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Abstract

In recent years, knowledge discovery in databases (KDD) and its kernel data mining have received
more and more attention for practical applications. While the mainstream research of data mining
concentrates on the design of efficient algorithms for extracting knowledge from databases, the
question to close the semantic gap between structured data and human-comprehensible concepts
has been a lasting challenge for the research community. Since the discovered knowledge is useful
for a human user only when he can understand its meaning, the representation formalism will
play an important role during the knowledge management life cycle.

In this dissertation, we investigate several extensions of decision logic (DL) from the perspective
of rough set theory. Traditionally, DL has been considered as a standard way of knowledge
representation for rough set-based data mining, whereas our extensions show that DL-styled logics
are also useful in more complicated knowledge management tasks.

On the one hand, we propose some decision logic languages for rule representation in rough
set-based multicriteria decision analysis. The semantic models of these logics are data tables
representing multicriteria decision records. Each decision record is described by a finite set of
criteria/attributes. The domains of the criteria may have ordinal properties expressing preference
scales, while the domains of the attributes may not.

On the other hand, we propose an arrow decision logic (ADL) to represent and reason about
knowledge discovered from relational information systems (RIS). The logic combines the main
features of decision logic (DL) and arrow logic (AL). AL is the basic modal logic of arrows.
ADL formulas are interpreted in RIS which not only specifies the properties of objects, but also
the relationships between objects. We present a complete axiomatization of ADL and discuss
its application to knowledge representation in multicriteria decision analysis and social network
analysis.

Our work is particularly useful for the knowledge representation phase in the knowledge man-
agement life cycle. A realistic scenario about human resource management is used to show how
the proposed logics can serve as representational formalisms in different stages of the recruitment
process and team formation process of a company.
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Chapter 1

Introduction

Knowledge management (KM) is a discipline concerned with theories, tools and methodologies
that can help individuals, groups and organizations manage the knowledge they use on a daily
basis. The theory of knowledge has long been an important topic in many academic disciplines,
such as philosophy, psychology, economics, and artificial intelligence, whereas the storage and
retrieval of data is the main concern of information science. From a KM perspective, knowledge
is usually acquired from observed data, which is a valuable resource for researchers and decision-
makers. However, when the amount of data is large, it is difficult to analyze the data and extract
knowledge from it. With the aid of computers, the vast amount of data stored in relational data
tables can be transformed into symbolic knowledge automatically. Thus, intelligent data analysis
has received a great deal of attention of KM researchers in recent years.

Especially, knowledge discovery in databases (KDD) and its kernel data mining have received
more and more attention for practical applications. While the mainstream research of data mining
concentrates on the design of efficient algorithms for extracting knowledge from databases, the
question to close the semantic gap between structured data and human-comprehensible concepts
has been a lasting challenge for the research community [50]. This is called the interpretability
problem of intelligent data analysis in [50]. Since the discovered knowledge is useful for a human
user only when he can understand its meaning, the representation formalism will play an impor-
tant role during the KM life cycle. As mentioned in [72], the key open problem of knowledge
organization in the KM life cycle is “knowledge representation using a universal language that
may allow multiple channel and experience support”.

Many different forms of knowledge have been considered by the KDD researchers, notably,
the association rules and sequential patterns [1, 2]. However, it is in general difficult to integrate
the discovered patterns and traditional AI systems. The main reason is that the inference engine
of AI systems usually employ a logic-based knowledge representation, which is quite different
from the specialized patterns discovered by a fixed data mining algorithm. Therefore, a uniform
interface between the discovery and utilization of knowledge is urgently needed. The interface will
transform the discovered patterns into the knowledge based on the logical formalism employed
by the AI system (Figure 1.1). From the KM viewpoint, the KDD process is concerned with
knowledge creation, whereas the AI system is designed for knowledge application. Thus, the
smooth interface between these two will improve the coherence of the whole KM process.

The advantages of the logic-based representation for data mining have also been observed in
the past [26].
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Figure 1.1: An interface is needed between the KDD and AI systems

. . . a coherent formalism, capable of dealing uniformly with induced knowledge and
background, or domain, knowledge, would represent a breakthrough in the design and
development of decision support systems, in diverse application domains. The advan-
tages of such an integrated formalism are, in principle:

• a high degree of expressiveness in specifying expert rules, or business rules;

• the ability to formalize the overall KDD process, thus tailoring a methodology to
a specific class of applications;

• the separation of concerns between the specification level and the mapping to the
underlying databases and data mining tools.

The rough set theory proposed by Pawlak provides an effective tool for extracting knowledge
from data tables [67]. In fact, many powerful data mining algorithms have been proposed based
on the rough set theory (for example, see papers in [75, 76, 68] for some recent progress). To
represent and reason about the extracted knowledge, a decision logic (DL) is also proposed in
[67]. The semantics of the logic is defined in a Tarskian style through the notions of models and
satisfaction.

Due to the following two reasons, DL is a good candidate to serve as the bridge between the
KDD and AI systems: On the one hand, the data mining algorithms based on rough set theory
usually extract rules which can be easily represented in the syntactical form of DL language. On
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the other hand, the semantic similarity between DL and Classical logic makes it easier to integrate
the mined results into knowledge-based systems.

Although DL can faithfully represent knowledge discovered from classical data tables, it is
inadequate for more advanced data mining tasks, such as uncertainty management or multi-criteria
decision analysis. To address such challenging issues, this work is aimed at the investigation of
different extensions of DL that can represent more complicated forms of knowledge. Though we
can envision a powerful universal logic that integrates all features of the extended DL languages, it
is impractical to devise a logic that can cover all possible forms of knowledge. Thus, our strategy
is to develop a particular extended DL for each individual aspect of the knowledge representation
requirements of different data mining tasks, while keep it easy to modularly combine these different
extended logics.

1.1 Outline of the Thesis

One key step in knowledge management is the transformation of data and information into knowl-
edge. Data mining can play an important role in such a transformation process. To set up the
foundations of the dissertation, we review rough set theory, which is an effective method of data
mining; propositional and modal logics, which are basic knowledge representation formalisms; and
the theory of knowledge management, which provides an appropriate context of our work.

In classical data tables, no relationship exists between values in a domain of attribute. However,
in many cases, in particular, when the attribute is a criterion for decision making, there exist
several preference relations on the domain. When rough set theory is applied to multi-criteria
decision analysis (MCDA), it is crucial that preference-ordered attribute domains and decision
classes be dealt with [29, 30, 31, 33, 34, 35, 36, 82]. The original rough set theory cannot
handle inconsistencies arising from violations of the dominance principle due to its use of the
indiscernibility relation. Therefore, in the above-mentioned work, the indiscernibility relation is
replaced by a dominance relation to solve the multi-criteria sorting problem, and the data table
is replaced by a pairwise comparison table to solve multi-criteria choice and ranking problems.
The approach is called the dominance-based rough set approach (DRSA). For MCDA problems,
DRSA can induce a set of decision rules from sample decisions provided by decision-makers. The
induced rules form a comprehensive preference model and can provide recommendations about a
new decision-making environment. The objective of chapter 3 is to investigate DL for DRSA.

In addition of preference relations, general relations may exist on the domains of attribute
values. These relations may induce complicated relationship between objects possessing the at-
tributes. For example, a social network is a set of objects with complicated interaction relations.
To model such kind of data, we must consider relational information systems (RIS). In data tables,
each attribute is actually a function from the set of objects to the domain of attribute values, so a
data table is also called a functional information system (FIS). In contrast with FIS, an attribute
in a RIS is considered as a function from a pair of objects to the domain of relational indicators.
The objective of Chapter 4 is to develop a logic for relational information systems.

The materials in this thesis are mainly drawn from some of our previously published papers.
Chapter 3 is a slightly adapted version of [21]. Chapter 4 is a fusion of [20] and [18]. Finally,
Chapter 5 contains partially the contents of [17] and [19]. The organization of the thesis is shown
in Figure 1.2.
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1.2 The Main Theme and Contributions

From Figure 1.2, we can see that the main theme of our work is to design knowledge representation
formalisms in a uniform style. The foundations of our knowledge representation formalisms include
decision logic, arrow logic, and (dominance-based) rough set analysis. As a consequence, we have
proposed different extensions of decision logics that can accommodate knowledge representation
requirements in different knowledge management tasks. Thus, the main contributions of the thesis
are the development of the following extensions of decision logics for representing different forms
of knowledge:

• PODL: for knowledge from the data of preference-ordered domains (e.g., evaluation data),

• POUDL: for knowledge discovered from data tables where data is uncertain or information
is incomplete,

• POFDL: for knowledge discovered from data tables where data is qualitatively and imprecise,

• PCDL: for knowledge discovered from pairwise comparisons of objects, and
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• ADL: for knowledge discovered from relational information systems (e.g., social network
data).
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Chapter 2

Information Technology and Knowledge
Management

In this chapter, we introduce necessary background knowledge for our work. Furthermore, we also
mention several related work in the last section.

2.1 Rough Set Theory

2.1.1 Approximation space

The basic construct of rough set theory is an approximation space. An approximation space is
defined as a pair (U,R), where U is the set of universe and R ⊆ U × U is an equivalence relation
on U . Recall that a binary relation R is an equivalence relation if it is reflexive (i.e., (x, x) ∈ R
for all x ∈ U), symmetric (i.e., for all x, y ∈ U , if (x, y) ∈ R, then (y, x) ∈ R), and transitive
(i.e., for all x, y, z ∈ U , if (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R). An equivalence relation
partitions the universe U into a family of equivalence classes so that each element of U belongs to
exactly one of these equivalence classes. In other words, there exist U1, U2, · · · , Uk ⊆ U such that
U = ∪ki=1Ui, Ui ∩ Uj = ∅ for i 6= j, and for x, y ∈ U , (x, y) ∈ R if and only if (iff) there exists i
such that both x and y ∈ Ui. Thus, we can write an equivalence class of R as [x]R if it contains
the element x. Note that [x]R = [y]R iff (x, y) ∈ R.

According to Pawlak’s insight, it is claimed that knowledge is deep-seated in the classification
capabilities of human beings. A classification is simply a partition of the universe, so an approxi-
mation space construct the basic knowledge about the objects in the universe. In philosophy, the
extension of a concept is defined as the objects that are the instances of the concept. For example,
the extension of the concept “bird” is simply the set of all birds in the universe. Pawlak identified
a concept with its extension. Thus, a subset of the universe is called a concept or a category in
rough set theory.

Given an approximation space (U,R), each equivalence class of R is called a R-basic category or
R-basic concept , and any union of R-basic categories is called a R-category. Now, for an arbitrary
concept X ⊆ U , we are interested in the definability of X by using R-basic categories. We say that
X is R-definable, if X is a R-category; otherwise X is R-undefinable. The R-definable concepts
are also called R-exact sets, whereas R-undefinable concepts are said to be R-inexact or R-rough.
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When the approximation space is explicit from the context, we simply omit the qualifier R and
call a set exact set or rough set.

A rough set can be approximated from lower and upper by two exact sets. The lower ap-
proximation and upper approximation of X is denoted by RX and RX and defined as follows
respectively:

RX = {x ∈ U | [x]R ⊆ X},

RX = {x ∈ U | [x]R ∩X 6= ∅}.

2.1.2 Data tables and decision logic

In data mining problems, data is usually provided in the form of data tables (DT). A formal
definition of a data table is given in [67].

Definition 2.1 A data table1 is a tuple

T = (U,A, {Vi | i ∈ A}, {fi | i ∈ A}),

where U is a nonempty finite set, called the universe; A is a nonempty finite set of primitive
attributes; for each i ∈ A, Vi is the domain of values for i; and for each i ∈ A, fi : U → Vi is a
total function.

Given a data table T , we denote its universe U and attribute set A by Uni(T ) and Att(T )
respectively. An attribute in A is usually denoted by the lower-case letters i or a.

In [67], a decision logic (DL) is proposed for the representation of knowledge discovered from
data tables. It is called decision logic because it is particularly useful in a special kind of data table,
called a decision table.2 A decision table is a data table T = (U,C ∪D, {Vi | i ∈ A}, {fi | i ∈ A}),
where Att(T ) can be partitioned into two sets, C and D, called condition attributes and decision
attributes respectively. Decision rules relating the condition and the decision attributes can be
derived from the table by data analysis. A rule is then represented as an implication between the
formulas of the logic.

The basic alphabet of a DL consists of a finite set of attribute symbols A, and a finite set of
value symbols Vi for i ∈ A. The syntax of DL is then defined as follows.

Definition 2.2

1. An atomic formula of DL is a descriptor (i, v), where i ∈ A and v ∈ Vi.

2. The set of DL well-formed formulas (wff) is the smallest set containing the atomic formulas
and closed under the Boolean connectives ¬,∧, and ∨.

3. If ϕ and ψ are wffs of DL, then ϕ −→ ψ is a rule in DL, where ϕ is called the antecedent of
the rule and ψ the consequent.

1Also called knowledge representation systems, information systems, or attribute-value systems
2note that for a general data table, the abbreviation DL can also be used to denote data logic.
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A data table T = (U,A, {Vi | i ∈ A}, {fi | i ∈ A}) relates to a given DL if there is a bijection
τ : A → A such that, for every a ∈ A, Vτ(a) = Va. Thus, by somewhat abusing the notation, we
usually denote an atomic formula as (i, v), where i ∈ A and v ∈ Vi if the data tables are clear
from the context. Intuitively, each element in the universe of a data table corresponds to a data
record, and an atomic formula (which is in fact an attribute-value pair) describes the value of
some attribute in the data record. Thus, the atomic formulas (and therefore the wffs) can be
satisfied or not with respect to each data record. This generates a satisfaction relation between
the universe and the set of wffs.

Definition 2.3 Given a DL and a data table T = (U,A, {Vi | i ∈ A}, {fi | i ∈ A}) relating to
it, the satisfaction relation |=T between U and the wffs of the DL is defined inductively as follows
(the subscript T is omitted for brevity).

1. x |= (i, v) iff fi(x) = v,

2. x |= ¬ϕ iff x 6|= ϕ,

3. x |= ϕ ∧ ψ iff x |= ϕ and x |= ψ,

4. x |= ϕ ∨ ψ iff x |= ϕ or x |= ψ.

If ϕ is a DL wff, the set mT (ϕ) defined by:

mT (ϕ) = {x ∈ U | x |= ϕ}, (2.1)

is called the meaning set of the formula ϕ in T . If T is understood, we simply write m(ϕ).

Sometimes, the notations T, x |= ϕ and x |=T ϕ are considered interchangeable if the data table
T must be made explicit.

A formula ϕ is said to be valid in a data table T (written as |=T ϕ or |= ϕ for short when T
is clear from the context) if and only if m(ϕ) = U . That is, ϕ is satisfied by all individuals in the
universe. Also, ϕ is said to be satisfiable in a data table T if m(ϕ) 6= ∅

A DL wff states the properties of individuals in the universe; therefore, it is satisfied by
some individuals, but not by the others. However, the mined knowledge usually relates to the
aggregated or statistical information of all individuals. Obviously, wffs that are valid in a data
table represent a kind of knowledge that can be induced from the table, since they hold for all
individuals. However, not all kinds of useful information are in the form of valid wffs. Sometimes,
even probabilistic rules are very useful from the viewpoint of knowledge discovery. To quantify
the usefulness of the mined rules, some measures have been proposed [95, 93]. The most common
measures are support and confidence.

Definition 2.4 Let Φ1 be the set of all DL rules and T = (U,A, {Vi | i ∈ A}, {fi | i ∈ A}) be a
data table. Then:

1. the rule ϕ −→ ψ is valid in T iff mT (ϕ) ⊆ mT (ψ);

2. the absolute support function aspT : Φ1 → ℵ is

aspT (ϕ −→ ψ) = |mT (ϕ ∧ ψ)|;

8



Table 2.1: A summary of reviewers’ reports for 10 papers

U \ A o p t d
1 4 4 3 4
2 3 2 3 3
3 4 3 2 3
4 2 2 2 2
5 2 1 2 1
6 3 1 2 1
7 3 2 2 2
8 4 1 2 2
9 3 3 2 3
10 4 3 3 3

3. the relative support function rspT : Φ1 → [0, 1] is

rspT (ϕ −→ ψ) =
|mT (ϕ ∧ ψ)|

|U |
; and

4. the confidence function cfdT : Φ1 → [0, 1] is

cfdT (ϕ −→ ψ) =
|mT (ϕ ∧ ψ)|
|mT (ϕ)|

.

Example 2.1 Let us use an example to illustrate the concept introduced in this section. Assume
that Table 1 is a summary of reviewers’ report for ten papers submitted to a journal. The table
details ten papers evaluated by means of four attributes:

• o: originality,

• p: presentation,

• t: technical soundness, and

• d: overall evaluation (the decision attribute)

By Definition 2.1, the components of the data table are:

U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

A = {o, p, t, d},

Vo = Vp = Vt ={1 (poor), 2 (fair), 3 (good), 4 (excellent)},

Vd ={1 (reject), 2 (major revision), 3 (minor revision), 4 (accept)},

fi(j)(i ∈ A, 1 ≤ j ≤ 10) denotes the jth element of column i of the table.
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Thus, we have atomic formulas like (o, 4), (p, 1), and (t, 2); and formulas like (o, 4) ∧ (p, 3) and
¬(p, 1) ∨ ¬(t, 1). The rule r = (o, 3) ∧ ((p, 3) ∨ (t, 3)) −→ (d, 3) is valid, since m((o, 3) ∧ ((p, 3) ∨
(t, 3))) = {2, 9} ⊆ m((d, 3)) = {2, 3, 9, 0}. Furthermore, we have asp(r) = 2, rsp(r) = 1

5
, and

cfd(r) = 1.

2.1.3 The connection

While an approximation space is an abstract framework to represent classification knowledge, it
can be easily derived from a concrete data table. Let T = (U,A, {Vi | i ∈ A}, {fi | i ∈ A}) be a
data table and B ⊆ A be a subset of attributes, then we can define an equivalence relation, called
the indiscernibility relation based on B, as

ind(B) = {(x, y) | x, y ∈ U, fi(x) = fi(y)∀i ∈ B}.

In other words, x and y are B-indiscernible if they have the same values with respect to all
attributes in B. Consequently, for each B ⊆ A, (U, ind(B)) is an approximation space.

In terms of DL, each equivalence class of B is characterized by a DL formula ∧i∈B(i, vi) and
any formula ϕ of DL can be considered as a concept mT (ϕ). Then, the equivalence class is a
subset of the lower (resp. upper) approximation of the concept if the rule ∧i∈B(i, vi) −→ ϕ is valid
(resp. the formula ∧i∈B(i, vi) ∧ ϕ is satisfiable).

2.2 Logical Preliminary

Logic is commonly defined as the analysis of methods of reasoning[63]. In the presentation of
modern symbolic logic, the form of a statement and its content are usually separated, and are
defined by the syntax and the semantics of the logic respectively. The syntax of a logic defines a
formal language by some grammatical rules and its semantics stipulates the truth conditions of
the formulas in the language.

2.2.1 Propositional logic

The syntax of propositional logic (PL) is based on the combinations of simple sentences in various
ways to form more complicated sentences. The combinations are truth-functional in the sense
that the truth value of the new sentence is determined by those of its component sentences. The
alphabet of PL consists of a set of primitive propositions, Φ0, and the logical symbols ¬(negation),
∧(and), ∨(or), and ⊃(material implication). The logical symbols of PL are also called Boolean
connectives . The set of well-formed formulas (wffs) of propositional logic is defined as the smallest
set Φ such that Φ0 ⊆ Φ and

• if ϕ ∈ Φ, then ¬ϕ ∈ Φ;

• if ϕ and ψ ∈ Φ, then ϕ ∧ ψ, ϕ ∨ ψ, and ϕ ⊃ ψ ∈ Φ.

