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   Chapter 1 

Introduction 

 

Lorenz studied the strange changes in the atmosphere which is the first example to study 

chaos in 1963. In the past four decades, a large number of studies have shown that chaotic 

phenomena are observed in many physical systems that possess nonlinearity [1,2]. It was also 

reported that the chaotic motion occurred in many non-linear control systems [3]. 

Most of physical systems in nature are nonlinear and can be described by the nonlinear 

equations of motion which in general can not be linearized. So the studies of nonlinear 

systems spread quickly today. For the nonlinear system, the study of the types of system 

behavior, the effects to the behavior caused by different parameters and initial conditions, the 

behavior analysis of the system, consist of the major tasks. Besides, we are also interested in 

the understanding of the complicated phenomena arised from nonlinearity. The central 

characteristics are that a process like randomization happens in the deterministic system and 

small differences in the system parameters or initial conditions produce great ones in the final 

phenomena. The unpredictable and irregular motions of many nonlinear systems have been 

labeled “chaotic”. Chaotic behavior is irregular, complex and generally undesirable. In other 

words, a fundamental characteristic of chaotic system is its extreme sensitivity to initial 

conditions which prevent long term forecasting. Chaos has been found to be useful in 

analyzing many problems such as information processing [4-8], collapse prevention of power 

systems, high-performance circuits and device, etc. By applying various numerical results, 

such as bifurcation, phase portraits, time history analysis, the behavior of the chaotic motion 

are presented. A large number of studies on the chaotic behavior have been reached up to now.  

In recent years, synchronization in chaotic dynamic system is very interesting problem 

and has been widely studied [9-13]. Over the last decade, chaos synchronization has received 
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interesting attention due to its potential application in many areas such as secure 

communication, information process, biological systems, and chemical reactions [14-16]. In 

the synchronized systems, one is called master and another is called slave. Synchronization 

means that the state variables of a response system approach eventually to that of a drive 

system. There are many control techniques to synchronize chaotic systems, such as linear 

error feedback control, adaptive control, active control. 

New chaotic systems have been constantly put forward in the last 30 years. In 1999, 

Chen found another chaotic attractor- the Chen system [17], which is the dual to the Lorenz 

system and has a similarly simple structure but displays even more sophisticated dynamical 

behavior. Very recently, Lü and Chen produced a new chaotic system—unified chaotic system 

[18-28], which contains the Lorenz and Chen systems as two extremes and the Lü system as a 

special case. In Chapter 3, we use two methods to achieve synchronization of two identical 

unified chaotic systems. The speed feedback synchronization is first proposed in this thesis. In 

Chapter 4, unified chaotic system is studied in detail. In Chapter 5, a unified chaotic system 

with various periodic switches are put forward. Four functions , triangular 

wave, sawtooth wave are used to replace 

tt ωω sin,sin 2

α  which is the original constant parameter of 

unified chaotic system and we find much interesting results. In Chapter 6, chaos, chaos 

control and synchronization of the fractional order [29,30] unified chaotic systems are 

studied.  
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Chapter 2 

Differential Equations of Motion 

and Description of the System  

 

2.1 Unified Chaotic System  

New chaotic systems have been constantly put forward in the last 30 years. In 1999, 

Chen found another chaotic attractor- the Chen system [17], which is the dual to the Lorenz 

system and has a similarly simple structure but displays even more sophisticated dynamical 

behavior. Here, the duality is in the sense defined by Vanĕček and ČelikovskЎ [31]: for the 

linear part of the system, [ ]
33×

= ijaA , the Lorenz system satisfies the condition >0 

while the Chen system satisfies <0. In 2002, Lü found a new chaotic system, which 

satisfies the condition =0 [32]. Very recently, Lü and Chen produced a new chaotic 

system—unified chaotic system [18-28], which contains the Lorenz and Chen systems as two 

extremes and the Lü system as a special case. Recently, there are some results reported about 

the unified chaotic system [23-28]. The unified chaotic system is described as follows: 

2112aa

2112aa

2112aa

))(1025( xyx −+= α&  

xzyxy −−+−= )129()3528( αα&                                        (2.1) 

zxyz
3

8 α+
−=&  

where ]1,0[∈α . The system is told to be chaotic for any ]1,0[∈α . When 0=α  the system 

can be seem as Lorenz system, when 1=α  it becomes Chen system. 

 

2.2 Lyapunov Exponent of Unified Chaotic System 

    In order to determine the chaos existing in a nonlinear system, the method of detecting 

the chaos becomes very important. The Lyapunov exponent may be used to measure the 
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sensitive dependence upon initial condition. It is an index for chaotic behavior. Different 

solutions of the dynamical system, such as fixed point, periodic motions, quasiperiodic 

motion, and chaotic motion can be distinguished by it. In three-dimensional space, the 

Lyapunov exponent spectra for a strange attractor, a two-torus, a limit cycle and a fixed point 

are described by (+,0,-), (0,0,-), (0,-,-), (-,-,-), respectively. Fig.2.2.1 is shown that unified 

chaotic system is chaotic for ]1,0[∈α . 

 

2.3 Phase Portrait 

In Fig.2.3.1(a)-(d),we can see the phase portraits of unified chaotic system ,when 0=α , 

and Fig.2.3.2(a)-(d),when 1=α . 

In Fig.2.3.3(a)-(d), we show the phase portraits of case (-,-,-). In Fig2.2.1, when 1−=α , 

the three Lyapunov exponents are all negative, and the phase portraits converge to a fixed 

point. 

In Fig.2.3.4(a)-(d), we show the phase portraits of case (0,-,-). In Fig2.2.1, when 7.1=α , 

the three Lyapunov exponents are described as (0,-,-), and the phase portraits show a limit 

cycle. 
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Chapter 3 

Synchronization of Unified Chaotic System 

 

First, we use unidirectional coupling to synchronize unified chaotic system, and the 

coupling includes two types - state coupling and speed coupling. 

 

3.1 State Feedback Synchronization of Unified Chaotic System 

    We add a state coupling )( 21 xxk −  respectively to unified chaotic system, and the 

master and slave system is shown as below: 

 

3.1.1 Case1: add state coupling ( )211 xxk −  to first equation of the slave system 

Master system: 

( )( )111 1025 xyx −+= α&  

( ) ( ) 11111 1293528 zxyxy −−+−= αα&                                     (3.1.1) 

1111 3
8 zyxz α+

−=&  

Slave system: 

( )( ) ( )211222 1025 xxkxyx −+−+= α&  

( ) ( ) 22222 1293528 zxyxy −−+−= αα&                                    (3.1.2) 

2222 3
8 zyxz α+

−=&  

Let 

121 xxe −= , , 122 yye −= 123 zze −= ,  

121 xxe &&& −= , , 122 yye &&& −= 123 zze &&& −=  

Then the error dynamics is shown as follows: 
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11121 ))(1025( ekeee −−+= α&  

( ) ( ) 1122212 1293528 zxzxeee +−−+−= αα&                               (3.1.3) 

112233 3
8 yxyxee −+
+

−=
α

&  

According to Lyapunov first approximation theory, for sufficiently small e, we can neglect 

high-order terms for stability study. 

