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Chapter 1

Introduction

Lorenz studied the strange changes in the atmosphere which is the first example to study
chaos in 1963. In the past four decades, a large number of studies have shown that chaotic
phenomena are observed in many physical systems that possess nonlinearity [1,2]. It was also
reported that the chaotic motion occurred in many non-linear control systems [3].

Most of physical systems in nature are nonlinear and can be described by the nonlinear
equations of motion which in general can not be linearized. So the studies of nonlinear
systems spread quickly today. For the nonlinear system, the study of the types of system
behavior, the effects to the behavioricaused by different parameters and initial conditions, the
behavior analysis of the system,-consist of the.major tasks. Besides, we are also interested in
the understanding of the complicated”phenomena -arised from nonlinearity. The central
characteristics are that a process like randomization happens in the deterministic system and
small differences in the system parameters or initial conditions produce great ones in the final
phenomena. The unpredictable and irregular motions of many nonlinear systems have been
labeled “chaotic”. Chaotic behavior is irregular, complex and generally undesirable. In other
words, a fundamental characteristic of chaotic system is its extreme sensitivity to initial
conditions which prevent long term forecasting. Chaos has been found to be useful in
analyzing many problems such as information processing [4-8], collapse prevention of power
systems, high-performance circuits and device, etc. By applying various numerical results,
such as bifurcation, phase portraits, time history analysis, the behavior of the chaotic motion
are presented. A large number of studies on the chaotic behavior have been reached up to now.

In recent years, synchronization in chaotic dynamic system is very interesting problem
and has been widely studied [9-13]. Over the last decade, chaos synchronization has received
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interesting attention due to its potential application in many areas such as secure
communication, information process, biological systems, and chemical reactions [14-16]. In
the synchronized systems, one is called master and another is called slave. Synchronization
means that the state variables of a response system approach eventually to that of a drive
system. There are many control techniques to synchronize chaotic systems, such as linear
error feedback control, adaptive control, active control.

New chaotic systems have been constantly put forward in the last 30 years. In 1999,
Chen found another chaotic attractor- the Chen system [17], which is the dual to the Lorenz
system and has a similarly simple structure but displays even more sophisticated dynamical
behavior. Very recently, Lii and Chen produced a new chaotic system—unified chaotic system
[18-28], which contains the Lorenz and Chen systems as two extremes and the Lii system as a
special case. In Chapter 3, we use,two methods to. achieve synchronization of two identical
unified chaotic systems. The speed feedback synchronization is first proposed in this thesis. In
Chapter 4, unified chaotic system is studicd.in-detail: In Chapter 5, a unified chaotic system
with various periodic switches are.put forward. Four functions sin’ @, sint, triangular
wave, sawtooth wave are used to replace o which is the original constant parameter of
unified chaotic system and we find much interesting results. In Chapter 6, chaos, chaos
control and synchronization of the fractional order [29,30] unified chaotic systems are

studied.



Chapter 2
Differential Equations of Motion

and Description of the System

2.1 Unified Chaotic System

New chaotic systems have been constantly put forward in the last 30 years. In 1999,
Chen found another chaotic attractor- the Chen system [17], which is the dual to the Lorenz
system and has a similarly simple structure but displays even more sophisticated dynamical

behavior. Here, the duality is in the sense defined by Vanééek and CelikovskVY [31]: for the

linear part of the system, A= [aij JM, the Lorenz system satisfies the condition a,,a,,>0

while the Chen system satisfies .a;,d,, <0sIn.2002; Lii found a new chaotic system, which
satisfies the condition a,,a,,=0:[32]. Very recently, Lii and Chen produced a new chaotic
system—unified chaotic system [18-28]},'which-contains the Lorenz and Chen systems as two
extremes and the Lii system as a special case. Recently, there are some results reported about

the unified chaotic system [23-28]. The unified chaotic system is described as follows:

X = (25a +10)(y — X)

y=(28-35a)x+ (29 - 1)y — xz (2.1)
7 = Xy_8+_az
3

where « €[0,1]. The system is told to be chaotic for any « €[0,1]. When o =0 the system

can be seem as Lorenz system, when « =1 it becomes Chen system.

2.2 Lyapunov Exponent of Unified Chaotic System
In order to determine the chaos existing in a nonlinear system, the method of detecting

the chaos becomes very important. The Lyapunov exponent may be used to measure the



sensitive dependence upon initial condition. It is an index for chaotic behavior. Different
solutions of the dynamical system, such as fixed point, periodic motions, quasiperiodic
motion, and chaotic motion can be distinguished by it. In three-dimensional space, the
Lyapunov exponent spectra for a strange attractor, a two-torus, a limit cycle and a fixed point
are described by (+,0,-), (0,0,-), (0,-,-), (-,-,-), respectively. Fig.2.2.1 is shown that unified

chaotic system is chaotic for « €[0,1].

2.3 Phase Portrait

In Fig.2.3.1(a)-(d),we can see the phase portraits of unified chaotic system ,when « =0,
and Fig.2.3.2(a)-(d),when o =1.

In Fig.2.3.3(a)-(d), we show the phase portraits of case (-,-,-). In Fig2.2.1, when « =-1,
the three Lyapunov exponents are.all negative, and the phase portraits converge to a fixed
point.

In Fig.2.3.4(a)-(d), we show:the phase portraits of case (0,-,-). In Fig2.2.1, when a =1.7,
the three Lyapunov exponents are deseribed as (0,-,-), and the phase portraits show a limit

cycle.



Chapter 3

Synchronization of Unified Chaotic System

First, we use unidirectional coupling to synchronize unified chaotic system, and the

coupling includes two types - state coupling and speed coupling.

