CONTENTS

ABSTRACT	j
CONTENTS	iii
LIST OF TABLES	v
LIST OF FIGURES	vi
NOMENCLATURE	XV
CHAPTER 1 INTRODUCTION	1
1.1 New Refrigerants - Ozone Friendly Refrigerants to Substitute for R-22	2
R-22 1.2 Flow Boiling – Brief Description	3
1.3 Literature Review - Flow Boiling Heat Transfer	
1.4 Literature Review - Flow patterns and bubble characteristics	10
1.5 Literature Review - Correlation Equations for Two-phase Flow	12
1.6 Objective of The Present Study	
CHAPTER 2 EXPERIMENTAL APPARATUS AND PROCEDURES	22
2.1 Refrigerant flow loop	22
2.2 Test Section	23
2.3 Water loop for preheater	24
2.4 Water-glycol loop	24
2.5 DC Power Supply	25
2.6 Photographic System	25
2.7 Data acquisition	25
2.8 Experimental Procedures	26
2-9 Experimental Parameters	26

CHAPTER 3 DATA REDUCTION	33
3.1 Flow Boiling Heat Transfer Coefficient	33
3.2 Flow Boiling Bubble characteristics	35
3.3 Uncertainty Analysis	36
CHAPTER 4 SATURATED FLOW BOILING OF R-134a IN A	
HORIZONTAL NARROW ANNULAR DUCT	38
4.1 Single-phase Heat Transfer	38
4.2 Saturated Flow Boiling Curves	39
4.3 Saturated Flow Boiling Heat Transfer Coefficient	40
4.4 Bubbles Characteristics in Saturated Flow Boiling	42
4.5 Correlation Equations	47
4.6 Concluding Remarks	50
CHAPTER 5 SUBCOOLED FLOW BOILING OF R-134a IN A	0.4
HORIZONTAL NARROW ANNULAR DUCT 5.1 Subcooled Flow Boiling Curves	
1896	
5.2 Subcooled Flow Boiling Heat Transfer Coefficient5.3 Bubble Behavior in Subcooled Flow Boiling	
5.4 Correlation Equations	
5.5 Concluding Remarks	107
CHAPTER 6 CONCLUDING REMARKS AND	
RECOMMENDATION FOR FUTURE WORK	
6.1 Concluding Remarks	· 161
6.2 Recommendation for Future Work	162
REFERENCES	164
LIST OF PUBLICATION	171

LIST OF TABLES

Table 1.1	Comparison of some properties for traditional and new refrigerants15
Table 1.2	Comparison of Properties of three HFCs refrigerants for air conditioning and refrigeration applications16
Table 1.3	Heat transfer correlations for two-phase flow boiling in conventional channels17
Table 1.4	Heat transfer correlations for two-phase flow boiling in small channels18
Table 2.1	List of conditions of the experimental parameters for new refrigerants28
Table 2.2	Comparison of thermophysical properties of new refrigerants29
Table 3.1	Summary of the uncertainty analysis37

LIST OF FIGURES

Fig. 1.1	Schematic diagram of boiling regimes for a subcooled liquid refrigerant entering an annular duct with constant heat flux.	20
Fig. 1.2	Schematic diagram of a forced-convection boiling curve.	21
Fig. 2.1	Schematic of experimental system for the annular duct.	30
Fig. 2.2	The detailed arrangement of the test section for the annular duct	31
Fig. 2.3	The cross-sectional view of the annular duct showing the heater and locations of the thermocouples.	32
Fig. 4.1	Comparison of the present single-phase liquid convection heat transfer data with the correlation of Gnielinski [70] and Choi et al. [71].	52
Fig. 4.2	Saturated flow boiling curves for various refrigerant mass fluxes at (a) $T_{sat}=15^{\circ}\text{C}$ & $\delta=2.0$ mm and (b) $T_{sat}=15^{\circ}\text{C}$ & $\delta=1.0$ mm.	53
Fig. 4.3	Saturated flow boiling curves for various refrigerant mass fluxes at (a) $T_{sat}=15^{\circ}C$ & $\delta=0.5$ mm and (b) $T_{sat}=15^{\circ}C$ & $\delta=0.2$ mm.	54
Fig. 4.4	Saturated flow boiling curves for various gap sizes at (a) T_{sat} = 15°C & G= 500 kg/m ² s and (b) T_{sat} = 15°C & G= 600 kg/m ² s.	55
Fig. 4.5	Saturated flow boiling curves for various refrigerant saturated temperatures at (a) G= 500 kg/m ² s & δ = 2.0 mm and (b) G= 600 kg/m ² s & δ = 1.0 mm.	56
Fig 4.6	Saturated flow boiling curves for various refrigerant saturated temperatures at (a) G= 500 kg/m ² s & δ = 0.5 mm and (b) G= 600 kg/m ² s & δ = 0.2 mm.	57
Fig. 4.7	Relation between imposed heat flux and wall superheat at the incipient boiling.	58
Fig. 4.8	Saturated flow boiling heat transfer coefficient for various refrigerant mass fluxes at (a) T_{sat} = 15°C & δ = 2.0 mm and (b) T_{sat} = 15°C & δ = 1.0 mm.	59
Fig. 4.9	Saturated flow boiling heat transfer coefficient for various refrigerant mass fluxes at (a) $T_{sat}=15^{\circ}C$ & $\delta=0.5$ mm and (b) $T_{sat}=15^{\circ}C$ & $\delta=0.2$ mm	60