The auxiliary parentheses symbols are usually employed to disambiguate the reading of a sentence.
The equivalence connective ≡ is defined as an abbreviation, i.e., ϕ ≡ ψ is an abbreviation of
(ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ).
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The semantic models of PL are simply truth assignments to the primitive propositions. Mathe-
matically, an interpretation (or a model) of a PL is a function π : Φ0 → {0, 1}. The interpretation
π can be extended to the whole domain Φ by the following recursion rules:

1. π(¬ϕ) = 1− π(ϕ),

2. π(ϕ ∧ ψ) = min(π(ϕ), π(ψ)),

3. π(ϕ ∨ ψ) = max(π(ϕ), π(ψ)),

4. π(ϕ ⊃ ψ) = max(1− π(ϕ), π(ψ)).

We say that a wff ϕ is true (resp. false) under the interpretation π if π(ϕ) = 1 (resp. π(ϕ) = 0).
A wff ϕ is valid if it is true under all interpretations and satisfiable if it is true under some
interpretation. A wff that is not satisfiable is said to be unsatisfiable. Note that ϕ is valid iff ¬ϕ
is unsatisfiable.

2.2.2 Modal logic

As shown by the well-known Stone representation theorem, classical set theory has the intimate
connection with the Boolean logic[83]. Analogously, rough set theory is closely related to modal
logic[7]. The most well-known relationship is the connection of approximation space with possible
world semantics for the modal epistemic logic S5.

The alphabet of S5 consists of a set of primitive propositions, Φ0, and the logical sym-
bols ¬(negation), ∧(and), ∨(or), ⊃(material implication), �(necessity modal operator), and
♦(possibility modal operator). The set of well-formed formulas (wffs) of S5 is defined as the
smallest set Φ such that Φ0 ⊆ Φ and

• if ϕ ∈ Φ, then ¬ϕ,�ϕ, and ♦ϕ ∈ Φ

• if ϕ and ψ ∈ Φ, then ϕ ∧ ψ, ϕ ∨ ψ, and ϕ ⊃ ψ ∈ Φ.

A Kripke model for S5 is a triple M = (W,R, π), where W is a set of possible worlds, R is an
equivalence relation on W , called an accessibility relation, and π : Φ0 → 2W is a truth assignment
that map a primitive propositions to the set of worlds in which it is evaluated to be true. The
function π can be extended to all wffs recursively in the following way:

1. π(¬ϕ) = W − π(ϕ)

2. π(ϕ ∧ ψ) = π(ϕ) ∩ π(ψ)

3. π(ϕ ∨ ψ) = π(ϕ) ∪ π(ψ)

4. π(ϕ ⊃ ψ) = π(¬ϕ) ∪ π(ψ)

5. π(�ϕ) = {w | ∀u((w, u) ∈ R⇒ u ∈ π(ϕ))}

6. π(♦ϕ) = {w | ∃u((w, u) ∈ R ∧ u ∈ π(ϕ))}
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For each model M and wff ϕ, π(ϕ) is called the truth set of ϕ (in M).
Obviously, if M = (W,R, π) is a Kripke model for S5, then (W,R) is an approximation space,

and for each wff ϕ, π(ϕ) is a subset of W and denote some concept in the approximation space, so
we can consider its lower and upper approximations. A direct but interesting relationship between
S5 and rough set theory is then established as follows:

Rπ(ϕ) = π(�ϕ),

Rπ(ϕ) = π♦ϕ).

2.2.3 Arrow logic (AL)

In this section, we review the basic syntax and semantics of AL in order to lay the foundation for
the development of arrow decision logic. AL is the basic modal logic of arrows [61, 87]. An arrow
can represent a state transition in a program’s execution, a morphism in category theory, an edge
in a directed graph, etc. In AL, an arrow is an abstract entity; however, we can usually interpret
it as a concrete relationship between two objects, which results in a pair-frame model [61, 87]. We
now present the syntax and semantics of AL.

The basic alphabet of AL consists of a countable set of propositional symbols, the Boolean
connectives ¬ and ∨, the modal constant δ, the unary modal operator ⊗, and the binary modal
operator ◦. The set of AL wffs is the smallest set containing the propositional symbols and δ,
closed under the Boolean connectives ¬ and ∨, and satisfying

• if ϕ is a wff, then ⊗ϕ is a wff too;

• if ϕ and ψ are wffs, then ϕ ◦ ψ is also a wff.

In addition to the standard Boolean connectives, we also abbreviate ¬ ⊗ ¬ϕ and ¬(¬ϕ ◦ ¬ψ) as
⊗ϕ and ϕ◦ψ respectively.

Semantically, these wffs are interpreted in arrow models.

Definition 2.5

1. An arrow frame is a quadruple F = (W,C,R, I) such that C ⊆ W ×W ×W , R ⊆ W ×W
and I ⊆ W .

2. An arrow model is a pair M = (F, π), where F = (W,C,R, I) is an arrow frame and π is a
valuation that maps propositional symbols to subsets of W . An element in W is called an
arrow in the model M.

3. The satisfaction of a wff ϕ on an arrow w of M, denoted by w |=M ϕ (as usual, the subscript
M can be omitted), is inductively defined as follows:

(a) w |= p iff w ∈ π(p) for any propositional symbol p,

(b) w |= δ iff w ∈ I,
(c) w |= ¬ϕ iff w 6|= ϕ,

(d) w |= ϕ ∨ ψ iff w |= ϕ or w |= ψ,
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(e) w |= ϕ ◦ ψ iff there exist s, t such that (w, s, t) ∈ C, s |= ϕ, and t |= ψ,

(f) w |= ⊗ϕ iff there is a t with (w, t) ∈ R and t |= ϕ.

Example 2.2 Let us use the (multi-)graph shown in Figure 2.1 to explain the basic concept of
arrow models. As shown in the figure, the arrow frame is characterized as F = (W,C,R, I), where

• W = {a1, a2, . . . , a10},

• C = {(a1, a4, a5), (a1, a4, a7), . . . , (a8, a8, a10)}

• R = {(a5, a6), . . . , (a10, a10)}

• I = {a9, a10}
If x1, x2, x3, and x4 denote four cities and ai(1 ≤ i ≤ 10) denote routes between these them, then
I denote the set of intra-city routes, whereas the others are inter-cities routes. A route ai is a
reverse route of another route aj if (ai, aj) ∈ R. For example, a6 is a reverse route of a5. Also,
(ai, aj, ak) ∈ C if aj followed by ak is an alternative route of ai. For example, a3 is a direct route
connecting the cities x1 and x3. However, alternatively, we can also go from x1 to x2 through
route a4 and then from x2 to x3 through the route a5. Thus, a4 followed by a5 is an alternative
route to a3. Now, let us consider an arrow logic language with two propositional symbols p and q
meaning “the route is in congestion” and “the route is in bad situation” respectively. Assume that
the valuation π of the arrow model is given as follows:

π(p) = {a1, a2, a3, a9, a10},

π(q) = {a1, a4, a6, a8, a10}.
Then, in the model (F, π), we have a9 |= δ since a9 is an intra-city route. We also have a7 |=
¬q∧(⊗q) which means that a7 is not in bad situation, but one of its reverse routes is. Furthermore,
we have a3 |= p ∧ (q ◦ (¬p ∧ ¬q)) which means that a3 is in congestion and there is an alternative
route with a section (a4) in bad situation followed by a section (a5) neither in bad situation nor
in congestion.

Intuitively, in the arrow frame (W,C,R, I), W can be regarded as the set of edges of a directed
graph; I denotes the set of identity arrows3; (w, s) ∈ R if s is a reversed arrow of w; and
(w, s, t) ∈ C if w is an arrow composed of s and t. This intuition is reflected in the following
definition of pair frames.

Definition 2.6 An arrow frame F = (W,C,R, I) is a pair frame if there exists a set U such that
W ⊆ U × U and

1. for x, y ∈ U , if (x, y) ∈ I then x = y,

2. for x1, x2, y1, y2 ∈ U , if ((x1, y1), (x2, y2)) ∈ R, then x1 = y2 and y1 = x2,

3. for x1, x2, x3, y1, y2, y3 ∈ U , if ((x1, y1), (x2, y2), (x3, y3)) ∈ C, then x1 = x2, y2 = x3, and
y1 = y3.

An arrow model M = (F, π) is called a pair model if F is a pair frame. A pair model is called a
(full) square model if the set of arrows W = U × U .

3An identity arrow is an arrow that has the same starting point and endpoint.
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I={ a9 a10  }

R ={(a5, a6) , (a6, a5)  (a7, a6) , (a6, a7)   (a9, a9) (a10, a10)}

C ={(a1, a4, a5), (a1, a4, a7), (a2, a4, a5), (a2, a4, a7),  
(a3, a4, a5) ,(a3, a4, a7) , (a8, a8, a9),  (a8, a8, a10)  }

W={ a1 , a2, …., a10 }

Figure 2.1: An arrow model

2.3 Knowledge Management

2.3.1 Knowledge management process

Although there is no commonly accepted definition of knowledge management, the following one
mentioned in [72] is rather conceivable:

Knowledge management (KM) is a discipline that provides strategy, process, and
technology to share and leverage information and expertise that will increase our level
of understanding to more effectively solve problems and make decisions.

According to this definition, it is believed that the objective of knowledge management systems
is to support creation, transfer, and application of knowledge in organizations [3].

To uncover some assumptions about knowledge that underlie organizational KM process and
KMS, several perspectives on knowledge are summarized in [3]. These include

1. the contrast of knowledge with data and information,

2. knowledge as a state of mind,

3. knowledge as an object,
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4. knowledge as a process,

5. knowledge as a condition of having access to information, and

6. knowledge as a capability

For the contrast of knowledge with data and information, it is reiterated that data is raw
numbers and facts, information is processed data, and knowledge is authenticated information. For
knowledge as a state of mind, knowledge is described as “a state or fact of knowing” with knowing
being a condition of “understanding gained through experience or study; the sum or range of what
has been perceived, discovered, or learned”. For knowledge as an object, it means that knowledge
can be viewed as a thing to be stored and manipulated (i.e., an object). For knowledge as a process,
it is emphasized that knowledge can be viewed as a process of simultaneously knowing and acting.
For knowledge as a condition of having access to information, organizational knowledge must be
organized to facilitate access to and retrieval of content. It is thought of as an extension of the view
of knowledge as an object, with a special emphasis on the accessibility of the knowledge objects.
For knowledge as a capability, knowledge can be viewed as a capability with the potential for
influencing future action. However, it is also suggested that knowledge is not so much a capability
for specific action, but the capacity to use information; learning and experience result in an ability
to interpret information and to ascertain what information is necessary in decision making. (See
[3] for further references).

These different perspectives of knowledge lead to different emphasis on how knowledge should
be managed. Among them, the process view focuses on knowledge flow and the processes of
creation, sharing, and distribution of knowledge. This is closely related to the KM life cycle—
creation, capture, organization, and dissemination/sharing[72].

Any KM process starts from the creation of knowledge. The theory of organizational knowledge
creation proposed in [66] is concerned with developing new content or replacing existing content
within the organization’s tacit and explicit knowledge. According to [3],

rooted in action, experience, and involvement in a specific context, the tacit di-
mension of knowledge (henceforth referred to as tacit knowledge) is comprised of both
cognitive and technical elements. The cognitive element refers to an individual.s mental
models consisting of mental maps, beliefs, paradigms, and viewpoints. The technical
component consists of concrete know-how, crafts, and skills that apply to a specific
context.

On the other hand, the explicit knowledge is defined as follows [3]:

the explicit dimension of knowledge (henceforth referred to as explicit knowledge)
is articulated, codified, and communicated in symbolic form and/or natural language.

Based on such tacit-explicit knowledge classification, four modes of knowledge creation have been
identified: socialization, externalization, internalization, and combination [66]. These modes of
knowledge creation is explicated in [3] as follows:

The socialization mode refers to conversion of tacit knowledge to new tacit knowl-
edge through social interactions and shared experience among organizational members
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(e.g., apprenticeship). The combination mode refers to the creation of new explicit
knowledge by merging, categorizing, reclassifying, and synthesizing existing explicit
knowledge (e.g., literature survey reports). The other two modes involve interactions
and conversion between tacit and explicit knowledge. Externalization refers to con-
verting tacit knowledge to new explicit knowledge (e.g., articulation of best practices
or lessons learned). Internalization refers to creation of new tacit knowledge from
explicit knowledge (e.g., the learning and understanding that results from reading or
discussion).

However, as pointed out in [91], the term “tacit knowledge” should be replaced by the more
appropriate “implicit knowledge”:

Nonaka and Takeuchi put forward the proposition, embodied in the diagram, that
“tacit knowledge” is somehow derived from explicit knowledge and, by other means, is
made explicit. However, it is clear, from the analysis above, that implicit knowledge,
which is not normally expressed, but may be expressed, is actually intended here. Im-
plicit knowledge is that which we take for granted in our actions, and which may be
shared by others through common experience or culture. For example, in establishing
a production facility in a foreign country, a company knows it needs to acquire local
knowledge of “how things are done here”. Such knowledge may not be written down,
but is known by people living and working in the culture and is capable of being written
down, or otherwise conveyed to those who need to know. The knowledge is implicit in
the way people behave towards one another, and towards authority, in that foreign cul-
ture, and the appropriate norms of behavior can be taught to the newcomers. Implicit
knowledge, in other words, is expressible: tacit knowledge is not, and Nonaka would
have saved a great deal of confusion had he chosen the more appropriate term.

Apparently, the decision cases occurred in the past and stored in a data table may embed such
a kind of implicit knowledge, and data mining is simply the IT tool to make implicit knowledge
explicit. Thus, KDD is a process of knowledge creation from raw data. Once knowledge is cre-
ated, its storage, organization, and retrieval, which are also referred as organizational memory, be-
come crucial for effective organizational knowledge management. Organizational memory includes
knowledge residing in various component forms, including written documentation, structured in-
formation stored in electronic databases, codified human knowledge stored in expert systems, and
so on [3].

Several technologies to support the KM process are identified in [72]. These technologies
include hybrid expert systems; personalization–profiling and customization; taxonomies, search,
or knowledge discovery; knowledge metrics; and knowledge visualization. Among them, the core
requirement of hybrid expert systems is “to capture the knowledge of experts and translate them
into rules and reasoning processes to aid in decision support. Rules may range from simple and
rigid to complex and vague” [72]. The objective of our work is to provide a class of logics that
can represent such rules and reasoning processes.

The phase next to knowledge organization is knowledge transfer. Knowledge transfer depends
on a learning process. Communication process and information flows drive knowledge transfer
in organizations. To ease the communication process and reduce the cost of conversion between
different forms of knowledge, a uniform style of knowledge representation formalism is expected.
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Since the logics proposed in this thesis are all the same style—they are all based on extensions of
the decision logic, we can achieve the purpose of easy communication between different units or
organizations.

The last phase of knowledge management is the application of knowledge. It is emphasized in
[3] that the source of competitive advantage of KM resides in the application of the knowledge
rather than in the knowledge itself. There are three primary mechanisms for the integration
of knowledge to create organizational capability: directives, organizational routines, and self-
contained task teams[3]. An important problem of knowledge application may be “deciding upon
the rules and routines to apply to a problem, given that over time, the organization has learned
and codified a large number of rules and routines, so that choosing which rules to activate for a
specific choice making scenario is itself problematic”[3]. The technology that can help in this phase
is the reasoning power of decision-support systems. As mentioned in Chapter 1, our logic-based
representation facilitates the easy integration of the knowledge bases with inference engines of the
decision-support systems.

The knowledge management process is summarized in Figure 2.2, where knowledge represen-
tation is highlighted with red color to reiterate the main theme of our work.

Knowledge creation

• Data mining

• Text mining

• Brainstorming   etc.

Knowledge representation

•Organizational memory

•Document

•Codified knowledge (logic, rules, expert 
systems, etc)

Knowledge transfer

• Communication

• Formal and informal

• Personal and impersonal

Knowledge application

• Rule activation

• Easy access and maintenance

• Expert systems

Figure 2.2: The knowledge management life cycle
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2.3.2 Logic-based knowledge management

In [22], a logic-based approach to KM is advocated for meeting the requirement of system integra-
tion. The requirement occurs when an organization have a large asset of heterogenous computer
programs, databases and applications. It will be ideal to integrate all these systems into a single
homogenous system. In real life, however, this would be an unrealistic task because it requires a
lot of efforts and a long development time. Therefore, a more realistic approach to system integra-
tion is to support the use of the existing systems in a way most comfortable for the end-user, hide
the technical difficulties caused by the heterogenous databases and/or applications, and provide
tools for combining information coming from various sources[22]. In order to find an intelligent
solution for the KM oriented support of system integration, the most important thing is to choose
a synthetic and uniform technology basis.

Logic-based paradigm is chosen in [22] because of its important advantages in the following
aspects:

• declarative description of meta-information on information sources,

• symbolic manipulation for generating database queries,

• openness, knowledge-based customizability,

• deduction in intelligent answering,

• learning capacity wherever it is possible,

• natural language interface.

The paradigm results in the development of the SILK project (System Integration via Logic in
Knowledge Management). The objective of SILK is to show the applicability of the logic-based
knowledge management approach to system integration. Although the logic employed in the SILK
project is different than the DL-styled logics used here, our approach also inherits the advantages of
logic-based KM. In particular, we can have a uniform style of knowledge representation formalism.
This will make the organization and application of knowledge more accessible for the enterprize.
We will use a running scenario to illustrate how effective human resource management (HRM)
can be achieved via such a representation.

2.3.3 A running scenario

The recruitment and selection of high-potential talent are important for the enterprize, since the
human capital is the key to success in a knowledge-based economy. However, it is difficult in
the selection stage to predict the work performance of the applicants. Conventional selection
approaches including basic competency test, professional skill test, project proposal test, and
interviews have been widely used for many years. Data mining methodology to assist the decision
makers in identifying the most suitable talents has been previously proposed in [10]. The approach
is developed to explore human resource data and thus derive decision rules between personnel
characteristics and work behaviors. Let us now consider a high-tech company (say, the Knowledge
Technology Corporation, abbreviated as KTC), which is recruiting talent to fill different positions
including program designers, system analysts, project managers, and researcher.
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Example 2.3 To warm up, let us consider how DL can be used to represented decision rules
for the preliminary classification of the applicants to KTC recruitment. To achieve this task, we
retrieve the basic data of well-performed employees from the personnel data base of the company.
The definition of well-performed employees depends on the requirement of the positions. For
example, an employee may be considered as well-performed if the evaluation of his/her performance
in the last five years is above some level. It is believed that these employees fit their current
positions quite well. We assume the basic data of employees contains the following attributes: age
(when hired), gender, educational background (degree), and major subject, and current position.
The last attribute is the decision attribute and the others are condition attributes. For the sake
of simplicity, we will denote attributes by lower case italic letters. Thus, the attributes and their
domains are coded as follows:

1. i1: the age of an employee when he/she is hired

• 1: 25 years old and below

• 2: 26 to 30 years old

• 3: 31 to 35 years old

• 4: 36 years old and above

2. i2: the gender of an employee

• F: female

• M: male

3. i3: education background (the highest degree that an employee possesses)

• JC: junior college degree and below

• BA: bachelor degree

• MS: master degree and above

4. i4: the major of an employee

• EE: electrical engineering

• CS: computer science

• MH: mathematics

• IM: information management

5. d: the current position of an employee

• PD: program designers

• SA: system analysts

• PM: project managers

• RD: researcher
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The retrieved employee data is then taken as our input decision table and appropriate data
mining algorithm is applied to derive decision rules. Since the main focus of the work is on the
representation of the rules and the decision table just looks like that appears in Example 2.1, we
will not write down the decision table again. Also, it is assumed that pre-determined thresholds
for confidences and supports are used to select the decision rules, so we come up with a set of
decision rules in the form of DL rules. For example, we may have a rule like this

(i3,MS) ∧ ((i4, ,MH) ∨ (i4, ,CS)) −→ (d,RD).

