
國 立 交 通 大 學  

機 械 工 程 學 系  

 

博士論文 

 

使用調適網格加密功能之有限元素平行化三維

Poisson-Boltzmann Equation 程式之發展與驗證 

 

Development and Verification of a 3-D Parallelized 
Poisson-Boltzmann Equation Solver Using Finite 
Element Method with Adaptive Mesh Refinement 

 

 

 

 

 

研 究 生：邵雲龍 

指導教授：吳宗信 博士 

 

2006 年 07 月 



使用調適網格加密功能之有限元素平行化三維

Poisson-Boltzmann Equation 程式之發展與驗證 

 
Development and Verification of a 3-D Parallelized  

Poisson-Boltzmann Equation Solver Using Finite 

Element Method with Adaptive Mesh Refinement 

 

 

研 究 生：邵雲龍          Student：Yun-Long Shao 
指導教授：吳宗信 博士     Advisor：Dr. Jong-Shinn Wu 

 
國 立 交 通 大 學 
機 械 工 程 學 系 

博 士 論 文 

 

A Thesis 

Submitted to Institute of Mechanical Engineering Collage of Engineering 

National Chiao Tung University 

In Partial Fulfillment of the Requirements 

for the Degree of  

Doctor of Philosophy 

in 

Mechanical Engineering 

July 2006 

 

Hsinchu, Taiwan, Republic of China 

 

中華民國九十五年七月



致謝 

首先，感謝吳宗信教授這幾年的悉心教誨與熱心的指導，讓我在課業上或生

活上均受益良多，在此表達由衷的感謝與敬意。且感謝各位口試委員：洪哲文教

授、傅武雄教授、陳維新教授、江仲驊教授與黃楓南教授不吝指正，提出許多的

寶貴意見，使得本論文的內容更加完備。 

同時要感謝 MuST 所有的成員，包括國賢在理論與數值模擬上的大力協助、

又永熱心協調平行計算設備資源的分配、允民在計算分析與欣芸在有限元素法技

巧上的幫忙、捷粲在平行化程式上的協助、凱文在網格繪製上的幫助，以及坤樟、

祐霖、哲維、富利熱情的鼓勵。此外，也要特別感謝已經畢業的碩士班學弟妹們

的鼓勵與支持，讓我有源源不斷地動力繼續完成我的學業。 

最後，要感謝國家高速網路與計算中心提供叢集式電腦資源、國家奈米元件

實驗室與交大奈米中心提供我學習相關設備的機會。 

 

邵雲龍 謹誌 

2006 年 07 月 風城交大



     i

Development and Verification of a 3-D Parallelized  
  Poisson-Boltzmann Equation Solver Using Finite 
  Element Method with Adaptive Mesh Refinement 

Student：Yun-Long Shao Advisors：Dr. Jong-Shinn Wu 

Department of Mechanical Engineering 
National Chiao Tung University 

 

Abstract 

Understanding of the interactive particle-particle and particle-wall forces in 

colloidal systems (electrolytes) plays a very important role in bio-chemistry related 

research. By assuming equilibrium in the electrolytes, the potential distribution with a 

very thin electrical double layer near the charged object can be well described by the 

well-known Poission-Boltzmann equation. Thus, a parallelized 3-D nonlinear 

Poisson-Boltzmann equation solver (PPBES) using finite element method (FEM) with 

parallel adaptive mesh refinement (PAMR) is proposed and verified. In this thesis, the 

research is divided into two phases, which are described as follows. 

In the first phase, the nonlinear Poisson-Boltzmann equation is discretized using 

Galerkin finite element method with unstructured tetrahedral mesh. Interpolation 

within a typical element includes the first-order and second-order shape functions. 

Inexact Newton iterative scheme is used to solve the nonlinear matrix equation 

resulting from the FE discretization. Jacobian matrix resulting from the Newton 

iterative scheme is diagonalized using nodal quadrature, which further facilitates the 



     ii

easier parallel implementation. A parallel conjugate gradient (CG) method with a 

subdomain-by-subdomain (SBS) scheme is then used to solve the linear algebraic 

equation each iterative step. Completed code is verified using two typical examples. 

The first validated case is the potential distribution around a charged sphere. Excellent 

agreement of the simulation results with analytical (linearized case) and approximate 

(nonlinear case) solutions are obtained. The second validated case is the interaction 

between like-charged spheres within a cylindrical pore. Results show that the 

agreement between the present simulation and previous results are excellent. The 

above two typical simulations validate the present implementation of the PPBES. 

Further, the parallel performance is studied on a HP PC-cluster system at NCHC 

using a test case with a charged sphere confined in a cylindrical pore. Results show 

that 76.2% of parallel efficiency can be reached at processors of 32. Also FE 

discretization using the second-order shape function is demonstrated to be more 

accurate than using the first-order shape function at the end of this phase. 

In the second phase, an h-refinement based PAMR scheme for an unstructured 

tetrahedral mesh using dynamic domain decomposition on a memory-distributed 

machine is developed and tested in detail. A memory-saving cell-based data structure is 

designed such that the resulting mesh information can be readily utilized in both node- 

or cell-based numerical methods. The general procedures include isotropic refinement 



     iii

from one parent cell into eight child cells and then followed by anisotropic refinement, 

which effectively removes the hanging nodes, with a simple mesh-quality control 

scheme. Parallel performance of this PAMR is studied on a PC-cluster system up to 

64 processors. Results show that the parallel speedup scales approximately as N1.5 up 

to 32 processors, where N is the number of processors. Then, procedure of coupling 

the PPBES with the PAMR using a posteriori error estimator is presented and verified 

using a test case with two like-charged spheres in a cylindrical pore. Results show that 

PAMR can systematically increase the solution accuracy of the PPBES. Finally, the 

coupled PPBES-PAMR code is used to simulate the interactive force between two 

like-charged spheres near a charged planar wall. Results are in excellent agreement 

with experimental data considering the experimental uncertainties, which is the first 

simulation in the literature to the best knowledge of the author. 

 

Keywords: parallel Poisson-Boltzmann equation solver (PPBES), finite element 

method (FEM), parallel adaptive mesh refinement (PAMR), a posteriori error 

estimator. 



     iv

使用調適網格加密功能之有限元素平行化三維 
Poisson-Boltzmann Equation 程式之發展與驗證 

 
學生：邵雲龍 指導教授：吳宗信 博士 

 
國立交通大學機械工程學系博士班 

中文摘要 

探討微粒-微粒與微粒-平板之間的相互作用力在生物化學的領域是相當重

要的。在假設電解液為平衡的狀態下，可以經由著名的 Poisson-Boltzmann 方程

式電雙層理論得到帶電物體的勢能分佈。因此，我們決定開發以有限元素法三維

平行化非線性 Poisson-Boltzmann 方程式程式(PPBS)搭配平行化調適網格加加密

功能程式(PAMR)，並且完成驗證的工作。本論文之研究分成兩大主軸，分別敘

述如下： 

第一部分，以非線性 Poisson-Boltzmann 方程式採用非結構性四面體網格之

葛勒金有限元素法來完成程式開發，包括了典型的一階與二階的形狀函數元素。

因為使用了 nodal quadrature 的技巧，使得原先的牛頓法 Jacobian 矩陣僅剩下對

角線，以此擬牛頓疊代法來處理非線性項矩陣的部份，有助於平行化程式的完

成。接下來，則使用 SBS 的技巧搭配平行的共軛梯度法來處理線性矩陣方程組。

完成的程式以兩個範例來驗證，第一個驗證的範例是帶電球體的勢能分佈，所得

答案與解析解、近似解作一比較，結果相當正確。第二個驗證範例則是兩個帶電

球體在圓柱孔內，結果顯示與先前所發表的論文結果相符。以上兩個驗證範例證

明了平行化 Poisson-Boltzmann 方程式程式的開發完成。此外，平行化效能使用



     v

國家高速網路與計算中心的 HP 叢集式電腦系統來做驗證，測試一個帶電球體在

圓柱孔內的範例，結果顯示使用了 32 顆 CPU 時仍有 76.2%的平行效能。在第一

部份的最後，我們使用了二階形狀函數元素，所得結果證明了比一階形狀函數元

素要來的準確。 

第二部份，主要是發展一個以非結構性四面體網格為主，採用 h-切割為基礎

之分散式記憶體動態領域分解的 PAMR 程式，而資料結構則使用了較節省記憶

體空間之 cell-base 方式來記錄網格的資訊，可以同時運用在 node-base 與 cell-base

的數值方法上。一般的步驟包括了一個分為八個網格的等向性切割，然後以非等

向切割搭配網格品質控制將 hanging node 有效率地移除。我們測試 PAMR 在叢

集式電腦上最多 64 顆 CPU 的平行化效能，結果呈現在 32 顆 CPU 時仍有 N1.5

的效能(N 為 CPU 個數)。接著我們將 PPBES 與 PAMR 做一個結合，並使用 a 

posteriori 的誤差評估方法，驗證兩個帶電球體在圓柱孔內，結果證明了使用

PAMR 可以增加 PPBES 解的準確度。最後，利用 PPBES-PAMR 的程式模擬兩個

帶電球體靠近帶電平板的相互影響力之分析，與實驗結果相比較，若考慮實驗本

身的不確定因素與誤差，模擬結果與實驗結果有相當程度的符合，這是目前已知

與實驗結果相比較之最佳模擬結果。 

關鍵字: 平行Poisson-Boltzmann方程式求解系統、有限元素法、 平行搭配調適

網格功能、a posteriori誤差評估方法 

 



     vi

Table of Contents 

Abstract  ..................................................................................................................... i 
中文摘要 ................................................................................................................... iv 
Table of Contents ..................................................................................................... vi 
List of Tables .......................................................................................................... viii 
List of Figures ........................................................................................................... ix 
Symbols  ................................................................................................................... xi 
Chapter 1 Introduction.............................................................................................. 1 

1-1 Motivation .....................................................................................................1 
1-2 Background ....................................................................................................2 

1-2-1 Poisson-Boltzmann Equation .............................................................2 
1-2-1-1 Nature of Colloidal Solutions ...............................................2 
1-2-1-2 Zeta Potential ........................................................................3 
1-2-1-3 Electric Double Layer ..........................................................4 
1-2-1-4 Applications of Poisson-Boltzmann Equation ......................6 

1-2-2 Adaptive Mesh Refinement (AMR) ...................................................7 
1-2-2-1 Local Polynomial-Degree-Variation (p-refinement) ............8 
1-2-2-2 Mesh Movement (r-refinement) ...........................................8 
1-2-2-3 Mesh Enrichment (h-refinement) .........................................9 

1-3 Literature Surveys ..........................................................................................9 
1-3-1 Numerical Simulation of Poisson-Boltzmann Equation ....................9 
1-3-2 Mesh Refinement .............................................................................12 

1-3-2-1 Adaptive Mesh Refinement ................................................12 
1-3-2-2 Parallel Adaptive Mesh Refinement (PAMR) ....................13 

1-4 Objectives of the Thesis ..............................................................................16 
1-5 Organization of the Thesis ...........................................................................16 

Chapter 2 Parallelized Poisson-Boltzmann Equation Solver (PPBES) Using 
Finite-Element Method ..........................................................................18 

2-1 Theoretical Model and Analysis EDL .........................................................18 
2-2 Discretization Using Finite Element Method with Tetrahedral Mesh .........20 

2-2-1 Interpolation with First-order Shape Function .................................22 
2-2-2 Interpolation with Second-order Shape Function .............................27 

2-3 Conjugate Gradient Method for Linear Algebra Equation ..........................29 
2-4 Inexact Newton-Raphson Iterative Scheme ................................................32 
2-5 Parallel Implementation of the P-B Equation Solver ..................................33 

2-5-1 Introduction to Parallel Computing ..................................................33 
2-5-2 Parallel Implementation ...................................................................35 

2-6 Force Calculation in an Electrostatic Field ..................................................37 
Chapter 3 Validation of the Parallel Poisson-Boltzmann Equation Solver ........39 

3-1 Convergence of the PPBES .........................................................................39 
3-2 Validation 1: The Potential Distribution around a Charged Sphere .............40 



     vii

3-3 Validation 2: Interaction Between Two Like-charged Spheres within a 
Cylindrical Pore .......................................................................................... 41 

3-4 Parallel performance of the PPBES .............................................................42 
3-5 The Second-order Shape Function for PPBES ............................................43 

Chapter 4 Parallel Adaptive Mesh Refinement for Unstructured Tetrahedral 
Mesh ........................................................................................................46 

4-1 Parallel Adaptive Mesh Refinement ............................................................46 
4-1-1 Basic Algorithm of Parallel Adaptive Mesh Refinement .................46 
4-1-2 Cell Neighboring Connectivity ........................................................48 
4-1-3 Cell-Quality Controls .......................................................................50 
4-1-4 Surface Cell Refinement ..................................................................53 
4-1-5 Modules of Parallel Adaptive Mesh Refinement .............................54 
4-1-6 Procedures of Parallel Adaptive Mesh Refinement ..........................57 

4-2 Coupling of PAMR with Parallelized Poisson-Boltzmann Equation Solver 60 
4-2-1 A posteriori error estimator ..............................................................60 
4-2-2 Parallelized Poisson-Boltzmann Equation Solver with PAMR ........63 

4-3 Validation and Parallel Performance of PAMR ...........................................64 
4-3-1 Validation of the PAMR ...................................................................64 
4-3-2 Parallel Performance of the PAMR ..................................................66 

4-4 Application to a Realistic Three-dimensional Problem ...............................67 
Chapter 5 Concluding Remarks .............................................................................70 

5-1 Summary ......................................................................................................70 
5-2 Recommendations for Future Work .............................................................73 

REFERENCES .........................................................................................................74 
Appendix A Diagonalization of the Jacobian Using Nodal Quadrature ...........139 
Appendix B Three-dimensional Hybrid Mesh ....................................................144 

B-1 Hybrid Mesh .............................................................................................144 
B-2 Shape Function of Hexahedral Element ...................................................144 
B-3 The Second-Order shape function ............................................................148 

Appendix C First-order Shape Function of Tetrahedron Element ...................153 
Appendix D Second-order Shape Function of Tetrahedron Element ...............156 
List of Publications ................................................................................................160 
 



     viii

List of Tables 

Table 3-1 The CG Solver and Newton Iteration for have a good initial guess and all 
zeros are used as the initial estimate. (CPU=6; 81,354 nodes; 458,064 
elements) ....................................................................................................84 

Table 3-2 Analytical and approximate solutions for the simulation of the potential 
distribution around a charged sphere. ........................................................85 

Table 3-3 The time breakdown (in seconds) for various components of the 
parallelized Poisson-Boltzmann equations solver (electrostatic potential 
distribution around a charged sphere within a cylindrical pore; 106,390 
nodes; 612,107 elements)...........................................................................86 

Table 3-4 The test mesh of number of nodes and elements for the second-order 
element.......................................................................................................87 

Table 3-5 Compare the first-order with the second-order element for level 0 (CPU=6)
....................................................................................................................88 

Table 4-1 Evolution of adaptive mesh refinement for computing force of interaction 
between two charged spheres (radius=5) within a cylindrical pore (λ=0.416, 

0003.0=preε  for a posteriori error estimator) use the first-order element.

....................................................................................................................89 
Table 4-2 Evolution of adaptive mesh refinement for computing force of interaction 

between two charged spheres (radius=5) within a cylindrical pore (λ=0.416, 

0003.0=preε  for a posteriori error estimator) use the second-order 

element.......................................................................................................90 
Table 4-3 Timing (seconds) of PAMR module for different processor numbers. .......91 
Table 4-4 Evolution of force interaction between two identical charged spheres near a 

like-charged flat plate (h=2.5μm, r=3μm, a=0.325μm and spheres 0Ψ =3.0, 
flat plate 0Ψ =5.0). ......................................................................................92 

Table 4-5  Force of interaction with different refinement level mesh in the 
simulation of two identical charged spheres near a charged flat plate 
(h=2.5, r=4.5, a=0.325) for the first-order element....................................93 

Table 4-6 Force of interaction with different refinement level mesh in the simulation 
of two identical charged spheres near a charged flat plate (h=2.5, r=4.5, 
a=0.325) for the second-order element. .....................................................94 

 



     ix

List of Figures 

Fig. 1-1 Electrostatic potential near a positively charged colloidal particle................95 
Fig. 1-2 The illustration of colloidal particle ...............................................................96 
Fig. 1-3 The Electric Double Layer distribution..........................................................97 
Fig. 1-4 p-refinement ...................................................................................................98 
Fig. 1-5 r-refinement....................................................................................................99 
Fig. 1-6 h-refinement .................................................................................................100 
Fig. 2-1 Three-dimensional tetrahedral element and face..........................................101 
Fig. 2-2 Interpolation functions of ten variable-number-nodes three-dimensional 

tetrahedral element......................................................................................102 
Fig. 2-3 Traditional shared memory multiprocessor model.......................................103 
Fig. 2-4 Distributed memory multiprocessor architecture.........................................103 
Fig. 2-5 PC cluster at MuST ......................................................................................104 
Fig. 2-6 The Poisson-Boltzmann equation solver by subdomains.............................105 
Fig. 2-7 The flow chart of parallel Poisson-Boltzmann equation solver ...................106 
Fig. 3-1 The surface mesh distribution for the potential distribution of the a sphere 

(176309 elements; 36396 nodes) ................................................................107 
Fig. 3-2 Comparison of potential distributions around a charged sphere (a) surface 

potential 0Ψ =1.0 (b) surface potential 0Ψ =5.0 (18,253 nodes; 96,638 
elements) .....................................................................................................109 

Fig. 3-3 The potential distribution for the sphere confined in a pore at separation 
distance r=6.................................................................................................110 

Fig. 3-4 Potential along midplane between two spheres (r=6) .................................. 111 
Fig. 3-5 The parallel speedup for the parallelized Poisson-Boltzmann equation solver 

for simulating the potential distribution around a charged sphere (radius=5) 
within a cylindrical pore (106,390 nodes; 612,107 elements) ....................112 

Fig. 3-6 The distribution of potential around the charged spheres (radius a=0.325μm) 
near a like-charged plate (h = 2.5μm) at level-0 for solutions of (a) the 
first-order element (b) the second-order element........................................114 

Fig. 3-7 The profiles of different mesh levels of the first-order element and the 
second-order element. the distribution of potential around the charged 
spheres (radius a=0.325μm) near a like-charged plate (distance h = 2.5μm)
.....................................................................................................................115 

Fig. 3-8 The profiles of different mesh levels of the first-order element and the 
second-order element (in local). the distribution of potential around the 
charged spheres (radius a=0.325μm) near a like-charged plate (distance h = 



     x

2.5μm).........................................................................................................116 
Fig. 3-9 Potential along midplane between two spheres (r=6), compare the first-order 

element with the second-order element. (nodes 42,308 and elements 246,155)
.....................................................................................................................117 

Fig. 4-1 Isotropic mesh refinement of tetrahedral mesh (T: Tetrahedron).................118 
Fig. 4-2 Mesh refinement rules for two-dimensional triangular cell .........................119 
Fig. 4-3 Schematic diagram for mesh refinement rules of tetrahedron .....................120 
Fig. 4-4 Example of the common edge shared by the neighboring cells..................121 
Fig. 4-5 Schematic diagram of the proposed cell quality control ..............................122 
Fig. 4-6 Schematic diagram of typical cell quality control........................................123 
Fig. 4-7 A case that the proposed cell-quality-control would not affect to it.............124 
Fig. 4-8 Flow chart of parallel mesh refinement module...........................................125 
Fig. 4-9 Coupled PPBS-PAMR method.....................................................................126 
Fig. 4-10 The surface mesh distribution between two identical charged spheres 

(radius=5) in a cylindrical pore (λ=0.416) at (a) level-0 (initial; 924 nodes; 
3,821 elements) (b) level-5 (final; 36,316 nodes; 193,368 elements) mesh 
refinement ...................................................................................................128 

Fig. 4-11 Original (Level-3, 1,070,194 tetrahedral cells and 187,649 nodes) mesh 
distribution and next (Level-4, 2,701,178 cells and 468,944 nodes) refined 
mesh .................................................................................................130 

Fig. 4-12 Timing for different modules of PAMR at different processors.................131 
Fig. 4-13 Sketch of two identical charged spheres near a charged infinite flat plate 132 
Fig. 4-14 The surface mesh distribution between two identical charged spheres (radius 

a=0.325μm) near a like-charged plate (h = 2.5μm) at the (a) level-0 (initial, 
16,280 nodes; 79,535 elements) (b) level-5 (finial, 185,697 nodes; 1,014,730 
elements) mesh refinement .........................................................................134 

Fig. 4-15 The distribution of potential around the charged spheres (radius a=0.325μm) 
near a like-charged plate for (a) h = 2.5μm (b) h=9.5μm ...........................136 

Fig. 4-16 Computed electrostatic force between charged spheres near a like-charged 
infinite flat plate as a function of the sphere center-to-center distance (h = 
2.5μm for the second-order element. ..........................................................137 

Fig. 5-1 Compare the code of tetrahedral mesh with the code of hybrid mesh of 
collapsed nodes ...........................................................................................138 

 



     xi

Symbols 

a    The radius of the particle ( m ) 

E    The electric field vector 

e    The charge of a proton (C ) 

F    The force acting on the spherical particle (Newton) 

h    The distance between plate and particle ( m ) 

iN    FEM shape function 

in    Concentration of type i  ion ( 3−m ) 

0in    Bulk ionic concentration of type i  ion ( 3−m ) 

r    The separation distance of particles ( m ) 

T    Absolute temperature ( K ) 

iz    Valence of type i  ion 

 

Greek symbols 

ψ    Electrical potential (V), and Tk
ze

b

ψψ =  

λ    A cylindrical pore with the sphere radius to pore radius ratio 

dλ    Debye length ( m ) 

eρ    The net charge density ( 3/ mC ) 

ε    Dielectric constant 



     xii

0ε    Permittivity of vacuum ( mV
C ) 

κ    Debye-Huckel parameter ( 1−m ) 

bκ    Boltzmann constant ( KJ / ) 

δ    The global absolute error 

mδ    The current mean absolute error 

preδ    The prescribed global relative error 

ΔΠ    The osmotic pressure 

 

 



     1

Chapter 1 Introduction 

1-1 Motivation 

Understanding of the electrostatic distribution in the electrical double layer (EDL) 

near charged particles or charged solid wall is crucial in understanding several 

important physical problems, including microscopic colloidal system [Okubo and 

Aotani,1998; Quddus and Moussa, 2004], electrokinetics in microfluidic system 

[Quddus and Moussa, 2004; Shao et. al., 2006; Collins and Lee, 2004], to name a few. 