3.1 State Feedback Synchronization of Unified Chaotic System

We add a state coupling K(X, —X,) respectively to unified chaotic system, and the

master and slave system is shown as below:

3.1.1 Casel: add state coupling kl(x1 = xz) to first equation of the slave system
Master system:
% =(25a +10)y, - x,)
y, = (28 -35a)x, +(29a - 1)y, =%z,

, 8+«
Z =XY — 3 Z,

Slave system:
X, = (25 +10)(y, — X, )+ k,(x, = ,)
V, = (28 -35a)x, + (29 —1)y, — X,2,
2, =%,Y, _8ta Z,

3

Let

€ =X, =X, &,=Y,~Y,, &=2,-1,
é1:X2_X17 é2:y2_y19 e, =2,-1

Then the error dynamics is shown as follows:



€, =(25a +10)(e, —e,) - ke,
&, = (28-35a)e, +(29a —1), - X,2, + X2, (3.1.3)

. 8+a
6, =—

€ +X, ¥, = XY,

According to Lyapunov first approximation theory, for sufficiently small €, we can neglect

high-order terms for stability study.

The coefficient matrix of the linear terms of the right hand side of Eq.(3.1.3) is

~(25a+10+k) 25a+10 0

J= 28 —35a 29a -1 0 (3.1.4)
0 0 _8+a
3

Then the characteristic equation |J - | =0:

—(25a+10+k)—4 25a +10 0
28 - 35 290 —=1-4 0 =0 (3.1.5)
0 0 _8+oc_/1
3

After computing, characteristic equation‘is.expressed as follows:

2+ (Cr1a 13k + 4122 + L (4460 B86ak 281 1o + 11k, — 7222
3 3
1 (3.1.6)
+§(1000(3 +270a° +7710a - 29a°K, — 231 + 8k, —2160) =0

Considering o =0,

a,=1,
1
a, =—(3k, +41),
3
1
a, =§(llkl ~722),
a, = %(Sk1 —2160), where a,,a,,a,,a, are coefficients of characteristic equation

a, A +a A +a,A+a, =0 (3.1.7)

According to Routh- Hurwitz theorem, if all Hurwitz determinants are positive, all

characteristic roots have negative real parts, €,,e,,e; will gradually converge to zero.
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Hurwitz determinants are defined as follows:

A =a,,
a a

A=, (3.1.8)
a, a,
a a, O

A3 =13 a, a,
0 0 a,

In our case, A1:1(3k1+41)>0, k,> _ﬂ,
3 3

A,>0, k >63.697or k<-11,

A,>0, k;, >2700or 63.697> k,>-11,

kK, must greater than 270, then e, ,e,,e;swill gradually converge to zero. In Fig.3.1.1(a) we

can see time history of errors. After a short period-of time, € — 0, then two systems are
synchronized. Trying to use parameter K; < 270 to-simulate the systems in computer, we
find the systems also can be Synchronized. This result indicates that Lyapunov first

approximation theory gives only the sufficient condition by asymptotic stability of €.

Fig.3.1.1(b) shows time history of errors with k;, =20.

Next we consider « =1, characteristic equation :

2+ (k, +10)27 + (= 25k, — 714)4 + (- 84k, —2205)=0,
A =a,>0 =k >-10,
a a
A=l 0 >0 = 282< k, <-7,
a3 az
a a 0
A,=la, a, a| >0 =k >-Tor -282< k<-26.25,
0 0 a,




where K, does not exist. Fig.3.1.2(a)(b) show that errors e,,e,,e, can not converge to zero,

since the sufficient condition for asymptotical stability cannot be satisfied. Although we

increase time to 1000 seconds, the systems are not synchronized.

3.1.2 Case2: add state coupling kz(x1 - xz) to second equation of the slave system

Master system:

%, = (25a +10)y, - x,)

Y = (28 —35a)x1 +(29a _1)y1 — X (3.1.9)
. 8+a
Z =XY, _TZ1

Slave system:
X, = (25a +10)(y, — X,)
Y, = (28 =350 )x, + (29a — By, £xJz5 K, (X, =X, ) (3.1.10)

, 8+«
Z, =X,¥, - 3 Z,

The error dynamics (3.1.10) - (3.1.9):1s shown as follows:
€, =(25a +10)(e, —¢))
&, = (28-35a), +(29a -1, — x,2, + X2, — k.8,

(3.1.11)

. 8+«a
6, =—

€ +X, ¥, = XY,

According to Lyapunov first approximation theory, for sufficiently small €, we can
neglect high-order terms for stability study. The coefficient matrix of the linear terms of the

right hand side of Eq.(3.1.11) is

- (25a+10) 25a+10 0

J=[28-35%a-k, 29a-1 0 (3.1.12)
0 0 _8+a
3



We consider o =0 , matrix(3.1.12) can be simplified as:

~10 10 0
J={28-k, -1 0 (3.1.13)

o o -3

3

We can get characteristic equation |J - /1I| =0:

307 + 4127 + (30k, — 722)4 + (80k, —2160) = 0 (3.1.14)
According to Routh- Hurwitz theorem, if all Hurwitz determinants(see 3.1.8) are positive, all
characteristic roots have negative real parts, e ,e,,e, will gradually converge to zero. After
computing, we obtain that when K, greater than 27 the systems will be synchronized.
Fig.3.1.3(a) shows the time history of errors. After a short period of time, € — 0, then two
systems are synchronized. Trying tostise parameter k, < 27 to simulate the systems in
computer, we find the systems also can be synchronized. This result indicates that Lyapunov

first approximation theory gives only the sufficient condition by asymptotic stability of €.

Fig.3.1.3(b) shows time history of €rrors with k, =10

Next we consider o =1 , to omit previous computing, matrix (3.1.12) becomes:

~35 35 0
J=|-7-k, 28 0
0 0 -3

The characteristic equation |J - M| =0:

2 +102% +(35k, —714)4 + (105k, —2205)=0 (3.1.15)
According to Routh- Hurwitz theorem, all Hurwitz determinants must be positive, we obtain:
when Kk, greater than 21 the systems will be synchronized. Fig.3.1.4(a) shows the time
history of errors. After a short period of time, € — 0, then two systems are synchronized.

Trying to use parameter K, < 21 to simulate the systems in computer, we find the systems



also can be synchronized. This result indicates that Lyapunov first approximation theory gives

only the sufficient condition by asymptotic stability of €. Fig.3.1.4(b) shows time history of

errors with k, =18.