The set of all derived decision rules (perhaps with the background knowledge) constitutes the first
knowledge base KB1 for the recruitment process. Now, given the basic data of the applicants, each
applicant can be classified as appropriate for one (or more) particular position(s). An applicant
classified as appropriate for a particular position is consider as a candidate of that position. For
example, an applicant whose major is mathematics and highest degree is master is consider as
a candidate for the researcher position according to the above rule. Thus, for each position, we
have a set of candidates for further process. The process of the preliminary classification phase is
shown in Figure 2.3, where the knowledge base is colored red to emphasize the role of DL-styled
logics.

2.4 Related Work

When rough set theory is applied to multi-criteria decision analysis (MCDA), it is crucial that
preference-ordered attribute domains and decision classes be dealt with [29, 30, 31, 33, 34, 35, 36,
82]. Thus, the indiscernibility relation in rough set theory is replaced by a dominance relation to
solve the multi-criteria sorting problem, and the data table is replaced by a pairwise comparison
table to solve multi-criteria choice and ranking problems. The approach is called the dominance-
based rough set approach (DRSA).

A strong assumption about data tables is that each object takes exactly one value with respect
to an attribute. However, in practice, we may only have incomplete information about the values of
an object’s attributes. Thus, more general data tables and decision logics are needed to represent
and reason about incomplete information. For example, set-valued and interval set-valued data
tables have been introduced to represent incomplete information [51, 52, 53, 60, 94]. DRSA has
also been extended to deal with missing values in MCDA problems [34, 82].

The notion of IS-morphism introduced in Chapter 4 is related to the work in [39]. The algebraic
properties of IS-morphism between functional information systems (FIS) was previously studied
there under the name of O-A-D homomorphism4. Our notion of IS-morphism between relational
information systems (RIS) is a straightforward generalization of that between FIS. In fact, if FIS
and RIS are considered as many-sorted algebras [6], both IS-morphism and O-A-D homomorphism
can be seen as homomorphism in universal algebra [8, 11].

The investigation of RIS also facilitates a further generalization of rough set theory. In classical
rough set theory, lower and upper approximations are defined in terms of indiscernibility relations
based on functional information associated with the objects. However, it has been noted that
many applications, such as social network analysis [74], need to represent both functional and

4O, A, and D denotes objects, attributes, and the domain of values respectively.
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Figure 2.3: The preliminary classification phase of the recruitment process

relational information. Based on this observation, a concept of relational granulation was recently
proposed in [57].
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Chapter 3

Decision Logics for Multicriteria
Decision Analysis

When rough set theory is applied to multi-criteria decision analysis (MCDA), it is crucial that
preference-ordered attribute domains and decision classes be dealt with [29, 30, 31, 33, 34, 35,
36, 82]. The original rough set theory cannot handle inconsistencies arising from violations of
the dominance principle due to its use of the indiscernibility relation. Therefore, in the above-
mentioned work, the indiscernibility relation is replaced by a dominance relation to solve the
multi-criteria sorting problem, and the data table is replaced by a pairwise comparison table to
solve multi-criteria choice and ranking problems. The approach is called the dominance-based
rough set approach (DRSA). For MCDA problems, DRSA can induce a set of decision rules from
sample decisions provided by decision-makers. The induced rules form a comprehensive preference
model and can provide recommendations about a new decision-making environment.

A strong assumption about data tables is that each object takes exactly one value with respect
to an attribute. However, in practice, we may only have incomplete information about the values of
an object’s attributes. Thus, more general data tables and decision logics are needed to represent
and reason about incomplete information. For example, set-valued and interval set-valued data
tables have been introduced to represent incomplete information [51, 52, 53, 60, 94]. A generalized
decision logic based on interval set-valued data tables is also proposed in [94]. In these formalisms,
the attribute values of an object may be a subset or an interval set in the domain. Since crisp
subsets and interval sets are both special cases of fuzzy sets, further generalization of data tables
is desirable to represent uncertain information. In data tables containing such information, an
object can take a fuzzy subset of values for each attribute. To represent knowledge induced from
uncertain data tables, the decision logic also needs to be generalized.

DRSA has also been extended to deal with missing values in MCDA problems [34, 82]. A data
table with missing values is a special case of uncertain data tables. Therefore, we propose further
extending DRSA to uncertain data tables and fuzzy data tables. In this chapter, we present a
logical treatment of DRSA in precise data tables, as well as uncertain and fuzzy data tables. Our
approach is concerned with variants of DL for data tables.

The remainder of the chapter is organized as follows. In Sections 3.1 to 3.4, we respectively
present generalized DL for preference-ordered data tables, preference-ordered uncertain data ta-
bles, preference-ordered fuzzy data tables, and pairwise comparison tables. For each logic, the
syntax and semantics are described, and some quantitative measures for the rules of the logics are

22



defined. Finally, in Section 3.5, we discuss the main contribution of this chapter and indicate the
direction of future research.

3.1 Preference-ordered Data Tables

For MCDA problems, each object in a data table or decision table can be seen as a sample decision,
and each condition attribute is a criterion for the decision. Since the domain of values of a criterion
is usually ordered according to the decision-maker’s preferences, we define a preference-ordered
data table (PODT) as a tuple

T = (U,A, {(Vi,�i) | i ∈ A}, {fi | i ∈ A}),

where T = (U,A, {Vi | i ∈ A}, {fi | i ∈ A}) is a classical data table; and for each i ∈ A, �i⊆ Vi×Vi
is a binary relation over Vi. The relation �i is called a weak preference relation or outranking on
Vi, and represents a preference over the set of objects with respect to the criterion i [82]. For
x, y ∈ U , fi(x) �i fi(y) means “x is at least as good as y with respect to criterion i.

To represent the rules induced from a PODT, we introduce preference-ordered decision logic
(PODL). The syntax of PODL is the same as that of DL, except for the form of the atomic
formulas. An atomic formula in PODL is a descriptor in the form of (≥i, v) or (≤i, v), where
i ∈ A and v ∈ Vi. The satisfaction relation between U and the set of PODL wffs is defined
in the same way as for DL wffs, except that the satisfaction of an atomic formula is defined by
x |= (≥i, v) iff fi(x) � v, and by x |= (≤i, v) iff v � fi(x). Other semantic notions in DL, such as
validity, support, and confidence, can all be used in the case of PODL without any modifications.
The confidence function for PODL rules has also been defined by [37].

In [34], three types of rules are explicitly identified. We translate these rules into PODL rules
as follows.

1.
∧
i∈C(≥i, vi) −→ (≥d, vd), where C ⊆ A is a subset of condition attributes, d ∈ A\C is a

decision attribute, vi ∈ Vi for all i ∈ C, and vd ∈ Vd.

2.
∧
i∈C(≤i, vi) −→ (≤d, vd), where C ⊆ A is a subset of condition attributes, d ∈ A\C is a

decision attribute, vi ∈ Vi for all i ∈ C, and vd ∈ Vd.

3. (
∧
i∈C1

(≥i, vi) ∧
∧
i∈C2

(≤i, vi)) −→ ((≥d, vd) ∧ (≤d, v
′
d)), where C1 ∪ C2 ⊆ A is a subset of

condition attributes, d ∈ A\(C1 ∪C2) is a decision attribute, vi ∈ Vi for all i ∈ C1 ∪C2, and
vd, v

′
d ∈ Vd.

Example 3.1 Continuing with Example 2.1, let us assume that each Vi(i = o, p, t, d) is now
endowed with a weak preference relation �i such that 4 �i 3 �i 2 �i 1. Thus, we have atomic
formulas like (≥o, 4), (≥p, 1), and (≥t, 2). Let us now consider the following rules:

r1 = (≥o, 3) −→ (≥d, 3),

r2 = (≤p, 2) −→ (≤d, 2),

r3 = (≥o, 4) ∧ (≤t, 2) −→ (≥d, 2) ∧ (≤d, 3).
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Then, we have
asp rsp cfd

r1 5 1
2

5
8

r2 5 1
2

5
6

r3 2 1
5

1

Among these rules, only r3 is valid.

3.1.1 The running scenario

Let us now continue the recruitment process of the KTC and conduct the professional skills test for
the applicants. It is assumed that the professional skills of an employee are related to his/her short-
term performance since the required skills of high-tech industry are rapidly changing. Note that
in the preliminary classification stage, we have classified each applicant into appropriate position
class(es). The professional skills required by different positions may be different. However, for
simplification, we assume that all applicants are tested with the same set of professional skills,
which includes programming languages, engineering mathematics, and software engineering. The
test result of each applicant is given in a 10-point score. To utilize the past experience, we
retrieve the professional skill test results of the employees hired in the last three years and their
performance evaluation. The performance evaluation data of the employees may be stored in a
separated database. We assume the company has established a performance management system
to evaluate employees performance. Based on the performance, the employees will be ranked into
four categories: outstanding (A), good (B), fair (C), and poor (D). By joining the data retrieved
from the databases of professional skill test results and employees’ performance evaluation, we
obtain a PODT with three decision attributes and one condition attribute. The attributes and
their domains are coded as follows:

1. condition attributes:

• p: programming languages, Vp = {0, 1, 2, . . . , 10};
• e: engineering mathematics, Ve = {0, 1, 2, . . . , 10};
• s: software engineering, Vs = {0, 1, 2, . . . , 10};

2. decision attribute:

• d: performance evaluation, Vd = {A,B,C,D}

It is assumed that Vp, Ve, and Vs are all endowed with the weak preference ordering 10 �i 9 �i

· · · �i 0 and Vd is endowed with the ordering A �d B �d C �d D. As in the case of Example 2.3,
we assume an appropriate data mining algorithm (e.g., the DRSA approach) is applied to derive
PODL rules. Also, it is still assumed that pre-determined thresholds for confidences and supports
are used to select the decision rules, so finally, we have a set of PODL rules that constitute the
second knowledge base KB2 of the recruitment process. A typical rule in KB2 is like this

(≥p, 6) ∧ (≥e, 8) ∧ (≥s, 6) −→ (≥d, B).

Now, given the professional skills test result of an applicant, we can apply the PODL rules to
predict his/her short-term performance in the following way. Because there may be more than
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one rules in KB2 whose antecedents can match the applicant’s test result, we will apply all
applicable rules to the applicant. Let x be an applicant and ϕ −→ ψ is a PODL rule in KB2, then
we will write x |= ψ if the test result of x matches with ϕ. For example, if the test result of x is
programming languages, 8, engineering mathematics, 9 and software engineering, 7, then we can
write x |= (≥d, B). Considering all rules applicable to x, we denote spl(x) = max{v | x |= ((≥d, v)}
and spu(x) = min{v | x |= ((≤d, v)}. Intuitively, spl(x) and spu(x) denote the lower and upper
bounds of x’s short-term performance prediction respectively. We can further define the set of
grades sp(x) = {v ∈ Vd | spl(x) ≤ v ≤ spu(x)} for each applicant x. Thus, after the short-
term performance prediction phase, each applicant is associated with a set of grades denoting the
prediction on his/her short-term performance. Note that, in reality, inconsistency may exist in the
original PODT (i.e., the dominance principle may be violate). In the presence of inconsistency,
the derived rules may be also mutually inconsistent and sp(x) may be empty for some x. If it is
the case, we will set sp(x) to be Vd. The process of this phase is shown in Figure 3.1.

Professional 
skills test
results

SELECT employees hired in the 
last three years,
JOIN with employees’ id

Data table
(PODT)

Data mining
algorithm

Knowledge base
of PODL rules

KB2

Professional skills test
results for applicants

Rule application
(inference engine)

Short-term performance
prediction of applicants 

x: applicant
(x, sp(x))

Employees’

performance

evaluation

Figure 3.1: The short-term performance prediction phase of the recruitment process
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3.2 Preference-ordered Uncertain Data Tables

PODL is suitable for the representation of rules induced from a PODT. However, the latter
inherits the restriction of classical DT so that uncertain information can not be represented. An
uncertain data table is a generalization of DT such that the values of some or all attributes are
imprecise [16, 13]. An analogous generalization can be applied to PODT to define preference-
ordered uncertain data tables (POUDT). Formally, a POUDT is a tuple

T = (U,A, {(Vi,�i) | i ∈ A}, {fi | i ∈ A}),

where U,A, {(Vi,�i) | i ∈ A} are defined as above, and for each i ∈ A, fi : U → 2Vi − {∅}. The
intuition about POUDT is that the value of attribute i of an object x belongs to fi(x), though
the value is not known exactly. When fi(x) is a singleton, we say that the value is precise. If all
attribute values of T are precise, then T is said to be single-valued.

PODL is also generalized to preference-ordered uncertain decision logic (POUDL). The syntax
of POUDL is same as that of PODL, except that its atomic formulas are of the form (i, si), where
i ∈ A and si ⊆ Vi. When si = {v ∈ Vi | v �i vi} (resp. si = {v ∈ Vi | vi �i v}), we abbreviate
(i, si) as (≥i, vi) (resp. (≤i, vi)). To define the semantics of POUDL, we must first rewrite each
wff into its normal form.

A wff is in a conjunctive normal form (CNF) if it is a conjunction of formulas of the form
∨i∈B(i, si), where B ⊆ A is a subset of mutually distinct attributes. A wff is in a disjunctive
normal form (DNF) if it is a disjunction of formulas of the form ∧i∈B(i, si), where B ⊆ A is a
subset of mutually distinct attributes. Given a POUDL wff ϕ, its CNF and DNF are denoted
by ϕc and ϕd respectively. Any POUDL wff can be rewritten in both CNF and DNF by using
Boolean algebra and the following rewriting rules:

¬(i, s) = (i, Vi\s)

(i, s1) ∨ (i, s2) = (i, s1 ∪ s2)

(i, s1) ∧ (i, s2) = (i, s1 ∩ s2).

For the semantics of POUDL, we define the positive satisfaction relation |=+ for CNF formulas
and negative satisfaction relation |=− for DNF formulas. The definition is as follows:

1. x |=+ (i, s) iff fi(x) ⊆ s,

2. x |=+ ϕ ∨ ψ iff x |=+ ϕ or x |=+ ψ,

3. x |=+ ϕ ∧ ψ iff x |=+ ϕ and x |=+ ψ,

4. x |=− (i, s) iff fi(x) ∩ s = ∅,

5. x |=− ϕ ∧ ψ iff x |=− ϕ or x |=− ψ,

6. x |=− ϕ ∨ ψ iff x |=− ϕ and x |=− ψ.
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Then, for any POUDL wff ϕ, we define x |=+ ϕ iff x |=+ ϕc, and x |=− ϕ iff x |=− ϕd. According to
the semantics of POUDL, x |=+ (≥i vi) if for all v ∈ fi(x), v is preferred over vi with respect to the
criterion i. Therefore, we can be sure that, if x |=+ (≥i vi) holds, then the value of criterion i of x
will at least reach the level of vi no matter what the actual value is. Analogously, if x |=− (≥i vi)
holds, we can be sure that the value of criterion i of x will not be above the level of vi no matter
what the actual value is.

For each POUDL wff ϕ and a given POUDT T , we define two meaning sets:

m+
T (ϕ) = {x ∈ U | x |=+ ϕ},

m−
T (ϕ) = {x ∈ U | x |=− ϕ};

m+
T (ϕ) is the set of objects that are known to satisfy ϕ, and m−

T (ϕ) is the set of objects that are
known not to satisfy ϕ. The indeterminate region of ϕ with respect to T is defined as

m∗
T (ϕ) = U\(m+(ϕ) ∪m−

T (ϕ)).

As usual, the subscript T can be omitted if it is clear from the context. Using the notations from
rough set theory, we also define

m(ϕ) = m+(ϕ) and m(ϕ) = U\m−(ϕ).

Note that the three types of rules mentioned in Section 3.1 can also be represented in POUDL,
though the semantics is quite different.

The quantitative measures of the rules’ usefulness can be defined by the notion of completion
of a POUDT. Let T = (U,A, {(Vi,�i) | i ∈ A}, {fi | i ∈ A}) be a POUDT. Then, a PODT
S = (U,A, {(Vi,�i) | i ∈ A}, {f ′i | i ∈ A}) is a completion of T if f ′i(x) ∈ fi(x) for all i ∈ A
and x ∈ U . The number of completions of T is equal to

∏
i∈A,x∈U |fi(x)|. Let CL(T ) denote the

set of all completions of T . If we identify a singleton set with its element by slightly abusing the
notation, then a completion of a POUDT (i.e., a PODT) can be considered as a special case of
POUDT. This yields the following definition.

Definition 3.1 Let T = (U,A, {(Vi,�i) | i ∈ A}, {fi | i ∈ A}) be a POUDT and ϕ −→ ψ be a
POUDL rule, then

1. ϕ −→ ψ is strongly valid in T if m(ϕ) ⊆ m+(ψ) and weakly valid in T if m+(ϕ) ⊆ m+(ψ);

2. the absolute support interval of ϕ −→ ψ is

asiT (ϕ −→ ψ) = [ min
S∈CL(T )

aspS(ϕ −→ ψ), max
S∈CL(T )

aspS(ϕ −→ ψ)];

3. the relative support interval of ϕ −→ ψ is

rsiT (ϕ −→ ψ) = [ min
S∈CL(T )

rspS(ϕ −→ ψ), max
S∈CL(T )

rspS(ϕ −→ ψ)]; and

4. the confidence interval of ϕ −→ ψ is

cfiT (ϕ −→ ψ) = [ min
S∈CL(T )

cfdS(ϕ −→ ψ), max
S∈CL(T )

cfdS(ϕ −→ ψ)].
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The next two propositions show how these measures are calculated.

Proposition 3.1 Let ϕ be a POUDL wff and T be a POUDT. Then, for all x ∈ Uni(T ), we have

1. x |=+
T ϕ iff x |=S ϕ for all S ∈ CL(T ),

2. x |=−
T ϕ iff x 6|=S ϕ for all S ∈ CL(T ), and

3. x ∈ m∗
T (ϕ) iff there exist S1, S2 ∈ CL(T ) such that x |=S1 ϕ and x 6|=S2 ϕ.

Proof: We first note that if S is a PODT, then for any POUDL wff ϕ, x |=S ϕ iff x |=S ϕ
c iff

x |=S ϕ
d. Thus, without loss of generality, we only need to consider wffs in CNF or DNF. Let us

now prove the first equivalence. The second equivalence can be proved analogously, and the third
follows from the first two.

(⇒): If ϕ is in CNF, then we have x |=+
T ϕ iff x |=+

T ∨i∈B(i, si) for each conjunct ∨i∈B(i, si) of
ϕ. Now, x |=+

T ∨i∈B(i, si) implies that there exists i ∈ B such that fi(x) ⊆ si. This, in turn,
implies that x |=S ∨i∈B(i, si) for any S ∈ CL(T ). Thus, x |=+

T ϕ implies that x |=S ϕ for all
S ∈ CL(T ).

(⇐): If ϕ is in CNF and x |=S ϕ for all S ∈ CL(T ), then for any conjunct ∨i∈B(i, si) of ϕ,
we have x |=S ∨i∈B(i, si) for any S ∈ CL(T ). Assume x 6|=+

T ∨i∈B(i, si) for some conjunct
∨i∈B(i, si) of ϕ; then fi(x) 6⊆ si holds for all i ∈ B. Thus, since the attributes in B are
mutually distinct, we can have an S = (U,A, {(Vi,�i) | i ∈ A}, {f ′i | i ∈ A}) ∈ CL(T )
such that f ′i(x) ∈ fi(x)\si for all i ∈ B. Obviously, this implies that x 6|=S ∨i∈B(i, si) and
contradicts the fact that x |=S ∨i∈B(i, si) for any S ∈ CL(T ). Therefore, we can derive
x |=+

T ∨i∈B(i, si) for any conjunct ∨i∈B(i, si) of ϕ, and consequently, x |=+
T ϕ.