Behavior of the EDL in a solution can be approximated by the nonlinear 

Poisson-Boltzmann equation (PBE). The Poisson-Boltzmann equation has been 

traditionally used to find the electrostatic potential around a macromolecule. Numerical 

investigation of models based on the PB equation can provide important information on 

effective particle interaction in colloidal systems.  

The Poisson-Boltzmann equation is a second-order partial differential equation 

with a hyperbolic sine term that makes it exponentially nonlinear in the electrical 

double layer around the charged objects. Analytical solution is only possible for some 

problems with simple geometries and boundary conditions. However, most of the 

applications are three-dimensional with very complicated geometries, which 

necessitate the efficient and accurate numerical simulation of the Poisson-Boltzmann 

equation. Thus, in this thesis we intend to present and validate a parallelized 



     2

three-dimensional Poisson-Boltzmann equation solver (PPBES) using the 

finite-element method (FEM), coupling with parallel adaptive mesh refinement 

(PAMR), which can be used efficiently and accurately for practical 3-D applications in 

the future.  

 

1-2 Background 

In this section, several important concepts about the microscopic colloidal 

behavior that is relevant to the Poisson-Boltzmann equation are described first. Then 

adaptive mesh refinement which is important to the accuracy and efficiency in solving 

the Poisson-Boltzmann equation is described in turn. 

 

1-2-1 Poisson-Boltzmann Equation 

1-2-1-1 Nature of Colloidal Solutions 

Microscopic particles of one phase dispersed in another are generally called 

colloidal solution or dispersions. Three fundamental forces operate on fine particles in 

solution: 

1. gravitational force, depending on particles density relative to the solvent; 

2. viscous drag force, often described by Stoke’s Law, which depicts the force 

as a function of fluid viscosity, particle diameter, and particle settling 



     3

velocity; 

3. the ‘natural’ kinetic energy of particles and molecules. 

The ‘natural’ kinetic energy including electrostatic force, which is an important 

factor of interaction for particles and molecules. 

Fig. 1-1 shows the typical electrostatic potential distribution around a positively 

charged colloidal particle. Negative counter-ions are attracted towards the particle by 

the electric field generated by the positively charged surface, but they are also subject 

to thermal motion, which tends to spread then uniformly through the surrounding 

medium. 

 

1-2-1-2 Zeta Potential 

Almost all particulate or macroscopic materials in contact with a liquid acquire 

an electronic charge on their surfaces. Zeta potential is an important and useful 

indicator of this charge which can be used to predict and control the stability of 

colloidal suspensions or emulsions. 

Colloidal particles dispersed in a solution are electrically charged due to their 

ionic characteristics and dipolar attributes. Each particle dispersed in a solution is 

surrounded by oppositely charged ions called the fixed layer shown as Fig. 1-2. 

Outside the fixed layer, there are varying compositions of ions of opposite polarities, 



     4

forming a cloud-like area. This area is called the diffuse double layer, and the whole 

area is electrically neutral in general. 

When a voltage is applied to the solution in which particles are dispersed, 

particles are attracted to the electrode of the opposite polarity, accompanied by the 

fixed layer and part of the diffuse double layer, or internal side of the "sliding 

surface". 

Zeta potential is considered to be the electric potential of this inner area 

including this conceptual "sliding surface". As this electric potential approaches zero, 

particles tend to aggregate. 

 

1-2-1-3 Electric Double Layer 

Electrokinetic phenomena are of considerable importance in many fields of 

science and engineering. In particular, they exert a strong influence on the flow 

behavior of a fluid, for example, in microchannels and capillaries. 

The earliest studies of the electric double layer near a metal surface, by 

Helmholtz [Hunter, 1989] in the mid-nineteenth century, assumed that the electric 

charge on the metal surface was balanced by an equal charge which sat in the 

surrounding solutions a little way from the surface. Around 1910 a better model was 

proposed by a French scientist name Gouy and a similar treatment was developed 



     5

independently a few years later by the British scientist, Chapman. The result is known 

as the Gouy-Chapman model [Hunter, 1989] of the electric double layer, modified by 

Helmholtz model. It assumes that most solid surfaces bear electrostatic charges. When 

a charge surface is in contact with an electrolyte, the electrostatic charges on the solid 

surface will influence the distribution of nearby ions in the electrolyte solution. Ions of 

opposite of charges to that of the surface are attracted towards the surface, while ions of 

like charges are repelled from the surface; thus, an electric field is established. The 

charges on the solid surface and the balancing charge in the liquid are called the 

“electric double layer” (EDL). The EDL potential distribution is show in Fig 1-3. The 

sign and magnitude of the EDL field depend on the nature of the surface and the liquid.  

Immediately next to the charged solid surface, there is a layer of ions that are 

strongly attracted to the solid surface and are immobile. This layer is called the 

compact or stern layer, normally about several Angstroms thick. The charge and 

potential distributions in this layer are mainly determined by the geometrical 

restriction of ion molecule size and the short-range interactions between ions, the wall 

and the adjoining dipoles. 

From the compact layer to the electrically neutral bulk liquid, the net charge 

density gradually reduces to zero. Ions in this region are affected less strongly by the 

electrostatic interaction and are mobile. This region is called the diffuse layer of the 



     6

EDL. As will be discussed later, an equation called the Poisson-Boltzmann equation is 

used to describe approximately the ion and potential distributions in the diffuse layer. 

The EDL width, called Debye length and afterward noted, determines the electric 

interaction range between macromolecules and therefore controls the static phase 

behavior of these systems. 

 

1-2-1-4 Applications of Poisson-Boltzmann Equation 

The Poisson-Boltzmann equation (PBE) provides a "fast" and approximate 

method for calculating the effects of solvent on electrostatic interactions in the modeled 

system. There are at least five major applications of the PBE: 

1. Calculation of the electrostatic potential at the surface of a biomolecule,  

which is expected to give information about the concentration of small 

charged solutes in the neighborhood of the molecule and whose inspection 

may suggest docking sites for biomolecules [Bowen and Sharif, 1998]; 

2. Calculation of the electrostatic potential outside the molecule, which is 

expected to give information on the free energy of interaction of small 

molecules at different positions in the surrounding of the molecule. [Kozack 

and Subramaniam, 1993]; 

3. Calculation of the free energy of a biomolecule or of different states of a 



     7

biomolecule which gives information on the stability of a biomolecule or of 

its different states [Sharp and Honig, 1990]; 

4. Calculation of the electrostatic field to derive mean forces to be added in 

standard molecular dynamics calculations [Gilson et. al., 1993].  

5. Calculation of the electrostatic force among charged particles/walls, which 

is important in the study of colloidal system. 

In the present thesis, we are mainly concerned about the last application of the 

Poisson-Boltzmann equation, to which it is not limited. The related derivation of 

Poisson-Boltzmann Equation will be discussed in chapter 2. 

 

1-2-2 Adaptive Mesh Refinement (AMR) 

Adaptive mesh refinement (AMR) is a computational technique for improving 

the efficiency and accuracy of solution of numerical simulations. In the AMR 

technique we start with a base coarse grid. As the solution proceeds we identify the 

regions requiring more resolution by some parameter characterizing the solution. We 

superimpose finer subgrids only on these regions. Finer and finer subgrids are added 

recursively until either a given maximum level of refinement is reached or the local 

truncation error has dropped below the desired level. 

In general, mesh refinement can be categorized into three methods: (1) local 



     8

polynomial-degree-variation (p-refinement); (2) mesh movement (r-refinement); and 

(3) mesh enrichment (h-refinement), which will be briefly described respectively in the 

following. 

 

1-2-2-1 Local Polynomial-Degree-Variation (p-refinement) 

As shown in Fig. 1-4, local p-refinement scheme increases resolution of the 

solution by increasing the order of polynomial of the shape function in the element, 

which originated from finite element modeling. However, its implementation in 

three-dimensional finite-element modeling is rather complicated and not as popular as 

the mesh refinement (h-refinement) which will be introduced later.  

 

1-2-2-2 Mesh Movement (r-refinement) 

As shown in Fig. 1-5, the total mesh points remain the same in the computational 

domain after refinement. It is common to use a spring analogy, in which the nodes of 

the mesh are connected by springs whose stiffness is proportional to certain measure of 

solution activity over the spring. The mesh points are moved closer into the region 

where solution gradients are relatively large. This is often applied to the spatial 

adaptation of a structured mesh. 

 



     9

1-2-2-3 Mesh Enrichment (h-refinement) 

As shown in Fig 1-6, with mesh enrichment, mesh points are added or embedded 

into the regions where relatively large solution gradients are detected, while the global 

mesh topology remains intact. It is generally regarded that mesh enrichment method 

has certain advantages over the first two methods. For example, the use of the 

h-refinement scheme generally does not impact the coding structure of the original 

numerical scheme if hanging nodes are properly treated, while the use of p-refinement 

does, thus complicating the practical implementation. One of the most important 

advantages is that the mesh enrichment technique is in general many times faster and 

robust than the remeshing technique.  

 

1-3 Literature Surveys 

1-3-1 Numerical Simulation of Poisson-Boltzmann Equation 

The Poisson-Boltzmann equation plays an important role in describing many 

physical phenomena, including like-charge particle interaction [Dyshlovenko, 2001; 

Squires and Brenner, 2000; Tuinier, 2003], particle-membrane interaction [Bowen, 

1998; Tuinier, 2003], and electrokinetic flow [Yang et. al., 2001], among others. For 

example, one of the applications, colloidal dispersion, requires the knowledge of 

electrostatic potential distribution, which can then be used to calculate other quantities, 



     10

such as particle-particle interaction force. Features of particle interaction are of great 

importance for the stability and properties of colloidal dispersions. Accurate numerical 

modeling based on the Poisson-Boltzmann equation can provide important information 

on effective particle interaction in colloidal systems. 

Bowen and Sharif [1997] presented a two-dimensional (axisymmetric) 

finite-element solution combined with adaptive mesh refinement. They used the 

Galerkin finite-element method with nine-node quadrilateral elements to discretize the 

Poisson-Boltzmann equation. The Newton-Raphson iterative scheme was used to 

handle the nonlinear hyperbolic sine term, while the Debye-Huckel solution was used 

as the initial guess Later, Bowen and Sharif [1998] applied the axisymmetric 

Poisson-Boltzmann equation solver to simulate the interactive force between two 

like-charge particles within a cylindrical pore with the same sign of charge on the 

surface. The results showed that at some inter-particle distance the two particles exhibit 

attractive forces, which is similar to that observed experimentally in Larsen and Grier 

[1997], although the magnitude is about one order different. It was then argued that in 

Ref. [Bowen and Sharif, 1998] the difference might be due to the fact that the wall is 

planar in the experiments [Larsen and Grier, 1997], whereas in the simulation it is 

cylindrical. For realistic applications like this, a three-dimensional simulation is 

required for accurate results. However, not only are 3D simulations extremely 



     11

time-consuming in practice, but developing efficient tools for them is also quite 

difficult. 

Dyshlovenko [2001] also presented an axisymmetric Poisson-Boltzmann equation 

solver using finite-element method combined with adaptive mesh refinement. Instead 

of using nine-node quadrilateral elements, he used six-node triangular elements with a 

second-order shape function. Later, Dyshlovenko [2002] simulated the same problem 

as Bowen and Sharif [1998], but found no like-charge attractive force at any 

inter-particle distance in his simulation. In addition, Das and Bhattacharjee [2005] 

examined the effects of the roughness of the wall on the distribution of the electrostatic 

force using the two-dimensional finite-element method.  

As shown in the above reviews, most existing studies use finite-element method 

with adaptive mesh refinement to solve the two-dimensional Poisson-Boltzmann 

equation. Very few studies have focused on developing a parallelized 

three-dimensional Poisson-Boltzmann equation solver even though the development of 

one would be valuable in understanding real physical phenomena. Two possible 

obstacles that have hindered the development of three-dimensional simulation are the 

time-demanding computation of a meaningful 3D simulation and the very complicated 

implementation of a parallel adaptive mesh refinement for a 3D unstructured mesh. 

Thus, it is important that to develop a parallelized three-dimensional 



     12

Poisson-Boltzmann equation solver using the Galerkin finite-element method using the 

first- and the second-order shape function combined with a parallel adaptive mesh 

refinement (PAMR) module. 

 

1-3-2 Mesh Refinement 

1-3-2-1 Adaptive Mesh Refinement  

In previous section, we have briefly described three kinds of mesh refinement 

scheme: local polynomial-degree-variation (p-refinement), mesh movement 

(r-refinement) and mesh enrichment (h-refinement). As described earlier in previous 

section, the first [Zienkiewicz et. al., 1983; Peano, 1976] and second [Brackbill, 1993; 

Mackenzie and Robertson, 2002] methods have some disadvantages. Thus, 

comparatively few studies were conducted along these directions. It is generally 

regarded that mesh enrichment method (h-refinement) outperforms the first two 

methods [Rausch et. al., 1991]. One of the most important advantages is that the mesh 

enrichment technique is in general many times faster and robust than the re-meshing 

technique [Connell and Holms, 1994]. However, some disadvantages were mentioned 

in Ref.[Rausch et. al., 1991]. For example, appearance of the hanging nodes induces 

significant modification to the numerical method which couples the mesh refinement 

scheme. Fortunately, this can be overcome by some simple methods through the 



     13

elimination of hanging nodes, such as that proposed by Kallinderis and Vijayan [1993]. 

In the current study, we intend to employ similar technique to improve the accuracy of 

the Poisson-Boltzmann equation solver. 

 

1-3-2-2 Parallel Adaptive Mesh Refinement (PAMR) 

For treating large-scale simulation problems, not only we have to parallelize the 

numerical solver, but also we have to parallelize the mesh refinement scheme. There 

are several ways to classify PAMR algorithm, and some of them are reviewed in the 

following. 

First, from the viewpoint of practical implementation on computers, PAMR can 

be generally categorized into two types: vectorized shared memory and distributed 

memory. In the shared memory type [Waltz, 2004], the hardware for parallel 

implementation is generally very expensive, and the coding is comparably easy, like 

using OpenMP [Chandra et. al., 2001], for instance. Memory access is direct and fast, 

which makes communication cost among processors minimal. Moreover, load 

balancing among processors is expected to be good, while memory contention may 

occur which possibly slows down the speed. In contrast, the hardware is more 

affordable for the distributed memory type than the shared memory type, while the 

coding is rather involved using MPI [Karypis et. al., 2003], for instance. Global data 

access is gained through network communication, which often becomes the 

bottleneck for better parallel performance if a large number of processors is used. 

However, this becomes increasingly unimportant because of the rapid increase in the 



     14

speed of network communication, and the dramatic reduction of costs in the past 

decade. Deciding on what type of parallel machine to implement greatly impacts the 

fundamental algorithm design as well as the practical implementation of the PAMR. 

Second, from the viewpoint of the adaptive mesh refinement (AMR) algorithm 

itself, there are generally two kinds of mesh refinement: h-refinement and mesh 

regeneration. Mesh regeneration AMR [Wang and Harver, 1994] regenerates mesh 

from a mesh generator based on the distribution of error estimator obtained from the 

previous coarse mesh. For a large-scale 3-D computation, there exist two problems. 

First, the process often takes too much time, and second, the interpolation of previous 

solutions onto the new mesh is rather inefficient, which may slow down the 

convergence for the simulation on the new mesh. However, the data structure is 

relatively simple as compared to the h-refinement AMR. The h-refinement AMR adds 

grid points onto cell edges based on the error estimator obtained from the previous 

coarse mesh. It is generally much faster than the mesh regeneration type, and the 

interpolation onto the new mesh from the previous solution is straightforward, which 

may speed up the convergence for the computation on the new mesh. Often, the 

resulting “edge-based” data structure is very complicated and memory demanding, 

especially for the 3-D PAMR on the memory-distributed type of machine. 

Nevertheless, this type of AMR also has another advantage in that its data structure 

may be readily modified for mesh de-refinement, which may become important for a 

time-dependent simulation. Additionally, the h-refinement AMR possesses high 

spatial locality, which makes possible the parallel implementation on a 

memory-distributed machine using domain decomposition. 

Third, from the viewpoint of the unstructured mesh solver itself, two types of 



     15

mesh data are required: the finite element type of connectivity (or connectivity) and 

cell-based connectivity (or cell neighbor-identifying information). The equation solver 

often needs the former, while the latter is required by some particle method for particle 

tracking, such as DSMC and PIC for solving the Boltzmann equation with neutral and 

charged species, respectively. However, the past development of the AMR scheme only 

produced the finite element type of connectivity. Related cell neighbor-identifying 

information can of course be obtained by post-processing serially (not in parallel) the 

node-based connectivity, while it may become time-consuming if the resulting mesh 

size is large. Thus, an ideal PAMR scheme may be expected to directly generate both 

these two sets of data. 

For adaptive mesh refinement of three-dimensional tetartohedral mesh for the 

Poisson-Boltzmann equation, Cortis and Friesner [1997a, 1997b] proposed an 

automatic Finite-Element mesh generation system. Authors presented the algorithms of 

the construction of a tetrahedral mesh using a predetermined spatial distribution of 

vertices adapted to the geometry of the dielectric continuum solvent model. Besides, 

Baker[2000, 2001b] and his co-worker [Holst, 2000] publish the adaptive multilevel 

finite element treatment of the nonlinear PB equation using highly scalable parallel 

adaptive meshing methods which all of the numerical procedures are implemented in 

MANIFOLD CODE (MC) [web site, http://www.scicomp.ucsd.edu/ ~mholst/ codes/ 



     16

mc/], a small self-contained parallel adaptive multilevel finite element software 

package. 

 

1-4 Objectives of the Thesis 

Based on previous reviews, the specific objectives of the thesis are summarized 

as follows: 

1. To develop a parallelized 3-D Poisson-Boltzmann equation solver (PPBES) 

using finite element method with first- and second-order shape function on 

an unstructured tetrahedral mesh; 

2. To develop a parallel adaptive mesh refinement (PAMR) for unstructured 

tetrahedral mesh; 

3. To couple the PPBES and PAMR and apply it to compute a realistic 3-D 

problem. 

 

1-5 Organization of the Thesis 

The organization of this thesis is described as follows. Chapter 2 describes the 

numerical method for the parallelized Poisson-Boltzmann equation solver. Chapter 3 

describes the validation and parallel performance study of the PPBES. Chapter 4 

describes the proposed parallel adaptive mesh refinement, coupling scheme with 



     17

PPBES and application to a realistic 3-D problem. Finally, Chapter 5 describes the 

concluding remarks and recommendation of the future work. In addition, Appendix A 

describes the derivation of the nodal quadrature used in the present finite element 

formulation. Appendix B describes finite element formulation for hybrid mesh, which 

includes hexahedral, pyramid and tetrahedral mesh. Appendix C describes the 

first-order shape function of tetrahedral mesh and Appendix D describes the 

second-order shape function of tetrahedral mesh. 



     18

Chapter 2 Parallelized Poisson-Boltzmann Equation 

Solver (PPBES) Using Finite-Element Method 

In this chapter, derivation of the Poisson-Boltzmann equation is first 

demonstrated, followed by the discretization of the Poisson-Boltzmann equation using 

Galerkin finite element method, introduction to general conjugate gradient method for 

solving linear algebraic equation, inexact Newton iterative scheme and the parallel 

implementation of the finite-element discretization is deliberated in turn. Finally, 

formula of calculating electrostatic force used in the present thesis is shown 

2-1 Theoretical Model and Analysis EDL 

Consider a liquid phase containing positive and negative ions in contact with a 

planar negatively charged surface. An EDL field near a charged surface is established. 

According to the theory of electrostatics, the relationship between the electrical 

potential ψ  and the net charge density per unit volume eρ  at any point in the 

solution is described by the three-dimensional Poisson’s equation as 

  
0

2

2

2

2

2

2
2

εε
ρψψψψ e

zyx
−=

∂
∂

+
∂
∂

+
∂
∂

=∇        (2-1) 

where ε  is dielectric constant of the solution and 0ε  is permittivity of vacuum. 

