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a b s t r a c t

Recently, Chen and Hwang [H.B. Chen, F.K. Hwang, Exploring the missing link among d-
separable, d-separable and d-disjunct matrices, Discrete Applied Mathematics 133 (2007)
662–664] provided a method for transforming a separable matrix to a disjunct matrix. In
[D.Z. Du, F.K. Hwang, PoolingDesigns andNonadaptiveGroup Testing— Important Tools for
DNA Sequencing,World Scientific, 2006], Du and Hwang attempted to extend this result to
its error-tolerant version; unfortunately, they gave an incorrect extension. This note gives
a solution to this problem.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let M be a (0, 1)matrix. For any set S of columns of M , U(S) will denote the union of the row indices of 1-entries of all
columns in S. When S is the singleton set {C}, we abuse the notation by writing U(S) simply as C .M is called d-separable if
for any two distinct d-sets S and S ′ of columns, U(S) 6= U(S ′).M is called d-separable if the restrictions |S| = d and |S ′| = d
above are changed to |S| ≤ d and |S ′| ≤ d, respectively. Finally, M is called d-disjunct if for any d-set S of columns and
any column C not in S, C is not contained in U(S). These three properties of (0, 1)matrices have been widely studied in the
literature of nonadaptive group testing designs (pooling designs), which have applications in DNA screening [2–7].
It has long been known that d-disjunctness implies d-separability which in turn implies d-separability [3, Chapter 2].

Recently, Chen and Hwang [1] found a way to construct a disjunct matrix from a separable matrix to complete the cycle of
implications.

Theorem 1.1 (Chen and Hwang [1]). Suppose M is a 2d-separable matrix. Then one can construct a d-disjunct matrix by adding
at most one row to M.

The notions of d-separability, d-separability and d-disjunctness have error-tolerant versions. A (0, 1)matrixM is called
(d; z)-separable if |U(S)4U(S ′)| ≥ z for any two d-sets of columns of M . It is (d; z)-separable if the restriction of d-sets is
changed to two sets each with at most d elements. Finally,M is (d; z)-disjunct if for any d-set S of columns and any column
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C not in S, |C \ U(S)| ≥ z. Note that the variable z represents some redundancy for tolerating errors [3]. For z = 1, the
error-tolerant version is reduced to the original version.
Du and Hwang attempted to extend Theorem 1.1 to its error-tolerant version.

Theorem 1.2 ([3, Theorem 2.7.6]). Suppose M is a (2d; z)-separable matrix. Then one can obtain a (d; z)-disjunct matrix by
adding at most z rows to M.

By Theorem 1.2, Du and Hwang obtained the following corollary.

Corollary 1.3 ([3, Theorem 2.7.7]). A (d; 2z)-separablematrix can be obtained from a (2d; z)-separablematrix by adding atmost
z rows.

Unfortunately, Theorem 1.2 is incorrect; thus Corollary 1.3 is incorrect as seen from the following counter-example. Let

M1 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

It is easily verified thatM1 is (2; 2)-separable. We now show that adding two rows toM1 cannot produce a (1; 2)-disjunct
matrix.
Let C1, C2, C3, C4 denote the four columns of M1. Suppose we set C = Ci and S = {Cj}, i 6= j. Then we need two rows

each containing Ci but not Cj. One such row is already provided byM1. So we need one (1, 0)-pair in a new row. Since this is
required for each pair of (i, j)with i 6= j, there are 4×3 = 12 choices of (i, j) pairs and each such pair needs a (1, 0)-pair in a
new row; or equivalently, we need the new rows to provide twelve such (1, 0)-pairs. But one new row can provide at most
four (1, 0)-pairs (achieved by a rowwith two 1-entries and two 0-entries). So two new rows are not sufficient for providing
the twelve (1, 0)-pairs required by the (1; 2)-disjunctness property.
In this note we give a correct version of Theorem 1.2, and obtain a more rigorous statement of Theorem 1.1.

2. Main results

Lemma 2.1 ([3, Lemma 2.1.1]). Suppose M is a d-separable matrix with n columns where d < n; then it is k-separable for every
positive integer k ≤ d.

