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The transient dynamics of the eigenstates and coherent states released from a square quantum billiard is

analytically and numerically investigated. It is experimentally verified that this transient dynamic can be

analogously observed with the free-space propagation of the lasing modes emitted from the laterally

confined, vertically emitted cavities. Furthermore, we exploit a chaotically shaped cavity to originally

demonstrate the diffraction-in-time characteristics of the chaotic wave functions. It is found that the

transient patterns of chaotic wave functions exhibit a striking feature of random branching behavior with

the appearance of intricate interference fringes.
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One of the most relevant quantum transient phenomena
in matter waves is the diffraction-in-time effect for a
suddenly released coherent beam, which appears to have
first been introduced by Moshinsky in 1952 [1]. The hall-
mark feature of the diffraction-in-time effect is the tempo-
ral quantum interference patterns, by analogy with the
spatial interference patterns of light diffracted by a sharp
edge [2–5]. The experimental test for this effect was indeed
hard to reach at the time of its first introduction. However,
because of the development of an ultrafast laser [6], atom
cooling, and optical trapping [7], the transient dynamics
has been recently observed in a wide variety of systems
including neutrons [8], ultracold atoms [9], electrons [10],
and Bose-Einstein condensates [11].

Another physical connection to the diffraction-in-time
effect would be the transient response to abrupt changes of
the confined potential in semiconductor structures and
quantum dots [12,13]. Semiconductor quantum dots, in
which electronic motion is predominately ballistic in na-
ture, have been widely used as two-dimensional (2D)
quantum billiards to explore the properties of quantum
chaos [14–16]. Understanding the time evolution of sud-
denly released quantum-billiard waves has some important
applications, as it can provide the nanostructure transport
properties for developing novel ultrahigh-speed semicon-
ductor devices [12]. Moreover, it is closely related to atom
laser dynamics from a tight waveguide whose boundary
shape can be modified with the laser trapping beam
[13,17]. Nevertheless, the investigation for the transient
dynamics of 2D quantum-billiard coherent waves has not
been performed as yet.

In this Letter we first theoretically investigate the
diffraction-in-time effect of quantum eigenstates in square
billiards. We further use the analytical result to explore the
transient dynamics of the quantum coherent states that
have intensities to concentrate on the classical periodic
orbits. With the numerical visualization and experimental
identification, we verify that the transient dynamics of
coherent waves suddenly released from quantum billiards

can be analogously observed with the free-space propaga-
tion of the lasing modes emitted from the laterally confined
vertically emitted cavities. More importantly, we design a
chaotically shaped laser cavity to experimentally demon-
strate for the first time the characteristics of the diffraction
in time of the chaotic billiard waves.
The 2D square billiard is one of the simplest billiards in

classical mechanics [18,19]. The quantum eigenstates
c ~m;~nðx; yÞ for the vertices are at ð�a=2;�a=2Þ and

ð�a=2;�a=2Þ and are given by

c ~m;~nðx;yÞ¼ ð2=aÞsin½k ~mðxþa=2Þ�sin½k~nðyþa=2Þ�; (1)

where kn ¼ n�=a (n ¼ 1; 2; 3; . . . ) and a is the length of
the square boundary. In terms of the 2D free propagator,
the free time evolution of the eigenstates c ~m;~nðx; yÞ sud-
denly released at time t ¼ 0 is given by [1,2]

c ~m;~nðx; y; tÞ ¼ m

2�i@t

Z a=2

�a=2
dy0

Z a=2

�a=2
dx0c ~m;~nðx0; y0Þ

� exp

�
im

2@

½ðx� x0Þ2 þ ðy� y0Þ2�
t

�
: (2)

Substituting Eq. (1) into (2), after some algebra, the wave
function c ~m;~nðx; y; tÞ is given by

c ~m;~nðx; y; tÞ ¼ e�ði=@ÞE ~m;~nt

4i3a
½Gðx; t; k ~m; aÞ �Gðx; t;�k ~m; aÞ�

� ½Gðy; t; k~n; aÞ �Gðy; t;�k~n; aÞ�; (3)

with

Gðx; t; k ~m; aÞ ¼ eik ~mðxþa=2Þ½Fð�ðx� a=2; t; k ~mÞÞ
� Fð�ðxþ a=2; t; k ~mÞÞ�; (4)

where E ~m;~n¼@
2ðk2~mþk2~nÞð2mÞ, Fð�Þ is the complex Fres-

nel integral, Fð�Þ ¼ R�
0 expði�u2=2Þdu, and the integral’s

argument is given by �ðx; t; kÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð�@tÞp ½ð@kt=mÞ � x�.

