas (2000), 

and Vajda (1964) or in the articles of Croxton et al. (2003), Li (1996), Li and Lu (2008), 

Padberg (2000), and Topaloglu and Powell (2003), are formulated below:  

First introducing m  binary variables 110 ,,, −mλλλ K  to express the inequalities:  

 ),1)(()1)(( 010 θθθθ λλ −−+≤≤−−− + aaaxaaa mm  1,,0 −= mKθ , (2.1) 

where 

 ∑
−

=

=
1

0

1
m

θ
θλ , }1,0{∈θλ . (2.2) 

There is one and only one k=θ  (over }1,,0{ −∈ mKθ ), in which 1=kλ . That 

means, only one interval ],[ 1+kk aa  is activated, which results in 1+≤≤ kk axa . 

Following Expression (2.1), the piecewise linear function )(xf  can be expressed as:  

 1,,0  ),1()()()()1()()( −=−+−+≤≤−−−+ mMaxsafxfMaxsaf Kθλλ θθθθθθθθ  (2.3) 

 
)},()(),()({min                  

)}()(),()({max where

0

0

θθθθθθθ

θθθθθθθ

aasafaasaf

aasafaasafM

m

m

−+−+−

−+−+=

 

 and 
θθ

θθ
θ aa

afafs
−
−

=
+

+

1

1 )()( . (2.4)  

REMARK 2.1 Expressing )(xf  by (2.1) through (2.4) requires m  binary variables 

10 ,, −mλλ K  and m4  constraints (i.e., inequalities (2.1)－ (2.3)), where 1+m  is the 

number of break points.  

 

2.2 Superior Representation of Binary Variables (SRB)  

Let θ  be an integer, 10 −≤≤ mθ , expressed as:  
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 ⎡ ⎤ }.1,0{  , log  ,2 2
1

1 ∈== ∑
=

−
j

h

j
j

j umhuθ  (2.5)  

Given a }1,,0{ −∈ mKθ , there is a unique set of }{ ju  meets (2.5). Let },,1{)( hG K⊆θ  

be the subset of indices such that:  

 .2
)(

1 θ
θ

=∑
∈

−

Gj

j  (2.6)  

For instance, φ=)0(G , }1{)1( =G , }2{)2( =G , }2,1{)3( =G , etc. Let )(θG  denote 

the number of elements in )(θG . For instance, 0)0( =G , 2)3( =G , etc. Define m  

functions )1,,0( )( −=′ mA Kθθθ  based on a binary vector ),,( 1 huu ′′=′ Ku  as follows:  

 ∑∑
=

−

=

′=′′+=′
h

j
j

j
h

j
jj uucGA

1

1

1
, 2  ,)(  )( θθθ θθ . (2.7)  

where the coefficients jc ,θ , 1,,0 −= mKθ , hj ,,1K=  are defined by 

 
⎩
⎨
⎧ ∈−

=
otherwise.,1  

),(,1
,

θ
θ

Gj
c j  (2.8)  

Table 2.1   List of )(θG , jc ,θ , and )( 'θθA  

θ  )(θG  1,θc 2,θc 3,θc 4,θc )( 'θθA  

0 0 1 1 1 1 43210 uuuu ′+′+′+′+  
1 1 –1 1 1 1 43211 uuuu ′+′+′+′−  
2 1 1 –1 1 1 43211 uuuu ′+′+′−′+  
3 2 –1 –1 1 1 43212 uuuu ′+′+′−′−  
4 1 1 1 –1 1 43211 uuuu ′+′−′+′+  
5 2 –1 1 –1 1 43212 uuuu ′+′−′+′−  
6 2 1 –1 –1 1 43212 uuuu ′+′−′−′+  
7 3 –1 –1 –1 1 43213 uuuu ′+′−′−′−  
8 1 1 1 1 –1 43211 uuuu ′−′+′+′+  
9 2 –1 1 1 –1 43212 uuuu ′−′+′+′−  
10 2 1 –1 1 –1 43212 uuuu ′−′+′−′+  
11 3 –1 –1 1 –1 43213 uuuu ′−′+′−′−  
12 2 1 1 –1 –1 43212 uuuu ′−′−′+′+  
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For instance, given an arbitrary number ,13=m  a list of all values of )(θG , jc ,θ , and 

)( 'θθA  for given θ  are shown in Table 2.1. )(θG  and jc ,θ  in (2.7) are not intuitive 

forms, then it can be rewritten more intuitive as follows.  

PROPOSITION 2.1 )(θG  and jc ,θ  in (2.7) can be rewritten as follows:  

 ∑
=

⎥⎦
⎥

⎢⎣
⎢

−
−−=

h

j

jG
1

2 ))1(1(5.0)( 1
θ

θ , 1,,0 −= mKθ , ⎡ ⎤ log2 mh = , (2.9)  

 ⎥⎦
⎥

⎢⎣
⎢

−
−=

12
, )1( j

jc
θ

θ , 1,,0 −= mKθ , ⎡ ⎤ log,...,1 2 mj = . (2.10)  

PROOF In (2.7), where 1, −=jcθ  if )(θGj∈ , otherwise 1, =jcθ . 

Obviously:  

 ⎥⎦
⎥

⎢⎣
⎢

⎥⎦
⎥

⎢⎣
⎢

−=−=
021

1, )1()1(
θθ

θc  

 ⎥⎦
⎥

⎢⎣
⎢

⎥⎦
⎥

⎢⎣
⎢

−=−=
122

2, )1()1(
θθ

θc  

 M  

 ⎥⎦
⎥

⎢⎣
⎢

−
−=

12
, )1( h

hc
θ

θ  

 ∑
=

⎥⎦
⎥

⎢⎣
⎢

−
−−=

−++−+−
=

h

j

h hccc
G

1

2,2,1, ))1(1(5.0
2

)1(...)1()1(
)( 1

θ
θθθθ  

This proposition is then proven. □ 

 

Then we have following main theorem:  

THEOREM 2.1  For an integer θ  in (2.5) and (2.6), given a binary vector ),,( ''
1

'
huu K=u , 

there is one and only one k , 10 −≤≤ mk , such that 

(i) 0 )( ' =θkA  if k='θ , 
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(ii) 1 )( ' ≥θkA , otherwise.  

PROOF There is one and only one k , such that 12
1

1 += ∑
=

−
h

j
j

j uk .  

(i) If 'θ=k  that juu jj   ' ∀= , which results in 

 0 and )(
)()(

'

)()(

' ==== ∑∑∑∑
∉∉∈∈ kGj

j
kGj

j
kGj

j
kGj

j uukGuu . 

Thus to have 0)( ' =θkA . 

(ii) If 'θ≠k  then 

 ∑∑
∉∈

≥≥
)(

'

)(

' 1 and )(
kGj

j
kGj

j uuG θ , 

therefore 1)( ' ≥θθA . □ 

 

For instance, given )1,0,1,0(),,( ''
1

' == huu Ku  in Table 2.1, we have  

 210100)0()( 43210 =++++=+′+′+′+′+=′ uuuuGA θ , 

 310101)1()( 43211 =+++−=+′+′+′+′−=′ uuuuGA θ , 

 M  

 010102)10()( 432110 =−+−+=+′−′+′−′+=′ uuuuGA θ , 

 110103)11()( 432111 =−+−−=+′−′+′−′−=′ uuuuGA θ , 

 210102)12()( 432112 =−−++=+′−′−′+′+=′ uuuuGA θ , 

Here 0)(10 =′θA ; 0)( ≥′θθA  for 10 and 120 ≠≤≤ θθ . 

 

PROPOSITION 2.2 For a set of non-negative continuous variables ),,( 10 −mrr K , if 

 1
1

0

=∑
−

=

m

r
θ

θ , (2.11)  
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 0)(
1

0

=′∑
−

=

m

Ar
θ

θθ θ , (2.12)  

then the values of 1,,0 , −= mr Kθθ , are either  0 or 1, where )(θθ ′A  are defined by (2.6)

－(2.8).  

PROOF By referring to THEOREM 2.1, there is one and only one k , 10 −≤≤ mk , such 

that 0 )( =′θkA  and 1 )( ≥′θθA  for 10 −≤≤ mθ  and k≠θ . Since 0≥θr , 

,10 −≤≤ mθ  the only solution to satisfy (2.11) and (2.12) is 1=kr  and 0=θr  for 

k≠θ . The proposition is then proven.  □ 

 

Expression (2.12) is nonlinear and needs to be linearized. We have 

 

0)(

))1((   

))0((

)(

1

0
,

1

0
1,1

1

0

,111,11

,011,00

1

0

=′++′+=

′++′+−+

+′++′+=

′

∑∑∑

∑

−

=

−

=

−

=

−−−

−

=

m

hh

mm

hhmmm

hh

m

crucruGr

ucucmGr

ucucGr

Ar

θ
θθ

θ
θθ

θ
θ

θ
θθ

θ

θ

K

K

KK

 (2.13)  

Denote  

 jcruz
m

jjj ∀′= ∑
−

=

1

0
,  ,

θ
θθ  (2.14)  

We then have following proposition:  

PROPOSITION 2.3 The nonlinear expression 0)(
1

0

=′∑
−

=

m

Ar
θ

θθ θ  in (2.12) can be replaced 

by the following linear system:  

 0)(
1

1

0
=+∑∑

=

−

=

h

j
j

m

zGr
θ

θ θ , (2.15)  
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 hjuuzu jjjj ,,1},1,0{  , K=∈′′≤≤′− , (2.16)  

 hjucrzucr j

m

jjj

m

j ,,1  ),1()1(
1

0
,

1

0
, K=′−+≤≤′−− ∑∑

−

=

−

= θ
θθ

θ
θθ . (2.17)  

PROOF By referring to (2.14), (2.13) can be converted into (2.15). According to (2.8) and 

PROPOSITION 2.2 we have }1,1{, −∈jcθ  and  }1,0{∈θr , which cause 11 ≤≤− jz . 

Expression (2.14) therefore can be linearized by (2.16) and (2.17). Two cases can be check 

for each ju′ : 

(i) If 0=′ju , then 0=jz  referring to (2.16),  

(ii) If 1=′ju , then ∑
−

=

=
1

0
,

m

jj crz
θ

θθ  referring to (2.17).  

Both (i) and (ii) imply that ∑
−

=

′=
1

0
,

m

jjj cruz
θ

θθ . Expression (2.14) can be replaced by  

(2.15)－(2.17). □ 

 

2.3 The Proposed Linear Approximation Method 

Consider the same piecewise linear function )(xf  described in Figure 2.1, where x  is 

within the interval ],[ 0 maa , and there are 1+m  break points maaa <<< K10  within 

],[ 0 maa . By referring to PROPOSITION 2.2 and PROPOSITION 2.3, )(xf  with division of the 

interval ],[ 0 maa  into m  subintervals can be expressed as:  

 ∑∑
−

=
+

−

=

≤≤
1

0
1

1

0

mm

arxar
θ

θθ
θ

θθ , (2.18)  

 
∑∑

∑
−

=

−

=

−

=

−+−−=

−+−+=

1

0
0

1

0
0

1

0
00

)())()((

))()(()(
mm

m

axrsraasaf

aaaxsafrxf

θ
θθ

θ
θθθθ

θ
θθθθ

 (2.19) 
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where θs  are slopes of )(xf  as defined in (2.4).  

By referring to PROPOSITION 2.2, }1 ,0{∈θr  and 1=∑
θ

θr , Expressions (2.18) and 

(2.19) imply that: if },1,,1{ ,1 −∈= mkrk K  then 1+≤≤ kk axa  and 

)()()( kkk axsafxf −+= . The nonlinear term )(
1

1
1∑

−

=

−
m

axra
θ

θθ  in (2.19) can then be 

linearized as follows.  

Denote )( 0axrw −= θθ , since there is one and only one }1,,0{, −∈ mkk K  such that 

1=kr  and 0)( =′θkA , it is clear that:  

 0

1

0

axw
m

−=∑
−

=θ
θ , (2.20)  

 0)(
1

0

=′∑
−

=

m

Aw
θ

θθ θ . (2.21)  

By referring to (2.15), we then have 0)()()(
1

1

0
,

1

0

1

0

=′+=′ ∑ ∑∑∑
=

−

=

−

=

−

=

h

j

m

jj

mm

cwuGwAw
θ

θθ
θ

θ
θ

θθ θθ . 