Note that the condition d < n in Lemma 2.1 is necessary as seen from the following example: Let

M2 =

(1 1 0
1 0 1
0 1 1

)
.

M2 is trivially 3-separable. But it is not 2-separable, as the union of any pair of its columns is identical.
We now generalize Lemma 2.1 to an error-tolerant version.

Lemma 2.2. If a matrix M with n columns is (d; z)-separable for d < n, then it is (k; z)-separable for every positive integer
k ≤ d.

Proof. It suffices to prove that M is (d − 1; z)-separable. Assume that M is not (d − 1; z)-separable. Then there exist two
distinct sets S and S ′ each consisting of d− 1 columns ofM such that |U(S)4U(S ′)| < z.
If |S \ S ′| = |S ′ \ S| ≥ 2, then there must exist a pair of columns (Cx, Cy) such that Cx ∈ S \ S ′ and Cy ∈ S ′ \ S. It is easy to

see that

|U(S ∪ {Cy})4U(S ′ ∪ {Cx})| ≤ |U(S ∪ {Cy})4U(S ′)| ≤ |U(S)4U(S ′)|.

This violates the (d; z)-separability ofM , as desired.
Now consider the case of |S \ S ′| = |S ′ \ S| = 1. It is obvious that |S ∪ S ′| = d. Thanks to d < n, we can take a column C

ofM which is in neither S nor S ′. It is easily seen that |U(S ∪ {C})4U(S ′ ∪ {C})| ≤ |U(S)4U(S ′)| < z. This contradicts the
(d; z)-separability ofM , completing the proof. �

We are ready to give a correct version of Theorem 1.2.

Theorem 2.3. Suppose M is a (2d; z)-separable matrix with n columns where n ≥ 2d + 1. Then one can obtain a (d; dz/2e)-
disjunct matrix by adding at most dz/2e rows to M.
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Proof. Suppose M is not (d; dz/2e)-disjunct. Then there exist a column C and a set S of d other columns such that
|C \ U(S)| < dz/2e. By adding at most dz/2e rows to M such that each row has a 1-entry at column C and 0-entries at
all columns in S, we can obtain |C \U(S)| ≥ dz/2e. Of course, there may exist another pair (C ′, S ′)where C ′ is a column and
S ′ is a set of d columns other than C ′, such that |C ′ \ U(S ′)| < dz/2e inM . Then we break it up by using those dz/2e rows in
the same fashion. What we need to show is that this procedure is not self-conflicting, i.e., there do not exist two pairs (C, S)
and (C ′, S ′) such that |C \ U(S)| < dz/2e, yet on the other hand C ∈ S ′ while |C ′ \ U(S ′)| < dz/2e.
Suppose to the contrary that there exist two pairs (C, S) and (C ′, S ′) inM as described above with |S| = |S ′| = d. Define

S0 = {C ′} ∪ S ∪ S ′, S1 = S0 \ {C}, and S2 = S0 \ {C ′}. Let s = |S0|; then s ≤ 2d+ 1 and |S1| = |S2| = s− 1 ≤ 2d.
Note that S1 6= S2, but they have the same cardinality which is less than 2d+ 1. We now show the symmetric difference

of U(S1) and U(S2) is less than z, thus violating the assumption of (2d; z)-separability.
Since the only column in S1 but not in S2 is C ′ and |C ′ \ U(S ′)| < dz/2e, we have

|U(S1) \ U(S2)| < dz/2e. (1)

Similarly, we can obtain

|U(S2) \ U(S1)| < dz/2e. (2)

Eq. (1) along with Eq. (2) gives |U(S1)4U(S2)| < z, implying thatM is not (s− 1; z)-separable. This contradicts Lemma 2.2
and so we have completed the proof. �

Corollary 2.4. Suppose M is a 2d-separable matrix with n columns where n ≥ 2d+ 1. Then one can obtain a d-disjunct matrix
by adding at most one row to M.

Proof. It follows from Theorem 2.3 on setting z = 1. �

Corollary 2.4 is amore rigorous version of Theorem 1.1. The following example shows the necessity of the extra condition
n ≥ 2d+ 1 in Corollary 2.4. Let

M3 =

1 1 0 1
1 0 1 0
0 1 1 0
0 0 0 1

 .