F1g. 4.10	Saturated flow boiling heat transfer coefficient for various gap sizes at (a) T_{sat} = 15°C & G= 500 kg/m ² s and (b) T_{sat} = 15°C & G= 600 kg/m ² s.	61
Fig. 4.11	Saturated flow boiling heat transfer coefficient for various refrigerant saturated temperatures at (a) G= 500 kg/m²s & δ = 2.0 mm and (b) G= 600 kg/m²s & δ = 1.0 mm.	62
Fig. 4.12	Saturated flow boiling heat transfer coefficient for various refrigerant saturated temperatures at (a) G= 500 kg/m²s & δ = 0.5 mm and (b) G= 600 kg/m²s & δ = 0.2 mm.	63
Fig. 4.13	Photos of boiling flow in the saturated flow boiling of R-134a in the entire duct at G= 500 kg/m ² s, T_{sat} = 15°C, δ = 2.0 mm and q= 30 kW/m ² from (a) side view and (b) top view.	64
Fig. 4.14	Photos of boiling flow in the saturated flow boiling of R-134a in the entire duct at G= 600 kg/m ² s, T_{sat} = 15°C, δ = 1.0 mm and q= 30 kW/m ² from (a) side view and (b) top view.	65
Fig. 4.15	Photos of boiling flow in the saturated flow boiling of R-134a in the entire duct at G= 600 kg/m ² s, T_{sat} = 15°C, δ = 0.5 mm and q= 30 kW/m ² from (a) side view and (b) top view.	66
Fig. 4.16	Photos of boiling flow in the saturated flow boiling of R-134a in the entire duct at G= 600 kg/m ² s, T_{sat} = 15°C, δ = 0.2 mm and q=30 kW/m ² from (a) side view and (b) top view.	67
Fig. 4.17	Photos of bubbles in the saturated flow boiling of R-134a in a small region around middle axial location at T_{sat} = 15°C and G= 600-kg/m ² s for various imposed heat flux and gap sizes.	68
Fig. 4.18	Photos of bubbles in the saturated flow boiling of R-134a in a small region around middle axial location at δ = 0.5 mm for various imposed heat flux, mass fluxes and refrigerant saturated temperatures.	69
Fig. 4.19	Flow regime map for different flow patterns at statistically steady-state observed from flow visualization (43 cases).	70
Fig. 4.20	Saturated flow boiling mean bubble departure diameter for various refrigerant mass fluxes at (a) $T_{sat}=15^{\circ}\text{C}$ & $\delta=2.0$ mm and (b) $T_{sat}=15^{\circ}\text{C}$ & $\delta=1.0$ mm.	71
Fig. 4.21	Saturated flow boiling mean bubble departure diameter for various	