Figures 1(a)–1(f) depict the numerical results calculated
with Eq. (3) and the parameters of ð ~m; ~nÞ ¼ ð25; 25Þ to
illustrate the wave patterns jc ~m;~nðx; y; tÞj2 at t ¼ 0, 0:1T,
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0:25T, 0:50T, 1:0T, and 1, where T ¼ 2ma=@k ~m corre-
sponds to the round trip time of the wave in the x direction.
The time-evolution wave distributions clearly exhibit
strong interference patterns in the time interval between
0:1T and T. Note that the wave function c ~m;~nðx; y; tÞ in an

infinite time is just the Fourier transform of the initial wave
function c ~m;~nðx; yÞ, corresponding to the momentum-

space representation. Therefore, the four-lobed beam pat-
tern in Fig. 1(f) reveals the momentum distribution.

The results of recent studies of open square quantum
dots show that the wave functions localized on classical
periodic orbits are not only the persistent states but also are
associated with the striking phenomena of conductance
fluctuations [14–16]. The primitive periodic orbits in a
2D square billiard can be described with three parameters
(p; q;�), where p and q are two positive integers describ-
ing the number of collisions with the horizontal and verti-
cal walls, and the phase factor� is in the range of�� to �
that is related to the wall positions of specular reflection
points [19]. Recently, we have employed the representation
of SU(2) coherent states to analytically establish the rela-
tion between the quantum wave functions and the classical
periodic orbits. As in the Schwinger SU(2) representa-
tion, the wave functions associated with periodic orbits

(p; q;�) is analytically expressed as �p;q;�
N;M ðx; yÞ ¼P

M
K¼�M CM;Ke

iK�c qNþpK;pN-qKðx; yÞ, where N represents

the order of the coherent state and

CM;K ¼ 2�M

�
2M!

ðM� KÞ!ðMþ KÞ!
�
1=2

is the weighting coefficient. Note that the discussion for the
asymptotic property of the coherent states can be found in
Ref. [19].

The free time evolution of the coherent states

�p;q;�
N;M ðx;yÞ suddenly released at time t ¼ 0 can be ex-

pressed as �p;q;�
N;M ðx; y; tÞ ¼ P

M
K¼�M CM;Ke

iK��
c qNþpK;pN-qKðx; y; tÞ. Note that the coherent states

�p;q;�
N;M ðx; yÞ behave as the traveling waves in the transverse

plane. The standing-wave representation is given by

Sp;q;��
N;M ðx; yÞ ¼ ½�p;q;�

N;M ðx; yÞ ��p;q;��
N;M ðx; yÞ�= ffiffiffi

2
p

. As a re-

sult, the time evolution of the coherent states Sp;q;��
N;M ðx; yÞ

suddenly released at time t ¼ 0 can be expressed as

Sp;q;�N;M;�ðx; y; tÞ ¼ ½�p;q;�
N;M ðx; y; tÞ � �p;q;��

N;M ðx; y; tÞ�= ffiffiffi
2

p
.

Figures 2(a)–2(f) illustrate the numerical patterns for the

wave patterns jSp;q;�N;M;þðx; y; tÞj2 with the parameters of

ðp; qÞ ¼ ð1; 1Þ, ðN;MÞ ¼ ð42; 6Þ, and � ¼ 0:6� at t ¼ 0,
0:08T, 0:15T, 0:25T, 0:5T, and 1, where T ¼ 2ma=@kN
corresponds to the round trip time of the periodic orbit and
kN ¼ N�=a. It can be seen that the transient dynamics of
the coherent state displays not only the feature of classical
flow but also the salient interference patterns.
Similarities between paraxial optics and nonrelativistic

quantum mechanics have long been recognized and re-
cently been used to make analog studies of quantum wave
functions [20]. This correlation has been used to manifest
the spatial morphology of wave functions [21] and energy-
level statistics [22] in 2D quantum billiards with the oxide-
confined vertical-cavity surface-emitting lasers (VCSELs).
The literatures [23] revealed that the chessboardlike pat-
terns of the eigenstates c ~m;~nðx; yÞ could be similarly gen-

erated with the lasing modes from phase-coupled VCSEL
arrays or photonic resonator crystals. In addition to reso-
nant stationary states, the free time evolution of quantum
wave functions can be expressed as an analogous way to
the free-space propagation of coherent lights. However, the
free-space propagation of the lasing modes had not been
investigated. Here we use the coherent lasing modes gen-
erated from the large-aperture VCSELs to experimentally
investigate the time evolution of the coherent state.
Schematics of the laser device structure and the experi-

mental setup are shown in Fig. 3. The separability of the
wave function in the VCSEL device enables the wave
vectors to be decomposed into kz and kt, where kz is the
wave-vector component along the direction of vertical
emission and kt is the transverse wave-vector component.
Under the circumstance of paraxial optics, kt � kz, the
longitudinal field is significantly small in comparison with
the transverse field. Therefore, the electric field can be