Proposition 3.2 Let ϕ −→ ψ be a POUDL rule and T be a POUDT, then we have

1.

|m(ϕ ∧ ψ)| = min
S∈CL(T )

aspS(ϕ −→ ψ),

|m(ϕ ∧ ψ)| = max
S∈CL(T )

aspS(ϕ −→ ψ);

2.

|m(ϕ ∧ ψ)|
|U |

= min
S∈CL(T )

rspS(ϕ −→ ψ),

|m(ϕ ∧ ψ)|
|U |

= max
S∈CL(T )

rspS(ϕ −→ ψ);

3.

|m(ϕ ∧ ψ)|
|m(ϕ)\(m∗(ϕ) ∩m−(ϕ ∧ ¬ψ))|

= min
S∈CL(T )

cfdS(ϕ −→ ψ),

|m(ϕ ∧ ψ)|
|m(ϕ)\(m∗(ϕ) ∩m−(ϕ ∧ ψ))|

= max
S∈CL(T )

cfdS(ϕ −→ ψ).
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Proof: The only non-trivial case to be proved is the third one. We first note that

min
S∈CL(T )

cfdS(ϕ −→ ψ) = min
S∈CL(T )

|mS(ϕ ∧ ψ)|
|mS(ϕ)|

.

Let S∗ be a completion of T such that

S∗ ∈ arg min
S∈CL(T )

|mS(ϕ ∧ ψ)|
|mS(ϕ)|

.

Then, for any object x, we can consider the following cases:

Case 1: If x ∈ m(ϕ)\(m∗(ϕ)∩m−(ϕ∧¬ψ)) and x 6∈ mS∗(ϕ), then x 6∈ m(ϕ) since m(ϕ) ⊆ mS(ϕ)
for any S ∈ CL(T ). This means x ∈ m∗(ϕ) and x 6∈ m−(ϕ∧¬ψ)), so there exists S ∈ CL(T )
such that x ∈ mS(ϕ∧¬ψ)) by Proposition 3.1. Since the attribute values of different objects
in a completion can be independently determined, we can define S ′ ∈ CL(T ) such that for
each attribute i, fS

′
i (x) = fSi (x) and fS

′
i (y) = fS

∗
i (y) for all y 6= x, where fS

′
i , f

S
i , and

fS
∗

i correspond to the attribute functions of S ′, S, and S∗ respectively. Then |mS′(ϕ)| =
|mS∗(ϕ)|+ 1 and |mS′(ϕ ∧ ψ)| = |mS∗(ϕ ∧ ψ)|. This contradicts the minimality assumption
for S∗.

Case 2: If x ∈ mS∗(ϕ) and x 6∈ m(ϕ)\(m∗(ϕ)∩m−(ϕ∧¬ψ)), then x ∈ m∗(ϕ) and x ∈ m−(ϕ∧¬ψ),
since mS(ϕ) ⊆ m(ϕ) for any S ∈ CL(T ). From x ∈ mS∗(ϕ) and x ∈ m−(ϕ ∧ ¬ψ), we can
derive x ∈ mS∗(ϕ ∧ ψ) by Proposition 3.1. From x ∈ m∗(ϕ), we can find an S ∈ CL(T )
such that x 6|=S ϕ (and, of course, x 6|=S ϕ ∧ ψ). Thus, we can also define S ′ ∈ CL(T )
such that for each attribute i, fS

′
i (x) = fSi (x) and fS

′
i (y) = fS

∗
i (y) for all y 6= x. Then,

|mS′(ϕ)| = |mS∗(ϕ)| − 1 and |mS′(ϕ ∧ ψ)| = |mS∗(ϕ ∧ ψ)| − 1, which implies that

|mS′(ϕ ∧ ψ)|
|mS′(ϕ)|

≤ |mS∗(ϕ ∧ ψ)|
|mS∗(ϕ)|

.

Therefore, without loss of generality, we can assume that mS∗(ϕ) = m(ϕ)\(m∗(ϕ)∩m−(ϕ∧¬ψ)).
Now, if there exists x ∈ mS∗(ϕ∧ψ) and x 6∈ m(ϕ∧ψ), then x ∈ m(ϕ)\(m∗(ϕ)∩m−(ϕ∧¬ψ)),

so we can consider two possibilities.

Case 1: x ∈ m+(ϕ). Then, from the assumption, we can derive x ∈ m∗(ψ)

Case 2: x ∈ m∗(ϕ) and x ∈ m∗(ϕ ∧ ¬ψ).

In both cases, we can find an S ∈ CL(T ) such that x |=S ϕ ∧ ¬ψ. Let S ′ be a completion of T
that has the same attribute values as S for x and the same attribute values as S∗ for objects that
are not x. Then |mS′(ϕ)| = |mS∗(ϕ)| and |mS′(ϕ ∧ ψ)| = |mS∗(ϕ ∧ ψ)| − 1. This contradicts the
minimality assumption for S∗. Therefore, mS∗(ϕ∧ψ) = m(ϕ∧ψ), which means that there exists
an

S∗ ∈ arg min
S∈CL(T )

|mS(ϕ ∧ ψ)|
|mS(ϕ)|

,

such that
|m(ϕ ∧ ψ)|

|m(ϕ)\(m∗(ϕ) ∩m−(ϕ ∧ ¬ψ))|
= cfdS∗(ϕ −→ ψ).
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Therefore, the result for the lower bound is proved. The result for the upper bound can be proved
in an analogous way.

In general, the attribute symbols in the antecedent of a rule and those in the consequent are
disjoint. For this special type of rule, the confidence interval can be simplified slightly.

Corollary 3.1 Let Aϕ denote the set of attributes appearing in a wff ϕ, and ϕ −→ ψ be a POUDL
rule such that Aϕ ∩ Aψ = ∅. Then, cfi(ϕ −→ ψ) = [low, up], where

low =
|m(ϕ ∧ ψ)|

|m(ϕ)\(m∗(ϕ) ∩m+(ψ))|
, and

up =
|m(ϕ ∧ ψ)|

|m(ϕ)\(m∗(ϕ) ∩m−(ψ))|
.

Proof: It suffices to show that m∗(ϕ)∩m−(ϕ∧¬ψ) = m∗(ϕ)∩m+(ψ) and m∗(ϕ)∩m−(ϕ∧ψ) =
m∗(ϕ) ∩m−(ψ). We only prove the former, as the latter can be proved analogously.

• (⊆): If both x ∈ m∗(ϕ) ∩ m−(ϕ ∧ ¬ψ) and x 6∈ m∗(ϕ) ∩ m+(ψ) hold, then there exists
S1 ∈ CL(T ) such that x |=S1 ϕ (from x ∈ m∗(ϕ)); and there also exists S2 ∈ CL(T ) such
that x |=S2 ¬ψ (from x 6∈ m+(ψ)). Since Aϕ and Aψ are disjoint, we can construct an
S ∈ CL(T ) such that

f ′i(x) =

{
f 1
i (x) if i ∈ Aϕ
f 2
i (x) if i ∈ Aψ,

where f 1
i , f

2
i , and f ′i are attribute functions of S1, S2, and S respectively. Hence, we have

x |=S ϕ ∧ ¬ψ, which contradicts x ∈ m−(ϕ ∧ ¬ψ) by Proposition 3.1.

• (⊇): If x ∈ m∗(ϕ) ∩ m+(ψ), then for all S ∈ CL(T ), x |=S ψ holds, which implies that
x 6|=S ϕ ∧ ¬ψ. We then have x ∈ m∗(ϕ) ∩m−(ϕ ∧ ¬ψ) by Proposition 3.1.

Example 3.2 We use a modified example for route selection from [88] to illustrate POUDT and
POUDL. The example is concerned with a route selection problem for solid waste management.
In Table 2, six routes are evaluated by means of 2 attributes w (weight capacity) and s (surface
condition), and the evaluation results are described by the decision attribute d. The domain of
values for w is Vw = {l (low), m (medium), h (high)} and the domain of values for s is Vs = {v (very
good), g (good), b (bad)}. The evaluation results are then divided into three levels Vd = {1, 2, 3}.
We assume that each domain is endowed with a preference relation such that h �w m �w l,
v �s g �s b, and 3 �d 2 �d 1, where u �i v means u �i v ∧ v 6�i u for i ∈ A and u, v ∈ Vi.
Due to the incompleteness of the information, some attribute values appearing in the table are
non-singleton. Note that this POUDT has 64 completions.

Let us now consider a POUDL wff ϕ1 = (≥w,m) ∨ ((≤w, l) ∧ (≥s, g)). The CNF of ϕ1 is
ϕc1 = (w, Vw) ∧ ((≥w,m) ∨ (≥s, g)). We can see that x2 |=+ ϕ1, since both x2 |=+ (w, Vw) and
x2 |=+ (≥s, g) hold. Indeed, in any completion of T , we have either f ′w(x2) = l and f ′s(x2) = g
or f ′w(x2) = m and f ′s(x2) = g; therefore, x2 |= ϕ1 always holds. Note that x2 |=+ ϕ1 can not
be verified if we do not transform ϕ1 into its CNF. Analogously, let ϕ2 denote the POUDL wff
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Table 3.1: A POUDT for route selection

U \ A w s d
x1 {m,h} {v} 3
x2 {l,m} {g} 2
x3 {m} {g, v} 2
x4 {l,m} {b, g} 2
x5 {l} {b} 1
x6 {h} {g, v} 3

(≤w, l) ∧ ((≥w,m) ∨ (≤s, b)), then its DNF is ϕd2 = (w, ∅) ∨ ((≤w, l) ∧ (≤s, b)). It is easy to verify
x2 |=− ϕ2 by the semantics. Again, this cannot be done if ϕ2 is not transformed into its CNF.

Let ϕ = (≥w,m), ψ1 = (≥d, 2), and ψ2 = (≥d, 3) be three wffs of POUDL, then we consider
the rules ϕ −→ ψ1 and ϕ −→ ψ2. We have

m(ϕ) = {x1, x3, x6}, m(ϕ) = {x1, x2, x3, x4, x6}, m∗(ϕ) = {x2, x4},

m(ϕ ∧ ψ1) = {x1, x3, x6}, m(ϕ ∧ ψ1) = {x1, x2, x3, x4, x6},

m+(ψ1) = {x1, x2, x3, x4, x6}, m−(ψ1) = {x5},

m(ϕ ∧ ψ2) = {x1, x6}, m(ϕ ∧ ψ2) = {x1, x6},

m+(ψ2) = {x1, x6}, and m−(ψ2) = {x2, x3, x4, x5}.

Thus, we obtain the asi, rsi, and cfi of these two rules as follows:

asi rsi cfi
ϕ −→ ψ1 [3, 5] [1

2
, 5

6
] [1, 1]

ϕ −→ ψ2 [2, 2] [1
3
, 1

3
] [2

5
, 2

3
]

It can be verified that these values indeed satisfy equalities in Proposition 3.2. Note that the rule
ϕ −→ ψ1 is strongly valid, whereas the rule ϕ −→ ψ2 is neither weakly valid, nor strongly valid.

3.2.1 The running scenario

Let us continue the running scenario of the KTC recruitment process and conduct the basic
competency test for the applicants. It is assumed that the basic competencies of an employee
are related to his/her long-term performance. We assume the following set of basic competencies
are tested: communication, planning, teamwork, and self-management [92]. The test result of
each applicant is given in a 10-point score. To utilize the past experience, we retrieve the basic
competency test results of the employees working in the company more than eight years and their
average performance evaluation during those years. Unfortunately, because we consider employees
who are recruited at least eight years ago, their basic competency test results may be partially
missing. Thus, we have uncertain (or even missing) values for their test results. We still assume
the performance of the employees are ranked into four categories: outstanding (A), good (B), fair
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(C), and poor (D). By joining the data retrieved from the databases of basic competency test
results and employees’ performance evaluation, we obtain a POUDT with four decision attributes
and one condition attribute. The attributes and their domains are coded as follows:

1. condition attributes:

• c: communication competency, Vc = {0, 1, 2, . . . , 10};
• p: planning competency, Vp = {0, 1, 2, . . . , 10};
• t: teamwork competency, Vt = {0, 1, 2, . . . , 10};
• s: self-management competency, Vs = {0, 1, 2, . . . , 10};

2. decision attribute:

• d: average performance evaluation during the working years, Vd = {A,B,C,D}

It is assumed that Vc, Vp, Vt, and Vs are all endowed with the weak preference ordering 10 �i 9 �i

· · · �i 0 and Vd is endowed with the ordering A �d B �d C �d D. As in the case of Example 2.3,
we assume an appropriate data mining algorithm (e.g., the DRSA approach) is applied to derive
POUDL rules. Also, it is still assumed that pre-determined thresholds for confidences and supports
are used to select the decision rules. However, since the confidence and support of a POUDL rule
are intervals instead of numbers, we chose the midpoint of an interval to represent its confidence
or support. In this way, we obtain a set of POUDL rules that constitute the third knowledge base
KB3 of the recruitment process. A typical rule in KB3 is like this

(c, {7, 8, 9}) ∧ (p, {5, 6, 7}) ∧ (t, {9, 10}) ∧ (s, {8, 9}) −→ (d, {A}).

Now, given the basic competency test result of an applicant, we can apply the POUDL rules to
predict his/her long-term performance in the following way. Because there may be more than one
rules in KB3 whose antecedents can match the applicant’s test result, we will apply all applicable
rules to the applicant. Let x be an applicant and ϕ −→ ψ is a POUDL rule in KB2, then we will
write x |= ψ if the test result of x matches with ϕ. Considering all rules applicable to x, we denote
lp(x) = ∩{s | x |= ((d, s)}. Intuitively, lp(x) denotes the set of possible values of x’s long-term
performance prediction. Thus, after the long-term performance prediction phase, each applicant
is associated with a set of grades denoting the prediction on his/her long-term performance. The
process of this phase is shown in Figure 3.2, where the green part shows that the database may
contain incomplete information.

3.3 Preference-ordered Fuzzy Data Tables

The preference-ordered fuzzy data table (POFDT) is a further generalization of POUDT. An
approach for dealing with fuzzy information in PODT has been proposed in [32]. In this section,
we propose an alternative based on our logical formalism. For any domain V , let NF(V ) denote
the set of all normalized fuzzy subsets of V . Recall that a fuzzy subset of domain V is normalized
if supx∈V µ(x) = 1, where µ is the membership function of the fuzzy subset. A POFDT is a tuple

T = (U,A, {(Vi,�i) | i ∈ A}, {fi | i ∈ A}),
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Figure 3.2: The long-term performance prediction phase of the recruitment process

where U,A, {(Vi,�i) | i ∈ A} are defined as above, and for each i ∈ A, fi : U → NF(Vi).
For the representation of rules induced from POFDT, we can imagine several generalized

decision languages, such as those introduced in [58, 59] and [16]. However, for simplicity, we use
the syntax of PODL and interpret the wffs of PODL with respect to POFDT. Thus, the language
of preference-ordered fuzzy decision logic (POFDL) is simply the language of PODL.

For the semantics of POFDL, we define the valuation function with respect to a POFDT over
the wffs of POFDL. The function is denoted by ET and defined by

1. ET (x, (≥i, v)) = inf{1 − µxi (vi) | vi ∈ Vi, vi 6�i v}, where µxi is the membership function of
fi(x);

2. ET (x, (≤i, v)) = inf{1 − µxi (vi) | vi ∈ Vi, vi 6�i v}, where µxi is the membership function of
fi(x);

3. ET (x,¬ϕ) = 1− ET (x, ϕ);

4. ET (x, ϕ ∧ ψ) = ET (x, ϕ)⊗ ET (x, ψ), where ⊗ : [0, 1]× [0, 1] → [0, 1] is a t-norm1; and

1A binary operation ⊗ is a t-norm iff it is associative, commutative, and increasing in both places, and 1⊗a = a
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5. ET (x, ϕ ∨ ψ) = ET (x, ϕ) ⊕ ET (x, ψ), where ⊕ is the t-conorm defined by a ⊕ b = 1 − (1 −
a)⊗ (1− b).

Note that, if we consider the membership function µxi as a possibility distribution on the domain
Vi, ET (x, (≥i, v)) corresponds to the necessity measure [96] of the subset {vi ∈ Vi | vi �i v}. The
same remark holds for ET (x, (≤i, v)).

The valuation function can be extended to cover the POFDL rules by the following equation

ET (x, ϕ −→ ψ) = ET (x, ϕ) →⊗ ET (x, ψ),

where →⊗: [0, 1] × [0, 1] → [0, 1] is the residuated implication function for ⊗, defined as a →⊗
b = sup{x | x ⊗ a ≤ b}. As usual, we can omit the subscript T from ET if this does not cause
confusion.

The notions of validity, support, and confidence can be modified as follows.

Definition 3.2 Let Φ2 be the set of all POFDL rules and T be a POFDT. Then

1. the validity function valT : Φ2 → [0, 1] is

valT (ϕ −→ ψ) = ⊗x∈UET (x, ϕ −→ ψ);

2. the absolute support function aspT : Φ2 → [0, |U |] is

aspT (ϕ −→ ψ) =
∑
x∈U

ET (x, ϕ ∧ ψ);

3. the relative support function rspT : Φ2 → [0, 1] is

rspT (ϕ −→ ψ) =

∑
x∈U ET (x, ϕ ∧ ψ)

|U |
; and

4. the confidence function cfdT : Φ2 → [0, 1] is

cfdT (ϕ −→ ψ) =

∑
x∈U ET (x, ϕ ∧ ψ)∑
x∈U ET (x, ϕ)

.

Example 3.3 We use a project evaluation system to illustrate POFDT and POFDL. Assume
some projects are evaluated with respect to originality, presentation, and technical feasibility.
The set of attributes is the same as in Example 2.1. The domains of values of these attributes are
[0, 9] endowed with ordinary ordering of real numbers. However, due to the difficulty of precise
evaluation, the attribute values for these projects are fuzzy subsets represented by linguistic labels
{a (excellent), b (good), c (fair), d (poor)}. The membership functions of these subsets are given
in Figure 3.3, and the evaluation results are presented in Table 3.

The membership functions are defined by

µa(v) =

{
v−6
3

if 6 ≤ v ≤ 9
0 elsewhere

and 0⊗ a = 0 for all a ∈ [0, 1].
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µb(v) =


9−v
3

if 6 ≤ v ≤ 9
v−3
3

if 3 ≤ v ≤ 6
0 elsewhere

µc(v) =


6−v
3

if 3 ≤ v ≤ 6
v
3

if 0 ≤ v ≤ 3
0 elsewhere

µd(v) =

{
3−v
3

if 0 ≤ v ≤ 3
0 elsewhere

Let us now consider three POFDL atomic formulas: ϕ1 = (≥o, 8), ϕ2 = (≥t, 4), and ψ = (≥d, 6).

Table 3.2: A data table for project evaluation

U \ A o p t d
x1 a a b a
x2 b c b b
x3 a b c b
x4 c c c c
x5 c d c d
x6 b d c d
x7 b c c c
x8 a d c c

The truth value of an atomic formula for an object depends on the attribute values of the object
as follows:

ET (x, (≥i, 8)) ET (x, (≥i, 4)) ET (x, (≥i, 6))
fi(x) = a 1/3 1 1
fi(x) = b 0 2/3 0
fi(x) = c 0 0 0
fi(x) = d 0 0 0

If we use the Gödel t-norm and implication [40] defined by

a⊗ b = min(a, b), and

a→⊗ b =

{
1 if a ≤ b
b if a > b

,
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we can obtain the truth values of the wffs of the objects as follows

ϕ1 ϕ2 ψ ϕ1 ∧ ϕ2 ϕ1 ∧ ϕ2 ∧ ψ ϕ1 ∧ ϕ2 −→ ψ
x1 1/3 2/3 1 1/3 1/3 1
x2 0 2/3 0 0 0 1
x3 1/3 0 0 0 0 1
x4 0 0 0 0 0 1
x5 0 0 0 0 0 1
x6 0 0 0 0 0 1
x7 0 0 0 0 0 1
x8 1/3 0 0 0 0 1

Therefore, if r is the rule ϕ1 ∧ϕ2 −→ ψ, we have valT (r) = 1, aspT (r) = 1/3, rspT (r) = 1/24, and
cfdT (r) = 1.