	refrigerant mass fluxes at (a) T_{sat} = 15°C & δ = 0.5 mm and (b) T_{sat} = 15°C & δ = 0.2 mm.	72
Fig. 4.22	Saturated flow boiling mean bubble departure diameter for various gap sizes at (a) T_{sat} = 15°C & G= 500 kg/m ² s and (b) T_{sat} = 15°C & G= 600 kg/m ² s.	73
Fig. 4.23	Saturated flow boiling mean bubble departure diameter for various refrigerant saturated temperatures at (a) G= 500 kg/m²s & δ = 2.0 mm and (b) G= 600 kg/m²s & δ = 1.0 mm.	74
Fig. 4.24	Saturated flow boiling mean bubble departure diameter for various refrigerant saturated temperatures at (a) G= 500 kg/m²s & δ = 0.5 mm and (b) G= 600 kg/m²s & δ = 0.2 mm.	75
Fig. 4.25	Saturated flow boiling mean bubble departure frequency for various refrigerant mass fluxes at (a) $T_{sat}=15^{\circ}C$ & $\delta=2.0$ mm and (b) $T_{sat}=15^{\circ}C$ & $\delta=1.0$ mm.	76
Fig. 4.26	Saturated flow boiling mean bubble departure frequency for various refrigerant mass fluxes at (a) T_{sat} = 15°C & δ = 0.5 mm and (b) T_{sat} = 15°C & δ = 0.2 mm.	77
Fig. 4.27	Saturated flow boiling mean bubble departure frequency for various gap sizes at (a) T_{sat} = 15°C & G= 500 kg/m ² s and (b) T_{sat} = 15°C & G= 600 kg/m ² s.	78
Fig. 4.28	Saturated flow boiling mean bubble departure frequency for various refrigerant saturated temperatures at (a) G= 500 kg/m²s & δ = 2.0 mm and (b) G= 600 kg/m²s & δ = 1.0 mm	79
Fig. 4.29	Saturated flow boiling mean bubble departure frequency for various refrigerant saturated temperatures at (a) G= 500 kg/m²s & δ = 0.5 mm and (b) G= 600 kg/m²s & δ = 0.2 mm	80
Fig. 4.30	Saturated flow boiling mean active nucleation site density for various refrigerant mass fluxes at (a) $T_{sat}=15^{\circ}\text{C}$ & $\delta=2.0$ mm and (b) $T_{sat}=15^{\circ}\text{C}$ & $\delta=1.0$ mm.	81
Fig. 4.31	Saturated flow boiling mean active nucleation site density for various refrigerant mass fluxes at (a) $T_{sat}=15^{\circ}\text{C}$ & $\delta=0.5$ mm and (b) $T_{sat}=15^{\circ}\text{C}$ & $\delta=0.2$ mm.	82
Fig. 4.32	Saturated flow boiling mean active nucleation site density for various	

	gap sizes at (a) $I_{sat} = 15$ (& G= 500 kg/m ² s and (b) $I_{sat} = 15$ (& G= 600 kg/m ² s.	83
Fig. 4.33	Saturated flow boiling mean active nucleation site density for various refrigerant saturated temperatures at (a) G= 500 kg/m ² s & δ = 2.0 mm and (b) G= 600 kg/m ² s & δ = 1.0 mm.	84
Fig. 4.34	Saturated flow boiling mean active nucleation site density for various refrigerant saturated temperatures at (a) G= 500 kg/m ² s & δ = 0.5 mm and (b) G= 600 kg/m ² s & δ = 0.2 mm.	85
Fig. 4.35	Mean axial speed of the big bubbles in slug flow for various refrigerant mass fluxes at (a) T_{sat} = 15°C & δ = 0.5 mm and (b) T_{sat} = 15°C & δ = 0.2 mm.	86
Fig. 4.36	Mean axial speed of the big bubbles in slug flow for various gap sizes at T_{sat} = 15°C & G= 600 kg/m ² s.	87
Fig. 4.37	Mean axial speed of the big bubbles in slug flow for various refrigerant saturated temperatures at (a) G= 500 kg/m ² s & δ = 0.5 mm and (b) G= 600 kg/m ² s & δ = 0.2 mm.	88
Fig. 4.38	Comparison of the measured data for mean bubble departure diameter in the saturated flow boiling of R-134a with the proposed correlation.	89
Fig. 4.39	Comparison of the measured data for mean bubble departure frequency in the saturated flow boiling of R-134a with the proposed correlation.	90
Fig. 4.40	Comparison of the measured data for mean active nucleation site density in the saturated flow boiling of R-134a with the proposed correlation.	91
Fig. 4.41	Comparison of the measured data for heat transfer coefficient in the saturated flow boiling of R-134a in the bubbly flow regime with the proposed correlation.	92
Fig. 4.42	Comparison of the measured data for heat transfer coefficient in the saturated flow boiling of R-134a in the slug flow regime with the proposed correlation.	93
Fig. 5.1	Boiling curves at middle axial location for various refrigerant mass fluxes at (a) $T_{sat}=15^{\circ}\text{C}$, $\triangle T_{sub}=3^{\circ}\text{C}$ & $\delta=2.0$ mm and (b) $T_{sat}=15$ °C, $\triangle T_{sub}=3^{\circ}\text{C}$ & $\delta=1.0$ mm.	109
	\cup , $\triangle 1_{\text{Sub}} - J \cup \alpha \cup -1.0 \text{ IIIII}.$	107

