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Abstract

Understanding of the interactive particle-particle and particle-wall forces in
colloidal systems (electrolytes) plays a very important role in bio-chemistry related
research. By assuming equilibrium in the electrolytes, the potential distribution with a
very thin electrical double layer near the charged object can be well described by the
well-known Poission-Boltzmann equation. Thus, a parallelized 3-D nonlinear
Poisson-Boltzmann equation solver (PPBES) using finite element method (FEM) with
parallel adaptive mesh refinement (PAMR) is proposed and verified. In this thesis, the
research is divided into two phases, which are described as follows.

In the first phase, the nonlinear Poisson-Boltzmann equation is discretized using
Galerkin finite element method with unstructured tetrahedral mesh. Interpolation
within a typical element includes the first-order and second-order shape functions.
Inexact Newton iterative scheme is used to solve the nonlinear matrix equation
resulting from the FE discretization. Jacobian matrix resulting from the Newton

iterative scheme is diagonalized using nodal quadrature, which further facilitates the
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easier parallel implementation. A parallel conjugate gradient (CG) method with a

subdomain-by-subdomain (SBS) scheme is then used to solve the linear algebraic

equation each iterative step. Completed code is verified using two typical examples.

The first validated case is the potential distribution around a charged sphere. Excellent

agreement of the simulation results with analytical (linearized case) and approximate

(nonlinear case) solutions are obtained. The second validated case is the interaction

between like-charged spheres within a cylindrical pore. Results show that the

agreement between the present simulation and previous results are excellent. The

above two typical simulations validate the present implementation of the PPBES.

Further, the parallel performance is studied on a HP PC-cluster system at NCHC

using a test case with a charged sphere confined in a cylindrical pore. Results show

that 76.2% of parallel efficiency can be reached at processors of 32. Also FE

discretization using the second-order shape function is demonstrated to be more

accurate than using the first-order shape function at the end of this phase.

In the second phase, an h-refinement based PAMR scheme for an unstructured

tetrahedral mesh using dynamic domain decomposition on a memory-distributed

machine is developed and tested in detail. A memory-saving cell-based data structure is

designed such that the resulting mesh information can be readily utilized in both node-

or cell-based numerical methods. The general procedures include isotropic refinement
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from one parent cell into eight child cells and then followed by anisotropic refinement,
which effectively removes the hanging nodes, with a simple mesh-quality control
scheme. Parallel performance of this PAMR is studied on a PC-cluster system up to
64 processors. Results show that the parallel speedup scales approximately as N'- up
to 32 processors, where N is the number of processors. Then, procedure of coupling
the PPBES with the PAMR using a posteriori error estimator is presented and verified
using a test case with two like-charged spheres in a cylindrical pore. Results show that
PAMR can systematically increase the solution accuracy of the PPBES. Finally, the
coupled PPBES-PAMR code is used to simulate the interactive force between two
like-charged spheres near a charged planar wall. Results are in excellent agreement
with experimental data considering the experimental uncertainties, which is the first

simulation in the literature to the best knowledge of the author.

Keywords: parallel Poisson-Boltzmann equation solver (PPBES), finite element

method (FEM), parallel adaptive mesh refinement (PAMR), a posteriori error

estimator.
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Chapter 1 Introduction

1-1 Motivation

Understanding of the electrostatic distribution in the electrical double layer (EDL)
near charged particles or charged solid wall is crucial in understanding several
important physical problems, including microscopic colloidal system [Okubo and
Aotani, 1998; Quddus and Moussa, 2004], electrokinetics in microfluidic system
[Quddus and Moussa, 2004; Shao et. al., 2006; Collins and Lee, 2004], to name a few.
Behavior of the EDL in a solution can be approximated by the nonlinear
Poisson-Boltzmann equation (PBE). The Poisson-Boltzmann equation has been
traditionally used to find the electrostatic potential around a macromolecule. Numerical
investigation of models based on the PB equation can provide important information on
effective particle interaction in colloidal systems.

The Poisson-Boltzmann equation is a second-order partial differential equation
with a hyperbolic sine term that makes it exponentially nonlinear in the electrical
double layer around the charged objects. Analytical solution is only possible for some
problems with simple geometries and boundary conditions. However, most of the
applications are three-dimensional with very complicated geometries, which
necessitate the efficient and accurate numerical simulation of the Poisson-Boltzmann

equation. Thus, in this thesis we intend to present and validate a parallelized
1



three-dimensional Poisson-Boltzmann equation solver (PPBES) wusing the
finite-element method (FEM), coupling with parallel adaptive mesh refinement
(PAMR), which can be used efficiently and accurately for practical 3-D applications in

the future.

1-2 Background

In this section, several important concepts about the microscopic colloidal
behavior that is relevant to the Poisson-Boltzmann equation are described first. Then
adaptive mesh refinement which is important to the accuracy and efficiency in solving

the Poisson-Boltzmann equation is described in turn.

1-2-1 Poisson-Boltzmann Equation
1-2-1-1 Nature of Colloidal Solutions

Microscopic particles of one phase dispersed in another are generally called
colloidal solution or dispersions. Three fundamental forces operate on fine particles in
solution:

1. gravitational force, depending on particles density relative to the solvent;

2. viscous drag force, often described by Stoke’s Law, which depicts the force

as a function of fluid viscosity, particle diameter, and particle settling



velocity;

3. the ‘natural’ kinetic energy of particles and molecules.

The ‘natural’ kinetic energy including electrostatic force, which is an important

factor of interaction for particles and molecules.

Fig. 1-1 shows the typical electrostatic potential distribution around a positively

charged colloidal particle. Negative counter-ions are attracted towards the particle by

the electric field generated by the positively charged surface, but they are also subject

to thermal motion, which tends to spread then uniformly through the surrounding

medium.

1-2-1-2 Zeta Potential

Almost all particulate or macroscopic materials in contact with a liquid acquire

an electronic charge on their surfaces. Zeta potential is an important and useful

indicator of this charge which can be used to predict and control the stability of

colloidal suspensions or emulsions.

Colloidal particles dispersed in a solution are electrically charged due to their

ionic characteristics and dipolar attributes. Each particle dispersed in a solution is

surrounded by oppositely charged ions called the fixed layer shown as Fig. 1-2.

Outside the fixed layer, there are varying compositions of ions of opposite polarities,



forming a cloud-like area. This area is called the diffuse double layer, and the whole

area is electrically neutral in general.

When a voltage is applied to the solution in which particles are dispersed,

particles are attracted to the electrode of the opposite polarity, accompanied by the

fixed layer and part of the diffuse double layer, or internal side of the "sliding

surface".

Zeta potential is considered to be the electric potential of this inner area

including this conceptual "sliding surface". As this electric potential approaches zero,

particles tend to aggregate.

1-2-1-3 Electric Double Layer

Electrokinetic phenomena are of considerable importance in many fields of

science and engineering. In particular, they exert a strong influence on the flow

behavior of a fluid, for example, in microchannels and capillaries.

The earliest studies of the electric double layer near a metal surface, by

Helmholtz [Hunter, 1989] in the mid-nineteenth century, assumed that the electric

charge on the metal surface was balanced by an equal charge which sat in the

surrounding solutions a little way from the surface. Around 1910 a better model was

proposed by a French scientist name Gouy and a similar treatment was developed



independently a few years later by the British scientist, Chapman. The result is known

as the Gouy-Chapman model [Hunter, 1989] of the electric double layer, modified by

Helmholtz model. It assumes that most solid surfaces bear electrostatic charges. When

a charge surface is in contact with an electrolyte, the electrostatic charges on the solid

surface will influence the distribution of nearby ions in the electrolyte solution. Ions of

opposite of charges to that of the surface are attracted towards the surface, while ions of

like charges are repelled from the surface; thus, an electric field is established. The

charges on the solid surface and the balancing charge in the liquid are called the

“electric double layer” (EDL). The EDL potential distribution is show in Fig 1-3. The

sign and magnitude of the EDL field depend on the nature of the surface and the liquid.

Immediately next to the charged solid surface, there is a layer of ions that are

strongly attracted to the solid surface and are immobile. This layer is called the

compact or stern layer, normally about several Angstroms thick. The charge and

potential distributions in this layer are mainly determined by the geometrical

restriction of ion molecule size and the short-range interactions between ions, the wall

and the adjoining dipoles.

From the compact layer to the electrically neutral bulk liquid, the net charge

density gradually reduces to zero. lons in this region are affected less strongly by the

electrostatic interaction and are mobile. This region is called the diffuse layer of the



EDL. As will be discussed later, an equation called the Poisson-Boltzmann equation is

used to describe approximately the ion and potential distributions in the diffuse layer.

The EDL width, called Debye length and afterward noted, determines the electric

interaction range between macromolecules and therefore controls the static phase

behavior of these systems.

1-2-1-4 Applications of Poisson-Boltzmann Equation

The Poisson-Boltzmann equation (PBE) provides a "fast" and approximate

method for calculating the effects of solvent on electrostatic interactions in the modeled

system. There are at least five major applications of the PBE:

1. Calculation of the electrostatic potential at the surface of a biomolecule,

which is expected to give information about the concentration of small

charged solutes in the neighborhood of the molecule and whose inspection

may suggest docking sites for biomolecules [Bowen and Sharif, 1998];

2. Calculation of the electrostatic potential outside the molecule, which is

expected to give information on the free energy of interaction of small

molecules at different positions in the surrounding of the molecule. [Kozack

and Subramaniam, 1993];

3. Calculation of the free energy of a biomolecule or of different states of a



biomolecule which gives information on the stability of a biomolecule or of

its different states [Sharp and Honig, 1990];

4. Calculation of the electrostatic field to derive mean forces to be added in

standard molecular dynamics calculations [Gilson et. al., 1993].

5. Calculation of the electrostatic force among charged particles/walls, which

is important in the study of colloidal system.

In the present thesis, we are mainly concerned about the last application of the

Poisson-Boltzmann equation, to which it is not limited. The related derivation of

Poisson-Boltzmann Equation will be discussed in chapter 2.

1-2-2 Adaptive Mesh Refinement (AMR)

Adaptive mesh refinement (AMR) is a computational technique for improving

the efficiency and accuracy of solution of numerical simulations. In the AMR

technique we start with a base coarse grid. As the solution proceeds we identify the

regions requiring more resolution by some parameter characterizing the solution. We

superimpose finer subgrids only on these regions. Finer and finer subgrids are added

recursively until either a given maximum level of refinement is reached or the local

truncation error has dropped below the desired level.

In general, mesh refinement can be categorized into three methods: (1) local



polynomial-degree-variation (p-refinement); (2) mesh movement (r-refinement); and

(3) mesh enrichment (h-refinement), which will be briefly described respectively in the

following.

1-2-2-1 Local Polynomial-Degree-Variation (p-refinement)

As shown in Fig. 1-4, local p-refinement scheme increases resolution of the

solution by increasing the order of polynomial of the shape function in the element,

which originated from finite element modeling. However, its implementation in

three-dimensional finite-element modeling is rather complicated and not as popular as

the mesh refinement (h-refinement) which will be introduced later.

1-2-2-2 Mesh Movement (r-refinement)

As shown in Fig. 1-5, the total mesh points remain the same in the computational

domain after refinement. It is common to use a spring analogy, in which the nodes of

the mesh are connected by springs whose stiffness is proportional to certain measure of

solution activity over the spring. The mesh points are moved closer into the region

where solution gradients are relatively large. This is often applied to the spatial

adaptation of a structured mesh.



1-2-2-3 Mesh Enrichment (h-refinement)

As shown in Fig 1-6, with mesh enrichment, mesh points are added or embedded
into the regions where relatively large solution gradients are detected, while the global
mesh topology remains intact. It is generally regarded that mesh enrichment method
has certain advantages over the first two methods. For example, the use of the
h-refinement scheme generally does not impact the coding structure of the original
numerical scheme if hanging nodes are properly treated, while the use of p-refinement
does, thus complicating the practical implementation. One of the most important
advantages is that the mesh enrichment technique is in general many times faster and

robust than the remeshing technique.

1-3 Literature Surveys
1-3-1 Numerical Simulation of Poisson-Boltzmann Equation

The Poisson-Boltzmann equation plays an important role in describing many
physical phenomena, including like-charge particle interaction [Dyshlovenko, 2001;
Squires and Brenner, 2000; Tuinier, 2003], particle-membrane interaction [Bowen,
1998; Tuinier, 2003], and electrokinetic flow [Yang et. al., 2001], among others. For
example, one of the applications, colloidal dispersion, requires the knowledge of

electrostatic potential distribution, which can then be used to calculate other quantities,



such as particle-particle interaction force. Features of particle interaction are of great

importance for the stability and properties of colloidal dispersions. Accurate numerical

modeling based on the Poisson-Boltzmann equation can provide important information

on effective particle interaction in colloidal systems.

Bowen and Sharif [1997] presented a two-dimensional (axisymmetric)

finite-element solution combined with adaptive mesh refinement. They used the

Galerkin finite-element method with nine-node quadrilateral elements to discretize the

Poisson-Boltzmann equation. The Newton-Raphson iterative scheme was used to

handle the nonlinear hyperbolic sine term, while the Debye-Huckel solution was used

as the initial guess Later, Bowen and Sharif [1998] applied the axisymmetric

Poisson-Boltzmann equation solver to simulate the interactive force between two

like-charge particles within a cylindrical pore with the same sign of charge on the

surface. The results showed that at some inter-particle distance the two particles exhibit

attractive forces, which is similar to that observed experimentally in Larsen and Grier

[1997], although the magnitude is about one order different. It was then argued that in

Ref. [Bowen and Sharif, 1998] the difference might be due to the fact that the wall is

planar in the experiments [Larsen and Grier, 1997], whereas in the simulation it is

cylindrical. For realistic applications like this, a three-dimensional simulation is

required for accurate results. However, not only are 3D simulations extremely
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time-consuming in practice, but developing efficient tools for them is also quite

difficult.