3.1.3 Case3 : add state coupling k3(x1 — xz) to third equation of the slave system
Master system:
% = (25 +10)y, —x,)
y, = (28 —35a)x, + (29 —1)y, - x,2, (3.1.16)
2, =XY, — 8+a Z,
3
Slave system:
%, = (25¢ +10)y, - X,)
Y, = (28 -35a)x, + (29 — 1)y, — x,25 (3.1.17)
2, = %Y, _8+Ta22 + Kk, (7= x,)
The error dynamics (3.1.17)- (3.1.16).is shown as follows:
& =(25a +10)(e, —e,)
&, = (28-35a)e, +(29a - 1), - X,2, + X2, (3.1.18)

8+«

é3:— e3+xzyz_X1Y1_k3el

According to Lyapunov first approximation theory, for sufficiently small €, we can neglect
high-order terms for stability study. The coefficient matrix of the linear terms of the right hand

side of Eq.(3.1.18):

~(25a+10) 25a+10 0

J=| 28-35a 29a -1 0 (3.1.19)
K, 0 _8+a
3

we consider « =0 directly, matrix (3.1.19) can be simplified as:
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J={28 -1 0 (3.1.20)
-k, 0 -2

We can get characteristic equation |J - /1I| =0:

32+ 4147 + (- 722)1 + (- 2160) = 0 (3.1.21)
According to Routh- Hurwitz theorem, all coefficients of characteristic equation must be all
positive or all negative, in this case a,=3, a, =41, a,=-722, a, =-2160, we can
directly obtain A =-22.8277,11.8277, -2.6667 . Since K, is absent in the coefficients of
characteristic equation, the state feedback synchronization fails in this case. The positive

characteristic root causes unsynchronization as shown in Fig.3.1.5(a)(b).

Fig3.1.5(c)(d) show the computer simulation results of casea =1.
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3.2 Speed Feedback Synchronization of Unified Chaotic System

Now, we try another method to synchronize two systems, we use speed coupling

G(x —x,).

3.2.1 Casel: add speed coupling G()‘(, — )‘(2) to second equation of the slave system, the
systems is described as below:

Master system:

%, = (25a +10)y, - x,)

Y = (28 —35a)x1 + (29a - 1)y1 —XZ (3.2.1)
. 8+a
Z=XY, _TZ1

Slave system:
X, = (25a +10)(y, — X,)
Y, = (28 =350 )x, + (29a 1)y, = %,2, +G(%, — X3 ) (3.2.2)

, 8+«
L, = XY, — 3 Z,

Let
E, =X =X, & =Y, Y, &=2,-17,,
& =X X, &=Y,-Y,, &=12,-1
The error dynamics is shown as follows:
¢, =(25a+10)e, —¢,)

&, = (28 -35a)e, + (29a —1)e, — G¢, — X,Z, + X,Z, (3.2.3)

. 8+«
€ =- 3 €+ XY, = XY,

According to Lyapunov first approximation theory, for sufficiently small €, we can neglect
high-order terms for stability study. The coefficient matrix of the linear terms of the right hand

side of Eq.(3.2.3):
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— (25 +10) 25 +10 0

J=[(28-35a)+ (25 +10)G (29 —1)-(25¢+10)G 0 (3.2.4)
8+a
0 0 -

We consider a =0 , matrix (3.2.4) can be simplified as:

~10 10 0
J=|28+10G -1-10G 0 (3.2.5)

0 0 _8

3

We can get characteristic equation |J - /1I| =0:

3% +(30G +41)2° +(80G — 722)4 + (- 2160) = 0 (3.2.6)
According to Routh- Hurwitz theorem, if all Hurwitz determinants(see 3.1.8) are positive, all
characteristic roots have negative real parts, e,,e,,e, will gradually converge to zero. After
computing, we find G does not exist, so=€;3€5,€; *will not gradually converge to zero, the
systems are not synchronized by Lyapunov.first approximation theory which gives only the
sufficient condition by asymptotic stability of €-But Fig.3.2.1 shows the time history of errors.
After a short period of time, e — 0, two systems are synchronized, which indicates that for
the synchronization conditions obtained by Lyapunov first approximation theory, there exists
potential of improvement.

Next we consider @ =1 , to omit previous computing, matrix (3.2.4) becomes:

-35 35 0
J=|-7+35G 28-35G O
0 0 -3

The characteristic equation |J - /1I| =0:

2 +(35G +10)4% + (105G — 714)4 + (- 2205)=0 (3.2.7)
According to Routh- Hurwitz theorem, if all Hurwitz determinants(see 3.1.8) are positive, all

characteristic roots have negative real parts, e ,e,,e, will gradually converge to zero. After
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computing, we find G does not exist, so €,,€,,€, can not gradually converge to zero, the
systems are not synchronized by Lyapunov first approximation theory which gives only the
sufficient condition by asymptotic stability of e. But Fig.3.2.2 shows the time history of errors.
After a short period of time, € — 0, two systems are synchronized, which indicates that for
the synchronization conditions obtained by Lyapunov first approximation theory, there exists

potential of improvement.

3.2.2 Case2: add state coupling G()‘(1 —)'(2) to third equation of the slave system, the
systems is described as below:

Master system:

% = (25 +10)y, - x,)

y, = (28-35a)x, +(29a - 1)y, 2%z, (3.2.8)

, 8+«
=Xy, — 3 Z,

Slave system:
%, = (250 +10)(y, — X,)
Y, = (28 - 350!)X2 + (29a - l)yz — %7, (3.2.9)

, 8+a . )
Z, =X,Y, _Tzz +G(X1 _Xz)

(3.2.9)- ( 3.2.8) error dynamics is shown as follows:
¢, =(25a+10)e, —¢,)
¢, = (28-35a)e, + (29a - 1), — X,2, + X Z, (3.2.10)

. 8+a .
&, =— 3 e, +X,Y, — Xy, —G¢

According to Lyapunov first approximative theory, for sufficiently small €, we can neglect
high-order terms for stability study. The coefficient matrix of the linear terms of the right hand

side of Eq.(3.2.10):

14



~(25a+10)  25a+10 0
J=| (28-35a) (29a 1) 0 (3.2.11)
(252 +10)G —(25a+10)G —+¢

Considering a =0 directly, matrix (3.2.11)can be simplified as:

-10 10 O
J=128 -1 0 (3.2.12)
10G 10G —g

we can get characteristic equation |J - /1I| =0:

32 + 4127 + (- 722)4 + (- 2160) = 0 (3.2.13)
According to Routh- Hurwitz theorem, all coefficients must be all positive or all negative, in
this case a,=3 , a, =41 , ay=-722 , a,=-2160 , we can directly
obtain A =-22.8277,11.8277, -2.:6667 | -Since.,. G- is absent in the coefficients of
characteristic equation, the state feedback synchronization fails in this case. The positive

characteristic root causes unsynchronization as shown in Fig.3.2.3.