Note that, though POFDT is a generalization of POUDT, the quantitative measures of POFDL
are not calculated through the completions of POFDT as in the case of POUDT. In fact, it is
unclear how the notion of completion can be generalized to POFDT. We can envision at least
two possibilities. One way is to consider a completion of a POFDT as a pair (T, c), where T is
a classical DT and c ∈ [0, 1]; the other way is to define it as a pair (T, µ), where T is a classical
DT and µ : Uni(T ) → [0, 1]. Based on these definitions, we can derive the bounds of quantitative
measures of POFDL rules as in Proposition 3.2. However, the detailed definitions and derivations
of such results will be addressed in our future research.

3.3.1 The running scenario

Let us now proceed to the project proposal test phase of the KTC recruitment process. In this
phase, the applicants are presented a case-study problem and requested to draft and submit
a project proposal for solving the problem within a fixed time. The submitted proposal are
evaluated with respect to its originality, presentation, and technical soundness and a score in
[0, 9] is given for each of these three aspects. On the other hand, the company has a database of
real-world projects that have been carried out in KTC previously. Each project in the database
has been evaluated with respect to these three aspects and the real degree of success. However,
because it is in general difficult to give a precise score to a real-world project, only qualitative
evaluation using linguistic terms like “excellent”, “good”, etc. is presented in the database. This
means that the database is presented as a POFDT as that in Example 3.3. By using appropriate
data mining algorithms, we can derive a set of POFDL rules. Also, it is still assumed that pre-
determined thresholds for confidences and supports are used to select the decision rules, although
the confidences and supports of these rules are calculated according to fuzzy logic semantics.

Consequently, we obtain a set of POFDL rules that constitute the forth knowledge base KB4

of the recruitment process. Since the syntax of POFDL is exactly the same as that of PODL.
The application of rules to the applicants’ project proposal test results is the same as that in
Example 3.1. Therefore, we will obtain an interval of possible scores pp(x) = [ppl(x), ppu(x)]
for each applicant after the project proposal test phase. The process of this phase is shown
in Figure 3.4, where the green part shows that the database contains only qualitative (fuzzy)
evaluations of past projects.
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Figure 3.4: The project proposal test phase of the recruitment process

3.4 Pairwise Comparison Decision Logic

[29, 30, 31] proposed the pairwise comparison table (PCT) to handle multicriteria choice or ranking
problems. In a PCT, the strength of preferences between objects, instead of the evaluation scores
of objects, are stored with respect to each criterion. Formally, a PCT is a tuple

T = (U,A, {Hi | i ∈ A}, {fi | i ∈ A}),

where U and A are defined as above; and for each i ∈ A, Hi is a finite set of integers, and
fi : U × U → Hi encodes the preferential information2. Each Hi denotes a different grade of
preference (such as “very weak preference”, “weak preference”, “strong preference”, etc.) with
respect to the criterion i. If fi(x, y) = h > 0, then x is preferred to y by degree h with respect
to the criterion i. If fi(x, y) = h < 0, then x is not preferred to y by degree h with respect to
the criterion i. If fi(x, y) = 0, then x is similar to y with respect to the criterion i. A PCT is
coherent if for each i ∈ A and x, y ∈ U , fi(x, y) > 0 implies fi(y, x) ≤ 0 and fi(x, y) < 0 implies
fi(y, x) ≥ 0. In this chapter, we only consider a coherent PCT.

2Without loss of generality, we slightly change the original definition in [29, 30, 31]
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To represent rules induced from a PCT, we propose pairwise comparison decision logic (PCDL).
An atomic formula of PCDL is a descriptor of the form (i,≥h) or (i,≤h), where i ∈ A and h ∈ Hi,
and the wffs and rules of PCDL are defined in the same way as those for the other decision logic
languages discussed in this chapter. However, unlike other logics, where wffs are evaluated with
respect to an object, the wffs of PCDL are evaluated with respect to a pair of objects. More
precisely, the satisfaction of a wff with respect to a pair of objects (x, y) is defined as follows:

1. (x, y) |= (i,≥h) iff fi(x, y) ≥ h,

2. (x, y) |= (i,≤h) iff fi(x, y) ≤ h,

3. (x, y) |= ¬ϕ iff (x, y) 6|= ϕ,

4. (x, y) |= ϕ ∧ ψ iff (x, y) |= ϕ and (x, y) |= ψ,

5. (x, y) |= ϕ ∨ ψ iff (x, y) |= ϕ or (x, y) |= ψ.

If ϕ is a PCDL wff and T is a PCT, the set mT (ϕ) defined by:

mT (ϕ) = {(x, y) ∈ U × U | (x, y) |= ϕ} (3.1)

is called the meaning set of the formula ϕ in T . If T is understood, we simply write m(ϕ).

Definition 3.3 Let Φ3 be the set of all PCDL rules and T = (U,A, {Hi | i ∈ A}, {fi | i ∈ A}) be
a PCT. Then,

1. the rule ϕ −→ ψ is valid in T iff mT (ϕ) ⊆ mT (ψ);

2. the absolute support function aspT : Φ3 → ℵ is

aspT (ϕ −→ ψ) = |mT (ϕ ∧ ψ)|;

3. the relative support function rspT : Φ3 → [0, 1] is

rspT (ϕ −→ ψ) =
|mT (ϕ ∧ ψ)|

|U |2
; and

4. the confidence function cfdT : Φ3 → [0, 1] is

cfdT (ϕ −→ ψ) =
|mT (ϕ ∧ ψ)|
|mT (ϕ)|

.

Note that the confidence function for PCDL rules was previously used to define the variable
consistency model of a PCT [81].

Without loss of generality, we can rename the elements of U as natural numbers from 0 to
|U | − 1. Then, each fi can be seen as a |U | × |U | matrix Mi over domain Hi. Thus, we can
employ matrix algebra to test the validity of a rule and calculate its support and confidence in an
analogous way to that proposed in [55, 56].

By using PCDL, the three types of decision rules mentioned in [34] can be represented as
follows:
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1. D≥-decision rules: ∧
i∈C

(i,≥hi
) −→ (d,≥1),

2. D≤-decision rules: ∧
i∈C

(i,≤hi
) −→ (d,≤−1),

3. D≥≤-decision rules: ∧
i∈C1

(i,≥hi
) ∧

∧
i∈C2

(i,≤hi
) −→ (d,≥1) ∨ (d,≤−1),

where C,C1, and C2 ⊆ A are sets of criteria, and d ∈ A is the decision attribute. We assume
that {−1, 1} ⊆ Hd so that fd(x, y) = 1 means that x outranks y, and fd(x, y) = −1 means that y
outranks x.

Example 3.4 Let us define a PCT from the PODT introduced in Example 3.1. The PCT is
defined as

(U,A, {Hi | i ∈ A}, {f ′i | i ∈ A}),
where U and A are defined as in Example 2.1, Hi = {−3,−2,−1, 0, 1, 2, 3}, and f ′i is defined as
f ′i(x, y) = fi(x)− fi(y) for all x, y ∈ U and i ∈ A, where fi is also defined as in Example 2.1. Let
us consider the following two rules:

r1 = (o,≥2) −→ (d,≥1),

r2 = (p,≤−2) −→ (d,≤0).

Then, we have
asp rsp cfd

r1 7 7% 7
8

r2 15 15% 1

Note that the rule r2 is valid, even though it only has a support value of 0.15. Furthermore, since
in this example, m((d,≥1) ∨ (d,≤0)) = U × U holds, the D≥≤-decision rules are always valid and
have a confidence value equal to 1.

3.4.1 The running scenario

We are now at the last phase of the KTC recruitment process—the decision phase. Up to now, we
have three sets sp(x), lp(x), and pp(x) associated with each applicant, where sp(x) and lp(x) are
both subsets of the set of ranks {A,B,C,D}, and pp(x) is a sub-interval of the scores [0, 9]. The
three sets indicate the potential of an applicant to some extent. We assume that such data for the
present employees of the company is also kept and stored in the historical recruitment database.
Furthermore, for the present employees, we have also the data of their actual performance evalua-
tion. For any two employees x and y, we can compare their short-term or long-term performance
prediction set by using the following definition:

spc(x, y) = |{(v1, v2) | v1 ∈ sp(x), v2 ∈ sp(y), v1 �d v2}|−|{(v1, v2) | v1 ∈ sp(x), v2 ∈ sp(y), v2 �d v1}|,
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lpc(x, y) = |{(v1, v2) | v1 ∈ lp(x), v2 ∈ lp(y), v1 �d v2}|−|{(v1, v2) | v1 ∈ lp(x), v2 ∈ lp(y), v2 �d v1}|.
Intuitively, spc(x, y) (or lpc(x, y)) is the number of possibilities that x is better than y minus
the number of possibilities that y is better than x. The comparison of pp(x) and pp(y) is a
bit complicated since they are continuous intervals instead of discrete sets. However, the basic
principle is the same. To define ppc(x, y), we simply consider a subset like {(v1, v2) | v1 ∈
pp(x), v2 ∈ pp(y), v1 �d v2} as an area on the two-dimensional space and compare these areas. An
example is shown in Figure 3.5, where the possible score of x, denoted by s(x), is in the interval
[lx, ux]. In this example, ppc(x, y) is equal to (the area of ABC−the area of ACDE). Furthermore,

lx ux

ly

uy

s(x) = s( y)

s(x) > s( y)

s(x) < s( y)

A B

C

D E

Figure 3.5: The comparison of possible scores s(x) and s(y)

the performance evaluation of two employees can be compared and defined by pec(x, y) = 1
if x performs better than y, pec(x, y) = −1 if y performs better than x, and pec(x, y) = 0 if
their performances are the same. Thus, from the historical recruitment database and employees’
performance evaluation database, we can retrieved a PCT including three condition attributes
spc, lpc, ppc and one decision attribute pec. By employing DRSA data mining approach to the
PCT, we can derive a set of PCDL rules, which are used to constitute the fifth knowledge base
KB5 of the recruitment process. A typical rule in KB5 may look like this:

(spc,≥4) ∧ (lpc,≥3) ∧ (ppc,≥2 0) −→ (pec,≥1).
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Now, given the associated sp, lp, and pp sets for each applicant obtained in the previous phases,
we can pairwisely compare any two applicants and find their corresponding spc, lpc, and ppc. The
application of the rules in KB5 will then result in a (possibly partial) ordering of the applicants.
The ordering � is derived for any two applicants x and y in the following way:

• if (x, y) |= (pec,≥1), then x � y;

• if (x, y) |= (pec,≥0), then x � y;

• if (x, y) |= (pec,≤0), then y � x;

• if (x, y) |= (pec,≤−1), then y � x.

Based on such an ordering, the recruiters will interview with the applicants sequentially and make
their final decision accordingly. The process of the final decision phase is shown in Figure 3.6.
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Figure 3.6: The final decision phase of the recruitment process
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3.5 Summary and Remarks

In this chapter, we present some logics that are useful in the representation of rules induced
from preference-ordered data tables. Such data tables are commonly used in MCDA. The main
advantage of using logic is its syntax and semantics are precise. As DL is a precise way to represent
decision rules induced from classical data tables, we use PODL and PCDL to reformulate the
decision rules induced from PODT and PCDT in DRSA respectively. Though this seems a trivial
step, it maps the decision rules induced from PODT and PCDT into precise logical formulas
and gives them a formal semantics. The less trivial task is to generalize PODL to POUDL and
POFDL. While the issue of missing values has been addressed in classical DT or PODT, we deal
with uncertain values or fuzzy values. In particular, we derive the closed form for the lower and
upper bounds of the confidence and support values of POUDL rules in each precise completion of
the POUDT. We also present the semantics of POFDL rules based on possibility theory.

While this chapter is primarily concerned with the syntax and declarative semantics of the
logics, efficient algorithms for data mining based on the logical representations are also urgently
needed. Developing such algorithms is an important research direction.

In addition to decision logic, information logic is another kind of logic arising from data tables
[14]. The semantics of information logic is the same as the Kripke semantics for modal logics. We
believe that it would also be interesting to explore information logics with respect to dominance
relations.
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Chapter 4

Arrow Decision Logic for Relational
Information Systems

In rough set theory, objects are partitioned into equivalence classes based on their attribute values,
which are essentially functional information associated with the objects. Though many databases
contain only functional information about objects, data about the relationships between objects
has become increasingly important in decision analysis. A remarkable example is social network
analysis, in which the principal types of data are attribute data and relational data.

To represent attribute data, a data table in rough set theory consists of a set of objects and
a set of attributes, where each attribute is considered as a function from the set of objects to the
domain of values for the attribute. Hence, such data tables are also called functional information
systems (FIS), and rough set theory can be viewed as a theory of functional granulation. Recently,
granulation based on relational information between objects, called relational granulation, has
been studied by Liau and Lin [57]. To facilitate further study of relational granulation, it is
necessary to represent and reason about data in relational information systems (RIS).

In FIS, the basic entities are objects, while DL formulas describe the properties of such objects,
thus, the truth values of DL formulas are evaluated with respect to these objects. To reason about
RIS, we need a language that can be interpreted in the domain of pairs of objects, since relations
can be seen as properties of such pairs. Arrow logic (AL) [61, 87] fulfills this need perfectly. Hence,
in this chapter, we propose arrow decision logic (ADL), which combines the main features of DL
and AL, to represent the decision rules induced from RIS. The atomic formulas of ADL have the
same descriptor form as those in DL; while the formulas of ADL are interpreted with respect to
each pair of objects, just as in the pair frame of AL [61, 87]. The semantic models of ADL are
RIS; thus, ADL can represent knowledge induced from systems containing relational information.

The remainder of this chapter is organized as follows. In Section 4.1, we give a precise definition
of RIS. We study the relationship between these two kinds of information system and present some
practical examples. In Section 4.2, we show how indiscernibility relations can be defined based
on both FIS and RIS. In Section 4.3, we present the syntax and semantics of ADL. A complete
axiomatization of ADL based on the combination of DL and AL axiomatic systems is presented. In
Section 4.4, we define some quantitative measures for the rules of ADL and discuss the application
of ADL to data analysis. Finally, we present our conclusions in Section 4.5.
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4.1 Information Systems

Information systems are fundamental to rough set theory, in which the approximation space can
be derived from attribute-value information systems [67]. In this section, we propose a gener-
alization of functional information systems, namely, relational information systems. We present
the algebraic relationship between these two kinds of information system, and several practical
examples are employed to illustrate the algebraic notions.

4.1.1 Functional and relational information systems

We have seen that a data table is formally defined as an attribute-value information system and
taken as the basis of the approximation space in rough set theory [67]. To emphasize the fact that
each attribute in an attribute-value system is associated with a function on the set of objects, data
tables are called functional information systems in this chapter. Thus, a functional information
system (FIS) is simply a data table Tf = (U,A, {Vi | i ∈ A}, {fi | i ∈ A}).

In an FIS, the information about an object is consisted of the values of its attributes. Thus,
given a subset of attributes B ⊆ A, we can define the information function associated with B as
InfB : U →

∏
i∈B Vi,

InfB(x) = (fi(x))i∈B. (4.1)

Example 4.1 One of the most popular applications in data mining is association rule mining
from transaction databases [1, 41]. A transaction database consists of a set of transactions, each
of which includes the number of items purchased by a customer. Each transaction is identified by
a transaction id (tid). Thus, a transaction database is a natural example of an FIS, where

• U : the set of transactions, {tid1, tid2, · · · , tidn};

• A: the set of possible items to be purchased;

• Vi: {0, 1, 2, · · · ,maxi}, where maxi is the maximum quantity of item i; and

• fi : U → Vi describes the transaction details of item i such that fi(tid) is the quantity of
item i purchased in tid.

Though much information associated with individual objects is given in a functional form,
it is sometimes more natural to represent information about objects in a relational form. For
example, in a demographic database, it is more natural to represent the parent-child relationship
as a relation between individuals, instead of an attribute of the parent or the children. In some
cases, it may be necessary to use relational information simply because the exact values of some
attributes may not be available. For example, we may not know the exact ages of two individuals,
but we do know which one is older. These considerations motivate the following definition of an
alternative kind of information system, called an RIS.

Definition 4.1 A relational information system (RIS) is a quadruple

Tr = (U,A, {Hi | i ∈ A}, {ri | i ∈ A}),

where
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• U is a nonempty set, called the universe,

• A is a nonempty finite set of attributes,

• for each i ∈ A, Hi is the set of relational indicators for i, and

• for each i ∈ A, ri : U × U → Hi is a total function.

A relational indicator in Hi is used to indicate the extent or degree to which two objects are
related according to an attribute i. Thus, ri(x, y) denotes the extent to which x is related to y
on the attribute i. When Hi = {0, 1}, then, for any x, y ∈ U , x is said to be i-related to y iff
ri(x, y) = 1.

Example 4.2 Continuing with Example 2.1, assume that the reviewer is asked to compare the
quality of the ten papers, instead of assigning scores to them. Then, we may obtain an RIS
Tr = (U,A, {Hi | i ∈ A}, {ri | i ∈ A}), where U and A are defined as in Example 2.1, Hi = {0, 1},
and ri : U × U → {0, 1} is defined by

ri(x, y) = 1 ⇔ fi(x) ≥ fi(y)

for all i ∈ A.

4.1.2 Relationship between information systems

Before exploring the relationship between FIS and RIS, we introduce the notion of information
system morphism (IS-morphism).

Definition 4.2

1. Let Tf = (U,A, {Vi | i ∈ A}, {fi | i ∈ A}), and T ′
f = (U ′, A′, {V ′

i | i ∈ A′}, {f ′i | i ∈ A′}) be
two FIS; then an IS-morphism from Tf to T ′

f is a (|A|+ 2)-tuple of functions

σ = (σu, σa, (σi)i∈A)

such that σu : U → U ′, σa : A→ A′ and σi : Vi → Vσa(i) (i ∈ A) satisfy

f ′σa(i)(σu(x)) = σi(fi(x)) (4.2)

for all x ∈ U and i ∈ A.

2. Let Tr = (U,A, {Hi | i ∈ A}, {ri | i ∈ A}), and T ′
r = (U ′, A′, {H ′

i | i ∈ A′}, {r′i | i ∈ A′}) be
two RIS; then an IS-morphism from Tr to T ′

r is a (|A|+ 2)-tuple of functions

σ = (σu, σa, (σi)i∈A)

such that σu : U → U ′, σa : A→ A′ and σi : Hi → Hσa(i) (i ∈ A) satisfy

r′σa(i)(σu(x), σu(y)) = σi(ri(x, y)) (4.3)

for all x, y ∈ U and i ∈ A.
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3. If all functions in σ are 1-1 and onto, then σ is called an IS-isomorphism.

An IS-morphism stipulates the structural similarity between two information systems of the
same kind. Let T and T ′ be two such systems. Then we write T ⇒ T ′ if there exists an IS-
morphism from T to T ′, and T ' T ′ if there exists an IS-isomorphism from T to T ′. Note that '
is an equivalence relation, whereas ⇒ may be asymmetrical. Sometimes, we need to specify the
properties of an IS-morphism. In such cases, we write T ⇒p1,p2 T

′ to indicate that there exists
an IS-morphism σ from T to T ′ such that σu and σa satisfy properties p1 and p2 respectively. In
particular, we need the notation T ⇒id,onto T

′, which means that σu is the identity function of U
(i.e., σu(x) = id(x) = x for all x ∈ U) and σa is an onto function.