Dyshlovenko [2001] also presented an axisymmetric Poisson-Boltzmann equation

solver using finite-element method combined with adaptive mesh refinement. Instead

of using nine-node quadrilateral elements, he used six-node triangular elements with a

second-order shape function. Later, Dyshlovenko [2002] simulated the same problem

as Bowen and Sharif [1998], but found no like-charge attractive force at any

inter-particle distance in his simulation. In addition, Das and Bhattacharjee [2005]

examined the effects of the roughness of the wall on the distribution of the electrostatic

force using the two-dimensional finite-element method.

As shown in the above reviews, most existing studies use finite-element method

with adaptive mesh refinement to solve the two-dimensional Poisson-Boltzmann

equation. Very few studies have focused on developing a parallelized

three-dimensional Poisson-Boltzmann equation solver even though the development of

one would be valuable in understanding real physical phenomena. Two possible

obstacles that have hindered the development of three-dimensional simulation are the

time-demanding computation of a meaningful 3D simulation and the very complicated

implementation of a parallel adaptive mesh refinement for a 3D unstructured mesh.

Thus, it is important that to develop a parallelized three-dimensional

11



Poisson-Boltzmann equation solver using the Galerkin finite-element method using the

first- and the second-order shape function combined with a parallel adaptive mesh

refinement (PAMR) module.

1-3-2 Mesh Refinement

1-3-2-1 Adaptive Mesh Refinement

In previous section, we have briefly described three kinds of mesh refinement

scheme: local polynomial-degree-variation (p-refinement), mesh movement

(r-refinement) and mesh enrichment (h-refinement). As described earlier in previous

section, the first [Zienkiewicz et. al., 1983; Peano, 1976] and second [Brackbill, 1993;

Mackenzie and Robertson, 2002] methods have some disadvantages. Thus,

comparatively few studies were conducted along these directions. It is generally

regarded that mesh enrichment method (h-refinement) outperforms the first two

methods [Rausch et. al., 1991]. One of the most important advantages is that the mesh

enrichment technique is in general many times faster and robust than the re-meshing

technique [Connell and Holms, 1994]. However, some disadvantages were mentioned

in Ref.[Rausch et. al., 1991]. For example, appearance of the hanging nodes induces

significant modification to the numerical method which couples the mesh refinement

scheme. Fortunately, this can be overcome by some simple methods through the

12



elimination of hanging nodes, such as that proposed by Kallinderis and Vijayan [1993].

In the current study, we intend to employ similar technique to improve the accuracy of

the Poisson-Boltzmann equation solver.

1-3-2-2 Parallel Adaptive Mesh Refinement (PAMR)

For treating large-scale simulation problems, not only we have to parallelize the

numerical solver, but also we have to parallelize the mesh refinement scheme. There

are several ways to classify PAMR algorithm, and some of them are reviewed in the

following.

First, from the viewpoint of practical implementation on computers, PAMR can
be generally categorized into two types: vectorized shared memory and distributed
memory. In the shared memory type [Waltz, 2004], the hardware for parallel
implementation is generally very expensive, and the coding is comparably easy, like
using OpenMP [Chandra et. al., 2001], for instance. Memory access is direct and fast,
which makes communication cost among processors minimal. Moreover, load
balancing among processors is expected to be good, while memory contention may
occur which possibly slows down the speed. In contrast, the hardware is more
affordable for the distributed memory type than the shared memory type, while the
coding is rather involved using MPI [Karypis et. al., 2003], for instance. Global data
access 1s gained through network communication, which often becomes the
bottleneck for better parallel performance if a large number of processors is used.

However, this becomes increasingly unimportant because of the rapid increase in the

13



speed of network communication, and the dramatic reduction of costs in the past
decade. Deciding on what type of parallel machine to implement greatly impacts the

fundamental algorithm design as well as the practical implementation of the PAMR.

Second, from the viewpoint of the adaptive mesh refinement (AMR) algorithm
itself, there are generally two kinds of mesh refinement: h-refinement and mesh
regeneration. Mesh regeneration AMR [Wang and Harver, 1994] regenerates mesh
from a mesh generator based on the distribution of error estimator obtained from the
previous coarse mesh. For a large-scale 3-D computation, there exist two problems.
First, the process often takes too much time, and second, the interpolation of previous
solutions onto the new mesh is rather inefficient, which may slow down the
convergence for the simulation on the new mesh. However, the data structure is
relatively simple as compared to the h-refinement AMR. The h-refinement AMR adds
grid points onto cell edges based on the error estimator obtained from the previous
coarse mesh. It is generally much faster than the mesh regeneration type, and the
interpolation onto the new mesh from the previous solution is straightforward, which
may speed up the convergence for the computation on the new mesh. Often, the
resulting “edge-based” data structure is very complicated and memory demanding,
especially for the 3-D PAMR on the memory-distributed type of machine.
Nevertheless, this type of AMR also has another advantage in that its data structure
may be readily modified for mesh de-refinement, which may become important for a
time-dependent simulation. Additionally, the h-refinement AMR possesses high
spatial locality, which makes possible the parallel implementation on a

memory-distributed machine using domain decomposition.

Third, from the viewpoint of the unstructured mesh solver itself, two types of
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mesh data are required: the finite element type of connectivity (or connectivity) and

cell-based connectivity (or cell neighbor-identifying information). The equation solver

often needs the former, while the latter is required by some particle method for particle

tracking, such as DSMC and PIC for solving the Boltzmann equation with neutral and

charged species, respectively. However, the past development of the AMR scheme only

produced the finite element type of connectivity. Related cell neighbor-identifying

information can of course be obtained by post-processing serially (not in parallel) the

node-based connectivity, while it may become time-consuming if the resulting mesh

size is large. Thus, an ideal PAMR scheme may be expected to directly generate both

these two sets of data.

For adaptive mesh refinement of three-dimensional tetartohedral mesh for the

Poisson-Boltzmann equation, Cortis and Friesner [1997a, 1997b] proposed an

automatic Finite-Element mesh generation system. Authors presented the algorithms of

the construction of a tetrahedral mesh using a predetermined spatial distribution of

vertices adapted to the geometry of the dielectric continuum solvent model. Besides,

Baker[2000, 2001b] and his co-worker [Holst, 2000] publish the adaptive multilevel

finite element treatment of the nonlinear PB equation using highly scalable parallel

adaptive meshing methods which all of the numerical procedures are implemented in

MANIFOLD CODE (MC) [web site, http://www.scicomp.ucsd.edu/ ~mholst/ codes/
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mc/], a small self-contained parallel adaptive multilevel finite element software

package.

1-4 Objectives of the Thesis
Based on previous reviews, the specific objectives of the thesis are summarized
as follows:

I. To develop a parallelized 3-D Poisson-Boltzmann equation solver (PPBES)
using finite element method with first- and second-order shape function on
an unstructured tetrahedral mesh;

2. To develop a parallel adaptive mesh refinement (PAMR) for unstructured
tetrahedral mesh;

3. To couple the PPBES and PAMR and apply it to compute a realistic 3-D

problem.

1-5 Organization of the Thesis

The organization of this thesis is described as follows. Chapter 2 describes the
numerical method for the parallelized Poisson-Boltzmann equation solver. Chapter 3
describes the validation and parallel performance study of the PPBES. Chapter 4
describes the proposed parallel adaptive mesh refinement, coupling scheme with

16



PPBES and application to a realistic 3-D problem. Finally, Chapter 5 describes the

concluding remarks and recommendation of the future work. In addition, Appendix A

describes the derivation of the nodal quadrature used in the present finite element

formulation. Appendix B describes finite element formulation for hybrid mesh, which

includes hexahedral, pyramid and tetrahedral mesh. Appendix C describes the

first-order shape function of tetrahedral mesh and Appendix D describes the

second-order shape function of tetrahedral mesh.
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Chapter 2 Parallelized Poisson-Boltzmann Equation

Solver (PPBES) Using Finite-Element Method

In this chapter, derivation of the Poisson-Boltzmann equation is first
demonstrated, followed by the discretization of the Poisson-Boltzmann equation using
Galerkin finite element method, introduction to general conjugate gradient method for
solving linear algebraic equation, inexact Newton iterative scheme and the parallel
implementation of the finite-element discretization is deliberated in turn. Finally,
formula of calculating electrostatic force used in the present thesis is shown
2-1 Theoretical Model and Analysis EDL

Consider a liquid phase containing positive and negative ions in contact with a
planar negatively charged surface. An EDL field near a charged surface is established.
According to the theory of electrostatics, the relationship between the electrical
potential y and the net charge density per unit volume p, at any point in the

solution is described by the three-dimensional Poisson’s equation as

2 2 2
vquza‘/z’+a‘2”+8‘/j:—pe 2-1)
ox~ oy oz &g,

where ¢ is dielectric constant of the solution and &, is permittivity of vacuum.

Applying the Boltzmann relation, assuming equilibrium, to the ionic number

concentration distribution near a charged surface in a symmetric electrolyte solution

(1:1), we have
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e _ e
T‘/’) and N =n, exp( kT‘”) (2-2)

b b

n* =n,exp(—

Assuming the equilibrium Boltzmann distribution is reasonable, the number

concentration of the type-i ion in a symmetric electrolyte solution is of the form

zey
n, =N, exp(———) (2-3)
0 k,T

where n,, and z, are bulk ionic concentration and the valence of type-i ions,

respectively, e is the charge of a proton, k, is the Boltzmann constant, T is the

zey

b

absolute temperature, and exp( ) is the Boltzmann factor. The Boltzmann

distribution is applicable only when the system is in the thermodynamic equilibrium

state. Then the net charge density in a unit volume of the fluid is given by:

! (&)
p. =ze(n" —n") = —2zen, sinh(*-X) (2-4)
k, T
For a symmetric 1:1 electrolyte system, substituting Equation (2-4) in Equation

(2-1), a nonlinear second-order three-dimensional Poisson-Boltzmann equation is

obtained as

2 2 2 22 n
Oy OV, OV 220 G 22V, (2-5)
ox~ oy oz &g, k, T
: , 2z7%’n, .
By defining the Debye-Huckel parameter x~ = T and applying the
egk,,

dimensionless groups as follows,

ey

X=kX, Y=kY, Z=xZ and 1,/7:k_|_
b

The Poisson-Boltzmann equation, equation (2-5), can be re-written as:

oO’'w o'w ow . . _
+ + = sinh 2-6
x o T ) (2-6)
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where 1/x (Debye length A, ) is the characteristic length of the EDL.

Generally, solving this equation with appropriate boundary conditions, the
electrical potential distribution ' of the EDL can be obtained, and the local charge
density distribution p, can then be determined from equation (2-4). It should be
noted that the Debye-Huckel parameter x* is independent of the solid surface
properties and is determined by the liquid properties only, such as the electrolyte’s

valence and the bulk ionic concentration.

2-2 Discretization Using Finite Element Method with Tetrahedral
Mesh

The FEM is the computer-aid mathematical technique for obtaining approximate
numerical solution to the abstract of calculus that predicts the response of physical
system subjected to the external influences.

Such problems arise in many areas of engineering, science, and applied
mathematics. Applications to date have occurred principally in the areas of solid
mechanics, heat transfer, fluid mechanics, and electromagnetism.

There are many salient features in FEM:

1. The domain is divided into smaller regions called elements. Adjacent

elements touch without overlapping, and there are no gaps between the
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elements. The shapes of the elements are intentionally made as simple as
possible.

In each element the governing equations, usually in differential or variation
(integral) form, are transformed into algebraic equation. The element
equations are algebraically identical for all elements of the same type,
which usually need to be derived for only one or two typical elements.

The resulting numbers are assembled (combined) into a much larger set of
algebraic equations called the system equations. Such huge systems of
equations can be solved economically because the matrix of coefficients is
“spares”.

Solved the matrix problem.

FEM seeks an approximate solution U, an explicit expression for U, in

terms of known functions, which approximately satisfies the governing equations

and boundary conditions. It obtains an approximate solution by using the

classical trial-solution procedure. Normally, it is not possible to obtain strong

solutions for the problem at hand. Instead one usually decretive the otherwise

continuous problem and obtain so-called weak solutions; weak in the sense of

approximation.

The application of the finite element method to a given problem involves
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the following six steps [Thompson, 2003; Zienkiweicz, 2000]:
1. Development of element equation.
2. Discretization of solution domain into a finite element mesh.
3. Assembly of element equations.
4. Introduction of boundary conditions.
5. Solution for nodal unknowns.

6. Computation of solution and related quantities over each element.

2-2-1 Interpolation with First-order Shape Function

In this section, we will describe the FE discretization of the three-dimensional
nonlinear Poisson-Boltzmann equation using first-order shape function in detail. In
general, the procedure are divided into the following steps.

Stepl:

We use i/ to approximate i , then we set the trial solution:

4
7' =N{"a +N{”a, + N{”a, + N{”a, = > NI (x,y,2)a, (2-7)
j=1

where x, y, z are the independent variables in the problems. The functions

N;(X,y,z) are known functions called trial functions (basis).

The purpose is to determine specific numerical values for each of the parameters

a; (such as potential). Then, using the Galerkin method, for each parameter a; we
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require that a weighted average of R(X,y,z) over the entire domain to be zero. The

weighting functions are trial functions N(X,y,z) associated with each a;.

Step2:

Applying Galerkin residual method, from Equation (2-6):

O’y 2y W © sinh(i7
= n 5 + pu )dQ:§>QNi sinh()dQ2 (2-8)

(e)
J N
the Galerkin residual method is a weighting residual method, which uses the trial

function as the weighting function. Thus, N is not only a weighting function, but

also a shape function. Note the integral §QdQ means integrate over the volume of

element. In the present study, we employ tetrahedral elements, which have four
degree of freedom (DOF) in each element.
Within the tetrahedral element, as shown in Fig.2-1, the function ¥/, the

first-order shape function, can be approximated as,
7Oy, )=a® +b@x+c®y+d @z | i=1~4 (2-9)

The coefficients a;®, b, ¢ and d® can be determined by enforcing

Equation (2-9) at the four nodes of the element a unit value at each of the vertex.