Fig3.2.4 show the computer simulation results of casea =1.
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3.3 a~G Diagram of Speed Coupling Adding to Second Equation of the slave
System

In this section, we specially discuss relation of parameter o and G about case(1) of
section 3.2. In the range « [0, 1.05], computer simulation is used to find the threshold limit
value (TLV) of G which can synchronize two systems. « is taken equally spaced 22 values
betweena =0 and «a =1.05. For example we first fixed o =0, then computer simulations
are used to find the minima of G which give synchronization of the systems. Above steps
are repeated until¢ =1.05. Some data are obtained in Table. 3.3.1.

Then we use regression analysis method to find the approximate curve which is

described as below:

G =-40942a'" +253860a'’ —689450a’ +1077200a® —1069200c’

(3.3.1)
+702670a® —309200c” +90184a” —16909¢ +1924.5a> —119.3cx +3.4688
Fig.3.3.1 shows that when G satisfies inequality described below
G > -40942a"" +253860a" — 689450 +1077200a" —1069200c’ (332)

+7026700° —309200c° +90184a* +16909¢ +1924.50:> —119.3cx +3.4688

two systems are synchronized.
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Chapter 4

Detailed Study of the Chaos of Unified Chaotic System

Unified chaotic system was told to be chaotic for any « €[0,1] [21,33]. But we find that
there exists some non-chaotic ranges withina € [0,1]. In order to confirm these ranges, three
checking methods are used: Lyapunov exponents, phase portraits and power spectrums. The
Lyapunov exponent may be used to measure the sensitive dependence upon initial condition.
It is the most reliable index for chaotic behavior. Different solutions of the dynamical system,
such as fixed point, periodic motions, quasiperiodic motion, and chaotic motion can be
distinguished by it. In three-dimensional space, the Lyapunov exponent spectra for a strange
attractor, a two-torus, a limit cycle;and a fixed point are described by (+,0,-), (0,0,-), (0,-,-),
(-,-,-), respectively. Another valuable technique for the characterization of the system is the
power spectrum. It is often used-to distinguish-between periodic, quasi-periodic and chaotic
behaviors of a dynamical system. ‘When a chaotic motion appears, the power spectrum is
continuous and broadband. In Fig.4.1.1, a power spectrum of a chaotic motion, Chen system,
is shown. Although a broadband spectrum does not guarantee sensitivity to initial conditions,

it s still a reliable indicator of the chaos.

4.1 Non-chaotic Ranges within « €[0,1] for Unified Chaotic System

Unified chaotic system was told to be chaotic for any « €[0,1] [21,33]. But we find that
there exists some non-chaotic ranges withine €[0,1]. In Fig.4.1.2(a)(b), some non-chaotic
ranges fora €[0,1] are observed. For example, we can easily observe between « =0.575
and a=0.598, the corresponding Lyapunov exponents are less than 0. The three
corresponding Lyapunov exponents are (0,-,-) and the dynamic behavior must be a periodic
motion. In Fig.4.1.3(a)(b), a phase portrait and a power spectrum of a non-chaotic
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motion(a = 0.583) is shown. Using these three different methods, Fig. 4.1.4 is presented to

show many non-chaotic ranges of unified chaotic system withina €[0,1].

4.2 Chaotic Ranges besides « €[0,1]

Next, we try to find the chaotic ranges besides @ €[0,1]. In Fig.2.2.1, it is shown that
besides & €[0,1], there still exists some small ranges whose corresponding Largest Lyaponov
exponent are greater than 0. In Fig.4.2.1 and Fig.4.2.2, the part larger than 1 and smaller than
0 are specially magnified respectively. To observe these two figures and use the three
checking methods, we finally obtain the chaotic range of o asa €[-0.015,1.152]. An

extended unified chaotic system is produced.

4.3 An Extended Unified Chaotic ,System for Parameter S <[0,1]

We introduce a new parameter 3 = f(e)so that the extended unified chaotic system is
chaotic when pe[0,1]. Let a=ag+b, when ¢=-0.015, f=0and whena =1.152,
S =1. Then constants aand b are obtained as a=1.167 and b=-0.015. We obtain
a =1.1674—-0.015, an extended unified chaotic system is described as follows:

X=(29.1756+9.625)(y — X)

y = (27.475 - 40.845 B)x + (33.843 8 —1.435)y — xz (4.3.1)

7985+ 11675
3

7=xy
where f €[0,1]. The system is chaotic only for # €[0,1]. In Fig. 4.3.1, a Lyapunov exponent

1s shown, we can easily observe that only for # €[0,1], the extended unified chaotic system

exists chaos.

4.4 An Extended Unified Chaotic System with Two Continuous Periodic Switches

In this section, we put forward a non-autonomous unified chaotic system with continuous
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periodic switch. Because there exists a largest range « €[0.575,0.598] where the unified

chaotic system does not exist chaos, we delete this non-chaotic range. We separate the range

a €[—-0.015,1.152] into two parts to simulate the system described as follows:

X = (25sin” @t +10)(y — X)

y = (28 —35sin” wt)Xx + (29sin” wt —1)y — xz 4.4.1)
. 8 +sin’ wt
7= xy—#z

Let sin® wt =—0.015+0.59sin’ wt for the first range, sin’ wt =0.598 +0.554sin”> wt for
the second range. And Eq.(4.4.1) become what is described as follows:
X = (14.75sin” @t +9.625)(y — X)

Y =(28.525-20.65sin” wt)x + (17.11sin” wt —1.435)y — xz (4.4.2)

~7.985+0.59 sin? wt ,
3

Therefore, the non-chaotic range( a €[0.575,0.598]) is jumped. Fig.4.4.1(a) shows the

7=xy

Lyapunov exponent. Then, the second range is continued, and the system becomes
X = (13.85sin” @t + 24.95)(y=X)

Y =(7.07-19.39sin” wt)x + (16.066sin” wt —16.342)y — xz (4.4.3)

8598+ 0.554sin” ot ,

7=xy 3

Fig.4.4.1(b) shows the Lyapunov exponent. Next, sin’ ot is substituted by sin‘ ot and
sin® ot respectively. Four Lyapunov exponents are obtained— Fig4.4.2(a). Fig4.4.2(b).