Denote ∑
−

=

′=
1

0
,

m

jjj cwu
θ

θθδ  for all j , the term ∑
−

=

′
1

0

)(
m

Aw
θ

θθ θ  can be expressed as below 

referring to PROPOSITION 2.2:  

 0)(
1

1

0

=+∑∑
=

−

=

h

j
j

m

Gw δθ
θ

θ , (2.22)  

 hjuaauaa jmjjm ,,1  ,)()( 00 K=′−≤≤′−− δ , (2.23)  

 hjuaacwuaacw jm

m

jjjm

m

j ,,1  ),1)(()1)(( 0

1

0
,0

1

0
, K=′−−+≤≤′−−− ∑∑

−

=

−

= θ
θθ

θ
θθ δ . (2.24)  

We then deduce our main result:  

THEOREM 2.2  Let )(xf  be a piecewise linear function defined in a given interval 

],[ 0 maax∈  with m  subintervals by 1+m  break points: maaa <<< K10 . )(xf  can 

be expressed by the following linear system:  
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 ∑∑
−

=
+

−

=

≤≤
1

0
1

1

0

mm

arxar
θ

θθ
θ

θθ , (2.25)  

 ∑∑
−

=

−

=

+−−=
1

0

1

0
0 ))()(()(

mm

wsraasafxf
θ

θθ
θ

θθθθ , (2.26)  

 ∑
−

=

≥=
1

0

0 ,1
m

rr
θ

θθ , (2.27)  

 0)(
1

1

0

=+∑∑
=

−

=

h

j
j

m

zGr
θ

θ θ , (2.28)  

 hjuzu jjj ,,1  , K=′≤≤′− , (2.29)  

 hjucrzucr j

m

jjj

m

j ,,1  ),1()1(
1

0
,

1

0
, K=′−+≤≤′−− ∑∑

−

=

−

= θ
θθ

θ
θθ , (2.30)  

 0

1

0

axw
m

−=∑
−

=θ
θ , (2.31)  

 0)(
1

1

0

=+∑∑
=

−

=

h

j
j

m

Gw δθ
θ

θ , (2.32)  

 hjuaauaa jmjjm ,,1  ,)()( 00 K=′−≤≤′−− δ , (2.33)  

 hjuaacwuaacw jm

m

jjjm

m

j ,,1  ),1)(()1)(( 0

1

0
,0

1

0
, K=′−−+≤≤′−−− ∑∑

−

=

−

= θ
θθ

θ
θθ δ , (2.34)  

 mu
h

j
j

j ≤′∑
=

−

1

12 . (2.35)  

where (2.25) and (2.26) come from (2.18) and (2.19), (2.27) from (2.11), (2.28)－(2.30)  

from PROPOSITION 2.3, and (2.31)－(2.34)  from (2.21)－(2.24).  

 

REMARK 2.2 Expressing )(xf  with 1+m  break points by THEOREM 2.2 uses ⎡ ⎤m2log  

binary variables, ⎡ ⎤m2log88+  constraints, m2  non-negative continuous variables, and 

⎡ ⎤m2log2  free-signed continuous variables.  
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Comparing REMARK 2.1 with REMARK 2.2 to know that, in expressing )(xf  with large 

number of break points, the proposed method uses much less number of binary variables and 

constraints than being used in the existing methods.  

 

2.4 Numerical Examples 

EXAMPLE 2.1 

Consider the following nonlinear programming problem:  

P1 
Min 11

21
βα xx −  

s.t. ,6 22
211 bxxx ≤+− βα  

 ,821 ≤+ xx  

 ,4.71 1 ≤≤ x  4.71 2 ≤≤ x , 

where 1α , 1β , 2α , 2β  and b  are fixed constants.  

Various 1α , 1β , 2α , 2β  and b  values are specified in this experiment to compare 

the computational efficiency of expressing the piecewise linear functions by the existing 

method (i.e., (2.1)－(2.4)) and by our proposed method (i.e., THEOREM 2.2).  

For the first experiment given, 4.01 =α , 21 =β , 85.12 =α , 22 =β , 5=b , the 

nonlinear terms 4.0
1x  and 2

2x−  are concave and required to be linearized, while the other 

convex terms 85.1
1x  and 2

2x  do not need linearization. Suppose 1+m  equal-distance break 

points are chosen to linearize each of 4.0
1x  and 2

2x− , denoted as 10 =a , ma /4.61 θθ += , 

4.7=ma , for 1,,1 −= mKθ . Then existing methods (i.e., (2.1)－(2.4)) require to use m2  

binary variables and m8  extra constraints to piecewisely linearize 4.0
1x  and 2

2x− . However, 

by piecewisely linearize the same convex terms, our proposed method (i.e., THEOREM 2.2) 
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only uses ⎡ ⎤m2log2  binary variables, ⎡ ⎤m2log1614 +  extra constraints, m4  non-negative 

continuous variables, and ⎡ ⎤m2log2  free-signed continuous variables. The linearization of 

4.0
1x  by the proposed method is described below:  

Denote 4.0
11)( xxf = . By THEOREM 2.2, )( 1xf  with 64=m  is expressed by the 

following linear equations and inequalities:  

 ∑∑
=

+
=

≤≤
63

0
11

63

0 θ
θθ

θ
θθ arxar , 

 ∑∑
==

+−−=
63

0

63

0
0

4.0
1 ))(()(

θ
θθ

θ
θθθθ wsraasaxf , 

 ∑
=

≥=
63

0

0 ,1
θ

θθ rr , 

 1
63

0
−=∑

=

xw
θ

θ , 

 0)(
6

1

63

0
=+∑∑

== j
jzGr

θ
θ θ , 

 6,,1  , K=′≤≤′− juzu jjj , 

 6,,1  ),1()1(
63

0
,

63

0
, K=′−+≤≤′−− ∑∑

==

jucrzucr jjjjj
θ

θθ
θ

θθ , 

 0)(
6

1

63

0

=+∑∑
== j

jGw δθ
θ

θ , 

 6,,1  ,4.64.6 K=′≤≤′− juu jjj δ , 

 6,,1  ),1(4.6)1(4.6
63

0
,

63

0
, K=′−+≤≤′−− ∑∑

==

jucwucw jjjjj
θ

θθ
θ

θθ δ , 

 where 
θθ

θθ
θ aa

aas
−
−

=
+

+

1

4.04.0
1 , ju j ∀∈′  , }1,0{ . 

Similarly, 2
2x−  can be piecewisely linearized by THEOREM 2.2. The original program 
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is then converted into a mixed 0-1 convex program. We solve this program on LINGO (2004) 

by both the existing methods and the proposed method. The related solutions, CPU time, 

number of iterations, number of binary variables, number of constraints, and gap to the upper 

and lower bound objective value are listed in Table 2.2.  

Table 2.2   Experiment 1 ( 4.01 =α , 21 =β , 85.12 =α , 22 =β , 5=b ) 

1+m  Item Proposed 
method 

Existing  
method 

Gap to the upper and 
lower bound objective 
value 

CPU Time (second) 28 57  
Number of iterations 103,090 229,521  
Number of binary variables 12 128  
Number of constraints 110 514  
Solution ( 1x , 2x ) (3.849203, 3.998877)  

65 

Objective Value –14.27649 0.00001 
CPU Time (second) 329 4298  
Number of iterations 452,721 5,153,692  
Number of binary variables 16 512  
Number of constraints 142 2050  
Solution ( 1x , 2x ) (3.852642, 3.998955)  

257 

Objective Value –14.27648 <0.00001 
* The reference upper bound solution is ( 1x , 2x ) = (3.852642, 3.998955) 

with objective value －14.27648 
 

The gaps between the upper and lower bounds can be computed as follows.  

(i) Solve the nonlinear program P1 directly by a nonlinear optimization software (such as 

LINGO). The solution is )998955.3 ,852642.3(),( 0
2

0
1

0 == xxx  with objective value  

－14.27648. 0x  is one of the local optima of P1. But it is unknown about the gap 

between 0x  and the global optimum. 0x  is regarded as the upper bound solution.  

(ii) Divide the ranges of both 1x  and 2x  into 65 break points. Let ),( 0
2

0
1 xx  replace the 

nearest break point (3.8, 4.0) in the existing 65 break points. Solving the program by 

both the proposed method and the existing method to obtain 
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)998877.3 ,849203.3(=∆x  with objective value －14.27649. ∆x  is a lower bound 

solution of P1. The gap between the objective values of 0x  and ∆x  is 0.00001.  

(iii) Reiterate to (ii), divide the ranges of both 1x  and 2x  into 257 break points. Solving 

the program by both methods to obtain the solution (3.852642, 3.998955), which is the 

same as ∆x . 

Various combinations of 1α , 1β , 2α , 2β  and b  are specified to test the 

computation results of the existing methods and the proposed method. Parts of the results are 

displayed in Table 2.3. All these experiments demonstrate that the proposed method is much 

faster than the existing method especially when m  becomes large.  

 

EXAMPLE 2.2 

This example, modified from Dixon and Szegö (1975), is to find the approximated global 

optimum of the following program:  

P2 

Min 1
2
221

6
1

4
1

2
1 01.0

6
1081.12 xxxxxxx ++−+−  

s.t. 22 ≤≤− ix , 2,1=i , 

where the object function is a non-symmetrical three-humped camelback function. 

Figure 2.2 shows a contour map of this function under 22 1 ≤≤− x  and 22 2 ≤≤− x . Here a 

reference upper bound solution is )9011357.0,802271.1(),( 21 −−=xx  with objective 

value –0.02723789. For solving this program, let 01.211 >+=′ xx  and 01.222 >+=′ xx  to 

have 41.41.21.2 212121 +′−′−′′= xxxxxx . Replace 21xx ′′  by )exp(y , P2 then becomes P3 

below:  
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Table 2.3   Experiment 2 (for different combinations of 1α , 1β , 2α , 2β  and b ) 

,,, 211 αβα  
b, 2β  

1+m
 Item Proposed 

method 
Existing  
method 

Gap to the upper and 
lower bound objective 
value 

A reference upper bound solution is ( 1x , 2x )=(2.289561, 5.710439) with 
objective value –0.8765232 

CPU Time (second) 5 13  
Number of iterations 15,616 84,036  
Solution ( 1x , 2x ) (2.289561, 5.710439)  65 

Objective Value –0.8765229 0.0000003 
CPU Time (second) 12 54  
Number of iterations 43,830 216,577  
Solution ( 1x , 2x ) (2.289561, 5.710439)  129 

Objective Value –0.876523 0.0000002 
CPU Time (second) 69 464  
Number of iterations 113,591 1,296,464  
Solution ( 1x , 2x ) (2.28956, 5.71044)  

5.01 =α , 
5.01 =β , 
8.02 =α , 
9.02 =β , 

257 

Objective Value –0.8765232 <0.0000001 
 
A reference upper bound solution is ( 1x , 2x )=(4.087383, 3.8) with 
objective value –12.68378 

CPU Time (second) 15 17  
Number of iterations 68,759 141,519  
Solution ( 1x , 2x ) (4.153399, 3.846601)  65 

Objective Value –13.03136 0.34758 
CPU Time (second) 62 428  
Number of iterations 207,894 1,243,751  
Solution ( 1x , 2x ) (4.153402, 3.846598)  129 

Objective Value –13.02896 0.34518 
CPU Time (second) 299 1350  
Number of iterations 557,043 2,490,405  
Solution ( 1x , 2x ) (4.153401, 3.846599)  

4.01 =α , 
21 =β , 

8.02 =α , 
22 =β , 
7−=b  

257 

Objective Value –13.02889 0.34511 
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Figure 2.2   Contour map of the three-humped camelback function 
 

P3 

Min 41.41.211.2)exp(
6
1081.12 21

2
2

6
1

4
1

2
1 ++++−+− xxxyxxx  

s.t. 21 lnln xxy ′+′= , 

 1.211 −′= xx , 

 1.222 −′= xx , 

 22 ≤≤− ix , 2,1=i .  

The terms 4
1x− , )exp(y− , 1ln x′  and 2ln x′  in P3 are non-convex, here we use 1z− , 

2z− , 1y  and 2y  to respectively as piecewise linear function to approximate those 

non-convex terms. We then obtain the following mixed-integer program:  

 

P4 

Min 41.41.211.2
6
1081.12 21

2
22

6
11

2
1 ++++−+− xxxzxzx  
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s.t. The same constraints as in P3, but replace 1ln x′  and 2ln x′  by 1y  and 2y  

respectively.  