From which we can obtain,
(&) (&) (&)  4(e)

1 2 3
1 x© xI x® x®
6V © ye oy oy ye
20 72 72 2©

a’® —

(2-10)

1
_6\/(9)

@90 + a9l + a9l +algl)
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6V(e) y(e) ;e) ge) ie)
(2-11)
Z(e) Z(e) Z(e) Z(e)
6\/(9) (b*(e) 1(e)+b*(e)¢(e) +b*(e)¢(e)+b*(e) (6))
1 1 1 1
® (e) (&) (e
c'® _ 1% X, X3 X,
_6V(e) (e) (e) (e) (e
1 2 3 4 (2-12)
Z(e) Z(e) Z(e) Z(e)
C*(e) (e)+c*<e) (e)+c*<e) (e)+c*<e) (e)
6\/(9) 1
1 1 1 1
(e (® (&) (e
d*(e) 1 X X2 X3 X4
VIO NG (e) (e) (e)
6V Yi 2 3 4 (2_13)
(e) (e) (® (e)
¢1 2 3 4
*(e) 4(e) *(e) 4 () *(e) 4 (e) *(e) 4 (e)
6\/(9)(d O +d® 8 +d 98 +d, P8
where
1 1 1 1
o 1 X(e) Xge) xfe) X(e)
V = volume of the element (2-14)

©  y© y© e
6 Yi » Y5 W
20 2® 2@ 4®

Thus, the coefficients a @, b, ¢® and d;® can be easily determined from
expansion of the determinants and are not listed here for brevity. They can be found in
Appendix C.
Substituting the expression for a"®, b™®, ¢® and d™® back into Equation
(2-9), we obtain the interpolation function as given by:
NP (%, y,2) =

O —— (@9 +b“x+c@y+d;92) (2-15)

It can be easily shown that the derived shape function has the following property
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as it should be.

© 1 i=j
Ni”(X,Y,2) =6, = 0 %] (2-16)

and furthermore that N!®(X,y,z) vanishes when the observation point is on the

surface of the tetrahedron opposite the | -th node. As a result, inter-element
continuity of the interpolated function is guaranteed.

Step3:

Integrating Equation (2-8) by part, we can obtain
—(e)
ZW[ d 8!// (e))+ ¢ (aw NE) +- 2 DY N© Y dxdydz
oy oy oz oz

81//(8) aN() 61//(9) ON. (e) a (e) aN (e)
- dxdydz 2-17
Zm[( P R vy e (2-17)

= z I” N, sinh(i7*)dxdydz

Step4:

Applying Gauss divergence theorem to Equation (2-17), we can obtain

Zﬁ[ Wk]N(e> Adxdy
B al//(e) aNi(e) al//(e) ON® 817(9) GN ©)
ZJH[( o o) T oy oy Ty kv (2-18)

=> m N® sinh(j7 © )dxdydz

Then, by substituting trial function, Equation (2-7), into Equation (2-18), we can

obtain
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ZZﬁ ]+ KIN® - Adxdy
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ON; © a; oN® ON®a. AN ® ON <e)a (©)
‘sz[( G A N, ydxdydz
X oz oz

a oy
= Z ”J- N s1nh(1//(e) )dxdydz

Now define:

., ON{Pa, . oN{a, . oNi*a .
7T=—( I+ ]+ k
OX oy 0z

Equation (2-19) can be rewritten as follows,

ZZIH[( 2@) 5, ay )+ a; )]ajdxdydz

- _Z J.J-J. N sinh(7*)dxdydz — ﬁrndxdy

or,

24:24:_[”36\/(9) (B}Ob +¢19¢@ +d ©d"®)a dxdydz
j=1 i=1

24: j j j N sinh(® )dxdydz — 5{}@ 7 dxdy

—

where
m'dxdydz =Vv©

Next, by substituting Equation (2-23) into Equation (2-22), we can obtain

4 4
M) H(e) | MOV ¥ (E) | A *(E) ] (E)
ZZ 6V(e)(bj b +¢9¢® +d;d@)a,

jli—l

4
= _ZJ-”N{G) sinh(7® )dxdydz — ﬁ;z' dxdy
i=1
Define
K(e) _ Z_;le 6V(e) (b}ﬂ(e)bi*(e) +C’;(e)ci*(e) +d}“(e)di*(e))

F© = Z J'J' N © sinh(® )dxdydz — ﬁr dxdy
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Finally, we can obtain the matrix equation of the FE-discretized Poisson-Boltzmann

Equation as

[Kiﬂe) ]{age) }: {Fi(e) } (2-27)

2-2-2 Interpolation with Second-order Shape Function

For some physical problems, tetrahedral elements with first-order shaper
function are good enough for maintaining high accuracy. However, it may not be so
for some problems like the present Poisson-Boltzmann equation due to the
exponentially varying source term. Elements with higher order shape function are
often necessary to improve the accuracy of the numerical solution, while the
complexity of implementation and required memory increases with increasing order
of shape function. Considering the compromise between numerical accuray and
complexity of implementation, elements with the second-order shape function
represents an optimum choice. Although the 4-node tetrahedron is the simplest solid
element, they are not the preferred elements in engineering analysis because of their
low accuracy. In what follows, elements with the second-order shape function are
presented in detail.

The natural or tetrahedral coordinates system L,, L,, L; and L, of a
tetrahedron element were shown in Fig. 2-1. For a quadratic interpolation model,
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there are 10 nodal unknowns, 1 at each of the nodes as indicated in Fig. 2-2. The
nodes 1, 2, 3 and 4 correspond to the corners, whereas the nodes 5 to 10 are located at
the midpoints of the edges of the tetrahedron element. The variation of the field
variable is given by

sy =[N =[N, N, .. N,Jo° (2-28)

where N, can be found as

N, =L 2L -1, 1=1,2,3,4
N, =4L,L,
N, =4L,L,
N, =4LL, (2-29)
N, =4L,L,
N, =4L,L,
Ny, =4LL,
and
O] e
P, ¢ %20) |
6(9) _ q).z _ ¢(X2,?/2,22)
@, P(X105 Y105 Z10)

2-
gatL, =1,L =L, =L,=0) (2-30)

gatL, =1L =L=L,=0)

gatL, =L, :%, L =L,=0)
Note that L; is defined the same as Equation (2-15), but N; are replaced with L.

For example, to assemble the coefficient matrix V¢, -V dxdydz,
1 1

28



[(2b7X)=3V -b’ +2a’b; +2bc’y +2b'd z]i

Vo = —4 +[(2¢*y)-3V -c, +2a,¢c, +2b1*cl*y+2cl*dl*z]]
18V *) * € gk * gk * g% e
+[(2d,“z)-3V -d, +2a,d, +2b/d, y+2c,d, ylk
bl*[—%+2Ll]i (2-31)
1 * 1 -
=—<+C[-—+2L
EY, [ 5 1)
% 1 ng
+d1[—§+2Ll]k
and
*2 *2 *2 1 2
(b," +c,° +d, )(—5+2Ll)
Vo -V, =
hoVo 9v? (2-32)
_ (b7 +c”+d?)

1
o 4L -2L, +Z)

By employing area coordinates, the volume integrals can be easily evaluated from the

relation
'b! c!d!
Ll ldv=— 2 2-33
L 'TETT T B3+a+b+c+d)! (2-33)
Then,
*2 *2 *2
jjjv(;ﬁ].wldxdydz:(bl to +d7) 3 (2-34)
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Some discussion of the derivation are shown in Appendix D and are not

described here for brevity.

2-3 Conjugate Gradient Method for Linear Algebra Equation
The conjugate gradient method was developed in 1952 by Hestenes and Stiefel
[1952] as an improvement to the steepest descent method. Whereas steepest descent
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approaches the solution asymptotically, the conjugate gradient method will find the
solution in n iterations (assuming no round-off error). There are many solvers
including this method or subroutine presently [Holst et. al., 2000]. In our laboratory,
the subroutine of conjugate gradient method of parallel version has developed by Hsu,
K.-H [2006].

Generally, in the linear system Ax=Db suppose the coefficient matrix A is
symmetric and positive definite. Solving Ax=Db is equivalent to minimizing the
quadratic function Q(X)= %XT AXx—x"b. The conjugate gradient method is based on
the idea that the convergence to the solution could be accelerates if we minimize Q
over just the line that points down gradient. To determine X'*' we minimize Q over
x* +span(p’, p',p*,---,p'), where the p“ represent previous search directions. An
added advantage to this approach is that, if we can select the p“ to be linearly
independent, then the dimension of the hyperplane will grow one dimension with each
iteration of the conjugate gradient method. This would imply that (assuming infinite
precision arithmetic) the solution of the linear system Ax=b would be obtained in
no more than N steps, where N is the number of unknowns in the system. Major
algorithm in this method is summarized as:

For each process j;

step 1. b,; =Update(b, ;)
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step2. X =0, X/

_0. 0 _ 0o _
;=0; r/=b; and 1, =b,,

step 3. Solve M(z{,z))=(r/,r’); pj=12{, p/; =1,

O,rO

0
lj» j’rlj)

step4.  r’ = Inner Product(z],z
Dok=0,1,2...., Maximum Iterations

step 5. (d},0);) = Matrix Multiply(A,(p}, p;))

step 6. 7 = Inner Product(p;, p;;;q{.q/;)

k
step7. af= r/
P K

k+l _ .k k k.
step 8. X; =rj +a'p;; X

k+1

ok k K
i =hjta Py

k+1 _ ok kk.
step9.  rj =r;—aq;; r

k+1 k

o Kk
rj =gy

step 10.  Solve M(z;",z/")=(r/".r ")

k+1 k+1, o k+1 k+!
(YA FRRN

k+1
step 11.  r*" = Inner Product(z L T

step 12. If(\/rkTsTolerance) END
step 13 4 =T"/s pi =2 Y, Pl =2l B
END DO
For parallel conjugate gradient method, in step 1 and step 5, the node-node of
interface of subdomain need to do a communication. Besides, in step 6, all node of

subdomain need to do one collective communication.
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2-4 Inexact Newton-Raphson Iterative Scheme

The method of Newton-Raphson is a classical tool for the study of the existence
of the solution of nonlinear PDE of certain types [Holst et. al., 1994]. It is also useful
for the numerical solution of nonlinear types of problems approximated, for instance,
by the finite difference, finite element or boundary element method. In the present
thesis, an inexact Newton iterative scheme is employed to solve the nonlinear
FE-discretized Poisson-Boltzmann equation.

Following the finite element formulation, Equation (2-6) yields a nonlinear
algebraic system in the form

(KU} ={F)}, (2-35)

where [K] and {F(U)} are derived from the Laplacian term and the nonlinear forcing
term, respectively. Note that the additional term due to the non-homogenous Dirichlet
boundary condition included in {F u )}. This nonlinear algebraic system is solved by
an inexact Newton iterative method, which can be described as follows. Let U be a
given initial estimate and assume that U is the current approximation. Then the new

(k+1)

approximation U can be computed through

ANY & = U™, (2-36)
where A% =[K]-J® and BU®)=FU")-J®U®  Equation (2-36) is solved
at each iterative step until convergence is reached. In our implementation, the non-zero
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entries of A% are stored in the compressed sparse row (CSR) format that is
computationally efficient both in terms of storage and matrix operations [Saad, 2003].
Here, J™ is the Jacobian matrix for F(U). Further, it can be readily shown that J®
is a diagonal matrix if the nodal quadrature is used to evaluate the integration of the
nonlinear term in the Galerkin FE formulation. Details of the derivation are shown in
Appendix A and are not described here for brevity. Diagonalization of the Jacobian
matrix J® is important since the memory for storage is greatly reduce as well as the

much easier parallelization of this matrix in practice.

2-5 Parallel Implementation of the P-B Equation Solver
2-5-1 Introduction to Parallel Computing

There is a continual demand for greater computational power from computer
system than is currently possible. Areas requiring great computational speed include
numerical simulation of scientific and engineering problem. A parallel computer, as
defined by Almasi and Gottlieb [1989], is a collection of processing element that
cooperate and communicate to solve large problems fast. Parallel computers can be
viewed as a collection of processors and memory units which are connected by an
interconnection network. The purpose of parallel computing is to get work done in
less time and also to solve problems which can not fit in a single computers memory.
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A parallel computer, as we have mentioned is either a single computer with

multiple internal processors or multiple computer interconnected to from a coherent

high-performance computing platform. There are two basic types of parallel computer:

Shared memory multiprocessor and Distributed-memory multicomputer.

A natural way to extend the single-processor model is to have multiple

processors connected to multiple memory modules, such that each processor can

access any memory module in a so-call shared memory configuration, as shown in

Figure 2-3. The connection between the processors and memory is through some from

of interconnection network. A share memory multiprocessor system employs a single

address space, which means that each location in the whole main memory system has

a unique address that is used by each processor to access the location.

In Distributed Memory architecture parallel computers, memory is physically

distributed among processors; each local memory is directly accessible only by its

processor. Synchronization is achieved by moving data between processors by a fast

interconnection network shown in Fig 2-4.

In our laboratory, we had set up PC Clusters which are use distributed memory

system shown in Fig 2-5. The advantage of this kind of architecture is that it is

scalable to a large number of commodity processors. A major concern with this

scheme is data decomposition; the data being operated should be divided equally to
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balance the load, and also should be done in an efficient manner in order to minimize

communication. The scalability depends on the type of interconnection between the

Pprocessors.

2-5-2 Parallel Implementation

In order to parallelize the Poisson-Boltzmann equation solver, we chose Message

Passing Interface (MPI) library [http://www-unix.mcs.anl.gov/mpi/] as our standard

parallel programming. MPI provides library routines for message-passing and

associated operations. A fundamental aspect of MPI is that it defines a standard but

not the implementation, just as programming languages are defined but not how to

compilers for the languages are implemented. MPI library of a set of standard

subroutine calls which allow parallel programs to be written in distributed memory

system.