Fig. 5.2	Boiling curves at middle axial location for various refrigerant mass fluxes at (a) T_{sat} = 15°C, $\triangle T_{sub}$ = 3°C & δ = 0.5 mm and (b) T_{sat} = 15°C, $\triangle T_{sub}$ = 3°C & δ = 0.2 mm.	110
Fig. 5.3	Boiling curves at middle axial location for various inlet subcoolings at (a) T_{sat} = 15°C, G= 500 kg/m²s & δ = 2.0 mm and (b) T_{sat} = 15°C, G = 500 kg/m²s & δ = 1.0 mm.	111
Fig. 5.4	Boiling curves at middle axial location for various inlet subcoolings at (a) T_{sat} = 15°C, G= 500 kg/m²s & δ = 0.5 mm and (b) T_{sat} = 15°C, G = 500 kg/m²s & δ = 0.2 mm.	112
Fig. 5.5	Boiling curves at middle axial location for various gap sizes at (a) T_{sat} = 15°C, G= 500 kg/m ² s & $\triangle T_{sub}$ = 3°C and (b) T_{sat} = 15°C, G = 500 kg/m ² s & $\triangle T_{sub}$ = 6°C.	113
Fig 5.6	Boiling curves at middle axial location for various refrigerant saturated temperatures at (a) G= 500 kg/m²s, $\triangle T_{sub}$ = 3°C & δ = 2.0 mm and (b) G= 500 kg/m²s, $\triangle T_{sub}$ = 3°C & δ = 1.0 mm.	114
Fig. 5.7	Boiling curves at middle axial location for various refrigerant saturated temperatures at (a) G= 500 kg/m²s, $\triangle T_{sub}$ = 3°C & δ = 0.5 mm and (b) G= 500 kg/m²s, $\triangle T_{sub}$ = 3°C & δ = 0.2 mm.	115
Fig. 5.8	Relation between imposed heat flux and wall superheat at ONB in the subcooled flow boiling.	116
Fig.5.9	Subcooled flow boiling heat transfer coefficient at middle axial location for various refrigerant mass fluxes at (a) T_{sat} = 15°C, $\triangle T_{sub}$ = 3°C & δ = 2.0 mm and (b) T_{sat} = 15°C, $\triangle T_{sub}$ = 3°C & δ = 1.0 mm.	117
Fig. 5.10	Subcooled flow boiling heat transfer coefficient at middle axial location for various refrigerant mass fluxes at (a) T_{sat} = 15°C, $\triangle T_{sub}$ = 3°C & δ = 0.5 mm and (b) T_{sat} = 15°C, $\triangle T_{sub}$ = 3°C & δ = 0.2 mm.	118
Fig. 5.11	Subcooled flow boiling heat transfer coefficient at middle axial location for various inlet subcoolings at (a) T_{sat} = 15°C, G = 500 kg/m²s & δ = 2.0 mm and (b) T_{sat} = 15°C, G = 500 kg/m²s & δ = 1.0 mm.	119
Fig. 5.12	Subcooled flow boiling heat transfer coefficient at middle axial location for various inlet subcoolings at (a) T_{sat} = 15°C, G= 500 kg/m ² s & δ = 0.5 mm and (b) T_{sat} = 15°C, G = 500 kg/m ² s & δ = 0.2 mm.	120
Fig. 5.13	Subcooled flow boiling heat transfer coefficient at middle axial	

