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Stochastic List Decoding of High-Density
Parity-Check Codes

Student: Chang-Ming Lee Advisor: Yu T. Su

Department of Communications Engineering

National Chiao Tung University

Abstract

In this thesis, we present several novel stochastic decoding algorithms for linear high-
density parity-check (HDPC) codes. Our approach can be regarded as a randomized
sphere decoding with moving center$hat seleetséeandidate codewords around a center
vector according to a sphere-symmetrie probabilitg distribution. The center (median)
vector of the distribution is updatedZgcerdingteia Monte Carlo based approach called
the Cross-Entropy (CE) method. The CE method produces, in every iteration, a set
of random samples which can be transformed into valid codewords. Based on the Eu-
clidean distances between the received word and the random codewords, we select the
best E candidates to form the elite set which is then used to modify the probability
distribution that govern the generations of the random samples in the ensuing iteration.
To ensure that the newly generated samples are concentrated more and more on a small
neighborhood of the correct codeword and either the median vector will move to or
the underlying distribution will eventually degenerate to a singularity at the transmit-
ted codeword, the parameters of the updated distribution should be such that the new
distribution is closest to the optimal distribution in the sense of the Kullback-Leibler

distance (i.e CE).
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We propose three classes of stochastic decoding algorithms in this thesis. The first
two are specifically designed for decoding (n, k) Reed-Solomon (RS) codes. For the first
decoder, the random samples represent a set of random error locator vectors, each in-
dicates n — k possible erasure positions within the received word. We associate each
error locator vector with a candidate codeword by erasures-only (EO) decoding the re-
ceived word, assuming that erasure locations are those indicated by the error locator
vector. The n-dimensional real random vectors in the second algorithm represent reli-
ability vectors whose least reliable n — k coordinates are assumed to be erasures. For
each sample, we make component-wise hard-decisions on the most reliable k coordinates
and EO-decoding the resulting binary vector. The third algorithm uses a sequential bit
flipping procedure to convert each random sample into a legitimate codewords. The first
two algorithms are valid for MDS codes only while the third algorithm can be used for
decoding any linear block code. Our algozithms offer both complexity and performance
advantage over BP and some existing/algebrai¢\decoding algorithms, especially for high

rate linear HDPC codes of short oramedivmdengths.
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Chapter 1

Introduction

Linear block codes are popular forward error-correcting (FEC) codes due to their simple
structures and satisfactory FEC performance. For instance, Reed-Solomon (RS) codes
[1] are used in a wide variety of commercial applications, most prominently in CDs,
DVDs and Blue-ray discs, in data transmission technologies such as DSL and WiMAX,
in broadcast systems such as DVB and ALSC, and in computer applications such as
RAID 6 systems. Low density paritys¢gh&ek|(LDRC}.codes [2] form another class of linear
block codes which offer FEC capability,eleséto the theoretical maximum—the Shannon
limit [3]. In recent years, LDPC codésihave beén adopted by several digital broadcast
and communication standards such as the DVB-S2 [4], the IEEE 802.3an (10GBASE-T)
5], the IEEE 802.16e (WiMAX) [6], and the IEEE 802.11n (WiF1i) [7]. Although many
decoding algorithms for block codes are available, more efficient decoding algorithms
which can provide performance enhancement and complexity reduction are still of high
demand.

Most hard-decision decoding algorithms are bounded-distance decoders (BDD). They
select the codeword c, if exits, whose Hamming distance (HD) to the hard-limiting
received word z, say d(z, c), is less than or equal to | (dymin — 1)/2] = tmin, where dy;, is
the minimum distance of the code C. As shown in Fig. 1.1, if z is within the decoding
sphere centered at the transmitted codeword cy and then the BDD can correctly output

cr. Syndrome decoding for Hamming codes [9], the Berlekamp-Massey (BM) algorithm
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error occurs. A decoding failure is declared if z does not belong to any decoding sphere

of radius .

In general, a BDD can only correct up to |(dp: — 1)/2] errors while a maximum
likelihood soft-decision based decoding algorithm can easily correct beyond t,,;, at the
expense of much higher complexity. There are two general approaches to improve the
performance without incurring too much complexity increase. The first one is trying to
enlarge the decoding sphere (see Fig. 1.4) in order to correct errors beyond t,,;,. For
RS codes, the errors-and-erasures decoding [9], Forney’s generalized minimum distance
(GMD) decoding [12], the algebraic list decoding algorithm invented by Guruswami and
Sudan (GS) [13] and the algebraic soft decision decoding (SDD) algorithm proposed by

Koetter and Vardy (KV) [14] belong to this category. Note that the latter three algo-



Figure 1.2: An example of errorﬁﬁngfor a bounded distance decoder.
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Figure 1.3: Decoding failure by a bounded distance decoder.
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Figure 1.4: Decoding beyond nmdi\byzenlarging the decoding sphere.

rithms are also members of the so-ca ling algorithms because the enlarged
decoding sphere may include more than‘énereodewords.

Another idea for performance enhancement is to sequentially modify and move z
from its original position so that the new location becomes closer and closer to cr.
Decoding methods based on this idea include the Chase II algorithm [15], and the
combined Chase II-GMD algorithm [16]. The belief propagation (BP) based algorithms
such as the sum product algorithms (SPA) or its less-complex approximation, the min-
sum algorithms (MSA) [17] and their variations are also members of this category. A
successful decoding based on BP algorithm will gradually update the estimated soft
output and move the modified received vector toward the true transmitted codeword
cr; see Fig. 1.5. Unfortunately, the BP process may be trapped in some local minimum

and the modified received vector coincides with a pseudo codeword c, as is shown in

Fig. 1.6. This phenomenon can be prevented by using some modification of the BP



achieved although the BP algorithm makes z coincides with c,,.

In this thesis, we investigate a novel idea of iterative decoding which is a randomized
sphere decoding with moving center. If statistical information about possible locations
of the transmitted codeword cy around the received word z is given, the order of search
should follow the most possible direction. However, we don’t have such information
usually and hence we search follow a probability distribution which is learned by random
sampling. Each sample is transformed into a valid codeword and we choose samples
whose corresponding code words having smaller Euclidean distance (ED) to z to modify
the distribution and update (move) z. As the iteration goes by, newly generated samples
are concentrated more and more on a small neighborhood of the correct codeword. The

modified distribution becomes closer in the Cross-Entropy (CE) sense to the optimal



the following two phases:

1. Explore possible directions pointing the shortest way to the transmitted codeword

cr via a set of random samples generated from a specific random mechanism.

2. Choose better directions to update the parameters of the random mechanism in

order to find better direction in next iteration.

Fig. 1.7 and Fig. 1.8 illustrate the basic principle of the above idea.

The rest of this thesis is organized as follows. Chapter 2 introduces the CE method
which is an elegant practical principle for efficiently simulating rare events and can be
converted into an optimization solver. A stochastic erasure-only list decoding (SEOLD)
algorithm uses the extended CE method for optimization problem by considering an

optimal event as a rare event is illustrated in Chapter 3. In Chapter 4, we investigate



Figure 1.8: After updating the parameter of the random mechanism, the new set of
generated random samples points the correct way more often.



another stochastic list decoding algorithm based on a novel sequential bit flipping pro-
cedure. Finally, we summarize our major contributions and suggest some future works

in Chapter 5.