We take 41 equal-distance break points for the value range of 1x  and 2x  ( [-2, 2] ), 

denoted as ,20 −=a  9.11 −=a , .2,...,8.1 402 =−= aa It is clear that the break points for 1x′  

and 2x′  are )1.4,...,2.0 ,1.0( . Base on THEOREM 2.2, each of 1z , 1y , and 2y  is linearized 

with 6 binary variables and 55 constrains. Since 21 yyy += , the region of y  is 

]1.4ln1.4ln  ,1.0ln1.0[ln ++  ]ln16.81  ,01.0[ln= . We take 1+m  equal-distance break 

points for the value range of y , denoted  as 01.0ln0 =b , )/8.1601.0ln( mb θθ += , 

81.16ln=mb , for 1,...,2,1 −= mθ . yez =2  can then be piecewisely linearized under various 

y  values.  

Problem P4 is converted into a mixed 0-1 convex program. We solve this program using 

LINGO (2004) with the existing methods and the proposed method. The related solutions, 

CPU time, number of iterations, number of binary variables, number of constraints, and gaps 

to the upper and lower bound objective values are reported in Table 2.4.  

 

Table 2.4   Experiment result of Example 2.2 

1+m  Item Proposed 
method 

Existing 
method 

Gap to the upper and lower 
bound objective value 

CPU Time (second) 239 834  
Number of iterations 2,387,868 3,675,444  
Number of binary variables 17 112  
Number of constraints 161 532  
Solution ( 1x , 2x ) (–1.849207, –0.9925797)  

33 

Objective Value –0.2269442 0.19970631 
CPU Time (second) 882 2,277  
Number of iterations 1,610,422 7,467,149  
Number of binary variables 18 144  
Number of constraints 169 660  
Solution ( 1x , 2x ) (–1.7657, –0.8942029)  

65 

Objective Value –0.08396288 0.05672499 
* The reference upper bound solution is ( 1x , 2x ) = (–1.802271, –0.9011357) 
   with objective value –0.02723789 
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EXAMPLE 2.3 

This example is used to illustrate the process of solving discrete functions, consider 

following program:  

Min 1.1
5

8.0
4

5.0
3

1.2
2

2.2
2

8.2
1

3
1 3.05.38.08.1 xxxxxxx −−+−+−  

s.t. 88.0
2

2.1
1 ≤+ xx , 

 27.1
3

2.1
1 ≤− xx , 

 5.47.1
4

1.2
2 ≥− xx , 

 396.0
5

8.0
4 −≥− xx , 

 1.01.1
5

2.2
2 −≥− xx , 

 where ix  are discrete variables for all i , },...,{}1 ..., ,1 ,1{ 0 mi ddmccx =++∈ , where 

c  is the discreteness of ix , and 1+m  is the number of discrete points.  

The existing method solves this example by linearizing a nonlinear function 

},...,{, 0 mddxx ∈α  as 

 ,)(
1

00 ∑
=

−+=
m

dddx
θ

αα
θθ

αα λ  

 },1,0{  ,1
1

∈≤∑
=

θ
θ

θ λλ
m

 

where m  binary variables are used. 

THEOREM 2.2 can be applied to solve a discrete function },...,{ , 0 mddxx ∈α  where 

)(xf  in (2.26) is replaced by αx  as 

 ,
0
∑
=

=
m

rdx
θ

θ
α
θ

α   

and all other constraints in (2.27)－(2.30) and (2.35) are kept as the same with 
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m,...,0=θ . For treating a discrete function, the proposed method uses )1(log2 +m  binary 

variables, ⎡ ⎤)1(log44 2 ++ m  constraints, 1+m  non-negative continuous variables, and 

⎡ ⎤)1(log2 +m  free-signed continuous variables.  

Table 2.5 is the computational result with ILOG CPLEX 9.0. It illustrates that the 

proposed method needs to use more constraints than the existing method; however, the 

proposed method is computationally more efficient then existing method for large m . 

 

Table 2.5   Experiment results with discrete function in ILOG CPLEX 
( m +1)/d Item Proposed method Existing method 

CPU Time (second) 3.89 1.27 
Number of iterations 17,181 2,935 
Number of binary variables 40 1,275 
Number of constraints 187 22 
Solution ( 1x , 2x , 3x , 4x , 5x ) (3.725, 4.2, 1.85, 5.075, 7.2) 

256 / 
0.025 

Objective Value –35.49859275 
CPU Time (second) 3.58 7.85 
Number of iterations 12,418 14,103 
Number of binary variables 45 2,555 
Number of constraints 207 22 
Solution ( 1x , 2x , 3x , 4x , 5x ) (3.75, 4.1375, 1.875, 4.9625, 7.1375) 

512 / 
0.0125 

Objective Value –35.51962643 
CPU Time (second) 7.45 66.92 
Number of iterations 17,671 60,603 
Number of binary variables 50 5,115 
Number of constraints 227 22 
Solution ( 1x , 2x , 3x , 4x , 5x ) (3.6688, 4.35, 1.8188, 5.3688, 7.3937)

1024 / 
0.00625 

Objective Value –35.55043719 
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EXAMPLE 2.4 

This example uses the same program in Example 2.3 but specifying all ix  as continuous 

variables, where 4.71 ≤≤ ix  with 1+m  break points for all i . The comparison of the 

proposed method and the existing method, solving with ILOG CPLEX 9.0, is shown in 

Table 5. It demonstrates that the proposed method is also superior to the existing method for 

the continuous case.  

 

Table 2.6   Experiment results with continuous function in ILOG CPLEX 

1+m  Item Proposed 
method 

Existing 
method 

Gap to the upper and lower 
bound objective value 

CPU Time (second) 4.23 39.86  
Number of iterations 47,896 155,309  
Number of binary variables 25 160  
Number of constraints 347 1,098  
Solution ( 1x , 2x ) (3.67117699, 4.34398332)  
Solution ( 3x , 4x , 5x ) (1.8176404, 5.35913745, 7.4)  

33 

Objective Value –35.56181842 0.00766842 
CPU Time (second) 40.29 919.22  
Number of iterations 250,747 1,437,056  
Number of binary variables 30 320  
Number of constraints 407 2,186  
Solution ( 1x , 2x ) (3.67115433, 4.34402387)  
Solution ( 3x , 4x , 5x ) (1.81765758, 5.3591112, 7.4)  

65 

Objective Value –35.56160283 0.00745283 
CPU Time (second) 454.21 4354.26  
Number of iterations 2,128,203 8,690,141  
Number of binary variables 35 640  
Number of constraints 467 4,362  
Solution ( 1x , 2x ) (3.67116282, 4.34402387)  
Solution ( 3x , 4x , 5x ) (1.81767335, 5.3591112, 7.4)  

129 

Objective Value –35.56112235 0.00697235 
* The reference upper bound solution is 668.31 =x , 352.42 =x , 816.13 =x ,  

373.54 =x , 4.75 =x  with objective value –35.55415 
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Chapter 3 Extension 1－Solving Generalized Geometric 
Programs Problems 

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 
3.21 3.22 3.23 
Many optimization problems are formulated as Generalized Geometric Programming (GGP) 

containing signomial terms )()( yx gf ⋅  where x  and y  are continuous and discrete 

free-sign vectors respectively. By effectively convexifying )(xf  and linearizing )(yg , 

this chapter globally solves a GGP with less number of binary variables than are used in 

existing GGP methods. Numerical experiments demonstrate the computational efficiency of 

the proposed method.  

3.1 Introduction to Generalized Geometric Programming 

Generalized Geometric Programming (GGP) methods have been applied to solve problems 

in various fields, such as heat exchanger network design (Duffin and Peterson 1966), capital 

investment (Hellinckx and Rijckaert 1971), optimal design of cooling towers (Ecker and 

Wiebking 1978), batch plant modeling (Salomone and Iribarren 1992), competence sets 

expansion (Li 1999), smoothing splines (Cheng et al. 2005), and digital circuit (Boyd 2005). 

These GGP problems often contain continuous and discrete functions where the discrete 

variables may represent the sizes of components, thicknesses of steel plates, diameters of 

pipes, lengths of springs, and elements in a competence set etc. Many local optimization 

algorithms for solving GGP problems have been developed, which include linearization 

method (Duffin 1970), separable programming (Kochenberger et al. 1973), and a concave 

simplex algorithm (Beck and Ecker 1975). Pardalos and Romeijn (2002) provided an 

impressive overview of these GGP algorithms. Among existing GGP algorithms, the 

techniques developed by Maranas and Floudas (1997), Floudas et al. (1999), Floudas (2000) 

(these three methods are called Floudas’s methods in this study) are the most popular 

approaches for solving GGP problems. Floudas’s methods, however, can not be applied to 
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treat non-positive variables and discrete functions. Recently, Li and Tsai (2005) developed 

another method to modify Floudas’s methods thus to treat continuous variables containing 

zero values; however, Li and Tsai’s method is incapable of effectively handling 

mixed-integer variables. This study proposes a novel method to globally solve a GGP 

program with mixed integer free-sign variables. A free-sign variable is one which can be 

positive, negative, or zero.  

The GGP program discussed in this study is expressed below:  

GGP 

Min ∑
=

⋅
0

1
)()(

T

p
pp Gf yx  

s.t. w

T

q
qwqw lGf

w

≤⋅∑
=1

,, )()( yx , sw ,...,1= , 

where 

(C1) ∏
=

⋅=
n

i
ipp

ipxcf
1

,)( αx , 0,...,1 Tp = , 

(C2) ∏
=

⋅=
n

i
iqwqw

iqwxhf
1

,,
,,)( αx , sw ,...,1= , wTq ,...,1= , 

(C3) ∏
=

=
m

j
jjpp ygG

1
, )()(y , 0,...,1 Tp = , 

(C4) ∏
=

=
m

j
jjqwqw ygG

1
,,, )()(y , sw ,...,1= , wTq ,...,1= , 

(C5) ),...,( 1 nxx=x , is a vector with free-sign continuous variables ix , where ix  

can be positive, negative, or zero, iii xxx ≤≤ , ix  and ix  are constants,  

(C6) ),...,( 1 myy=y , is a vector with free-sign discrete variables 

jy , },...,{ ,1, jrjjj ddy ∈  where kjd ,  can be positive, negative, or zero,  

(C7) )( and )( ,,, jjqwjjp ygyg  are nonlinear functions of jy , 
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(C8) wqwpiqwip lhc  and , , , , ,,,, αα  are constants,  

(C9) ip,α  and iqw ,,α  are integers if  the lower bounds of ix  are negative.  

Floudas’s method can solve a specific GGP problem containing continuous functions 

with positive variables, as illustrated below:  

GGP1 (with continuous functions and positive variables)  

Min ∑
=

0

1

)(
T

p
pf x  

s.t. w

T

q
qw lf

w

≤∑
=1

, )(x , sw ,...,1= , ),...,( 1 nxx=x , iii xxx ≤≤ , 0>∀ ix , 

where conditions (C1) and (C2) in GGP hold.  

For solving GGP1, Floudas’s method denotes ii
t

i xtex i ln  with  ==  and group all 

monomials with identical sign. GGP1 is rewritten by Floudas’s method as follows:  

Min )()( 00 tt −+ − ff  

s.t. swlff www ,...,1,)()( =≤− −+ tt , 

 ∑
>

+ ⋅=
0

)(
0 )(

p

p

c

h
p ecf tt , 

 ∑
<

− ⋅−=
0

)(
0 )(

p

p

c

h
p ecf tt , 

 pth
i

iipp ∀∑ ⋅= ,)( ,αt , (3.1) 

 ∑
>

+ ⋅=
0

)(
,

,

,)(
qw

qw

h

h
qww ehf tt , 

 ∑
<

− ⋅−=
0

)(
,

,

,)(
qw

qw

h

h
qww ehf tt , 

 qwth
i

iiqwqw ,,)( ,,, ∀∑ ⋅= αt . 

GGP1 is a signomial geometric program containing posynomial functions )(0 t+f , 
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)(t+
wf  and signomial functions )(0 t−− f , )(t−− wf  where ),...,( 1 ntt=t  is a positive 

variable vector. A posynomial term is a monomial with positive coefficient, while a signomial 

term is a monomial with negative coefficient (Bazaraa et el. 1993; Floudas 2000). Supports all 

signomial terms in GGP1 are removed then we have a posynomial geometric program below:  

Min )(0 t+f  

s.t. swlf ww ,...,1,)( =≤+ t . 