The relational information in an RIS may come from different sources. One of the most
important sources may be the functional information. For various reasons, we may want to
represent relational information between objects based on a comparison of some of the objects’
attribute values. If all the relational information of an RIS is derived from an FIS, then it is said
that the former is an embedment of the latter. Formally, this leads to the following definition.

Definition 4.3 Let Tf = (U,A1, {Vi | i ∈ A1}, {fi | i ∈ A1}) be a FIS, and Tr = (U,A2, {Hi | i ∈
A2}, {ri | i ∈ A2}) be an RIS; then, an embedding from Tf to Tr is a |A2|-tuple of pairs

ε = ((Bi, Ri))i∈A2 ,

where each Bi ⊆ A1 is nonempty and each Ri :
∏

j∈Bi
Vj ×

∏
j∈Bi

Vj → Hi satisfies

ri(x, y) = Ri(InfBi
(x), InfBi

(y)) (4.4)

for all x, y ∈ U . Tr is said to be an embedment of Tf if there exists an embedding from Tf to Tr.

Note that the embedding relationship is only defined for two information systems with the
same universe. Intuitively, Tr is an embedment of Tf if all relational informational in Tr is based
on a comparison of some attribute values in Tf . Thus, for each attribute i in Tr, we can find
a subset of attributes Bi in Tf such that the extent to which x is i-related to y is completely
determined by comparing InfBi

(x) and InfBi
(y) in some particular way. We write Tf B Tr if Tr

is an embedment of Tf .

Example 4.3 [Pairwise comparison tables] Let Tf denote the FIS in Example 2.1, and Tr =
(U,A, {Hi | i ∈ A}, {ri | i ∈ A}), where Hi = {−3,−2,−1, 0, 1, 2, 3}, and ri is defined as
ri(x, y) = fi(x)− fi(y) for all x, y ∈ U and i ∈ A. Then, the embedding from Tf to Tr becomes

(({o}, Ro), ({p}, Rp), ({t}, Rt), ({d}, Rd)),

where Ri : Vi × Vi → Hi is defined as

Ri(v1, v2) = v1 − v2

for all i ∈ A. The resultant Tr is an instance of the pairwise comparison table (PCT) used in
MCDA [29, 30, 31, 33, 34, 35, 36, 82]. A similar embedment is used to define D-reducts (distance
reducts) in [77], where a relationship between objects x and y exists iff the distance between fi(x)
and fi(y) is greater than a given threshold.
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Example 4.4 [Dimension reduction and information compression] If Tf = (U,A1, {Vi |
i ∈ A1}, {fi | i ∈ A1}) is a high dimensional FIS, i.e., |A1| is very large, then we may want
to reduce the dimension of the information system. Furthermore, for security reasons, we may
want to compress information in the FIS. An embedment based on rough set theory that can
achieve both dimension reduction and information compression is as follows. First, the set of
attributes, A1, is partitioned into k mutually disjoint subsets, A1 = B1 ∪B2 ∪ · · · ∪Bk, where k is
substantially smaller than |A1|. Second, for 1 ≤ i ≤ k, define Ri :

∏
j∈Bi

Vj ×
∏

j∈Bi
Vj → {0, 1}

as Ri(vi,v
′
i) = 1 iff vi = v′i, where vi,v

′
i ∈

∏
j∈Bi

Vj. Thus, ((Bi, Ri)1≤i≤k) is an embedding from
Tf to Tr = (U,A2, {Hi | i ∈ A2}, {ri | i ∈ A2}), where A2 = {1, 2, · · · , k}, Hi = {0, 1}, and
ri(x, y) = 1 iff InfBi

(x) = InfBi
(y). Note that ri is actually the characteristic function of the

Bi-indiscernibility relation in rough set theory. Consequently, the dimension of the information
system is reduced to k so that only the indiscernibility information with respect to some subsets of
attributes is kept in the RIS.

Example 4.5 [Discernibility matrices] In [78], discernibility matrices are defined to analyze
the complexity of many computational problems in rough set theory. This is especially useful in
the computation of reduct in rough set theory. According to [78], given an FIS Tf = (U,A1, {Vi |
i ∈ A1}, {fi | i ∈ A1}), its discernibility matrix is a |U | × |U | matrix D such that

Dxy = {i ∈ A1 | fi(x) 6= fi(y)}

for any x, y ∈ U . In other words, the (x, y) entry of the discernibility matrix is the set of attributes
that can discern between x and y. More generally, we can define a discernibility matrix D(B) with
respect to any subset of attributes, B ⊆ A1, such that

D(B)xy = {i ∈ B | fi(x) 6= fi(y)}

for any x, y ∈ U . Let B1, · · · , Bk be a sequence of subsets of attributes. Then, the sequence
of discernibility matrices, D(B1) · · · , D(Bk), can be combined as an RIS. The RIS becomes an
embedment of Tf by the embedding ((Bi, Ri)1≤i≤k), such that Ri :

∏
j∈Bi

Vj ×
∏

j∈Bi
Vj → 2A1 is

defined by
Ri(vi,v

′
i) = {j ∈ Bi | vi(j) 6= v′i(j)},

where v(j) denotes the j-component of the vector v.

Next, we show that the embedding relationship is preserved by IS-morphism transformation in
some conditions. In the following theorem and corollary, we assume that Tf , T

′
f , Tr, and T ′

r have
the same universe U . Thus,

Tf = (U,A1, {Vi | i ∈ A1}, {fi | i ∈ A1}),

T ′
f = (U,A′

1, {V ′
i | i ∈ A′

1}, {f ′i | i ∈ A′
1}),

Tr = (U,A2, {Hi | i ∈ A2}, {ri | i ∈ A2}),

T ′
r = (U,A′

2, {H ′
i | i ∈ A′

2}, {r′i | i ∈ A′
2}).

Theorem 4.1
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1. Tf B Tr and Tr ⇒id,onto T
′
r implies Tf B T ′

r.

2. Tf B Tr and T ′
f ⇒id,onto Tf implies T ′

f B Tr.

Proof: Let ε = ((Bi, Ri))i∈A2 be an embedding from Tf to Tr.

1. If σ = (id, σa, (σi)i∈A2) is an IS-morphism from Tr to T ′
r such that σa is an onto function,

then for each j ∈ A′
2, we can choose an arbitrary ij ∈ A2 such that σa(ij) = j. Let B′

j and
R′
j denote Bij and σij ◦ Rij respectively, then ε′ = ((B′

j, R
′
j))j∈A′

2
is an embedding from Tf

to T ′
r. Indeed, by the definition of σ and ε, we have, for all j ∈ A′

2,

r′j(x, y) = r′σa(ij)
(σu(x), σu(y)) (σu = id, σa(ij) = j)

= σij(rij(x, y)) (Eq. 4.3)
= σij(Rij(InfBij

(x), InfBij
(y))) (Eq. 4.4)

= R′
j(InfB′

j
(x), InfB′

j
(y))) (R′

j = σij ◦Rij)

2. If σ = (id, σa, (σi)i∈A′
1
) is an IS-morphism from T ′

f to Tf such that σa is an onto function,
then for each j ∈ A1, we can choose an arbitrary kj ∈ A′

1 such that σa(kj) = j. For each
i ∈ A2, let B′

i = {kj | j ∈ Bi} and define R′
i :

∏
kj∈B′

i
V ′
kj
×

∏
kj∈B′

i
V ′
kj
→ Hi by

R′
i((v

′
kj

)j∈Bi
, (w′

kj
)j∈Bi

) = Ri((σkj
(v′kj

))j∈Bi
, (σkj

(w′
kj

))j∈Bi
). (4.5)

Then, ε′ = ((B′
i, R

′
i))i∈A2 is an embedding from T ′

f to Tr. This can be verified for all i ∈ A2

as follows:

ri(x, y) = Ri(InfBi
(x), InfBi

(y)) (Eq. 4.4)
= Ri((fj(x))j∈Bi

, (fj(y))j∈Bi
) (Eq. 4.1)

= Ri((σkj
(f ′kj

(x)))j∈Bi
, (σkj

(f ′kj
(y)))j∈Bi

) (Eq. 4.2)

= R′
i((f

′
kj

(x))kj∈B′
i
, (f ′kj

(y))kj∈B′
i
) (Eq. 4.5;B′

i, def.)

= R′
i(InfB′

i
(x), InfB′

i
(y)) (Eq. 4.1)

The theorem can be represented by the following commutative diagram notation commonly
used in category theory [5].

T ′
f

⇒id,onto
> Tf

Tr

B

∨

⇒id,onto

>

B
>

T ′
r

B

>

When the IS-morphism between two systems is an IS-isomorphism, we can derive the following
corollary.

Corollary 4.1 If Tf B Tr, Tf ' T ′
f and Tr ' T ′

r, then T ′
f B T ′

r
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The commutative diagram of the corollary is:

Tf
B

> Tr

T ′
f

'

B
> T ′

r

'

As shown in Example 4.4, an RIS may contain a summary of information about an FIS.
Therefore, the RIS can serve as a tool for information summarization. If Tf B Tr, then the
information in Tr is less specific than that in Tf , i.e., the information is reduced. If as much
information as possible is kept during the reduction, the embedding is called a trivial embedding.
Formally, a trivial embedding from Tf = (U,A1, {Vi | i ∈ A1}, {fi | i ∈ A1}) to Tr = (U,A2, {Hi |
i ∈ A2}, {ri | i ∈ A2}) is an embedding ε = ((Bi, Ri))i∈A2 such that each Ri is a 1-1 function. Tr
is called a trivial embedment of Tf if there exists a trivial embedding from Tf to Tr. A trivial
embedment plays a similar role to the initial algebra [11] in a class of RIS with the same attributes.
This is shown in the next theorem, which easily follows from the definitions.

Theorem 4.2 Let Tf = (U,A1, {Vi | i ∈ A1}, {fi | i ∈ A1}), Tr = (U,A2, {Hi | i ∈ A2}, {ri | i ∈
A2}), and T ′

r = (U,A2, {H ′
i | i ∈ A2}, {r′i | i ∈ A2}) be information systems. If ε = ((Bi, Ri))i∈A2

is a trivial embedding from Tf to Tr and ε′ = ((Bi, R
′
i))i∈A2 is an embedding from Tf to T ′

r, then
Tr ⇒ T ′

r.

Since embedding is an information reduction operation, many FIS may be embedded into the
same RIS. Consequently, in general, it is not easy to recover an FIS that has been embedded
into a given RIS. However, by applying the techniques of constraint solving, we can usually find
possible candidates that have been embedded into a given RIS. More specifically, if the universe,
the set of attributes, and the domain of values for each attribute of an FIS are known, then, given
an embedding and the resultant embedded RIS, the problem of finding the FIS that is embedded
into the given RIS is a constraint satisfaction problem (CSP). The following example illustrates
this point.

Example 4.6 Let U = {1, 2, 3, 4, 5, 6}, A = {a, s}, Va = {1, 2, · · · , 120}, and Vs = {M,F} be,
respectively, the universe, the set of attributes, and the domains of values for attributes a and
s, where a denotes age and s denotes sex. Assume the RIS given in Table 4.1 results from an
embedding (({a}, Ra), ({s}, Rs)), where Ri(v1, v2) = 1 iff v1 = v2.

Then, to find an FIS Tf = (U,A, {Vi | i ∈ A}, {fi | i ∈ A}) such that the RIS is the embedment
of Tf by the above-mentioned embedding, we have to solve the following finite domain CSP, where
vij is a variable denoting the value fj(i) to be found:

via ∈ {1, 2, · · · , 120}, vis ∈ {M,F}, 1 ≤ i ≤ 6,
v1a = v2a, v3a = v4a, v5a = v6a,
via 6= vja, (i, j) 6= (1, 2), (3, 4), or (5, 6),
v1s = v6s 6= v2s = v3s = v4s = v5s.
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Table 4.1: An RIS obtained from a given embedding

a 1 2 3 4 5 6
1 1 1 0 0 0 0
2 1 1 0 0 0 0
3 0 0 1 1 0 0
4 0 0 1 1 0 0
5 0 0 0 0 1 1
6 0 0 0 0 1 1

s 1 2 3 4 5 6
1 1 0 0 0 0 1
2 0 1 1 1 1 0
3 0 1 1 1 1 0
4 0 1 1 1 1 0
5 0 1 1 1 1 0
6 1 0 0 0 0 1

4.2 General Theory of Granulation

In the preceding section, we showed that both FIS and RIS are useful formalisms for data rep-
resentation. However, to achieve full generality, we can combine these two information systems.
Let us define a hybrid information system (HIS) T as

(U,A ∪B, {Vi | i ∈ A}, {Hi | i ∈ B}, {fi | i ∈ A}, {ri | i ∈ B})

such that (U,A, {Vi | i ∈ A}, {fi | i ∈ A}) is an FIS and (U,B, {Hi | i ∈ B}, {ri | i ∈ B}) is an
RIS. In general, A and B are disjoint; however, this is not theoretically mandatory.

Since an HIS contains both functional and relational information, the indiscernibility relation
defined in rough set theory must be generalized to accommodate both kinds of information. To
present the general definition of an indiscernibility relation, we first generalize and rewrite the
Kripke model for modal logic introduced in Chapter 1. In the current context, a Kripke model is
a triple (U, (Ri)i∈I , (Pi)i∈J), where I and J are two sets of indices, Ri ⊆ U ×U is a binary relation
on U for i ∈ I, and Pi ⊆ U is a subset of U for i ∈ J . The model introduced in Chapter 1 has only
an accessibility relation. Here, we allow multiple accessibility relations and the relations are not
necessarily equivalence relations, so the model is for polymodal logic. Furthermore, we use Pi to
denote the set of possible worlds assigned to the primitive proposition pi by the truth assignment
π in the model of Chapter 1. Obviously, a Kripke model is an HIS in which the domains of the
attributes and the relational indicators are all {0, 1}. On the other hand, we can transform an HIS
into a Kripke model in the following way. Given T = (U,A ∪ B, {Vi | i ∈ A}, {Hi | i ∈ B}, {fi |
i ∈ A}, {ri | i ∈ B}), let I = {(i, h) | i ∈ B, h ∈ Hi} and J = {(j, v) | j ∈ A, v ∈ Vj}, and define
Ri,h and Pj,v as

(x, y) ∈ Ri,h iff ri(x, y) = h and x ∈ Pj,v iff fj(x) = v

respectively. Then, (U, (Ri)i∈I , (Pi)i∈J) is a Kripke model corresponding to T . Thus, without loss
of generality, we can develop a theory of granulation based on Kripke models, instead of general
HIS.

To define the indiscernibility relation in a Kripke model (U, (Ri)i∈I , (Pi)i∈J), we need the
notions of propositional and relational expressions. The sets of relational expressions (Π) and
propositional expressions (Φ) based on I and J are defined by the following formation rules:

Π := i | ι | ᾱ | α` | α t β | α u β | α · β,
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where i ∈ I and α, β ∈ Π; and

Φ := j | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | 〈α〉ϕ,

where j ∈ J , α ∈ Π, and ϕ, ψ ∈ Φ. For each α ∈ Π, we can define the corresponding binary
relation Rα on U recursively as follows:

Rι = {(x, x) | x ∈ U},
Rᾱ = Rα = U × U −Rα,
Rα` = R`

α = {(x, y) | (y, x) ∈ Rα},
Rαtβ = Rα ∪Rβ,
Rαuβ = Rα ∩Rβ,
Rα·β = Rα ·Rβ = {(x, y) | ∃z((x, z) ∈ Rα ∧ (z, y) ∈ Rβ)};

and for each ϕ ∈ Φ, we can define the corresponding proposition (subset) Pϕ by

P¬ϕ = U − Pϕ,
Pϕ∨ψ = Pϕ ∪ Pψ,
Pϕ∧ψ = Pϕ ∩ Pψ,
P〈α〉ϕ = Rα · Pϕ = {x | ∃y((x, y) ∈ Rα ∧ y ∈ Pϕ)}.

Given a Kripke model (U, (Ri)i∈I , (Pi)i∈J) and a propositional expression ϕ, the indiscernibility
relation ind(ϕ) can be defined easily, as in rough set theory, i.e.,

ind(ϕ) = {(x, y) ∈ U × U | x ∈ Pϕ ⇔ y ∈ Pϕ.}.

However, defining an indiscernibility relation based on relational expressions is more complicated.
Given a relational expression α, we define ind(α) iteratively. First, we define

E0(α) = {(x, x) | x ∈ U}.

Then, for k > 0, we define Ek(α) by the condition: (x, y) ∈ Ek(α) iff there exists a bijective (1-1
and onto) mapping m : Rα(x) → Rα(y) such that (z,m(z)) ∈ Ek−1(α) for all z ∈ Rα(x), where
Rα(x) = {z | (x, z) ∈ Rα} and Rα(y) is defined analogously. Finally, we define

ind(α) =
⋃
k≥0

Ek(α).

Next, we present some formal properties of an indiscernibility relation based on relational expres-
sions. In the following discussion, we assume a fixed relational expression α. Thus, we write Ek
and ind, instead of Ek(α) and ind(α).

Proposition 4.1 For all k ≥ 0, we have

1. Ek ⊆ Ek+1.

2. Ek is an equivalence relation in the sense that it satisfies

(a) reflexivity: (x, x) ∈ Ek;
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(b) symmetry: if (x, y) ∈ Ek, then (y, x) ∈ Ek; and

(c) transitivity: if (x, y), (y, z) ∈ Ek, then (x, z) ∈ Ek

for all x, y, z ∈ U .

3. The indiscernibility relation ind is also an equivalence relation.

For each x ∈ U , let [x]k denote the Ek-equivalence class that contains x. Then, for each
X ⊆ U , we define the multi-set1 X/Ek as {[x]k | x ∈ X}. According to the recursive definition of
Ek, we have the following proposition:

Proposition 4.2 For all k > 0 and x, y ∈ U , (x, y) ∈ Ek iff Rα(x)/Ek−1 = Rα(y)/Ek−1.

The proposition provides an effective procedure for computing ind when U is finite. We start
from E0, and then calculate every Ek by using the previous equivalence relation Ek−1 to find the
multi-sets Rα(x)/Ek−1 for each x ∈ U . The process is repeated until the condition Ek = Ek−1 is
met. The final Ek is equal to ind.

Once the indiscernibility relation based on an expression (either propositional or relational) has
been obtained, we can granulate the universe according to that relation. The granulation results
in a partition of the universe into information granules, which are distinguished by relational or
functional information about the objects.

4.3 Arrow Decision Logic

In the previous section, we demonstrated that FIS and RIS are useful formalisms for data repre-
sentation. However, to represent and reason about knowledge extracted from information systems,
we need a logical language. We have seen that decision logic (DL) can represent and reason about
information in FIS (i.e. data tables).

Since relations can be seen as properties of pairs of objects, to reason about RIS, we need a
language that can be interpreted in the domain of pairs of objects. Arrow logic (AL) language
[61, 87] is designed to describe all things that may be represented in a picture by arrows. Therefore,
it is an appropriate tool for reasoning about RIS.

To represent rules induced from an RIS, we propose arrow decision logic (ADL), derived by
combining the main features of AL and DL. In this section, we introduce the syntax and semantics
of ADL. The atomic formulas of ADL are the same as those in DL; while the formulas of ADL
are interpreted with respect to each pair of objects, as in the pair frames of AL [61, 87].

4.3.1 Syntax and semantics of ADL

An atomic formula of ADL is a descriptor of the form (i, h), where i ∈ A, h ∈ Hi, A is a finite
set of attribute symbols, and for each i ∈ A, Hi is a finite set of relational indicator symbols. In
addition, the wffs of ADL are defined by the formation rules for AL, while the definition of derived
connectives is the same as that in AL.