Chapter 2

The Cross-Entropy Method

The cross-entropy (CE) method which was originally developed as an adaptive algorithm
for rare-event simulation based on variance minimization [20]. It was soon modified
to a randomized optimization technique [21], where the original variance minimization
program was replaced by an associated CE minimization problem. We summarize the
basic concept of this simple, efficient, andugeneral method in this chapter and more

detailed investigations can be foundsin [22]:

2.1 Introduction

In the field of rare-event simulation, the CE method is used in conjunction with im-
portance sampling (IS), a well-known variance reduction technique in which the system
is simulated under a different set of parameters, called the reference parameters (or
different probability distribution) so as to make the occurrence of the rare event more
likely. A major drawback of the conventional IS technique is that the optimal reference
parameters to be used in IS are usually very difficult to obtain. Traditional techniques
for estimating the optimal reference parameters [23] typically involve time consuming
variance minimization programs. The advantage of the CE method is that it provides a
simple and fast adaptive procedure for estimating the optimal reference parameters in
the IS.

In the field of optimization problems (combinatorial or continuous), the CE method



can be readily applied by first translating the underlying optimization problem into
an associated estimation problem, named associated stochastic problem (ASP), which
typically involves rare-event estimation. Estimating the rare-event probability and the
associated optimal reference parameter for the ASP via the CE method translates effec-
tively back into solving the original optimization problem.

In general, the CE algorithm is an iterative procedure that consists of the following

two phases in each iteration.

e Generate samples from the specified importance density given by the parameters

from the previous iteration.

e Update the parameters for next iteration according to the order of the score values

associated with the drawn samples and the minimizing CE criterion.

The significance of the CE concept is that it defines a precise mathematical framework

for deriving fast and good updating /{garninguulds,

2.2 The CE Method2forrRare=Event Simulation

In this section, the basic idea behind the CE algorithm for rare event simulation is
illustrated. Let x be a random vector taking values in some space X. Let {f(-;v)} be a
family of probability density functions (pdfs) on X', with respect to some base measure

p where v is a real-valued parameter (vector). Therefore,

E[H()] = [ H(x)f(x;v)u(dx) (2.)

for any function H. For simplicity, for the rest of this section we take p(dx) = dx
because of p is either a continuous measure or the Lebesgue measure in most cases.

Let S be some real function on X. Suppose we are interested in the probability that

S(x) is greater than or equal to some real number v under f(x;u). This probability can

be expressed as
£ = Pu(S(x) 2 7) = Bullisy) (2.2)

10



If this probability is very small, say smaller than 1075, we call {S(x) > 7} a rare event.

A straightforward way to estimate ¢ is to use crude Monte-Carlo simulation: Draw

a random sample x1, -+ , Xy from f(x;v); then
.1 XN
(= 2 listx=n (2:3)
i=1

is an unbiased estimator of ¢. However this poses serious problems when {S(x) > v} is
a rare event since a large simulation effort is required to estimate ¢ accurately, that is,
with a small relative error or a narrow confidence interval.

An alternative is based on importance sampling: take a random sample x1,--- , Xy
from an importance sampling density g on X', and estimate ¢ using the likelihood ratio
(LR) estimator

f(xi;u)
g(xi)

.1 X
(=5 2 Tisezy) (2.4)
=1

The best way to estimate ¢ is to usesthe=ehafige ofmeasure with density

)2 I8y (xm) (2.5)

g (x - )

By using this change of measure we have in (2.4)

f(xi;u)

oy =t (2.6)

Iis (x>

for all ¢. Since ¢ is a constant, the estimator (2.4) has zero variance, and we need to
produce only N = 1 sample.

The obvious difficulty is that ¢* depends on the unknown parameter ¢. Moreover,
it is often convenient to choose a ¢ in the family of densities {f(-;v)}. The idea now
is to choose the reference parameter v such that the distance between the density g¢*
above and f(x;v) is minimal. A particularly convenient measure of distance between

two densities g and h is the Kullback-Leibler (KL) distance defined as

D(g,h) =E, lln %1 = /g(x) lng(x)dx—/g(x) In h(x)dx (2.7)

11



which is also termed the cross-entropy (CE) between g and h.
Minimizing the Kullback-Leibler distance between ¢* in (2.5) and f(x;Vv) is equiva-

lent to solve the maximization problem

mvax/g*(x) In f(x;v)dx (2.8)

Substituting ¢* from (2.5) into (2.8) we obtain the maximization program

max / I{S@‘Wéf (x; ) In f(x; v)dx (2.9)

which is equivalent to the program

max D(v) = max E, {I{S(x)z'y} In f(x; V)] (2.10)

v

where D is implicitly defined above. Again using importance sampling, with a change

of measure f(x;w) we can rewrite (2.10) as

max D(v) = max K, [I{S(X)ZV}W(X; u, w) In f(x; V)} , (2.11)

v

for any reference parameter w, wheze

(2.12)

is the likelihood ratio between f(x;u) and f(x;w). The optimal solution of (2.11) can

be written as
v* = argmax K, {]{S(X)ZW}W(X; u, w)In f(x; V)} . (2.13)

We may estimate v* by solving the following stochastic program

1N

max D(v) = max ¥ > [[{S(xi)Z’Y}W<X'L'; u,w)ln f(xi;v)} : (2.14)
i=1

where X1, -+ , Xy is a random sample from f(x; w). In typical applications the function

Din (2.14) is convex and differentiable with respect to v, in which case the solution of

(2.14) may be readily obtained by solving the following system of equations:
1 N
¥ L2 W (i3 0, W)V In £ (x5 v)| = 0. (2.15)
i=1

12



The advantage of this approach is that the solution of (2.15) can often be calculated
analytically. In particular, this happens if the distributions of the random variables
belong to a natural exponential family (NEF).

We have to note that the CE program (2.14) or (2.15) are useful only if the probability
of the target event {S(x) > 7} is not too small under w, say greater than 107°. For
rare-event probabilities, due to the rareness of the events {S(x;) > <}, most of the
indicator random variables Ifg(x,)>4}, ¢ = 1,---, N, will be zero, for moderate N. It
makes the program (2.14) and (2.15) difficult to carry out. A multilevel algorithm can
be used to overcome this difficulty. The basic idea is to construct a sequence of reference
parameters {v;, t > 0} and a sequence of levels {7, ¢t > 1}, and iterate in both v; and
Yt

We initialize by choosing a not very small g, say ¢ = 1072 and by defining vy, = u.
Next, we let v; (71 < 7y) be such that, undex the original density f(x;u), the probability
01 = Eul{s(x;)>y} is at least 0. We ghienslet vy\becthe optimal CE reference parameter
for estimating /1, and repeat the lastitwolstéps iteratively with the goal of estimating the
pare {¢,v*}. In other words, each iterafion of th&algorithm consists of two main phases.
In the first phase ~; is updated, in the second v, is updated. Specifically, starting with

Vo = u we obtain the subsequent v; and v; as follows:

1. Adaptive updating of -, For a fixed v, 1, let v, be a (1 — p)-quantile of S(x)

under v;_;. That is, v; satisfies

PVt—l(S(X) > ’Yt) > 0, (216)
Py (S(x) < 7)) 2 1-o, (2.17)
where x ~ f(x;v;_1).
A simple estimator 4; of 7, can be obtained by drawing a random sample x, - - - , Xy

from f(x;v;_1), calculating the performances S(x;) for all 4, ordering them from

smallest to biggest: Sy < -+ < Sy and finally, evaluating the sample (1 — o)-

13



quantile as

e = S(1(1-0)N) (2.18)

Note that S(;) is called the j-th order-statistic of the sequence S(xi),---,S(xn).
Note also that 4; is chosen such that the event {S(x) > 4;} is not too rare (it has
a probability of around p), and therefore updating the reference parameter via a

procedure such as (2.18) is not void of meaning,.