Posynomial geometric program laid the foundation for the theory of generalized 

geometric program. Duffin and Peterson (1966) pioneered the initial work on posynomial 

geometric programs, which derived the dual based on the arithmetic geometric inequality. 

This dual involves the maximization of a separable concave function subject to linear 

constraints. Unlike posynomial geometric problems, signomial geometric problems remain 

nonconvex and much more difficult to solve. Floudas's method employs an exponential 

variable transformation to the initial signomial geometric program to reduce it into a 

decomposition program. A convex relaxation is then obtained based on the linear lower 

bounding of the concave parts. Floudas's method can reach ε-convergence to the global 

minimum by successively refining a convex relaxation of a series of nonlinear convex 

optimization problems. The −ε convergence to the global minimum ( −ε global minimum), 

as defined in Floudas (2000, page 58) is stated below: Suppose that *x  is a feasible solution, 

0≥ε  is a small predescribed tolerance, and ε−≥ )()( *xx ff  for all feasible x , then *x  

is an −ε global minimum. However, the usefulness of Floudas's method is limited by the 

difficulty that ix  must be strictly positive. This restriction prohibits many applications where 

ix  can be zero or negative values (such as temperature, growth rate, etc.).  

In order to overcome the difficulty of Floudas’s methods, recently, Li and Tsai (2005) 

proposed another method for solving GGP1 where ix  may be negative or zero. Li and Tsai 
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first transfer ∏
=

n

i
i

ipx
1

,α  and ∏
=

n

i
i

iqwx
1

,,α  into convex and concave functions, then approximate 

the concave functions by piecewise linear techniques. Li and Tsai’s method can also reach 

finite ε-convergence to the global minimum. Both Floudas’s methods and Li & Tsai’s method 

use the exponential-based decomposition technique to decompose the objective function and 

constraints into convex and concave functions. Decomposition programs have good properties 

for finding a global optimum (Horst and Tuy, 1996). A convex relaxation of the 

decomposition can be computed conveniently based on the linear lower bound of the concave 

parts of the objective functions and constraints.  

Two difficulties of direct application of Floudas’s method or Li & Tsai method to 

globally solve a GGP problem are discussed below:  

(i) The major difficulty is that 1−r  binary variables are used in expressing a discrete 

variable with r  values. For instance, to linearize a signomial term 

21
212211 )()()( αα yyygygG ⋅=⋅=y  where jrjjjj rjdddy

j
 ,},...,,{ ,2,1, ∀∈ , by taking the 

logarithm of )(yG  one obtains 

 2211 lnln)(ln yyG αα +=y ∑ ∑
= =

−−+=
2

1 2
1,,,1, ])ln(ln[ln

j

r

k
kjkjkjjj

j

ddudα  

 where }1,0{  ,1 ,
2

, ∈≤∑
=

kj

r

k
kj uu

j

. 

It require 221 −+ rr  binary variables to linearly decompose )(yG . If the number of jr  

is large then it will cause a heavy computational burden.  

(ii) Another difficulty is the treatment of taking logarithms of jy . If jy  may take on a 

negative or zero value then we can not take logarithmic directly.  
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This study proposes a novel method to globally solve GGP programs. The advantages of 

the proposed method are listed as below:  

Less number of binary variables and constraints are used in solving a GGP program. Only 

⎡ ⎤∑
=

m

r
jr

1
2log  binary variables are required to linearize )(, jjp yg  and )(,, jjqw yg  in GGP. It 

is capable of treating non-positive variables in the discrete and continuous functions in 

GGP.  

This study is organized as follows. Section 3.2 develops the first approach of treating 

discrete functions in GGP. Section 3.3 describes another approach of treating discrete 

functions. Section 3.4 proposes a method for handling continuous functions. Numerical 

examples are analyzed in Section 3.5.  

 

3.2 The Proposed Linear Approximation Method 

Form the basic of THEOREM 2.1, we develop two approaches to express a discrete variable 

y  with r  values. The first approach, as described in this section, use ⎡ ⎤r2log  binary 

variables and r2  extra constraints to express y . The second approach, as described in the 

next section, use ⎡ ⎤r2log  binary variables but only ⎡ ⎤r2log43+  constraints to express 

y . The first approach is good at treating product terms ∏
=

m

j
jj ygf

1

)()(x , while the second 

approach is more effective in treating additive terms ∑
j

jj yg )( .  

REMARK 3.1 A discrete free-sign variable },...,,{, 21 rdddyy ∈  can be expressed as:  

 kkkk AMdyAMd ⋅+≤≤⋅− , rk ,...,1=  (3.2)  

where  
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(i) k  is same as θ   in (2.5) and kA  is same as )(θθ ′A  in (2.7).  

(ii) M  is a big enough positive value,  

 },...,,0min{},...,,1max{ 11 rr ddddM −= . (3.3) 

PROOF (i) If 0=kA  then kdy = ,  

(ii) If 1≥kA  then kkrrkk AMdddyddAMd ⋅+≤≤≤≤⋅− },...,,0max{},...,,0min{ 11 . 

Therefore (3.2) is still correct.  □ 

 

Take Table 2.1 for instance, for }10 ,9 ,8 ,5.7 ,6 ,5 ,4 ,1 ,0 ,1{−∈y , y  can be expressed by 

linear inequalities below:  

 )(01)(01 43214321 uuuuMyuuuuM ′+′+′+′++−≤≤′+′+′+′+−− , 

 )1010 43214321 uuuuM(y)uuuuM( ′+′+′+′−+≤≤′+′+′+′−− , 

 M  

 )uuuuM(y)uuuuM( 43214321 210210 ′−′+′+′−+≤≤′−′+′+′−− , 

 where 11110 =+=M . 

In this case 10=r and there are 20102 =×  constraints being used to express y . Since 

depending on the final 321 ,, uuu ′′′ , and 4u′  assignments, only two of 20 inequalities will turn 

into equalities which indicate the discrete choice made of y , while the rest of 18 

inequalities turn into redundant constraints.  

 

REMARK 3.2 Expression (3.2) uses ⎡ ⎤r2log  binary variables and r2  constraints to 

express a discrete variable with r  values.  
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PROPOSITION 3.1 Given a function )(yg  where kr ddddy  },,...,,{ 21∈  are discrete 

free-sign values, )(yg  can be expressed by following linear inequalities:  

 kkkk AMdgygAMdg ⋅+≤≤⋅− )()()( , rk ,...,1=  

where y , kA ,and k  are specified in REMARK 3.1, and 

 )}(),...,(,0min{)}(),...,(,1max{ 11 rr dgdgdgdgM −= . (3.4)  

 

PROPOSITION 3.2 A product term )()( ygfz ⋅= x , where ∏
=

=
n

i
i

ixcf
1

)( αx  as being 

specified in GGP, iii xxx ≤≤ , c  is a free-sign constant, and },...,{ 1 rddy∈ , can be 

expressed by following inequalities:  

 kkkk AMdgfzAMdgf ⋅′+⋅≤≤⋅′−⋅ )()()()( xx , rk ,...,1=  

where 

(i) y , kA ,and k  are specified in PROPOSITION 3.1.  

(ii) MfM ⋅=′ )(x , for 

 }||,1max{)(
1
∏
=

=
n

i

U
ixcf x , where }|,max{| ixxxxx iiii

U
i

i ∀≤≤= α . (3.5)  

PROOF It is clear that |)(| xfMM ≥′  for iii xxx ≤≤ . Since 0≥kA , 

kk AMfAM )(x−≤′−  and kk AMfAM )(x≥′ . Two cases are discussed.  

(i) Case 1 for 0)( ≥xf . From Proposition 3 to have 

 kkkk AMfdgfygfAMfdgf ⋅+⋅≤≤⋅−⋅ )()()()()()()()( xxxxx . 

 We then have 

 kkkk AMdgfygfAMdgf ⋅′+≤≤⋅′− )()()()()()( xxx . 

(ii) Case 2 for 0)( <xf . From Proposition 3 to have 
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 kkkk AMfdgfygfAMfdgf ⋅+⋅≥≥⋅−⋅ )()()()()()()()( xxxxx . 

Similar to Case 1, it is clear that 

 kkkk AMdgfygfAMdgf ⋅′+≤≤⋅′− )()()()()()( xxx . 

The proposition is then proven. □ 

 

REMARK 3.3 For a constraint aygfz ≤⋅= )()(x  where a  is constant, )(xf  and )(yg  

are the same as in PROPOSITION 3.2. The constraint az ≤ can be expressed by following 

inequalities:  

 aMdgf kk ≤⋅′−⋅ A)()(x , rk ,...,1= , 

where M ′  is same in PROPOSITION 3.2. There are r  constraints used to describe az ≤ ; 

where only one of the constraints is activated(i.e., 0A =k ) which indicates the discrete 

choice made by y , while the rest of 1−r  inequalities turn into redundant constraints.  

 

We then deduce the main result below:  

THEOREM 3.1  Denote )()( 111 ygfz ⋅= x  and ∏
=

− ⋅=⋅=
σ

σσσσ
1

1 )()()(
j

jj ygfygzz x  for 

m,...,2=σ  where ∏
=

=
n

i
i

ixcf
1

)( αx , iii xxx ≤≤ , c  is a free-sign constant, and jy  are 

discrete free-sign variables, },...,,{ ,2,1, jrjjjj dddy ∈ . The terms mzzz ,...,, 21  can be 

expressed by the following inequalities:  

(C1)  kkkk MdgfzMdgf ,11,111,11,11 A)()(A)()( ⋅′+⋅≤≤⋅′−⋅ xx  , 1,...,1 rk = , 

(C2) kkkk MdgzzMdgz ,22,2212,22,221 A)(A)( ⋅′+⋅≤≤⋅′−⋅  , 2,...,1 rk = , 

…  
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(Cm) kmmkmmmmkmmkmmm MdgzzMdgz ,,1,,1 A)(A)( ⋅′+⋅≤≤⋅′−⋅ −−  , mrk ,...,1= . 

where 

(i) kjjkjjkjjkj MdyMd ,,,, AA ⋅+≤≤⋅− , mj ,...,1= , jrk ,...,1= , 

(ii) ∑∑
=

⎥⎦
⎥

⎢⎣
⎢ −

=

⎥⎦
⎥

⎢⎣
⎢ −

⋅−+−−=
−−

θθ

1
,

2
1

1

2
1

, ))1(())1(1(5.0 11

w
wj

k

w

k

kj uA ww , ⎡ ⎤jr2log,...,1=θ  for all kj  , , 

(iii) 
⎡ ⎤

j

r

w
wj

w ruk
j

≤+= ∑
=

−
2log

1
,

121 , 

(iv) )(  ,)(
1

xx ffM
j

i
ij ∏

=

⋅=′ σ  is specified in (3.5),  

)}(,0{min)}(,1{max ,, kiikkiiki dgdg −=σ , (3.6)  

 .,...,1  ,,...,1 jrkmj ==  

PROOF (i) Consider (C1). Since 11 σ=≥′≥′ MMM , where M ′  and M  are specified 

in PROPOSITION 3.2, (C1) is ture.  

(ii) Consider (C2). It is clear 212 σσ)f(M ⋅=′ x .  

If 0)( ≥xf  then )()()()( ,221,221,221,22,221 kkkkk dgzAfdgzAMdgz ⋅≤⋅−⋅≤⋅′−⋅ σσx  

and kkkkk AMdgzAfdgzdgz ,22,221,221,221,221 )()()()( ⋅′+⋅≤⋅+⋅≤⋅ σσx . 

If 0)( <xf  

)()()()( ,221,221,221,22,221 kkkkk dgzAfdgzAMdgz ⋅≥⋅−⋅≥⋅′+⋅ σσx  and 

kkkkk AMdgzAfdgzdgz ,22,221,221,221,221 )()()()( ⋅′−⋅≥⋅+⋅≥⋅ σσx . 

We then have kkkk AMdgzzAMdgz ,22,2212,22,221 )()( ⋅′+⋅≤≤⋅′−⋅  for 1,2 ≥kA . 

(iii) Similar for (C3) to (Cm).  