1A multi-set is a set in which a multiplicity of elements is allowed.
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An interpretation of a given ADL is an RIS, Tr = (U,A, {Hi | i ∈ A}, {ri | i ∈ A}), which
can be seen as a square model of AL. Thus, the wffs of ADL are evaluated in terms of a pair of
objects. More precisely, the satisfaction of a wff with respect to a pair of objects (x, y) in Tr is
defined as follows (again, we omit the subscript Tr):

1. (x, y) |= (i, h) iff ri(x, y) = h,

2. (x, y) |= δ iff x = y,

3. (x, y) |= ¬ϕ iff (x, y) 6|= ϕ,

4. (x, y) |= ϕ ∨ ψ iff (x, y) |= ϕ or (x, y) |= ψ,

5. (x, y) |= ⊗ϕ iff (y, x) |= ϕ,

6. (x, y) |= ϕ ◦ ψ iff there exists z such that (x, z) |= ϕ and (z, y) |= ψ.

Let Σ be a set of ADL wffs; then, we write (x, y) |= Σ if (x, y) |= ϕ for all ϕ ∈ Σ. Also, for a set
of wffs, Σ, and a wff, ϕ, we say that ϕ is an ADL consequence of Σ, written as Σ |= ϕ, if for every
interpretation Tr and x, y in the universe of Tr, (x, y) |= Σ implies (x, y) |= ϕ.

Example 4.7 Let us use a RIS to represent the social network shown in Figure 4.1. The RIS is
characterized by Tr = (U,A, {Hi | i ∈ A}, {ri | i ∈ A}), where

• U = {x1, x2, x3, x4}

• A ={Fr (Friend), Re (Recommendation), Tr (Trust)},

• HFr = HTr = {0, 1}, HRe = {0, 1, 2, 3}, and

• ri is shown in the three tables of the Figure.

By using ADL semantics, we can see, for example,

(x1, x3) |= ((Fr, 1) ◦ (Re, 3)) ∧ (Tr, 1), and (x4, x2) |= ((Fr, 1) ◦ (Re, 2)) ∧ ¬(Tr, 1).

Also, we have the following formulas valid in the RIS:

• ((Fr, 1) ◦ (Re, 3)) −→ (Tr, 1), which means that if someone is strongly recommended by an
agent’s friend(s), then the agent will trust him,

• (Fr, 1) −→ ⊗(Fr, 1) which means that friendship is symmetric, and

• (Fr, 1) −→ (Tr, 1) ∧ (⊗(Tr, 1)), which means that friends trust each other
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Fr x1 x2 x3 x4

x1 1 1 0 0

x2 1 1 0 0

x3 0 0 1 1

x4 0 0 1 1

Re x1 x2 x3 x4

x1 0 0 0 1

x2 0 0 3 0

x3 0 2 0 0

x4 1 0 0 0
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Figure 4.1: An ADL model

4.3.2 Axiomatization

The ADL consequence relation can be axiomatized by integrating the axiomatization of AL and
specific axioms of DL. As shown in [61, 87], the AL consequence relations with respect to full
square models can not be finitely axiomatized by an orthodox derivation system. To develop a
complete axiomatization of AL, an unorthodox inference rule based on a difference operator D

is added to the AL derivation system. The use of such unorthodox rules was first proposed by
Gabbay [25]. The operator is defined in shorthand as follows:

Dϕ = > ◦ ϕ ◦ ¬δ ∨ ¬δ ◦ ϕ ◦ >,

where > denotes any tautology. According to the semantics, Dϕ is true in a pair (x, y) iff there
exists a pair distinct from (x, y) such that ϕ is true in that pair.

The complete axiomatization of ADL consequence relations is presented in Figure 4.2, where
ϕ, ψ, ϕ′, ψ′, and χ are meta-variables denoting any wffs of ADL. The axiomatization consists of
three parts: the propositional logic axioms; the DL and AL axioms; and the inference rules,
including the classical Modus Ponens rule, the universal generalization rule for modal operators,
and the unorthodox rule based on D. The operator D is also utilized in DL3 to spread the axioms
DL1 and DL2 to all pairs of objects. DL3 thus plays a key role in the proof of the completeness
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of the axiomatization. DL1 and DL2 are exactly the specific axioms of DL in [67]. An additional
axiom

¬(i, h) ≡
∨

h′∈Hi,h′ 6=h

(i, h′)

is presented in [67], but it is redundant. The AL axioms and inference rules can be found in [61],
where AL4 is split into two parts and an extra axiom

ϕ ◦ (ψ ◦ (δ ∧ χ)) ⊃ (ϕ ◦ ψ) ◦ (δ ∧ χ)

is given. The extra axiom is called the weak associativity axiom, since it is weaker than the
associativity axiom AL5. We do not need such an axiom, as it is an instance of AL5. The only
novel axiom in our system is DL3. Though it is classified as a DL axiom, it is actually a connecting
axiom between DL and AL.

An ADL derivation is a finite sequence ϕ1, · · · , ϕn such that every ϕi is either an instance of an
axiom or obtainable from ϕ1, · · · , ϕi−1 by an inference rule. The last formula ϕn in a derivation is
called an ADL theorem. A wff ϕ is derivable in ADL from a set of wffs Σ if there are ϕ1, . . . , ϕn
in Σ such that (ϕ1 ∧ . . . ∧ ϕn) ⊃ ϕ is an ADL-theorem. We use ` ϕ to denote that ϕ is an ADL
theorem and Σ ` ϕ to denote that ϕ is derivable in ADL from Σ. Also, we write Σ `AL ϕ if ϕ is
derivable in ADL from Σ without using the DL axioms.

The next theorem shows that the axiomatic system is sound and complete with respect to the
ADL consequence relations.

Theorem 4.3 For any set of ADL wffs Σ ∪ {ϕ}, we have Σ |= ϕ iff Σ ` ϕ.

Proof:

1. Soundness: To show that Σ ` ϕ implies Σ |= ϕ, it suffices to show that all ADL axioms are
valid in any ADL interpretation and that the inference rules preserve validity. The fact that
AL axioms are valid and the inference rules preserve validity follows from the soundness of
AL, since any ADL interpretation is an instance of a square model. Furthermore, it is clear
that DL axioms are valid in any ADL interpretation.

2. Completeness: To prove completeness, we first note that the set of instances of DL axioms
is finite. Let us denote χ by the conjunction of all instances of DL axioms and χ0 by the
conjunction of all instances of axioms DL1 and DL2. If Σ 6` ϕ, then Σ ∪ {χ} 6`AL ϕ. Thus,
by the completeness of AL, we have a pair model M = (U × U,C,R, I, π) and x, y ∈ U
such that (x, y) |=M Σ, (x, y) |=M χ, and (x, y) |=M ¬ϕ. Next, we show that M can be
transformed into an ADL interpretation. From (x, y) |=M χ, we can derive (z, w) |=M χ0 for
all z, w ∈ U by DL3. Thus, for every z, w ∈ U and i ∈ A, there exists exactly one hi,z,w ∈ Hi

such that (z, w) |=M (i, hi,z,w). Consequently, Tr = (U,A, {Hi | i ∈ A}, {ri | i ∈ A}), where
ri(z, w) = hi,z,w for z, w ∈ U and i ∈ A, is an ADL interpretation such that (x, y) |=Tr Σ
and (x, y) |=Tr ¬ϕ. Thus,Σ 6` ϕ implies Σ 6|= ϕ.
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4.4 Discussion and Applications

4.4.1 Discussion

Initially, it seems that an RIS is simply an instance of FIS whose universe consists of pairs of
objects. However, there is a subtle difference between RIS and FIS. In FIS, the universe is an
unstructured set, whereas in RIS, an implicit structure exists in the universe. The structure is
made explicit by modal operators in ADL. For example, if (x, y) is a pair in an RIS, then (x, y)
and (y, x) are considered to be two independent objects from the perspective of FIS; however,
from the viewpoint of RIS, they are the converse of each other.

The difference between FIS and RIS is also reflected by the definition of IS-morphisms. When σ
is an IS-morphism between two RIS, then, for a pair of objects (x, y), if (x, y) is mapped to (z, w),
then (y, x) must be mapped to (w, z) at the same time. However, if these two RIS’s are considered
simply as FIS’s with pairs of objects in their universes and σ is an IS-morphism between these
two FIS’s, then it is possible that σu((x, y)) = (z1, w1) and σu((y, x)) = (z2, w2) without z2 = w1

and/or w2 = z1. In other words, the images of (x, y) and (y, x) may be totally independent if
we simply view an RIS as a kind of FIS. Therefore, even though FIS and RIS are very similar in
appearance, they are mathematically and conceptually different.

In fact, FIS and RIS usually represent different aspects of the information about the objects.
One of the main purpose of this chapter is to consider the relational structures of FIS. Sometimes,
both functional and relational information about objects must be represented. Thus, to achieve
full generality, we can combine these two kinds of information systems. Let us define a hybrid
information system (HIS) as

(U,A ∪B, {Vi | i ∈ A}, {Hi | i ∈ B}, {fi | i ∈ A}, {ri | i ∈ B})

such that (U,A, {Vi | i ∈ A}, {fi | i ∈ A}) is an FIS and (U,B, {Hi | i ∈ B}, {ri | i ∈ B}) is an
RIS. Then, a HIS can represent functional and relational information about the same set of objects
simultaneously. In general, A and B are disjoint; however, this is not theoretically mandatory.

The algebraic properties of IS-morphism between FIS was previously studied in [39] under the
name of O-A-D homomorphism2. The notion of IS-morphism between RIS is a straightforward
generalization of that between FIS. In fact, if FIS and RIS are considered as many-sorted algebras
[6], both IS-morphism and O-A-D homomorphism can be seen as homomorphism in universal
algebra [8, 11]. Indeed, we can consider information systems as a 3-sorted algebra whose sorts
are the universe, the set of attributes, and the set of all attribute values (or relational indicators).
Though homomorphism has been studied extensively in previous work, we define a novel notion of
embedment between FIS and RIS to capture the relationship or transformation between two kinds
of information related to the objects. This implies a new result, which shows that the embedding
relationship can be preserved by IS-morphism under some conditions.

The investigation of RIS also facilitates a further generalization of rough set theory. In classical
rough set theory, lower and upper approximations are defined in terms of indiscernibility relations
based on functional information associated with the objects. However, it has been noted that
many applications, such as social network analysis [74], need to represent both functional and
relational information. Based on this observation, a concept of relational granulation was recently

2O, A, and D denotes objects, attributes, and the domain of values respectively.
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proposed in [57]. The basic idea is that even though two objects are indiscernible with respect
to their attribute values, they may still be discernible because of their relationships with other
objects. Consequently, the definition of lower and upper approximations must consider the finer
indiscernibility relations. In a future work, we will investigate different generalized rough sets
based on the relational information associated with objects.

4.4.2 An Application of ADL to MCDM

Relational information plays an important role in MCDA. When rough set theory is applied
to MCDA, it is crucial that preference-ordered attribute domains and decision classes be dealt
with [34]. The original rough set theory could not handle inconsistencies arising from violation
of the dominance principle due to its use of the indiscernibility relation. In previous work on
MCDA, the indiscernibility relation was replaced by a dominance relation to solve the multi-
criteria sorting problem, and the FIS was replaced by a PCT to solve multi-criteria choice and
ranking problems [34]. A PCT is essentially an instance of an RIS, as shown in Example 4.3, in
which the relations are confined to preference relations. This approach is called the dominance-
based rough set approach (DRSA). For MCDA problems, DRSA can induce a set of decision rules
from sample decisions provided by decision-makers. The induced decision rules play the role of
a comprehensive preference model and can make recommendations about a new decision-making
environment. The process whereby the induced decision rules are used to facilitate decision-making
is called multi-criteria decision making (MCDM).

To apply ADL to MCDM, we define a rule of ADL as ϕ −→ ψ, where ϕ and ψ are wffs of
ADL, called the antecedent and the consequent of the rule respectively. As in DL, let Tr be an
interpretation of an ADL. Then, the set mTr(ϕ) defined by

mTr(ϕ) = {(x, y) ∈ U × U | (x, y) |= ϕ} (4.6)

is called the meaning set of the formula ϕ in Tr. If Tr is understood, we simply write m(ϕ). A
wff ϕ is valid in Tr if m(ϕ) = U × U . Some quantitative measures that are useful in data mining
can be redefined for ADL rules.

Definition 4.4 Let Φ be the set of all ADL rules and Tr = (U,A, {Hi | i ∈ A}, {ri | i ∈ A}) be
an interpretation of them. Then,

1. the rule ϕ −→ ψ is valid in Tr iff mTr(ϕ) ⊆ mTr(ψ)

2. the absolute support function αTr : Φ → N is

αTr(ϕ −→ ψ) = |mTr(ϕ ∧ ψ)|

3. the relative support function ρTr : Φ → [0, 1] is

ρTr(ϕ −→ ψ) =
|mTr(ϕ ∧ ψ)|

|U |2

4. the confidence function γTr : Φ → [0, 1] is

γTr(ϕ −→ ψ) =
|mTr(ϕ ∧ ψ)|
|mTr(ϕ)|

.
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Without loss of generality, we assume that the elements of U are natural numbers from 0 to
|U | − 1. Each wff can then be seen as a |U | × |U | Boolean matrix, called its characteristic matrix .
Thus, we can employ matrix algebra to test the validity of a rule and calculate its support and
confidence in an analogous way to that proposed in [55, 56]. This is based on the intimate
connection between AL and relation algebra [61, 87].

In the applications, we assume that the set of relational indicators Hi is a finite set of integers
for every criterion i. Under such an assumption, we can use the following shorthand:

(i,≥hi
) ≡ ∨h≥hi

(i, h) and (i,≤hi
) ≡ ∨h≤hi

(i, h).

By using ADL, the three main types of decision rules mentioned in [34] can be represented as
follows:

1. D≥-decision rules: ∧
i∈B

(i,≥hi
) −→ (d,≥1),

2. D≤-decision rules: ∧
i∈B

(i,≤hi
) −→ (d,≤−1),

3. D≥≤-decision rules: ∧
i∈B1

(i,≥hi
) ∧

∧
i∈B2

(i,≤hi
) −→ (d,≥1) ∨ (d,≤−1),

where B,B1, and B2 ⊆ A are sets of criteria and d ∈ A is the decision attribute. We assume
that {−1, 1} ⊆ Hd so that rd(x, y) = 1 means that x outranks y, and rd(x, y) = −1 means that y
outranks x.

Furthermore, the modal formulas of ADL allow us to represent some properties of preference
relations. For example,

1. reflexivity: δ −→ (i, 0),

2. anti-symmetry: ⊗(i,≥h) −→ (i,≤−h), and

3. transitivity: (i,≥h1) ◦ (i,≥h2) −→ (i,≥h1+h2).

Reflexivity means that each object is similar to itself in any attribute; anti-symmetry means that
if x is preferred to y by degree (at least) h, then y is inferior to x by degree (at least) h; and
transitivity denotes the additivity of preference degrees. The measures α, ρ, and γ can be used to
assess the degree of reflexivity, anti-symmetry, and transitivity of an induced preference relation.

Example 4.8 Let us continue to use the PCT in Example 4.3 and consider the following two
ADL rules:

s1 = (o,≥2) −→ (d,≥1),

s2 = (p,≤−2) −→ (d,≤0).
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Then we have
α ρ γ

s1 7 0.07 0.875
s2 15 0.15 1

Note that rule s2 is valid even though it only has a support value of 0.15. Also, we observe that the
anti-symmetry rule ⊗(i,≥h) −→ (i,≤−h) is valid in this PCT, which means that the preference
relation is anti-symmetrical.

The main advantage of the ADL representation is its deduction capability. While many data
mining algorithms for rule induction have been developed for MCDA, relatively little attention
has been paid to the use of induced rules. We can consider two cases of using the rules to assist
decision-making in real environments. In a simple situation, it suffices to match the antecedents of
the rules with the real conditions. On the other hand, if the decision-maker encounters a complex
situation, the deduction capability of ADL rules may be very helpful. For example, in a dynamic
environment, the decision-maker has to derive a decision plan consisting of several decision steps,
each of which may be guided by a different decision model. If each decision model is represented
by a set of ADL wffs or rules, then the final decision can be deduced from the union of these
sets and the set of ADL wffs representing the real conditions by our axiomatic deduction system.
This is illustrated in Figure 4.3, where MCDA and MCDM are separated into two phases. In the
MCDA phase, ordinary data mining algorithms are employed to find decision rules. This is the
learning phase in which previous decision experiences are summarized into rules. In the MCDM
phase, the rules are applied to the real environments. As indicated above, ADL representation
plays an important role in this phase when the environment is highly complex.

4.4.3 An application of ADL to the representation of attribute depen-
dency

One of the most important concepts of relational databases is that of functional dependency. In a
relational schema design, functional dependencies are determined by the semantics of the relation,
since, in general, they cannot be determined by inspection of an instance of the relation. That is,
a functional dependency is a constraint, not a property derived from a relation. However, from a
viewpoint of data mining, we can indeed find functional dependencies between attributes from a
data table. Such dependencies are called attribute dependencies, the discovery of which is essential
to the computation of reduct in rough set theory.

Let Tf = (U,A, {Vi | i ∈ A}, {fi | i ∈ A}) be an FIS and B∪{i} ⊆ A be a subset of attributes.
Then, it is said that an attribute dependency between B and i, denoted by B −→ i, exists in Tf
if for any two objects x, y ∈ U , InfB(x) = InfB(y) implies fi(x) = fi(y). Though the DL wffs
can relate the values of condition attributes to those of decision attributes, the notion of attribute
dependency can not be represented in DL directly. Instead, we can only simulate an attribute
dependency between B and i by using a set of DL rules. More specifically, B −→ i exists in Tf if
for all j ∈ B and vj ∈ Vj, there exists v ∈ Vi such that ∧j∈B(j, vj) −→ (i, v) is valid in Tf .

On the other hand, we can express an attribute dependency in an FIS by an ADL rule in an
embedment of Tf . This embedding is a special instance of the embedding in Example 4.4. That
is, we embed Tf = (U,A, {Vi | i ∈ A}, {fi | i ∈ A}) into the RIS Tr = (U,A, {Hi | i ∈ A}, {ri | i ∈
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A}), where Hi = {0, 1} and ri(x, y) = 1 iff fi(x) = fi(y). The embedding is ((i, Ri)i∈A), where,
for every i ∈ A, Ri : Vi × Vi → {0, 1} is defined by

Ri(vi, v
′
i) = 1 iff vi = v′i

for all vi, v
′
i ∈ Vi. Note that ri is actually the characteristic function of the {i}-indiscernibility

relation in rough set theory. Then, an attribute dependency B −→ i in Tf can be represented as
an ADL rule

∧j∈B(j, 1) −→ (i, 1),

i.e., the attribute dependency B −→ i exists in Tf iff the rule ∧j∈B(j, 1) −→ (i, 1) is valid in
Tr. If we view each pair of objects in U × U as a transaction and each attribute as an item in a
transaction database, then an ADL rule of the form ∧j∈B(j, 1) −→ (i, 1) is in fact an association
rule. Thus, by transforming an FIS into its embedded RIS, the discovery of attribute dependencies
can be achieved by ordinary association rule mining algorithms [1, 41].

4.4.4 The running scenario

In Chapters 2 and 3, we have shown that DL, PODL, POUDL, POFDL, and PCDL can serve as
the underlying representation formalisms of the knowledge bases used in the recruitment process
of the high-tech KMC. The human resource management department of KMC is responsible for
not only the recruitment process but also suggestion of team formations for different projects
in the company. It is usually desirable that the members in a team should be mutually trust
to some extent. However, since the link of the new comers with the original employees is quite
weak, the information about their relational network may be only partially known. In contrast,
the information about the relational network of senior employees may be very complete. Social
network analysis techniques can be applied to the relational network of the senior employees to
uncover ADL rules like those in Example 4.7. Also, expertise of sociology may be imported into
the knowledge base. In this way, we can constitute a knowledge base of ADL rules. Then, by
using our axiomatic system, we can derive the trust relations between two employees based on
partial information about their relational network. This kind of trust relationship is considered
when a team is formed to ensure that teams members shall trust each other. The process is shown
in Figure 4.4.