. Adaptive updating of v, For fixed 7, and v;_;, derive v; from the solution of

the following CE program
mazy D(v) = By, , [s605gW (x50, v, 1) In f(x;v)] (2.19)

The stochastic counterpart of the above equation is as follows: for fixed 4; and

Vv;_1, derive v from the solution of following program
1 N
max D(v) = max — Y [I{S(xi)z%}W(XiQ u,v;q1)In f(x; V)} : (2.20)

=1

Thus, at the first iteration, starfimg with_vg = u, to get a good estimate for v,

the target event is artificially made less rare by (temporarily) using a level 4; which is

chosen smaller than . The value of ¥; obtained in this way will (hopefully) make the

event {s(x) > «} less rare in the next iteration, so in the next iteration a value 45 can

be used which is closer to 7 itself. The algorithm terminates when at some iteration ¢ a

level is reached which is at least v and thus the original value of v can be used without

getting too few samples.

The above rationale results in the following algorithm:

1. Define vo =u. Set t = 1.

2. Generate a sample zj, - - - ,xy from the density f(x;v;_;) and compute the sample

(1 — p)-quantile 4; of the performances according to (2.18), provided 4 is less than

v. Otherwise set 4; = 7.

14



3. Use the same sample X1, -+ ,xy to solve the stochastic program (2.20). Denote

the solution by v;.
4. If 4y <, set t =t + 1 and reiterate from Step 2. Else proceed with Step 5.

5. Estimate the rare-event probability ¢ using the LR estimate
N
Z x> W (x50, V) (2.21)

where 71" denotes the final number of iterations.

2.3 The CE-Method for Optimization Problem

Consider the following general maximization problem: Let X be a finite set of states,
and let S be a real-valued performance function on X. We wish to find the maximum
of S over X and the corresponding state at which this maximum is attained. Let us

denote the maximum by v*. Thus,

S(x")= Kr=max S(x). (2.22)

xeEX

The starting point in the methodology of the CE method is to associate with the
optimization problem (2.22) a meaningful estimation problem. To this end we define
a collection of indicator functions {I{S(X)Z’Y}} on X for various levels v € R. Next, let
{f(:;v),v € V} be a family of (discrete) probability densities on X', parameterized by
a real-valued parameter (vector) v. For a certain u € V we associate with (2.22) the

problem of estimating the number

l(y) = Pu(S(x) 2 7) = Z Iis>y f(x531) = Eulisx)>73, (2.23)

where P, is the probability measure under which the random state x has probability
density function (pdf) f(x;u), and E, denotes the corresponding expectation operator.
We will call the estimation problem (2.23) the associated stochastic problem (ASP). To

indicate how (2.23) is associated with (2.22), suppose for example that v is equal to +*

15



and that f(x;u) is the uniform density on X'. Note that, typically, /(v*) = f(x*;u) =
1/|X| where |X| denotes the number of elements in X is a very small number. Thus,
for v = 7* a natural way to estimate ¢(vy) would be to use the LR estimator (2.21) with

reference parameter v* given by

v' = argmax E, [I{S(X)Z'Y} In f(x; v)} : (2.24)
This parameter could be estimated by

v = argmax jlv Iisezay In (x5 V)| (2.25)

where the x; are generated from pdf f(x;u). It is plausible that, if v is close to v*,
that f(x;v*) assigns most of its probability mass close to x*, and thus can be used to
generate an approximate solution to (2.22). However, it is important to note that the
estimator (2.25) is only of practical use when I{gx)>43 = 1 for enough samples. This
means for example that when ~ is close toigf, u needs to be such that P,(S(x) > 7)
is not too small. Thus, the choice of/ifand 7 \(2.22) are closely related. On the one
hand we would like to choose v as €loselas@possible to v*, and find (an estimate of) v*
via the procedure above, which assigi§jalmostZ@ll mass to state(s) close to the optimal
state. On the other hand, we would like to keep v relative large in order to obtain an
accurate estimator for v*.

The situation is very similar to the rare-event simulation case. The idea is to adopt
a two-phase multilevel approach in which we simultaneously construct a sequence of
levels 41,42, -+ , 47 and parameter (vectors) vo, vy, -+, vy such that 47 is close to the
optimal v* and vy is such that the corresponding density assigns high probability mass
to the collection of states that give a high performance.

This strategy is embodied in the following procedure:

1. Define vy = u. Set t = 1.

2. Generate a sample x1, - - - ,xy from the density f(x;v; ;) and compute the sample

(1 — p)-quantile 4; of the performance according to (2.18).
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3. Use the same sample xj,--- , Xy and solve the stochastic program (2.20) with

W = 1. Denote the solution by v,.

5. If for some t > d, say d = 5,

Y =Yo1 =" = Vi—d, (2,26)

then stop (let 7" denote the final iteration); otherwise set ¢ = ¢t 4+ 1 and reiterate

from Step 2.

Note that the initial vector vy, the sample size N, the stopping parameter d, and the
number o have to be specified in advance.

The above procedure can, in principle, be applied to any discrete and continuous
optimization problem. For each individual problem two essential ingredients need to be

supplied:

1. We need to specify how the sainplesiare generated. In other words, we need to

specify the family of densities3\f (3:)4=

2. We need to calculate the updating rules for the parameters, based on cross-entropy

minimization.

In general there are many ways to generate samples from X, and it is not always
immediately clear which way of generating the sample will yield better results or easier

updating formulas.

2.4 Updating Rules of Some Useful Densities

In this section we will derive the updating rules for two pdfs which are commonly used
for the CE method. The first one is the Bernoulli distribution and the second is the

Gaussian distribution.

17



Suppose the random vector x; = (x;1, -+ ,x;,) ~ Ber(p) where Ber(p) is Bernoulli

distribution with parameter p = (py,- - ,p,). Consequently, the pdf is
n
Tij —Tij
f(xizp) = [T pi" (1 = pi)'=, (2.27)
j=1

and since each x;; can only be 0 or 1,

0 ;1 —
—Inf(x;;p) = 2L - —"4
Opj floxi p) p;  1—pj
1
= m(%‘ — ;). (2.28)
J J

Now we can find the maximum in (2.20) (with W = 1) by setting the first derivatives

with respect to p; equal to zero, for j =1,--- ,n:
0 Y 1 N
— > Lisx)syIn f(xi5p) = ————— > Iisx, x;i —p;) = 0. 2.29
32%2::1 {s(x)>7} In f (%55 p) (l_pj>pj; (s(x) 2} (T — Dy) (2.29)

Thus, we get the updating rule

Next, consider the Gaussian density
Flaip o) = 35 LR (2.31)
7“7 /271-0-2 ) * *
The optimal solution of (2.20) (with W = 1) follows from minimization of
1 N ) N
= ; Ii(w; — p)? + In(0?) ; I;, (2.32)

where I; = Ig(z;)>+). It is easily seen that this minimum is obtained at (f1,62) given by

N Z]-\il Iiz;
= (2.33)
Zi]\i1 Iz'
and
N ) )2
6,2 _ Z’iZ]. I’L('T’L lu’) (234)

Zf’il Iz'
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Chapter 3

Stochastic Erasure-Only List
Decoding of RS codes

In this chapter, we apply the Cross-Entropy (CE) method [22] to develop a Monte Carlo
based iterative SDD algorithm which renders an improved algebraic SDD decoding per-
formance. The CE method is an elegant practical principle for simulating rare events
which approximates the probability of theFarefeyent by means of a family of parameter-
ized probabilistic models. Our stochastie-erasute-only list decoding (SEOLD) algorithm
uses the extended CE method for optinfizatienrpreblem by considering an optimal event

as a rare event.

3.1 Preliminary

Let C be an (n,k) RS code over GF(2™) with minimum Hamming distance d,;, =
n—k+1. Let ¢ = (¢, -+ ,cy_1) be a codeword in C. For binary transmission, every
code symbol must be expanded into binary with symbols from GF(2) = {0,1}. Let a be
primitive in GF(2™), then the ith symbol ¢; can be uniquely represented by the binary

(b)

m-tuple ¢;” = (Cig, " ,Cim-1) Where ¢; = ¢;00” + -+ + ¢ 1™, Ve ; € GF(2).