Besides, we use METIS [http://glaros.dtc.umn.edu/gkhome/views/metis] to

distribute the cells and nodes in a system. METIS is a family of programs for

partitioning unstructured graphs and hypergraphs and computing fill-reducing

orderings of sparse matrices. The underlying algorithms used by METIS are based on

the state-of-the-art multilevel paradigm that has been shown to produce high quality

results and scale to very large problems.
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The Poisson-Boltzmann equation solver is parallelized by domain decomposition

as shows Fig.2-6. In distributed parallel finite element analysis, the domain

considered is first decomposed into a number of subdomains by preprocessing

program. Then, one processor is assigned for each subdomain, though other variations

are also possible. Computations are then performed on each processor on the local

subdomain and communication takes place with the other processors whenever

needed, for example, during the matrix solving process. If the domain is partitioned

into a set of non-overlapping subdomains then the methods used are called iterative

substructuring methods.

Fig 2-7 summarizes schematically the procedure of the proposed parallelized

Poisson-Boltzmann equation solver. The steps of the procedure are briefly described

here.

1. Initialize MPI and synchronize all processors to prepare for parallel

computation.

2. Read in the grid from the host processor and distribute the grid to all

processors according to pre-partitioned information.

3. Compute the coefficient matrix in each processor and make any necessary

communication between neighboring processors.

4. Set up initial and boundary conditions in each processor and set up k=0.
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5. Newton iteration loop begins, k=k+1.

6. Update [A], {F} in equation (2-35) and make any necessary communication
between neighboring processors.

7. Solve  AWU®Y =FU®)  using Parallel CG  with the
subdomain-by-subdomain scheme.

8. If ”‘9”00 <&, , then go to the next step. Otherwise, go back to Step 5. Note ¢,
is the prescribed convergence criterion of the Newton-Raphson scheme, while

Uk+1_uk

||8||00 = max{ U k+1

L

9. Gather all computed data in the host and calculate the distribution of the
electric field.

10. Output the data and stop the program.

2-6 Force Calculation in an Electrostatic Field
From the potential distribution obtained by solving the Poisson-Boltzmann
equation, the electrostatic force on the spherical particles is calculated by integrating
the total stress tensor, defined as
Ty =AH+5[EE—%E-EI] (2-37)
where E=-Vi is the electric field vector; | represents the identity tensor, and

AIT 1is the osmotic pressure difference between the electrolyte at the particle surface
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and bulk solution, AIT can defined as
AIT=2n, KT (coshy —1) (2-38)
where n, is the bulk ion number density of the electricity neutral electrolyte.
Force is obtained by integrating the stress tensor over the surface of a particle as
F= jTi,. -ndS (2-39)
S
where n is the unit outward surface normal, and the subscript S represents the area
over the closed surface of the particle. Note that the stress tensor is calculated from
the potential but the force on the sphere also includes a contribution from the osmotic
pressure generated by the electric field. However, pressure variation due to the field at
the sphere surface is normally canceled by electrical effects [Russel et. al., 1989] so

that we can assume the AIl term is zero.
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Chapter 3 Validation of the Parallel Poisson-Boltzmann

Equation Solver

3-1 Convergence of the PPBES

Table 3-1 (a) and (b) summarizes the convergence study with a good initial guess
and all-zero guess, respectively for a typical simulation (CPU No.=6; 81,354 nodes
and 458,064 elements). A good initial guess is from the solution of last level mesh by
interpolation. Results show that, with a good initial guess, only three Newton iterations
are required to achieve the convergence criterion (50210'7) in the present inexact
Newton iterative scheme. On the other hand, if all zeros are used as the initial estimate,
five Newton iterations are needed. Compared with all zeros are used as the initial
estimate (relative residual=10", total time=394.32sec), a good initial guess (relative
residual=107, total time=301.57sec) is saving about 24% total CPU time.

In addition, approximately 900-1300 iterations are required for the convergence
(relative residual of from 10™ to 107) in the parallel CG solver within each Newton’s
iteration, since we do not use any preconditioning techniques. In addition, numerical
experiments show that relative residual of 10™ for the CG solver is the optimum
choice in terms of the runtime and accuracy. If we choose a low relative residual
(10'4), not only increase the number of iterations for the CG solver but also bring the

solution of inaccuracy. To further reduce runtime, a robust preconditioner, such as the
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geometrical additive Schwarz domain decomposition method [Nadeem and Jimack,
2002], could be used. This work is currently in progress in our group and will be

reported in the near future.

3-2 Validation 1: The Potential Distribution around a Charged Sphere

In presently papers review, Tuinier [2003] provided simple expressions are
presented that give a very accurate description of electrostatic potential around a
single sphere and cylinder for arbitrary double-layer thickness and surface potential.
Completed PPBES is used to compute the potential distribution around a charged
sphere, and the results are compared with analytical and approximate solutions [Tuinier,
2003] to validate the parallelized code.

Table 3-2 summarizes the previously developed analytical and approximate
solutions for this case. Normalized radius of the sphere is kept as 5.0, while two cases
of constant value of electrostatic potential (‘¥,=1.0 and 5.0) are set at the surface of the
charged sphere. Note that since PPBES is a 3D code, only 1/16 of the full domain is
used for this simulation by taking advantage of the symmetry of the problem, while the
Neumann boundary conditions are used at the symmetric planes. Fig 3-1 shows the
surface mesh distribution of the sphere (176,309 elements; 36,396 nodes).

Fig. 3-2a shows that when ¥ =1.0, the computed potential distribution agrees very
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well with both the analytical and approximate solutions [Tuinier, 2003], because at this
lower ¥, the Poisson-Boltzmann equation can be linearized correctly. However, Fig.
3-2b shows that when W¥,=5.0, the computational potential distribution deviates
considerably from the analytical solution but stays quite close to the approximate

solution. This is because at this higher ¥, the Poisson-Boltzmann equation cannot be

linearized correctly in the derivation of the analytical solution.

3-3 Validation 2: Interaction Between Two Like-charged Spheres
within a Cylindrical Pore

In this section, we will simulate a geometrically confined pair of charged spheres
concerning the phenomenon of long-range electrostatic attraction between particles of
like charge [Larsen and Grier, 1997]. The long-range electrostatic interaction of two
colloidal particles confined in a cylindrical pore was studied in the present paper
[Bowen and Sharif, 1998], we use the same values of parameters and geometry, such as
the 1:1 electrolyte, the potential on surfaces of the sphere particles ¥, =3.0, the
potential on the cylindrical pore surface ‘¥, = 5.0, the radius of the particles a=1.185,
the sphere radius to pore radius ratio 0.13. Taking advantage of the symmetry in this
problem, only 1/4 of the whole physical domain is necessary for simulation, resulting in
the need for 0.64 million elements (close to 0.11 million nodes).
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Fig 3-3 shows the calculated potential distribution for the sphere confined in a
pore at separation distances r =6. Fig 3-4 shows the potential along the midplane BC
at r=06 for the first-order shape function. We can see the potential along this plane is
almost decreasing at all distance, but after Z=3.4 the potential become increasing. By
comparing with previous numerical data [Brwen and Sharif, 1998], we also have
almost the same results, but still have 1% inaccuracy. Our calculations confirm
speculation that the attraction between confined spheres. Besides, if we choose the

second-order shape function, the accuracy will be improved.

3-4 Parallel performance of the PPBES

To study the parallel performance of the PPBES, we consider a test case with a
charged sphere (radius=5, '¥,=2.0) confined in a cylindrical pore with the sphere radius
to pore radius ratio of A=0.35. Taking advantage of the symmetry in this problem, only
1/16 of the whole physical domain is necessary for simulation, resulting in the need for
0.61 million elements (close to 0.1 million nodes). Fig. 3-5 illustrates the resulting
speedup as a function of the number of parallel processors (up to 32), and Table 3-3
summarizes the detailed time breakdown for various components of the parallelized
code. Among these, the matrix solver using parallel CG method occupies ~50% of the
total runtime and setup the matrix occupies ~8% for the number of processors tested in
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the present study. This indicates that further reduction of the runtime can be highly
expected if the matrix solver is greatly improved. Total runtime is ~2,486 seconds with
the use of a single processor as compared to ~102 seconds with the use of 32 processors,
which results in 76.2% in parallel efficiency. The results clearly show that the current
parallel implementation of the Poisson-Boltzmann equation using the
subdomain-by-subdomain method performs reasonably well for the typical problem
size. A smaller problem size was not tested in this study since it is irrelevant in practice
for typical three-dimensional applications. Indeed, it is expected that the parallel
speedup will be even greater if a larger problem size is considered. Thus, not only can
the current parallel implementation help to greatly reduce the runtime required for
parametric study to understand the distribution of electrostatic potential but also
increase tremendously the size of the problem that the memory-distributed parallel

machine can handle.

3-5 The Second-order Shape Function for PPBES

Figure 3-6 shows that the distribution of potential around the charged spheres
(radius a=0.325um) near a like-charged plate (distance h = 2.5um) at level-0 for
solutions of the first-order shape function (Fig 3-6a) and the second-order shape
function (Fig 3-6b). For the test cases, Table 3-4 shows that the mesh levels of the
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number of nodes and elements. We can find the solution of second-order shape

function better than the solution of first-order shape function at level-0 show in Figure

3-7 and Figure 3-8. It is a clear demonstration that when we use the second-order

shape function for mesh of level-0, which the solution between the first-order shape

function for mesh of level-3 and mesh of level-4. In other words, the solution of the

second-order shape function will increase in accuracy over the first-order shape

function. The advantage of second-order shape function is that they can define the

edge points of elements in order to increase the solution of accuracy. It is not

necessary to use very small elements. Therefore, we can use the second-order shape

function to reduce the number of elements at refinement level.

Table 3-5 shows the information (case from Section 3-3) that compares the

first-order with the second-order shape function for mesh of level 0. For the same

order nodes (~110,000 nodes, the second-order shape function is from original 16,280

nodes), we can find the total CPU time is almost closed (~90 second). Approximately

720 iterations are required for the convergence in the parallel CG solver within each

Newton’s iteration.

Then, we use the mesh data of Table 3-5 to validate the solution of accuracy. Fig

3-9 shows the case for interaction between two like-charged spheres within a

cylindrical pore (the same as case of Section 3-3) but use the second-order shape
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function. The result shows that the solution of the second-order shape function will

increase in accuracy over the first-order shape function. The inaccuracy reduces near

to about 0.2%.
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Chapter 4 Parallel Adaptive Mesh Refinement for

Unstructured Tetrahedral Mesh

In this chapter, four major parts are described, including the basic algorithm for
parallel adaptive mesh refinement (PAMR), coupling of PAMR with parallel
Poisson-Boltzmann solver using Finite Element Method by a shell script of UNIX
system, validation parallel performance of PAMR and application to a realistic
three-dimensional problem. In each part, a general description and related specific

algorithms are respectively provided.

4-1 Parallel Adaptive Mesh Refinement
4-1-1 Basic Algorithm of Parallel Adaptive Mesh Refinement

In the adaptive mesh refinement module, the data to record new added nodes is
based on cell. In other words, every cell would only know new added nodes that
belong to it. The number of added nodes is fixed in each process. However, before to
divide cells, the number of added nodes must be unique in all processors. Besides, in
this module, it needs a neighbor identifying arrays. This array defines the interfacial
cell for each face. It would record the global cell number of interfacial cells for each
face of the cell.

At each mesh refinement step, individual edges are marked for refinement, or no
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change, based on an error indicator calculated from the solution, for example, the

electric field. These cells which need to refine would add new nodes on each edge.

They are called isotropic cells. For two-dimensional mesh, a parent cell [Lian et. al.,

2006] is divided to form four child cells. For three-dimensional mesh and tetrahedral

cell, the parent cell is divided to form eight child cells, as show in Fig 4-1.

When isotropic cells add nodes on their edges, the cells neighbor them would

appear one to three handing nodes at the same time. The cells which have hanging

nodes but not belong to isotropic cells are called anisotropic cells. In order to remove

hanging nodes in anisotropic cells, it has some procedures to do. Using

two-dimensional mesh as an example is shown in Fig 4-2.

Then, we rewrite the above that considering the complexity of involved logic and

data structure, we are only interested in refining the unstructured tetrahedral mesh. The

general idea of refining the mesh in the current study is to simply “isotropically” refine

the parent cells that require refinement into eight child cells. These child cells from

isotropic refinement are classified as “isotropic cells”. In contrast, those cells other than

the isotropic cells are then classified as “anisotropic cells”. The important steps in

refining cells can be summarized as follows. (1) Add a node on the cell edges of

“isotropic” and “anisotropic” cells. (2) Refine cells that have added node(s) on the

edge(s), and (3) update connectivity and cell neighbor-identifying information.
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When hanging nodes appear in a triangular cell, the cell must be divided into

different way. However, for three-dimensional mesh, the division is more complex.

The division would consider the number and position of the hanging nodes, to decide

whether to add new nodes to obey the refinement rules. There are three results. One is

to divide into eight child cells. Another is to divide into four child cells. The other is

to divide into two child cells. The detail refinement rules are be show in Fig 4-3 [Wu,

2002].

4-1-2 Cell Neighboring Connectivity

In general, the AMR scheme [MacNeice et. al., 2000; Norton et. al, 2001; Oliker
et.al., 2000] often applies the edge-based data structure in storing and searching
connectivity-related data. With this edge-based data structure, the cells containing a
common refined edge can be easily identified, which is necessary in the AMR scheme.
However, the edge-based data structure is relatively memory demanding. For example,
up to ~7N edges can result from a tetrahedral mesh with N nodes, while only ~6N
cells are formed. With this edge-based data structure, ~10 times of the number of
edges are often required since up to ~10 or more cells share a single edge in a typical
tetrahedral mesh, while only four times of the number of the cells are required (four
faces in a cell) if the cell-based data structure is employed. Thus, the overall memory
saved in this regard can be up to 2~3 times if the cell-based data structure is utilized.