The theorem is then proven. □ 
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REMARK 3.4 A Constraint ∑ ∏
= =

≤
p

s

m

j
ijss aygf

1 1
, )()(x , where a  is constant 

and ∏
=

=
n

i
iss

sixcf
1

,)( αx , iii xxx ≤≤ , c  is a free-sign constant, can be expressed by 

following inequalities:  

 ∑
=

≤
p

s
ms az

1
, , 

 ,,)( ,,,,,,1, kszAMdgz mskmsmskmmsms ∀≤⋅−⋅−  

 ,,)()( ,1,1,,11,2,1,,1,1,,11,2, ksAMdgzzAMdgz kmsmskmmsmsmskmsmskmmsms ∀⋅+⋅≤≤⋅−⋅ −−−−−−−−−−−  

 M  

 ,,)()( ,2,2,,22,2,2,,2,2,,22,2, ksAMdgzzAMdgz kssksssksskss ∀⋅+⋅≤≤⋅−⋅  

 ,,)()()()( ,1,1,,11,1,,1,1,,11, ksAMdgXfzAMdgXf kssksssksskss ∀⋅+⋅≤≤⋅−⋅  

where 

,,}|,max{|  },||,1max{)(  ,)( ,
,

1
,

1
,, isxxxxxxCffM iiii

U
is

n

i

U
isss

i

j
issis

is ∀≤≤==⋅= ∏∏
==

ασ xx    (3.7) 

 )}.(,0min{)}(,1max{ ,,,,, kiiskiisis dgdg −=σ  

 

For instance, a single nonlinear constraint ayyxy ≤+ 21
2
1  where 50 ≤≤ x , 21, yy  are 

integer variables, 32,1 21 ≤≤ yy , can be converted into a linear system as follows. 

(i) Denote },...,{}32,...,1{ 3211 ddy =∈ . Since ⎡ ⎤ 532log2 = , five binary variables 

,,,, 4321 uuuu  and 5u  are used to express 1y . Specifying k  as:  

 5
4

4
3

3
2

21 22221 uuuuuk +++++= . 

Referring to (3.2), 1y  is expressed as 

 ,32,...,1,,111,11 =⋅+≤≤⋅− kAMdyAMd kkkk  (3.8)  
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where 321 =M  and kA ,1  are specified as 

 

.5

,1

,

5432132,1

543212,1

543211,1

uuuuuA

uuuuuA

uuuuuA

−−−−−=

++++−=

++++=

M

 

Similarly, denote },...,{}32,...,1{ 3212 bby =∈ , five binary variables ,,,, 4321 vvvv  and 5v  

are used to express 2y . Specifying q  as:  

 5
4

4
3

3
2

21 22221 vvvvvq +++++= . 

2y  is expressed in the same way as in 1y : 

 ,32,...,1,,222,22 =⋅+≤≤⋅− qAMbyAMb qqqq  (3.9)  

where 322 =M . Specifying qA ,2  as 

 

.5

,1

,

5432132,2

543212,2

543211,2

vvvvvA

vvvvvA

vvvvvA

−−−−−=

++++−=

++++=

M

 

(ii) Treating the first term 2
1xy  in the constraint. Denote 2

13 xyz = . From Theorem 1 to 

have:  

 ,32,...,1,3,11
2 =≤⋅′−⋅ kzAMdx kk  

 where 5120)032(*5 2
1 =−=M&  

(iii) The second term 21yy  in constraint is treated similarly. Denote 214 yyz = . To form 
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the inequalities as 

 ,32,...,1,4,221 =≤⋅′−⋅ qzAMby qq  

 where .102432*322 ==M&  

 

The original constraint then becomes azz ≤+ 43  where there are additional 10  binary 

variables and two continuous variables. By utilizing Theorem 1 to express this constraint in 

linear form requires 192  additive constraints (where 64  come from (3.8), 64  come from 

(3.9)). Another approach, developed based on Theorem 1, can be used to reduce the number 

of constraints from 192  to ⎡ ⎤ 110)32log43(264 2 =++ . 

3.3 Treatment of Discrete Function in GGP (Approach 2)  

PROPOSITION 3.1 uses ⎡ ⎤r2log  binary variables and r2  additive constraints to express a 

discrete function )(yg  variable with r  values. Here we use PROPOSITION 2.2 and 

PROPOSITION 2.3 to express the same discrete variable where only ⎡ ⎤r2log43+  additive 

constraints are required. Such an expression is computationally more efficient to treat )(yg  

in a GGP program.  

We use kp  and wδ  to instead of θr  and jz  in PROPOSITION 2.2 and PROPOSITION 

2.3 in this section respectively. For instance, given }10 ,9 ,8 ,5.7 ,6 ,5 ,4 ,1 ,0 ,1{−∈y , referring 

to Table 2.1 to have  
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The discrete variable y  can be expressed by following linear equation and linear 

inequalities: 

 

.0  ,1

,1...1...

,1...1...

,1...1...

,4,...,1,

,02...

,10985.7654

10

1

4103214410321

2103212210321

1103211110321

10324321

1098765431

≥=

−+−+++≤≤+−−+++

−+−−−+≤≤+−−−−+

−+−−+−≤≤+−−−+−

=≤≤−

=+++++++

++++++++−=

∑
=

k
k

k

www

pp

uppppupppp

uppppupppp

uppppupppp

wuu

ppp

pppppppppy

δ

δ

δ

δ

δδδδ

M

 (3.10)  

It is convenient to check: If 12 =u  and 0431 === uuu  then 0431 === δδδ  and 

109876543212 pppppppppp ++−−++−−+=δ .  

Since =+++++++++ 10987654322 23222 pppppppppδ  

10322322 1098765421 =++++++++ ppppppppp , 0≥kp , and 1
10

1

=∑
=k

kp , it is clear 

01098765421 ========= ppppppppp , 032 =+ pδ , 12 −=δ  and 13 =p . We 
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then have 13 == py . 

 

REMARK 3.5 ⎡ ⎤r2log  binary variables, ⎡ ⎤r2log43+  constraints, and ⎡ ⎤rr 2log+  

continuous variables are used in PROPOSITION 2.2 and PROPOSITION 2.3 to express a discrete 

variable with r  values.  

 

REMARK 3.6 Given a function )(yg  where },...,{ 1 rddy∈ , )(yg  can be expressed by 

following expressions.  

 ∑
=

=
r

k
kkk pdgdg

1
)()(  

 where 1
1

=∑
=

r

k
kp , 0≥kp , and 0

1
=∑

=

r

k
kk Ap  are specified similarly. 

 

For instance, a function )1/()10()( 2yyyg +−=  can be expressed by the following 

expressions:  

 ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
10

1
21

10)(
k

k
k

k p
d
dyg , 

Suppose 0432 === uuu  and 11 =u  then 0 ,1 ,2 2 === ypk  and 10)( =yg . 

 

Table 3.1 is a comparison of the three ways for expressing a discrete variable y  with 

r  values. A numerical example is given in Example 3.4 to compare their computational 

effeciency.  
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Table 3.1   Way of expressing },...,{ 1 rddy∈  
 Floudas’s Method, 

Li&Tsai’s Method 
Approach 1
REMARK 3.1

Approach 2 
PROPOSITION 2.2 

Expression 
}1,0{,1

1

1

∈∀=

=

∑

∑

=

=

k

r

k
k

r

k
kk

uu

duy

.,...,1
,
,

rk
MAdy
MAdy

kk

kk

=
+≤
−≥

 
.0

,1,

1

11

=

==

∑

∑∑

=

==

r

k
kk

r

k
k

r

k
kk

Ap

ppdy

No. of binary variables r  ⎡ ⎤r2log  ⎡ ⎤r2log  

No. of additional constraints 2 r2  ⎡ ⎤r2log43 +  

No. of additional continuous variables 0 0 ⎡ ⎤rr 2log+  

 

Now consider Condition (i) in THEOREM 3.1, where jy  are expressed by Approach 1 

using jr2  constraints. That condition can be replaced by PROPOSITION 2.2 and PROPOSITION 

2.3 where only ⎡ ⎤r2log43 +  constraints are required. This is described as following 

proposition: 

PROPOSITION 3.3 Replacing Condition (i) in THEOREM 3.1 by following expressions:  

 mjpdy
jr

k
kjkjj ,...,1,

1
,, ==∑

=

 

where 1
1

, =∑
=

jr

k
kjp , 0, ≥kjp , and 0

1
,, =∑

=

jr

k
kjkj Ap  for all kj, . The total number of 

variables and constraints used to express mzzy ,...,, 1  using (C1), (C2),…,(Cm) in 

THEOREM 3.1 are listed below:  

(i) no. of binary variables: ⎡ ⎤∑
=

m

j
jr

1
2log , 

(ii) no. of constraints for )( jj yg : ⎡ ⎤∑
=

+
m

j
jrm

1
2log3 , 

(iii) no. of constraints for mzzz ,...,, 21  in (C1), (C2),…,(Cm): ∑
=

m

j
jr

1
4 , 

(iv) no. of continuous variables: ⎡ ⎤∑∑
==

++
m

j
j

m

j
j rr

1
2

1
log)1( . 
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3.4 Treatment of Continuous Function in GGP 

Consider the signomial form ∏
=

=
n

i
i

ixcf
1

)( αx , according to Li and Tsai (2005), we illustrate 

the technique of treating )(xf , in xxxx  ),,...,,( 21=x  as free-sign variables, ii xxx i ≤≤ , 

and c  is a constant. Introducing new binary variables ii λθ  ,  and a positive continuous 

variable },max{0 0
iii xxx −≤≤  which are specified below: 

(i) 0=ix  if and only if 0=iλ , 

(ii) iiii xxxxx i ≤<=> 00 0 , ,0  if and only if 0 and 1 == ii θλ ,  

(iii) 0 , ,0 00 <−≤−=< iii xxxxx ii  if and only if 1 and 1 == ii θλ   

The above conditions can be represented by a set of linear inequalities below: 

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

∈

−+−≤≤−−−

+≤≤−

−−≤≤

≤≤

⇔
−=

−≤≤

}.1,0{,

),1()1(

,

,)1(0

,0

)(

)(

)(

)(

)(

).21(

},,max{0

00

00

0

0

0

0

ii

iiiii

iiiii

iiiii

ii

iiii

iii

MxxMx

MxxMx

xxx

Mx

v

iv

iii

ii

i

xx

xxx

θλ

θθ

θθ

θθ

λ

θλ
 

Here },max{2 ii xxM −= . Now denote )(xf  and )(0 xf  as below:  

∏
=

=
n

i
i

ixcf
1

)( αx  and ∏
=

=
n

i
i

ixcf
1

00 )()( αx  where 0
ix  are positive variables mentioned 

above, it is clear that  

 ∏
=

−⋅=
n

i
ii

iiff
1

0 )21()()( αα θλxx , }1 , 0{, ∈ii θλ  (3.11) 

Expression (3.11) implies:  

(i) If ii ∀= 0λ  then 0)( =xf , 
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(ii) If iii αθλ  and ,1 ,1 ==  is odd for all },...,2,1{ ni∈  then )()( 0 xx ff −= . 

By specifying three new variables t and , ,θλ  defined below: 

(i) iλλ ≤ ,  

(ii) ∑
∈

−=
Ii

i t2θθ , I={i | 0<ix  and iα  is odd for all i , 

(iii) )1(5.00 ∑
∈

+≤≤
Ii

it θ ,  

where t and },1,0{ , ∈θλ  is an integer variable.  

It is clear that if 0=λ  then 0)( =xf ; if 0=θ  then )()( 0 xx ff = ; and if 1=θ  

then )()( 0 xx ff −= . We then have following proposition:  

PROPOSITION 3.4 Consider a signomial continuous function ∏
=

=
n

i
i

ixcf
1

)( αx  where 

in xxxx  ),,...,,( 21=x  are free-sign variables, ii xxx i ≤≤ , and c  is a constant. )(xf  can be 

expressed with the following inequalities:  

 λλ MfM ′≤≤′− )(x , 

 θθ MffMf ′+≤≤′− )()()( 00 xxx , 

 )1()()()1()( 00 θθ −′+−≤≤−′−− MffMf xxx , 

 ∑
∈

−=
Ii

i t2θθ , 

 ∑
∈

≤≤
Ii

it θ5.00 , 

 0)1(
1

≤−−−∑
=

λλ n
n

i
i , 

 nii ,...,1, =≤ λλ , 

 niMx ii ,...,1,0 0 =≤≤ λ , 

 Jixxx iiiii ∈∀−−≤≤ ,)1(0 0 θθ , 
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 JiMxxMx iiiii ∈∀+≤≤− ,00 θθ , 

 JiMxxMx iiiii ∈∀−+−≤≤−−− ),1()1( 00 θθ , 

 Jixx ii ∉≤< ,0 0 , 

 Jixx ii ∉= ,0 , 

where  

(i) ∏
=

=
n

i
i

ixcf
1

00 )()( αx , 

(ii) },1 , 0{,,, ∈ii θλθλ  },max{2 ii xxM −= , 

(iii) t  is an integer variable,  

(iv) J  is a set containing all i where the lower bound of ix  areis negative, and I 

denotes a set of all i where Ji∈  and iα  is odd, J  and I are expressed as 

J={i | ixi ∀< 0 } and 

I={i | 0<ix  and iα  is odd i∀ }.  