Therefore, the codeword ¢ can be uniquely mapped into the binary expansion vector
(b) (b) b)

E:(CO yC1 oy, Gy ): (EOaélv"' 7Enm—1)-

Using binary phase-shift-keying (BPSK), the transmitter maps the binary imaged

19



codeword ¢ into the bipolar vector
U(C) =X = (Zo,  , Tnm-1), T; = V(g) = (=1)% (3.1)

and sends it over an additive white Gaussian noise (AWGN) channel with zero mean
and power spectral density Ny/2. The received sequence at the output of the matched
filter is ¥ = (Yo, -+ , Ynm—1) Where y; = Z; + w; and w,’s are statistically independent

Gaussian random variables with zero mean and variance Ny/2.

Let Z = (Zo,- -+ , Znm—1) be the hard decision binary vector of the received bit sequence
y, ie.,
_— 0, yj > 0
% { 1, otherwise (3.2)

and z = (2o, -+ , zn_1) be the corresponding symbol vector. Denoted by I' = (71, -+ , Jum_1)
the reliability vector of ¥ in which 4; is themagnitude of the log-likelihood ratio (LLR)

associated with the corresponding hardslimited\bit. z;
_ £Ce s 0
L (¢;) 2Jog sty 7~ 3.3
(@) =y (33)
and define the symbol reliability vector I' = (g, -+ ,7,—1) of z by
v =miny;, j€ {im,---,(i+1)m—1} (3.4)
J

Assume that the ith symbol ¢; of ¢ is uniformly distributed over GF(2™) and the n
received symbols are independent and uniformly drawn from GF(2™). Then P(¢; = 5|y),
the probability that ¢; = [ was transmitted given the observation ¥ can be easily

evaluated [14]:

P(c;=ply) = Pla=py:)
P(yilci = B)P(c; = )
L eGF(2m) PFile = 0)Pe = w)
P(§ilc; = )
YeGF(2m) PFilei = w)

(3.5)
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where

Yi = (_im7 Yim+1," 7gim+m—1)7

m—1
PFilei=8) = II P@imejlCimes = 55), 8= 000"+ -+ Bpra™ ",
=0

The g x n matrix R = [Rg; = P(¢; = 5|y)], ¢ = 2™, will be referred to as the reliability

matrix of the received vector ¥y.

3.2 Stochastic List Decoding Algorithm

3.2.1 Algebraic Erasures-Only (EO) Decoding

It is well-known that RS codes are maximum-distance separable (MDS) which implies
that any k coordinates (symbols) in an RS codeword can be used to determine the
remaining n — k symbols. Hence it is sufficient to decide k correct (message) or n — k
incorrect (error) coordinates of a codeword—Eettd; be the collection of all combinations

of n — k error coordinates,

EL:{s:(50,~~,sn‘1) siE{O,l},zi:si:n—k} (3.6)

where s; = 1 if the i¢th coordinate is in error. Then a straightforward decoding schedule

is given as below:

(a). Forall s € E, erase the corresponding n— k error coordinates of the received word
z and decode by the erasures-only (EO) decoder. The resulting codeword set is
denoted by C,.

(b). Choose the codeword from C, with the best score, e.g., the one whose Euclidean

distance from the received word is the smallest, as the decoder output.

The basic idea of the above procedure is shown in Fig. 3.1. It can be easily confirmed
that for any ¢ € C,, dy(c,z) < n—k, where dy(c,z) is the Hamming distance between

c and z. Therefore, the transmitted codeword belongs to C, if the number of error
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[ : vectors with Hamming distance n-k away from z
© O: codewords belong to C,

@ : transmitted codeword
— :re-encode process

Figure 3.1: Idea of the algebraic erasures-only decoding.
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symbols is less than dy,;,. Furthermore, (b) is equivalent to the following minimization

problem
argmind (¥(c), ¥) subject to c € C, (3.7)

where U(-) is defined by (1) and d(a, b) is the Euclidean distance (ED) between the

nm-ary real vectors a and b.

3.2.2 A Stochastic List Decoding Idea

Each error locator vector (ELV) s € Ep represents a particular set of n — k possible
error coordinates and has a corresponding codeword cg that belongs to C,. We denote
the latter relationship by s +— cs. Although more than one ELV may be associated with
the same codeword, the complexity of searching for the optimal solution ¢* in the error
location domain E, is still extremely high because the cardinality of Ej, is (Z) and only
a few (or one) elements in Ej, depending on thénumber and locations of the received
errors, can be used to reconstruct ¢!

Suppose we model the selection cEthe BENV=S fiom E;, as a stochastic (vector-valued)
experiment governed by a family of parameterized distributions {f(s;u)} with u €
v being a real-valued parameter vector. Usually f(s;u) is assumed to be uniformly
distributed due to the lack of priori information whence the search in (3.7) is exhaustive
unless some algebraic properties of the code are used. One way to solve (3.7) efficiently
is to find a parameter v* such that f(s;v*) = d(s — s*) where s* — c*. Then drawing
one sample from f(s;v*) is sufficient to obtain the optimal solution c*. To get around
the difficulty that c* is not known, one notices that the optimization problem (3.7) is
related to the estimation of the probability P(d(¥(Cs),y) < n|s — cs), which is a rare
event when n = n* = d(¥(c*),y). The connection comes from the fact that efficient
estimation of a rare event can be achieved by the method of importance sampling and
in this case the optimal importance density is f(s;v*). Without the knowledge of the

threshold n*, we start with a proper importance density f(s;V) to generate samples of s
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and compute an initial estimate 7 for n. Ideally, we can use those drawn samples which
satisfy d(U(Cs),¥) < 7 to obtain new parameter value v’ such that f(s;v’) is closest to
f(s;v*) in the Kullback-Leibler (KL) sense, i.e., the CE between f(s; V') and f(s;v*)
is minimized. Since v* is unknown, we choose v/ such that f(s;Vv’) is closest to the
empirical distribution of s in those samples that are generated by f(s;Vv) and satisfy
d(¥(Ss),y) < 71 for this empirical distribution is likely to be a good approximation of
f(s;v*). New samples of s are then produced by the updated importance density f(s; V')
to compute new estimate 7. This iterative procedure continues until |77 — 77| is less than
a predetermined threshold.

The above method is known as the CE method [22] which is an iterative procedure

that consists of the following two phases in each iteration.

e Generate samples from the specified importance density given by the parameters

from the previous iteration.

e Update the parameters for next iteration according to the order of the score values

associated with the drawn samples and théfminimizing CE criterion.

Based on the above discussion, we propose a generic Monte Carlo based SDD algo-
rithm as shown in Fig. 3.2 and in Table 3.1 with some detailed description given in

Section 3.3 and 3.4.

3.2.3 Convergence and Complexity

Different convergence conditions and results have been discussed for the deterministic CE
method and its extensions in [24] where it is also proved that convergence in distribution
or 1) can be guaranteed but needs a proper tuning of the parameters of the algorithm such
as the number of samples IV, number of elites £/, and smoothing factor p. Convergence to
the global minimum is ensured only if a large sample size N is used. On the other hand,

the computing complexity is related to N and is given by O(N(n — k)?). It is obvious
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Figure 3.2: Flow chartjof ‘a=stochastie. decoder for RS codes.

Define a family of probability densities {f(-;v),v € v} on the search space R"™.
Initialize v(©. Set t = 1.

Generate a sample set S®) whose N random vector samples are drawn from f(-;v(®).
Regard the magnitudes as bit LLRs and convert them into symbol reliabilities.