This justifies the use of the cell neighbor-identifying array in the present study.
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Since we do not utilize the edge-based data structure, how to quickly search the
cells sharing a common edge becomes very important in the refinement procedure.
The basic concept of the cell-based data structure is based on the fact that only two
faces share a common edge in a cell, which can be used to efficiently sort the sharing
faces. Fig. 4-4a shows a typical example of the common edge shared by the adjacent
cells. Edge A-B is shared by Cell A-B-1-2, A-B-2-3, A-B-3-4, A-B-4-5, and A-B-5-1.
For brevity, the procedure of sorting the faces sharing the common Edge A-B is used
as an example to demonstrate the general ideas of face sorting using cell-based data

structure and is summarized as follows:

1 Define Cell A-B-1-2 as the initial searching cell.

2 Search the neighboring cells (A-B-2-3 and A-B-5-1) which share the

common edge (Edge A-B) according to the cell neighboring-identifying

array and finite element connectivity.

3 Select one of these two neighboring cells (e.g., Cell A-B-2-3 through Cell

Interface A-B-2 shown in Fig. 4-4b) as the current searching cell.

4 Mark Edge A-B as a refined edge with local edge numbering in Cell

A-B-2-3.

5  Search the next neighboring cell (Cell A-B-3-4 through Cell Interface

A-B-3) which shares the common edge (Edge A-B) with Cell A-B-2-3

according to the cell neighboring-identifying array and finite element

connectivity.
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Assign the next neighboring cell as the current searching cell.

Repeat the similar process in Procedures 4-5 until the next neighboring cell

is the same as the initial searching cell defined in Procedure 1. For example,

as shown in Fig. 4-4¢, the neighboring cell of face i’ of Cell A-B-1-5 (the

same as the face ' of Cell A-B-1-2) is the Cell A-B-1-2, which is the

defined initial searching cell.

For cases in which this cell-by-cell searching process meets the physical

face boundary or IPB (Interior Processor Boundary), the other neighboring

cell (e.g., A-B-5-1 through Cell Interface A-B-1) of the initial searching cell

(Cell A-B-1-2) will be selected as the current searching cell. The algorithm

will repeat the similar process in Procedures 4-5 until another physical face

boundary or IPB is found in the process of identifying the cell group.

4-1-3 Cell-Quality Controls

In the process of adaptive mesh refinement, a refined mesh which has a larger

aspect ratio often appears in the final mesh distribution, especially in the “anisotropic”

cells. Most mesh-smoothing schemes tend to change the structure of a given mesh to

achieve the “smoothing effect” (a better aspect ratio) by rearranging the position of

the nodes in the mesh. Changes made by a smoothing scheme, however, could
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possibly modify the desired distribution of mesh density produced by the AMR

procedure. Additionally, the cost of performing a global mesh smoothing could be

high. Alternatively and in a simpler way, it is possible to prevent or slow down the

degradation of cell quality during a repeated adaptive refinement process. The present

cell-quality control scheme classifies the cells based on how they will be refined. This

allows us to avoid creating cells with large aspect ratios during the refinement. After

identifying those cells, we can then refine them with a better refining strategy.

The basic idea of the proposed mesh-refining scheme is to simply prevent the

further deterioration of cell quality while refining the cells that originate from

previously “anisotropic” cells. The proposed procedures of the cell-quality control

scheme are shown schematically in Fig. 4-5 [Jeng, 2004] along with the

corresponding procedures without cell-quality control. The logic looks quite

complicated at first glance; however, it is conceptually simple in reality. A general

rule of thumb is to identify if the hanging nodes occur at the “normal edge” or “short

edge” of the cell. Note that the “normal edge” is defined as one of the six edges of an

isotropic cell, while the “short edge” results from the bisection of a “normal edge” in

a previous level of refinement. If at least one of the hanging nodes occurs at the short

edge, special treatment such as that in Fig. 4-5 [Jeng, 2004] is required to prevent the

further deterioration of cell quality in later mesh refinement. Otherwise, the procedure
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in Fig. 4-3 [Wu, 2002] applies directly.

In the data structure, we need to record each previously refined cell with an index

showing if it is an “isotropic” cell or an “anisotropic” cell (two or four refined cells,

respectively). This can then be used for cell-quality control purposes as shown in Figs.

4-5a and 4-5b. The latter figures show the corresponding process of refining the cell if

the parent cell originates from an “anisotropic” cell due to two or four refined cells,

respectively.

For example, Fig4-6 shows a typical cell (1-2-3-4). Because it is affecting by

other cell, it has hanging nodes (8, 9, A). In order to handle hanging nodes, we

connect nodes (8, 9, A) to node 4. But the aspect ratios of typical cells (1-4-8-A,

5-4-8-9 and 7-4-9-A) will be worse. However, if we add three nodes (B, C and D),

and connect them with other nodes. Those eight child typical cells (4-B-C-D, 1-8-A-B,

5-8-9-D, 7-9-A-C, 8-9-A-B, 8-9-B-D, 9-A-B-C and 9-B-C-D) would have better

aspect ratios.

However, it often creates too many isotropic child cells, which tremendously

increases the computational load of the solver. For example, in the present

implementation as shown in Fig. 4-7, the original hanging node “8” is directly removed

by adding two additional nodes (A and B) to form four child cells, instead of two child

cells (1-4-8-7 and 5-4-8-7) from the parent cell 1-5-7-4. The present proposed
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cell-quality control scheme produces refined cells with a better aspect ratio as

compared to the “isotropic” refinement presented [Wu et. al., 2004]. So

cell-quality-control will allow this division and not to affect it. And, it would get

better aspect ratios.

If the boundaries of the computational domain are not straight, it is not sufficient

to place the new node in the midway of the edge of the face of the parent cell. If this

is done, it would dual to a rough piecewise representation of the original geometry

results. What must be done is to move the new node location onto the real boundary

contour surface. In the current implementation, it is assumed that the boundaries can

be represented in parametric format. Specific neighbor identifiers are assigned to

these non-straight boundary cells to distinguish from straight boundary cells.

Whenever the boundary cells, which require mesh refinement, are identified as a

non-straight boundary cell, the corresponding parametric function representing the

surface contour are called in for mesh refinement to locate the correct node positions

along the parametric surface.

4-1-4 Surface Cell Refinement

If the boundary surface of the computational domain is not planar, it is not

sufficient to place the added nodes directly on the edge (called “boundary edge”
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hereafter) of the parent-cell face that belongs to the boundary. Should the refined

nodes be placed directly on the boundary edges, this may result in the rough

piecewise representation of the original boundary surface. What must be done is to

move the position of the added nodes onto the real boundary contour surface. In the

present implementation, it is assumed that the boundary surface can be represented in

a parametric format (a second-order polynomial) in several segments specified by the

user. Special cell neighbor identifiers are assigned to these curved boundary cells to

distinguish them from straight boundary cells within the computational domain.

Whenever the boundary cell which requires refinement is identified as a curved

boundary cell, the corresponding parametric function representing the true surface

contour is called in to locate the correct node positions along the parametric surface.

4-1-5 Modules of Parallel Adaptive Mesh Refinement

All modules in the core of the PAMR are explained in detail as follows [Jeng,

2004]:

Module I. Add nodes on cell edges:

I-1. Add new nodes on all edges of “isotropic” cells that require refinement.

These cells are called “isotropic” cells since it is refined from one cell to

eight smaller cells.
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I-2.

I-3.

1-4.

Add new nodes to “anisotropic” cells, which may require further treatment

in the following steps, if hanging nodes exits in these cells... Note that these

cells are called “anisotropic” since they are not those cells originally require

“isotropic” mesh refinement.

Communicate the hanging-node data to corresponding neighboring

processors if the hanging nodes are located at the IPB (Interface Processor

Boundary). If hanging-node data are received from other processors in this

stage, then go back to Step I-2 for updating the node data. If there is no

hanging-node data received at this stage, then move on to the next step.l-4.

Remove hanging nodes based on refinement rules, if need to add new nodes

go to I-2. If all cells obey the rules without to affect them, it mean all new

nodes are be added.

Remove hanging nodes based on Hanging-node Removal rules. Go to Step

I-2 to add new nodes if some more nodes addition is required. If there is no

more node addition required, then ends this module execution.

Module Il. Renumber added nodes:

II-1. Add up the number of the new added nodes in each processor, excluding

those on the IPB.

II-2. Communicate this number to all processors. These are used to add up the
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total number of added nodes in the interior of all processors.

II-3. Renumber those added nodes in the interior of the processor according to

results from Step-11-2.

II-4. Communicate data of added nodes on IPBs among all processors.

I1-5. Renumber the added nodes on IPBs on all processors.

Module I11. Update connectivity data:

Form all new cells and define the new connectivity data for all cells.

Module 1V. Build neighbor identifier array:

VI-1. Reset the neighbor identifier array.

VI-2. Rebuild the neighbor identifier array for all the cells based on the new

connectivity data. Note that those nbr information on faces of the cells on

the IPBs are not rebuilt and require further treatment in the next step.

VI-3. Record the neighbor identifier arrays that are not built in Step-IV-2, which

the neighbor of the interested cell locates in the neighboring processor.

VI-4. Broadcast all the recorded data in Step-IV-3 to all processors.

VI-5. Build the nbr information on the IPBs, considering the overall

connectivity data structure.
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4-1-6 Procedures of Parallel Adaptive Mesh Refinement

Fig. 4-8 shows the proposed procedure of parallel mesh refinement for

unstructured tetrahedral mesh. Only the general procedure is described in this report,

while details of the parallel implementation can be found elsewhere [Lian et. al.,

2006]. Basically, the parallel mesh refinement procedure in Fig. 4-8 is similar to those

presented earlier for serial mesh refinement [Wu et. al., 2004]. In serial mesh

refinement, cells that require refinement are first identified and then refined

“isotropically” into eight child cells. The generated hanging nodes are then removed

following the procedure proposed in Wu et al. [2004] by further refining the cells

including these hanging nodes into two, four, or eight child cells.

The detailed procedures and related data structure for parallel mesh refinement

become much more complicated than those for serial mesh refinement, because

parallel computing uses domain decomposition. Domain decomposition is also used

in line with proposed parallelized of the Poisson-Boltzmann equation solver. Each

spatial subdomain belongs to a specific processor in practice. Overall procedure, as

shown in Fig. 4-8, can be summarized as follows:

1. Preprocess the input data at the host server and distribute them to all

Processors.
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2. Index those cells that require refinement based on the refinement criteria. In

the current study, a posteriori error estimator of the type proposed by

Zienkiewicz and Zhu [1987] for cell refinement is used.

3. Check if further mesh refinement is necessary. If yes, then proceed to the

next step. If no, then proceed to Step 9.

4. Add new nodes into those cells that required refinement.

4a.

4b.

4c.

4d.

Add new nodes onto all edges of isotropic cells.

Add new nodes into anisotropic cells that require further refinement as

decided in the following steps.

Communicate the hanging-node data to corresponding neighboring

processor if the hanging nodes are located at inter-processor boundary

(IPB).

Remove hanging nodes following the procedure as shown in Wu, et al.

[2004]. The basic idea is to remove hanging nodes for all kinds of

conditions and refine each indexed cell further into 2, 4, or 8 child

cells.

Unify the global node and cell numberings due to the newly added nodes

among all processors,

5a. Add up the number of newly added nodes in each processor, excluding
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those located at IPBs.
5b. Gather this number from all other processors and add them up to obtain
the updated total number of nodes, including old and new nodes, but
excluding the newly added nodes at IPBs.
5c. Build up the updated node-mapping and corresponding cell-mapping
arrays for those newly added nodes in the interior part of each subdomain
based on the results in Step 5b.
5d. Communicate data of newly added nodes at IPBs among all processors.
Se. Build up the node-mapping array for the received new nodes at IPBs in
each processor.
Build up new connectivity data for all cells due to the newly added nodes.
Build up the new neighbor-identifying array based on the new connectivity
data obtained in Step 6.
7a. Reset the neighbor-identifying array.
7b. Build up the neighbor-identifying arrays for all cells based on the new
connectivity data, excluding the data associated with the faces lying on the
IPBs that require the updated information of the global cell number, which
is not known at this stage.
7¢. Record all the neighbor-identifying arrays that are not rebuilt in Step 7b.
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7d. Broadcast all recorded data to all processors.
7e. Build up the neighbor-identifying arrays on the IPBs, considering the
overall connectivity data structure.
8. Decide if it reaches the preset maximum number of refinement. If it does,
then proceed to the next step; otherwise return to Step 3.
0. Synchronize all processors.

10. Host gathers all data and outputs the data.

4-2 Coupling of PAMR with Parallelized Poisson-Boltzmann Equation
Solver
4-2-1 A posteriori error estimator

An a posteriori error estimator of the type proposed by Zienkiewicz and Zhu
[1987] is used for estimating the error of the solution.

In the case of Poisson-Boltzmann Equation, the Finite Element solution E for
the electric field, which is, to within a sign, a gradient of electrostatic potential, is
compared with an alternative postprocessed recovered solution. The latter is called the
“exact” solution and will be designated E. To obtain E, a very simple gradient
recovery procedure based on averaging the nodal values of the Finite Element solution
E isused. The components of E are expressed via the same basic functions that were
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used for the electrostatic potential and are continuous.
In the case of the exact solution variables E and E must coincide. In general,
the error is defined as a deviation of one variable from the other. More precisely, the

global absolute error is defined by expression

5= {j[(ﬁx -E )’ +(E,-E,)" +(E, -]NEZ)Z]dxdydz} (4-1)

Q

The integral begin taken over the whole domain Q. This is simply a L*-norm of

the difference E —E . The global relative error ¢ is defined by

S

£= = o : (4-2)

é 1/2
{ (€8 Ef)dxdydz}
Q

Absolute error 6, ina particular element | is defined as in Equation (4-1) except

that the integral is taken over the element. The relation

N

5°=>06; (4-3)

i
i=1

must hold, where N is the total number of elements in the mesh.

The level of accuracy is determined by the prescribed global relative error &,

and the corresponding absolute error &, =&, the current mean

pre °

EH . Given o

absolute error J,, in an element can be calculated according to

. 1/2

52,17 [enlé)
5m = N = (4'4)

N

=z

The current number of elements would each have to have this value of absolute
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error to provide the prescribed level of accuracy, on the condition that absolute errors in
all the elements were the same. Those elements whose absolute errors exceed the
current mean absolute error J,, are chosen to be subjected to subdivision.