Applying the Boltzmann relation, assuming equilibrium, to the ionic number 

concentration distribution near a charged surface in a symmetric electrolyte solution 

(1:1), we have 



     19

  )exp(0 Tk
eznn
b

i ψ−=+  and )exp(0 Tk
eznn
b

i ψ=−     (2-2) 

Assuming the equilibrium Boltzmann distribution is reasonable, the number 

concentration of the type-i ion in a symmetric electrolyte solution is of the form 

   )exp(0 Tk
eznn
b

i
ii

ψ
−=          (2-3) 

where 0in  and iz  are bulk ionic concentration and the valence of type-i ions, 

respectively, e  is the charge of a proton, bk  is the Boltzmann constant, T  is the 

absolute temperature, and )exp(
Tk

ez

b

i ψ  is the Boltzmann factor. The Boltzmann 

distribution is applicable only when the system is in the thermodynamic equilibrium 

state. Then the net charge density in a unit volume of the fluid is given by: 

)sinh(2)( 0 Tk
zezennnze

b
e

ψρ −=−= −+       (2-4) 

For a symmetric 1:1 electrolyte system, substituting Equation (2-4) in Equation 

(2-1), a nonlinear second-order three-dimensional Poisson-Boltzmann equation is 

obtained as 

)sinh(2

0

0
2

2

2

2

2

2

Tk
zezen

zyx b

ψ
εε

ψψψ
=

∂
∂

+
∂
∂

+
∂
∂       (2-5) 

By defining the Debye-Huckel parameter 
Tk
nez

b0

0
22

2 2
εε

κ =  and applying the 

dimensionless groups as follows, 

xx κ= , yy κ= , zz κ=  and 
Tk

ze

b

ψψ =  

The Poisson-Boltzmann equation, equation (2-5), can be re-written as: 

 )sinh(2

2

2

2

2

2

ψψψψ
=

∂
∂

+
∂
∂

+
∂
∂

zyx
            (2-6) 



     20

where κ1  (Debye length dλ ) is the characteristic length of the EDL. 

Generally, solving this equation with appropriate boundary conditions, the 

electrical potential distribution ψ  of the EDL can be obtained, and the local charge 

density distribution eρ  can then be determined from equation (2-4). It should be 

noted that the Debye-Huckel parameter 2κ  is independent of the solid surface 

properties and is determined by the liquid properties only, such as the electrolyte’s 

valence and the bulk ionic concentration. 

 

2-2 Discretization Using Finite Element Method with Tetrahedral 

Mesh 

The FEM is the computer-aid mathematical technique for obtaining approximate 

numerical solution to the abstract of calculus that predicts the response of physical 

system subjected to the external influences. 

Such problems arise in many areas of engineering, science, and applied 

mathematics. Applications to date have occurred principally in the areas of solid 

mechanics, heat transfer, fluid mechanics, and electromagnetism.  

There are many salient features in FEM: 

1. The domain is divided into smaller regions called elements. Adjacent 

elements touch without overlapping, and there are no gaps between the 



     21

elements. The shapes of the elements are intentionally made as simple as 

possible. 

2. In each element the governing equations, usually in differential or variation 

(integral) form, are transformed into algebraic equation. The element 

equations are algebraically identical for all elements of the same type, 

which usually need to be derived for only one or two typical elements. 

3. The resulting numbers are assembled (combined) into a much larger set of 

algebraic equations called the system equations. Such huge systems of 

equations can be solved economically because the matrix of coefficients is 

“spares”. 

4. Solved the matrix problem. 

FEM seeks an approximate solution U~ , an explicit expression for U , in 

terms of known functions, which approximately satisfies the governing equations 

and boundary conditions. It obtains an approximate solution by using the 

classical trial-solution procedure. Normally, it is not possible to obtain strong 

solutions for the problem at hand. Instead one usually decretive the otherwise 

continuous problem and obtain so-called weak solutions; weak in the sense of 

approximation. 

 The application of the finite element method to a given problem involves 



     22

the following six steps [Thompson, 2003; Zienkiweicz, 2000]: 

1. Development of element equation. 

2. Discretization of solution domain into a finite element mesh. 

3. Assembly of element equations. 

4. Introduction of boundary conditions. 

5. Solution for nodal unknowns. 

6. Computation of solution and related quantities over each element. 

 

2-2-1 Interpolation with First-order Shape Function 

In this section, we will describe the FE discretization of the three-dimensional 

nonlinear Poisson-Boltzmann equation using first-order shape function in detail. In 

general, the procedure are divided into the following steps.  

Step1:  

We use ψ~  to approximate ψ , then we set the trial solution: 

  ∑
=

=+++=
4

1

)(
4

)(
43

)(
32

)(
21

)(
1

)( ),,(~
j

j
e

j
eeeee azyxNaNaNaNaNψ  (2-7) 

where x, y, z are the independent variables in the problems. The functions 

),,( zyxN j  are known functions called trial functions (basis). 

The purpose is to determine specific numerical values for each of the parameters 

ja  (such as potential). Then, using the Galerkin method, for each parameter  ja  we 



     23

require that a weighted average of ),,( zyxR  over the entire domain to be zero. The 

weighting functions are trial functions ),,( zyxN  associated with each ja . 

Step2:  

Applying Galerkin residual method, from Equation (2-6): 

∫∫ ΩΩ
Ω=Ω

∂
∂

+
∂
∂

+
∂
∂ dNd

zyx
N e

i
e

i )sinh()( )(
2

2

2

2

2

2
)( ψψψψ    (2-8) 

the Galerkin residual method is a weighting residual method, which uses the trial 

function as the weighting function. Thus, )(e
iN  is not only a weighting function, but 

also a shape function. Note the integral ∫Ω Ωd  means integrate over the volume of 

element. In the present study, we employ tetrahedral elements, which have four 

degree of freedom (DOF) in each element. 

Within the tetrahedral element, as shown in Fig.2-1, the function e
iψ~ , the 

first-order shape function, can be approximated as,  

zdycxbazyx e
i

e
i

e
i

e
i

e
i

)*()*()*()*()( ),,(~ +++=ψ  , 4~1=i   (2-9) 

The coefficients )*(e
ia , )*(e

ib , )*(e
ic  and )*(e

id  can be determined by enforcing 

Equation (2-9) at the four nodes of the element a unit value at each of the vertex. 

From which we can obtain, 

  

)(
6

1

6
1

)(
4

)(*
4

)(
3

)(*
3

)(
2

)(*
2

)(
1

)(*
1)(

)(
4

)(
3

)(
2

)(
1

)(
4

)(
3

)(
2

)(
1

)(
4

)(
3

)(
2

)(
1

)(
4

)(
3

)(
2

)(
1

)(
)(*

eeeeeeee
e

eeee

eeee

eeee

eeee

e
e

aaaa
V

zzzz
yyyy
xxxx

V
a

φφφφ

φφφφ

+++=

=
    (2-10) 



     24

)(
6

1

1111

6
1

)(
4

)(*
4

)(
3

)(*
3

)(
2

)(*
2

)(
1

)(*
1)(

)(
4

)(
3

)(
2

)(
1

)(
4

)(
3

)(
2

)(
1

)(
4

)(
3

)(
2

)(
1

)(
)(*

eeeeeeee
e

eeee

eeee

eeee

e
e

bbbb
V

zzzz
yyyyV

b

φφφφ

φφφφ

+++=

=
    (2-11) 

)(
6

1

1111

6
1

)(
4

)(*
4

)(
3

)(*
3

)(
2

)(*
2

)(
1

)(*
1)(

)(
4

)(
3

)(
2

)(
1

)(
4

)(
3

)(
2

)(
1

)(
4

)(
3

)(
2

)(
1

)(
)(*

eeeeeeee
e

eeee

eeee

eeee

e
e

cccc
V

zzzz

xxxx
V

c

φφφφ

φφφφ

+++=

=
    (2-12) 

)(
6

1

1111

6
1

)(
4

)(*
4

)(
3

)(*
3

)(
2

)(*
2

)(
1

)(*
1)(

)(
4

)(
3

)(
2

)(
1

)(
4

)(
3

)(
2

)(
1

)(
4

)(
3

)(
2

)(
1

)(
)(*

eeeeeeee
e

eeee

eeee

eeee

e
e

dddd
V

yyyy
xxxx

V
d

φφφφ

φφφφ

+++=

=
    (2-13) 

where 

)(
4

)(
3

)(
2

)(
1

)(
4

)(
3

)(
2

)(
1

)(
4

)(
3

)(
2

)(
1)(

1111

6
1

eeee

eeee

eeee
e

zzzz
yyyy
xxxx

V = = volume of the element   (2-14) 

Thus, the coefficients )*(e
ia , )*(e

ib , )*(e
ic  and )*(e

id  can be easily determined from 

expansion of the determinants and are not listed here for brevity. They can be found in 

Appendix C. 

Substituting the expression for )*(ea , )*(eb , )*(ec  and )*(ed  back into Equation 

(2-9), we obtain the interpolation function as given by: 

)(
6

1),,(N )(*)(*)(*)(*
)(

(e)
j zdycxba

V
zyx e

j
e

j
e

j
e

je +++=      (2-15) 

It can be easily shown that the derived shape function has the following property 



     25

as it should be.  

 
⎩
⎨
⎧

≠
=

==
ji
ji

zyx ij
e

i 0
1

),,(N )( δ          (2-16) 

and furthermore that ),,(N )( zyxe
i  vanishes when the observation point is on the 

surface of the tetrahedron opposite the j -th node. As a result, inter-element 

continuity of the interpolated function is guaranteed. 

Step3:  

Integrating Equation (2-8) by part, we can obtain 

∑∫∫∫

∑∫∫∫

∑∫∫∫

=

∂
∂

∂
∂

+
∂

∂
∂

∂
+

∂
∂

∂
∂

−

∂
∂

∂
∂

+
∂

∂
∂
∂

+
∂

∂
∂
∂

i

ee
i

i

e
i

ee
i

ee
i

e

e
i

e

i

e
i

e
e

i

e

dxdydzN

dxdydz
z

N
zy

N
yx

N
x

dxdydzN
zz

N
yy

N
xx

)sinh(

])()()[(

)]()()([

)()(

)()()()()()(

)(
)(

)(
)(

)(
)(

ψ

ψψψ

ψψψ

 (2-17) 

Step4:  

Applying Gauss divergence theorem to Equation (2-17), we can obtain  

∑∫∫∫

∑∫∫∫

∑∫∫

=

∂
∂

∂
∂

+
∂

∂
∂

∂
+

∂
∂

∂
∂

−

⋅
∂
∂

+
∂
∂

+
∂
∂

i

ee
i

i

e
i

ee
i

ee
i

e

j

e
i

dxdydzN

dxdydz
z

N
zy

N
yx

N
x

dxdynNk
z

j
y

i
x

)sinh(

])()()[(

ˆ]ˆˆˆ[

)()(

)()()()()()(

)(

ψ

ψψψ

ψψψ

   (2-18) 

Then, by substituting trial function, Equation (2-7), into Equation (2-18), we can 

obtain 



     26

∑∫∫∫

∑∑∫∫∫

∑∑∫∫

=

∂
∂

∂

∂
+

∂
∂

∂

∂
+

∂
∂

∂

∂
−

⋅
∂

∂
+

∂

∂
+

∂

∂

i

ee
i

j i

e
ij

e
j

e
ij

e
j

e
ij

e
j

j i

e
i

j
e

jj
e

jj
e

j

dxdydzN

dxdydz
z

N
z

aN
y

N
y

aN
x

N
x

aN

dxdynNk
z

aN
j

y
aN

i
x

aN

)~sinh(

])()()[(

ˆ]ˆˆˆ[

)()(

)()()()()()(

)(
)()()(

ψ

 (2-19) 

Now define: 

)ˆˆˆ(ˆ
)()()(

k
z

aN
j

y
aN

i
x

aN j
e

jj
e

jj
e

j

∂

∂
+

∂

∂
+

∂

∂
−=τ       (2-20) 

Equation (2-19) can be rewritten as follows, 

∫∫∑∫∫∫

∑∑∫∫∫
−−=

∂
∂

∂

∂
+

∂
∂

∂

∂
+

∂
∂

∂

∂

dxdydxdydzN

dxdydza
z

N
z

N
y

N
y

N
x

N
x

N

n
i

ee
i

j
j

i

e
i

e
j

e
i

e
j

e
i

e
j

τψ )~sinh(

])()()[(

)()(

)()()()()()(

  (2-21) 

or, 

∫∫∑∫∫∫

∑∑∫∫∫

−−=

++

=

= =

dxdydxdydzN

dxdydzaddccbb
V

n
i

ee
i

j
e

i
e

j
e

i
e

j
e

i
e

j
j i

e

τψ
4

1

)()(

)(*)(*)(*)(*)(*)(*
4

1

4

1
)(

)~sinh(

)(
36

1
2

    (2-22) 

where 

∫∫∫ = (e)Vdxdydz            (2-23) 

Next, by substituting Equation (2-23) into Equation (2-22), we can obtain 

∫∫∑∫∫∫

∑∑

−−=

++

=

= =

dxdydxdydzN

addccbb
V

n
i

ee
i

j i
j

e
i

e
j

e
i

e
j

e
i

e
je

τψ
4

1

)()(

4

1

4

1

)(*)(*)(*)(*)(*)(*
)(

)~sinh(

)(
36

1

     (2-24) 

Define 

∑∑
= =

++=
4

1

4

1

)(*)(*)(*)(*)(*)(*
)(

)( )(
36

1
j i

e
i

e
j

e
i

e
j

e
i

e
je

e
ij ddccbb

V
K      (2-25) 

∫∫∑∫∫∫ −−=
=

dxdydxdydzNF n
i

ee
i

e
i τψ

4

1

)()()( )~sinh(       (2-26) 



     27

Finally, we can obtain the matrix equation of the FE-discretized Poisson-Boltzmann 

Equation as 

{ } { })()()( ][ e
i

e
j

e
ij FaK =           (2-27) 

 

2-2-2 Interpolation with Second-order Shape Function  

For some physical problems, tetrahedral elements with first-order shaper 

function are good enough for maintaining high accuracy. However, it may not be so 

for some problems like the present Poisson-Boltzmann equation due to the 

exponentially varying source term. Elements with higher order shape function are 

often necessary to improve the accuracy of the numerical solution, while the 

complexity of implementation and required memory increases with increasing order 

of shape function. Considering the compromise between numerical accuray and 

complexity of implementation, elements with the second-order shape function 

represents an optimum choice. Although the 4-node tetrahedron is the simplest solid 

element, they are not the preferred elements in engineering analysis because of their 

low accuracy. In what follows, elements with the second-order shape function are 

presented in detail. 

The natural or tetrahedral coordinates system 1L , 2L , 3L  and 4L  of a 

tetrahedron element were shown in Fig. 2-1. For a quadratic interpolation model, 



     28

there are 10 nodal unknowns, 1 at each of the nodes as indicated in Fig. 2-2. The 

nodes 1, 2, 3 and 4 correspond to the corners, whereas the nodes 5 to 10 are located at 

the midpoints of the edges of the tetrahedron element. The variation of the field 

variable is given by 

[ ] [ ] )(

1021

)(
...),,(

ee
NNNNzyx Φ=Φ=φ      (2-28) 

where iN  can be found as 

  

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

=
=
=
=
=
=

=−=

4110

439

428

317

326

215

4
4
4
4
4
4

4,3,2,1),12(N

LLN
LLN
LLN
LLN
LLN
LLN

iLL iii

        (2-29) 

and 

  

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

====

====
====

=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

Φ

Φ
Φ

=Φ

)0,
2
1(

)0,1(
)0,1(

),,(

),,(
),,(

2143

4312

4321

)(

101010

222

111
)(

10

2

1

)(

LLLLat

LLLLat
LLLLat

zyx

zyx
zyx ee

e

φ

φ
φ

φ

φ
φ

M

MM

    (2-30) 

Note that jL  is defined the same as Equation (2-15), but iN  are replaced with jL . 

For example, to assemble the coefficient matrix ∫∫∫ ∇⋅∇ dxdydz11 φφ ,  



     29

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

+−+

+−+

+−

=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+++⋅−+
+++⋅−+
+++⋅−

=∇

kLd

jLc

iLb

V

kydcydbdadVzd
jzdcycbcacVyc

izdbycbbabVxb

V

]2
2
1[

]2
2
1[

]2
2
1[

3
1

]2223)2[(
]2223)2[(
]2223)2[(

18
1

1
*
1

1
*
1

1
*
1

*
1

*
1

*
1

*
1

*
1

*
1

*
1

2*

*
1

*
1

*
1

*
1

*
1

*
1

*
1

2*
1

*
1

*
1

*
1

*
1

*
1

*
1

*
1

2*
1

21

1

φ

  (2-31) 

and 

)
4
124(

9
)(

9

)2
2
1)((

1
2
12

2*
1

2*
1

2*
1

2

2
1

2*
1

2*
1

2*
1

11

+−
++

=

+−++
=∇⋅∇

LL
v

dcb
v

Ldcb
φφ

      (2-32) 

By employing area coordinates, the volume integrals can be easily evaluated from the 

relation 

  V
dcba

dcbadvLLLL
V

dcba 6
)!3(

!!!!
4321 ++++

=∫        (2-33) 

Then, 

 ∫∫∫
++

=∇⋅∇
20
3

9
)( 2*

1
2*

1
2*

1
11 v

dcbdxdydzφφ        (2-34) 

Some discussion of the derivation are shown in Appendix D and are not 

described here for brevity. 

 

2-3 Conjugate Gradient Method for Linear Algebra Equation 

The conjugate gradient method was developed in 1952 by Hestenes and Stiefel 

[1952] as an improvement to the steepest descent method. Whereas steepest descent 



     30

approaches the solution asymptotically, the conjugate gradient method will find the 

solution in n iterations (assuming no round-off error). There are many solvers 

including this method or subroutine presently [Holst et. al., 2000]. In our laboratory, 

the subroutine of conjugate gradient method of parallel version has developed by Hsu, 

K.-H [2006]. 

Generally, in the linear system bAx =  suppose the coefficient matrix A is 

symmetric and positive definite. Solving bAx =  is equivalent to minimizing the 

quadratic function bxAxxxQ TT −=
2
1)( . The conjugate gradient method is based on 

the idea that the convergence to the solution could be accelerates if we minimize Q 

over just the line that points down gradient. To determine 1+ix  we minimize Q over 

),,,,( 2100 ippppspanx L+ , where the kp  represent previous search directions. An 

added advantage to this approach is that, if we can select the kp  to be linearly 

independent, then the dimension of the hyperplane will grow one dimension with each 

iteration of the conjugate gradient method. This would imply that (assuming infinite 

precision arithmetic) the solution of the linear system bAx =  would be obtained in 

no more than N steps, where N is the number of unknowns in the system. Major 

algorithm in this method is summarized as: 

For each process j; 

step 1. )( jIjI bUpdateb =  



     31

step 2. 00 =jx , 00 =jIx ; jj br =0  and jIjI br =0  

step 3. Solve ),(),( 0000
jIjjIj rrzzM = ; 00

jj zp = , 00
jIjI zp =  

step 4. ),;,(Pr 00000
jIjjIj rrzzoductInnerr =  

Do k = 0, 1, 2…., Maximum Iterations 

step 5. )),(,(),( k
jI

k
j

k
jI

k
j ppAMultiplyMatrixqq =  

step 6. ),;,(Pr 0000
jIjjIj

k qqppoductInner=τ  

step 7. k
kk r
τα =  

step 8. k
j

kk
j

k
j prx α+=+1 ; k

jI
kk

jI
k

jI prx α+=+1  

step 9. k
j

kk
j

k
j qrr α−=+1 ; k

jI
kk

jI
k
jI qrr α−=+1  

step 10. Solve ),(),( 1111 ++++ = k
jI

k
j

k
jI

k
j rrzzM  

step 11. ),;,(Pr !1111 +++++ = k
jI

k
j

k
jI

k
j

k rrzzoductInnerr  

step 12. If ( Tolerancer k ≤+1 ) END 

step 13. k
kk

r
r 1+

=β ; k
j

kk
j

k
j pzp β+= ++ 11 , k

jI
kk

jI
k

jI pzp β+= ++ 11  

END DO 

For parallel conjugate gradient method, in step 1 and step 5, the node-node of 

interface of subdomain need to do a communication. Besides, in step 6, all node of 

subdomain need to do one collective communication. 

 



     32

2-4 Inexact Newton-Raphson Iterative Scheme 

The method of Newton-Raphson is a classical tool for the study of the existence 

of the solution of nonlinear PDE of certain types [Holst et. al., 1994]. It is also useful 

for the numerical solution of nonlinear types of problems approximated, for instance, 

by the finite difference, finite element or boundary element method. In the present 

thesis, an inexact Newton iterative scheme is employed to solve the nonlinear 

FE-discretized Poisson-Boltzmann equation. 