Erase the n — k least reliable symbols and decode the received word by EO decoding.
Evaluate Euclidean distances between the decoded codewords and the received word.
Select the E vector samples with best metrics as the new elite set Sg¥ ¢ S®)

and store the best decoded codeword d*® in D®),

Evaluate the new parameter v(t1) by solving

) = arginaxm 2 eggo I F(s”5v).

Update v via v = pvD 4 (1 — p)v® where 0 < p < 1.

Terminate decoding if the stopping criterion is met. Choose the best codeword from
the list {d*(t); \4 t}, say ¢, as the decoder output. Otherwise increase t by 1 and
return to step 2.

v

Table 3.1: A Stochastic List Decoding Algorithm.
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that the decoding performance can be improved by using a larger N. As we retain the
best sample at the end of each iteration, the decoding performance is also improved
by increasing the iteration number 7. As an early-stopping at any iteration produces a
decoded codeword, we say the algorithm converges if the sequence of decoded codewords
converges. With a modest N, we found that the decoded codewords converge to the same
codeword within 10 iterations in most cases. Our algorithm yields good performance
although uniform convergence in distribution or n within a limited iterations is not

guaranteed.

3.3 List Decoding via Erasure Location Estimation

In this section, we propose an novel algorithm to solve the discrete optimization problem
described in (3.7) by utilizing the stochastic list decoding idea. This algorithm is named
as the first kind stochastic erasure-only listdecoding (SEOLD-I) algorithm which is used
to efficiently estimate the most possiblefds,in= Talogations of erasures about the received

word z.

3.3.1 Importance Density and"Sample Format

Suppose the reliability matrix R is known at the receiver. Define the distrust function,

4 GF(2™) +— (0, 00), of the ith coordinate z; of z as

> s Rg.i
Rzi7i

Jalzi) = , e GFR2™)\ {2} (3.8)

The larger the value of fy(z;) is, the higher the probability that z; should be erased at
the decoder.

Let s = (sg, - ,8,-1) be a random vector where sg,--,s, 1 are independent
Bernoulli random variables with success probabilities pg, -« ,pn_1, i.e., P(s; = 1) =
1 — P(s; = 0) = p;. We write s ~ Ber(p), where p = (po, -+ ,pn_1). In our case, s; =1
represents the ith symbol z; of z should be erased. On the other hand, z; will be reserved

because of higher reliability when s; = 0.
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The initial parameters p(®) = (péo), SRR pﬁloll) are defined as

o | 1—e€ fa(z)>1—c¢
b= { fa(zi), otherwise (3.9)

where € is an arbitrary real value between (0,1).

At the tth iteration, let sgt),sg), e ,sgf,) be N trials drawn from Ber (p(t)) which

satisfy
n—1
S s =dpin —1, Ye{l,--- N} (3.10)
=0

where Sét) = (3%, e ,82?171). We then collect samples from these N trials to form a

MONIRNO

sample set S® = { SN }-

3.3.2 Update Parameters

Let dgt), e ,dgf,) be the output codewords;of the EO decoder. We compute the ED
between each candidate codeword and the 1eéeived word y and sort the corresponding
random vectors according to the descendigforderfof their associated EDs. Define the
elite set S at the tth iteration to Besthe Ex@ctors with the smallest EDs to y, i.e.,
the corresponding codewords are more likely to have been transmitted. We always store
the best one in Sg up to the current iteration for the final decision when the maximum
number of iteration is reached.

Suppose the parameters used to generate samples at the tth iteration are p® =

(p((]t), R pff),l). The parameters for the next iteration are updated by considering the

(t+1)

information provided by both p® and Sg®. More precisely, the 7th parameter p, is

obtained by [22]

(t)
 Lresg® Su,i

(1) _ (1 _ )0
i (L=p)p;’ +p 7

(3.11)

where p is a smoothing factor with real value between (0, 1).
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3.4 List Decoding via Virtual Received Words

In Step 2 of Table 3.1 we try to find the most likely message/error coordinates such
that the associated EO-decoded codeword is closest to the received vector. Note that
the random samples are used to determine the erasure locations only, and the searching
sphere of the algebraic list decoding described in Section 3.2.1 is always centered at the
hard-limited received word z with radius equals to n—k. To increase our search range and
improve decoding performance, we include some extra codewords which lie statistically
in a small neighborhood of the received word in our expanded search, such that some
of them may in fact be closer in ED to the true transmitted codeword c; see Fig. 3.3.
More specifically, the expansion is accomplished by eliminating the requirement that the
search be centered at z. Instead, we randomized the search center by EO-decoding the
hard-decision versions of the drawn sample vectors which we refer to as virtual received
words. If the importance density doessgonvergeto the desired density d(s — s*), such an

expanded search will eventually contraetrandreconverge to the true transmitted codeword.

3.4.1 Importance Density and Sample Format

Let 8 = (50, , Snm—1) be a random vector where 3g, - -, §,,—1 are independent Gaus-

2

sian random variables with means g, - - , finm—1 and variances o3, - -+ ,02, ;. We write

S~ N (ji, ), where [i = (o, , ftnm—1) and & = (09, "+ , Onm_1) are initialized by

0 _

WO = 5 (312)

a0 = Il (3.13)

At the tth iteration, N random samples §§”, §(2t), e ,§§f,) are drawn from N (ﬁ(t), E(t))

to form the sample set S®). Each sample vector represents the bit reliabilities of an
associated virtual received word. By using (3.4) to convert the bit reliabilities into

symbol reliability, the n — k coordinates with smallest symbol reliabilities are erased; the
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Figure 3.3: Virtual received words are generated around the received LLR vector I by
hard-limiting the sample vectors generated by an importance probability density whose
parameter values evolved according to the CE principle.

3.4.2 Update Parameters

Let dgt), e ,d%) be the output codewords of the EO decoder. We compute the ED
between each candidate codeword and the received word y and sort the corresponding
random vectors according to the descending order of their associated EDs. Define an
elite set Sg) which includes E vectors with the smallest EDs to y, i.e., the corresponding
codewords are more likely to have been transmitted. We always store the best one in Sg)
up to the current iteration for the final decision when the maximum number of iteration
is reached.
Then the two sets of parameters 7+ and 1) are updated by [22]

S0es 50
sMeslt) 2L

N;tﬂ) —(1— )\)N;t) Y =

(3.14)
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and

_(t t+1)\ 2
Zggt)eég) (Sé} - ,ug ))

E

of = (1 =)o +n-

J J

(3.15)

where A\ and 7 are real values between (0,1) used to smooth the variation of these
parameters. The algorithm described in this section is called the second kind stochastic

erasures-only listing decoding (SEOLD-II) algorithm.

3.5 Simulation Results and Discussion

In this section, some simulated performance of two SEOLD algorithms (SEOLD-I and
SEOLD-II) are presented and compared with that of other well known RS decoding
algorithms. A standard binary input AWGN channel is assumed over which the BPSK
modulated codewords are transmitted. We model the receive matched filter output as the
sum of a £1—valued sequence and Gaussianrséduence with zero-mean i.i.d. components.
The average performance bounds ongheMliercop probability of RS codes over an AWGN
channel developed in [25] are used as\theZpertormance lower limits.

Due to the complexity and the decodimgrdélay considerations, the SEOLD algorithms
will not terminate until convergence is assured. Instead, we limit our decoding procedure
to T' iterations in all simulations.

