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662-664] provided a method for transforming a separable matrix to a disjunct matrix. In
[D.Z. Dy, F.K. Hwang, Pooling Designs and Nonadaptive Group Testing — Important Tools for
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its error-tolerant version; unfortunately, they gave an incorrect extension. This note gives
a solution to this problem.
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1. Introduction

Let M be a (0, 1) matrix. For any set S of columns of M, U(S) will denote the union of the row indices of 1-entries of all
columns in S. When S is the singleton set {C}, we abuse the notation by writing U(S) simply as C. M is called d-separable if
for any two distinct d-sets S and S’ of columns, U(S) # U(S’). M is called d-separable if the restrictions |S| = d and |S'| = d
above are changed to |S| < d and |S’| < d, respectively. Finally, M is called d-disjunct if for any d-set S of columns and
any column C not in S, C is not contained in U(S). These three properties of (0, 1) matrices have been widely studied in the
literature of nonadaptive group testing designs (pooling designs), which have applications in DNA screening [2-7].

It has long been known that d-disjunctness implies d-separability which in turn implies d-separability [3, Chapter 2].
Recently, Chen and Hwang [1] found a way to construct a disjunct matrix from a separable matrix to complete the cycle of
implications.

Theorem 1.1 (Chen and Hwang [1]). Suppose M is a 2d-separable matrix. Then one can construct a d-disjunct matrix by adding
at most one row to M.

The notions of d-separability, d-separability and d-disjunctness have error-tolerant versions. A (0, 1) matrix M is called
(d; z)-separable if |U(S)AU(S’)| > z for any two d-sets of columns of M. It is (d; z)-separable if the restriction of d-sets is
changed to two sets each with at most d elements. Finally, M is (d; z)-disjunct if for any d-set S of columns and any column
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Cnotin§, |C\ U(S)| > z. Note that the variable z represents some redundancy for tolerating errors [3]. For z = 1, the
error-tolerant version is reduced to the original version.
Du and Hwang attempted to extend Theorem 1.1 to its error-tolerant version.

Theorem 1.2 ([3, Theorem 2.7.6]). Suppose M is a (2d; z)-separable matrix. Then one can obtain a (d; z)-disjunct matrix by
adding at most z rows to M.

By Theorem 1.2, Du and Hwang obtained the following corollary.

Corollary 1.3 ([3, Theorem 2.7.7]). A (d; 2z)-separable matrix can be obtained from a (2d; z)-separable matrix by adding at most
Z rows.

Unfortunately, Theorem 1.2 is incorrect; thus Corollary 1.3 is incorrect as seen from the following counter-example. Let

1000
0100
Mi=10 0 1 0
0 0 0 1

It is easily verified that M is (2; 2)-separable. We now show that adding two rows to M; cannot produce a (1; 2)-disjunct
matrix.

Let Cy, G, G3, C4 denote the four columns of M;. Suppose we set C = C;and S = {G}, i # j. Then we need two rows
each containing C; but not C;. One such row is already provided by M;. So we need one (1, 0)-pair in a new row. Since this is
required for each pair of (i, j) withi # j, there are 4 x 3 = 12 choices of (i, j) pairs and each such pair needs a (1, 0)-pairin a
new row; or equivalently, we need the new rows to provide twelve such (1, 0)-pairs. But one new row can provide at most
four (1, 0)-pairs (achieved by a row with two 1-entries and two 0-entries). So two new rows are not sufficient for providing
the twelve (1, 0)-pairs required by the (1; 2)-disjunctness property.

In this note we give a correct version of Theorem 1.2, and obtain a more rigorous statement of Theorem 1.1.

2. Main results

Lemma 2.1 ([3, Lemma 2.1.1]). Suppose M is a d-separable matrix with n columns where d < n; then it is k-separable for every
positive integer k < d.

Note that the condition d < n in Lemma 2.1 is necessary as seen from the following example: Let

110
My={1 0 1]).
0 1 1

M, is trivially 3-separable. But it is not 2-separable, as the union of any pair of its columns is identical.
We now generalize Lemma 2.1 to an error-tolerant version.

Lemma 2.2. If a matrix M with n columns is (d; z)-separable for d < n, then it is (k; z)-separable for every positive integer
k<d

Proof. It suffices to prove that M is (d — 1; z)-separable. Assume that M is not (d — 1; z)-separable. Then there exist two
distinct sets S and S’ each consisting of d — 1 columns of M such that [U(S)AU(S)| < z.

If|S\ S| = |S"\ S| = 2, then there must exist a pair of columns (s, C,) such that G, € S\ S’and G, € S\ S. It is easy to
see that

UGS U{GHAUES ULGHI < [UGS U{GHAUES)] < [UGS)AUE).

This violates the (d; z)-separability of M, as desired.

Now consider the case of |S \ S’| = |S"\ S| = 1. It is obvious that |S U S’| = d. Thanks to d < n, we can take a column C
of M which is in neither S nor S’. It is easily seen that |[U(S U {C})AU(S' U {C})| < |U(S)AU(S’)| < z. This contradicts the
(d; z)-separability of M, completing the proof. B

We are ready to give a correct version of Theorem 1.2.