Following the finite element formulation, Equation (2-6) yields a nonlinear 

algebraic system in the form 

[ ]{ } { })(UFUK = ,                                (2-35) 

where [ ]K  and { })(UF  are derived from the Laplacian term and the nonlinear forcing 

term, respectively. Note that the additional term due to the non-homogenous Dirichlet 

boundary condition included in { })(UF . This nonlinear algebraic system is solved by 

an inexact Newton iterative method, which can be described as follows. Let )0(U  be a 

given initial estimate and assume that )(kU  is the current approximation. Then the new 

approximation )1( +kU  can be computed through 

)( )()1()( kkk UBUA =+ ,                                (2-36) 

where [ ] )()( kk JKA −=  and )()()()( )()( kkkk UJUFUB −= . Equation (2-36) is solved 

at each iterative step until convergence is reached. In our implementation, the non-zero 



     33

entries of )(kA  are stored in the compressed sparse row (CSR) format that is 

computationally efficient both in terms of storage and matrix operations [Saad, 2003]. 

Here, )(kJ  is the Jacobian matrix for )(UF . Further, it can be readily shown that )(kJ  

is a diagonal matrix if the nodal quadrature is used to evaluate the integration of the 

nonlinear term in the Galerkin FE formulation. Details of the derivation are shown in 

Appendix A and are not described here for brevity. Diagonalization of the Jacobian 

matrix )(kJ  is important since the memory for storage is greatly reduce as well as the 

much easier parallelization of this matrix in practice. 

 

2-5 Parallel Implementation of the P-B Equation Solver 

2-5-1 Introduction to Parallel Computing 

There is a continual demand for greater computational power from computer 

system than is currently possible. Areas requiring great computational speed include 

numerical simulation of scientific and engineering problem. A parallel computer, as 

defined by Almasi and Gottlieb [1989], is a collection of processing element that 

cooperate and communicate to solve large problems fast. Parallel computers can be 

viewed as a collection of processors and memory units which are connected by an 

interconnection network. The purpose of parallel computing is to get work done in 

less time and also to solve problems which can not fit in a single computers memory. 



     34

A parallel computer, as we have mentioned is either a single computer with 

multiple internal processors or multiple computer interconnected to from a coherent 

high-performance computing platform. There are two basic types of parallel computer: 

Shared memory multiprocessor and Distributed-memory multicomputer. 

A natural way to extend the single-processor model is to have multiple 

processors connected to multiple memory modules, such that each processor can 

access any memory module in a so-call shared memory configuration, as shown in 

Figure 2-3. The connection between the processors and memory is through some from 

of interconnection network. A share memory multiprocessor system employs a single 

address space, which means that each location in the whole main memory system has 

a unique address that is used by each processor to access the location. 

In Distributed Memory architecture parallel computers, memory is physically 

distributed among processors; each local memory is directly accessible only by its 

processor. Synchronization is achieved by moving data between processors by a fast 

interconnection network shown in Fig 2-4. 

In our laboratory, we had set up PC Clusters which are use distributed memory 

system shown in Fig 2-5. The advantage of this kind of architecture is that it is 

scalable to a large number of commodity processors. A major concern with this 

scheme is data decomposition; the data being operated should be divided equally to 



     35

balance the load, and also should be done in an efficient manner in order to minimize 

communication. The scalability depends on the type of interconnection between the 

processors. 

 

2-5-2 Parallel Implementation 

In order to parallelize the Poisson-Boltzmann equation solver, we chose Message 

Passing Interface (MPI) library [http://www-unix.mcs.anl.gov/mpi/] as our standard 

parallel programming. MPI provides library routines for message-passing and 

associated operations. A fundamental aspect of MPI is that it defines a standard but 

not the implementation, just as programming languages are defined but not how to 

compilers for the languages are implemented. MPI library of a set of standard 

subroutine calls which allow parallel programs to be written in distributed memory 

system. 

Besides, we use METIS [http://glaros.dtc.umn.edu/gkhome/views/metis] to 

distribute the cells and nodes in a system. METIS is a family of programs for 

partitioning unstructured graphs and hypergraphs and computing fill-reducing 

orderings of sparse matrices. The underlying algorithms used by METIS are based on 

the state-of-the-art multilevel paradigm that has been shown to produce high quality 

results and scale to very large problems. 



     36

The Poisson-Boltzmann equation solver is parallelized by domain decomposition 

as shows Fig.2-6. In distributed parallel finite element analysis, the domain 

considered is first decomposed into a number of subdomains by preprocessing 

program. Then, one processor is assigned for each subdomain, though other variations 

are also possible. Computations are then performed on each processor on the local 

subdomain and communication takes place with the other processors whenever 

needed, for example, during the matrix solving process. If the domain is partitioned 

into a set of non-overlapping subdomains then the methods used are called iterative 

substructuring methods. 

Fig 2-7 summarizes schematically the procedure of the proposed parallelized 

Poisson-Boltzmann equation solver. The steps of the procedure are briefly described 

here. 

1. Initialize MPI and synchronize all processors to prepare for parallel 

computation. 

2. Read in the grid from the host processor and distribute the grid to all 

processors according to pre-partitioned information. 

3. Compute the coefficient matrix in each processor and make any necessary 

communication between neighboring processors. 

4. Set up initial and boundary conditions in each processor and set up k=0. 



     37

5. Newton iteration loop begins, k=k+1. 

6. Update [A], {F} in equation (2-35) and make any necessary communication 

between neighboring processors. 

7. Solve )( )()1()( kkk UFUA =+  using Parallel CG with the 

subdomain-by-subdomain scheme. 

8. If 0εε ≤
∞

, then go to the next step. Otherwise, go back to Step 5. Note 0ε  

is the prescribed convergence criterion of the Newton-Raphson scheme, while 

}max{ 1

1

+

+

∞

−
= k

kk

U
UUε . 

9. Gather all computed data in the host and calculate the distribution of the 

electric field. 

10. Output the data and stop the program. 

 

2-6 Force Calculation in an Electrostatic Field 

 From the potential distribution obtained by solving the Poisson-Boltzmann 

equation, the electrostatic force on the spherical particles is calculated by integrating 

the total stress tensor, defined as  

 ]
2
1[ EIEEETij ⋅−+ΔΠ= ε          (2-37) 

where ψ−∇=E  is the electric field vector; I  represents the identity tensor, and 

ΔΠ  is the osmotic pressure difference between the electrolyte at the particle surface 



     38

and bulk solution, ΔΠ  can defined as 

 )1(cosh2 −=ΔΠ ψKTnb          (2-38) 

where bn  is the bulk ion number density of the electricity neutral electrolyte. 

Force is obtained by integrating the stress tensor over the surface of a particle as  

∫ ⋅=
S

ij ndSTF             (2-39) 

where n  is the unit outward surface normal, and the subscript S  represents the area 

over the closed surface of the particle. Note that the stress tensor is calculated from 

the potential but the force on the sphere also includes a contribution from the osmotic 

pressure generated by the electric field. However, pressure variation due to the field at 

the sphere surface is normally canceled by electrical effects [Russel et. al., 1989] so 

that we can assume the ΔΠ  term is zero.  



     39

Chapter 3 Validation of the Parallel Poisson-Boltzmann 

Equation Solver 

3-1 Convergence of the PPBES 

Table 3-1 (a) and (b) summarizes the convergence study with a good initial guess 

and all-zero guess, respectively for a typical simulation (CPU No.=6; 81,354 nodes 

and 458,064 elements). A good initial guess is from the solution of last level mesh by 

interpolation. Results show that, with a good initial guess, only three Newton iterations 

are required to achieve the convergence criterion ( 0ε =10-7) in the present inexact 

Newton iterative scheme. On the other hand, if all zeros are used as the initial estimate, 

five Newton iterations are needed. Compared with all zeros are used as the initial 

estimate (relative residual=10-7, total time=394.32sec), a good initial guess (relative 

residual=10-7, total time=301.57sec) is saving about 24% total CPU time. 

 In addition, approximately 900-1300 iterations are required for the convergence 

(relative residual of from 10-5 to 10-7) in the parallel CG solver within each Newton’s 

iteration, since we do not use any preconditioning techniques. In addition, numerical 

experiments show that relative residual of 10-5 for the CG solver is the optimum 

choice in terms of the runtime and accuracy. If we choose a low relative residual 

(10-4), not only increase the number of iterations for the CG solver but also bring the 

solution of inaccuracy. To further reduce runtime, a robust preconditioner, such as the 



     40

geometrical additive Schwarz domain decomposition method [Nadeem and Jimack, 

2002], could be used. This work is currently in progress in our group and will be 

reported in the near future. 

 

3-2 Validation 1: The Potential Distribution around a Charged Sphere 

In presently papers review, Tuinier [2003] provided simple expressions are 

presented that give a very accurate description of electrostatic potential around a 

single sphere and cylinder for arbitrary double-layer thickness and surface potential. 

Completed PPBES is used to compute the potential distribution around a charged 

sphere, and the results are compared with analytical and approximate solutions [Tuinier, 

2003] to validate the parallelized code.  

 Table 3-2 summarizes the previously developed analytical and approximate 

solutions for this case. Normalized radius of the sphere is kept as 5.0, while two cases 

of constant value of electrostatic potential ( 0Ψ =1.0 and 5.0) are set at the surface of the 

charged sphere. Note that since PPBES is a 3D code, only 1/16 of the full domain is 

used for this simulation by taking advantage of the symmetry of the problem, while the 

Neumann boundary conditions are used at the symmetric planes. Fig 3-1 shows the 

surface mesh distribution of the sphere (176,309 elements; 36,396 nodes). 

Fig. 3-2a shows that when 0Ψ =1.0, the computed potential distribution agrees very 



     41

well with both the analytical and approximate solutions [Tuinier, 2003], because at this 

lower 0Ψ , the Poisson-Boltzmann equation can be linearized correctly. However, Fig. 

3-2b shows that when 0Ψ =5.0, the computational potential distribution deviates 

considerably from the analytical solution but stays quite close to the approximate 

solution. This is because at this higher 0Ψ , the Poisson-Boltzmann equation cannot be 

linearized correctly in the derivation of the analytical solution. 

 

3-3 Validation 2: Interaction Between Two Like-charged Spheres 

within a Cylindrical Pore 

In this section, we will simulate a geometrically confined pair of charged spheres 

concerning the phenomenon of long-range electrostatic attraction between particles of 

like charge [Larsen and Grier, 1997]. The long-range electrostatic interaction of two 

colloidal particles confined in a cylindrical pore was studied in the present paper 

[Bowen and Sharif, 1998], we use the same values of parameters and geometry, such as 

the 1:1 electrolyte, the potential on surfaces of the sphere particles 0.3=Ψs , the 

potential on the cylindrical pore surface 0.5=Ψp , the radius of the particles 185.1=a , 

the sphere radius to pore radius ratio 0.13. Taking advantage of the symmetry in this 

problem, only 1/4 of the whole physical domain is necessary for simulation, resulting in 

the need for 0.64 million elements (close to 0.11 million nodes). 



     42

Fig 3-3 shows the calculated potential distribution for the sphere confined in a 

pore at separation distances 6=r . Fig 3-4 shows the potential along the midplane BC 

at 6=r  for the first-order shape function. We can see the potential along this plane is 

almost decreasing at all distance, but after Z=3.4 the potential become increasing. By 

comparing with previous numerical data [Brwen and Sharif, 1998], we also have 

almost the same results, but still have 1% inaccuracy. Our calculations confirm 

speculation that the attraction between confined spheres. Besides, if we choose the 

second-order shape function, the accuracy will be improved. 

 

3-4 Parallel performance of the PPBES 

To study the parallel performance of the PPBES, we consider a test case with a 

charged sphere (radius=5, 0Ψ =2.0) confined in a cylindrical pore with the sphere radius 

to pore radius ratio of λ=0.35. Taking advantage of the symmetry in this problem, only 

1/16 of the whole physical domain is necessary for simulation, resulting in the need for 

0.61 million elements (close to 0.1 million nodes). Fig. 3-5 illustrates the resulting 

speedup as a function of the number of parallel processors (up to 32), and Table 3-3 

summarizes the detailed time breakdown for various components of the parallelized 

code. Among these, the matrix solver using parallel CG method occupies ~50% of the 

total runtime and setup the matrix occupies ~8% for the number of processors tested in 



     43

the present study. This indicates that further reduction of the runtime can be highly 

expected if the matrix solver is greatly improved. Total runtime is ~2,486 seconds with 

the use of a single processor as compared to ~102 seconds with the use of 32 processors, 

which results in 76.2% in parallel efficiency. The results clearly show that the current 

parallel implementation of the Poisson-Boltzmann equation using the 

subdomain-by-subdomain method performs reasonably well for the typical problem 

size. A smaller problem size was not tested in this study since it is irrelevant in practice 

for typical three-dimensional applications. Indeed, it is expected that the parallel 

speedup will be even greater if a larger problem size is considered. Thus, not only can 

the current parallel implementation help to greatly reduce the runtime required for 

parametric study to understand the distribution of electrostatic potential but also 

increase tremendously the size of the problem that the memory-distributed parallel 

machine can handle. 

 

3-5 The Second-order Shape Function for PPBES 

Figure 3-6 shows that the distribution of potential around the charged spheres 

(radius a=0.325μm) near a like-charged plate (distance h = 2.5μm) at level-0 for 

solutions of the first-order shape function (Fig 3-6a) and the second-order shape 

function (Fig 3-6b). For the test cases, Table 3-4 shows that the mesh levels of the 



     44

number of nodes and elements. We can find the solution of second-order shape 

function better than the solution of first-order shape function at level-0 show in Figure 

3-7 and Figure 3-8. It is a clear demonstration that when we use the second-order 

shape function for mesh of level-0, which the solution between the first-order shape 

function for mesh of level-3 and mesh of level-4. In other words, the solution of the 

second-order shape function will increase in accuracy over the first-order shape 

function. The advantage of second-order shape function is that they can define the 

edge points of elements in order to increase the solution of accuracy. It is not 

necessary to use very small elements. Therefore, we can use the second-order shape 

function to reduce the number of elements at refinement level.  

Table 3-5 shows the information (case from Section 3-3) that compares the 

first-order with the second-order shape function for mesh of level 0. For the same 

order nodes (~110,000 nodes, the second-order shape function is from original 16,280 

nodes), we can find the total CPU time is almost closed (~90 second). Approximately 

720 iterations are required for the convergence in the parallel CG solver within each 

Newton’s iteration. 

Then, we use the mesh data of Table 3-5 to validate the solution of accuracy. Fig 

3-9 shows the case for interaction between two like-charged spheres within a 

cylindrical pore (the same as case of Section 3-3) but use the second-order shape 



     45

function. The result shows that the solution of the second-order shape function will 

increase in accuracy over the first-order shape function. The inaccuracy reduces near 

to about 0.2%. 



     46

Chapter 4 Parallel Adaptive Mesh Refinement for 

Unstructured Tetrahedral Mesh  

In this chapter, four major parts are described, including the basic algorithm for 

parallel adaptive mesh refinement (PAMR), coupling of PAMR with parallel 

Poisson-Boltzmann solver using Finite Element Method by a shell script of UNIX 

system, validation parallel performance of PAMR and application to a realistic 

three-dimensional problem. In each part, a general description and related specific 

algorithms are respectively provided. 

 

4-1 Parallel Adaptive Mesh Refinement 

4-1-1 Basic Algorithm of Parallel Adaptive Mesh Refinement 

In the adaptive mesh refinement module, the data to record new added nodes is 

based on cell. In other words, every cell would only know new added nodes that 

belong to it. The number of added nodes is fixed in each process. However, before to 

divide cells, the number of added nodes must be unique in all processors. Besides, in 

this module, it needs a neighbor identifying arrays. This array defines the interfacial 

cell for each face. It would record the global cell number of interfacial cells for each 

face of the cell. 

At each mesh refinement step, individual edges are marked for refinement, or no 



     47

change, based on an error indicator calculated from the solution, for example, the 

electric field. These cells which need to refine would add new nodes on each edge. 

They are called isotropic cells. For two-dimensional mesh, a parent cell [Lian et. al., 

2006] is divided to form four child cells. For three-dimensional mesh and tetrahedral 

cell, the parent cell is divided to form eight child cells, as show in Fig 4-1. 

When isotropic cells add nodes on their edges, the cells neighbor them would 

appear one to three handing nodes at the same time. The cells which have hanging 

nodes but not belong to isotropic cells are called anisotropic cells. In order to remove 

hanging nodes in anisotropic cells, it has some procedures to do. Using 

two-dimensional mesh as an example is shown in Fig 4-2.  

Then, we rewrite the above that considering the complexity of involved logic and 

data structure, we are only interested in refining the unstructured tetrahedral mesh. The 

general idea of refining the mesh in the current study is to simply “isotropically” refine 

the parent cells that require refinement into eight child cells. These child cells from 

isotropic refinement are classified as “isotropic cells”. In contrast, those cells other than 

the isotropic cells are then classified as “anisotropic cells”. The important steps in 

refining cells can be summarized as follows. (1) Add a node on the cell edges of 

“isotropic” and “anisotropic” cells. (2) Refine cells that have added node(s) on the 

edge(s), and (3) update connectivity and cell neighbor-identifying information. 



     48

 

When hanging nodes appear in a triangular cell, the cell must be divided into 

different way. However, for three-dimensional mesh, the division is more complex. 

The division would consider the number and position of the hanging nodes, to decide 

whether to add new nodes to obey the refinement rules. There are three results. One is 

to divide into eight child cells. Another is to divide into four child cells. The other is 

to divide into two child cells. The detail refinement rules are be show in Fig 4-3 [Wu, 

2002]. 

 

4-1-2 Cell Neighboring Connectivity 

In general, the AMR scheme [MacNeice et. al., 2000; Norton et. al, 2001; Oliker 

et.al., 2000] often applies the edge-based data structure in storing and searching 

connectivity-related data. With this edge-based data structure, the cells containing a 

common refined edge can be easily identified, which is necessary in the AMR scheme. 

However, the edge-based data structure is relatively memory demanding. For example, 

up to ~7N edges can result from a tetrahedral mesh with N nodes, while only ~6N 

cells are formed. With this edge-based data structure, ~10 times of the number of 

edges are often required since up to ~10 or more cells share a single edge in a typical 

tetrahedral mesh, while only four times of the number of the cells are required (four 

faces in a cell) if the cell-based data structure is employed. Thus, the overall memory 

saved in this regard can be up to 2~3 times if the cell-based data structure is utilized. 

This justifies the use of the cell neighbor-identifying array in the present study. 



     49

Since we do not utilize the edge-based data structure, how to quickly search the 

cells sharing a common edge becomes very important in the refinement procedure. 

The basic concept of the cell-based data structure is based on the fact that only two 

faces share a common edge in a cell, which can be used to efficiently sort the sharing 

faces. Fig. 4-4a shows a typical example of the common edge shared by the adjacent 

cells. Edge A-B is shared by Cell A-B-1-2, A-B-2-3, A-B-3-4, A-B-4-5, and A-B-5-1. 

For brevity, the procedure of sorting the faces sharing the common Edge A-B is used 

as an example to demonstrate the general ideas of face sorting using cell-based data 

structure and is summarized as follows: 

1 Define Cell A-B-1-2 as the initial searching cell.  

2 Search the neighboring cells (A-B-2-3 and A-B-5-1) which share the 

common edge (Edge A-B) according to the cell neighboring-identifying 

array and finite element connectivity.  

3 Select one of these two neighboring cells (e.g., Cell A-B-2-3 through Cell 

Interface A-B-2 shown in Fig. 4-4b) as the current searching cell. 

4 Mark Edge A-B as a refined edge with local edge numbering in Cell 

A-B-2-3. 

5 Search the next neighboring cell (Cell A-B-3-4 through Cell Interface 

A-B-3) which shares the common edge (Edge A-B) with Cell A-B-2-3 

according to the cell neighboring-identifying array and finite element 

connectivity. 



     50

6 Assign the next neighboring cell as the current searching cell. 

7 Repeat the similar process in Procedures 4-5 until the next neighboring cell 

is the same as the initial searching cell defined in Procedure 1. For example, 

as shown in Fig. 4-4c, the neighboring cell of face i′  of Cell A-B-1-5 (the 

same as the face j′  of Cell A-B-1-2) is the Cell A-B-1-2, which is the 

defined initial searching cell. 

8 For cases in which this cell-by-cell searching process meets the physical 

face boundary or IPB (Interior Processor Boundary), the other neighboring 

cell (e.g., A-B-5-1 through Cell Interface A-B-1) of the initial searching cell 

(Cell A-B-1-2) will be selected as the current searching cell. The algorithm 

will repeat the similar process in Procedures 4-5 until another physical face 

boundary or IPB is found in the process of identifying the cell group.  

 

4-1-3 Cell-Quality Controls 

In the process of adaptive mesh refinement, a refined mesh which has a larger 

aspect ratio often appears in the final mesh distribution, especially in the “anisotropic” 

cells. Most mesh-smoothing schemes tend to change the structure of a given mesh to 

achieve the “smoothing effect” (a better aspect ratio) by rearranging the position of 

the nodes in the mesh. Changes made by a smoothing scheme, however, could 



     51

possibly modify the desired distribution of mesh density produced by the AMR 

procedure. Additionally, the cost of performing a global mesh smoothing could be 

high. Alternatively and in a simpler way, it is possible to prevent or slow down the 

degradation of cell quality during a repeated adaptive refinement process. The present 

cell-quality control scheme classifies the cells based on how they will be refined. This 

allows us to avoid creating cells with large aspect ratios during the refinement. After 

identifying those cells, we can then refine them with a better refining strategy.  