FIG. 1 (color online). Numerical patterns calculated with Eq. (3) and the parameters of ð ~m; ~nÞ ¼ ð25; 25Þ to illustrate the wave
patterns jc ~m;~nðx; y; tÞj2 at (a) t ¼ 0, (b) 0:1T, (c) 0:25T, (d) 0:50T, (e) 1:0T, and (f) 1, where T is defined in the text.

FIG. 2 (color online). Numerical patterns for the wave patterns jSp;q;�N;M;þðx; y; tÞj2 with the parameters of ðp; qÞ ¼ ð1; 1Þ, ðN;MÞ ¼
ð42; 6Þ, and � ¼ 0:6� at (a) t ¼ 0, (b) 0:08T, (c) 0:15T, (d) 0:25T, (e) 0:5T, and (f) 1, where T is defined in the text.
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approximated to have only transverse components and no
longitudinal component, i.e., so-called quasi-TEM waves.
After separating the z component in the wave equation, we
are left with a two-dimensional Helmholtz equation: ðr2

t þ
k2t Þc ðx; yÞ ¼ 0, where r2

t means the Laplacian operator
operating on the coordinates in the transverse plane and
c ðx; yÞ is a scalar wave function that describes the trans-
verse distribution of the laser mode. Consequently, the
transverse modes of the oxide-confined VCSEL device
are equivalent to the eigenfunctions of the 2D
Schrödinger equation with hard wall boundaries of the
same geometry. The vertical cavity is formed by two
distributed Bragg reflectors and its optical length is de-
signed to be nearly one wavelength. The resonant optical
wave emitted from the cavity end z ¼ 0 to the environment
in the direction of the þz axis can be expressed as the
Fresnel transformation:

c ðx; y; zÞ ¼ ie�ikz

�z

Z
dy0

Z
dx0 exp

�
� ik

2

� ½ðx� x0Þ2 þ ðy� y0Þ2�
z

�
c ðx0; y0Þ: (5)

Comparing Eqs. (2) and (5) it is evident that the time
evolution of a 2D quantum state is equivalent to the
Fresnel transformation of a near-field optical wave with
the substitution of t ! z and m=@ ! 2�=�, where � is the
lasing wavelength.

First we used square-shaped VCSELs with 40 �m oxide
aperture to explore the free-space propagation of coherent
modes. The VCSEL devices were placed in a cryogenic
system with a temperature stability of 0.1 K at the range of
80–300 K. A current source with a precision of 0.01 mA
was utilized to drive the VCSEL device. The transverse
patterns at different propagation distances were reimaged
onto a CCD camera with a very large numerical aperture

(NA) microscope objective lens (Mitsutoyo, NA ¼ 0:9)
mounted on a translation stage.
Although an ideal 2D square billiard has many possible

eigenstates, the coherent states related to classical periodic
orbits with ðp; qÞ ¼ ð1; 1Þ are experimentally found to be
the persistent states at the temperature below 260 K.
Figure 4(a) shows the near-field pattern of the lasing
mode at T ¼ 260 K. The experimental transverse patterns
for the free-space propagation are shown in Figs. 4(b)–4(e)
measured at the positions of z=zd ¼ 0:08, 0.2, 0.35, and
0.70, respectively, where zd ¼ 2akz=nkt is the character-
istic length and n is the refractive index of the semicon-
ductor cavity. Note that the characteristic length of the
optical diffraction is analogous to the characteristic time
T of the quantum diffraction in time. With the properties
that kz ¼ 26:3 �m�1, a ¼ 40 �m�1, n ¼ 3:5, and kt ¼
4:2 �m�1, zd can be found to be approximately 143 �m.
Figure 4(f) depicts the far-field pattern which was mea-
sured by a digital camera for the direct projection of the
laser beam on a paper screen at a distance of�20 cm from
the laser device. It can be seen that the experimental
patterns agree quite well with the numerical results shown
in Fig. 2. The good agreement validates the fact that the
free-space propagation of coherent modes emitted from
VCSELs can be employed as an analogous observation
of the time evolution of quantum-billiard wave functions.
Next we exploit a deformed-square-shaped VCSEL with