	location for various gap sizes at (a) T_{sat} = 15°C, G= 500 kg/m ² s & \triangle T_{sub} = 3°C and (b) T_{sat} = 15°C, G = 500 kg/m ² s & $\triangle T_{sub}$ = 6°C.	121
Fig. 5.14	Subcooled flow boiling heat transfer coefficient at middle axial location for various refrigerant saturated temperatures at (a) G= 500 kg/m²s, $\triangle T_{sub}$ = 3°C & δ = 2.0 mm and (b) G= 500 kg/m²s, $\triangle T_{sub}$ = 3°C & δ = 1.0 mm.	122
Fig. 5.15	Subcooled flow boiling heat transfer coefficient at middle axial location for various refrigerant saturated temperatures at (a) G= 500 kg/m²s, $\triangle T_{sub}$ = 3°C & δ = 0.5 mm and (b) G= 500 kg/m²s, $\triangle T_{sub}$ = 3°C & δ = 0.2 mm.	123
Fig.5.16	Photos of boiling flow in the subcooled flow boiling of R-134a in the entire duct at G= 500 kg/m²s, T_{sat} = 15°C, δ = 2.0 mm, $\triangle T_{sub}$ = 3°C and q= 35 kW/m² from (a) side view and (b) top view.	124
Fig. 5.17	Photos of boiling flow in the subcooled flow boiling of R-134a in the entire duct at G= 500 kg/m ² s, T_{sat} = 15°C, δ = 1.0 mm, $\triangle T_{sub}$ = 3°C and q= 35 kW/m ² from (a) side view and (b) top view.	125
Fig. 5.18	Photos of boiling flow in the subcooled flow boiling of R-134a in the entire duct at G= 500 kg/m ² s, T_{sat} = 15°C, δ = 0.5 mm, $\triangle T_{sub}$ = 3°C and q= 35 kW/m ² from (a) side view and (b) top view.	126
Fig. 5.19	Photos of boiling flow in the subcooled flow boiling of R-134a in the entire duct at G= 500 kg/m²s, T_{sat} = 15°C, δ = 0.2 mm, $\triangle T_{sub}$ = 3°C and q= 35 kW/m² from (a) side view and (b) top view.	127
Fig. 5.20	Photos of bubbles in the subcooled flow boiling of R-134a in a small region around middle axial location for δ = 0.5 mm for various imposed heat flux, mass fluxes, inlet liquid subcoolings and refrigerant saturated temperature.	128
Fig. 5.21	Photos of bubbles in the subcooled flow boiling of R-134a in a small region around middle axial location for $T_{sat} = 15^{\circ}\text{C}$, $G = 500 \text{ g/m}^2\text{s}$, $\triangle T_{sub} = 3^{\circ}\text{C}$ for various gap sizes and heat flux.	129
Fig. 5.22	Flow regime map for different flow patterns at statistically steady-state observed from flow visualization (41 cases).	130
Fig. 5.23	Subcooled flow boiling mean bubble departure diameter for various refrigerant mass fluxes at (a) $T_{sat}=15^{\circ}\text{C}$, $\triangle T_{sub}=3^{\circ}\text{C}$ & $\delta=2.0$ mm	