PROOF Referring to Li and Tsai (2005). □ 

 

In order to globally solve a GGP problem, )(0 xf  in PROPOSITION 3.4 should be 

approximately linearized. The most convenient approach to linearizing )(0 xf  is to take 

logarithms to reformulate )(0 xf  as the differences of some convex functions in (3.1) as 

proposed by Floudas’s method. Such an approach, however, requires that we add numerous 

new binary variables. For instance, to treat a constraint 

 102
3

1
2

5.
1 ≤= −− xxxz  where 5,,1 321 ≤≤ xxx . (3.12) 

Floudas’s method first denotes 332211 log and ,log ,log xzxzxz === , then to reformulates  

10≤z  as the following linear inequalities: 
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 10log25.0 321 ≤+−− zzz , 

 iii xzxL log)(log ≤≤ , 3,2,1=i . 

Since ixlog  are concave functions, linearizing )(log ixL  with m  break points requires 

the addition of )1(3 −m  binary variables for piecewise linearization. Here we propose 

some converxification and concavification strategies to reduce the number of binary 

variables required to linearize )(log ixL . Consider the following propositions:  

PROPOSITION 3.5 A piecewise linearized function ))(( xfL  of a concave function )(xf  with 

m  break points mbbb <<< ...21  can be expressed as  

(C1) kkkk MbxMb AA 1 ⋅+≤≤⋅− + , 1,...,1 −= mk , 

(C2) kkkkkkkk MbxsbfxfLMbxsbf A)()())((A)()( ⋅+−+≤≤⋅−−+ , 1,...,1 −= mk  

where  

(i) 
kk

kk
k bb

bfbfs
−
−

=
+

+

1

1 )()( , 

(ii) kA  are specified as the similar way in (2.7), 

(iii) M  is a large enough positive value. 

Obviously, only ⎡ ⎤)1(log2 −m  binary variables are required to create the piecewise 

linear function ))(( xfL . 

PROOF Referring to Tsai et al. (2002). □ 

 

PROPOSITION 3.6 A twice-differentiable function nixxxcxf in
n ,...,10,...)( 21

21 =∀≥= αααx ,  

is a convex function in one of the following conditions:  

(C1) 0≥c , ii   0∀<α , 

(C2) 0<c , ii   0∀>α , 1
1

≤∑
=

n

i
iα . 
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PROOF Referring to Tsai et al. (2002). □ 

 

To simplify the expression, here we use a signomial term with three variables as 

instances to illustrate the convexification and concaveification techniques.  

CONVEXIFICATION AND CONCAVIFICATION STRATEGIES 1  

Consider a constraint constant321
321 ≤= ααα xxxz  with )3 ,2 ,1(0 =≥ ixi , ,0, 21 <αα  

03 >α .  This constraint can be converted into the following inequalities:  

 constant321
321 ≤−ααα wxx , 

 )( 1
33

1
3

−− ≤≤ xLwx  

where 1
3321  ,321 −− xwxx ααα  are convex (following (C1) of PROPOSITION 3.6, and )( 1

3
−xL  is a 

piecewise linear function by PROPOSITION 3.5. 

 

Take the example in (3.12) as an introduction. The constraint 10≤z  is converted into 

the following inequalities base on CONVEXIFICATION AND CONCAVIFICATION STRATEGIES 1:  

 102
3

1
2

5.0
1 ≤−−− wxx , 

 )( 1
33

1
3

−− ≤≤ xLwx , 

where only ⎡ ⎤)1(log2 −m  binary variables are used instead of the )1(3 −m  binary 

variables required by conventional methods. 

 

CONVEXIFICATION AND CONCAVIFICATION STRATEGIES 2  

A constraint constant321
321 ≤−= ααα xxxz  with )3 ,2 ,1(0 =≥ ixi , 0,, 321 <ααα . This 

constraint can be converted into following inequalities:  

 constant3
1

3
3
1

2
3
1

1 ≤− www , 
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 )( 33 ii
iii xLwx αα ≤≤  for 3 ,2 ,1=i , 

where i
ixwww α33

1

3
3
1

2
3
1

1  ,−  are convex (following (C2) of PROPOSITION 3.6), and )( 3 i
ixL α  is a 

piecewise linear function by PROPOSITION 3.5. 

 

3.5 Numerical Examples 

EXAMPLE 3.1 GGP with Linear Continuous Function 

Consider following program with one continuous free-sign variable x  and two discrete 

variables 21 y and y :  

PROGRAM 1 

Min 2
212

3
1 yxyyxy +  

s.t. (C1) 50021
2
1 −≤+ yyxy , 

 (C2) 5002
2
11 ≤+− yyxy , 

 (C3) 55 ≤≤− x , 

 (C4) 10} 9, 8, 7.5, 6, 5, 4,  ,1  ,0  ,1{1 −∈y , 

 (C5) 5} 4, 3, 1,  ,1 ,4 ,7  ,9  ,18  ,27{2 −−−−−−∈y . 

Program 1 can not be solved by Floudas’s methods (1997, 1999, 2000) or Li and Tasi’s 

(2005) approach, since there are zero and negative values for continuous and discrete 

variables. Our solution proceeds as follows:  

(i) Denote },...,{10} 9, 8, 7.5, 6, 5, 4, ,1 ,0 ,1{ 1011 ddy =−∈ . Since ⎡ ⎤ 410log2 = , four binary 

variables 4321  and ,,, uuuu  are used to express 1y . Specifying k  as:  

 102221 4
3

3
2

21 ≤++++= uuuuk . (3.13) 

1y  can be expressed as in (3.10) where y  is replaced by 1y  and kp  are replaced 
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by . Specifying kA ,1  as  

 432110,143212,143211,1 2,...,1, uuuuAuuuuAuuuuA −++−=+++−=+++= . (3.14) 

Similarly, denote },...,{5} 4, 3, 1,  ,1 ,4 ,7  ,9  ,18  ,27{ 1012 bby =−−−−−−∈ , four binary 

variables 4321 and ,,,  vvvv  are used to express 2y . Specifying q  as:  

 102221 4
3

3
2

21 ≤++++= vvvvq . (3.15) 

2y  is expressed in the same way as in 1y : 

 

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

≥=

−+−+++≤≤+−−+++

−+−−+−≤≤+−−−+−

=≤≤−

=+++++++

++++−−−−−−=

∑
=

.0  ,1

,1...1...

,1...1...

,4,...,1,

,02...

,5434791827

,2

10

1
,2

410,23,22,21,24410,23,22,21,2

110,23,22,21,21110,23,22,21,2

,2

10,23,22,24,23,22,21,2

10,29,28,27,26,25,24,23,22,21,22

q
q

q

www

pp

vppppvpppp

vppppvpppp

wvv

ppp

ppppppppppy

δ

δ

δ

δδδδ

M

  (3.16) 

Specify qA ,2  as  

 432110,243212,243211,2 2,...,1, vvvvAvvvvAvvvvA −++−=+++−=+++= . (3.17) 

(ii) Now treat the term 2
3
1 yxy  in the objective function.  

Denote 3
1112

3
11  and y xyzxyz == . From Theorem 1 to have:  

 
⎪
⎭

⎪
⎬

⎫

=⋅′+⋅≤≤⋅′−⋅

=≤⋅′−⋅

.10,...,1 ,

,10,...,1 ,

11
3

1111
3

12211

kAMdxzAMdx

qzAMbz

,kk,kk

,qq

 (3.18) 

where jM ′  are the same as in (3.6). Since x  is a continuous free-sign variable, here 

θλ  and ,,0x  are introduced to form following inequalities based on PROPOSITION 3.4:  
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⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

−+−≤≤−−−

+≤≤−

−−≤≤

≤≤

),1()1(

,

,)1(0

,0

00

00

0

0

θθ

θθ

θθ

λ

MxxMx

MxxMx

xxx

Mx

 (3.19) 

 where }1,0{ , ∈λθ . 

(iii) Other nonconvex terms are treated similarly as in (3.18) and (3.19). These terms are 

denoted as 2
2112 yyxz = , 2

113 yxz = , 214 yyz = , 115 yxz = , and 2
2
16 yyz = . 

 

The original problem is then converted into a mixed 0-1 linear program below, which 

contains 162 linear constraints and 8 binary variables.  

PROGRAM 2 

Min 21 zz +  

s.t.  (C1) 50043 −≤+ zz , 

 (C2) 50065 ≤+− zz , 

 (C3) 55 ≤≤− x , 

 (C4) (3.10), (3.13)－(3.19), 

where 65432 ,,,, zzzzz  are expressed similar to (3.18) and (3.19), 

}1,0{ , , , , , , , , , 43214321 ∈θλvvvvuuuu , and M  is a big value. 

Solving Program 2 to obtain the globally optimal solution as )1 ,10 ,9.4(),,( 21 −−=yyx  

with the objective value 4851. 

 

EXAMPLE 3.2 GGP with Signomial Continuous Function 
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Here we use a signomial continuous function 2
3
1 xx  to replace x  in Program 1. The 

example is formulated below:  

PROGRAM 3 

Min (The same objective function in Program 1)  

s.t. (C1) The same constraints in Program 1 but erase the constraint: 55 ≤≤− x , 

 (C2) 2
3
1 xxx = , 55 1 ≤≤− x , 55 2 ≤≤− x . 

Compared with the solution process of Program 2, the extra work is to treat the equality 

constraint 2
3
1 xxx =  as follows:  

(i) Expressing free-sign variables 21  and xx  by PROPOSITION 3.4 as inequalities below:  

 2 ,1

,

),1(10)1(10

,1010

,)1(0

,0

00

00

0

0

=

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

≤

−+−≤≤−−−

+≤≤−

−−≤≤

≤≤

i

xxx

xxx

xxx

Mx

i

iiiii

iiiii

iiiii

ii

λλ

θθ

θθ

θθ

λ

 (3.20) 

 

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

′≤≤′−

≤−−+

+≤≤

−+=

,

,01

),(5.00

,2

21

21

21

λλ

λλλ

θθ

θθθ

MxM

t

t

 (3.21) 

where }1,0{ , , , , , 2121 ∈θθθλλλ , and t  is a integer variable. 

(ii) Let )()( 0
2

30
1

0 xxx = , expressing the relationship between 0 and xx  as the following 

inequalities based on Proposition 5:  

 θθ MxxMx ′+≤≤′− 00 , 
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 )1()1( 00 θθ −′+−≤≤−′−− MxxMx . 

(iii) Using Convexification and Concavification Strategies to convert the inequalities in (ii) 

as follows:  

 
⎪⎭

⎪
⎬

⎫

−′+−≤≤−′−−

′+≤≤′−

−−

−−

),1()1(

,

1
2

3
1

5.
4

5.
3

5.0
4

5.0
3

1
2

3
1

θθ

θθ

MwwxMww

MwwxMww
 (3.22) 

 

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

≤≤

≤≤

≤≤

≤≤

−−

−−

),)(()(

),)(()(

),)(()(

),)(()(

20
24

20
2

60
13

60
1

10
22

10
2

10
11

10
1

xLwx

xLwx

xLwx

xLwx

 (3.23) 

where  

(a) 1
2

3
1

−− ww  is convex form of 0x  and 5.
4

5.
3 ww  is a concave form of 0x , 

(b) ))(( and ),)(( ),)(( ),)(( 20
2

60
1

10
2

10
1 xLxLxLxL −−  are piecewise linear functions of  

20
2

60
1

10
2

10
1 )( and ,)( ,)(,)( xxxx −− , respectively. 

(c) )(2 xfM = , )(xf  is specified in (3.5). 

The whole program is reformulated as the following mixed 0-1 convex program:  

PROGRAM 4 

Min 21 zz +  

s.t. (C1) The same constraints in Program 2, 

 (C2) Constraints in (3.20)－(3.23). 