The coefficient matrix of the linear terms of the right hand side of Eq.(3.1.3) is 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
−

−−
+++−

=

3
800
01293528
01025)1025( 1

α
αα
αα k

J                             (3.1.4) 

Then the characteristic equation 0=− IJ λ : 

0

3
800

01293528
01025)1025( 1

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
+

−

−−−
+−++−

λα
λαα

αλα k
                   (3.1.5) 

After computing, characteristic equation is expressed as follows: 

( ) ( )

( ) 021608231297710270100
3
1

72211281186446
3
141311

3
1

11
223

11
22

1
3

=−+−−+++

−+−−+++−+

kk

kkk

ααααα

λαααλαλ
           (3.1.6) 

Considering 0=α , 

0a =1, 

( )413
3
1

11 += ka , 

( )72211
3
1

12 −= ka , 

( 21608
3
1

13 −= ka ) , where  are coefficients of characteristic equation 

                                    (3.1.7) 

3210 ,,, aaaa

032
2

1
3

0 =+++ aaaa λλλ

According to Routh- Hurwitz theorem, if all Hurwitz determinants are positive, all 

characteristic roots have negative real parts,  will gradually converge to zero. 321 ,, eee
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Hurwitz determinants are defined as follows: 

11 a=∆ ,  

23

01
2 aa

aa
=∆ ,                                                      (3.1.8) 

3

123

01

3

00

0

a
aaa

aa
=∆ , 

In our case, )413(
3
1

11 +=∆ k > 0, > 1k
3
41

− , 

2∆ > 0,  > 63.697 or < -11, 1k 1k

3∆ > 0,  > 270 or 63.697 > > -11, 1k 1k

1k  must greater than 270, then  will gradually converge to zero. In Fig.3.1.1(a) we 

can see time history of errors. After a short period of time, , then two systems are 

synchronized. Trying to use parameter  < 270 to simulate the systems in computer, we 

find the systems also can be synchronized. This result indicates that Lyapunov first 

approximation theory gives only the sufficient condition by asymptotic stability of e. 

Fig.3.1.1(b) shows time history of errors with 

321 ,, eee

0→e

1k

201 =k . 

 

Next we consider 1=α , characteristic equation : 

( ) ( ) ( ) 02205847142510 11
2

1
3 =−−+−−+++ kkk λλλ , 

11 a=∆ > 0  > -10, 1k⇒

23

01
2 aa

aa
=∆  > 0  -28.2 <  < -7, ⇒ 1k

3

123

01

3

00

0

a
aaa

aa
=∆  > 0  > -7 or  -28.2 < < -26.25,  1k⇒ 1k
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where  does not exist. Fig.3.1.2(a)(b) show that errors  can not converge to zero, 

since the sufficient condition for asymptotical stability cannot be satisfied. Although we 

increase time to 1000 seconds, the systems are not synchronized. 

1k 321 ,, eee

  

3.1.2 Case2: add state coupling ( )212 xxk −  to second equation of the slave system 

Master system: 

( )( )111 1025 xyx −+= α&  

( ) ( ) 11111 1293528 zxyxy −−+−= αα&                                     (3.1.9) 

1111 3
8 zyxz α+

−=&  

Slave system: 

( )( )222 1025 xyx −+= α&  

( ) ( ) ( )21222222 1293528 xxkzxyxy −+−−+−= αα&                        (3.1.10) 

2222 3
8 zyxz α+

−=&  

The error dynamics (3.1.10) - (3.1.9) is shown as follows: 

))(1025( 121 eee −+= α&  

( ) ( ) 121122212 1293528 ekzxzxeee −+−−+−= αα&                          

(3.1.11) 

112233 3
8 yxyxee −+
+

−=
α

&  

According to Lyapunov first approximation theory, for sufficiently small e, we can 

neglect high-order terms for stability study. The coefficient matrix of the linear terms of the 

right hand side of Eq.(3.1.11) is 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
−

−−−
++−

=

3
800

01293528
01025)1025(

2
α

αα
αα

kJ                              (3.1.12) 
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We consider 0=α  , matrix(3.1.12) can be simplified as:  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−
−

=

3
800

0128
01010

2kJ                                            (3.1.13) 

We can get characteristic equation 0=− IJ λ : 

( ) ( ) 021608072230413 22
23 =−+−++ kk λλλ                          (3.1.14) 

According to Routh- Hurwitz theorem, if all Hurwitz determinants(see 3.1.8) are positive, all 

characteristic roots have negative real parts,  will gradually converge to zero. After 

computing, we obtain that when  greater than 27 the systems will be synchronized. 

Fig.3.1.3(a) shows the time history of errors. After a short period of time, , then two 

systems are synchronized. Trying to use parameter  < 27 to simulate the systems in 

computer, we find the systems also can be synchronized. This result indicates that Lyapunov 

first approximation theory gives only the sufficient condition by asymptotic stability of e. 

Fig.3.1.3(b) shows time history of errors with 

321 ,, eee

2k

0→e

2k

102 =k  

 

Next we consider 1=α  , to omit previous computing, matrix (3.1.12) becomes:  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−
=

300
0287
03535

2kJ  

The characteristic equation 0=− IJ λ : 

( ) ( ) 022051057143510 22
23 =−+−++ kk λλλ                          (3.1.15) 

According to Routh- Hurwitz theorem, all Hurwitz determinants must be positive, we obtain: 

when  greater than 21 the systems will be synchronized. Fig.3.1.4(a) shows the time 

history of errors. After a short period of time, , then two systems are synchronized. 

Trying to use parameter  < 21 to simulate the systems in computer, we find the systems 

2k

0→e

2k
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also can be synchronized. This result indicates that Lyapunov first approximation theory gives 

only the sufficient condition by asymptotic stability of e. Fig.3.1.4(b) shows time history of 

errors with . 182 =k

 

3.1.3 Case3 : add state coupling ( )213 xxk −  to third equation of the slave system 

Master system: 

( )( )111 1025 xyx −+= α&  

( ) ( ) 11111 1293528 zxyxy −−+−= αα&                                   (3.1.16) 

1111 3
8 zyxz α+

−=&  

Slave system: 

( )( )222 1025 xyx −+= α&  

( ) ( ) 22222 1293528 zxyxy −−+−= αα&                                  (3.1.17) 

( )2132222 3
8 xxkzyxz −+
+

−=
α

&  

The error dynamics (3.1.17)- (3.1.16) is shown as follows: 

))(1025( 121 eee −+= α&  

( ) ( ) 1122212 1293528 zxzxeee +−−+−= αα&                              (3.1.18) 

13112233 3
8 ekyxyxee −−+
+

−=
α

&  

According to Lyapunov first approximation theory, for sufficiently small e, we can neglect 

high-order terms for stability study. The coefficient matrix of the linear terms of the right hand 

side of Eq.(3.1.18): 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
−−

−−
++−

=

3
80
01293528
01025)1025(

3
α

αα
αα

k
J                               (3.1.19) 

we consider 0=α  directly, matrix (3.1.19) can be simplified as:  
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−
−

=

3
80

0128
01010

3k
J                                              (3.1.20) 

We can get characteristic equation 0=− IJ λ : 

( ) ( ) 02160722413 23 =−+−++ λλλ                                  (3.1.21) 

According to Routh- Hurwitz theorem, all coefficients of characteristic equation must be all 

positive or all negative, in this case 30 =a , 412 =a , 7223 −=a , ,  we can 

directly obtain 

21604 −=a

2.6667-11.8277,-22.8277,=λ . Since  is absent in the coefficients of 

characteristic equation, the state feedback synchronization fails in this case. The positive 

characteristic root causes unsynchronization as shown in Fig.3.1.5(a)(b). 