Fig4.4.3(a), Figd.4.3(b). Comparing Fig.4.4.1(a). Fig.4.4.2(a). Fig.4.4.3(a) with each other,
the larger degree n of sin" wt is, the smaller the largest Lyaponov exponent is; while for
the second range, the larger degree n of sin" wt is, the larger the largest Lyaponov
exponent is. Furthermore, for the same degree n of sin" wt, the largest Lyapunov exponent
of the second range is always greater than that of the first range. And this phenomenon is

more and more obvious as degree n of sin" wt increases.
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Chapter 5
A Unified Chaotic System with

Four Different Periodic Switches

In reference [33], a non-autonomous unified chaotic system continuous periodic switch
between the Lorenz and Chen system is given, which is described as (4.4.1). In this Chapter,
we extend the periodic switch to various forms. Four different periodic switches
sin” wt, sin @t , triangular wave, sawtooth wave are used to replace « which is the original

constant parameter of unified chaotic system and we find many interesting results.

5.1 A Unified Chaotic System with sin® @t: Continuous Periodic Switch
According to references [33], a non-autonomous unified chaotic system continuous

periodic switch between the Lorenz and Chen system is given, which is described as (4.4.1).
In that system, sin’ ot was used in place of a which is the original parameter of unified
chaotic system so that « 1is a continuous periodic switch between 0 and 1. In this section, we
take « as a continuous periodic switch between 0 and 2, 0 and 4, respectively.
Considering the system described as follows:

X = (25(k sin* wt) +10)(y — X)

Y = (28 —35(k sin” wt))X + (29(k sin* wt) —1)y — xz (5.1.1)

B 8+ (ksin® wt) .
3

Z=Xxy
where k is the amplitude of sin® wt. When k =1, the system is the same as (4.4.1). The
Lyapunov exponent is shown in Fig. 5.1.1. It is easily observed that there exists chaos in this
system for almost all € [0, 1000]. Next, we increase the amplitude ofsin” ot . Fig. 5.1.2 and

Fig. 5.1.3 are Lyapunov exponent diagrams of k=2 and k =4 respectively. In Fig.5.1.2,
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there exists chaos for a large part of w €[0,1000]. But when K increases to 4, theres exists
chaos for only a small part of w [0,1000](see Fig. 5.1.3). The chaotic phenomenon

decreases as amplitude K increases.

5.2 A Unified Chaotic System with sinwt Continuous Periodic Switch
In this section, we extended « to negative. A continuous periodic switch(-1~1) will be
used. Considering the following system:
X = (25(msin wt) +10)(y — X)
y = (28 -35(msin wt))X + (29(msin wt) — 1)y — xz (5.2.1)

_ 8+ (msinat) ,
3

=Xy
msinwt is used in place of a which is the original parameter of unified chaotic system so
that o is a continuous periodic switch between.-1'and 1. And m is the amplitude of sinat.
First, we consider m =1, and the system switches between -1~ 1. Then we gradually increase
amplitude m to 2, 4, 6, 8, 10. In Fig.5.2.1; - we can easily observe that in this system there

exists chaos for almost all @ € [0, 1000]. Observing Fig.5.2.2~ Fig. 5.2.6, the larger amplitude

m is, the less unobvious chaotic phenomenon is.

5.3 A Unified Chaotic System with 0~1 Triangular Wave Switch
In this section, a triangular wave is used to substitute for « which is the original
parameter of unified chaotic system so that « is a periodic switch between 0 and 1 by two

linear functions of time. Considering the following function:
%t if 0<t< L
L 2

f(t)= (5.3.1)
%(L—t) if£<t<L
L 2

where t,k and L are time, amplitude and period of triangular wave respectively. Two
methods are used—fixed period (fixed L) and fixed amplitude (fixed k). f(t) is used in
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place of « which is the original parameter of unified chaotic system and the system is
shown as follows:
X=25f({t)+10)(y—x)

y =(28—-35f (1)x+(29f (t)— 1)y — xz (5.3.2)

First, the period is fixed, and the amplitude gradually increases from 1 to 10. Fig. 5.3.1
shows the Lyapunov exponent of unified chaotic system witha = f (1), period L= . We can
casily find that the larger amplitude Kk is, the smaller the largest Lyapunov exponent is. So
we can say, the chaotic phenomenon decreases as amplitude Kk increases. Fig. 5.3.2 and Fig.
5.3.3 show Lyapunov exponent of unified chaotic system with ¢ = f(t),L =27 and
a = f(t),L=37 respectively.

Second, the amplitude is fixed, andithe.period gradually increases from 1 to 100.
Fig.5.3.4 shows the Lyapunov exponent of unified chaotic system witha = f(t), amplitude
k=1. Its largest value of Lyapunov-exponent-is _around 2, which is very steady no matter
what the period is. Fig. 5.3.5, Fig. 5.3.6 and Fig.'5.3.7 show the Lyapunov exponent of unified
chaotic system fora = f(t), amplitude k= 2, 3, 10 respectively. The largest Lyapunov
exponent is smaller and smaller as fixed amplitude k increases. Fig. 5.3.8 shows the
bifurcation diagram of unified chaotic system witha = f (t), amplitudek =1. It displays that

the system is chaotic for all w € [0, 1000].