ThenM3 is trivially 4-separable; but it can be easily verified that no row can be added toM3 to make it 2-disjunct. Similarly,
any matrix with 2d columns is trivially (2d; z)-separable and one does not expect that adding dz/2e rows to an arbitrary
matrix with 2d columns would make it (d; dz/2e)-disjunct. To see a specific counter-example, note that M1 is trivially a
(4; 4)-separable matrix; but adding two rows does not make it a (2; 2)-disjunct matrix – it is even not (1; 2)-disjunct as
indicated at the end of Section 1.

Corollary 2.5. Suppose M is a (2d; z)-separable matrix with n columns where n ≥ 2d + 1. Then, for any positive integer
k ≤ dz/2e, one can obtain a (d; k)-disjunct matrix by adding at most k rows to M.

Proof. The proof of Theorem 2.3 shows that there do not exist two pairs (C, S) and (C ′, S ′) such that |C \ U(S)| < dz/2e,
yet on the other hand C ∈ S ′ while |C ′ \ U(S ′)| < dz/2e. In fact, the term dz/2e can be replaced by any positive integer
k which satisfies the symmetric difference of U(S1) and U(S2) is less than z. Therefore, for any k ≤ dz/2e, we can obtain a
(d; k)-disjunct matrix by adding at most k rows toM in the same fashion. �

The following equivalence relation is given in [3] without giving a proof. We now give a proof and use the equivalence
relation to obtain a stronger result.

Lemma 2.6 ([3, Lemma 2.7.5]). A matrix M is (d; z)-separable if and only if it is (d; z)-separable and (d− 1; z)-disjunct.

Proof. SupposeM is (d; z)-separable but not (d− 1; z)-disjunct, in other words, there exists a set S of d− 1 columns other
than a column C such that |C \ U(S)| ≤ z. Then it is easy to see that |U(S ∪ {C})4U(S)| = |U(S ∪ {C}) \ U(S)| ≤ z, a
contradiction to (d; z)-separability. Thus,M is (d− 1; z)-disjunct and (d; z)-separable trivially.
Let M be (d; z)-separable and (d − 1; z)-disjunct. It suffices to show that |U(X)4U(Y )| ≥ z for any two sets X , Y of at

most d columns. If |X | = |Y | ≤ d, then |U(X)4U(Y )| ≥ z by (d; z)-separability and Lemma 2.2. Assume |X | < |Y | ≤ d; then
there exists a column Cy ∈ Y but not in X . By (d− 1; z)-disjunctness, we obtain |Cy \ U(X)| ≥ z; hence |U(X)4U(Y )| ≥ z.
This completes the proof. �

By Lemmas 2.6 and 2.2, we extend Corollary 2.5 to a stronger version.

Corollary 2.7. Suppose M is a (2d; z)-separable matrix with n columns where n ≥ 2d + 1. Then, for any positive integer
k ≤ dz/2e, one can obtain a (d+ 1; k)-separable matrix by adding at most k rows to M.
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3. Concluding remarks

The following remarks demonstrate the optimality of our results.

Remark 1. The constraint k ≤ dz/2e in Corollary 2.5 is necessary if we want the number of rows added to be independent
of n and d. To see a specific example, consider thatM is an (ndz/2e)× nmatrix such that each column has dz/2e 1-entries
and any two columns have no intersection. Then, M is (2d; z)-separable. Since every column has only dz/2e 1-entries, to
makeM(d; k)-disjunct by adding rows, the rows added must form a (d; k− dz/2e)-disjunct submatrix when k > dz/2e. In
this case, the minimum number of rows required would depend on n, d and k− dz/2e.

Remark 2. Let N be a (0, 1) matrix of constant row sum 1 and constant column sum z and let M be obtained from N by
adding one zero column. It is easy to verify thatM is (2d; z)-separable. Since there is a zero column inM , we cannot obtain
from M a (d; k)-disjunct matrix by adding less than k rows. This shows that the bound on the number of additional rows
given in Corollary 2.5 is optimal in this sense.
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