4.5 Summary and Remarks

In this chapter, we present ADL by combining DL and AL. ADL is useful for representing rules
induced from an RIS. An important kind of RIS is PCT, which is commonly used in MCDA. The
main advantage of using ADL is its precision in syntax and semantics. As DL is a precise way to
represent decision rules induced from FIS, we apply ADL to reformulate the decision rules induced
by PCT in DRSA. It is shown that such reformulation makes it possible to utilize ADL deduction
in the highly complex decision-making process. We also show that ADL rules can represent
attribute dependencies in FIS. Consequently, ordinary association rule mining algorithms can be
used to discover attribute dependencies.
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While this chapter is primarily concerned with the syntax and semantics of ADL, efficient
algorithms for data mining based on logical representation are also important. In a future work,
we will develop such algorithms.

In [79, 80], it is shown that the relations between objects are induced by relational structures
in the domains of attributes. The preference relations in multicriteria decision-making and time
windows in time series analysis are two important examples of relational structures. The derivation
of the relations between objects from such structures is simply a kind of embedment. Certainly,
we could consider structures beyond binary relational structures. Then, it should be possible to
generalize RIS to non-binary relational information systems. We will also explore this possibility
in our future work.
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• Axioms:

1. P: all tautologies of propositional calculus

2. DL axioms:

(a) DL1: (i, h1) ⊃ ¬(i, h2), for any i ∈ A, h1, h2 ∈ Hi and h1 6= h2

(b) DL2: ∨h∈Hi
(i, h), for any i ∈ A

(c) DL3: ¬D¬ϕ0, where ϕ0 is an instance of DL1 or DL2

3. AL axioms:

(a) AL0 (Distribution, DB):

i. (ϕ ⊃ ϕ′)◦ψ ⊃ (ϕ◦ψ ⊃ ϕ′◦ψ)

ii. ϕ◦(ψ ⊃ ψ′) ⊃ (ϕ◦ψ ⊃ ϕ◦ψ′)
iii. ⊗(ϕ ⊃ ψ) ⊃ (⊗ϕ ⊃ ⊗ψ)

(b) AL1: ϕ ≡ ⊗⊗ ϕ

(c) AL2: ⊗(ϕ ◦ ψ) ⊃ ⊗ψ ◦ ⊗ϕ
(d) AL3: ⊗ϕ ◦ ¬(ϕ ◦ ψ) ⊃ ¬ψ
(e) AL4: ϕ ≡ ϕ ◦ δ
(f) AL5: ϕ ◦ (ψ ◦ χ) ⊃ (ϕ ◦ ψ) ◦ χ

• Rules of Inference:

1. R1 (Modus Ponens, MP):
ϕ ϕ ⊃ ψ

ψ

2. R2 (Universal Generalization, UG):
ϕ
⊗ϕ

ϕ
ϕ◦ψ

ϕ
ψ◦ϕ

3. R3 (Irreflexivity rule, IRD):
(p ∧ ¬Dp) ⊃ ϕ

ϕ
provided that p is an atomic formula

not occurring in ϕ

Figure 4.2: The axiomatic system for ADL
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Figure 4.3: The MCDA and MCDM phases
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Chapter 5

Conclusion

5.1 The Contribution of the Work

In this dissertation, we investigate several extensions of decision logic from the perspective of rough
set theory. Traditionally, DL has been considered as a standard way of knowledge representation
for rough set-based data mining, whereas our extensions show that DL-styled logics are also useful
in more complicated knowledge management tasks.

On the one hand, we propose some decision logic languages for rule representation in rough
set-based multicriteria decision analysis. The semantic models of these logics are data tables
representing multicriteria decision records. Each decision record is described by a finite set of
criteria/attributes. The domains of the criteria may have ordinal properties expressing preference
scales, while the domains of the attributes may not.

On the other hand, we propose an arrow decision logic (ADL) to represent and reason about
knowledge discovered from RIS. The logic combines the main features of decision logic (DL) and
arrow logic (AL). AL is the basic modal logic of arrows. ADL formulas are interpreted in RIS
which not only specifies the properties of objects, but also the relationships between objects. We
present a complete axiomatization of ADL and discuss its application to knowledge representation
in multicriteria decision analysis.

Our work is particularly useful for the knowledge representation phase in the knowledge man-
agement life cycle. A scenario about human resource management is used to show how the
proposed logics can serve as representational formalisms in different stages of the recruitment
process and team formation process of a company. The whole process of applications of our work
in such a scenario is shown in Figure 5.1.

5.2 Remarks

In the last section of the thesis, we would like to discuss some issues related to DL and data mining
that are not covered in preceding chapters.
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Team formation phase

Arrow decision logic (ADL)

Final comparison and decision phase

Pairwise comparison decision logic (PCDL)

Project proposal test phase

Preference-ordered fuzzy decision logic (POFDL)

Basic competency test phase

Preference-ordered uncertain decision logic (POUDL)

Professional skills test phase

Preference-ordered decision logic (PODL)

Preliminary classification phase
Decision logic

Knowledge representation of recruitment process

Knowledge representation of team formation process

Figure 5.1: The process of the running scenario

5.2.1 A philosophical consideration

Induction is widely accepted as a cornerstone of the modern scientific methodology. It regards
the systematic use of past experiences in the prediction of the future. According to Hume’s
epistemology, our beliefs are established on the basis of observation, and can be divided into
observed matters of fact and unobserved matters of fact. While the beliefs of observed matters of
fact are based directly on observation, unobserved matters of fact can only be known indirectly
on the basis of observation by means of inductive argument.

An argument is called inductive if it passes from singular statements regarding the results of
observations to universal statements, such as hypotheses or theories. The inductive argument can
be formulated deductively as follows: Let ϕ(x) denote a hypothesis regarding the individuals x we
are interested in. In general, ϕ(x) is in the form of a universal conditional sentence “P (x) ⊃ Q(x)”,
however it is not necessarily so. Let Φ and Ψ denote the following sentences

Φ : ϕ(x) holds for all observed x.

Ψ : ϕ(x) holds for all x (or at least the next observed x).

Then the inductive argument is just an application of the modus ponens rule and can be expressed
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as
Φ
Φ ⊃ Ψ
Ψ

(5.1)

where Φ ⊃ Ψ is called “The Principle of the Uniformity of Nature” (PUN).
If we can assume that the observation is noiseless, then the validity of the conclusion of

the inductive argument will rely completely on that of PUN. However, since PUN represents
unobserved portions of nature, it cannot be known directly by observation. Thus PUN, if known
at all, must be known on the basis of induction. This means that to justify PUN, we must first
justify the validity of the inductive argument which in turn relies on the validity of PUN. This kind
of justification is thus circular and cannot serve as a proper justification. This leads to Hume’s
skepticism on induction [48].

In [17], it is shown that this kind of inductive skepticism also arises in the data mining context
by considering the mining of rules from data tables in the framework of DL. Obviously, a data
table consists of the observed matters of fact in some domain, whereas a mined rule is known
indirectly on the basis of observation by means of inductive argument. Technically, it is shown
that the justification of data mining schema leads to circularity or infinite regress in the framework
of DL. Hence, a mined rule is simply a hypothesis from the philosophical viewpoint.

The above-mentioned result is by no means surprising since it has been argued that such
circularity or infinite regress is inevitable in any attempt to the justification of induction. For
example, one of the most important philosophers in the 20th century, Karl Popper, wrote in ([70],
P.29):

. . . For the principle of induction must be a universal statement in its turn. Thus
if we try to regard its truth as known from experience, then the very same problems
which occasioned its introduction will arise all over again. To justify it, we should
have to employ inductive inferences; and to justify these we should have to assume an
inductive principle of a higher order; and so on. Thus the attempt to base the principle
of induction on experience breaks down, since it must lead to an infinite regress.

It seems that this argument also applies to data mining analogously according to our decision
logic formulation.

This argument clearly shows the anti-inductivist position of Popper. It also leads him to refuse
any form of verificationism of scientific theory, which claims that a scientific theory is supported by
a collection of verifying instances. Instead, he proposes falsification as the methodology of science.
In the falsification philosophy of science, a scientific theory is not confirmed by observational
instances but corroborated by passing the test of possibly falsifying instances. As explained in
[73]:

According to Popper, a scientific theory is posed without any prior justification. It
gains its confirmation, or “corroboration”, which is Popper’s preferred term in later
writings, not by experimental evidence demonstrating why it should hold, but by the
fact that all attempts at showing why it does not hold have failed.

In the 1960’s, the verificationists have developed theories of confirmation [44, 9, 46]. These
theories suggest a qualitative relation of confirmation between observations and scientific hypothe-
ses or a quantitative measure for the degree of confirmation of a hypothesis by an observation. It
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seems that the most frequently used measures in data mining, i.e., the support and the confidence,
are based on such verificationism philosophy. For example, it is not unusual in the data mining
community to consider the confidence of a mined rule as the probability that the data confers
upon the rule.

However, by the justification problem of induction, Popper claims that the attempt to develop
a theory of confirmation for scientific theories is simply mistaken, so he proposed an alternative
measure, called degree of corroboration, to compare competitive scientific hypotheses. Though
we do not advocate such a radical position against verificationism philosophy, we indeed feel that
data mining researchers can learn from the falsification methodology in the design of measures
for mined rules which are conformed to the notion of corroboration. Therefore, our decision logic
formulation for the justification problem of data mining will motivate the technical development
of new kinds of measures for the strength of mined rules. A technical development of Popper’s
concept of corroboration for inductive inference has been carried out and applied to machine
learning in [89]. It would be worthwhile to try the same thing in the data mining context. This
kind of attempt represents a flow of ideas from the philosophy of science to data mining research.

In [90], the dynamic interactions between machine learning and the philosophy of science has
been exemplified by the research of Bayesian networks, where a dynamic interaction between two
disciplines is characterized by the flow of ideas in both directions. We have seen above that
the justification problem of data mining may motivate the flow of ideas from the philosophy of
science, in particular, the Popper’s methodology, to data mining research, so we could also ask
what impacts the data mining research has on the philosophy of science.

The answer to this question may not be too difficult if data mining is considered as a sub-
discipline of machine learning. The viewpoint that machine learning is computational philosophy
of science is not unusual. The ideas in the philosophy of science can be implemented and tested
by machine learning algorithms, so machine learning techniques can help the philosophy of science
to form new methodological rules. Let us quote the observation in [90]:

Machine learning has influenced the controversy in the philosophy of science be-
tween inductivism and falsificationism: Gillies argues that the success of the GOLEM
machine learning program at learning a scientific hypothesis provides evidence for
inductivism[27]. Proponents of falsificationism remain sceptical about machine learning[4],
but further successes in the automation of scientific hypothesis generation may dampen
their ardour. Machine learning has also proven invaluable to the philosophy of sci-
ence as a means of testing formal models of scientific reasoning, including inductive
reasoning[64, 23], abductive reasoning[15, 69, 24], coherence-based reasoning[84, 85,
86], analogical reasoning[47], causal reasoning, and theory revision[12].

Of course, data mining can also help in the same way, though it is perhaps in a narrower scope.
Therefore, a challenging research programme is to investigate to what extent data mining can
serve as a computational tool for testing formal models of scientific reasoning in the philosophy
of science.

Though it seems that the justification problem of data mining has a negative result, this
does not render data mining useless. From a practical aspect, mined rules may not be justified
scientific laws, but they may be very useful for a decision maker. Indeed, in many application
domains, simply the summarization of the relationship between data is very helpful for knowledge
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management and decision making. In such cases, we are only concerned with the regularity within
the scope of the existing data.

However, once we want to apply the mined rules beyond this scope, the justification problem
could become critical. The result above implies that it is not justified to predict the future
occurrence of an event by the regularity discovered from the past data. In fact, for a finite data
table, a data mining algorithm can discover a large number of rules valid in that table. These rules
may be mutually incompatible in the future instances to be observed. This kind of problem has
been known as Goodman paradox or inductive consistencies in the philosophy of science[28, 45].
The implications of inductive consistencies for data mining will be discussed further in the extended
version of this paper.

Last, but not the least, the skepticism on induction has lead Popper and the falsificationists
to claim that all observations must be based on some background theory. In data mining context,
this means that to discover interesting rules, we have to resort to a large amount of background
knowledge. Background knowledge makes it possible to find not only the relations among the
data but also the phenomena that give rise to data. This is exactly the direction of phenomenal
data mining explored in [62].

5.2.2 Hypothesis selection

Since a mined rule is simply a hypothesis from the philosophical viewpoint, he natural followup
question is then how to select and/or evaluate a hypothesis from a set of competitive ones. In [19],
some possible criteria for hypothesis selection are presented based on the interpretation of data
as models or as theories. In both interpretations, a logical language L (e.g. DL or its extensions
presented in this thesis) is used for the representation of hypotheses (i.e. the mined rules).

Data as models

In this interpretation, each data item is considered as a model of the language L. Hence, a
hypothesis ϕ in L is verified or falsified in a data item d, denoted respectively by d |= ϕ and
d 6|= ϕ. In such interpretation, a data mining context is a pair (L,D), where L is the representation
language for hypotheses and D is a finite set of models of L.

A naive criterion for evaluating a hypothesis is the number (or proportion) of models verifying

the hypothesis. In other words, we can select a hypothesis ϕ that maximizes |mD(ϕ)| or |mD(ϕ)|
|D| ,

where mD(ϕ) = {d ∈ D | d |= ϕ} is the meaning set of ϕ with respect to D.
Someone may argue that not all data items in D is relevant to the evaluation of a hypothesis

ϕ, so we should only concentrate on the relevant data items. This leads to the most popular
criteria of hypothesis selection in data mining, i.e. support and confidence. Let us denote d 6⊥ ϕ
if d is relevant to the evaluation of ϕ and define rD(ϕ) = {d ∈ D | d 6⊥ ϕ}, then the support and
confidence of ϕ is respectively defined as

suppD(ϕ) = |rD(ϕ) ∩mD(ϕ)|

confD(ϕ) =
|rD(ϕ) ∩mD(ϕ)|

|rD(ϕ)|
.

The usual practice in data mining is to set a threshold, and then evaluate the hypotheses with
supports above the threshold according to their confidence values.

70



We must remark that the acceptance of a hypothesis based on a threshold suffers from the
lottery paradox [54]. The resolution of the paradox and its implications on epistemology have
been extensively discussed in philosophy [43, 42, 65], however, it seems that this problem has
never received enough attention yet in data mining research.

Data as theories

In this interpretation, each data item is considered as a sentence of the language L. Hence, a data
set D is a finite subset of L. We also assume that there is a consistent background theory T ⊂ L.
Thus, a data mining context is a triplet (L,D, T ). We further assume a logical consequence
relation |= exists between sets of sentences and sentences of L, so that S |= ϕ means that ϕ ∈ L
is a logical consequence of S ⊆ L.

In such interpretation, a prerequisite for a hypothesis to be accepted is that it does not con-
tradict with the background theory. That is, we consider a hypothesis ϕ only if T 6|= ¬ϕ, where
¬ϕ is the Boolean negation of ϕ. The sets of data items explained by ϕ, contradicted with ϕ, and
neutral with ϕ are respectively defined as

eD(ϕ) = {α ∈ D | T ∪ {ϕ} |= α},

cD(ϕ) = {α ∈ D | T ∪ {ϕ} |= ¬α},

and
nD(ϕ) = {α ∈ D | T ∪ {ϕ} 6|= α ∧ T ∪ {ϕ} 6|= ¬α}.

Given these three sets, we can select hypotheses that explain the most data items and contradict
the least data items. Sometimes, the importance of different data items may be different. If such
information of importance is available, we can associate a weight to each data item in D, and
respectively define the explanatory and contradictory scores of a hypothesis ϕ as

esD(ϕ) =

∑
α∈eD (ϕ)wα∑
α∈D wα

and

csD(ϕ) =

∑
α∈cD (ϕ)wα∑
α∈D wα

,

where wα is the weight associated to a data item α.
To evaluate hypotheses, we can rank the hypotheses according to a lexicographical ordering

on the pair (esD(ϕ), 1 − csD(ϕ)), if the explanatory power of a hypothesis is emphasized, or a
lexicographical ordering on the pair (1 − csD(ϕ), esD(ϕ)), if the consistency property has the
higher priority. Other intermediate combinations of these two criteria are possible by employing
multi-criteria decision making techniques [49].

Alternative criteria

In addition to the criteria mentioned above, there are two general criteria for hypothesis selection,
i.e. generality and simplicity.
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1. Generality: a general hypothesis is usually preferred than the specific ones. In the logical
sense, a hypothesis ϕ is more general than another hypothesis ψ if ϕ |= ψ (or T ∪{ϕ} |= ψ),
but not vice versa.

2. Simplicity: for the economic purpose, a simple hypothesis is preferred than the complex
ones. There is not a common agreement regarding the formal definition of simplicity yet.
The criterion is related to the principle of the Occam’s razor. A form of simplicity is
formalized as minimal description length principle [71]. The space limit prevents us from
presenting the technical detail of the principle. We refer the reader to a recent publication
in this topic [38].

Furthermore, domain-specific criteria may be also helpful in the selection of hypotheses. For
a data mining problem, these criteria of hypothesis selection may be in conflict with each other.
Again, we can employ the techniques of multi-criteria decision making [49] to find overall optimal
hypotheses.

5.3 Future Research

We have seen that DL can be used to describe knowledge discovered from a data table. In fact,
DL is an instance of propositional logic where each descriptor (i, v) is a primitive proposition and
each object in a data table is considered as an interpretation (a model) of the logic. Consequently,
from the DL viewpoint, a data table is a set of models.

Alternatively, we can also describe data tables by using first-order logic (FOL) or many-sorted
first-order logic (MSFOL). To describe data tables by FOL, we need only a fragment of it, called
monadic function-free predicate logic (MFPL). Let us consider an instance of MFPL, called first-
order data logic (FODL). The alphabet of FODL consists of the set of monadic predicate symbols
{Pi,v | i ∈ A, v ∈ Vi}, (possibly) a set of constant symbols, Boolean connectives, and quantifiers.
A data table T = (U,A, {Vi | i ∈ A}, {fi | i ∈ A}) is then considered as an interpretation of FODL
A = (U, ·A) such that the meaning of the predicate symbol Pi,v is {u ∈ U | fi(u) = v}.

On the other hand, a data table can be described by a MSFOL with a set of binary predicate
symbols {Pi | i ∈ A}. The set of sorts of the logic is {σi | i ∈ A}∪{σu}, so we call it attribute value-
sorted logic (AVSL). The rank of a predicate symbol Pi is (σu, σi). A data table T = (U,A, {Vi |
i ∈ A}, {fi | i ∈ A}) is then considered as an interpretation of AVSL A = (U, (Vi)i∈A, ·A) such that
the meaning of the predicate symbol Pi is {(u, v) | u ∈ U, v ∈ Vi, fi(u) = v}. The syntax allows us
to quantify not only on the objects but also on attribute values. This is particularly useful for the
description of many-valued data tables, where fi(u) is a (not necessarily singleton) subset of Vi.
In this case, the meaning of Pi is adapted to {(u, v) | u ∈ U, v ∈ Vi, v ∈ fi(u)}. For example, we
can then use ∀x∃yPi(x, y) to express the fact that every object has non-null value on the attribute
i. We believe that these alternative logical formulations of data tables deserve further exploration
in the future.
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