All mesh need some means to detect the requirement of local mesh refinement to
better capture the variations EDL fields and hence to obtain more accurate numerical
solutions. This also applies to parallel Poisson-Boltzmann solver. It is important for
the refinement parameters to detect a variety of EDL. In literature, there are many
criteria refinement. The simple criterion is the electric field usually to be adopted as
the refinement parameter. The electric field is the potential gradient. Beside, a
posteriori error estimator of the type proposed by Zienkiewicz and Zhu [1987] is
common criterion of refinement. A postprocessed recovered “exact” solution of the
electric field can be obtained from various gradient recovery schemes applied to the FE
solution of electric field. The FE solution of the electric field is then compared with this
“exact” solution of the electric field. A very simple gradient recovery scheme based on
the averaging of cell values, of the FE solution of the electric field is employed. In the

present study, a prescribed global relative error &, of 0.0003 is used to control the

level of accuracy.
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4-2-2 Parallelized Poisson-Boltzmann Equation Solver with PAMR

The PAMR presented in the previous section can be easily coupled to the current

parallel Poisson-Boltzmann equation solver since it uses 3D unstructured tetrahedral

mesh and MPI for data communication. The PAMR can therefore be easily packaged as

a library and inserted into the source code of any parallel numerical solver. However,

memory conflicts between the inserted library and the numerical solver itself may

occur and result in a reduction of the problem size that one can handle in practice. To

overcome this, a simple coupling procedure written in shell script (Fig. 4-9), which is

standard on all Unix-like systems, was prepared to link the PAMR and the current

parallel Poisson-Boltzmann equation solver. In doing so, we kept the application source

codes intact without making any changes to it. This is especially justified if only the

steady state of the physical problem is sought, in which normally only a few mesh

refinements are necessary for a fairly satisfactory resolution to the problem. Thus, the

total I/O time, in proportion to the number of couplings, in switching between two

codes can be reduced to a minimum in practical applications. In addition, as shown in

Fig. 4-9, after identifying those cells that require refinement, the domain is

repartitioned using PMETIS which balances the workload among the processors based

on the approximate final number of nodes in each processor as the weighting factor.
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4-3 Validation and Parallel Performance of PAMR
4-3-1 Validation of the PAMR

To test the PAMR using the PPBES, consider a test case with two free identical
charged spheres (radius=5), a sphere radius to pore radius ratio of A=0.416 and a
nondimensional separation distance of 0.5. A surface potential of ‘¥;=2.0 across the
spheres is used to demonstrate the advantage of applying adaptive mesh refinement.
Due to symmetry, only 1/16 of the whole domain is simulated. In the present study, a
posteriori error estimator of the type proposed by Zienkiewicz and Zhu [1987] and
implemented by Dyshlovenko [2001] for axisymmetric 2D Poisson-Boltzmann
equation is used for estimating the solution error during the mesh-refining process. A
postprocessed recovered “exact” solution of the electric field can be obtained from
various gradient recovery schemes applied to the FE solution of electric field. The FE
solution of the electric field is then compared with this “exact” solution of the electric
field. A very simple gradient recovery scheme based on the averaging of cell values,
instead of nodal values as used in Ref.[Zienkiewicz and Zhu, 1987], of the FE solution
of the electric field is employed. This is attributed to the fact that the electric field at the
nodes are discontinuous since we only utilize a linear shape function in the current
study, rather than a quadratic shape function as used in Ref.[Zienkiewicz and Zhu,

1987]. In the present study, a prescribed global relative error &, of 0.0003 is used to
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control the level of accuracy. The absolute error in each element is then compared with
the current average absolute error based on the &,, at each level to decide if
refinement is required. In addition, the method for calculating interaction force using
the potential distribution on the sphere surfaces is described in detail elsewhere, such as
Dyshlovenko [2001], and is skipped here for brevity.

Table 4-1 using first-order shape function and Table 4-2 using second-order
shape function summarize the evolution of the number of elements, the number of
nodes, and the computed force of interaction between two free spheres at different
refinement levels for first-order and second-order shape function. Note that the force
of interaction is obtained by integrating the simulated electric field at the spherical
surface as in previous studies [Dyshlovenko, 2001]. In Table 4-1 (the first-order shape
function), The resulting number of nodes increased from an initial of 924 to a final
(level-5) of 36,316; while the strength of the interaction force increased from an initial
value 0f 20.9924 to a final value (level-5) of 48.4012, which is very close to the value of
48.8360 obtained by Dyshlovenko [2001] using an axisymmetric code. However, when
we use the second-order shape function (Table 4-2), a value of final mesh level
(level-6) of 48.8242, which is very close to the value of 48.8360 obtained by
Dyshlovenko [2001], there are only difference 0.04%. Fig. 4-10a and Fig. 4-10b
show the corresponding surface mesh distribution for first-order shape function at the
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initial and final (level-5) refinement levels, respectively. The mesh quality does not

deteriorate much after five levels of refinement using the present PAMR. All the

simulations shown in later sections apply this adaptive mesh-refining technique, unless

otherwise specified.

4-3-2 Parallel Performance of the PAMR

The parallel performance of the PAMR is studied using a refined mesh generated
during the process of AMR (after 3 AMRs) using the DSMC method. Before the
fourth PAMR, the original mesh (level-3) has 1,070,194 tetrahedral cells and 187,649
nodes (Fig. 4-11a), while after the fourth PAMR, the amount increases to 2,701,178
cells and 468,944 nodes (Fig. 4-11b). A test using this fairly large size of mesh lies

mainly on the fact that the current PAMR is designed to handle a large mesh size.

Resulting timings (in seconds) for different components of the PAMR using
different numbers of processors (up to 64), respectively, are listed in Table 4-3 and Fig
4-12. Tt is clearly shown that the timing for the preprocessing module increases
slightly with the increasing number of processors, although the increase seems to
level off as the processor number > 32. This mild increase can be attributed to the
initial data distribution from the host processor to the increasing number of slave
processors. The advantages of the parallel implementation of mesh refinement can be
clearly seen from modules I, II, and IV, of which the timings reduce dramatically with
the increasing number of processors. For example, as the number of processors
increases from 2 to 32, the timing for module I, II, and IV reduces to approximately

61.4, 95.9, and 9.3 times, respectively, while it increases to 2.4 times for module III.
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The corresponding overall computational time decreases 29.7 times (from 1103s to
37.1s). Nevertheless, the timing levels off as the number of processors increases up to
64 due to the increase of communication among processors. In addition, the total
computational time decreases even more to 62 times (from 1090.5s to 17.6s) if the
preprocessing time is excluded. From our experience, reading the grid data (Section
4-1-6 Procedures of PAMR, Step 1) takes most of the time in the preprocessing
module. Thus, the preprocessing time can be greatly reduced if the parallel processing
of Step 1 is implemented, although we have not done so in the present study. The
resulting increase of computational speed, excluding the preprocessing, is

approximately scaled as N'° for N___ <32 which is surprisingly good. This high

proc
speedup is obviously due to the dramatic decrease of the time spent in Module II,
which is the most time-consuming part of the mesh-refining algorithm. The reasons
for this rapid decrease of processing time in Module II (Section 4-1-6 Procedures of
PAMR, Steps 5a-5e) include a possible cache miss of the superscalar machine due to
the large problem size and a highly localized algorithm in renumbering the added
nodes, except in Steps 5b and 5d which require moderate communication among

processors.

4-4 Application to a Realistic Three-dimensional Problem

A completed parallelized Poisson-Boltzmann equation solver with parallel adaptive
mesh refinement using a posteriori error estimator is used to compute the force of
interaction between two identical charged spheres (radius a=0.325um, xa=1.185, and

surface potential ‘¥;=3.0) near a charged infinite flat plate (surface potential ‘¥,=5.0)

as shown schematically in Fig. 4-13. Note that this is a well-known case that was
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experimentally studied previously [Larsen and Grier, 1997]. Distance h from the flat
plate to the sphere centers are fixed at 2.5um ( Ey =0.13), while the separation distance
r between the spheres are varied to study its influence on the interaction force F. This
example only serves to demonstrate the capability of the present parallelized
Poisson-Boltzmann equation solver using FEM with PAMR in predicting the
electrostatic potential distribution with three-dimensional complicated geometries. No
thorough physical interpretation or parametric study was explored in the current study,
but these are of course worthy of further investigation.

Fig. 4-14a and Fig. 4-14b, illustrate the typical initial and final (level-6) surface
mesh distributions (h=2.5um, r=3um), respectively, while Table 4-4 summarizes the
corresponding evolution of the interaction force between the spheres, along with the
number of nodes and elements for first-order shape function. The resulting number of
nodes increases from ~0.016 to ~0.186 million for this typical case, while the force of
interaction increases from 5.432e-16 Newton to 8.325¢-15 Newton, which is very close
to the experimental measurement [Larsen and Grier, 1997]. Fig. 4-15a and Fig. 4-15b
illustrate the distribution of electrostatic potential around the charged sphere for
h=2.5um (Ey =0.13) and h=9.5um (ah =0.03421), respectively, and also show the
complicated interaction between the two spheres when the flat plate is near the spheres
(r=3.0pm).
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Besides, Table 4-5 and Table 4-6 summarize the corresponding evolution of the

interaction force between the spheres, along with the number of nodes and elements for

the first-order and the second-order shape function (h=2.5um, r=4.5um).

Finally, Fig. 4-16 presents the computed force of interaction as a function of

distance r at h=2.5um, along with fitted experimental measurements by Larsen and

Grier [1997] show that the results of using the first-order and second-order shape

function. Note that the experimental fitting of the interactive force is obtained by taking

the derivative of the fitted measured potential data. Computational results agree well

with the experimental data within experimental uncertainties. In particular, the

attractive force (negative F) at some range of separation distance r was predicted

successfully, which to the best of the authors” knowledge has never been reproduced by

solving directly the Poisson-Boltzmann equation in the literature, although one

simulation report using Brownian dynamics simulations [Squires and Brenner, 2000]

does exist.

69



Chapter 5 Concluding Remarks

5-1 Summary

In this thesis, a parallelized 3-D nonlinear Poisson-Boltzmann equation solver
(PPBES) using finite element method (FEM) with parallel adaptive mesh refinement
(PAMR) is completed and verified. The results of research are described as follows.

In the first phase, the parallelized 3-D nonlinear Poisson-Boltzmann equation
solver is completed using Galerkin finite element method with unstructured
tetrahedral mesh. Major findings of this phase are summarized as:

1. Interpolation within a typical element includes the first-order and
second-order shape functions. The second-order shape function performs
much better than the first-order shape function in solution accuracy for
comparable runtime and memory.

2. Inexact Newton iterative scheme is very effective for convergence of
PPBES within 3-5 iterative steps depending upon the initial guess.

3. The Jacobian matrix for Newton iterative scheme is simplified as a diagonal
matrix using nodal quadrature for the integration of the source term, which
both reduces the computational load of the Jacobian matrix and simplifies
the parallel implementation.

4. Completed PPBES is validated using several quasi-2-D cases by comparing
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excellently either with previous analytical, approximate or numerical
solutions.

5. The parallel performance is studied on a HP PC-cluster system at NCHC
using close to 0.1 million nodes and 0.61 million elements. Results show
that 76.2% of parallel efficiency can be reached at processors of 32, which
can greatly reduce the runtime for realistic 3-D applications.

In the second phase, an h-refinement based PAMR scheme for an unstructured
tetrahedral mesh using dynamic domain decomposition on a memory-distributed
machine is developed and tested in detail. Then, the coupled PPBES-PAMR code
using a posteriori error estimator is used to simulate a realistic three-dimensional
problem. Major findings in this phase are summarized as:

1. PAMR procedures include isotropic refinement from one parent cell into
eight child cells and then followed by anisotropic refinement, which can
effectively remove the hanging nodes, with a simple mesh-quality control
scheme.

2. Parallel performance of this PAMR is studied on a PC-cluster system up to

64 processors using approximately one million tetrahedral cells. Results

show that the parallel speedup scales approximately as N'” for N ___ <32

proc —
which is surprisingly good, where N is the number of processors.
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3. Completed PAMR code using the PPBES is used to simulate two

like-charged spheres in a cylindrical pore. Results show that PAMR can

systematically increase the solution accuracy of the PPBES. The value of

final mesh level of 48.4012 using the first-order shape function, which is

very close to the value of 48.8360 obtained by Dyshlovenko [2002] using an

axisymmetric code. However, as we use the second-order shape function, a

value of 48.8242 using the final refined mesh is obtained which is only

0.04% with previous numerical value with Dyshlovenko [2002] using a 2-D

axisymmetric PB equation solver.

4. Finally, the coupled PPBES-PAMR code is used to simulate the interactive

force between two like-charged spheres near a same charged planar wall.

Results are in excellent agreement with experimental data considering the

experimental uncertainties, which is the first simulation in the literature to

the best knowledge of the author.

In the present study, we have completed a coupled PPBES-PAMR code that is

very accurate and efficient for future simulations of realistic problems in colloidal

systems.
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5-2 Recommendations for Future Work

Based on the study in this thesis, recommendations for future work are

summarized as follows:

1. To improve the efficiency of the parallel matrix solver by using a robust

preconditioning technique such as additive Swartz method.

2. To extend the PPBES into a code that can handle hybrid mesh. We have

developed a code of hybrid mesh (using the first-order and the second-order

shape function) for single CPU. Figure 5-1 shows the potential profiles that

compare the code of tetrahedral mesh with code of hybrid mesh of

collapsed nodes which the maximum inaccuracy 0.2%. The test case is the

distribution of potential around the charged spheres near a like-charged plate

for mesh of level 0. The code could be developed as the parallel version

coupled with PAMR in the future. It will improve the solution of accuracy

after refinement. For more information, discuss the related skills in

Appendix B.