	and (b) T_{sat} = 15°C, $\triangle T_{sub}$ = 3°C & δ = 1.0 mm.	131
Fig. 5.24	Subcooled flow boiling mean bubble departure diameter for various refrigerant mass fluxes at (a) $T_{sat}=15^{\circ}\text{C}$, $\triangle T_{sub}=3^{\circ}\text{C}$ & $\delta=0.5$ mm and (b) $T_{sat}=15^{\circ}\text{C}$, $\triangle T_{sub}=3^{\circ}\text{C}$ & $\delta=0.2$ mm.	132
Fig. 5.25	Subcooled flow boiling mean bubble departure diameter for various inlet subcoolings at (a) T_{sat} = 15°C, G= 500 kg/m²s & δ = 2.0 mm and (b) T_{sat} = 15°C, G = 500 kg/m²s & δ = 1.0 mm.	133
Fig. 5.26	Subcooled flow boiling mean bubble departure diameter for various inlet subcoolings at (a) $T_{sat} = 15^{\circ}\text{C}$, $G = 500~kg/m^2s$ & $\delta = 0.5~mm$ and (b) $T_{sat} = 15^{\circ}\text{C}$, $G = 500~kg/m^2s$ & $\delta = 0.2~mm$.	134
Fig. 5.27	Subcooled flow boiling mean bubble departure diameter for various duct sizes at (a) $T_{sat} = 15^{\circ}\text{C}$, $G = 500 \text{ kg/m}^2\text{s}$ & $\triangle T_{sub} = 3^{\circ}\text{C}$ and (b) $T_{sat} = 15^{\circ}\text{C}$, $G = 500 \text{ kg/m}^2\text{s}$ & $\triangle T_{sub} = 6^{\circ}\text{C}$.	135
Fig. 5.28	Subcooled flow boiling mean bubble departure diameter for various refrigerant saturated temperatures at (a) G= 500 kg/m²s, $\triangle T_{sub}$ = 3°C & δ = 2.0 mm and (b) G= 500 kg/m²s, $\triangle T_{sub}$ = 3°C & δ = 1.0 mm.	136
Fig. 5.29	Subcooled flow boiling mean bubble departure diameter for various refrigerant saturated temperatures at (a) G= 500 kg/m²s, $\triangle T_{sub}$ = 3°C & δ = 0.5 mm and (b) G= 500 kg/m²s, $\triangle T_{sub}$ = 3°C & δ = 0.2 mm.	137
Fig. 5.30	Subcooled flow boiling mean bubble departure frequency for various refrigerant mass fluxes at (a) $T_{sat}=15^{\circ}\text{C}$, $\triangle T_{sub}=3^{\circ}\text{C}$ & $\delta=2.0$ mm and (b) $T_{sat}=15^{\circ}\text{C}$, $\triangle T_{sub}=3^{\circ}\text{C}$ & $\delta=1.0$ mm.	138
Fig. 5.31	Subcooled flow boiling mean bubble departure frequency for various refrigerant mass fluxes at (a) $T_{sat}=15^{\circ}\text{C}$, $\triangle T_{sub}=3^{\circ}\text{C}$ & $\delta=0.5$ mm and (b) $T_{sat}=15^{\circ}\text{C}$, $\triangle T_{sub}=3^{\circ}\text{C}$ & $\delta=0.2$ mm.	139
Fig. 5.32	Subcooled flow boiling mean bubble departure frequency for various inlet subcoolings at (a) $T_{sat}=15^{\circ}\text{C}$, $G=500~\text{kg/m}^2\text{s}$ & $\delta=2.0~\text{mm}$ and (b) $T_{sat}=15^{\circ}\text{C}$, $G=500~\text{kg/m}^2\text{s}$ & $\delta=1.0~\text{mm}$.	140
Fig. 5.33	Subcooled flow boiling mean bubble departure frequency for various inlet subcoolings at (a) $T_{sat}=15^{\circ}\text{C}$, $G=500~\text{kg/m}^2\text{s}$ & $\delta=0.5~\text{mm}$ and (b) $T_{sat}=15^{\circ}\text{C}$, $G=500~\text{kg/m}^2\text{s}$ & $\delta=0.2~\text{mm}$.	141

Fig. 5.34 Subcooled flow boiling mean bubble departure frequency for various duct sizes at (a) T_{sat} = 15°C, G= 500 kg/m²s & $\triangle T_{sub}$ = 3°C and (b)