This is a mixed binary convex program which can be solved to reach finite ε -convergence 

to the global optimal solution as  

)27  ,1  ,75.4  ,9051.4(),,,( 2121 −−=yyxx  with the objective value -369954. 
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EXAMPLE 3.3 Comparisons of Computational Efficiency for Signomial Function 

This example is used to compare the computational efficiency between the proposed 

method and Floudas’s methods. Consider following GGP problem:  

PROGRAM 5 

Min ∑∏∏
=

≠
==

−
n

1 ..11 j
ji

ni
i

n

i
i

ii xx αα  

s.t. bxb
j

ji
ni

i
i 2

n

1 ..1

≤≤∑∏
=

≠
=

α , 

where ix  are positive integer variables, imxi ∀≤≤   1 , 

  bi  and α  are constants. 

For 2=n , the objective function of the above problem becomes 2121
2121
αααα xxxx −− . 

For 3=n , the objective function of above problem becomes 

313221321
313221321
ααααααααα xxxxxxxxx −−− . Reforming this problem with 3=n  by Floudas’s 

method to have the following convex integer program:  

PROGRAM 6 

Min ∑
=

∑
∑

≠
=

= −
3

1

3..1
3

1

j

y
y

ji
i

ii

i
ii

ee
α

α
 

s.t. (C1) beb
j

y
ji

i
ii

2
3

1

3..1

≤≤∑
=

∑
≠
=
α

, 

 (C2) iduy
m

jijii ∀⋅=∑
=1j

,, )ln( , 

 (C3) jiuiu ji

m

ji ,  }1,0{  ,1)( ,
1j

, ∀∈∀=∑
=

. 

Resolving this problem with 3=n  by the proposed method to have the following linear 

mixed binary program: 
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PROGRAM 7 

Min 132312123 zzzz −−−  

s.t. (C1) bzzzb 2132312 ≤++≤ , 

 (C2) 321  ,0  ,1  ,0  , ,
1

,
1

,,
1

,, ,,ippAppdz ji

m

j
ji

m

j
jiji

m

j
jijii

i =≥=== ∑∑∑
===

α , 

 (C3) jAMdzzAMdz jjjj ∀⋅+⋅≤≤⋅−⋅   ,2,2112,2,21
22 αα , 

 (C4) jAMdzzAMdz jjjj ∀⋅+⋅≤≤⋅−⋅   ,3,3223,3,32
33 αα , 

 (C5) jAMdzzAMdz jjjj ∀⋅+⋅≤≤⋅−⋅   ,3,3113,3,31
33 αα , 

 (C6) jAMdzzAMdz jjjj ∀⋅+⋅≤≤⋅−⋅   ,3,312123,3,312
33 αα , 

 (C7) 
⎡ ⎤

i,kuimu ki

m

k
ki

k- ∀∈∀≤⋅∑
=

}1,0{  ,)2( ,

log

1
,

1
2

. 

All xM ′  come from (3.7). By specifying various values for m  and b , we solve both 

programs using LINGO (2004). The related CPU time, number of binary variables, and 

number of constraints are reported in Table 3.2. 

Table 3.2 indicates that both methods reach the same −ε global optimum for 810−=ε . 

The number of binary variables used in Floudas’s method is larger than the proposed method, 

while the proposed method uses more constraints than Floudas’s method. The CPU time 

demonstrates that the proposed method is much more computationally efficient than 

Floudas’s methods.  
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Table 3.2   Experiment result of Example 3.3 
Experiment Conditions Proposed 

method 
Floudas’s 
method 

CPU Time 1sec 1min 27sec
Number of binary variables 6 12 
Number of constraints 55 9 

1 
3
4

=
=

b
m

 

Objective Value －5.389143 
CPU Time 3sec 1min 44sec
Number of binary variables 9 24 
Number of constraints 0 3 

2 
4
8

=
=

b
m

 

Objective Value －7.452201 
CPU Time 11sec 6min 28sec
Number of binary variables 12 48 
Number of constraints 223 9 

3 
10
16

=
=

b
m

 
Objective Value －19.73737 
CPU Time 2min 12sec 32min 45sec
Number of binary variables 15 96 
Number of constraints 447 9 

4 
31
32

=
=

b
m

 
Objective Value －61.78579 

* )2.1  ,5.0  ,2() , ,( 321 −=ααα  

EXAMPLE 3.4 Comparison of Computational Efficiency for Discrete Variables with Large 

Sizes 

Consider following program with three discrete variables 21  , yy  and 3y , where 1y  

contains 8 possible values and 32  , yy  both contain 128 possible values. 

PROGRAM 8 

Min 2.1
3

5.0
2

816.0
2

2
1 yyyy −−  

s.t. (C1) 165.0
3

9.0
2

8.0
1 ≥++ yyy , 

 (C2) 312.1
3

7.1
2

5.1
1 ≤++− yyy , 

where }8.16 ,7.14 ,6.12 ,5.9 ,4.7 ,3.5 ,2.3 ,1.1{1 ∈y , 

  

}.9.26 ,8.26 ,7.26 ,6.26 ,26.0 ,5.25 ,4.25 ,3.25 ,2.25 ,1.25
,9.24 ,8.24 ,7.24 ,6.24 ,24.0 ,5.23 ,4.23 ,3.23 ,2.23 ,1.23

,9.4 ,8.4 ,7.4 ,6.4 ,4.0 ,5.3 ,4.3 ,3.3 ,2.3 ,1.3
,9.2 ,8.2 ,7.2 ,6.2 ,2.0 ,5.1 ,4.1 ,3.1 ,2.1 ,1.1{, 32

M

∈yy
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Floudas's method ( or Li and Tsai's method) converts this program into following form: 

PROGRAM 9 

Min 2.1
3

5.0
2

ln816.0ln2 21 yye yy −−+  

s.t. (C1), (C2), 

where 8.16ln...2.3ln1.1lnln 8211 uuuy +++= , 

 7.26ln...2.1ln1.1lnln 128212 vvvy +++= , 

 5.1,8.0  ,8.16...2.31.1 8211 −=+++= ααααα uuuy , 

 7.1 ,9.0 ,5.0  ,7.26...2.11.1 128212 =+++= βββββ vvvy , 

 5.0 ,2.1  ,7.26...2.11.1 128213 =+++= γγγγγ wwwy , 

 }1,0{,,  ,1  ,1  ,1
128

1

128

1

8

1
∈∀=== ∑∑∑

===
kji

k
k

j
j

i
i wvuwvu . 

Our proposed method (i.e., THEOREM 3.1 and PROPOSITION 3.3) transforms this program 

into following form: 

PROGRAM 10 

Min 2.1
3

5.0
2 yyz −−  

s.t. (C1), (C2), 

 )1(1.1)1(1.1 11
2

11
2 −′+≤≤−′− pMzzpMz , 

 )1(2.3)1(2.3 21
2

21
2 −′+≤≤−′− pMzzpMz , 

 M  

 )1(8.16)1(8.16 81
2

81
2 −′+≤≤−′− pMzzpMz , 

where 128
816.0

2
816.0

1
816.0

1 7.26...2.11.1 qqqz +++= , 

 5.1 ,8.0  ,8.16...2.31.1 128211 −=+++= ααααα pppy , 

 7.1 ,9.0 ,5.0  ,7.26...2.11.1 128212 =+++= βββββ qqqy , 
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 5.0 ,2.1  ,7.26...2.11.1 128213 =+++= γγγγγ sssy , 

 iablesbinary var 3 of composed   ,0 ,0  ,1
8

1

8

1
ii

i
ii

i
i ApApp ≥∀== ∑∑

==

, 

 iablesbinary var 7 of composed   ,0 ,0  ,1
128

1

128

1
jj

j
ii

j
j AqAqq ′≥∀=′= ∑∑

==

, 

 iablesbinary var 7 of composed   ,0 ,0  ,1
128

1

128

1
kk

k
ii

k
i AsAss ′′≥∀=′′= ∑∑

==

, 

 816.02 7.268.16 ×=′M . 

The number of binary variables, constraints, continuous variables, as well as the number 

of iterations and CPU time are listed in Table 3.3. Table 3.3 illustractes that both programs 

obtain the same global optimum with 14 ,1.3 ,8.16 321 === yyy , and objective value is 

685.0155 as solved by LINGO (2004). However, the proposed method is more computational 

effecient than Floudas's method and Li&Tsai's method. 

Table 3.3   Comparisons of existing methods with proposed method 
 No. of binary 

variables 
No. of  

constraints
No. of continuous 

variables 
No. of 

iterations 
CPU time 
(second)

Floudas's method and 
Li&Tsai's method 

264 13 3 53588 72 

Proposed method 17 30 269 11139 3 
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Chapter 4 Extension 2－Solving Task Allocation 
Problem 

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 

The task allocation problem (TAP) is one where a number of tasks or modules need to be 

assigned to a set of processors or machines at minimum overall cost. The overall cost 

includes the communication cost between tasks that are assigned to different processors and 

other costs such as the assignment cost and the fixed cost of using processors. Processors 

may have limited or unlimited capacities to perform tasks. Task allocation has been applied 

to the design of distributed computing systems and also in auto-manufacturing contexts. We 

try to find an efficient method to conquer the classic problems based on SRB. We also 

report some computational experience for the TAP. 

4.1 Introduction to Task Allocation Problem 

The task allocation problem (TAP) is to assign a set of tasks or modules to a set of 

processors or machines so that the overall cost is minimized. The overall cost may include the 

task assignment cost and the interprocessor communication cost, among others. And each 

processor has a limited capacity or memory. The TAP is an important problem that arises in 

distributed computing systems (see Stone 1977) and has also been applied in the automobile 

manufacturing industry in Rao (1992). Many heuristic and exact algorithms have been 

designed for solving various versions of the TAP. Heuristic algorithms are developed in Dutta 

et al. (1982), Kopidakis et al. (1997), Lo (1988), Ma et al. (1982), Milis (1995), and Sarje and 

Sagar (1991); metaheuristic algorithms such as simulated annealing, tabu search, and genetic 

algorithms are proposed in Chen and Lin (2000), Hadj-Alouane et al. (1999), and Hamam and 

Hindi (2000); and exact mathematical programming and/or branch-and-bound approaches are 

used in Billionnet et al. (1992), Magirou and Milis (1989), Sinclair (1987), and Stone (1977). 

Because of the complexity of the TAP, none of the above-mentioned algorithms, with 
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the exception of Billionnet et al. (1992), are capable of solving some real-world applications 

optimally. Most versions of the TAP can be formulated as integer quadratic programs (see 

Hadj-Alouane et al. 1999, Hamam and Hindi 2000). The potential of mathematical 

programming approaches has not been fully explored for solving the TAP. In the last decade, 

great progress has been made both in computational power and computational technology of 

mathematical programming. Column generation and branch-and-price are two most important 

approaches to conquer the classic large binary problems; however, we proposed a different 

method and try to find an efficient exact mathematical programming formula. 

For example, a TAP with n  agents and m  tasks requires nm  binary variables in 

deterministic approaches to obtain global solution while our method, based on SRB 

introduced in Chapter 2, only needs ⎡ ⎤nm2log  binary variables. 

4.2 The Proposed Mathematical Programming Formula 

n  agents are used to perform m  tasks, each of which is assigned to exactly one processor. 

Let kid ,  be the execution cost of task i  if it is assigned to agent k . Let kb  and ks  be 

the capacity and the fixed cost for agent k , respectively. Let kia ,  be the amount of the 

resource required from its assigned processor for task i . If two tasks i  and j  are 

assigned to two different agents, then the cost of communication between i  and j  is 

jic , (we assume that ijji cc ,, =  and 0, =iic ). Define the binary variables. 1, =kix  if and 

only if task i  is allocated to agent k . Define ky  to be a binary variable so that 1=ky  if 

and only if agent k  is assigned at least one task. The TAP can be cast as an integer 

quadratic program: 

TAP 
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Min ∑∑∑∑∑ ∑
== =

−

= += =

++−
n

k
kk

m

i

n

k
kiki

m

i

m

ij

n

k
kjiji ysxdzc

11 1
,,

1

1 1 1
,,, )1(  

Min ∑∑∑∑∑ ∑
== =

−

= += =

++−
n

k
kk

m

i

n

k
kiki

m

i

m

ij

n

k
kjkiji ysxdxxc

11 1
,,

1

1 1 1
,,, )1(  

s.t. mix
n

k
ki ,...,1    ,1

1
, ==∑

=

, (4.1) 

 ,...,nkybxa kk

m

i
kiki 1    ,

1
,, =≤∑

=

, (4.2) 

 nkmiyx kki ,...,1  ,,...,1    ,1, ==≤≤ , (4.3) 

where (i) ks  be the fixed cost for agent k , 

(ii) kid ,  be the execution cost of task i  if it is assigned to agent k , 

(iii) jic ,  be the communication cost between two task i  and task j  

assigned to two different processors (assume that ijji cc ,, =  and 

0, =iic ), 

(iv) kb  be the capacity for agent k , 

(v) kia ,  be the resource required of task i  if it is assigned to agent k , 

(vi) kix ki ,  }1,0{, ∀∈  and when 1, =kix  if and only if task i  is allocated 

to agent k , 

(vii) 1=ky  if and only if agent j  is assigned at least one task.  