The basic idea of the proposed mesh-refining scheme is to simply prevent the 

further deterioration of cell quality while refining the cells that originate from 

previously “anisotropic” cells. The proposed procedures of the cell-quality control 

scheme are shown schematically in Fig. 4-5 [Jeng, 2004] along with the 

corresponding procedures without cell-quality control. The logic looks quite 

complicated at first glance; however, it is conceptually simple in reality. A general 

rule of thumb is to identify if the hanging nodes occur at the “normal edge” or “short 

edge” of the cell. Note that the “normal edge” is defined as one of the six edges of an 

isotropic cell, while the “short edge” results from the bisection of a “normal edge” in 

a previous level of refinement. If at least one of the hanging nodes occurs at the short 

edge, special treatment such as that in Fig. 4-5 [Jeng, 2004] is required to prevent the 

further deterioration of cell quality in later mesh refinement. Otherwise, the procedure 



     52

in Fig. 4-3 [Wu, 2002] applies directly.  

In the data structure, we need to record each previously refined cell with an index 

showing if it is an “isotropic” cell or an “anisotropic” cell (two or four refined cells, 

respectively). This can then be used for cell-quality control purposes as shown in Figs. 

4-5a and 4-5b. The latter figures show the corresponding process of refining the cell if 

the parent cell originates from an “anisotropic” cell due to two or four refined cells, 

respectively. 

For example, Fig4-6 shows a typical cell (1-2-3-4). Because it is affecting by 

other cell, it has hanging nodes (8, 9, A). In order to handle hanging nodes, we 

connect nodes (8, 9, A) to node 4. But the aspect ratios of typical cells (1-4-8-A, 

5-4-8-9 and 7-4-9-A) will be worse. However, if we add three nodes (B, C and D), 

and connect them with other nodes. Those eight child typical cells (4-B-C-D, 1-8-A-B, 

5-8-9-D, 7-9-A-C, 8-9-A-B, 8-9-B-D, 9-A-B-C and 9-B-C-D) would have better 

aspect ratios. 

However, it often creates too many isotropic child cells, which tremendously 

increases the computational load of the solver. For example, in the present 

implementation as shown in Fig. 4-7, the original hanging node “8” is directly removed 

by adding two additional nodes (A and B) to form four child cells, instead of two child 

cells (1-4-8-7 and 5-4-8-7) from the parent cell 1-5-7-4. The present proposed 



     53

cell-quality control scheme produces refined cells with a better aspect ratio as 

compared to the “isotropic” refinement presented [Wu et. al., 2004]. So 

cell-quality-control will allow this division and not to affect it. And, it would get 

better aspect ratios. 

If the boundaries of the computational domain are not straight, it is not sufficient 

to place the new node in the midway of the edge of the face of the parent cell. If this 

is done, it would dual to a rough piecewise representation of the original geometry 

results. What must be done is to move the new node location onto the real boundary 

contour surface. In the current implementation, it is assumed that the boundaries can 

be represented in parametric format. Specific neighbor identifiers are assigned to 

these non-straight boundary cells to distinguish from straight boundary cells. 

Whenever the boundary cells, which require mesh refinement, are identified as a 

non-straight boundary cell, the corresponding parametric function representing the 

surface contour are called in for mesh refinement to locate the correct node positions 

along the parametric surface. 

 

4-1-4 Surface Cell Refinement 

If the boundary surface of the computational domain is not planar, it is not 

sufficient to place the added nodes directly on the edge (called “boundary edge” 



     54

hereafter) of the parent-cell face that belongs to the boundary. Should the refined 

nodes be placed directly on the boundary edges, this may result in the rough 

piecewise representation of the original boundary surface. What must be done is to 

move the position of the added nodes onto the real boundary contour surface. In the 

present implementation, it is assumed that the boundary surface can be represented in 

a parametric format (a second-order polynomial) in several segments specified by the 

user. Special cell neighbor identifiers are assigned to these curved boundary cells to 

distinguish them from straight boundary cells within the computational domain. 

Whenever the boundary cell which requires refinement is identified as a curved 

boundary cell, the corresponding parametric function representing the true surface 

contour is called in to locate the correct node positions along the parametric surface.  

 

4-1-5 Modules of Parallel Adaptive Mesh Refinement 

All modules in the core of the PAMR are explained in detail as follows [Jeng, 

2004]: 

Module I. Add nodes on cell edges: 

I-1. Add new nodes on all edges of “isotropic” cells that require refinement. 

These cells are called “isotropic” cells since it is refined from one cell to 

eight smaller cells. 



     55

I-2. Add new nodes to “anisotropic” cells, which may require further treatment 

in the following steps, if hanging nodes exits in these cells... Note that these 

cells are called “anisotropic” since they are not those cells originally require 

“isotropic” mesh refinement. 

I-3. Communicate the hanging-node data to corresponding neighboring 

processors if the hanging nodes are located at the IPB (Interface Processor 

Boundary). If hanging-node data are received from other processors in this 

stage, then go back to Step I-2 for updating the node data.  If there is no 

hanging-node data received at this stage, then move on to the next step.I-4. 

Remove hanging nodes based on refinement rules, if need to add new nodes 

go to I-2. If all cells obey the rules without to affect them, it mean all new 

nodes are be added. 

I-4. Remove hanging nodes based on Hanging-node Removal rules. Go to Step 

I-2 to add new nodes if some more nodes addition is required. If there is no 

more node addition required, then ends this module execution. 

Module II. Renumber added nodes: 

II-1. Add up the number of the new added nodes in each processor, excluding 

those on the IPB. 

II-2. Communicate this number to all processors. These are used to add up the 



     56

total number of added nodes in the interior of all processors. 

II-3. Renumber those added nodes in the interior of the processor according to 

results from Step-II-2. 

II-4. Communicate data of added nodes on IPBs among all processors. 

II-5. Renumber the added nodes on IPBs on all processors. 

Module III. Update connectivity data: 

Form all new cells and define the new connectivity data for all cells. 

Module IV. Build neighbor identifier array: 

VI-1. Reset the neighbor identifier array. 

VI-2. Rebuild the neighbor identifier array for all the cells based on the new 

connectivity data. Note that those nbr information on faces of the cells on 

the IPBs are not rebuilt and require further treatment in the next step. 

VI-3. Record the neighbor identifier arrays that are not built in Step-IV-2, which 

the neighbor of the interested cell locates in the neighboring processor. 

VI-4. Broadcast all the recorded data in Step-IV-3 to all processors. 

VI-5. Build the nbr information on the IPBs, considering the overall 

connectivity data structure. 



     57

 

4-1-6 Procedures of Parallel Adaptive Mesh Refinement 

Fig. 4-8 shows the proposed procedure of parallel mesh refinement for 

unstructured tetrahedral mesh. Only the general procedure is described in this report, 

while details of the parallel implementation can be found elsewhere [Lian et. al., 

2006]. Basically, the parallel mesh refinement procedure in Fig. 4-8 is similar to those 

presented earlier for serial mesh refinement [Wu et. al., 2004]. In serial mesh 

refinement, cells that require refinement are first identified and then refined 

“isotropically” into eight child cells. The generated hanging nodes are then removed 

following the procedure proposed in Wu et al. [2004] by further refining the cells 

including these hanging nodes into two, four, or eight child cells. 

The detailed procedures and related data structure for parallel mesh refinement 

become much more complicated than those for serial mesh refinement, because 

parallel computing uses domain decomposition. Domain decomposition is also used 

in line with proposed parallelized of the Poisson-Boltzmann equation solver. Each 

spatial subdomain belongs to a specific processor in practice. Overall procedure, as 

shown in Fig. 4-8, can be summarized as follows: 

1. Preprocess the input data at the host server and distribute them to all 

processors. 



     58

2. Index those cells that require refinement based on the refinement criteria. In 

the current study, a posteriori error estimator of the type proposed by 

Zienkiewicz and Zhu [1987] for cell refinement is used. 

3. Check if further mesh refinement is necessary. If yes, then proceed to the 

next step. If no, then proceed to Step 9. 

4. Add new nodes into those cells that required refinement.  

4a. Add new nodes onto all edges of isotropic cells.  

4b. Add new nodes into anisotropic cells that require further refinement as 

decided in the following steps. 

4c. Communicate the hanging-node data to corresponding neighboring 

processor if the hanging nodes are located at inter-processor boundary 

(IPB). 

4d. Remove hanging nodes following the procedure as shown in Wu, et al. 

[2004]. The basic idea is to remove hanging nodes for all kinds of 

conditions and refine each indexed cell further into 2, 4, or 8 child 

cells. 

5. Unify the global node and cell numberings due to the newly added nodes 

among all processors,  

5a. Add up the number of newly added nodes in each processor, excluding 



     59

those located at IPBs.  

5b. Gather this number from all other processors and add them up to obtain 

the updated total number of nodes, including old and new nodes, but 

excluding the newly added nodes at IPBs. 

5c. Build up the updated node-mapping and corresponding cell-mapping 

arrays for those newly added nodes in the interior part of each subdomain 

based on the results in Step 5b.  

5d. Communicate data of newly added nodes at IPBs among all processors. 

5e. Build up the node-mapping array for the received new nodes at IPBs in 

each processor. 

6. Build up new connectivity data for all cells due to the newly added nodes.   

7. Build up the new neighbor-identifying array based on the new connectivity 

data obtained in Step 6. 

7a. Reset the neighbor-identifying array. 

7b. Build up the neighbor-identifying arrays for all cells based on the new 

connectivity data, excluding the data associated with the faces lying on the 

IPBs that require the updated information of the global cell number, which 

is not known at this stage. 

7c. Record all the neighbor-identifying arrays that are not rebuilt in Step 7b. 



     60

7d. Broadcast all recorded data to all processors. 

7e. Build up the neighbor-identifying arrays on the IPBs, considering the 

overall connectivity data structure. 

8. Decide if it reaches the preset maximum number of refinement. If it does, 

then proceed to the next step; otherwise return to Step 3. 

9. Synchronize all processors. 

10. Host gathers all data and outputs the data. 

 

4-2 Coupling of PAMR with Parallelized Poisson-Boltzmann Equation 

Solver 

4-2-1 A posteriori error estimator 

An a posteriori error estimator of the type proposed by Zienkiewicz and Zhu 

[1987] is used for estimating the error of the solution. 

In the case of Poisson-Boltzmann Equation, the Finite Element solution Ê  for 

the electric field, which is, to within a sign, a gradient of electrostatic potential, is 

compared with an alternative postprocessed recovered solution. The latter is called the 

“exact” solution and will be designated E~ . To obtain E~ , a very simple gradient 

recovery procedure based on averaging the nodal values of the Finite Element solution 

Ê  is used. The components of E~  are expressed via the same basic functions that were 



     61

used for the electrostatic potential and are continuous. 

In the case of the exact solution variables Ê  and E~  must coincide. In general, 

the error is defined as a deviation of one variable from the other. More precisely, the 

global absolute error is defined by expression 

2/1

2
zz

2
yy

2
xx ]dxdydz)E~-Ê()E~-Ê()E~-Ê[(

⎭
⎬
⎫

⎩
⎨
⎧

++= ∫
Ω

δ     (4-1) 

The integral begin taken over the whole domain Ω . This is simply a 2L -norm of 

the difference EE ~ˆ − . The global relative error ε  is defined by 

  2/1

222 )ˆˆˆ(
ˆ

⎭
⎬
⎫

⎩
⎨
⎧

++

==

∫
Ω

dxdydzEEE
E

zyx

δδε       (4-2) 

Absolute error iδ  in a particular element i  is defined as in Equation (4-1) except 

that the integral is taken over the element. The relation 

  ∑
=

=
N

i
i

1

22 δδ            (4-3) 

must hold, where N is the total number of elements in the mesh. 

The level of accuracy is determined by the prescribed global relative error preε  

and the corresponding absolute error Eprepre
ˆεδ = . Given preδ , the current mean 

absolute error mδ  in an element can be calculated according to 

  

2/1
22/12 )ˆ(

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

N

E

N
prepre

m

εδ
δ        (4-4) 

The current number of elements would each have to have this value of absolute 



     62

error to provide the prescribed level of accuracy, on the condition that absolute errors in 

all the elements were the same. Those elements whose absolute errors exceed the 

current mean absolute error mδ  are chosen to be subjected to subdivision. 

All mesh need some means to detect the requirement of local mesh refinement to 

better capture the variations EDL fields and hence to obtain more accurate numerical 

solutions. This also applies to parallel Poisson-Boltzmann solver. It is important for 

the refinement parameters to detect a variety of EDL. In literature, there are many 

criteria refinement. The simple criterion is the electric field usually to be adopted as 

the refinement parameter. The electric field is the potential gradient. Beside, a 

posteriori error estimator of the type proposed by Zienkiewicz and Zhu [1987] is 

common criterion of refinement. A postprocessed recovered “exact” solution of the 

electric field can be obtained from various gradient recovery schemes applied to the FE 

solution of electric field. The FE solution of the electric field is then compared with this 

“exact” solution of the electric field. A very simple gradient recovery scheme based on 

the averaging of cell values, of the FE solution of the electric field is employed. In the 

present study, a prescribed global relative error preε  of 0.0003 is used to control the 

level of accuracy. 

 



     63

4-2-2 Parallelized Poisson-Boltzmann Equation Solver with PAMR 

The PAMR presented in the previous section can be easily coupled to the current 

parallel Poisson-Boltzmann equation solver since it uses 3D unstructured tetrahedral 

mesh and MPI for data communication. The PAMR can therefore be easily packaged as 

a library and inserted into the source code of any parallel numerical solver. However, 

memory conflicts between the inserted library and the numerical solver itself may 

occur and result in a reduction of the problem size that one can handle in practice. To 

overcome this, a simple coupling procedure written in shell script (Fig. 4-9), which is 

standard on all Unix-like systems, was prepared to link the PAMR and the current 

parallel Poisson-Boltzmann equation solver. In doing so, we kept the application source 

codes intact without making any changes to it. This is especially justified if only the 

steady state of the physical problem is sought, in which normally only a few mesh 

refinements are necessary for a fairly satisfactory resolution to the problem. Thus, the 

total I/O time, in proportion to the number of couplings, in switching between two 

codes can be reduced to a minimum in practical applications. In addition, as shown in 

Fig. 4-9, after identifying those cells that require refinement, the domain is 

repartitioned using PMETIS which balances the workload among the processors based 

on the approximate final number of nodes in each processor as the weighting factor. 

 



     64

4-3 Validation and Parallel Performance of PAMR 

4-3-1 Validation of the PAMR 

To test the PAMR using the PPBES, consider a test case with two free identical 

charged spheres (radius=5), a sphere radius to pore radius ratio of λ=0.416 and a 

nondimensional separation distance of 0.5. A surface potential of 0Ψ =2.0 across the 

spheres is used to demonstrate the advantage of applying adaptive mesh refinement. 

Due to symmetry, only 1/16 of the whole domain is simulated. In the present study, a 

posteriori error estimator of the type proposed by Zienkiewicz and Zhu [1987] and 

implemented by Dyshlovenko [2001] for axisymmetric 2D Poisson-Boltzmann 

equation is used for estimating the solution error during the mesh-refining process. A 

postprocessed recovered “exact” solution of the electric field can be obtained from 

various gradient recovery schemes applied to the FE solution of electric field. The FE 

solution of the electric field is then compared with this “exact” solution of the electric 

field. A very simple gradient recovery scheme based on the averaging of cell values, 

instead of nodal values as used in Ref.[Zienkiewicz and Zhu, 1987], of the FE solution 

of the electric field is employed. This is attributed to the fact that the electric field at the 

nodes are discontinuous since we only utilize a linear shape function in the current 

study, rather than a quadratic shape function as used in Ref.[Zienkiewicz and Zhu, 

1987]. In the present study, a prescribed global relative error preε  of 0.0003 is used to 



     65

control the level of accuracy. The absolute error in each element is then compared with 

the current average absolute error based on the preε  at each level to decide if 

refinement is required. In addition, the method for calculating interaction force using 

the potential distribution on the sphere surfaces is described in detail elsewhere, such as 

Dyshlovenko [2001], and is skipped here for brevity. 

Table 4-1 using first-order shape function and Table 4-2 using second-order 

shape function summarize the evolution of the number of elements, the number of 

nodes, and the computed force of interaction between two free spheres at different 

refinement levels for first-order and second-order shape function. Note that the force 

of interaction is obtained by integrating the simulated electric field at the spherical 

surface as in previous studies [Dyshlovenko, 2001]. In Table 4-1 (the first-order shape 

function), The resulting number of nodes increased from an initial of 924 to a final 

(level-5) of 36,316; while the strength of the interaction force increased from an initial 

value of 20.9924 to a final value (level-5) of 48.4012, which is very close to the value of 

48.8360 obtained by Dyshlovenko [2001] using an axisymmetric code. However, when 

we use the second-order shape function (Table 4-2), a value of final mesh level 

(level-6) of 48.8242, which is very close to the value of 48.8360 obtained by 

Dyshlovenko [2001], there are only difference 0.04%.  Fig. 4-10a and Fig. 4-10b 

show the corresponding surface mesh distribution for first-order shape function at the 



     66

initial and final (level-5) refinement levels, respectively. The mesh quality does not 

deteriorate much after five levels of refinement using the present PAMR. All the 

simulations shown in later sections apply this adaptive mesh-refining technique, unless 

otherwise specified. 

 

4-3-2 Parallel Performance of the PAMR 

The parallel performance of the PAMR is studied using a refined mesh generated 

during the process of AMR (after 3 AMRs) using the DSMC method. Before the 

fourth PAMR, the original mesh (level-3) has 1,070,194 tetrahedral cells and 187,649 

nodes (Fig. 4-11a), while after the fourth PAMR, the amount increases to 2,701,178 

cells and 468,944 nodes (Fig. 4-11b). A test using this fairly large size of mesh lies 

mainly on the fact that the current PAMR is designed to handle a large mesh size.  

Resulting timings (in seconds) for different components of the PAMR using 

different numbers of processors (up to 64), respectively, are listed in Table 4-3 and Fig 

4-12. It is clearly shown that the timing for the preprocessing module increases 

slightly with the increasing number of processors, although the increase seems to 

level off as the processor number ≥ 32. This mild increase can be attributed to the 

initial data distribution from the host processor to the increasing number of slave 

processors. The advantages of the parallel implementation of mesh refinement can be 

clearly seen from modules I, II, and IV, of which the timings reduce dramatically with 

the increasing number of processors. For example, as the number of processors 

increases from 2 to 32, the timing for module I, II, and IV reduces to approximately 

61.4, 95.9, and 9.3 times, respectively, while it increases to 2.4 times for module III. 



     67

The corresponding overall computational time decreases 29.7 times (from 1103s to 

37.1s). Nevertheless, the timing levels off as the number of processors increases up to 

64 due to the increase of communication among processors. In addition, the total 

computational time decreases even more to 62 times (from 1090.5s to 17.6s) if the 

preprocessing time is excluded. From our experience, reading the grid data (Section 

4-1-6 Procedures of PAMR, Step 1) takes most of the time in the preprocessing 

module. Thus, the preprocessing time can be greatly reduced if the parallel processing 

of Step 1 is implemented, although we have not done so in the present study. The 

resulting increase of computational speed, excluding the preprocessing, is 

approximately scaled as N1.5 for 32≤procN  which is surprisingly good. This high 

speedup is obviously due to the dramatic decrease of the time spent in Module II, 

which is the most time-consuming part of the mesh-refining algorithm. The reasons 

for this rapid decrease of processing time in Module II (Section 4-1-6 Procedures of 

PAMR, Steps 5a-5e) include a possible cache miss of the superscalar machine due to 

the large problem size and a highly localized algorithm in renumbering the added 

nodes, except in Steps 5b and 5d which require moderate communication among 

processors. 

4-4 Application to a Realistic Three-dimensional Problem 

A completed parallelized Poisson-Boltzmann equation solver with parallel adaptive 

mesh refinement using a posteriori error estimator is used to compute the force of 

interaction between two identical charged spheres (radius a=0.325μm, aκ =1.185, and 

surface potential 0Ψ =3.0) near a charged infinite flat plate (surface potential 0Ψ =5.0) 

as shown schematically in Fig. 4-13. Note that this is a well-known case that was 



     68

experimentally studied previously [Larsen and Grier, 1997]. Distance h from the flat 

plate to the sphere centers are fixed at 2.5μm ( 13.0=h
a ), while the separation distance 

r between the spheres are varied to study its influence on the interaction force F. This 

example only serves to demonstrate the capability of the present parallelized 

Poisson-Boltzmann equation solver using FEM with PAMR in predicting the 

electrostatic potential distribution with three-dimensional complicated geometries. No 

thorough physical interpretation or parametric study was explored in the current study, 

but these are of course worthy of further investigation.  

Fig. 4-14a and Fig. 4-14b, illustrate the typical initial and final (level-6) surface 

mesh distributions (h=2.5μm, r=3μm), respectively, while Table 4-4 summarizes the 

corresponding evolution of the interaction force between the spheres, along with the 

number of nodes and elements for first-order shape function. The resulting number of 

nodes increases from ~0.016 to ~0.186 million for this typical case, while the force of 

interaction increases from 5.432e-16 Newton to 8.325e-15 Newton, which is very close 

to the experimental measurement [Larsen and Grier, 1997]. Fig. 4-15a and Fig. 4-15b 

illustrate the distribution of electrostatic potential around the charged sphere for 

h=2.5μm ( 13.0=h
a ) and h=9.5μm ( 03421.0=h

a ), respectively, and also show the 

complicated interaction between the two spheres when the flat plate is near the spheres 

(r=3.0μm). 