5.4 A Unified Chaotic System with -1~1 Triangular Wave Switch

In this section, we extend «a to negative. A periodic switch(-1~1) by triangular wave

mode will be used. Considering the following function:
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2k, if 0<t<C
L 2
2k L 3
t)={—(L-t) if —<t<=L 5.4.1
g(t) L( ) 5 5 ( )
%(t—ZL) it SL<t<oL
L 2

where t,k and L are time, amplitude and period of triangular wave respectively. g(t) is
used in place of « which is the original parameter of unified chaotic system and the system

is shown as follows:

X =(259(1) +10)(y — x)

y =(28-35g(t))x+(29g(t)—-1)y — xz (54.2)
z= xy——8+3g(t) z

Amplitude is fixed at 1, 2, 4, 6, 8, 10,.and period gradually increases from 1 to 1000. Fig.

5.4.1 shows Lyapunov exponent of umified-chaotic system witha = g(X), amplitude k=1.1Tt
is easily seen that when period L= is small than 300, the Lyapunov exponent shakes seriously.

But it becomes smooth when period L is-larger than 300. Fig. 5.4.2~ Fig. 5.4.6 show

Lyapunov exponent of unified chaotic 'system witha = g(t), amplitude k=2, 4, 6, 8, 10
respectively. The largest Lyapunov exponent is smaller and smaller as fixed amplitude k
increases. And we can find that when fixed amplitude K is greater than 4, the front section

Lyapunov exponent doesn’t shake so seriously any more.

5.5 A Unified Chaotic System with 0~1 Sawtooth Wave Switch
In this section, a sawtooth wave was used to substitute for & which is the original
parameter of unified chaotic system so that « is in a periodic switch between 0 and 1 by a

linear function as follows:
q(t):%t O<t<L and q(t+L)=q(t) (5.5.1)

wheret,k and L are time, amplitude and period of sawtooth wave respectively. q(t) is
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used in place of a which is the original parameter of unified chaotic system and the system

is shown as follows:

X =(25q(t) +10)(y = X)

y = (28 = 35q(t)Xx + (29q(t) — 1)y — Xz (5.5.2)
7= xy——8 +§(t) z

Amplitude is fixed at 1, 2, 4, 6, 8, 10, and period gradually increases from 1 to 1000. Fig.
5.5.1 shows Lyapunov exponent of unified chaotic system witha = q(x), amplitudek =1. Its
largest value of Lyapunov exponent is around 2, which is very steady no matter what the
period is. Fig. 5.5.2~ Fig.5.5.6 show Lyapunov exponent of unified chaotic system
witha = q(t), amplitude k =2,4, 6, 8, 10 respectively. The largest Lyapunov exponent is
smaller and smaller as fixed amplitude K increases. And comparing Fig. 5.5.1~ Fig.5.5.6,
the largest Lyapunov exponent ig-always-greater than 0 when fixed amplitudek increases

to10. It means that no matter thezamplitude k™ of switch is, there exists chaos in the system.
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Chapter 6
Chaos Control and Synchronization of the

Fractional Order Unified Chaotic System

6.1 Introduction of Fractional Order System

Fractional calculus is a 300-year-old mathematical topic. Although it has a long history,
the applications of fractional calculus to physics and engineering are just a recent focus of
interest. It was well known that chaos cannot occur in continuous-time systems of order less
than three. Many systems are known to display fractional order dynamics, such as viscoelastic
systems, dielectric polarization, electrode—electrolyte polarization, and electromagnetic waves.
More recently, there is a new trend to investigate the control [34-39] and dynamics [40-48] of

fractional order dynamical systems.

6.2. Fractional Derivative and Its Approximation
There are several definitions of fractional derivatives. The well known is the

Riemann—Liouville definition, which is given by

def(ty 1 d”jr f(7)
dt*  T(n—a)dt"Jot—r)*™

(6.2.1)

where ['is the gamma function and n—1<a <n. This definition is significantly different
from the classical definition of derivative.
The Laplace transform is applicable and works. Upon considering all the initial conditions to

be zero, the Laplace transform of the Riemann—Liouville fractional derivative satisfies

L{d ;:a(t)} =s*L{f(t)} (6.2.2)

An efficient method is to approximate fractional operators by using standard integer order
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operators. In [49], an effective algorithm is developed to approximate fractional order transfer
functions. Basically, the idea is to approximate the system behavior in the frequency domain.
By utilizing frequency domain techniques based on Bode diagrams, one can obtain a linear
approximation of the fractional order integrator, the order of which depends on the desired

bandwidth and discrepancy between the actual and the approximate magnitude Bode diagrams.

In Table 1 of [50], approximations for %q with q=0.1~0.91n steps 0.1 are given, with

errors of approximately 2 dB. We also use these approximations in the following simulations.

6.3 The Fractional Order Unified Chaotic System
In this section, the fractional order unified chaotic system is considered. The standard

derivative is replaced by a fractional derivative as follows:

X _ (250 +10)(y- %)
d?y
2 = (2835 + (9a =Dy 5 (6.3.1)
déz 8+a
=Xy — z
dt® 3

where a is the fractional order. Whena =1, system (6.3.1) is the original integer order unified
chaotic system in which chaos exists for any « €[0,1] as described in Chapter 2.

First, leta =0.9, Fig.6.3.1 shows the bifurcation diagram of 2.7(3x0.9) order unified
chaotic system. It is easily observed, for the major portion of @ €[0.7, 2.3] in the fractional
order system there exists chaotic phenomenon. Only a small portion around a =2.0 and
a =2.3, the dynamics of system becomes periodic motion. Fig. 6.3.2~ Fig. 6.3.5 are phase
portraits of 2.7(3x0.9) order unified chaotic system with « = 0.8 (Lii system), 2.0, 2.2, 2.25
respectively.

Next, let a=0.8, Fig.6.3.6 shows the bifurcation diagram of 2.4(3x0.8) order unified

chaotic system. It is easily observed, for the major portion of @ €[0.8, 2.2] in the fractional
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order system there exists chaotic phenomenon. Only a small portion around a =1.8,
a =2.1 and some small ranges of «, dynamics of the system becomes periodic motion. Fig.
6.3.7~ Fig. 6.3.10 are phase portraits of 2.4(3 x0.8) order unified chaotic system with o =1.7,
1.8, 1.9, 2.05 respectively.