3k

Fig3.1.5(c)(d) show the computer simulation results of case 1=α . 
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3.2 Speed Feedback Synchronization of Unified Chaotic System 

Now, we try another method to synchronize two systems, we use speed coupling 

. ( )21 xxG && −

 

3.2.1 Case1: add speed coupling ( )21 xxG && −  to second equation of the slave system, the 

systems is described as below: 

Master system: 

( )( )111 1025 xyx −+= α&  

( ) ( ) 11111 1293528 zxyxy −−+−= αα&                                     (3.2.1) 

1111 3
8 zyxz α+

−=&  

Slave system: 

( )( )222 1025 xyx −+= α&  

( ) ( ) ( )2122222 1293528 xxGzxyxy &&& −+−−+−= αα                         (3.2.2) 

2222 3
8 zyxz α+

−=&  

Let   

121 xxe −= , , 122 yye −= 123 zze −= ,  

121 xxe &&& −= , , 122 yye &&& −= 123 zze &&& −=  

The error dynamics is shown as follows: 

    ( )( )121 1025 eee −+= α&  

    ( ) ( ) 11221212 1293528 zxzxeGeee +−−−+−= && αα                          (3.2.3) 

    112233 3
8 yxyxee −+
+

−=
α

&  

According to Lyapunov first approximation theory, for sufficiently small e, we can neglect 

high-order terms for stability study. The coefficient matrix of the linear terms of the right hand 

side of Eq.(3.2.3): 
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( ) ( ) ( ) ( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
−

+−−++−
++−

=

3
800

0102512910253528
01025)1025(

α
αααα

αα
GGJ             (3.2.4)          

We consider 0=α  , matrix (3.2.4) can be simplified as:  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−−+
−

=

3
800

01011028
01010

GGJ                                        (3.2.5) 

We can get characteristic equation 0=− IJ λ : 

( ) ( ) ( ) 021607228041303 23 =−+−+++ λλλ GG                         (3.2.6) 

According to Routh- Hurwitz theorem, if all Hurwitz determinants(see 3.1.8) are positive, all 

characteristic roots have negative real parts,  will gradually converge to zero. After 

computing, we find does not exist, so  will not gradually converge to zero, the 

systems are not synchronized by Lyapunov first approximation theory which gives only the 

sufficient condition by asymptotic stability of e. But Fig.3.2.1 shows the time history of errors. 

After a short period of time, , two systems are synchronized, which indicates that for 

the synchronization conditions obtained by Lyapunov first approximation theory, there exists 

potential of improvement.  

321 ,, eee

G 321 ,, eee

0→e

Next we consider 1=α  , to omit previous computing, matrix (3.2.4) becomes:  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−+−

−
=

300
03528357
03535

GGJ  

The characteristic equation 0=− IJ λ : 

( ) ( ) ( ) 022057141051035 23 =−+−+++ λλλ GG                            (3.2.7) 

According to Routh- Hurwitz theorem, if all Hurwitz determinants(see 3.1.8) are positive, all 

characteristic roots have negative real parts,  will gradually converge to zero. After 321 ,, eee
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computing, we find does not exist, so  can not gradually converge to zero, the 

systems are not synchronized by Lyapunov first approximation theory which gives only the 

sufficient condition by asymptotic stability of e. But Fig.3.2.2 shows the time history of errors. 

After a short period of time, , two systems are synchronized, which indicates that for 

the synchronization conditions obtained by Lyapunov first approximation theory, there exists 

potential of improvement.  

G 321 ,, eee

0→e

 

3.2.2 Case2: add state coupling ( )21 xxG && −  to third equation of the slave system, the 

systems is described as below: 

Master system: 

( )( )111 1025 xyx −+= α&  

( ) ( ) 11111 1293528 zxyxy −−+−= αα&                                    ( 3.2.8) 

1111 3
8 zyxz α+

−=&  

Slave system: 

( )( )222 1025 xyx −+= α&  

( ) ( ) 22222 1293528 zxyxy −−+−= αα&                                    (3.2.9) 

( )212222 3
8 xxGzyxz &&& −+
+

−=
α  

(3.2.9)- ( 3.2.8) error dynamics is shown as follows: 

    ( )( )121 1025 eee −+= α&  

    ( ) ( ) 1122212 1293528 zxzxeee +−−+−= αα&                               (3.2.10) 

    1112233 3
8 eGyxyxee && −−+
+

−=
α  

According to Lyapunov first approximative theory, for sufficiently small e, we can neglect 

high-order terms for stability study. The coefficient matrix of the linear terms of the right hand 

side of Eq.(3.2.10): 
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( ) ( )
( ) ( ) ⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
−+−+

−−
++−

=

3
810251025

01293528
01025)1025(

ααα

αα
αα

GG

J                             (3.2.11) 

Considering 0=α  directly, matrix (3.2.11)can be simplified as:  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

=

3
81010

0128
01010

GG
J                                               (3.2.12) 

we can get characteristic equation 0=− IJ λ : 

( ) ( ) 02160722413 23 =−+−++ λλλ                                  (3.2.13) 

According to Routh- Hurwitz theorem, all coefficients must be all positive or all negative, in 

this case , , 30 =a 412 =a 7223 −=a , 21604 −=a , we can directly 

obtain 2.6667-,11.8277,-22.8277=λ . Since G  is absent in the coefficients of 

characteristic equation, the state feedback synchronization fails in this case. The positive 

characteristic root causes unsynchronization as shown in Fig.3.2.3. 

Fig3.2.4 show the computer simulation results of case 1=α . 
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3.3 G~α  Diagram of Speed Coupling Adding to Second Equation of the slave 

System 

In this section, we specially discuss relation of parameter α and about case(1) of 

section 3.2. In the range 

G

]05.1,0[∈α , computer simulation is used to find the threshold limit 

value (TLV) of G which can synchronize two systems. α is taken equally spaced 22 values 

between 0=α  and 1=α .05. For example we first fixed 0=α , then computer simulations 

are used to find the minima of  which give synchronization of the systems. Above steps 

are repeated until

G

05.1=α . Some data are obtained in Table. 3.3.1.  

Then we use regression analysis method to find the approximate curve which is 

described as below: 

4688.33.1195.19241690990184309200702670
1069200107720068945025386040942

23456

7891011

+−+−+−+

−+−+−=

αααααα

αααααG (3.3.1) 

Fig.3.3.1 shows that when  satisfies inequality described below G

4688.33.1195.19241690990184309200702670
1069200107720068945025386040942

23456

7891011

+−+−+−+

−+−+−≥

αααααα

αααααG        (3.3.2) 

two systems are synchronized. 
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Chapter 4 

Detailed Study of the Chaos of Unified Chaotic System 

 

    Unified chaotic system was told to be chaotic for any ]1,0[∈α  [21,33]. But we find that 

there exists some non-chaotic ranges within ]1,0[∈α . In order to confirm these ranges, three 

checking methods are used: Lyapunov exponents, phase portraits and power spectrums. The 

Lyapunov exponent may be used to measure the sensitive dependence upon initial condition. 

It is the most reliable index for chaotic behavior. Different solutions of the dynamical system, 

such as fixed point, periodic motions, quasiperiodic motion, and chaotic motion can be 

distinguished by it. In three-dimensional space, the Lyapunov exponent spectra for a strange 

attractor, a two-torus, a limit cycle and a fixed point are described by (+,0,-), (0,0,-), (0,-,-), 

(-,-,-), respectively. Another valuable technique for the characterization of the system is the 

power spectrum. It is often used to distinguish between periodic, quasi-periodic and chaotic 

behaviors of a dynamical system. When a chaotic motion appears, the power spectrum is 

continuous and broadband. In Fig.4.1.1, a power spectrum of a chaotic motion, Chen system, 

is shown. Although a broadband spectrum does not guarantee sensitivity to initial conditions, 

it is still a reliable indicator of the chaos. 