Fig. 3.4 shows the codeword error rate (CER) performance of the (15,11) RS code
over an AWGN channel. HDD-BM refers to the performance of a hard decision bounded
minimum distance decoder such as the BM algorithm. GMD and KV refer to the per-
formance of the GMD algorithm proposed by Forney and the algebraic soft decision
decoding algorithm proposed by Koetter and Vardy, respectively. Note that the KV
algorithm concerned here is infinite interpolation costs, i.e., the complexity is also infi-
nite. For both SEOLD-I and SEOLD-II, the size of the sample set N and the size of the
elite set E at every iteration are set to be 20 and 6, respectively. After 10 iterations,

SEOLD-I has about 0.5 dB and 0.3 dB coding gain over GMD and KV at a CER of 1075,
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Figure 3.4: Codeword error probability performance of the (15,11) Reed-Solomon code;
10 iterations.

10 iterations. At the same condition, SE@ still outperforms the other algorithms
with reasonable complexity. The SEOLD-II has about 0.6 dB and 1.0 dB coding gain
over KV where N is equal to 100 and 500, respectively. In conclusion, the proposed
decoding algorithms are capable of offering good performance with modest complexity
for short high rate RS codes. Its performance can be further improved by increasing
the sample size N and/or the maximum iteration number 7" at the cost of increased

decoding complexity.
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Figure 3.5: Codeword error probability performance of the (31,25) Reed-Solomon code;
10 iterations.
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Chapter 4

Stochastic List Decoding of Linear
Block Codes

In the previous chapter, we focus on decoding RS codes of short to medium length. The
MDS character of RS codes is exploited to reduce the complexity of locating near-by
codewords. Such an approach cannot be applied to general linear codes. We thus present
a new decoding method which is valid forarbithary linear codes but is more effective for

codes with small girth.

4.1 Preliminary

Let C be a binary (N, K) linear block code with minimum distance d,,;, and M x N
parity-check matrix H. As the rows of H may be dependent, we have M > N — K. Let
I'=A{1,--- N} and J = {1,--- , M} be the sets of column indices and row indices of
H, respectively. We denote the set of bits n that participate in check m by N (m) =
{n : H,,, = 1}. Similarly, we define the set of checks in which bit n participates as
M(n) ={j : H,, = 1}. We denote a set N'(m) with bit n excluded by N(m)\n, and
a set M(n) with parity check m excluded by M(n)\m. The cardinality of N'(m) and
M(n) are denoted by |N(m)| and | M(n)]|, respectively. Let e, be a 1 x N elementary
vector with 1 at position n and 0 at other entries.

An 1 x N vector ¢ is a codeword of C if and only if cH” = 0 where H” is the
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transpose of H and 0 is a 1 x M zero vector. For each row h,, of H, m € J, let
C,. = {cc{0,1}" : ch! =0 mod 2}, (4.1)
then

C=()Cy. (4.2)

1

D

Using the binary phase-shift-keying (BPSK) signal, the transmitter maps a codeword

c into the bipolar vector
\D(C) =X= (mla"' 7-7:N)7 ,’En:\IJ(Cn) = (_1)cn (43)

and sends it over an additive white Gaussian noise (AWGN) channel with zero mean
and power spectral density No/2 W/Hz. The received sequence at the output of the
matched filter is given by y = (v1, - - - , ynadihere v, = x,, +w, and w,,’s are statistically

independent Gaussian random variablesswith Zerdamean and variance Ny/2.

Let z = (21, -, 2n) be the hard|decisiGniwersion of the received sequence y, i.e.,
) 050
n = { 1, otherwise (44)

For m € J, we define o, as the result of check sum-m based on the hard-decision vector

z:
Om = [ Z anmn] (mod 2) (4.5)
neN(m)
and define ¥ = (01, -+ ,0y) as the syndrome vector.

Denoted by I' = (4, - - - , yy—1) the reliability vector of y in which -, is the magnitude

of the log-likelihood ratio (LLR) associated with the corresponding hard-limited bit z,

P(c,=0]y)

L, =log ————"2
S P (en=1y)

. (4.6)

We also denote £ = (Ly,---, Ly) as the LLR vector of the received word.
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Let A, be the reliability of check sum m which is defined as

Am = néﬂj\flgﬂ) Yn (4.7)
Then we first sort {\,, : m € J} and let my, my,--- ,my denote the position of the

check sums in terms of descending order of {\,, : m € J}, i.e., the check sum m; is the
most reliable and m,; is the least reliable.
Define g, = P(z, # c,|y) as the a posteriori probability that bit n is in error based

on y. Then we have the following lemmas.

Lemma 4.1 For the AWGN channel model considered, the probability q, can be ex-

pressed as

(4.8)
Proof :

See Appendix A.

Lemma 4.2 The probability that for m € M(n), the sum of all bits n' €

N(m)\n mismatches the transmitted bit n', say vy, s
(m)\ » SQY Trm,

Tran = % (1 - I a- QQn’)) : (4.9)

n'eN(m)\n
Proof :

See [26].

Note that 7y, represents the probability of having an odd number of errors N (m)\n.
Define ¢, as the a posterior: probability that bit n is in error based on the results of the

check sums intersecting in position-n. Then we obtain the following useful theorem.
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Theorem 4.1 Given the received wordy and the syndrome set ¥,, = {o,, : m € M(n)},

the logarithm of the bit correctness probability ratio for bit n, say &,, is

= log[ In ]_log [P(Zn#cnb’axn)]

Yot Y | [(1 —20,,) (nleﬁ(i%\n%lﬂ (4.10)

meM(n

12

Proof :

See Appendix B.

4.2 Sequential Bit-Flipping Algorithm

In this section, we introduce a single-run sequential bit-flipping (SBF) algorithm for
transforming z into a valid codeword. This procedure has a special constraint about
the parity-check matrix H that H has_toibe,a systematic form. First of all, consider
the rows of the parity-check matrix/H=are Jineatly independent, ie., M = N — K.
Using appropriate row operations, H can“be transformed into a systematic form, say
H = [I,,P], where I,; is an M x M identity mébrix and P is an M x (N — M) binary
matrix. Note that both H and H are the null space of C, hence we can decode the
received word by using H instead of H.

However, it is impossible to have this transformation when the rows of H are linearly
dependent, i.e., M > N — K. Fortunately, we can remove M — N + K rows of H which

can be represented by the linear combination of the remain rows to get a (N — K) x N

sub-matrix H' where H' has its systematic form H'.

Example 4.1 Consider the following parity check matriz:

1111000000
1000111000 h,
H=|0100100110]|=]": (4.11)
0010010101 hs
00010010T1°1
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Since hy = hy + - - - + hs, we can remove hy from H and get the following sub-matriz

H — (4.12)

o O O
o O = O
o = O O
— o O O
S O = =
S = O =
—_0 O -
O = = O
—_o = O
—= =0 O

where H' is itself a systematic form.

Note that it is easy to confirm that H' is still the null space of C. Therefore, without
lost of generality, we assume that H is always a systematic form in this chapter for
simplicity.

Remind that C = ,,c; Cy,, i.e., a codeword c also belongs to subcodes C,, for all
m € J. The idea of the SBF algorithm is to modify z sequentially such that the final
result is a valid codeword. Specifically, the SBF algorithm separates the original problem
into M sub-problems and solves these sub-problems sequentially in terms of an arbitrary
order of {1,---, M}, denoted as o = (oL (M)). The procedure must ensure that
the solution of the m-th sub-problem &lsoisatisfythe constraints of previous (m — 1)
sub-problems. Along the process of the{picceduresa sequence of vectors dy,ds, - -+ ,dys

are produced where
d; € N1 Copmy, 1 <t < M. (4.13)

and dj; is obviously a valid codeword. In general, the SBF algorithm needs to input
a predetermined order o and the LLR vector £ at the beginning. At the end of the
procedure, a valid codeword d = (dy,--- ,dy) and an associated new LLR vector L=

(I:l, e ,f/N) are the outputs. The difference between L and £ is given by

{Ln:Ln if d, = 2z, (4.14)

L,=—L, ifd,# z,

where £ is useful for the stochastic decoding algorithm described in Section 4.5.