     69

Besides, Table 4-5 and Table 4-6 summarize the corresponding evolution of the 

interaction force between the spheres, along with the number of nodes and elements for 

the first-order and the second-order shape function (h=2.5μm, r=4.5μm). 

Finally, Fig. 4-16 presents the computed force of interaction as a function of 

distance r at h=2.5μm, along with fitted experimental measurements by Larsen and 

Grier [1997] show that the results of using the first-order and second-order shape 

function. Note that the experimental fitting of the interactive force is obtained by taking 

the derivative of the fitted measured potential data. Computational results agree well 

with the experimental data within experimental uncertainties. In particular, the 

attractive force (negative F) at some range of separation distance r was predicted 

successfully, which to the best of the authors’ knowledge has never been reproduced by 

solving directly the Poisson-Boltzmann equation in the literature, although one 

simulation report using Brownian dynamics simulations [Squires and Brenner, 2000] 

does exist. 



     70

Chapter 5 Concluding Remarks 

5-1 Summary 

In this thesis, a parallelized 3-D nonlinear Poisson-Boltzmann equation solver 

(PPBES) using finite element method (FEM) with parallel adaptive mesh refinement 

(PAMR) is completed and verified. The results of research are described as follows. 

In the first phase, the parallelized 3-D nonlinear Poisson-Boltzmann equation 

solver is completed using Galerkin finite element method with unstructured 

tetrahedral mesh. Major findings of this phase are summarized as: 

1. Interpolation within a typical element includes the first-order and 

second-order shape functions. The second-order shape function performs 

much better than the first-order shape function in solution accuracy for 

comparable runtime and memory. 

2. Inexact Newton iterative scheme is very effective for convergence of 

PPBES within 3-5 iterative steps depending upon the initial guess.  

3. The Jacobian matrix for Newton iterative scheme is simplified as a diagonal 

matrix using nodal quadrature for the integration of the source term, which 

both reduces the computational load of the Jacobian matrix and simplifies 

the parallel implementation. 

4. Completed PPBES is validated using several quasi-2-D cases by comparing 



     71

excellently either with previous analytical, approximate or numerical 

solutions. 

5. The parallel performance is studied on a HP PC-cluster system at NCHC 

using close to 0.1 million nodes and 0.61 million elements. Results show 

that 76.2% of parallel efficiency can be reached at processors of 32, which 

can greatly reduce the runtime for realistic 3-D applications. 

In the second phase, an h-refinement based PAMR scheme for an unstructured 

tetrahedral mesh using dynamic domain decomposition on a memory-distributed 

machine is developed and tested in detail. Then, the coupled PPBES-PAMR code 

using a posteriori error estimator is used to simulate a realistic three-dimensional 

problem. Major findings in this phase are summarized as: 

1. PAMR procedures include isotropic refinement from one parent cell into 

eight child cells and then followed by anisotropic refinement, which can 

effectively remove the hanging nodes, with a simple mesh-quality control 

scheme. 

2. Parallel performance of this PAMR is studied on a PC-cluster system up to 

64 processors using approximately one million tetrahedral cells. Results 

show that the parallel speedup scales approximately as N1.5 for 32≤procN  

which is surprisingly good, where N is the number of processors. 



     72

3. Completed PAMR code using the PPBES is used to simulate two 

like-charged spheres in a cylindrical pore. Results show that PAMR can 

systematically increase the solution accuracy of the PPBES. The value of 

final mesh level of 48.4012 using the first-order shape function, which is 

very close to the value of 48.8360 obtained by Dyshlovenko [2002] using an 

axisymmetric code. However, as we use the second-order shape function, a 

value of 48.8242 using the final refined mesh is obtained which is only 

0.04% with previous numerical value with Dyshlovenko [2002] using a 2-D 

axisymmetric PB equation solver. 

4. Finally, the coupled PPBES-PAMR code is used to simulate the interactive 

force between two like-charged spheres near a same charged planar wall. 

Results are in excellent agreement with experimental data considering the 

experimental uncertainties, which is the first simulation in the literature to 

the best knowledge of the author. 

In the present study, we have completed a coupled PPBES-PAMR code that is 

very accurate and efficient for future simulations of realistic problems in colloidal 

systems. 

 



     73

5-2 Recommendations for Future Work 

Based on the study in this thesis, recommendations for future work are 

summarized as follows: 

1. To improve the efficiency of the parallel matrix solver by using a robust 

preconditioning technique such as additive Swartz method. 

2. To extend the PPBES into a code that can handle hybrid mesh. We have 

developed a code of hybrid mesh (using the first-order and the second-order 

shape function) for single CPU. Figure 5-1 shows the potential profiles that 

compare the code of tetrahedral mesh with code of hybrid mesh of 

collapsed nodes which the maximum inaccuracy 0.2%. The test case is the 

distribution of potential around the charged spheres near a like-charged plate 

for mesh of level 0. The code could be developed as the parallel version 

coupled with PAMR in the future. It will improve the solution of accuracy 

after refinement. For more information, discuss the related skills in 

Appendix B. 

3. To utilize the completed coupled PPBES-PAMR code to simulate particle 

interaction in several important colloidal related problems. These results can 

provide important information to researches in bio-chemistry related field. 

 



     74

REFERENCES 

1. Almasi, G. and Gottlieb, A., “Highly Parallel Computing,” Benjamin/Cummings, 

Red-Wood city, CA, 2nd Editon 1989. 

2. Bowen, W.R. and Sharif, A.O., “Long-range electrostatic attraction between 

like-charge spheres in a charged pore,” Nature, Vol.393, pp.663-665, 1998. 

3. Bowen, W.R. and Sharif, A.O., “Adaptive finite-element solution of the nonlinear 

Poisson-Boltzmann equation: A. charged spherical particle at various distances 

from a charged cylindrical pore in a charged planar surface,” Journal Colloid 

Interface Sci., Vol.187, pp.363-374, 1997. 

4. Brackbill, JU, “An adaptive grid with direction control,” Journal of 

Computational Physics, Vol.108, pp.38–50, 1993. 

5. Baker, N., Holst, M. and Wang, F., “Adaptive multilevel finite element solution of 

the Poisson-Boltzmann equation II. Refinement at solvent-accessible surfaces in 

biomolecular systems,” Journal of Computational Chemistry, Vol.21, pp. 

1343-1352, 2000. 

6. Baker, N. A., Sept, D., Joseph, S., Holst, M. J. and McCammon, J. A., 

“Electrostatics of nanosystems: Application to microtubules and the ribosome,” 

Proceedings of the National Academy of Sciences of the United States of America, 

98, pp.10037-10041, 2001a. 



     75

7. Baker, N., Sept, D., Holst, M. and McCammon, J. A.,"The adaptive multilevel 

finite element solution of the Poisson-Boltzmann Equation on massively parallel 

computers," IBM Journal of Research and Development, Vol.45, No.3/4, page 427, 

2001b. 

8. Balls, G. T. and Colella, P., “A Finite Difference Domain Decomposition Method 

Using Local Corrections for the Solution of Poisson's Equation, Journal of 

Computational Physics, Vol.180, pp.25-53, 2002. 

9. Bank, R. E. and Holst, M., “A new paradigm for parallel adaptive meshing 

algorithms,” Siam Journal on Scientific Computing, Vol.22, pp.1411-1443, 2000. 

10. Carnie, S. L., Chen, D. Y. C., and Stankovich, J., "Computation of forces between 

spherical colloidal particles: Nonlinear Poisson-Boltzmann Theory," Journal of 

Colloid and Interface Science, Vol.165, pp.116-128, 1994. 

11. Cortis, C. M. and Friesner, R. A., “An automatic three-dimensional finite element 

mesh generation system for the Poisson-Boltzmann equation,” Journal of 

Computational Chemistry, Vol.18, pp.1570-1590, 1997a. 

12. Cortis, C. M. and Friesner, R. A., “Numerical solution of the Poisson-Boltzmann 

equation using tetrahedral finite-element meshes,” Journal of Computational 

Chemistry, Vol.18, pp.1591-1608, 1997b. 

13. Collins, John and Lee, Abraham P., “Microfluidic flow transducer based on the 



     76

measurement of electrical admittance,” Lab on a Chip, NO.4(1), pp.7-10, 2004. 

14. Connell, S.D. and Holms, D.G., “Three-Dimensional Unstructured Adaptive 

Multigrid Scheme for the Euler Equations,” AIAA Journal, Vol.32, pp.1626-1632, 

1994. 

15. Chandra, R., Dagum, L., Kohr, D., Maydan, D., J. McDonald, “Parallel 

programming in OpenMP,” Morgan Kaufmann Publishers, San Francisco, CA, 

2000.  

16. Das, P.K. and Bhattacharjee, S., “Finite Element Estimation of Electrostatic 

Double Layer Interaction between Colloidal Particles inside a Rough Cylindrical 

Capillary: Effect of Charging Behavior,” Colloids and Surface A, Vol.256, 

pp.91-103, 2005. 

17. Dyshlovenko, Pavel, “Adaptive Mesh Enrichment for the Poisson-Boltzmann 

Equation,” Journal of Computation Physics, Vol.172, pp.198-208, 2001. 

18. Dyshlovenko, Pavel, “Adaptive numerical method for Poisson-Boltzmann 

equation and its application,” Computer Physics Communications, Vol.147, 

pp.335-338, 2002. 

19. Fogolari, Federico, Zuccato, Pierfrancesco, Esposito Gennaro and Viglino, Paolo, 

"Biomolecular Electrostatics with the Linearized Poisson-Boltzmann Equation," 

Biophysical Journal, Vol.76, pp.1-16, 1999. 



     77

20. Gilson, M. K., Davis, M. E., Luty, B. A. and McCammon, J. A., "Computation of 

electrostatic forces on solvated molecules using the Poisson-Boltzmann equation," 

Journal of Physical Chemistry, Vol.97, pp.3591–3600, 1993. 

21. Gowda, Shivaraju B. “A Comparison of Sparse & Element-by-Element Storage 

Schemes on The Efficiency of Parallel Conjugate Gradient Iterative Methods for 

Finite Element Analysis”, MS thesis, Graduate School of Clemeson University, 

2002. 

22. Hunter, R. J., “Foundations of Colloid Science,” Vol.2, Oxford: Clarendon Press, 

1989. 

23. Holst, M., Baker, N. and Wang ,F., “Adaptive multilevel finite element solution of 

the Poisson-Boltzmann equation I. Algorithms and examples, Journal of 

Computational Chemistry, Vol.21, pp.1319-1342, 2000. 

24. Holst, M., Kozack, R. E., Saied, F. and Subramaniam, S., “Protein electrostatics: 

rapid multigrid-based Newton algorithm for solution of the full nonlinear 

Poisson-Boltzmann equation,” Journal of Biomolecular Structure and Dynamics, 

Vol.11, pp.1437-45, 1994a. 

25. Holst, M., Kozack, R. E., Saied, F. and Subramaniam, S., “Treatment of 

electrostatic effects in proteins: multigrid-based Newton iterative method for 

solution of the full nonlinear Poisson-Boltzmann equation,” Proteins, Vol.18, pp. 



     78

231-45, 1994b. 

26. Hoskin, N. E., "The interaction of two identical spherical colloidal particles I-- 

Potential Distribution," Proceedings of the Royal Society (London), Series A, 248, 

pp.433-448, 1956. 

27. Hestenes, M. and Stiefel E. ,"Methods of Conjugate Gradient for Solving Linear 

Systems," Journal of research of the National Bureau of Standards, Vol.49, 

pp.409-439, 1952. 

28. Harries, Daniel, "Solving the Poisson-Boltzmann Equation for Two Parallel 

Cylinders," Langmuir, Vol.14, pp.3149-3152, 1998. 

29. Wu, Fu-Yuan, "The Three-Dimensional Direct Simulation Monte Carlo Method 

Using Unstructured Adaptive Mesh and It Applications," MS Thesis, NCTU, 

Hsinchu, Taiwan , July, 2002. 

30. Hsu, K.-H., “Development of a Parallelized PIC-FEM Code Using a 

Three-Dimensional Unstructured Mesh and Its Applications,” PhD Thesis, 

NCTU, Hsinchu, Taiwan, July, 2006. 

31. Kuo, Chia-Hao, "The Direct Simulation Monte Carlo Method Using Unstructured 

Adaptive Mesh and Its Applications," MS Thesis, NCTU, Hsinchu, Taiwan, June, 

2000. 

32. Kozack, R. E. and Subramaniam, S., “Brownian dynamics simulations of 



     79

molecular recognition in an antibody-antigen system,” Protein Science, Vol.2, 

pp.915-926, 1993. 

33. Kallinderis, Y. and Vijayan, P., “Adaptive Refinement-Coarsening Scheme for 

Three-Dimensional Unstructured Meshes”, AIAA JOURNAL, Vol.31, No.8, 

1993. 

34. Karypis, G., Kumar, V., ParMETIS 3.1: An MPI-based Parallel Library for 

Partitioning Unstructured Graphs, Meshes, and Computing Fill-Reducing 

Orderings of Sparse matrices, 2003. Available from 

(http://www-users.cs.umn.edu/~karypis/metis/parmetis). 

35. Larsen, A.E. and Grier, D.G., “Like-charge attractions in metastable colloidal 

crystallites,” Nature, Vol.385, pp.230-233, 1997. 

36. Lian, Y.-Y., Hsu, K.-H., Shao, Y.-L., Lee ,Y.-M., Jeng, Y.-W. and Wu, 

J.-S.,“Parallel Adaptive Mesh-Refining Scheme on Three-dimensional 

Unstructured Mesh and Its Applications,” Computer Physics Communications 

(Accepted in May 2006). 

37. Mackenzie, J. A. and Robertson, M. L., “A moving mesh method for the solution 

of the one-dimensional phase-field equations,” Journal of Computational Physics, 

Vol.181, pp.526–544, 2002. 

38. MacNeice, P., Olsonb, K.M., C. Mobarry, R. de Fainchtein, Packer, Charles, 



     80

Computer Physics Communications, Vol.126, pp.330, 2000. 

39. MPI library,    http://www-unix.mcs.anl.gov/mpi 

40. METIS library,    http://glaros.dtc.umn.edu/gkhome/views/metis 

41. MANIFOLD CODE  http://www.scicomp.ucsd.edu/~mholst/codes/mc 

42. Nadeem, S A and Jimack, P K, “Parallel implementation of an optimal two level 

additive Schwarz preconditioner for the 3-D finite element solution of elliptic 

partial differential equations,” International Journal for Numerical Methods in 

Fluids, Vol.40, pp.1571, 2002. 

43. Norton, C.D., Lou, J.Z. and Cwik, T., “Status and Directions for the PYRAMID 

Parallel Unstructured AMR Library,” Proceedings of the 15th International 

Parallel & Distributed Processing Symposium, IEEE Computer Society, 

Washington, DC, 2001. 

44. Neu, J.C., "Wall-Mediated Forces between Like-Charged Bodies in an 

Electrolyte," Physical Review Letters, Vol.82, pp.1072-1074, 1999. 

45. Oliker, L., Biswas, R., Gabow, H.N., “Parallel Tetrahedral Mesh Adaptation with 

Dynamic Load Balancing.,” Parallel Computing Journal, Vol.26, pp.1583-1608, 

2000. 

46. Okubo, T. and Aotani, S., “Microscopic observation of ordered colloids in 

sedimentation equilibrium and the importance of the Debye-screening length. 9. 



     81

Compressed crystals of giant colloidal spheres,” Colloid & Polymer Science, 

Vol.266, No.11, pp.1042-1048, 1988.  

47. Peano, A .G.., “Hierarchies of Conforming Finite Elements for Plane Elasticity and 

Plate Bending,” Journal of Computers and Mathematics with Applications, Vol.2, 

pp.211-224, 1976. 

48. Pao, C. V., "Block monotone iterative methods for numerical solutions of 

nonlinear elliptic equations," Numerische Mathematik, Vol.72, pp.239-262, 1995. 

49. Prof. F.-N. Hwang,   http://www.math.ncu.edu.tw/~hwangf 

50. Quddus, N., Bhattacharjee, S. and Moussa, W., “An Electrostatic–Peristaltic 

Colloidal Micropump: A Finite Element Analysis,” Journal of Computational and 

Theoretical Nanoscience, Vol.1, No.4, pp.438-444, 2004. 

51. Rausch, R.D., Batina, J.T. and Yang, H.T.Y., "Spatial Adaption Procedures on 

Unstrutuctured Meshes for Accurate Unsteady Aerodynamics Flow 

Computation," AIAA Paper, No.91-1106-CP, 1991. 

52. Russel, W. B., Saville, D. A., and Schowalter, W. R., “Colloidal Dispersions,” 

Cambridge Univ. Press, Cambridge, England, 1989. 

53. Shao, Z., Ren, C. L. and Schneider, G. E., “3D Electrokinetic Flow Structure of 

Solution Displacement in Microchannels for on-Chip Sample Preparation 

Applications”, Journal of Micromechanics and Microengineering, Vol.16, 



     82

pp.589-600, 2006. 

54. Sharp, K. A. and Honig, B., "Calculating total electrostatic energies with the 

nonlinear Poisson-Boltzmann equation," Journal of Physical Chemistry, Vol.94, 

pp.7684-7692, 1990. 

55. Squires, Todd M. and Brenner, Michael P., “Like-Charge Attraction and 

Hydrodynamic Interaction,” Physical Review Letters, Vol.85, pp.4976-4979, 

2000.  

56. Saad, Yousef, “Iterative Method for Sparse Linear System,” Society for Industrial 

and Applied Mathematics, 2003. 

57. Tuinier, R., “Approximate solutions to the Poisson-Boltzmann equation in 

spherical and cylindrical geometry,” Journal of Colloid and Interface Science, 

Vol.258, pp.45-49, 2003. 

58. Thompson, Erik G., "Introduction to the Finite Element Method: Theory, 

Programming and Applications," John Wiley & Sons Inc, 2003. 

59. Waltz, J., “Parallel adaptive refinement for unsteady flow calculations on 3D 

unstructured grids,” International Journal for Numerical Methods in Fluids, 

Vol.46, pp.37-57, 2004. 

60. Wang, L. and Harvey, J.K., “The Application of Adaptive Unstructured Grid 

Technique to the Computation of Rarefied Hypersonic Flows Using the DSMC 



     83

Method,” 19th International Symposium on Rarefied Gas Dynamics, Harvey J, 

Lord G (ed.), pp.843, 1994. 

61. Wu, J.-S., Tseng, K.-C. and Wu, F.-Y., “Three Dimensional Direct Simulation 

Monte Carlo Method Using Unstructured Adaptive Mesh and Variable Time 

Step,” Computer Physics Communications, Vol. 162, No. 3, pp.166-187, 2004. 

62. Wu, Fu-Yuan, "The Three-Dimensional Direct Simulation Monte Carlo Method 

Using Unstructured Adaptive Mesh and It Applications," MS Thesis, NCTU, 

Hsinchu, Taiwan, July, 2002. 

63. Yang, R.-J., Fu, L.-M. and Lin, Y.-C., “Electroosmotic Flow in Microchannels,” 

Journal of Colloid and Interface Science, Vol.239, pp.98-105, 2001. 

64. Zienkiewicz, O. C., J. P. de S. R. Gago and Kelly, D. W., “The Hierarchical 

Concept in Finite Element Analysis,” Computers and Structures, Vol.16, No.1-4, 

pp.53-65, 1983. 

65. Zienkiewicz, O.C. and Zhu, J.Z., “A Simple Error Estimator And Adaptive 

Procedure For Practical Engineering Analysis,” International Journal for 

Numerical Methods in Engineering, Vol.24, pp.337-357, 1987. 

66. Zienkiewicz, O.C. and Taylor, R.L., “The Finite Element Method,” 

Butterworth-Heinemann, Oxford, 5th edition, 2000. 

 



     84

 

Newton iterations: the convergence criterion ( 0ε =10-7)  
(have a good initial guess) 

CG convergence 
criterion 

CG=10e-7 CG=10e-6 CG=10e-5 CG=10e-4

CG Loop Iterations 
per Newton Iteration 

~1300 ~1140 ~920 ~870

Newton Loop 
Iterations 

3 3 3 9

Initial Residual 1.19E-02 1.19E-02 1.19E-02 1.19E-02
Total Time(sec) 301.57 285.366 267.238 412.12

(a) 

 

 

Newton iterations: the convergence criterion ( 0ε =10-7)  
(all zeros are used as the initial estimate) 

CG convergence 
criterion 

CG=10e-7 CG=10e-6 CG=10e-5 CG=10e-4

CG Loop Iterations 
per Newton Iteration 

~1300 ~1140 ~920 ~870

Newton Loop 
Iterations 

5 5 5 15

Initial Residual 8.68E-01 8.68E-01 8.68E-01 8.68E-01
Total Time(sec) 394.32 375.093 350.493 548.455

(b) 

 

Table 3-1 The CG Solver and Newton Iteration for have a good initial guess and all 
zeros are used as the initial estimate. (CPU=6; 81,354 nodes; 458,064 
elements). 