 

4.1 Non-chaotic Ranges within ]1,0[∈α  for Unified Chaotic System 

    Unified chaotic system was told to be chaotic for any ]1,0[∈α  [21,33]. But we find that 

there exists some non-chaotic ranges within ]1,0[∈α . In Fig.4.1.2(a)(b), some non-chaotic 

ranges for ]1,0[∈α  are observed. For example, we can easily observe between 575.0=α  

and 598.0=α , the corresponding Lyapunov exponents are less than 0. The three 

corresponding Lyapunov exponents are (0,-,-) and the dynamic behavior must be a periodic 

motion. In Fig.4.1.3(a)(b), a phase portrait and a power spectrum of a non-chaotic 
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motion( 583.0=α ) is shown. Using these three different methods, Fig. 4.1.4 is presented to 

show many non-chaotic ranges of unified chaotic system within ]1,0[∈α . 

 

4.2 Chaotic Ranges besides ]1,0[∈α  

    Next, we try to find the chaotic ranges besides ]1,0[∈α . In Fig.2.2.1, it is shown that 

besides ]1,0[∈α , there still exists some small ranges whose corresponding Largest Lyaponov 

exponent are greater than 0. In Fig.4.2.1 and Fig.4.2.2, the part larger than 1 and smaller than 

0 are specially magnified respectively. To observe these two figures and use the three 

checking methods, we finally obtain the chaotic range of α  as ]152.1,015.0[−∈α . An 

extended unified chaotic system is produced.  

 

4.3 An Extended Unified Chaotic System for Parameter ]1,0[∈β  

    We introduce a new parameter )(αβ f= so that the extended unified chaotic system is 

chaotic when ]1,0[∈β . Let ba += βα , when 015.0−=α , 0=β and when 152.1=α , 

1=β . Then constants and  are obtained as a b 167.1=a  and . We obtain 015.0−=b

015.0167.1 −= βα , an extended unified chaotic system is described as follows:  

))(625.9175.29( xyx −+= β&  

xzyxy −−+−= )435.1843.33()845.40475.27( ββ&                         (4.3.1)          

zxyz
3

167.1985.7 β+
−=&  

where ]1,0[∈β . The system is chaotic only for ]1,0[∈β . In Fig. 4.3.1, a Lyapunov exponent 

is shown, we can easily observe that only for ]1,0[∈β , the extended unified chaotic system 

exists chaos. 

 

4.4 An Extended Unified Chaotic System with Two Continuous Periodic Switches 

  In this section, we put forward a non-autonomous unified chaotic system with continuous 
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periodic switch. Because there exists a largest range ]598.0,575.0[∈α  where the unified 

chaotic system does not exist chaos, we delete this non-chaotic range. We separate the range 

]152.1,015.0[−∈α  into two parts to simulate the system described as follows: 

))(10sin25( 2 xytx −+= ω&  

xzytxty −−+−= )1sin29()sin3528( 22 ωω&                              (4.4.1) 

ztxyz
3

sin8 2 ω+
−=&  

Let  for the first range,  for 

the second range. And Eq.(4.4.1) become what is described as follows: 

tt ωω 22 sin59.0015.0sin +−= tt ωω 22 sin554.0598.0sin +=

))(625.9sin75.14( 2 xytx −+= ω&  

xzytxty −−+−= )435.1sin11.17()sin65.20525.28( 22 ωω&                  (4.4.2) 

ztxyz
3

sin59.0985.7 2 ω+
−=&  

Therefore, the non-chaotic range( ]598.0,575.0[∈α ) is jumped. Fig.4.4.1(a) shows the 

Lyapunov exponent. Then, the second range is continued, and the system becomes 

))(95.24sin85.13( 2 xytx −+= ω&  

xzytxty −−+−= )342.16sin066.16()sin39.1907.7( 22 ωω&                  (4.4.3) 

ztxyz
3

sin554.0598.8 2 ω+
−=&  

Fig.4.4.1(b) shows the Lyapunov exponent. Next,  is substituted by   and 

respectively. Four Lyapunov exponents are obtained— Fig4.4.2(a)､Fig4.4.2(b)､

Fig4.4.3(a)､Fig4.4.3(b). Comparing  Fig.4.4.1(a)､Fig.4.4.2(a)､Fig.4.4.3(a) with each other, 

the larger degree  of  is, the smaller the largest Lyaponov exponent is; while for 

the second range, the larger degree  of  is, the larger the largest Lyaponov 

exponent is. Furthermore, for the same degree  of , the largest Lyapunov exponent 

of the second range is always greater than that of the first range. And this phenomenon is 

more and more obvious as degree  of increases. 

tω2sin tω4sin

tω6sin

n tn ωsin

n tn ωsin

n tn ωsin

n tn ωsin
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Chapter 5 

A Unified Chaotic System with  

Four Different Periodic Switches 

 

In reference [33], a non-autonomous unified chaotic system continuous periodic switch 

between the Lorenz and Chen system is given, which is described as (4.4.1). In this Chapter, 

we extend the periodic switch to various forms. Four different periodic switches  

, triangular wave, sawtooth wave are used to replace tt ωω sin,sin 2 α  which is the original 

constant parameter of unified chaotic system and we find many interesting results. 

 

5.1 A Unified Chaotic System with  Continuous Periodic Switch tω2sin

    According to references [33], a non-autonomous unified chaotic system continuous 

periodic switch between the Lorenz and Chen system is given, which is described as (4.4.1). 

In that system,  was used in place of tω2sin α  which is the original parameter of unified 

chaotic system so that α  is a continuous periodic switch between 0 and 1. In this section, we 

take α  as a continuous periodic switch between 0 and 2, 0 and 4, respectively.   

Considering the system described as follows: 

))(10)sin(25( 2 xytkx −+= ω&  

xzytkxtky −−+−= )1)sin(29())sin(3528( 22 ωω&                         (5.1.1) 

ztkxyz
3

)sin(8 2 ω+
−=&  

where  is the amplitude of . When k tω2sin 1=k , the system is the same as (4.4.1). The 

Lyapunov exponent is shown in Fig. 5.1.1. It is easily observed that there exists chaos in this 

system for almost all ]1000,0[∈ω . Next, we increase the amplitude of . Fig. 5.1.2 and 

Fig. 5.1.3 are Lyapunov exponent diagrams of 

tω2sin

2=k  and 4=k  respectively. In Fig.5.1.2, 
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there exists chaos for a large part of ]1000,0[∈ω . But when  increases to 4, theres exists 

chaos for only a small part of 

k

]1000,0[∈ω (see Fig. 5.1.3). The chaotic phenomenon 

decreases as amplitude  increases. k

 

5.2 A Unified Chaotic System with tωsin  Continuous Periodic Switch 

    In this section, we extended α  to negative. A continuous periodic switch(-1~1) will be 

used. Considering the following system:   

))(10)sin(25( xytmx −+= ω&  

xzytmxtmy −−+−= )1)sin(29())sin(3528( ωω&                          (5.2.1) 

ztmxyz
3

)sin(8 ω+
−=&  

tm ωsin  is used in place of α  which is the original parameter of unified chaotic system so 

that α  is a continuous periodic switch between -1 and 1. And  is the amplitude of m tωsin . 

First, we consider , and the system switches between -1~ 1. Then we gradually increase 

amplitude  to 2, 4, 6, 8, 10. In Fig.5.2.1, we can easily observe that in this system there 

exists chaos for almost all

1=m

m

]1000,0[∈ω . Observing Fig.5.2.2~ Fig. 5.2.6, the larger amplitude 

 is, the less unobvious chaotic phenomenon is. m

 

5.3 A Unified Chaotic System with 0~1 Triangular Wave Switch 

    In this section, a triangular wave is used to substitute for α  which is the original 

parameter of unified chaotic system so that α  is a periodic switch between 0 and 1 by two 

linear functions of time. Considering the following function: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

<<−

<<
=

LtLiftL
L
k

Ltift
L
k

tf

2
)(2

2
02

)(                                            (5.3.1) 

where , k  and t L  are time, amplitude and period of triangular wave respectively. Two 

methods are used—fixed period (fixed L ) and fixed amplitude (fixed ).  is used in k )(tf
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place of α  which is the original parameter of unified chaotic system and the system is 

shown as follows:  

))(10)(25( xytfx −+=&  

xzytfxtfy −−+−= )1)(29())(3528(&                                   (5.3.2) 

ztfxyz
3

)(8 +
−=&  

First, the period is fixed, and the amplitude gradually increases from 1 to 10. Fig. 5.3.1 

shows the Lyapunov exponent of unified chaotic system with )(tf=α , period π=L . We can 

easily find that the larger amplitude  is, the smaller the largest Lyapunov exponent is. So 

we can say, the chaotic phenomenon decreases as amplitude  increases. Fig. 5.3.2 and Fig. 