For a=0.7, some chaotic parameters of « are found. Fig. 6.3.11~Fig. 6.3.13 show
phase portraits of 2.1(3x0.7) order unified chaotic system for a =3.7, 3.8, 4.0 respectively.
Phase portraits are smaller and smaller (lower and lower at the same time) as « increases so
that it is hard too draw a bifurcation diagram.

Fig.6.3.14 and Fig.6.3.15 show phase portraits of 1.8(3x0.6) order unified chaotic
system for a =2.5, 3.0. Phase portraits are smaller and smaller (lower and lower at the same
time) as « increases so that it is hard too draw a bifurcation diagram.

Fig.6.3.16 and Fig.6.3.17 show phase portraits of 1.5(3x0.5) order unified chaotic

system for a =2.0,2.5.

6.4 Chaos Control of Fractional Order.Unified Chaotic System

Chaos control attracts more and more attention from various disciplines in science and
engineering. In this section, we will try to control fractional order unified chaotic system to its
equilibrium point. Recasting the fractional order unified chaotic system (6.3.1) in a compact

vector form, we have

d*X
dt®

= £(X) (6.4.1)

with X =[X,¥,z]" . A simple linear state feedback controller is added as follows:

d?X
=f(X)+u 6.4.2
pre (X) (6.4.2)

where U is a linear state feedback controller of the form as follows:
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ki, 0 0
k, 0[(X-X) (6.4.3)

u=|0
0 0 Kk,

where X is the control target, and K, k,, Kk, are constant parameters. Clearly, (0, 0, 0) is

always an equilibrium point of system(6.3.1). In the following simulation, we stabilize system
(6.3.1) to this equilibrium point. Standard stability analysis easily shows that with (k,, k,, k)
= (29, -23, 2), the equilibrium point is (0, 0, 0). Simulation results show that this controller
can stabilize the fractional order unified chaotic systems with two values of « to this
equilibrium point. Fig. 6.4.1(a)(b) show the time history of the controlled fractional order
unified chaotic system with order a =0.9 and system parameter « =0.8,1.8 respectively.
Fig. 6.4.2(a)(b) show the time history of the controlled fractional order unified chaotic system
with order a=0.8 and system parameter o =14,1.9 respectively. Fig. 5.4.3 shows time
history of the controlled fractional order unified. chaotic system with order a=0.7 and
system parameter o = 3.7 . In all figures, the control signal is added at t = 40.

As we can see from these figures; the designed chaos controller can effectively control

the fractional order unified chaotic system to its equilibrium X = (0,0,0)

6.5 Chaos Synchronization of the Same Fractional Order Unified Chaotic Systems

In recent years, synchronization in chaotic dynamic system is very interesting problem
and has been widely studied. In the synchronized systems, one is called master and another is
called slave. Synchronization means that the state variables of a response system approach
eventually to that of a drive system. There are many control techniques to synchronize chaotic
systems, such as linear error feedback control, adaptive control, active control.

In this section, two unified chaotic systems of the same fractional order are tried to be

synchronized. First, two 0.9 order master and slave systems are studied as follows:
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Master system:

9% _ 250 110)(y, — %)

dt®

ddtZI — (28— 35a)%, + (29 — 1)y, — X,Z, (6.5.1)
dazl_x _8+0{Z

dt? =Xy, 3 1

Slave system:

d®x

dta2 =(25a +10)(y, = %,) + Kk, (X, = X,)
dd Zz =(28-35a)X, + (29a -1)y, — X, z, +K,(y, - Y,) (6.5.2)
°z, 8+«

— ==Xy, - z, +k,(z, - z,)

where order a=0.9 . Fig.6.5.1(a)(b) show time history of errors with system
parametera = 0.8, 2.2 respectively;and the coupling strength k, =k, =k, =1. We let two
systems start to synchronize at t-= 200, and errors, quickly converge to 0. Synchronization of
the same fractional order unified chaotic’systems had been achieved.

Second, another case as order a = 0.8 is studied. Fig. 6.5.2(a)(b) show time history of errors
with system parameter = 0.8,1.9 respectively, and the coupling strength k, =k, =k, =2.
Last, case order a=0.7 is studied. Fig. 6.5.3 shows time history of errors with system

parameter ¢ = 3.7 and the coupling strength k, =k, =k, =4. The lower fractional order is,

the stronger coupling strength K which can synchronize the two identical systems is.

6.6 Chaos Synchronization of Different Fractional Order Unified Chaotic Systems

In previous section, two unified chaotic systems of the same fractional order had tried to
be synchronized and synchronization had been achieved successfully. In this section, we will
try to synchronized two different fractional order unified chaotic systems. First, we try to use
0.9 order master system and 0.8 order slave system described as follows:

Master system:
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0.9
a7x _ 25a +10)(Y, —X,)

dt0.9
dOA‘)y
L= (28-35a)X, +(29a - 1)y, — X,z (6.6.1)
dt09 1 1 141
“z, 8+a
dth XY ~T3 &

Slave system:

dO.SX
dto'sz =(25a +10)(y, — X,) + K, (X, = X,)

dO.Sy
dt0'82 = (28—356()X2 + (290[ _l)yz - Xzzz + kz(yl - yz) (6.6.2)
087 8+«

wa= X, Y, —Tz2 +Kk, (2, - 2,)

Fig.6.6.1 shows time history of errors with system parametera =1.2. The coupling

strength K, k,, k, must be large enough as 3000, two systems will be practically

synchronized, the errors are around0~

Second, we try to use 0.8 order master system(with o =1.2) and 0.7 order slave
system(with «a =3.7) described'as follows:

Master system:

dO.SX
dt“-gl = (25a +10)(y, — X,)
dO.Sy
dto'sl = (28_35a)xl + (290( _l)yl —XZ, (6.6.3)
0‘821 8+a
dt°* =Xy, _Tzl

Slave system:

dOA7X
dt°'72 =(25a +10)(y, = X,) + Kk, (X, = X,)
dOA7y
dt°'72 = (28 -35a)X, + (29a -1)y, — %, z, + K, (y, = Y,) (6.6.4)
077 8+«
dt0'72 =XY, _Tzz + k3(zl -Z,)