a ripple boundary to experimentally study the transient dy-
namics of the wave functions released from 2D chaotic bil-
liard systems. With a ripple boundary, the experimental
near-field patterns are found to be randomly distributed
over the laser cavity, i.e., so-called chaotic wave modes.
Note that rough billiards and related systems are also of
considerable interest elsewhere [24]. Figures 5(a)–5(e)
depict the experimental transverse patterns obtained at
the near-field position and z=zd ¼ 0:25, 0.4, and 0.6, and
the far-field regime, respectively. It can be seen that the
transverse patterns in the propagation position between
0:1zd and 1:0zd display a striking feature of random
branching behavior with the appearance of intricate inter-
ference fringes.
It has been shown that the universal features of sta-

tionary chaotic wave functions in quantum billiards can
be manifested with a superposition of plane waves of fixed
wave-vector magnitude with random amplitude, phase, and
direction [25]. Therefore, the standing-wave chaotic wave
functions in a deformed square-shaped quantum billiard

kz
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n-type  DBR    

Oxide layers    
Active layer

Metal contact 

Metal contact 

VCSEL

Objective Lens

Relay lens

CCD Camera

Cryogenic 
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dc Power 
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FIG. 3 (color online). Schematics of the laser device structure
and the experimental setup. (DBR is distributed Bragg reflector.)

FIG. 4 (color online). Experimental transverse patterns for the free-space propagation of the coherent lasing mode measured at the
positions of (a) near field, (b) z=zd ¼ 0:08, (c) z=zd ¼ 0:2, (d) z=zd ¼ 0:35, (e) z=zd ¼ 0:70, (f) far field, where zd is defined in the
text.
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can be described as �ðx; yÞ ¼ P
~m;~n cosð� ~m;~nÞc ~m;~nðx; yÞ,

where the eigenstates c ~m;~nðx; yÞ in the summation are

subject to the condition that the values
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2~m þ k2~n

q
are nearly

constant and the phase factors � ~m;~n are random. With the

superposition principle, the free time evolution of the
chaotic wave �ðx; yÞ is then given by �ðx; y; tÞ ¼P

~m;~n cosð� ~m;~nÞc ~m;~nðx; y; tÞ. We use this expression for

the states c ~m;~nðx; y; tÞ in the range of 492 < ~m2 þ ~n2 <
512 and random values for � ~m;~n to numerically generate

typical wave patterns which are shown in Figs. 5(a0)–5(e0)
at t ¼ 0, 0:25T, 0:4T, and 1. The general features of the
numerical patterns are clearly similar to the experimental
observation shown in Figs. 5(a)–5(e). Therefore, the free-
space propagation of the chaotic modes emitted from
VCSELs can be used to manifest the transient dynamics
of the chaotic wave functions in quantum billiards.

In conclusion, we have analytically and numerically
investigated the diffraction-in-time effect of the eigenstates
and coherent states suddenly released from a square quan-
tum billiard. We have utilized the large-aperture VCSEL
devices to experimentally verify that the transient dynam-
ics of quantum-billiard wave functions can be analogously
observed with the free-space propagation of the coherent
lasing modes. Moreover, we have exploited a chaotically
shaped laser cavity to originally study the diffraction-in-
time characteristics of the chaotic wave functions. The
transient wave patterns of chaotic modes are found to dis-
play a striking feature of random branching interference
fringes. We believe that the present investigation can pro-
vide an important insight into quantum physics and wave
optics.
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FIG. 5 (color online). Experimental
transverse patterns for the free-space
propagation of the chaotic mode mea-
sured at the positions of (a) near field,
(b) z=zd ¼ 0:25, (c) z=zd ¼ 0:4,
(d) z=zd ¼ 0:6, (e) far field, where zd is
defined in the text. (a0)–(e0) Numerical
patterns calculated with �ðx; y; tÞ ¼P

~m;~n cosð� ~m;~nÞc ~m;~nðx; y; tÞ for the time

at t ¼ 0, 0:25T, 0:4T, 0:6T, and 1, re-
spectively, where 492 < ~m2 þ ~n2 < 512

and � ~m;~n are random values.
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