 

The TAP is an integer program with quadratic terms kjki xx ,, . It is generally 

computationally expensive to find optimal solutions of integer quadratic programs. Let kjiz ,,  

be the three-index binary variable ( nkmijmi ,...,1   ,,...,1  ,1,...,1 =+=−= ), and 1,, =kjiz  if 

and only if both task i  and task j  assigned to agent k . Based on kjiz ,, , the quadratic term 
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in TAP has been replaced by a linear term in the TAP3 through the three-index variable 

kjiz ,, . 

TAP3 

Min ∑∑∑∑∑ ∑
== =

−

= += =

++−
n

k
kk

m

i

n

k
kiki

m

i

m

ij

n

k
kjiji ysxdzc

11 1
,,

1

1 1 1
,,, )1(  

s.t. (4.1), (4.2), (4.3), 

 nkmijmixz kikji ,...,1   ,,...,1  ,1,...,1    ,,,, =+=−=≤ , 

 nkmijmixz kjkji ,...,1   ,,...,1  ,1,...,1    ,,,, =+=−=≤ , 

where conditions (i)~(vii) in TAP are hold and kjiz kji ,,0,, ∀≥ . 

 

REMARK 4.1 nm  binary variables, nmm
+

−
2

)1(  continuous variables, and 

mnnm ++ 22  constraints are used in TAP3. 

 

Even though TAP3 do not have the quadratic term present in the TAP, TAP3 is still a 

formidable task to solve integer linear programs with many variables when m  and n  are 

large. Therefore, it is desirable to propose formulations with two indices, Ernst et al (2006) let 

kiu ,  and kiv ,  be a nonnegative variable representing the total communication cost via agent 

k  between task i  and all other tasks and the total communication cost between task i  and 

all tasks assigned to agent k  when i  is not assigned to agent k  respectively. The 

following is a two-index formulation TAP2A: 

TAP2A 

Min ∑∑∑∑∑
== == =

+++
n

k
kk

m

i

n

k
kiki

m

i

n

k
kiki ysxdvu

11 1
,,

1 1
,, )(

4
1  

s.t. (4.1), (4.2), (4.3),  
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 nkmivuxxcvu kiki

m

j
kjkijikiki ,...,1  ,,...,1    0,,  ,)( ,,

1
,,,,, ==≥−=− ∑

=

, 

where conditions (i)~(vii) in TAP are hold. 

 

REMARK 4.2 nm  binary variables, nnm +2  continuous variables, and mnnm ++ 22  

constraints are used in TAP2A. 

 

Based on TAP2A, we also proposed another two-index formulation TAP2B following:  

TAP2B 

Min ∑∑∑∑∑
== =

−

= =

++−
n

k
kk

m

i

n

k
kiki

m

i

n

k
ki ysxduC

11 1
,,

1

1 1
,1  

s.t. (4.1), (4.2), (4.3),  

 nkmixcu
m

ij
kjjiki ,...,1  ,1,...,1    ,

1
,,, =−=≤ ∑

+=

, 

 nkmiCxu ikiki ,...,1  ,1,...,1    ,,, =−=≤ . 

where ∑∑
−

= +=

=
1

1 1
,1

m

i

m

ij
jicC , 1,...,1,

1
, −== ∑

+=

micC
m

ij
jii , kiux kiki ,    0},1,0{ ,, ∀≥∈ . 

 

REMARK 4.3 nm  binary variables, nm  continuous variables, and mnm +3  constraints 

are used in TAP2B.  

 

We apply the SRB for the above two-index formulations to reduce the number of binary 

variables. Use continuous nonnegative variables ikp  to replace the original binary variables 

ikx  and convert TAP2A and TAP2B to SRB2A and SRB2B respectively. 

SRB2A 
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Min ∑∑∑∑∑
== == =

+++
n

k
kk

m

i

n

k
ikik

m

i

n

k
ikik yspdvu

11 11 1

)(
4
1   

s.t. mip
n

k
ki ,...,1    ,1

1
, ==∑

=

, (4.4) 

 ,...,nkybpa kk

m

i
kiki 1    ,

1
,, =≤∑

=

, (4.5) 

 nkmiyp kki ,...,1  ,,...,1    ,1, ==≤≤ , (4.6) 

 nkmippvuppcvu kjkikiki

m

j
kjkijikiki ,...,1  ,,...,1  0,,,,  ,)( ,,,,

1
,,,,, ==≥−=− ∑

=

, 

 
⎡ ⎤

minx
n

i ,...,1    ,12
2log

1
,

1 =−≤′∑
=

−

θ
θ

θ , (4.7) 

 
⎡ ⎤

mizkGp
n

i

n

k
ki ,...,1    ,0)(

2log

1
,

1
, ==+ ∑∑

== θ
θ , (4.8) 

 ⎡ ⎤ minxzx iii ,...,1   ,log,...,1  , 2,,, ==′≤≤′− θθθθ , (4.9) 

 ⎡ ⎤ minxcpzxcp i

n

k
kkiii

n

k
kki ,...,1   ,log,...,1  ),1()1( 2,

1
,,,,

1
,, ==′−+≤≤′−− ∑∑

==

θθθθθθ ,(4.10) 

where θθ ,}1,0{, ixi ∀∈′ , )(kG  are same in (2.9), kc ,θ  are same in (2.10), and 

conditions (i)~(vii) in TAP are hold.  

 

REMARK 4.4 ⎡ ⎤nm 2log  binary variables, ⎡ ⎤nmnnm 2log3 ++  continuous variables, and 

⎡ ⎤nmmnnm 2log4322 +++  constraints are used in SRB2A. 

 

SRB2B 

Min ∑∑∑∑∑
== =

−

= =

++−
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k
kk

m

i

n

k
kiki

m

i

n

k
ki yspduC

11 1
,,

1

1 1
,1  

s.t. nkmipcu
m

ij
kjjiki ,...,1  ,1,...,1    ,

1
,,, =−=≤ ∑

+=

, 
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 nkmiCpu ikiki ,...,1  ,1,...,1    ,,, =−=≤ . 

 (4.4)－(4.10),  

where ∑∑
−

= +=

=
1

1 1
,1

m

i

m

ij
jicC , 1,...,1,

1
, −== ∑

+=

micC
m

ij
jii , and all conditions in SRB2A are hold. 

 

REMARK 4.5 ⎡ ⎤nm 2log  binary variables, ⎡ ⎤nmnm 2log2 +  continuous variables, and 

⎡ ⎤nmmnm 2log433 ++  constraints are used in SRB2B. 

 

4.3 Experiment Results 

Table 4.1 is the experiment result of all method proposed in previous section in different 

combination of n  agents and m  tasks. Although SRB2A and SRB2B use less binary 

variables, its take much more time to obtain global solution. We will continue to find a 

efficient method to conquer this open question in our future research. 

Table 4.1   Experiment result of TAP 
Method mn /  Conditions 

TAP3 TAP2A TAP2B SRB2A SRB2B 
CPU Time 2.64 sec 0.63 sec 0.64sec 1.62sec 1.8 sec 
Iterations 8196 8300 4201 17449 16983 
brance-bound node 316 495 236 941 921 

8/8 

Solution 7454 
CPU Time 7.47 sec 2.14 sec 2.5 sec 10.14 sec 11.78 sec
Iterations 20825 23537 21704 86338 90765 
brance-bound node 589 951 1025 3998 4313 

10/10 

Solution 10827 
CPU Time 268 sec 115 sec 106 sec 562 sec 590 sec 
Iterations 921084 1086282 846251 3436776 3143365
brance-bound node 18749 31479 25799 104852 87886 

12/12 

Solution 13544 
CPU Time 2054 sec 1597 sec 1724 sec 6857 sec 6082 sec
Iterations 5132526 9447065 7447914 35883840 25079947
brance-bound node 62476 257220 182813 988543 645217 

14/14 

Solution 16588 
 



 66

Chapter 5 Discussion and Concluding Remarks 
 

5.1 Discussion 

In this study, we develops the core technique of this dissertation, Superior Representation of 

Binary Variables (SRB), which uses only ⎡ ⎤m2log  binary variables to replace m  original 

traditional binary variables ),...,( 1 muu  with 1
1

=∑
=

m

u
θ

θ . It can effectively reduce the 

traditional binary variables number from )(mO  to )(log2 mO  and easily applies in any 

mixed-integer problems. 

By using SRB, we proposes a superior way of expressing the same piecewise linear 

function. A less number of binary variables and additive constraints are used. It is easy to 

use in various fields required piecewise, such as data fitting, network analysis, logistics, and 

production planning (Bazaraa et al. 1999). For expressing a function )(xf  with 1+m  

break points, the existing methods require m  binary variables and m4  constraints (i.e., 

inequalities while proposed methods require only ⎡ ⎤m2log  binary variables and 

⎡ ⎤m2log88+  constraints. The numerical examples demonstrate the computational 

efficiency of the proposed method over the existing methods especially when the number of 

break points is large. 

We also extend SRB to apply Generalized Geometric Programs Problems. Based on 

SRB, we propose a novel method for handling a GGP problem with free-sign continuous 

and discrete variables. Since proposed method can treat free-sign and mixed-integer 

variables of GGP, it is possible to obtain the global optimization effectively in all 

applications with GGP, such as heat exchanger network design (Duffin and Peterson 1966), 

capital investment (Hellinckx and Rijckaert 1971), optimal design of cooling towers (Ecker 

and Wiebking 1978), batch plant modeling (Salomone and Iribarren 1992), competence sets 



 67

expansion (Li 1999), smoothing splines (Cheng et al. 2005), and digital circuit (Boyd 2005). 

We first use ⎡ ⎤r2log  binary variables to express a discrete function containing r  discrete 

values, and utilize convexification and concavification strategies to treat the continuous 

signomial function. Comparing with of existing GGP methods, the proposed method can 

solve the problem to reach approximated global optimum using less number of binary 

variables and constraints. 

The main issue on the above proposed method is that the original binary variables 

),...,( 1 muu  must satisfy the following constraint:  

 1
1

=∑
=

m

u
θ

θ . 

Actually, the proposed method is not appropriate for some practice applications which do 

not meet the above constraint. 

 

5.2 Concluding Remarks 

This study develops the Superior Representation of Binary Variables (SRB) core technique. 

It can effectively reduce the traditional binary variables number from )(mO  to )(log2 mO  

and easily applies in any mixed-integer problems; moreover, it has some directions for 

future research are described below: 

(i) Task allocation problem (TAP): For example, a TAP with n  agents and m  tasks 

requires nm  binary variables in existing deterministic approaches to obtain global 

solution while our method, based on SRB, only needs ⎡ ⎤nm2log  binary variables. 

We try to find an efficient method to conquer the classic TAP. Furthermore, it is 

appropriate to solve the Multilevel Generalized Assignment Problem.  



 68

(ii) Haplotype inference: This is the optimal haplotype inference (OHI) problem as given 

a set of genotypes and a set of related haplotypes, find a minimum subset of 

haplotypes that can resolve all the genotypes in biology, which is also NP-hard and 

can be formulated as an integer quadratic programming (IQP) problem. We also want 

to find an efficient method through our SRB approach.  

(iii) Integrating deterministic and heuristic approaches: It is an appropriate way to solve 

large scale optimal problems under the following strategy:  

(a) Use the heuristic algorithms to find an initial solution to enhance the efficiency of 

finding the optimal solution.  

(b) Then, use deterministic approaches are utilized to transcend the incumbent 

solution.  
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