Fig. 5.35	Subcooled flow boiling mean bubble departure frequency for various refrigerant saturated temperatures at (a) $G = 500 \text{ kg/m}^2\text{s}$, $\triangle T_{\text{sub}} = 3^{\circ}\text{C}$	1.42
Fig. 5.36	& δ = 2.0 mm and (b) G= 500 kg/m ² s, $\triangle T_{sub}$ = 3°C & δ = 1.0 mm. Subcooled flow boiling mean bubble departure frequency for various refrigerant saturated temperatures at (a) G= 500 kg/m ² s, $\triangle T_{sub}$ = 3°C & δ = 0.5 mm and (b) G= 500 kg/m ² s, $\triangle T_{sub}$ = 3°C & δ = 0.2 mm.	143 144
Fig. 5.37	Subcooled flow boiling mean active nucleation site density for various refrigerant mass fluxes at (a) $T_{sat}=15^{\circ}\text{C}$, $\triangle T_{sub}=3^{\circ}\text{C}$ & $\delta=2.0$ mm and (b) $T_{sat}=15^{\circ}\text{C}$, $\triangle T_{sub}=3^{\circ}\text{C}$ & $\delta=1.0$ mm.	145
Fig. 5.38	Subcooled flow boiling mean active nucleation site density for various refrigerant mass fluxes at (a) $T_{sat}=15^{\circ}\text{C}$, $\triangle T_{sub}=3^{\circ}\text{C}$ & $\delta=0.5$ mm and (b) $T_{sat}=15^{\circ}\text{C}$, $\triangle T_{sub}=3^{\circ}\text{C}$ & $\delta=0.2$ mm.	146
Fig. 5.39	Subcooled flow boiling mean active nucleation site density for various inlet subcoolings at (a) T_{sat} = 15°C, G= 500 kg/m ² s & δ = 2.0 mm and (b) T_{sat} = 15°C, G = 500 kg/m ² s & δ = 1.0 mm.	147
Fig. 5.40	Subcooled flow boiling mean active nucleation site density for various inlet subcoolings at (a) $T_{sat} = 15^{\circ}\text{C}$, $G = 500 \text{ kg/m}^2\text{s}$ & $\delta = 0.5 \text{ mm}$ and (b) $T_{sat} = 15^{\circ}\text{C}$, $G = 500 \text{ kg/m}^2\text{s}$ & $\delta = 0.2 \text{ mm}$.	148
Fig. 5.41	Subcooled flow boiling mean active nucleation site density for various duct sizes at (a) $T_{sat}=15^{\circ}\text{C}$, $G=500 \text{ kg/m}^2\text{s}$ & $\triangle T_{sub}=3^{\circ}\text{C}$ and (b) $T_{sat}=15^{\circ}\text{C}$, $G=500 \text{ kg/m}^2\text{s}$ & $\triangle T_{sub}=6^{\circ}\text{C}$.	149
Fig. 5.42	Subcooled flow boiling mean active nucleation site density for various refrigerant saturated temperatures at (a) G= 500 kg/m²s, $\triangle T_{sub}$ = 3°C & δ = 2.0 mm and (b) G= 500 kg/m²s, $\triangle T_{sub}$ = 3°C & δ = 1.0 mm.	150
Fig. 5.43	Subcooled flow boiling mean active nucleation site density for various refrigerant saturated temperatures at (a) G= 500 kg/m²s, $\triangle T_{sub}$ = 3°C & δ = 0.5 mm and (b) G= 500 kg/m²s, $\triangle T_{sub}$ = 3°C & δ = 0.2 mm.	151
Fig. 5.44	Mean axial speed of the big bubbles in the slug flow in the subcooled flow boiling for various refrigerant mass fluxes at (a) $T_{sat}=15^{\circ}\text{C}$, \triangle $T_{sub}=3^{\circ}\text{C}$ & $\delta=0.5$ mm and (b) $T_{sat}=15^{\circ}\text{C}$, $\triangle T_{sub}=3^{\circ}\text{C}$ & $\delta=0.2$ mm.	152
Fig. 5.45	Mean axial speed of the big bubbles in the slug flow in the subcooled	

 $T_{sat} = 15^{\circ}\text{C}$, $G = 500 \text{ kg/m}^2\text{s}$ & $\triangle T_{sub} = 6^{\circ}\text{C}$.

142

	flow boiling for various inlet subcoolings at (a) T_{sat} = 15°C, G= 500 kg/m²s & δ = 0.5 mm and (b) T_{sat} = 15°C, G = 500 kg/m²s & δ = 0.2 mm.	153
Fig. 5.46	Mean axial speed of the big bubbles in the slug flow in the subcooled flow boiling for various duct sizes at (a) T_{sat} = 15°C, G= 500 kg/m²s & $\triangle T_{sub}$ = 3°C and (b) T_{sat} = 15°C, G = 500 kg/m²s & $\triangle T_{sub}$ = 6°C.	154
Fig. 5.47	Mean axial speed of the big bubbles in the slug flow in the subcooled flow boiling for various refrigerant saturated temperatures at (a) G= 500 kg/m²s, $\triangle T_{sub}$ = 3°C & δ = 0.5 mm and (b) G= 500 kg/m²s, $\triangle T_{sub}$ = 3°C & δ = 0.2 mm.	155
Fig. 5.48	Comparison of the measured data for mean bubble departure diameter in the subcooled flow boiling of R-134a with the proposed correlation.	156
Fig. 5.49	Comparison of the measured data for mean bubble departure frequency in the subcooled flow boiling of R-134a with the proposed correlation.	157
Fig. 5.50	Comparison of the measured data for mean active nucleation site density in the subcooled flow boiling of R-134a with the proposed correlation.	158
Fig. 5.51	Comparison of the measured data for heat transfer coefficient in the subcooled flow boiling of R-134a in the bubbly flow regime with the proposed correlation.	159
Fig. 5.52	Comparison of the measured data for heat transfer coefficient in the subcooled flow boiling of R-134a in the slug flow regime with the proposed correlation.	160
	proposed correlation.	100