5.3.3 show Lyapunov exponent of unified chaotic system with

k

k

πα 2,)( == Ltf  and 

πα 3),( == Ltf  respectively. 

Second, the amplitude is fixed, and the period gradually increases from 1 to 100. 

Fig.5.3.4 shows the Lyapunov exponent of unified chaotic system with )(tf=α , amplitude 

. Its largest value of Lyapunov exponent is around 2, which is very steady no matter 

what the period is. Fig. 5.3.5, Fig. 5.3.6 and Fig. 5.3.7 show the Lyapunov exponent of unified 

chaotic system for

1=k

)(tf=α , amplitude = 2, 3, 10 respectively. The largest Lyapunov 

exponent is smaller and smaller as fixed amplitude  increases. Fig. 5.3.8 shows the 

bifurcation diagram of unified chaotic system with

k

k

)(tf=α , amplitude . It displays that 

the system is chaotic for all

1=k

]1000,0[∈ω . 

 

5.4 A Unified Chaotic System with -1~1 Triangular Wave Switch 

In this section, we extend α  to negative. A periodic switch(-1~1) by triangular wave 

mode will be used. Considering the following function: 
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)(2
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02

)(                                          (5.4.1) 

where , k  and t L  are time, amplitude and period of triangular wave respectively.  is 

used in place of 

)(tg

α  which is the original parameter of unified chaotic system and the system 

is shown as follows:  

))(10)(25( xytgx −+=&  

xzytgxtgy −−+−= )1)(29())(3528(&                                   (5.4.2) 

ztgxyz
3

)(8 +
−=&  

Amplitude is fixed at 1, 2, 4, 6, 8, 10, and period gradually increases from 1 to 1000. Fig. 

5.4.1 shows Lyapunov exponent of unified chaotic system with )(xg=α , amplitude 1=k . It 

is easily seen that when period L  is small than 300, the Lyapunov exponent shakes seriously. 

But it becomes smooth when period L  is larger than 300. Fig. 5.4.2~ Fig. 5.4.6 show 

Lyapunov exponent of unified chaotic system with )(tg=α , amplitude , 4, 6, 8, 10 

respectively. The largest Lyapunov exponent is smaller and smaller as fixed amplitude  

increases. And we can find that when fixed amplitude  is greater than 4, the front section 

Lyapunov exponent doesn’t shake so seriously any more. 

2=k

k

k

 

5.5 A Unified Chaotic System with 0~1 Sawtooth Wave Switch 

In this section, a sawtooth wave was used to substitute for α  which is the original 

parameter of unified chaotic system so that α  is in a periodic switch between 0 and 1 by a 

linear function as follows: 

t
L
ktq =)(    and Lt <<0 )()( tqLtq =+                                    (5.5.1) 

where t , k  and L  are time, amplitude and period of sawtooth wave respectively.  is )(tq
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used in place of α  which is the original parameter of unified chaotic system and the system 

is shown as follows:  

))(10)(25( xytqx −+=&  

xzytqxtqy −−+−= )1)(29())(3528(&                                  (5.5.2) 

ztqxyz
3

)(8 +
−=&  

Amplitude is fixed at 1, 2, 4, 6, 8, 10, and period gradually increases from 1 to 1000. Fig. 

5.5.1 shows Lyapunov exponent of unified chaotic system with ),(xq=α  amplitude 1=k . Its 

largest value of Lyapunov exponent is around 2, which is very steady no matter what the 

period is. Fig. 5.5.2~ Fig.5.5.6 show Lyapunov exponent of unified chaotic system 

with ),(tq=α amplitude 4, 6, 8, 10 respectively. The largest Lyapunov exponent is 

smaller and smaller as fixed amplitude  increases. And comparing Fig. 5.5.1~ Fig.5.5.6, 

the largest Lyapunov exponent is always greater than 0 when fixed amplitude  increases 

to10. It means that no matter the amplitude  of switch is, there exists chaos in the system. 

,2=k

k

k

k
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Chapter 6 

Chaos Control and Synchronization of the  

Fractional Order Unified Chaotic System 

 

6.1 Introduction of Fractional Order System 

    Fractional calculus is a 300-year-old mathematical topic. Although it has a long history, 

the applications of fractional calculus to physics and engineering are just a recent focus of 

interest. It was well known that chaos cannot occur in continuous-time systems of order less 

than three. Many systems are known to display fractional order dynamics, such as viscoelastic 

systems, dielectric polarization, electrode–electrolyte polarization, and electromagnetic waves. 

More recently, there is a new trend to investigate the control [34-39] and dynamics [40-48] of 

fractional order dynamical systems. 

 

6.2. Fractional Derivative and Its Approximation 

There are several definitions of fractional derivatives. The well known is the 

Riemann–Liouville definition, which is given by 

∫ +−−−Γ
=

t

nn

n

d
t

f
dt
d

ndt
tfd

0 1)(
)(

)(
1)( τ

τ
τ

α αα

α

                             (6.2.1) 

where is the gamma function and Γ nn <≤− α1 . This definition is significantly different 

from the classical definition of derivative. 

The Laplace transform is applicable and works. Upon considering all the initial conditions to 

be zero, the Laplace transform of the Riemann–Liouville fractional derivative satisfies 

{ )()( tfLs
dt

tfdL α
α

α

=
⎭
⎬
⎫

⎩
⎨
⎧ }                                          (6.2.2) 

An efficient method is to approximate fractional operators by using standard integer order 
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operators. In [49], an effective algorithm is developed to approximate fractional order transfer 

functions. Basically, the idea is to approximate the system behavior in the frequency domain. 

By utilizing frequency domain techniques based on Bode diagrams, one can obtain a linear 

approximation of the fractional order integrator, the order of which depends on the desired 

bandwidth and discrepancy between the actual and the approximate magnitude Bode diagrams. 

In Table 1 of [50], approximations for qs
1  with 9.0~1.0=q in steps 0.1 are given, with 

errors of approximately 2 dB. We also use these approximations in the following simulations. 

 

6.3 The Fractional Order Unified Chaotic System 

In this section, the fractional order unified chaotic system is considered. The standard 

derivative is replaced by a fractional derivative as follows: 

))(1025( xy
dt

xd
a

a

−+= α  

xzyx
dt

yd
a

a

−−+−= )129()3528( αα                                    (6.3.1) 

zxy
dt

zd
a

a

3
8 α+

−=  

where a is the fractional order. When 1=a , system (6.3.1) is the original integer order unified 

chaotic system in which chaos exists for any ]1,0[∈α  as described in Chapter 2. 

    First, let , Fig.6.3.1 shows the bifurcation diagram of 2.7(3×0.9) order unified 

chaotic system. It is easily observed, for the major portion of

9.0=a

]3.2,7.0[∈α  in the fractional 

order system there exists chaotic phenomenon. Only a small portion around 0.2=α  and 

3.2=α , the dynamics of system becomes periodic motion. Fig. 6.3.2~ Fig. 6.3.5 are phase 

portraits of 2.7(3×0.9) order unified chaotic system with 8.0=α (Lü system), 2.0, 2.2, 2.25 

respectively. 