Theorem 2.3. Suppose M is a (2d; z)-separable matrix with n columns where n > 2d + 1. Then one can obtain a (d; [z/21)-
disjunct matrix by adding at most [z/2] rows to M.
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Proof. Suppose M is not (d; [z/2])-disjunct. Then there exist a column C and a set S of d other columns such that
[C\ U(S)| < [z/2]. By adding at most [z/2] rows to M such that each row has a 1-entry at column C and 0-entries at
all columns in S, we can obtain |C \ U(S)| > [z/27. Of course, there may exist another pair (C’, S") where C’ is a column and
S’ is a set of d columns other than C’, such that |C’ \ U(S’)| < [z/2] in M. Then we break it up by using those [z/27] rows in
the same fashion. What we need to show is that this procedure is not self-conflicting, i.e., there do not exist two pairs (C, S)
and (C’, S") such that |C \ U(S)| < [z/27, yet on the other hand C € S’ while |[C"\ U(S")| < [z/2].

Suppose to the contrary that there exist two pairs (C, S) and (C’, S’) in M as described above with |S| = |S’| = d. Define
So={C'}USUS" S =5\ {C},and S; = Sp \ {C’'}. Lets = |Sp|; thens < 2d + 1and |S;] = |S] =s— 1 < 2d.

Note that S; # S,, but they have the same cardinality which is less than 2d + 1. We now show the symmetric difference
of U(Sy) and U(S;,) is less than z, thus violating the assumption of (2d; z)-separability.

Since the only column in S; but notin S, is C" and |C" \ U(S")| < [z/2], we have

UGS\ US| < [2/2]. (1)
Similarly, we can obtain
UGS\ US| < [z/2]. (2)

Eq. (1) along with Eq. (2) gives |U(S1)AU(S3)| < z, implying that M is not (s — 1; z)-separable. This contradicts Lemma 2.2
and so we have completed the proof. m

Corollary 2.4. Suppose M is a 2d-separable matrix with n columns where n > 2d + 1. Then one can obtain a d-disjunct matrix
by adding at most one row to M.

Proof. It follows from Theorem 2.3 on settingz =1. W

Corollary 2.4 is a more rigorous version of Theorem 1.1. The following example shows the necessity of the extra condition
n > 2d + 1in Corollary 2.4. Let

110 1
101 0
Mi=1o0 1 1 0
000 1

Then M3 is trivially 4-separable; but it can be easily verified that no row can be added to M5 to make it 2-disjunct. Similarly,
any matrix with 2d columns is trivially (2d; z)-separable and one does not expect that adding [z/2] rows to an arbitrary
matrix with 2d columns would make it (d; [z/2])-disjunct. To see a specific counter-example, note that M; is trivially a
(4; 4)-separable matrix; but adding two rows does not make it a (2; 2)-disjunct matrix - it is even not (1; 2)-disjunct as
indicated at the end of Section 1.

Corollary 2.5. Suppose M is a (2d; z)-separable matrix with n columns where n > 2d + 1. Then, for any positive integer
k < [z/2], one can obtain a (d; k)-disjunct matrix by adding at most k rows to M.

Proof. The proof of Theorem 2.3 shows that there do not exist two pairs (C, S) and (C’, S’) such that |C \ U(S)| < [z/2],
yet on the other hand C € S’ while |C" \ U(S")| < [z/2]. In fact, the term [z/2] can be replaced by any positive integer
k which satisfies the symmetric difference of U(S;) and U(S,) is less than z. Therefore, for any k < [z/2], we can obtain a
(d; k)-disjunct matrix by adding at most k rows to M in the same fashion. B

The following equivalence relation is given in [3] without giving a proof. We now give a proof and use the equivalence
relation to obtain a stronger result.

Lemma 2.6 ([3, Lemma 2.7.5]). A matrix M is (d; z)-separable if and only if it is (d; z)-separable and (d — 1; z)-disjunct.

Proof. Suppose M is (d; z)-separable but not (d — 1; z)-disjunct, in other words, there exists a set S of d — 1 columns other
than a column C such that |C \ U(S)| < z. Then it is easy to see that |U(S U {CHAUS)| = [US U{CH \U®)| < z,a
contradiction to (d; z)-separability. Thus, M is (d — 1; z)-disjunct and (d; z)-separable trivially.

Let M be (d; z)-separable and (d — 1; z)-disjunct. It suffices to show that |[UX)AU(Y)| > z for any two sets X, Y of at
most d columns. If |[X| = |Y| < d, then [UX)AU(Y)| > z by (d; z)-separability and Lemma 2.2. Assume |X| < |Y| < d; then
there exists a column C, € Y but not in X. By (d — 1; z)-disjunctness, we obtain |C, \ U(X)| > z; hence [UX)AU(Y)| > z.
This completes the proof. H

By Lemmas 2.6 and 2.2, we extend Corollary 2.5 to a stronger version.

Corollary 2.7. Suppose M is a (2d; z)-separable matrix with n columns where n > 2d + 1. Then, for any positive integer
k < [z/2], one can obtain a (d + 1; k)-separable matrix by adding at most k rows to M.
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3. Concluding remarks
The following remarks demonstrate the optimality of our results.

Remark 1. The constraint k < [z/27 in Corollary 2.5 is necessary if we want the number of rows added to be independent
of n and d. To see a specific example, consider that M is an (n[z/27) x n matrix such that each column has [z/27 1-entries
and any two columns have no intersection. Then, M is (2d; z)-separable. Since every column has only [z/2] 1-entries, to
make M (d; k)-disjunct by adding rows, the rows added must form a (d; k — [z/27])-disjunct submatrix when k > [z/2].In
this case, the minimum number of rows required would depend on n, d and k — [z/2].

Remark 2. Let N be a (0, 1) matrix of constant row sum 1 and constant column sum z and let M be obtained from N by
adding one zero column. It is easy to verify that M is (2d; z)-separable. Since there is a zero column in M, we cannot obtain
from M a (d; k)-disjunct matrix by adding less than k rows. This shows that the bound on the number of additional rows
given in Corollary 2.5 is optimal in this sense.
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