     85

 

Source Debye-Huckel Tuinier 

Equation 
( )

( )x
xa

a

xsp

−⎟
⎠
⎞

⎜
⎝
⎛

+
Ψ

=Ψ

exp0
 

( )

( )
( )⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛
−−
−+

⋅⎟
⎠
⎞

⎜
⎝
⎛

+
=Ψ

xt
xt

xa
axsp

exp1
exp1

ln

2

0

0

 

⎟
⎠
⎞

⎜
⎝
⎛ Ψ=

4
tanh 0

0t
 

Table 3-2 Analytical and approximate solutions for the simulation of the potential 
distribution around a charged sphere. 



     86

 

 1CPU 2CPU 4CPU 8CPU 16CPU 32CPU 
Total time 2486.63 1681.31 744.86 341.96 161.01 102.19
CG time 1243.33 857.46 387.93 181.24 86.94 56.20

Setup matrix 
time 

220.37 143.45 67.33 34.56 20.23 12.95

Impose BC 
time 

8.32E-2 3.32E-2 8.43E-3 4.73E-3 2.42E-3 1.23E-3

Setup Shape 
Function. 

time 
0.42 0.23 7.32E-2 4.31E-2 2.68E-2 8.52E-3

Index FEM 
time 

--- 6.14E-2 2.35E-2 2.34E-2 4.41E-2 6.41E-3

Send/Receive 
time 

--- 14.24 15.43 16.32 16.54 17.53

All reduce 
time 

--- 3.03 6.56 6.94 8.52 11.33

Others time 1022.41 662.81 267.43 102.82 28.71 4.16
Table 3-3 The time breakdown (in seconds) for various components of the parallelized 

Poisson-Boltzmann equations solver (electrostatic potential distribution 
around a charged sphere within a cylindrical pore; 106,390 nodes; 612,107 
elements). Note: Others time including calculates relative residual and 
Jocobian of Newton method, initial CG and so on. 

 



     87

 

 

Mesh Number of nodes Number of elements 
0 16,280 79,535 
1 51,179 268,098 
2 129,563 689,468 
3 161,153 861,987 
4 176,345 953,214 

Table 3-4 The test mesh of number of nodes and elements for the second-order shape 
function.



     88

 

 

 

 First-order Second-order 
Number of elements 634,603 79,535 

Number of nodes 119,253 118,522 (init. 16,280) 
Newton Iteration 5 5 

CG Iteration 725 720 
Total time (sec) 90.74 88.35 

Table 3-5 Comparison of the first-order with the second-order shape function 
(CPU=6). 

 

 



     89

 

 

Level 
Number of 

Nodes 
Number of 
Elements 

Force of 
Interaction 

(dimensionless) 

Relative 
Inaccuracy (%) 

0 924 3,821 20.9924 57.01% 
1 3,333 15,810 34.6516 29.05% 
2 19,171 101,644 40.4868 17.10% 
3 32,103 169,825 45.1229 7.61% 
4 36,149 192,478 47.0891 3.58% 
5 36,316 193,368 48.4012 0.89% 
6 ----- ----- -----  

Table 4-1 Evolution of adaptive mesh refinement for computing force of interaction 
between two free charged spheres (radius=5, λ=0.416, for a posteriori error 
estimator, CPU#6) use the first-order element. 
Note: the force of interaction of finial mesh level of previously literature 
[Dyshlovenko, 2002] is 48.840. 



     90

 

Level 
Number of 

nodes 
Number of 
elements 

Force of 
interaction 

(dimensionless) 

Relative 
Inaccuracy (%) 

0 924 3,821 28.3253 42.00% 
1 3,245 14,867 40.1516 17.79% 
2 18,366 98,253 45.3568 7.13% 
3 24,626 135,443 48.0247 1.67% 
4 27,492 158,463 48.5845 0.52% 
5 28,012 159,359 48.8090 0.06% 
6 28,095 159,403 48.8242 0.04% 
7 ----- ----- -----  

Table 4-2 Evolution of adaptive mesh refinement for computing force of interaction 

between two free charged spheres (radius=5, λ=0.416, 0003.0=preε  for a 

posteriori error estimator, CPU#6) use the second-order shape function. 
Note: the force of interaction of finial mesh level of previously literature 
[Dyshlovenko, 2002] is 48.840. 

 



     91

 

Processor NO. 2 4 8 16 32 64 

Preprocessing 12.5 13.5 14.4 15.4 19.5 18.2 

I 92.1 24.8 6.2 2.0 1.5 2.4 

II 977.9 267.4 68.5 23.2 10.2 9.9 

III 0.9 1.8 2.0 3.3 3.8 6.9 

IV 19.5 9.7 5.4 2.9 2.1 2.4 

Total time 1103.0 317.2 96.5 46.7 37.1 39.8 

I. Add nodes on cell edges 
II. Renumber added nodes 
III. Update connectivity data 
IV. Build neighbor identifier array 

Original mesh: 1,070,194 cells and 187,649 nodes. 
Next refined mesh: 2,701,178 cells and 468,944 nodes. 
 

Table 4-3 Timing (seconds) of PAMR module for different processor numbers. 



     92

 

 

Level Number of nodes Number of elements
Force 

(Newtons) 
0 16,280 79,535 5.432e-16 
1 51,179 268,098 3.422e-16 
2 129,563 689,468 1.343e-16 
3 161,153 861,987 9.433e-15 
4 176,345 953,214 8.942e-15 
5 185,688 1,014,692 8.411e-15 
6 185,697 1,014,730 8.325e-15 

Table 4-4 Evolution of force interaction between two identical charged spheres near a 
like-charged flat plate (h=2.5μm, r=3μm, a=0.325μm and spheres 0Ψ =3.0, 
flat plate 0Ψ =5.0). 



     93

 

Level Number of nodes Number of elements 
Force 

(Newtons) 
0 17,058 83,588 -8.433e-15 
1 52,549 275,534 -4.645e-15 
2 131,067 698,093 -1.343e-15 
3 161,345 872,534 -9.842e-16 
4 177,269 963,419 -7.739e-16 
5 184,564 1,019,692 -6.178e-16 
6 184,611 1,020,243 -5.491e-16 

Table 4-5  Force of interaction with different refinement level mesh in the simulation 
of two identical charged spheres near a charged flat plate (h=2.5, r=4.5, 
a=0.325) for the first-order element. 



     94

 

Level Number of nodes
Number of 
elements 

Force 
(Newtons) 

0 17,058 83,588 -4.681e-15
1 39,150 200,756 -9.563e-16
2 94,365 485,608 -7.972e-16
3 101,803 539,542 -7.319e-16
4 102,433 541,478 -6.931e-16
5 102,445 541,503 -6.817e-16
6 ---- ---- ----

Table 4-6 Force of interaction with different refinement level mesh in the simulation of 
two identical charged spheres near a charged flat plate (h=2.5, r=4.5, 
a=0.325) for the second-order shape function. 



     95

 

 

 

Fig. 1-1 Electrostatic potential near a positively charged colloidal particle. 



     96

 

 

 

 

 

Fig. 1-2 The illustration of colloidal particle. 



     97

 

 

 

 

 

Fig. 1-3 The Electric Double Layer distribution. 

 

 

 

 



     98

 

 

 

Fig. 1-4 p-refinement. 



     99

 

 

 

 

Fig. 1-5 r-refinement. 



     100

 

 

 

 

Fig. 1-6 h-refinement. 

 



     101

 
 
 

 

Fig. 2-1 Three-dimensional tetrahedral element and face. 



     102

 

 

Fig. 2-2 Interpolation functions of ten variable-number-nodes three-dimensional 

tetrahedral element. 

 

 

 



     103

 

 

Fig. 2-3 Traditional shared memory multiprocessor model. 

 

 

Fig. 2-4 Distributed memory multiprocessor architecture. 

 

 

 

Interconnection network 

Main memory 

Memory modules

Processors 

One  
address 
space 



     104

 

 

 

Fig. 2-5 PC cluster at MuST. 

 

 

 



     105

 

 

 

 

Fig. 2-6 The Poisson-Boltzmann equation solver by subdomains. 

 

 

 



     106

 

Fig. 2-7 The flow chart of parallel Poisson-Boltzmann equation solver. 



     107

 

 

 

 

Fig. 3-1 The surface mesh distribution of the sphere (176,309 elements; 36,396 

nodes). 

 

 

 

 

 



     108

 

 

(a) 

 

 

 

 

 

 

 



     109

 

 

(b) 

 

Fig. 3-2 Comparison of potential distributions around a charged sphere (a) surface 

potential 0Ψ =1.0 (b) surface potential 0Ψ =5.0 (18,253 nodes; 96,638 

elements). 

 

 

 



     110

 

 

 

 

Fig. 3-3 The potential distribution for the sphere confined in a pore at separation 

distance r=6. 



     111

 

 

Fig. 3-4 Potential along midplane between two spheres (r=6). 



     112

 

 

 

Fig. 3-5 The parallel speedup for the parallelized Poisson-Boltzmann equation solver 

for simulating the potential distribution around a charged sphere 

(radius=5, 0Ψ =2.0) within a cylindrical pore (106,390 nodes; 612,107 

elements). 



     113

 

 

 

(a) 



     114

 

(b) 

Fig. 3-6 The distribution of potential around the charged spheres (radius a=0.325μm) 

near a like-charged plate (h = 2.5μm) at level-0 for solutions of (a) the 

first-order element (b) the second-order shape function. 



     115

 

Fig. 3-7 The profiles of different mesh levels of the first-order element and the 

second-order shape function. the distribution of potential around the 

charged spheres (radius a=0.325μm) near a like-charged plate (distance h = 

2.5μm). 



     116

 

Fig. 3-8 The profiles of different mesh levels of the first-order element and the 

second-order shape function (in local). the distribution of potential around 

the charged spheres (radius a=0.325μm) near a like-charged plate (distance 

h = 2.5μm). 



     117

 

 

Fig. 3-9 Potential along midplane between two spheres (r=6), compare the first-order 

element with the second-order shape function. (nodes 42,308 and elements 

246,155). 

 



     118

 

 

 

Fig. 4-1 Isotropic mesh refinement of tetrahedral mesh (T: Tetrahedron). 

 

 

 



     119

    isotropic     ( 1st stage)
     isotropic     ( 2nd stage)
    anisotropic ( 2nd stage)

initial grid

initial grid

initial grid

2 hanging node
anisotropic (2nd stage)

3 hanging node
isotropic (2nd stage)

1 hanging node
anisotropic (2nd stage)

2 hanging node

3 hanging node

1 hanging node

 

Fig. 4-2 Mesh refinement rules for two-dimensional triangular cell. 

 

 



     120

refined 4 cellsrefined 8 cells refined 2 cells

(+1) (+2) (+4)(+1)(+3)

non-coplanar coplanar

6 12345

coplanar

          :  n hanging node

(+n) : adding n nodes

n

 

Fig. 4-3 Schematic diagram for mesh refinement rules of tetrahedron. 



     121

 

 

Fig. 4-4 Example of the common edge shared by the neighboring cells. 

 

 

 



     122

 

Fig. 4-5 Schematic diagram of the proposed cell quality control. 

 



     123

 

 

Fig. 4-6 Schematic diagram of typical cell quality control. 

 

 

Without cell quality control 

With cell quality control 



     124

 

 

 

Fig. 4-7 A case that the proposed cell-quality-control would not affect to it. 



     125

 

Fig. 4-8 Flow chart of parallel mesh refinement module. 

 



     126

 

 

 

Fig. 4-9 Coupled PPBS-PAMR method. 



     127

 

 

 

 

0 5 10 15

0

5

10

024

 

(a) 

 

 

 

 

 

 

 



     128

 

 

0 5 10 15

0

5

10

024
 

(b) 

Fig. 4-10 The surface mesh distribution between two free identical charged spheres 

(radius=5, λ=0.416) at (a) level-0 (initial; 924 nodes; 3,821 elements) (b) 

level-5 (final; 36,316 nodes; 193,368 elements) mesh refinement. 

 

 

 

 

 



     129

 

-0.1

-0.05

0

0.05

0.1

Y

-0.05
0

0.05
0.1X

X

Y

Z

 

(a) 

 



     130

 
 
 

-0.1

-0.05

0

0.05

0.1

Y

-0.05
0

0.05
0.1X

X

Y

Z

 

(b) 

Fig. 4-11 Original (Level-3, 1,070,194 tetrahedral cells and 187,649 nodes) mesh 

distribution and next (Level-4, 2,701,178 cells and 468,944 nodes) refined 

mesh. 



     131

 

 

0

200

400

600

800

1000

1200

Preprocessing I II III IV
module

(s
ec

on
ds

)

CPU2

CPU4

CPU8

CPU16

CPU32

CPU64

 

Fig. 4-12 Timing for different modules of PAMR at different processors 

Note that module. 

I. Add nodes on cell edges 
II. Renumber added nodes 
III. Update connectivity data 
IV. Build neighbor identifier array 



     132

 

 

 

 

Fig. 4-13 Sketch of two identical charged spheres near a charged infinite flat plate. 

 

 



     133

 

 

 

 

 

(a) 

 

 

 

 

 

 



     134

 

 

 

(b) 

 

Fig. 4-14 The surface mesh distribution between two identical charged spheres (radius 

a=0.325μm) near a like-charged plate (h = 2.5μm, 13.0=h
a ) at the (a) 

level-0 (initial, 16,280 nodes; 79,535 elements) (b) level-5 (finial, 185,697 

nodes; 1,014,730 elements) mesh refinement. 



     135

 

 

 

 

(a) 

 

 

 

 

 

 

 



     136

 

 

 

(b) 

 

Fig. 4-15 The distribution of potential around the charged spheres (radius a=0.325μm) 

near a like-charged plate for (a) h = 2.5μm( 13.0=h
a ) (b) 

h=9.5μm( 03421.0=h
a ). 

 

 

 



     137

 

 

 

Fig. 4-16 Comparison the first-order shape function with the second-order shape 

function. Case of computed electrostatic force between charged spheres 

near a like-charged infinite flat plate as a function of the sphere 

center-to-center distance (h = 2.5μm, 13.0=h
a ). 



     138

 

 

Fig. 5-1 Compare the code of tetrahedral mesh with the code of hybrid mesh of 

collapsed nodes. 



     139

Appendix A Diagonalization of the Jacobian Using 

Nodal Quadrature 

The deductive method of this appendix is provided by Prof. Hwang [web site, 

http://www.math.ncu.edu.tw/~hwangf/]. 

In finite element spaces, assume { }Kh =Τ  is a given unstructured mesh with a 

diameter κh . Let )(1
00 Ω⊂Ψ Hh  be a trilinear finite element space for the electrical 

potential ψ : 

  { }hh TKKQHC ∈∈Ω∩Ω∈=Ψ ,)(|))()(( 3
1

31
0

0
0 κψψ ：   (A-1) 

which is served as the weighting and trial function space. Here )(0 ΩC  the space 

consisting of all continuous functions defined on Ω . 

Then we can write the finite-dimensional variational formulation as: 

Find hh
0Ψ∈ψ  such that 

  hhh fa 00)),((),( Ψ∈∀=+ ϕϕψϕψ       (A-2) 

After substituting ∑
=

=
Nep

l
ll

h N
1

βψ  and iN=ϕ  into Galekin formulation, we 

obtain a system of equation, 0)( =xF , where T
NenfffF ),,,( 21 L=  and 

T
Nenx ),,,( 21 βββ L=  with 

  )),((),()(
11
∑∑
==

+=
Nep

l
ill

Nep

l
illi NNfNNaxf ββ  

k

Nen

l
illKk

Nen

l
illK NNfANNaA )~),~(()~,~(

11
∑∑
==

+= ββ     (A-3) 

Next, we use the numerical integration of nodal quadrature. 



     140

k

N

l
ill NNf )~),~((

int

1
∑
=

β        

 )~,~,~(ˆ)~,~,~(~))~,~,~(~(
int

1 1
mmm

N

m
mmmi

Nen

l
mmmllm jNNfW ςηξςηξςηξβ∑ ∑

= =

=   (A-4) 

Since ijjjjiN δςηξ =)~,~,~(~ , we have 

)~,~,~(ˆ)()~,~,~(ˆ)(
int

1 1
mmmiimmmim

N

m

Nen

l
lmlm jfWjfW ςηξβςηξδδβ =∑ ∑

= =

   (A-5) 

For example, 2 x 2 x 2 nodal rules in three dimensions. 8int =N , quadrature 

points: 

1~
1 −=ξ  , 1~

2 =ξ , 1~
3 =ξ , 1~

4 −=ξ , 1~
5 −=ξ , 1~

6 =ξ , 1~
7 =ξ , 1~

8 −=ξ ,  

1~
1 −=η  , 1~

2 −=η , 1~
3 =η , 1~

4 =η , 1~
5 −=η , 1~

6 −=η , 1~
7 =η , 1~

8 =η  and 

1~
1 =ζ , 1~

2 =ζ , 1~
3 =ζ , 1~

4 =ζ , 1~
5 −=ζ , 1~

6 −=ζ , 1~
7 −=ζ , 1~

8 −=ζ  

weights 1=iW . 

Then, we wish to solve 

⎩
⎨
⎧

=
=

0),(
0),(

212

211

xxf
xxf

         (A-6) 

1f  and 2f  are nonlinear function of 1x , 2x . Applying Taylor’s expansion in 

two variables around ( 1x , 2x ) to obtain: 

   

⎪
⎪
⎩

⎪⎪
⎨

⎧

∂
∂

+
∂
∂

+≈++=

∂
∂

+
∂
∂

+≈++=

2

2
2

1

2
121221112

2

1
2

1

1
121121111

),(),(0

),(),(0

x
fh

x
fhxxfhxhxf

x
fh

x
fhxxfhxhxf

  (A-7) 

Putting Equation (A-7) into the matrix form 



     141

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

2

1

2

2

1

2

2

1

1

1

212

211

),(
),(

0
0

h
h

x
f

x
f

x
f

x
f

xxf
xxf

     (A-8) 

To simplify the notation we introduce the Jacobian matrix 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

=

2

2

1

2

2

1

1

1

x
f

x
f

x
f

x
f

J          (A-9) 

Then we have 

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

2

1

212

211

),(
),(

0
0

h
h

J
xxf
xxf

         (A-10) 

If J  is nonsingular then there exists 1−J , so we can solve for Thh ],[ 21 . 

⎥
⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡ −

),(
),(

212

2111

2

1

xxf
xxf

J
h
h

          (A-11) 

For Newton’s method 

   ⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
+

+

)(
2

)(
1

)(
2

)(
1

)1(
2

)1(
1

k

k

k

k

k

k

h
h

x
x

x
x

          (A-12) 

With 

   ⎥
⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡

),(
),(

)(
2

)(
12

)(
2

)(
11

)(
2

)(
1

kk

kk

k

k

xxf
xxf

h
hJ          (A-13) 

In general, we can use Newton’s method for 0)( =xF , where 

T
nx ),...,,( 21 βββ=  and T

nfffF ),...,,( 21= . For higher dimensional function, the 

first derivative is defined as a matrix 



     142

   

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

n

nnn

n

n

x
f

x
f

x
f

x
f

x
f

x
f

x
f

x
f

x
f

xF

L

MOMM

L

L

21

2

2

2

1

2

1

2

1

1

1

' )(         (A-14) 

Then, calculation of Jacobian for the PB equation, write the Jacobian matrices 

corresponding to in the form of NL JJJ += , where ∑==
k

k
N
ij

N
ij

N JJJ )()( , with 

nodal quadrature 

   ji
ji

jfWf
J iiiii

j

i

k
N
ij =

⎪⎩

⎪
⎨
⎧

≠

=
∂

∂
= ,

,0

)~,~,~(~)()(
)(

ζηξβ
β
β

     (A-15) 

We consider the Jacobian system  

)()( )()()( nnn xFsxJ −=           (A-16) 

Taking the full Newton step, i.e. )()1()( nnn xxs −= +  to yield 

   )()()(0 )()()1()( nnnn xJxxxF −+= +         (A-17) 

or 

)()()( )()()()1()( nnnnn xFxxJxxJ −=+        (A-18) 

Since )()( )()( nNLn xJJxJ +=  and )()( )()()( nnLn xGxJxF −= , we have 

  ))(())(())(( )()()()()1()( xnLnnNLnnNL xGxJxxJJxxJJ +−+=+ +  (A-19) 

Or  

  )())(())(( )()()()1()( xnnNnnNL xGxxJxxJJ −=+ +       (A-20) 

Then the new approximation )1( +kU  can be computed through 



     143

)( )()1()( kkk UBUA =+ ,                                  (A-21) 

where ))(( )()( nNLk xJJA +=  and )())(()( )()()()( xnnNk xGxxJUB −= . In our 

implementation, the non-zero entries of )(kA  are stored in the compressed sparse row 

(CSR) format that is computationally efficient both in terms of storage and matrix 

operations. 



     144

Appendix B Three-dimensional Hybrid Mesh 

B-1 Hybrid Mesh 

 Through tetrahedron element are used for many simulations. In some cases the 

use of pyramid, wedge or hexahedral elements may be attractive. A nature way of 

generating tetrahedron element appears to be to simple distort the basic hexahedral 

element into the required collapsing form. This is achieved in practice by assigning 

the same global node to four corner nodes of element which from hexahedral element 

to pyramid element. If we collapse another node to two corner nodes of element 

further. This element will be a tetrahedron element from pyramid element, shown in 

Figure B-1.  