Next, we formulate the detailed procedure of the SBF algorithm as below:

1. Let dg be the hard limiting vector of £, £ = £, and Iy = {¢}. Set t =0.
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2. Let I, = I,_1UN(o(t)). If d;—1 € Cyy, let d; = dy—1. Otherwise, find the solution,

say n*, of

i 4.1
arg nE{IIItl\IB_l} &n (4.15)

where &, is evaluated by (4.10). Let

d; «— di+e, (mod?2), (4.16)
Ly — —Lp, (4.17)
Om “— Om+1 (mod2)Vme M(n"), (4.18)

t «— t+1.

3. If t = M, stop the procedure and output both d = d;; and L. Otherwise, go to

Step 2.

Example 4.2 Consider a (8,4) linear block code with parity check matriz:

10001110
1

0010 011
H= 01 001101 (4.19)
0001O01T171

W

Suppose all zero codeword is transmitted and the received word 'y is given by
y = (1.83,2.07,2.36,—0.21, 1.05,1.91, —0.09, 1.63).
Then the hard limiting vector z is

z=(0,0,0,1,0,0,1,0),

and an example of the SBF algorithm is shown in Fig. 4.1 where the order of check sums

are 3 — 2 — 1 — 4.
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Check Reliability 0.23 0.23 2.63 0.23

Check sum 1 1 0 0

LIR
z 0 0 ! 0 0 1 0
| | | | |
d, = (00010010)
:_Cﬂec_k #3
L sum=0_|

d, = (00010010)

:_Check #
sum =1 |

1. =211 < £529.72,
2. Gl(—O, 62(—0, (74(—-1

L

d, = (00010000)

Ircﬁec_k%f. i 0
sum=0 |

d;=(00010000) o L o —i— o
:_Cﬂec_k #4

 sum =1 | 1. flip bit ¢4

2. 04(—0

d, = (00000000)

Figure 4.1: An example of the SBF algorithm.
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4.3 Predicament of Decoding via SBF algorithm

We have introduced a sequential bit flipping procedure, say SBF algorithm, in previous
section. It is a simple unified framework for transforming the hard limiting vector z
into a codeword in C. Note that different order may induce different codeword to be
produced. For instance, the output codewords in Example 4.2 and 4.3 are different

because of different orders although they face the same received word y.

Example 4.3 Consider the same case described in Example 4.2. If we change the or-

der from 3 — 2 — 1 — 4 to4 — 3 — 2 — 1, the output codeword d will become

(1,0,1,1,0,0,1,0).

We observe that output codeword d in Example 4.2 is equal to the transmitted
codeword but in Example 4.3 is not. It is because the order used in Example 4.3 meets
the situation described in Remark 4.1. Qbyiously, it is a big problem if we want to
decode by SBF algorithm. ThereforeyAve-tFfto,sdkve this problem by the following two

ideas:

1. Find appropriate order to avoid %he-situa®ion described in Remark 4.1.

2. Correct some error bits in advance such that the number of orders which can

decode the correct codeword increases.

Note that the first idea is impractical because the complexity of finding appropriate
order grows quickly as M increases. Besides, the hardware implementation is inefficient
if the order changes frequently. Consequently, we propose two modified methods for
decoding based on the SBF algorithm with a fixed order. The first one is designed
for cyclic codes that we apply the SBF algorithm to transform all of the cyclic shifted
received word into valid codewords. Note that cyclic shifting the received word is similar
to decode in different order even though we don’t change the order actually. The another
method is to implement the second idea based on the concept of the randomized sphere

decoding with moving center which can correct errors iteratively.
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4.4 SBF Algorithm with Cyclic Shifts

Assume a codeword cr belongs to a cyclic code C is transmitted and let £ = (Lq,--- , Ly)
be the LLR vector of the received word. Define £” = (L, 1, L,_o,- -+, L,) as the cyclic
shifted version of £ by v positions. Then we can obtain a set of candidates by the

following algorithms:
1. Determine an order o for the SBF algorithm.

2. For all v € J, apply the SBF algorithm for £” and o to obtain a set of candidates
D ={d',---,d"} where
(d”, L") = Q(o, L7).

The transmitted codeword is then estimated by
Cr = arg né%l d(‘lf(C)7 Y)7 (42())

where d(a, b) is the Euclidean distazice betweén aland b.

4.5 Stochastic SequentialBit Flipping Algorithm

Ideally, we can transform z into the transmitted codeword through the SBF algorithm
if the appropriate order is found. In fact, such order is hard to find, especially when
the LLRs are unreliable. Therefore, we don’t want to decode based on the original LLR
vector £ at all times but hope to gradually change £ such that its hard limiting vector
is more and more close to the transmitted codeword. In order to implement this idea,
we use the similar method illustrated in Section 3.4 which is an iterative procedure with

the following two phases:

1. Generate N, virtual LLR vectors around the original one according to a specific

random mechanism. Then decode them by the SBF algorithm to get Vg candidates.
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2. Update the parameters of the random mechanism based on FE, better candidates

in order to generate better virtual LLR vectors in next iteration.

Note that this is the basic idea of our randomized sphere decoding with moving center.

Next, we will illustrate the random mechanism further in next two subsections.

4.5.1 Importance Density and Sample Format

Let s = (s1,- -, sy) be arandom vector where s1, - - - , sy are independent Gaussian ran-
dom variables with means i, - -+ , uy and variances p?,- -, p%. We write s ~ N (ji, p),

where ji = (p1,- -+, un) and g= (p1,--- , py) are initialized by

O = L, (4.21)
4
O = — 4.22
Pr N, (4.22)
At the tth iteration, N, random samplod8&us() ... sg\t,)s are drawn from N (ﬁ(t), ﬁ(t))

to form the sample set S®). Each samplévector Tepresents the LLRs of an associated
virtual received word. We decode them {byatheSBE: algorithm based on an pre-designed
order and obtain sets of candidates dy) andragsociated LLR vectors éy) = (841, " ,50nN)

for 1 </ < N,.

4.5.2 Update Parameters

Let dﬁt), e ,dgf,l be the output codewords of the SBF algorithm. We compute the ED
between each candidate codeword and the received word y and sort the corresponding
random vectors according to the descending order of their associated EDs. Define an
elite set E® which includes F, vectors with the smallest EDs to y, i.e., the corresponding
codewords are more likely to have been transmitted. We always store the best one in
E® up to the current iteration for the final decision when the maximum number of

iteration is reached.
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Then the two sets of parameters i+ and pt*+!) are updated by [22]

(1)
Zgg%}am St

A+ — (1 — 5D 1+ 6
i (1= 0)py + E.

and

plity)

R 2
ngﬁgE(w (Sé% - :“SJFI))

—(1— (®)
(1—¢)p,’ +¢ E.

(4.23)

(4.24)

where § and e are real values between (0,1) used to smooth the variation of these

parameters.

4.5.3 Stochastic Sequential Bit Flipping Algorithm

The detailed stochastic sequential bit flipping algorithm (SSBFA) is summarized as

follows.

1. Initialize 7® and p® by (4.21).@%d decidé,an order o. Set t = 0.

2. Generate a set of random saniples S {dgt), e ,d%i} from N (, i, ﬁ(t)).

3. For each sample, we have (dét), (Alét)) =9(0, dgt)).

. Evaluate Euclidean distances between the dg,t) and the received word y. Select the

E, samples with best metrics as the new elite set E®) C S® and store the best

decoded codeword d**) in D®).
. Evaluate the new parameters ji“*" and p{**! by (4.23) and (4.24), respectively.