3. To utilize the completed coupled PPBES-PAMR code to simulate particle

interaction in several important colloidal related problems. These results can

provide important information to researches in bio-chemistry related field.
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Newton iterations: the convergence criterion ( &, =107

(have a good initial guess)

CG convergence

o CG=10e-7 CG=10e-6 CG=10e-5 CG=10e-4
criterion
CG Loop Iterations
. ~1300 ~1140 ~920 ~870
per Newton Iteration
Newton Loop
. 3 3 3 9
Iterations
Initial Residual 1.19E-02 1.19E-02 1.19E-02 1.19E-02
Total Time(sec) 301.57 285.366 267.238 412.12
(a)
Newton iterations: the convergence criterion ( &, =107)
(all zeros are used as the initial estimate)
CG convergence
o CG=10e-7 CG=10e-6 CG=10e-5 CG=10e-4
criterion
CG Loop Iterations
. ~1300 ~1140 ~920 ~870
per Newton Iteration
Newton Loop
. 5 5 5 15
Iterations
Initial Residual 8.68E-01 8.68E-01 8.68E-01 8.68E-01
Total Time(sec) 394.32 375.093 350.493 548.455
(b)

Table 3-1 The CG Solver and Newton Iteration for have a good initial guess and all
zeros are used as the initial estimate. (CPU=6; 81,354 nodes; 458,064

elements).
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Source Debye-Huckel Tuinier

(2]
ln(l +1, exp(— x)]

1-t, exp(— X)

t, = tanh(ﬂ]
4

Table 3-2 Analytical and approximate solutions for the simulation of the potential

Equation
q ‘I’o(

distribution around a charged sphere.
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1CPU 2CPU 4CPU 8CPU 16CPU 32CPU
Total time 2486.63| 1681.31 744.86 341.96 161.01 102.19
CG time 1243.33 857.46 387.93 181.24 86.94 56.20
Setup matrix
i 220.37 143.45 67.33 34.56 20.23 12.95
time
Impose BC
) 8.32E-2| 3.32E-2| 8.43E-3 4.73E-3 2.42E-3 1.23E-3
time
Setup Shape
Function. 0.42 0.23| 7.32E-2 4.31E-2 2.68E-2 8.52E-3
time
Index FEM
] --—-| 6.14E-2| 2.35E-2 2.34E-2 4.41E-2 6.41E-3
time
Send/Receive
] - 14.24 15.43 16.32 16.54 17.53
time
All reduce
] -—- 3.03 6.56 6.94 8.52 11.33
time
Others time 1022.41 662.81 267.43 102.82 28.71 4.16

Table 3-3 The time breakdown (in seconds) for various components of the parallelized

Poisson-Boltzmann equations solver (electrostatic potential distribution

around a charged sphere within a cylindrical pore; 106,390 nodes; 612,107

elements). Note: Others time including calculates relative residual and

Jocobian of Newton method, initial CG and so on.
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Mesh Number of nodes | Number of elements
0 16,280 79,535
1 51,179 268,098
2 129,563 689,468
3 161,153 861,987
4 176,345 953,214

Table 3-4 The test mesh of number of nodes and elements for the second-order shape

function.
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First-order Second-order
Number of elements 634,603 79,535
Number of nodes 119,253 118,522 (init. 16,280)
Newton Iteration 5 5
CG Iteration 725 720
Total time (sec) 90.74 88.35
Table 3-5 Comparison of the first-order with the second-order shape function
(CPU=06).
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Force of ]
Number of | Number of ) Relative
Level Interaction
Nodes Elements . . Inaccuracy (%)
(dimensionless)

0 924 3,821 20.9924 57.01%
1 3,333 15,810 34.6516 29.05%
2 19,171 101,644 40.4868 17.10%
3 32,103 169,825 45.1229 7.61%
4 36,149 192,478 47.0891 3.58%
5 36,316 193,368 48.4012 0.89%
6 |

Table 4-1 Evolution of adaptive mesh refinement for computing force of interaction
between two free charged spheres (radius=5, A=0.416, for a posteriori error
estimator, CPU#6) use the first-order element.

Note: the force of interaction of finial mesh level of previously literature
[Dyshlovenko, 2002] is 48.840.
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Force of )
Number of Number of ) ] Relative
Level interaction
nodes elements . . Inaccuracy (%)
(dimensionless)

0 924 3,821 28.3253 42.00%
1 3,245 14,867 40.1516 17.79%
2 18,366 98,253 45.3568 7.13%
3 24,626 135,443 48.0247 1.67%
4 27,492 158,463 48.5845 0.52%
5 28,012 159,359 48.8090 0.06%
6 28,095 159,403 48.8242 0.04%
7 0 e e

Table 4-2 Evolution of adaptive mesh refinement for computing force of interaction

between two free charged spheres (radius=5, 1=0.416, ¢, =0.0003 fora

posteriori error estimator, CPU#6) use the second-order shape function.
Note: the force of interaction of finial mesh level of previously literature
[Dyshlovenko, 2002] is 48.840.
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Processor NO. 2 4 8 16 32 64
Preprocessing 12.5 13.5 14.4 15.4 19.5 18.2
I 92.1 24.8 6.2 2.0 1.5 24

I 977.9 267.4 68.5 23.2 10.2 9.9

I 0.9 1.8 2.0 33 3.8 6.9

v 19.5 9.7 54 29 2.1 24
Total time 1103.0 | 317.2 96.5 46.7 37.1 39.8

I.  Add nodes on cell edges
II. Renumber added nodes
III. Update connectivity data

IV. Build neighbor identifier array

Original mesh: 1,070,194 cells and 187,649 nodes.

Next refined mesh: 2,701,178 cells and 468,944 nodes.

Table 4-3 Timing (seconds) of PAMR module for different processor numbers.
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Level Number of nodes | Number of elements Force
(Newtons)
0 16,280 79,535 5.432¢-16
1 51,179 268,098 3.422¢-16
2 129,563 689,468 1.343¢-16
3 161,153 861,987 9.433¢-15
4 176,345 953,214 8.942¢-15
5 185,688 1,014,692 8.411e-15
6 185,697 1,014,730 8.325e-15

Table 4-4 Evolution of force interaction between two identical charged spheres near a
like-charged flat plate (h=2.5um, r=3um, a=0.325um and spheres ¥,=3.0,
flat plate ¥, =5.0).
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Level Number of nodes | Number of elements Foree
(Newtons)
0 17,058 83,588 -8.433e-15
1 52,549 275,534 -4.645¢-15
2 131,067 698,093 -1.343e-15
3 161,345 872,534 -9.842¢-16
4 177,269 963,419 -7.739¢-16
5 184,564 1,019,692 -6.178e-16
6 184,611 1,020,243 -5.491e-16

Table 4-5 Force of interaction with different refinement level mesh in the simulation
of two identical charged spheres near a charged flat plate (h=2.5, r=4.5,
a=0.325) for the first-order element.
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Level Number of nodes Number of Foree
elements (Newtons)
0 17,058 83,588 -4.681e-15
1 39,150 200,756 -9.563¢-16
2 94,365 485,608 -7.972¢-16
3 101,803 539,542 -7.319¢-16
4 102,433 541,478 -6.931e-16
5 102,445 541,503 -6.817e-16
6 — — —

Table 4-6 Force of interaction with different refinement level mesh in the simulation of
two identical charged spheres near a charged flat plate (h=2.5, r=4.5,
a=0.325) for the second-order shape function.
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Fig.
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1-1 Electrostatic potential near a positively charged colloidal particle.
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Fig. 1-2 The illustration of colloidal particle.
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Fig. 1-3 The Electric Double Layer distribution.
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Original mesh A uniform
p-refinement

Fig. 1-4 p-refinement.
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Original mesh A possible
r-refinement

Fig. 1-5 r-refinement.
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Fig. 1-6 h-refinement.
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Fig. 2-1 Three-dimensional tetrahedral element and face.
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Fig. 2-2 Interpolation functions of ten variable-number-nodes three-dimensional

tetrahedral element.
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Fig. 2-3 Traditional shared memory multiprocessor model.
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Fig. 2-4 Distributed memory multiprocessor architecture.
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Fig. 2-5 PC cluster at MuST.
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Fig. 2-7 The flow chart of parallel Poisson-Boltzmann equation solver.
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Fig. 3-2 Comparison of potential distributions around a charged sphere (a) surface

potential ¥ ;=1.0 (b) surface potential ‘¥,=5.0 (18,253 nodes; 96,638

elements).
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Fig. 3-3 The potential distribution for the sphere confined in a pore at separation

distance r=6.
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Fig. 3-4 Potential along midplane between two spheres (r=6).
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Fig. 3-5 The parallel speedup for the parallelized Poisson-Boltzmann equation solver

for simulating the potential distribution around a charged sphere

(radius=5, ¥, =2.0) within a cylindrical pore (106,390 nodes; 612,107

elements).
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(a)



(b)

Fig. 3-6 The distribution of potential around the charged spheres (radius a=0.325um)

near a like-charged plate (h = 2.5um) at level-0 for solutions of (a) the

first-order element (b) the second-order shape function.
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Fig. 3-7 The profiles of different mesh levels of the first-order element and the

second-order shape function. the distribution of potential around the

charged spheres (radius a=0.325um) near a like-charged plate (distance h =

2.5um).
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Fig. 4-1 Isotropic mesh refinement of tetrahedral mesh (T: Tetrahedron).
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Fig. 4-2 Mesh refinement rules for two-dimensional triangular cell.
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Common Edge A-B is shared by the following five cells:

A-B-1-2, A-B-2-3, A-B-3-4, A-B-4-5, A-B-5-1

(a)

®

(b) (c)

Fig. 4-4 Example of the common edge shared by the neighboring cells.
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Fig. 4-5 Schematic diagram of the proposed cell quality control.
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With cell quality control

Fig. 4-6 Schematic diagram of typical cell quality control.
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Fig. 4-7 A case that the proposed cell-quality-control would not affect to it.
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Fig. 4-8 Flow chart of parallel mesh refinement module.
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Fig. 4-13 Sketch of two identical charged spheres near a charged infinite flat plate.
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Fig. 4-15 The distribution of potential around the charged spheres (radius a=0.325um)

near a like-charged plate for (a) h =2.5um( & h= 0.13) (b)

h=9.5um( 8/ =0.03421).
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Appendix A Diagonalization of the Jacobian Using

Nodal Quadrature

The deductive method of this appendix is provided by Prof. Hwang [web site,
http://www.math.ncu.edu.tw/~hwangf/].

In finite element spaces, assume T" = {K} is a given unstructured mesh with a
diameter h_. Let W] c H;(Q) be a trilinear finite element space for the electrical
potential v :

WD =y e (CUQNHIQ) vk eQ(K) KeT") (A-1)
which is served as the weighting and trial function space. Here C°(Q) the space
consisting of all continuous functions defined on Q.
Then we can write the finite-dimensional variational formulation as:

Find y" ¥ such that

ay",o)+(f(y").p)=0 Voe¥, (A-2)

Nep
After substituting " :Z BN, and ¢=N, into Galekin formulation, we

I1=1

obtain a system of equation, F(x)=0 , where F=(f,f,,---,f.)" and

> " Nen

X:(ﬂlaﬂza””ﬂNen)T with

Nep Nep
fi(x):a(ZﬂlNI’Ni)+(f(ZﬂINI)aNi)
1=1 1=1

:AKa(Z/B| ﬁlﬂﬁi)k +AK(f(ZﬂI N,), l\Nli)k (A-3)
1=1 1=1

Next, we use the numerical integration of nodal quadrature.
139



N int

(f O BN).N)),
I=1

= zwmf(Zﬂl NI(gmﬂﬁm’gm))NNi(gm’ﬁm>§m)j(gm’ﬁm’§m)
m=1 I1=1

(A-4)
Since I\Nli(gj,ﬁj,g’j):éij,wehave
N int Nen A~ A~
ZWmf(Zﬂlé‘lm)é‘imJ(é:manmagm):Wif(ﬂi)](ﬁmanmagm) (A_S)
m=1 1=1

For example, 2 x 2 x 2 nodal rules in three dimensions. N, =8, quadrature

points:

E=—1,&=1,&=1,&=-1, &=-1, E =1, & =1, & =-1,

~

771:_1 ) 772:_15 773:15 774:15 775_

-1, 7,=-1, 7, =1, 17, =1 and
4/1:1, §2=1a 4,3:15 §4=1’ 55:—1’ 5{):_1’ 57:_1’ 58:_1

weights W, =1.

Then, we wish to solve

fl(Xl,X2)20 (A-6)
fz(Xl,X2)=O

f, and f, are nonlinear function of X;, X,.Applying Taylor’s expansion in

two variables around ( X, X, ) to obtain:

0=f (x,+h,x +h)~ fl(xl,x2)+h16—f1+h o,

X X, (A7)
0= f,(x,+h,Xx +h,)= fz(xl,x2)+h1%+ hZSfTZ
1 2

Putting Equation (A-7) into the matrix form
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o,
0 _ fi (X, %) n OX,  OX, h, (A-8)
0 fo (X, %,) % % h,

oX, OX,

To simplify the notation we introduce the Jacobian matrix

o oy
1 OX, OX, i
Tl o "
oX, OX,
Then we have
0 f (XX h
|:i|=|: 1(1 2)i|+\] |: 1i| (A-IO)
0] [F(X:%) h,
If J is nonsingular then there exists J™', so we can solve for [h,,h,]".
h f (X, X
M) e i
h2 f2(xl’x2)

For Newton’s method
X1(k+1) _ Xl(k) hl(k)

|:X§k+1) - ng) + h;k) (A-12)

With
(k) ® (0
J hl(k) = — fl(xl(k)’XZ(k)) (A-13)
h2 fZ(Xl ’X2 )

In general, we can use Newton’s method for F(x)=0, where

X=(B,Bys B,) and F=(f, f,,.., f )" .Forhigher dimensional function, the

first derivative is defined as a matrix
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of,  of, of, |
o o,
of, of, of,
F(O)=|ox, ox,  ox, (A-14)
of, of,  of,
| 0%, OX, oX, |

Then, calculation of Jacobian for the PB equation, write the Jacobian matrices

corresponding to in the form of J=J"+J", where J" = (Ji;q )= Z(JijN ) » with
k

nodal quadrature

ot () e
LW (BT (ELTLE) .
(Ji;\l)kz aﬂ] i (ﬂl)](§| n é,)’ |=J (A-IS)
0 , 1#]
We consider the Jacobian system
J(x™)s™ = —F(x™) (A-16)

Taking the full Newton step, i.e. s =x"" —x™ to yield
0=F(x™)+x" =x")J(x"™) (A-17)
or
J(x™)x™ = J(x™)x™ —F(x™) (A-18)
Since J(x™)=J"+I"(x™) and F(x™)=J"x" -G(x™), we have
A +IVNXYxM = A+ IV XM PX® (X +G(x)) (A-19)
Or
A+ INX™HYx™ = (AN (x™))x™ - G(x™) (A-20)
Then the new approximation U **" can be computed through
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ARY & = U™, (A-21)
where A% =" +I"x™)) and BU ) =A"x™)H)x™ -G(x*¥). In our
implementation, the non-zero entries of A® are stored in the compressed sparse row
(CSR) format that is computationally efficient both in terms of storage and matrix

operations.
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Appendix B Three-dimensional Hybrid Mesh

B-1 Hybrid Mesh

Through tetrahedron element are used for many simulations. In some cases the
use of pyramid, wedge or hexahedral elements may be attractive. A nature way of
generating tetrahedron element appears to be to simple distort the basic hexahedral
element into the required collapsing form. This is achieved in practice by assigning
the same global node to four corner nodes of element which from hexahedral element
to pyramid element. If we collapse another node to two corner nodes of element
further. This element will be a tetrahedron element from pyramid element, shown in

Figure B-1.