Fig. 6.6.2 shows time history of errors. The coupling strength K, k,, k, must be large

enough as 5000, two systems will be practically synchronized, the errors are around10 > .
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Last, we try to use 0.7 order master system(with « =3.7) and 0.9 order slave
system(with « =2.2) described as follows:

Master system:

dO.7X
dt°'71 = (25a +10)(y, — X,)
d0.7
= (28-350)%, + (290~ )Y, - x2, (6:6.5)
dOJZl ~ 8+6¥
dtT =X, _TZ1
Slave system:
dOA‘)X
dt°'92 =(25a +10)(y, — %, ) + K, (X, = X,)
dOA‘)
dt°->9,2 — (28-35)%, + (29 — 1)y, —x,2, +K, (Y, - V) (6.6.6)
7 8+a
To_gz: X,Y, —Tzz +K,(zp22,)

Fig.6.6.3 shows time history of errors. The coupling strength k,, k,, k; must be large

enough as 5000, two systems will be practically-synchronized, the errors are around10~> .
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Chapter 7

Conclusions

In this thesis, chaos and chaos synchronization of integral and fractional order unified
chaotic system are studied.

In Chapter 2, description of the system and differential equations of motion are
introduced. Lyapunov exponents and phase portraits of unified chaotic system are drawn.

In Chapter 3, we use two methods, state and speed coupling, to achieve synchronization
of two identical unified chaotic systems. First, state couplings K(X, —X,) are added to
different equations of slave system, respectively. We find the state coupling must be added at
suitable equation of slave system, synchronization is achieved. Second, speed couplings
G()’(1 — )'(2) are added to different equations of slave system, respectively. In this case, we find
a phenomenon which indicates that for the synchronization conditions obtained by Lyapunov
first approximation theory, there.exists. potential of-improvement. Last, regression analysis
methods are used. An approximate curve (3.3.1) about G and « is obtained. When G
satisfies inequality (3.3.2), two systems are synchronized.

In Chapter 4, unified chaotic system is studied in detail. Not only non-chaotic ranges
within « €[0,1] but also chaotic ranges besides « €[0,1] for unified chaotic system are
found. We also introduce a new parameter S = f(«)so that the extended unified chaotic
system is chaotic only when g €[0,1].

In Chapter 5, a unified chaotic system with various periodic switches are put forward.
Four functionssin’ at, sin wt , triangular wave, sawtooth wave are used to replace o which
is the original constant parameter of unified chaotic system and we find much interesting
results. We find that different switching functions cause different behaviors of system. A

common trend is that the larger switching range is, the smaller the largest Lyapunov exponent
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is.

Finally, chaos, chaos control and synchronization of the fractional order unified chaotic
systems are studied. In the beginning, conception of fractional order system is brought in.
Some values of @ which cause the system chaotic are found. Controlling the fractional order
unified chaotic systems to its equilibrium point is accomplished. The same and different
fractional orders unified chaotic systems are synchronized. In the case of the same fractional
order unified chaotic systems, synchronizations are realized with small coupling strength. But
in the different fractional order case, coupling strength must be over 2000, two systems are

just practically synchronized.
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Fig.2.3.2(a) 3D phase portrait for unified chaotic system with o =1.
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Fig.2.3.2(c) 2D(yz) phase portrait for unified chaotic system with o =1.
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Fig.2.3.3(b) 2D(xy) phase portrait for unified. chaotic system with o =—1 and initial

condition x=2,y=5,7=7.

Fig.2.3.3(c) 2D(yz) phase portrait for unified chaotic system with o =—1 and initial

condition x=2, y=5, z=7.
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Fig.2.3.3(d) 2D(xz) phase portrait for-unified chaotic system with o =—1 and initial

condition x=2;y=5, z=7.
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Fig. 5.3.6 Lyapunov exponent of unified chaotic system witha = f (t), k
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Fig. 5.4.2 Lyapunov exponent of unified chaotic system with
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Fig. 5.4.6 Lyapunov exponent of unified chaotic system with &«
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Fig. 5.5.2 Lyapunov exponent of unified chaotic system with «
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Fig. 5.5.4 Lyapunov exponent of unified chaotic system with &«
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Fig. 5.5.6 Lyapunov exponent of unified chaotic system with &«



Bifurcation diagrarm of 2.7(3*0.9) order unified chaotic system
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Fig.6.3.1 Bifurcation diagram of-2.7(3x0.9) order unified chaotic system.

Fig.6.3.2 Phase portrait of 2.7(3 x 0.9) order unified chaotic system with «
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Fig.6.3.4 Phase portrait of 2.7(3 x0.9) order unified chaotic system with o =2.2.
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Fig.6.3.5 Phase portrait of 2.7(3 x0.9) order unified chaotic system with « =2.25.
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Fig.6.3.6 Bifurcation diagram of 2.4(3x0.8) order unified chaotic system.
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Fig.6.3.7 Phase portrait of 2.4(3 x0.8) order unified chaotic system with o =1.7.
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Fig.6.3.8 Phase portrait of 2.4(3 x 0.8) order unified chaotic system with o =1.8.
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Fig.6.3.9 Phase portrait of 2.4(3x0.8) order unified chqotic system with o =1.9.
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Fig.6.3.10 Phase portrait of 2.4(3x0.8) order unified chaotic system with a =2.05.
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Fig.6.3.11 Phase portrait of 2.1(3x0.7) order unified chaotic system with o =3.7.
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Fig.6.3.12 Phase portrait of 2.1(3x0.7) order unified chaotic system with o« =3.8.
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Fig.6.3.13 Phase portrait of 2.1(3x0.7) order tnified chaotic system with o =4.0.
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Fig.6.3.14 Phase portrait of 1.8(3x0.6) order unified chaotic system with o =2.5.
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Fig.6.3.16 Phase portrait of 1.5(3x0.5) order unified chaotic system with o =2.0.
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Fig.6.3.17 Phase portrait of 1.5(3x0.5) order unified chaotic system with «
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Fig. 6.4.1(a) Time history of the controlled fractional order unified chaotic system with order

a=0.9 and system parameter « =0.8.
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order=0.8 and 0.7 synchronization
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