    Next, let , Fig.6.3.6 shows the bifurcation diagram of 2.4(3×0.8) order unified 

chaotic system. It is easily observed, for the major portion of

8.0=a

]2.2,8.0[∈α  in the fractional 
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order system there exists chaotic phenomenon. Only a small portion around 8.1=α , 

1.2=α  and some small ranges of α , dynamics of the system becomes periodic motion. Fig. 

6.3.7~ Fig. 6.3.10 are phase portraits of 2.4(3×0.8) order unified chaotic system with 7.1=α , 

1.8, 1.9, 2.05 respectively. 

   For , some chaotic parameters of 7.0=a α  are found. Fig. 6.3.11~Fig. 6.3.13 show 

phase portraits of 2.1(3×0.7) order unified chaotic system for 7.3=α , 3.8, 4.0 respectively. 

Phase portraits are smaller and smaller (lower and lower at the same time) as α  increases so 

that it is hard too draw a bifurcation diagram. 

    Fig.6.3.14 and Fig.6.3.15 show phase portraits of 1.8(3× 0.6) order unified chaotic 

system for 5.2=α , 3.0. Phase portraits are smaller and smaller (lower and lower at the same 

time) as α  increases so that it is hard too draw a bifurcation diagram. 

    Fig.6.3.16 and Fig.6.3.17 show phase portraits of 1.5(3× 0.5) order unified chaotic 

system for 0.2=α , 2.5. 

 

6.4 Chaos Control of Fractional Order Unified Chaotic System 

    Chaos control attracts more and more attention from various disciplines in science and 

engineering. In this section, we will try to control fractional order unified chaotic system to its 

equilibrium point. Recasting the fractional order unified chaotic system (6.3.1) in a compact 

vector form, we have 

)(Xf
dt

Xd
a

a

=                                                       (6.4.1) 

with . A simple linear state feedback controller is added as follows: TzyxX ],,[=

uXf
dt

Xd
a

a

+= )(                                                    (6.4.2) 

where  is a linear state feedback controller of the form as follows: u
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⎦

⎤

⎢
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⎢

⎣

⎡
=                                             (6.4.3) 

where X  is the control target, and  are constant parameters. Clearly, (0, 0, 0) is 

always an equilibrium point of system(6.3.1). In the following simulation, we stabilize system 

(6.3.1) to this equilibrium point. Standard stability analysis easily shows that with ( ) 

= (29, -23, 2), the equilibrium point is (0, 0, 0). Simulation results show that this controller 

can stabilize the fractional order unified chaotic systems with two values of 

321 ,, kkk

321 ,, kkk

α  to this 

equilibrium point. Fig. 6.4.1(a)(b) show the time history of the controlled fractional order 

unified chaotic system with order 9.0=a  and system parameter 8.1,8.0=α  respectively. 

Fig. 6.4.2(a)(b) show the time history of the controlled fractional order unified chaotic system 

with order  and system parameter 8.0=a 9.1,4.1=α  respectively. Fig. 5.4.3 shows time 

history of the controlled fractional order unified chaotic system with order  and 

system parameter

7.0=a

7.3=α . In all figures, the control signal is added at t = 40. 

As we can see from these figures, the designed chaos controller can effectively control 

the fractional order unified chaotic system to its equilibrium )0,0,0(=X  

 

6.5 Chaos Synchronization of the Same Fractional Order Unified Chaotic Systems 

In recent years, synchronization in chaotic dynamic system is very interesting problem 

and has been widely studied. In the synchronized systems, one is called master and another is 

called slave. Synchronization means that the state variables of a response system approach 

eventually to that of a drive system. There are many control techniques to synchronize chaotic 

systems, such as linear error feedback control, adaptive control, active control. 

    In this section, two unified chaotic systems of the same fractional order are tried to be 

synchronized. First, two 0.9 order master and slave systems are studied as follows: 
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 Master system: 

))(1025( 11
1 xy

dt
xd
a

a

−+= α  

1111
1 )129()3528( zxyx

dt
yd
a

a

−−+−= αα                                (6.5.1) 

111
1

3
8 zyx

dt
zd
a

a α+
−=  

Slave system: 

)())(1025( 21122
2 xxkxy

dt
xd
a

a

−+−+= α  

)()129()3528( 2122222
2 yykzxyx

dt
yd
a

a

−+−−+−= αα                    (6.5.2) 

)(
3

8
213222

2 zzkzyx
dt

zd
a

a

−+
+

−=
α  

where order . Fig.6.5.1(a)(b) show time history of errors with system 

parameter

9.0=a

2.2,8.0=α  respectively, and the coupling strength 1321 === kkk . We let two 

systems start to synchronize at 200=t , and errors quickly converge to 0. Synchronization of 

the same fractional order unified chaotic systems had been achieved. 

Second, another case as order 8.0=a  is studied. Fig. 6.5.2(a)(b) show time history of errors 

with system parameter 9.1,8.0=α  respectively, and the coupling strength 2321 === kkk . 

Last, case order 7.0=a  is studied. Fig. 6.5.3 shows time history of errors with system 

parameter 7.3=α  and the coupling strength 4321 === kkk . The lower fractional order is, 

the stronger coupling strength  which can synchronize the two identical systems is. k

 

6.6 Chaos Synchronization of Different Fractional Order Unified Chaotic Systems 

In previous section, two unified chaotic systems of the same fractional order had tried to 

be synchronized and synchronization had been achieved successfully. In this section, we will 

try to synchronized two different fractional order unified chaotic systems. First, we try to use 

0.9 order master system and 0.8 order slave system described as follows: 

Master system: 
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))(1025( 119.0
1

9.0

xy
dt

xd
−+= α  

11119.0
1

9.0

)129()3528( zxyx
dt

yd
−−+−= αα                                (6.6.1) 

1119.0
1

9.0

3
8 zyx

dt
zd α+

−=  

Slave system: 

)())(1025( 211228.0
2

8.0

xxkxy
dt

xd
−+−+= α  

)()129()3528( 21222228.0
2

8.0

yykzxyx
dt

yd
−+−−+−= αα                    (6.6.2) 

)(
3

8
2132228.0

2
8.0

zzkzyx
dt

zd
−+

+
−=

α  

Fig.6.6.1 shows time history of errors with system parameter 2.1=α . The coupling 

strength must be large enough as 3000, two systems will be practically 

synchronized, the errors are around   

321 ,, kkk

310 −

Second, we try to use 0.8 order master system(with 2.1=α ) and 0.7 order slave 

system(with 7.3=α ) described as follows: 

Master system: 

))(1025( 118.0
1

8.0

xy
dt

xd
−+= α  

11118.0
1

8.0

)129()3528( zxyx
dt

yd
−−+−= αα                                (6.6.3) 

1118.0
1

8.0

3
8 zyx

dt
zd α+

−=  

Slave system: 

)())(1025( 211227.0
2

7.0

xxkxy
dt

xd
−+−+= α  

)()129()3528( 21222227.0
2

7.0

yykzxyx
dt

yd
−+−−+−= αα                    (6.6.4) 

)(
3

8
2132227.0

2
7.0

zzkzyx
dt

zd
−+

+
−=

α  

Fig. 6.6.2 shows time history of errors. The coupling strength  must be large 

enough as 5000, two systems will be practically synchronized, the errors are around . 