B-2 Shape Function of Hexahedral Element
The simplest element in this family is the eight-node trilinear hexahedron, or
brick, show in Figure B-2.
The interpolation function is
=, +ta,X+ay+a,Z+a,Xy+a Xt +a,Y7+ o Xyz (B-1)
Equation (B-1) can be expressed in matrix form as

#

LoX Yy, 20 XY, Xz, Yz, X\VYZ |
=l : : : : : : : (B-2)
78 IoXg Yo Zg XYoo XeZg  YeZg  XgYsZg || g
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Since a =C~'¢, we can find the values for ¢ from the expression
p=[1 Xy z Xy xz yz xyz]C™'¢ (B-3)
from which the shape functions are obtained as before:
N=[1xYyzxyxzyzxyzlC” (B-4)
The shape functions are defined as

N, (&, p) =5(1=E)A-m(1-p)
N, (&7, p) =1+ A -1~ p)
N, (&7, p) =51+ A+ n)(1 - p)
N, (&, p)=5(1=E)A+m)(1-p)
N (&7, p) =5 (1=E)A-m)(1+ p)
N (8.7, p) =5 (1+5)A-m)1+ p)
N, (&.n,p) =51+ 51 +m)(1+ p)
N (8.7, p) =5 1=5)A+7)1+ p)

(B-5)

or N;(&,nm,p) :§(1+§§i)(1 +nn)d+pp). &, 1 and p; are +1 or -1, depend
on the direction of the node on the local coordinate.

In an element, the differential shape function with £, n or p is the same as

other elements. The Jacobian is given by

Xl Yl Zl

[oN, oN, oN, oN, N, oN, oN, oN ] %z V2 %

o8 o0& o0& o0& o0& o0& o oc % Ho 4
| N AN AN AN, AN AN, AN, N | X, Y Zy
on on oOn oOn oOn oOn on on || X5 Y5 Z

oN, N, oN, N, N, N, N, oNg|x vy 7.
 Op Op Op Op Op Op Op Op | X, Y, Z,
_x8 Y8 ZS_
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1—(1—77)(1—/0) +(1=ml=-p) +1A+md-p) —A+ml-p) ,
=3 —(1=9)1-p) —(A+)1=p) +(A+5)A-p) +(1A=5)1-p)

-(1=-5HA-n) -1+HA-n) -A+EHA+n) -1-HA+n) ,
—1-md+p) +A-mU+p) +A+md+p) —A+m)d+p)
—(1-91+p) —A+5HA+p) +A+EHA+p) +(1-E)(1+p)
+(1=-9HA-n) +A+5HA-n) +A+HUA+n) +(1A-5A+n)

X1 4
Xy Y2 2y
X3 Y3 Z3
Xg Y4 24
Xs Y5 Zs
X6 Y6 Z¢
Xy Yq Z4
Xg Yg Zg
(LN X ZglaN ZglaNiZ_
.155':55'.155'
1< 8 ON 1
=— L7, |=—|C B-6
e ;a,, e w0
L i=l ,0 =1 i=1 8,0 A
and |det[J ]| = 8L3|C| . The transpose is
8 8
%xi Z%x ZﬁN'X
i 05 o on o Op
8
[J]T :l ZGN'Y zaN,Yi ZaNiYi (B-7)
8| o ¢ o On o Op
SN, SN, N,
| i 0¢ I o on I i Op I

The adjoint is
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8 ON. & ON. 8. ON 8 ON.
+Q i) —Z - ——Z ) —Y) .,
;877 Z‘ 0 Zl n ;@0
8 8 8 8
adi(0) =1~ Tex, > Tz, -y Tz y Moy,
o on o Op -1 on o Op
8 ON. 8 ON. 8 ON. . < ON.
+( - X, -Y, - -, -Xi)
L le on Z; op Z on 30
8 8 8 8
_(Z%Yiz%zl_Z&zl %Yi) ,
8|:1 o0& i;l % i;l o0& |§1 op
+(z%xi2%zl_2%zi %xi) ,
i=81 o4 i=81 % i;l o0& |8=1 op
ON. ON. ON. ON.
_(Z_IXiZ_IYi_z_IYi _Ixi) >
i 0¢ i=1 0P o 05 30
8 ON. & ON. 8 ON. 8 ON.
+Q i L L2
; o¢ g‘ on g‘ 0¢ g‘ on
0N, S, ON, 5, ON, 5, ON,
S Rxy Mg S Mg My,
i=1 § i=1 677 i=1 6§ i=1 877
2, 0N, 3, 0N, 80N , < 0N, )
+(Z 5 Xi. TYi _Z(TYiZa_Xi) (B-8)
i=l i=1 77 i=1 i=1 77 _
The inverse is
[J ]—1 — adj ([J ]) (B-9)
det([J))
Hence,
[N, (£,7,0) ] N (7. 0) ]
oX I & W)+ pp,)]
N, (&1, p) L1ONE ) |1 adj([3)
— =37 | = |=— 1+ 1+ B-10
~ o], 5 Taa| =050 p0) | B10)
N, (&,7,p) N, (£, p) _pk(1+§§k)(1+7777k)_
L oz J | op |

We use the results of differential shape function with X or Y in substitution for the

one of Poisson equation.

»» [

Ny Nig )

Ny N\
oX X

oY oY

ON,, ON,,
oL 0oL

)}aj dxdydz (B-11)
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Finally, we use the Gauss points and weights to perform the numerical

integration.

B-3 The Second-Order shape function

Extension of the 8-noded quadratic element to the 20-noded quadratic
hexahedron can be easily made by adding a mid-side node to each edge of the element.
The 3D quadratic hexahedron is shown in Fig B-3.

We can use the same as processes to degenerate the three-dimensional
hexahedron element of 20-noded to wedge, pyramid, tetrahedral mesh shown in Fig

B-4. There are 27 Gauss points to perform the numerical integration.
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Nodes 5 and 8

Nodes 1 Nodes 1, 2, 3, and 4

Nodes 5 and 8 Nodes 5 and 8

Fig. B-1 Degenerate forms of 8-node three-dimensional element
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Fig. B-2 the eight-node trilinear hexahedron element
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Fig. B-3 The 3D quadratic hexahedron
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Fig. B-4 Degenerate forms of 20-node three-dimensional element
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Appendix C First-order Shape Function of Tetrahedron

Element

Four coordinates L,, L,, L, and L, will be used to define a point P, although

only three of them are independent. There natural coordinates are defined as

Vla L2=V29 L3=V_3 and L4=\£ (C_l)

L, =L 2z
v v v v

where V, is the volume of the tetrahedron formed by the point P and the vertices
other than vertex i, and V is the volume of tetrahedron element defined by vertices 1,
2, 3 and 4 (Fig. C-1). The volume of tetrahedron element by the point P are defined as
V, =Volume of P234, V, =Volume of P134,
V, =Volume of P124 and V, =Volume of P123 (C-2)

Because the natural coordinates are defined in terms of volumes, they are also

4
known as volume or tetrahedral coordinates. Since ZVi =V , we obtain
=

\L+V—2+V—3+V—4=LI+L2+L3+L4=1 (C-3)
V. V V

The volume coordinates L, are also the shape functions for a three dimensional
simplex element.
The Cartesian and natural coordinates are related as
X=LX +L,X, +L;X; +L,X,
y=Ly, +Ly,+Ly,+Ly, (C-4)

z=L,z,+L,z,+L,z, +L,z,

Equation (C-3) and (C-4) can be expressed in matrix form as
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1 1 1 1 1]|L
XI_|% X X X L, (C-5)
Y [ Y2 Vs Ve L
z z, 1, 1, 7,|L,
The inverse relations can be expressed as
L, a b c d |1
L, _ 1|y b, ¢, d,|Xx (C-6)
L,| 6V|a; by ¢, dyfy
L, a, b, ¢, d,|z
where
X2 y2 22 1 y2 Z2 XZ 1 ZZ X2 yZ 1
a =X Yy z), by=—l y; 7z, ¢;=—x; 1 zy| and d;=—x; y; 1
X, Y Z 1 Y, Z4 Xy 1 Z, Xy Y, 1

Other constants are obtained through a cyclic permutation of subscripts 1, 2, 3

and 4.
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Fig. C-1 Volume coordinates for a tetrahedron element.
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Appendix D Second-order Shape Function of

Tetrahedron Element

In this appendix, we provided some implementation of the matrix of coefficients
for the second-order shape function of tetrahedron element.

The volume integrals can be easily evaluated from the relation

alb! c!d!
(B3+a+b+c+d)!

LL’;‘L';Lngdv= (D-1)

We can use the equation to develop the volume integral, then
[(2bX) =3V -b’ +2a’h +2b’c’y+2bd z]i

Vi =——1 +[(2¢,>y) 3V -¢; +2ac, +2bc/y+2¢d, 7]
+[(2d}?2)=3V -d +2a/d +2b'd y +2c d Y]k

bl*[—% +2Li (D-2)

* 1 !
= e+ 2L

+d1*[—%+2L1]_K

m?+c?+d?x—;+2uf

Vo Vh = % (D-4)

(b7 +c?+d?) 1
G 9;2 ! (4Lf—2L1+Z)

(b”+c”+d?) 3
9v 20

[[[V# -V 4 dxdydz = (D-5)
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For i+ j,i,j<4,

(b'bj +c/c; +di*d}‘)(—;+2Li )(—;+2LJ—)

Vo -Vo. =
%oVe; 9v? (D-6)
(b'b; +c/ct+d’d)) 1
= ! 9v; ! (4LiLj—Li—Lj+Z)
[[[V4, v, dxdydz = (bbj +ci¢; +d;d;) -1 (D-7)
B 9v 20
2 1 * * * * * *
V-V 297(_5+2L1)(b1 (bl L, +b2 L)+c (¢ L, +c,L)
+d,;(dL, +d;L,)) (D-8)
2 1 * * * ok * * * * *
=0y —§+2Ll)(Ll(b1 b, +c/c, +d; d))+ L, (b7 +c¢;” +d,?))
then, to use the equation to develop the volume integral.
2 1 * * * * * *
V-V, ZW(_E+2L1)(b1 (b,L; +b;L,) +¢, (c,L; +¢5L,)
+d; (d,L; +d;L,))
(D-9)

2 * * * * * * * * * * * *
:97(2L1L2(b1 b, +c¢,c, +d,d;)+2L,L;(b/b, +c,c, +d,d,)

1 * * * * * * l * * * * * *
-ELz(bl b, +c,c, +d, d3)-EL3(b1 b, +c,c, +d,d,))

For i,j>4,

[2b'b;x+(a/b; +bya))x+(bc; +¢/b))y+(db; +b'd})zli
V¢i”':9\/% +[20:c]fy+(ai*c]7+ci*a]7)x+(bi*c’;+c:b}’)y+(cfd;+di*c’;)z]1
+[2d;djz+(a;d] +dia)x+(b'd; +d/b))y+(c/d} +d/c))zlk|  (D-10)
[b'L, +b;Li
== +eL +cLT]
+d,L, +d;L ]k
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[b)(a; +b/x+c y+d 2)+b (@ +b,x+c,y+d,2)]’

Vs -V Ty +[c;(@ +b/x+c'y+d z)+¢ (a, +b,x+cy+d;2)] (D-11)
+[d,(a; +b/x+c/y+d,z)+d/ (a, +h,x+c,y+d,2)]’

4 * * * * * *
=5y 71O DL+ (EL, +0L)" +(d L, +d3L)°]
therefore, when i=j,1i,j>4,

4 * * * * * *
JI[v#- Vo dxdyde =g o el 1 d 0T el

+(b/b, +c/c, +d;d))]

When i#J,1i,j>4,

4 * * * * * * * *
V¢5 'V¢6 :97[(b1 Lz +b2 |—1 )(b] L3 +b3 L1)+(Cl Lz +CzL1)(Cl L3 +C3 Ll)
+(d1*|-2+d;|—1)(d1*|-3+d;|—1)] (D_13)
4 * * * *y ok * ok * *
=W[L2L3(blz+c12+d12)+L1L2(blb3+clc3+d1d3)

+L,L,(b/b; +c/c, +d d;)+LL (bby +cic; +d;d;)]

4 * * * * * * * *
V¢5 ‘v¢10 :W[(bl I—z +b2 Ll)(b3 L4 +b4 L3)+(C1 Lz +C2L1)(C3 L4 +C4L3)
+(d/L, +d;L)(d5L +diL)] (D-14)
4 Ky %k * % * * Ky %k * % * *
=9V—2[L2L3(blb4+clc4+dld4)+ L,L,(b/b, +c,c, +d,d;)

+L,L, (b, +c5c; +d;d;)+ L, L (bb, +c5c; +d,d;)]
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