 

B-2 Shape Function of Hexahedral Element 

 The simplest element in this family is the eight-node trilinear hexahedron, or 

brick, show in Figure B-2. 

 The interpolation function is 

  xyzyzxzxyzyx 87654321 ααααααααφ +++++++=     (B-1) 

 Equation (B-1) can be expressed in matrix form as 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

8

1

888888888888

111111111111

8

1

1

1

α

α

φ

φ
MMMMMMMMMM

zyxzyzxyxzyx

zyxzyzxyxzyx
   (B-2) 



     145

Since φα 1−= C , we can find the values for φ  from the expression 

 φφ 1]1[ −= Cxyzyzxzxyzyx        (B-3) 

from which the shape functions are obtained as before: 

 1]1[ −= CxyzyzxzxyzyxN         (B-4) 

The shape functions are defined as 

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

++−=
+++=
+−+=
+−−=
−+−=
−++=
−−+=
−−−=

)1)(1)(1(),,(
)1)(1)(1(),,(
)1)(1)(1(),,(
)1)(1)(1(),,(
)1)(1)(1(),,(
)1)(1)(1(),,(
)1)(1)(1(),,(
)1)(1)(1(),,(

8
1

8

8
1

7

8
1

6

8
1

5

8
1

4

8
1

3

8
1

2

8
1

1

ρηξρηξ
ρηξρηξ
ρηξρηξ
ρηξρηξ
ρηξρηξ
ρηξρηξ
ρηξρηξ
ρηξρηξ

N
N
N
N
N
N
N
N

       (B-5) 

 or )1)(1)(1(),,( 8
1

iiiiN ρρηηξξρηξ +++= . iξ , iη  and iρ  are +1 or -1, depend 

on the direction of the node on the local coordinate. 

In an element, the differential shape function with ξ , η  or ρ  is the same as 

other elements. The Jacobian is given by 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

888

777

666

555

444

333

222

111

87654321

87654321

87654321

][

ZYX
ZYX
ZYX
ZYX
ZYX
ZYX
ZYX
ZYX

NNNNNNNN

NNNNNNNN

NNNNNNNN

J

ρρρρρρρρ

ηηηηηηηη

ξξξξξξξξ

  



     146

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

+−++++−++−−+
+−++++++−+−−
++−++++−++−−

⎢
⎢
⎢

⎣

⎡

+−−++−−+−−−−
−−+−++−+−−−−
−+−−++−−+−−−

=

888
777
666
555
444
333
222
111

)1)(1()1)(1()1)(1()1)(1(
)1)(1()1)(1()1)(1()1)(1(
)1)(1()1)(1()1)(1()1)(1(

,)1)(1()1)(1()1)(1()1)(1(
,)1)(1()1)(1()1)(1()1)(1(
,)1)(1()1)(1()1)(1()1)(1(

8
1

ZYX
ZYX
ZYX
ZYX
ZYX
ZYX
ZYX
ZYX

　

ηξηξηξηξ
ρξρξρξρξ
ρηρηρηρη

ηξηξηξηξ
ρξρξρξρξ
ρηρηρηρη

  

[ ]C

ZNYNXN

ZNYNXN

ZNYNXN

i
i

i

i
i

i

i
i

i

i
i

i

i
i

i

i
i

i

i
i

i

i
i

i

i
i

i

8
1

8
1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

∑∑∑

∑∑∑

∑∑∑

===

===

===

ρρρ

ηηη

ξξξ

      (B-6) 

 

and CJ 38
1]det[ = . The transpose is 

 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

∑∑∑

∑∑∑

∑∑∑

===

===

===

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8
1

i
i

i

i
i

i

i
i

i

i
i

i

i
i

i

i
i

i

i
i

i

i
i

i

i
i

i

T

ZNZNZN

YNYNYN

XNXNXN

J

ρηζ

ρηζ

ρηξ

     (B-7) 

The adjoint is 



     147

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

∂
∂

∂
∂

−
∂
∂

∂
∂

+

∂
∂

∂
∂

−
∂
∂

∂
∂

−

∂
∂

∂
∂

−
∂
∂

∂
∂

+

∂
∂

∂
∂

−
∂
∂

∂
∂

−

∂
∂

∂
∂

−
∂
∂

∂
∂

+

∂
∂

∂
∂

−
∂
∂

∂
∂

−

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

−
∂
∂

∂
∂

+

∂
∂

∂
∂

−
∂
∂

∂
∂

−

∂
∂

∂
∂

−
∂
∂

∂
∂

+

=

∑ ∑ ∑∑

∑ ∑ ∑∑

∑ ∑ ∑∑

∑ ∑ ∑∑

∑ ∑ ∑∑

∑ ∑ ∑∑

∑ ∑ ∑∑

∑ ∑ ∑∑

∑ ∑ ∑∑

= = ==

= = ==

= = ==

= = ==

= = ==

= = ==

= = ==

= = ==

= = ==

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

)(

)(

)(

,)(

,)(

,)(

,)(

,)(

,)(

8
1)(

i i i
i

i
i

i
i

i

i
i

i

i i i
i

i
i

i
i

i

i
i

i

i i i
i

i
i

i
i

i

i
i

i

i i i
i

i
i

i
i

i

i
i

i

i i i
i

i
i

i
i

i

i
i

i

i i i
i

i
i

i
i

i

i
i

i

i i i
i

i
i

i
i

i

i
i

i

i i i
i

i
i

i
i

i

i
i

i

i i i
i

i
i

i
i

i

i
i

i

XNYNYNXN

XNZNZNXN

YNZNZNYN

XNYNYNXN

XNZNZNXN

YNZNZNYN

XNYNYNXN

XNZNZNXN

YNZNZNYN

Jadj

ηξηξ

ηξηξ

ηξηξ

ρξρξ

ρξρξ

ρξρξ

ρηρη

ρηρη

ρηρη

　　　　　　　　　

　　　　　　　

  (B-8) 

The inverse is 

[ ] [ ]
[ ])det(

)(1

J
JadjJ =−            (B-9) 

Hence, 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

−

ρ
ρηξ

η
ρηξ

ξ
ρηξ

ρηξ

ρηξ

ρηξ

),,(

),,(

),,(

),,(

),,(

),,(

1

k

k

k

k

k

k

N

N

N

J

Z
N

Y
N

X
N

[ ]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

++

++

++

=

)1)(1(

)1)(1(

)1)(1(

)det(
)(

8
1

kkk

kkk

kkk

J
Jadj

ηηξξρ

ρρξξη

ρρηηξ

(B-10) 

We use the results of differential shape function with X or Y in substitution for the 

one of Poisson equation. 

∑∑∑∫∫∫ ⎥⎦
⎤

⎢⎣
⎡

∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂ dxdydza

Z
N

Z
N

Y
N

Y
N

X
N

X
N

j
kkkkkk )()()( 212121     (B-11) 



     148

Finally, we use the Gauss points and weights to perform the numerical 

integration. 

 

B-3 The Second-Order shape function 

Extension of the 8-noded quadratic element to the 20-noded quadratic 

hexahedron can be easily made by adding a mid-side node to each edge of the element. 

The 3D quadratic hexahedron is shown in Fig B-3. 

We can use the same as processes to degenerate the three-dimensional 

hexahedron element of 20-noded to wedge, pyramid, tetrahedral mesh shown in Fig 

B-4. There are 27 Gauss points to perform the numerical integration. 



     149

 

 

Fig. B-1 Degenerate forms of 8-node three-dimensional element 



     150

 

 

Fig. B-2 the eight-node trilinear hexahedron element 



     151

 

 

 

 

Fig. B-3 The 3D quadratic hexahedron 



     152

 

 

 

 

Fig. B-4 Degenerate forms of 20-node three-dimensional element 



     153

Appendix C First-order Shape Function of Tetrahedron 

Element 

Four coordinates 1L , 2L , 3L  and 4L  will be used to define a point P, although 

only three of them are independent. There natural coordinates are defined as 

V
VL 1

1 = , 
V
VL 2

2 = , 
V
VL 3

3 =  and 
V
VL 4

4 =       (C-1) 

where iV  is the volume of the tetrahedron formed by the point P and the vertices 

other than vertex i, and V  is the volume of tetrahedron element defined by vertices 1, 

2, 3 and 4 (Fig. C-1). The volume of tetrahedron element by the point P are defined as 

  2341 PofVolumeV = , 1342 PofVolumeV = , 

  1243 PofVolumeV =  and 1234 PofVolumeV =      (C-2) 

Because the natural coordinates are defined in terms of volumes, they are also 

known as volume or tetrahedral coordinates. Since VV
i

i =∑
=

4

1
, we obtain 

  14321
4321 =+++=+++ LLLL

V
V

V
V

V
V

V
V       (C-3) 

The volume coordinates iL  are also the shape functions for a three dimensional 

simplex element. 

The Cartesian and natural coordinates are related as 

 
⎪
⎩

⎪
⎨

⎧

+++=
+++=
+++=

44332211

44332211

44332211

zLzLzLzLz
yLyLyLyLy
xLxLxLxLx

         (C-4) 

Equation (C-3) and (C-4) can be expressed in matrix form as 



     154

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

4

3

2

1

4321

4321

4321

11111

L
L
L
L

zzzz
yyyy
xxxx

z
y
x

        (C-5) 

 The inverse relations can be expressed as 

  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

z
y
x

dcba
dcba
dcba
dcba

V
L
L
L
L 1

6
1

4444

3333

2222

1111

4

3

2

1

        (C-6) 

where  

444

333

222

1

zyx
zyx
zyx

a = , 

44

33

22

1

1
1
1

zy
zy
zy

b −= , 

44

33

22

1

1
1
1

zx
zx
zx

c −=  and 
1
1
1

44

33

22

1

yx
yx
yx

d −=  

Other constants are obtained through a cyclic permutation of subscripts 1, 2, 3 

and 4. 

 

 

 

 

 

 

 

 



     155

 

 

 

 

 

 

Fig. C-1 Volume coordinates for a tetrahedron element.  



     156

Appendix D Second-order Shape Function of 

Tetrahedron Element 

In this appendix, we provided some implementation of the matrix of coefficients 

for the second-order shape function of tetrahedron element. 

The volume integrals can be easily evaluated from the relation 

V
dcba

dcbadvLLLL
V

dcba 6
)!3(

!!!!
4321 ++++

=∫        (D-1) 

We can use the equation to develop the volume integral, then 

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

+−+

+−+

+−

=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+++⋅−+
+++⋅−+
+++⋅−

=∇

kLd

jLc

iLb

V

kydcydbdadVzd
jzdcycbcacVyc

izdbycbbabVxb

V

]2
2
1[

]2
2
1[

]2
2
1[

3
1

]2223)2[(
]2223)2[(
]2223)2[(

18
1

1
*
1

1
*
1

1
*
1

*
1

*
1

*
1

*
1

*
1

*
1

*
1

2*

*
1

*
1

*
1

*
1

*
1

*
1

*
1

2*
1

*
1

*
1

*
1

*
1

*
1

*
1

*
1

2*
1

21

1

φ

  (D-2) 

)
4
124(

9
)(

9

)2
2
1)((

1
2
12

2*
1

2*
1

2*
1

2

2
1

2*
1

2*
1

2*
1

11

+−
++

=

+−++
=∇⋅∇

LL
v

dcb
v

Ldcb
φφ

      (D-4) 

∫∫∫
++

=∇⋅∇
20
3

9
)( 2*

1
2*

1
2*

1
11 v

dcbdxdydzφφ       (D-5) 

 

 

 

 



     157

For 4,, ≤≠ jiji , 

)
4
14(

9
)(
9

)2
2
1)(2

2
1)((

2

******

2

******

+−−
++

=

+−+−++
=∇⋅∇

jiji
jijiji

jijijiji

ji

LLLL
v

ddccbb
v

LLddccbb
φφ

    (D-6) 

∫∫∫
−++

=∇⋅∇
20

1
9

)( ******

v
ddccbb

dxdydz jijiji
ji φφ      (D-7) 

 

))()()(2
2
1(

9
2

))(

)()()(2
2
1(

9
2

2*
1

2*
1

2*
12

*
2

*
1

*
2

*
1

*
2

*
1112

1
*
22

*
1

*
1

1
*
22

*
1

*
11

*
22

*
1

*
11251

dcbLddccbbLL
v

LdLdd

LcLccLbLbbL
v

++++++−=

++

++++−=∇⋅∇ φφ

 (D-8) 

then, to use the equation to develop the volume integral. 

))(L
2
1-)(L

2
1-

)(2)(2(
9
2

))(

)()()(2
2
1(

9
2

*
2

*
1

*
2

*
1

*
2

*
13

*
3

*
1

*
3

*
1

*
3

*
12

*
2

*
1

*
2

*
1

*
2

*
131

*
3

*
1

*
3

*
1

*
3

*
1212

2
*
33

*
2

*
1

2
*
33

*
2

*
12

*
33

*
2

*
11281

ddccbbddccbb

ddccbbLLddccbbLL
v

LdLdd

LcLccLbLbbL
v

++++

+++++=

++

++++−=∇⋅∇ φφ

 (D-9) 

 

 

For 4, >ji , 

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

++

++

+

=

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

+++++++

+++++++

++++++

=∇

kLdLd
jLcLc

iLbLb

V

kzcddcybddbxaddazdd
jzcddcybccbxaccaycc

izdbbdybccbxabbaxbb

V

ijji

ijji

ijji

jijijijijijiji

jijijijijijiji

jijijijijijiji

ji

][
][
][

3
2

])()()(2[
])()()(2[
])()()(2[

9
1

**

**

**

**************

**************

**************

2,φ

  (D-10) 



     158

])()()[(
9

4

)]()([
)]()([

)]()([

81
1

2
1

*
22

*
1

2
1

*
22

*
1

2
1

*
22

*
12

2*
2

*
2

*
2

*
2

*
1

*
1

*
1

*
1

*
1

*
2

2*
2

*
2

*
2

*
2

*
1

*
1

*
1

*
1

*
1

*
2

2*
2

*
2

*
2

*
2

*
1

*
1

*
1

*
1

*
1

*
2

455

LdLdLcLcLbLb
V

zdycxbadzdycxbad
zdycxbaczdycxbac

zdycxbabzdycxbab

V

+++++=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

++++++++
++++++++
+++++++

=∇⋅∇ φφ
  (D-11) 

therefore, when 4,, >= jiji , 

)](

)()[(
90

4

*
2

*
1

*
2

*
1

*
2

*
1

2*
2

2*
2

2*
2

2*
1

2*
1

2*
1

ddccbb

dcbdcb
v

dxdydzji

+++

+++++=∇⋅∇∫∫∫ φφ
    (D-12) 

 

 

When 4,, >≠ jiji , 

)]()(

)()([
9
4

)])((

))(())([(
9
4

*
3

*
2

*
3

*
2

*
3

*
211

*
2

*
1

*
2

*
1

*
2

*
131

*
3

*
1

*
3

*
1

*
3

*
121

2*
1

2*
1

2*
1322

1
*
33

*
11

*
22

*
1

1
*
33

*
11

*
22

*
11

*
33

*
11

*
22

*
1265

ddccbbLLddccbbLL

ddccbbLLdcbLL
v

LdLdLdLd

LcLcLcLcLbLbLbLb
v

++++++

+++++=

+++

+++++=∇⋅∇ φφ

 (D-13) 

)]()(

)()([
9

4
)])((

))(())([(
9
4

*
4

*
2

*
4

*
2

*
4

*
231

*
3

*
2

*
3

*
2

*
3

*
241

*
3

*
1

*
3

*
1

*
3

*
142

*
4

*
1

*
4

*
1

*
4

*
1322

3
*
44

*
31

*
22

*
1

3
*
44

*
31

*
22

*
13

*
44

*
31

*
22

*
12105

ddccbbLLddccbbLL

ddccbbLLddccbbLL
v

LdLdLdLd

LcLcLcLcLbLbLbLb
v

++++++

+++++=

+++

+++++=∇⋅∇ φφ

 (D-14) 



     159

Autobiography 

Yun-Long Shao 
Phone: 03-5712121-55175 
Email: maty.me89g@nctu.edu.tw 
 
 
Interests and Objectives 
1. Scalable distributed computing: parallel computing using finite-element 

method (FEM) and Lattice Boltzmann method (LBM) with domain 
decomposition and other related parallel high-performance computation. 

2. Computational bio-physics: a parallel PB equation solver with parallel 
adaptive mesh refinement (PAMR), which models electrical double layer 
around charged sphere or a cylinder. 

3. Microfluidics: familiar in microfabrication of microfluidics devices; 
micromixing, micropumping. 

 
Education 
2000-Present PhD program of M.E., National Chiao-Tung University 
 
1996-1998 M. S. in Mechanical Engineering, National Sun Yat-Sen University,  

Kaohsiung, Taiwan 
MS Thesis: Dynamic Simulation and Heat Transfer Analysis of  
Reheating Furnace 

 
1993-1996 B. S. in Mechanical Engineering, Yuan-Ze University, Taoyuan,  

Taiwan 
 
1985-1990 Associate Degree in Mechanical Engineering, Far East College,  

Tainan, Taiwan 
 
 
Languages 
Mandarin Chinese, Taiwanese and English 
 
 
Advisor 
Professor J.-S. Wu 
Department of Mechanical Engineering 
National Chiao-Tung University 
Email: chongsin@cc.nctu.edu.tw 



     160

List of Publications 

Referred Papers (* represent work directly related to PhD thesis): 

01.  J.-S. Wu and Y.-L. Shao, "Simulation of Lid-Driven Cavity Flows by Parallel 
Lattice Boltzmann Method Using Multi-Relaxation Time Scheme,“ International 
Journal for Numerical Methods in Fluids, Vol. 46, pp. 921-937, 2004. (SCI) 

02.  J.-S. Wu, H.-Y. Chou, U.-M. Lee, Y.-L. Shao and Y.-Y. Lian, "Parallel DSMC 
Simulation of a Single Underexpanded Free Jet from Transition to 
Near-continuum Regime," ASME-Journal of Fluids Engineering, Vol.127, 
pp.1161-1170, 2005. (SCI) 

03. J.-S. Wu and Y.-L. Shao, "Simulation of Flow Past a Square Cylinder by Parallel 
Lattice Boltzmann Method Using Multi-Relaxation-Time Scheme," Journal of 
Mechanics, Vol. 22, NO. 1, pp.35-42, 2006. (SCI) 

04. Y.-Y. Lian, K.-H. Hsu, Y.-L. Shao, Y.-M. Lee, Y.-W. Jeng and J.-S. 
Wu, ”Parallel Adaptive Mesh-Refining Scheme on Three-dimensional 
Unstructured Tetrahedral Mesh and Its Applications,” Computer Physics 
Communications, 2006. (SCI, accepted)* 

05. Y.-L. Shao, K.-H. Hsu, J.-S. Wu, Y.-Y. Lian and F.-N. Hwang, “Development of 
a parallelized Adaptive-Mesh Poisson-Boltzmann Equation Solver Using Finite 
Element Method and Its Applications,” Journal of Computational Chemistry, 
2006. (SCI, in revision) *. 

06. J-S. Wu, Y.-L. Shao, P.-C. Huang, T.-C. Cheng, "Development of a Micro-Mixer 
System and Its Applications," NDL Communication, Vol.12, I1, pp.21-27, 2005. 
(中文期刊) 

 

Conference Papers: 

01. J.-S. Wu and Y.-L. Shao, "Assessment of SRT and MRT Scheme in Parallel 
Lattice Boltzmann Method for Lid-Driven Cavity Flows," The 10th National 
Computational Fluid Dynamics Conference, Tainan, Taiwan, August, 2002 

02. J.-S. Wu and Y.-L. Shao, "Comparison of SRT and MRT Schemes in Lattice 
Boltzmann Method for Simulating the Flow Past a Square in a Channel," The 20th 
National Conference on Mechanical Engineering The Chinese Society of 
Mechanical Engineers, NTU, Taipei, Taiwan, December 5-6, 2003 

03. J.-S. Wu, T.-C. Cheng, Y.-L. Shao and C.-H. Wu, " Development of a Micro-PIV 
System and Its Applications ", The 11th Symposium on Nano Device Technology 
(SNDT 2004) 

04. J.-S. Wu, Y.-L. Shao, C.-H. Wu and T.-C. Cheng, " Design, Manufacture and 
Performance Analysis for a MicroMixer ", The 11th Symposium on Nano Device 
Technology (SNDT 2004) 

05. J.-S. Wu and Y.-L. Shao, "Comparison of the Micro-PIV Measurements with 
Lattice Boltzmann Method in Micro-Channel Flows," The 11th National CFD 



     161

Conference, Tai-Tung, Taiwan, August 5-7, 2004. (One of the three Best Paper 
Awards out of 190 papers) 

06. Y.-L. Shao, J.-S. Wu and J.-J. Hwang, "The micro-PIV measurement of the 
passive micro-mixer flow,” The Aeromechanics Conference, Kaohsiung, 2004 

07. J.-S. Wu, Y.-L. Shao, P.-C. Huang and T.-C. Cheng, "A spiral mixer for 
Microchannels," The 12th Symposium on Nano Device Technology (SNDT 2005) 