. Ift =T of for some t > ¢, say ¢ = 3,
d*® =@t = ... = @*(t-9), (4.25)

then stop; otherwise set t = ¢ + 1 and reiterate from Step 2.
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4.6 Simulation Results and Discussions

In the first part of this section, some simulated performance of the proposed algorithm,
say SSBFA, are presented and compared with that of traditional bounded-distance de-
coding (BDD) and the sum-product algorithm (SPA). A standard binary input AWGN
channel is assumed over which the BPSK modulated codewords are transmitted. We
model the receive matched filter output as the sum of a +1—valued sequence and Gaus-
sian sequence with zero-mean i.i.d. components.

The maximum iteration number of both SPA and SSBFA are set to be 50. But we
will stop the proposed algorithm earlier if the best of the output candidates are the
same for consecutive 5 iterations. In our simulations, SSBFA terminates quickly and
the average iteration number of is slightly more than five. Besides, the sample size N is
set to be 10 and the elite size F, is 1. Therefore, the computational complexity of both
algorithms in our simulation is approxiwrately-afethe same level.

Fig. 4.2 - 4.6 are simulation resultsgoffiveshighxate block codes with HDPC matrix
which is in order (15,11) Hamming codéM#5)ZRS code, (22,16) single error correction
(SEC) code, (39,32) SEC code, and (7264)*SEC code. The SSBFA has about 0.5 dB
- 0.8 dB coding gain over SPA at a bit error rate (BER) of 10~* under approximately
same complexity.

Next, we consider two examples of cyclic codes, (31,26) BCH codes and (15,11) RS
codes. For the (31,26) BCH code, we compare our SBF algorithm, SBF with cyclic
shifts (CSSBF) and SSBFA with BDD and SPA. As shown in Fig. 4.7, the performance
of the SBF algorithm with a fixed order is worse than BDD and SPA because of the
phenomenon described in Remark 4.1 may happen frequently. However, two kinds of
modified algorithms, SSBFA and CSSBF, have almost the same improved decoding
performance and outperform the other decoding methods. In other words, these modified
algorithms can greatly reduce the phenomenon described in Remark 4.1. For the (15,11)

RS code, similar decoding performance can be observed in Fig. 4.8. Our proposed
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RS (7,5)
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o
e --v--- SSBFA
w CER
——BDD
10° £{ —A—SPA
E | —v— SSBFA
10" L
0 1 2 3 4 5 6

SNR (dB)

Figure 4.3: Error rate performance of the (7,5) RS Code; Ny = 10, Es = 1
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SEC (22,16

------ Uncoded
--4&--SPA

| --»--SSBFA
CER
——BDD
—A&— SPA

107 E| —v— SSBFA N

Error Rate

SNR (dB)

Figure 4.4: Error rate performance of the (22,16) single error correction Code; N; = 10,
E, =1
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SEC (39,32)
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| --&--SPA
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——BDD
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Figure 4.5: Error rate performance of the (39,32) single error correction Code; Ny = 10,
FE,=1
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Figure 4.6: Error rate performance of the (72,64) single error correction Code; N, = 10,
EF,=1
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BCH (31,26)
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Figure 4.7: Error rate performance of the (31,26) BCH Code.
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Chapter 5

Conclusions and Future Works

We have presented several novel stochastic list decoding algorithms for linear block
codes with high density parity-check (HDPC) matrices. We apply an iterative Monte
Carlo based approach called the Cross-Entropy method to produce a list of candidates
at each iteration. Hopefully, the set of candidates will converges to the singular ML
codeword. Basically, the CE method_helps,to estimate the probability distribution
of the candidate transmitted codeword=b¥-examifiing the current available sample set
and find the distribution which is=¢losést“tothe/6ptimal one in the CE sense. In a
sense, we perform sphere decoding with-rand@iized decoding radius. Based on the
maximum-distance separable property of the Reed-Solomon (RS) codes, two stochastic
erasures-only list decoding algorithms (SEOLD-I and SEOLD-II) are proposed. SEOLD-
I estimates the possible erasures locations and then recover the associated codeword
by erasures-only decoder (EOD). In order to enhance the performance of SEOLD-I,
SEOLD-II utilizes the virtual received words to increase the search radius such that
extra candidate codewords and thus candidate elite members can be obtained. Therefore,
SEOLD-II outperforms SEOLD-I at the cost of increased complexity. Simulation results
verify that the performance of both algorithms is better than that of the GMD algorithm
and the KV algorithm.

In the second part of the thesis, we try to extend the concept of randomized sphere

decoding to decode general linear block codes which are not MDS codes. We first in-
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vestigate a novel sequential bit-flipping (SBF) algorithm which can transform the hard-
limited reliability vector into a valid codeword with low complexity. When cyclic codes
are in consideration, we can cyclic shift the reliability vector and decode by SBF al-
gorithm to form a set of candidates where the one with smallest ED to the received
word is chosen as the decoder output. On the other hand, we induce the concept of the
randomized sphere decoding with moving center when the codes are not cyclic. A set
of random virtual reliability vectors are generated and then decode by SBF algorithm.
Again, the elite set of candidates is used to modify the random mechanism such that the
center of the associated sphere will gradually move more and more close to the trans-
mitted codeword iteratively. The proposed stochastic sequential bit flipping algorithm
(SSBFA) outperforms the SPA for linear block codes with HDPC matrix.

Although the proposed algorithms give satisfactory performance, especially for high
rate linear block codes with HDPC matrixs L here are several issues that require more

research efforts. We mention just tht¢egg conclude this dissertation.

1. For long and/or low rate codespth€®equired/complexity is still too high. Reducing
the sampling dimension without compromising performance is a very challenging

problem.

2. A stochastic decoding algorithm for decoding low density parity-check (LDPC)

codes with complexity much lower than BP-based algorithms is most welcome.

3. Establish a firm theoretical foundation of the randomized sphere decoder and apply

the same concept to solve other problems, e.g., MIMO detection.
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Appendix A

The Proof of Lemma 4.1

Assume ¢, is a priori equally likely to be 0 or 1, then the a posteriori probabilities on

Cp, 18

(A1)
(A.2)
By the following fact:

(A.3)

and the definition in (?7),
o - Rl s 9
- ﬁ (A5)
= 3 —i—le%' (A.6)
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Appendix B

The Proof of Theorem 4.1

From Bayes rule:

P(zn = caly, Xn) P2y = culy) P(Xnlzn = ¢, y)

= . B.1
Pl 7 caly.T) Pl 7 0aly) P(Soln # ) (0

From Lemma 4.1, the first part of the right hand side of (B.1) is given by
P(z, # culy) =97 =1 =Rz, = c,.|y). (B.2)

Assume the check sums in ¥, are statistieallyind¢pendent. The probability P(¥,|z, =

Cn,y) is given by

P(X,|zn = cn,y) = H P(om|zn = cn,y), (B.3)
meM(n)
where
1—rp, ifo,=0
P(O’m’Zn = Cnay) = { e 1f o, = 1 . (B4)
Similarly,
P(X,|zn # cn,y) = H P(om|zn # cn,y), (B.5)
meM(n)
where
Tmn if 0, =0
P(om|zn # cnyy) = { e =1 (B.6)
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From (B.3) - (B.6), we have

P(X,|zn = cn,y) _ H [(1 —20,) (1 — rm")} ) (B.7)

P(Xp|2n # cnyy) meN (m) T'mn

Using the approximation

II (1-2¢,)=1-2 max g, (B.8)
nEN (m) neN(m)
we obtain
1
Pon = — (1 - H (1-— 2qn/)) (B.9)
2 n’eN(m)\n
1
o~ B.10
T (B.10)
1
T Lt N T (B.11)
Then
1- ~n
log ( —4d ) _ (B.12)
qn
= (B.13)
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