321 ,, kkk

310 −
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Last, we try to use 0.7 order master system(with 7.3=α ) and 0.9 order slave 

system(with =α 2.2) described as follows: 

Master system: 

))(1025( 117.0
1

7.0

xy
dt

xd
−+= α  

11117.0
1

7.0

)129()3528( zxyx
dt

yd
−−+−= αα                                (6.6.5) 

1117.0
1

7.0

3
8 zyx

dt
zd α+

−=  

Slave system: 

)())(1025( 211229.0
2

9.0

xxkxy
dt

xd
−+−+= α  

)()129()3528( 21222229.0
2

9.0

yykzxyx
dt

yd
−+−−+−= αα                    (6.6.6) 
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Fig.6.6.3 shows time history of errors. The coupling strength  must be large 

enough as 5000, two systems will be practically synchronized, the errors are around . 

321 ,, kkk

310 −
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Chapter 7 

Conclusions 
 

    In this thesis, chaos and chaos synchronization of integral and fractional order unified 

chaotic system are studied. 

In Chapter 2, description of the system and differential equations of motion are 

introduced. Lyapunov exponents and phase portraits of unified chaotic system are drawn.  

In Chapter 3, we use two methods, state and speed coupling, to achieve synchronization 

of two identical unified chaotic systems. First, state couplings are added to 

different equations of slave system, respectively. We find the state coupling must be added at 

suitable equation of slave system, synchronization is achieved. Second, speed couplings 

 are added to different equations of slave system, respectively. In this case, we find 

a phenomenon which indicates that for the synchronization conditions obtained by Lyapunov 

first approximation theory, there exists potential of improvement. Last, regression analysis 

methods are used. An approximate curve (3.3.1) about  and 

)( 21 xxk −

( 21 xxG && − )

G α  is obtained. When  

satisfies inequality (3.3.2), two systems are synchronized. 

G

In Chapter 4, unified chaotic system is studied in detail. Not only non-chaotic ranges 

within ]1,0[∈α  but also chaotic ranges besides ]1,0[∈α  for unified chaotic system are 

found. We also introduce a new parameter )(αβ f= so that the extended unified chaotic 

system is chaotic only when ]1,0[∈β . 

In Chapter 5, a unified chaotic system with various periodic switches are put forward. 

Four functions , triangular wave, sawtooth wave are used to replace tt ωω sin,sin 2 α  which 

is the original constant parameter of unified chaotic system and we find much interesting 

results. We find that different switching functions cause different behaviors of system. A 

common trend is that the larger switching range is, the smaller the largest Lyapunov exponent 
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is. 

Finally, chaos, chaos control and synchronization of the fractional order unified chaotic 

systems are studied. In the beginning, conception of fractional order system is brought in. 

Some values ofα which cause the system chaotic are found. Controlling the fractional order 

unified chaotic systems to its equilibrium point is accomplished. The same and different 

fractional orders unified chaotic systems are synchronized. In the case of the same fractional 

order unified chaotic systems, synchronizations are realized with small coupling strength. But 

in the different fractional order case, coupling strength must be over 2000, two systems are 

just practically synchronized. 
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Fig.2.3.1(a) 3D phase portrait for unified chaotic system with 0=α . 
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Fig.2.3.1(b) 2D(xy) phase portrait for unified chaotic system with 0=α . 
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Fig.2.3.1(c) 2D(yz) phase portrait for unified chaotic system with 0=α . 
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Fig.2.3.1(d) 2D(xz) phase portrait for unified chaotic system with 0=α . 
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Fig.2.3.2(a) 3D phase portrait for unified chaotic system with 1=α . 
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Fig.2.3.2(b) 2D(xy) phase portrait for unified chaotic system with 1=α . 
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Fig.2.3.2(c) 2D(yz) phase portrait for unified chaotic system with 1=α . 
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Fig.2.3.2(d) 2D(xz) phase portrait for unified chaotic system with 1=α . 
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Fig.2.3.3(a) 3D phase portrait for unified chaotic system with 1−=α  and initial 

condition x=2, y=5, z=7. 
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Fig.2.3.3(b) 2D(xy) phase portrait for unified chaotic system with 1−=α  and initial 

condition x=2, y=5, z=7. 
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Fig.2.3.3(c) 2D(yz) phase portrait for unified chaotic system with 1−=α  and initial 

condition x=2, y=5, z=7. 
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Fig.2.3.3(d) 2D(xz) phase portrait for unified chaotic system with 1−=α  and initial 

condition x=2, y=5, z=7. 
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Fig.2.3.4(a) 3D phase portrait for unified chaotic system with 7.1=α . 
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Fig.2.3.4(b) 2D(xy) phase portrait for unified chaotic system with 7.1=α . 
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Fig.2.3.4(c) 2D(yz) phase portrait for unified chaotic system with 7.1=α . 
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Fig.2.3.4(d) 2D(xz) phase portrait for unified chaotic system with 7.1=α . 
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Fig.3.1.1(a) Time history of errors with 0=α  2701 =k . 
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Fig.3.1.1(b) Time history of errors with 0=α  201 =k . 
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Fig.3.1.2(a) Time history of errors with 1=α  =1k 1000 t=20. 
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Fig.3.1.2(b) Time history of errors with 1=α  =1k 1000 t=1000. 

0 2 4 6 8 10 12 14 16 18 20
-3

-2

-1

0

1

t

e1

0 2 4 6 8 10 12 14 16 18 20
-6

-4

-2

0

2

t

e2

0 2 4 6 8 10 12 14 16 18 20
-4

-2

0

2

t

e3

 
Fig.3.1.3(a) Time history of errors with 0=α  =2k 30. 
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Fig.3.1.3(b) Time history of errors with 0=α  =2k 10. 
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Fig.3.1.4(a) Time history of errors with 1=α  =2k 25. 
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Fig.3.1.4(b) Time history of errors with 1=α  =2k 18. 
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Fig.3.1.5(a) Time history of errors with 0=α  503 =k . 
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Fig.3.1.5(b) Time history of errors with 0=α  5003 =k . 
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Fig.3.1.5(c) Time history of errors with 1=α  503 =k . 
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Fig.3.1.5(d) Time history of errors with 1=α  5003 =k .  
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Fig.3.2.1 Time history of errors with 0=α  10=G .  
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Fig.3.2.2 Time history of errors with 1=α  10=G . 
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Fig.3.2.3 Time history of errors with 0=α  10=G . 
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Fig.3.2.4 Time history of errors with 1=α  10=G . 
 

α  0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 
G  3.47 0.67 0.43 0.38 0.39 0.39 0.38 0.43 0.44 0.33 0.30 

 
α  0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 
G  0.33 0.31 0.26 0.28 0.26 0.35 0.19 0.23 0.19 0.17 0.13 

 
Table3.3.1 Gα  value for [ ]1,0∈α , where G is the TLV for synchronization. 
 
 
 
 

 54



 
Fig.3.3.1 Curve fitting diagram for ]1,0[∈α . 
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Fig.4.1.1 Power spectrum of unified chaotic system with 1=α (Chen system). 
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Fig.4.1.2(a) Lyapunov exponents of Unified Chaotic System for α  between -1 and 1. 
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Fig.4.1.2(b) Lyapunov exponents of Unified Chaotic System for α  between -1 and 1. 
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Fig.4.1.3(a) Phase portrait of unified chaotic system with 583.0=α . 
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Fig.4.1.3(b) Power spectrum of unified chaotic system with 583.0=α . 

 
Fig. 4.1.4 Some non-chaotic points of unified chaotic system for ]1,0[∈α . 
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Fig.4.2.1 The magnified part with 1>α  of unified chaotic system. 
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Fig.4.2.2 The magnified part with 0<α  of unified chaotic system. 
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Fig.4.3.1 Lyapunov exponent of extended unified chaotic system. 
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Fig. 4.4.1(a) Lyapunov exponent of extended unified chaotic system( ). tω2sin

 60



0 100 200 300 400 500 600 700 800 900 1000
-14

-12

-10

-8

-6

-4

-2

0

2

4
2nd range

w

Ly
ap

un
ov

 E
xp

on
en

t

 
Fig. 4.4.1(b) Lyapunov exponent of extended unified chaotic system( ). tω2sin
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  Fig. 4.4.2(a) Lyapunov exponent of extended unified chaotic system( ). tω4sin
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Fig. 4.4.2(b) Lyapunov exponent of extended unified chaotic system( ). tω4sin
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Fig. 4.4.3(a) Lyapunov exponent of extended unified chaotic system( ). tω6sin
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Fig. 4.4.3(b) Lyapunov exponent of extended unified chaotic system( ). tω6sin
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Fig. 5.1.1 Lyapunov exponent of unified chaotic system with . tωα 2sin=
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Fig. 5.1.2 Lyapunov exponent of unified chaotic system with . tωα 2sin2=
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Fig. 5.1.3 Lyapunov exponent of unified chaotic system with . tωα 2sin4=
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Fig. 5.2.1 Lyapunov exponent of unified chaotic system with tωα sin= . 
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Fig. 5.2.2 Lyapunov exponent of unified chaotic system with tωα sin2= . 
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Fig. 5.2.3 Lyapunov exponent of unified chaotic system with tωα sin4= . 
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Fig. 5.2.4 Lyapunov exponent of unified chaotic system with tωα sin6= . 
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Fig. 5.2.5 Lyapunov exponent of unified chaotic system with tωα sin8= . 
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Fig. 5.2.6 Lyapunov exponent of unified chaotic system with tωα sin10= . 
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Fig. 5.3.1 Lyapunov exponent of unified chaotic system with πα == Ltf ),( . 
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Fig. 5.3.2 Lyapunov exponent of unified chaotic system with πα 2),( == Ltf . 
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Fig. 5.3.3 Lyapunov exponent of unified chaotic system with πα 3),( == Ltf . 
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Fig. 5.3.4 Lyapunov exponent of unified chaotic system with 1),( == ktfα . 
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Fig. 5.3.5  Lyapunov exponent of unified chaotic system with 2),( == ktfα . 
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Fig. 5.3.6  Lyapunov exponent of unified chaotic system with 3),( == ktfα . 
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Fig. 5.3.7  Lyapunov exponent of unified chaotic system with 10),( == ktfα . 

 

Fig. 5.3.8 Bifurcation diagram of the Lyapunov exponent of unified chaotic system 

with 1),( == ktfα , L/2πω = . 
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Fig. 5.4.1 Lyapunov exponent of unified chaotic system with 1)( == ktgα . 
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Fig. 5.4.2 Lyapunov exponent of unified chaotic system with 2)( == ktgα . 

 72



0 100 200 300 400 500 600 700 800 900 1000
-20

-15

-10

-5

0

5

10
fixed amplitude(k)=4

period(L)

L.
E

.

 
Fig. 5.4.3 Lyapunov exponent of unified chaotic system with 4)( == ktgα . 

0 100 200 300 400 500 600 700 800 900 1000
-15

-10

-5

0

5

10

period(L)

fixed amplitude(k)=6

L.
E

.

 
Fig. 5.4.4 Lyapunov exponent of unified chaotic system with 6)( == ktgα . 
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Fig. 5.4.5 Lyapunov exponent of unified chaotic system with 8)( == ktgα . 
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Fig. 5.4.6 Lyapunov exponent of unified chaotic system with 10)( == ktgα . 
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Fig. 5.5.1 Lyapunov exponent of unified chaotic system with 1)( == ktqα . 
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Fig. 5.5.2 Lyapunov exponent of unified chaotic system with 2)( == ktqα . 
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Fig. 5.5.3 Lyapunov exponent of unified chaotic system with 4)( == ktqα . 
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Fig. 5.5.4 Lyapunov exponent of unified chaotic system with 6)( == ktqα . 
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Fig. 5.5.5 Lyapunov exponent of unified chaotic system with 8)( == ktqα . 
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Fig. 5.5.6 Lyapunov exponent of unified chaotic system with 10)( == ktqα . 
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Fig.6.3.1 Bifurcation diagram of 2.7(3×0.9) order unified chaotic system. 
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Fig.6.3.2 Phase portrait of 2.7(3×0.9) order unified chaotic system with 8.0=α ( Lü). 
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Fig.6.3.3 Phase portrait of 2.7(3×0.9) order unified chaotic system with 0.2=α . 
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Fig.6.3.4 Phase portrait of 2.7(3×0.9) order unified chaotic system with 2.2=α . 
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Fig.6.3.5 Phase portrait of 2.7(3×0.9) order unified chaotic system with 25.2=α . 

 
Fig.6.3.6 Bifurcation diagram of 2.4(3×0.8) order unified chaotic system. 
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Fig.6.3.7 Phase portrait of 2.4(3×0.8) order unified chaotic system with 7.1=α . 
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Fig.6.3.8 Phase portrait of 2.4(3×0.8) order unified chaotic system with 8.1=α . 
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Fig.6.3.9 Phase portrait of 2.4(3×0.8) order unified chaotic system with 9.1=α . 

-10 -5 0 5 10 15
-10

-5

0

5

10

15

20

x

y

-10 0 10 20
5

10

15

20

25

y

z

-10 -5 0 5 10 15
5

10

15

20

25

x

z

 
Fig.6.3.10 Phase portrait of 2.4(3×0.8) order unified chaotic system with 05.2=α . 
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Fig.6.3.11 Phase portrait of 2.1(3 0.7) order unified chaotic system with × 7.3=α . 
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Fig.6.3.12 Phase portrait of 2.1(3×0.7) order unified chaotic system with 8.3=α . 
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Fig.6.3.13 Phase portrait of 2.1(3×0.7) order unified chaotic system with 0.4=α . 
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Fig.6.3.14 Phase portrait of 1.8(3×0.6) order unified chaotic system with 5.2=α . 
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Fig.6.3.15 Phase portrait of 1.8(3×0.6) order unified chaotic system with 0.3=α . 
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Fig.6.3.16 Phase portrait of 1.5(3×0.5) order unified chaotic system with 0.2=α . 
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Fig.6.3.17 Phase portrait of 1.5(3×0.5) order unified chaotic system with 5.2=α . 
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Fig. 6.4.1(a) Time history of the controlled fractional order unified chaotic system with order 

 and system parameter 9.0=a 8.0=α . 
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Fig. 6.4.1(b) Time history of the controlled fractional order unified chaotic system with order 

 and system parameter 9.0=a 8.1=α . 
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Fig. 6.4.2(a) Time history of the controlled fractional order unified chaotic system with order 

 and system parameter 8.0=a 4.1=α . 
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Fig. 6.4.2(b) Time history of the controlled fractional order unified chaotic system with order 

 and system parameter 8.0=a 9.1=α . 
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Fig. 6.4.3 Time history of the controlled fractional order unified chaotic system with order 

 and system parameter 7.0=a 7.3=α . 
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Fig.6.5.1(a) Time history of errors with 8.0=α  order=0.9 1321 === kkk . 
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Fig.6.5.1(b) Time history of errors with order=0.9 2.2=α  1321 === kkk . 
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Fig.6.5.2(a) Time history of errors with order=0.8 8.0=α  2321 === kkk . 
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Fig.6.5.2(b) Time history of errors with order=0.8 9.1=α  2321 === kkk . 
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Fig.6.5.3 Time history of errors with order=0.7 7.3=α  4321 === kkk . 
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Fig.6.6.1 Time history of errors with 2.1=α . 
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Fig.6.6.2 Time history of errors with master 2.1=α  and slave 7.3=α . 
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Fig.6.6.3 Time history of errors with master 7.3=α  and slave 2.2=α . 
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