Crown	Dofnigonant	Chamical Formula	Composition	Glide	ODP	GWP	Doplosing
Group	Kenngerant	Chemical Formula	(% of mass)	Temperature (℃)	(R-11=1)	(CO ₂ =1)	Keplacing
CFCs	R-11	CCl ₃ F		0	1	3800	
	R-12	CCl ₂ F ₂	Manual Contraction	0	1	8100	
HCFCs	R-22	CHClF ₂	ESA	0	0.055	1500	
HFCs	R-134a	CH ₂ FCF ₃		0	0	1300	R-12, R-22
	R-407C	CH ₂ F ₂ / CHF ₂ CF ₃ / CH ₂ FCF ₃	R32/125/134a (23/25/52)	7.2	0	1600	R-22
	R-410A	CH ₂ F ₂ / CHF ₂ CF ₃	R32/R125 (50/50)	< 0.1	0	1900	R-22
	R-410B	CH ₂ F ₂ / CHF ₂ CF ₃	R32/125 (45/55)	< 0.1	0	2000	R-22
	R-507	CHF ₂ CF ₃ / CH ₂ FCF ₃	R125/143a (50/50)	0	0	3800	R-22

Table 1.1 Comparison of some properties for traditional and new refrigerants

Table 1.2 Comparison of Properties of three HFCs refrigerants for air conditioning and refrigeration applications

Refrigerant	R-134a	R-410A	R-407C
Component	HFC-134a	HFC-32/125	HFC-32/125/134a
Wt %	100 %	50/50%	23/25/52%
Comparison with R-22	 the lower working pressure. the frication pressure drop is larger in the same capability of freezing. 	 near-azeotropic refrigerant. the working pressure is five times than R-22. the frication pressure drop is smaller. 	 zeotropic refrigerant, and the components charge easy. the working pressure is same with R-22.
The energy efficiency ratio relative to R-22	72~90	94~100	90~97
Molecule quality	102.3	72.6	85.62
Remark	 the volume of operating system becomes larger. the air-out volume of compress is larger. 	1. the design of system must to consider the strong and optimum elements.	1. the solutions of variation of R-407C components.
Green-house effect (100 years)	1300	1725	1526
Toxicity limit (kg/m ³)	0.25	0.44	0.31
Boiling point (°C)	-26.2	-52.7 R32 (-51.8°C) / R125 (-48.5°C)	-43.6 R32 (-51.8°C) / R125 (-48.5°C) / R134a (-26.2°C)
Temperature glides	-	<1 °F	10 °F

Reference	Heat Transfer Correlations
Chen [56]	$\begin{aligned} \mathbf{h}_{\mathrm{tp}} &= \mathbf{h}_{\mathrm{mac}} + \mathbf{h}_{\mathrm{mic}} \\ \mathbf{h}_{\mathrm{mac}} &= \mathbf{h}_{1} \cdot \mathbf{E} , \mathbf{h}_{\mathrm{mic}} = \mathbf{h}_{\mathrm{pool}} \cdot \mathbf{S} \end{aligned}$
	$\mathbf{E}, \mathbf{S} = \mathbf{f}(\mathbf{R}\mathbf{e}_1, \mathbf{X}_{tt})$
Gaungor and Winterton [58]	$\mathbf{h}_{\mathrm{tp}} = \mathbf{h}_{1} \cdot \mathbf{E} + \mathbf{h}_{\mathrm{pool}} \cdot \mathbf{S}$
	$h_1 = 0.023 \cdot Re_1^{0.8} \cdot Pr_1^{0.4} (k_1 / D)$
	$h_{pool} = 55 \cdot Pr^{0.12} \cdot (-\log_{10}^{Pr})^{-0.55} \cdot M^{-0.5} \cdot q^{0.67}$
	$E = 1 + 24000 \cdot Bo^{1.16} + 1.34 \cdot (1 / X_{tt})^{0.86}$
	$\mathbf{S} = (1 + 1.15 \times 10^{-6} \cdot \mathbf{E}^2 \cdot \mathbf{R} \mathbf{e}_1^{1.17})^{-1}$
Shah [59]	$\psi = \frac{h_{tp}}{h_t}$ $\psi = Max(\psi_{nb}, \psi_{cb}), \psi_{nb}, \psi_{cb} = f(Co, Bo, Fr)$
Kandikar [60]	$\frac{\mathbf{h}_{tp}}{\mathbf{h}_{1}} = [\mathbf{C}_{1} \cdot \mathbf{Co}^{\mathbf{C}_{2}} \cdot (25 \cdot \mathbf{Fr})^{\mathbf{c}_{5}} + \mathbf{C}_{3} \cdot \mathbf{Bo}^{\mathbf{C}_{4}} \cdot \mathbf{F}_{f}]$
Lin and Winterton [61]	$h_{tp} = [(S \cdot h_{pool})^2 + (E \cdot h_1)^2]^{1/2}$
	$E = [1 + (x) \cdot (Pr_1) \cdot (\frac{\rho_1}{\rho_x} - 1)]^{0.35}$
	$S = [1 + 0.055 \cdot E^{0.1} \cdot (Re_1)^{0.16}]^{-1}$

Table 1.3 Heat transfer correlations for two-phase flow boiling in conventional channels

Reference	Fluid	Heat Transfer Coefficient Correlations	Application Range
Y. Fujita et al. [23]	R-123	$h_p = 0.884G^{0.143}q^{0.714}$	$D:1.12mm G:50-400 kg/m^2s$ $q:5-20kW/m^2 \text{Re}:135-1070$ P:1.1-1.2bar x:-0.2-0.9
Lazarek and Black [24]	R-113	$h_{ip} = 30 \mathrm{Re}_{i}^{0.857} Bo^{0.714} (k_i / D)$	$\begin{array}{ccc} Bo: 3 \times 10^{-4} - 8.9 \times 10^{-4} \\ D: 3.1mm & G: 125 - 750 kg/m^2 \\ g: 14 - 380 kW/m^2 & {\rm Re}: 860 - 5500 \\ Bo: 2.3 \times 10^{-4} - 76 \times 10^{-4} & P: 1.3 - 4.1 bar \end{array}$
T. N. Tran et al. [27]	R-12, R113	$h = (8.4 \times 10^{-5})(Bo^2We_1)^{0.3} (\frac{\rho_1}{\rho_g})^{-0.4} \text{ for } \Delta T > 2.75 ^{\circ}C$	$D: 2.46mm, 2.92mm; D_h = 2.4mm$ $G: 44 - 832 kg/m^2 s q: 7.5 - 129 kW/m^2$ $P_r: 0.045 - 0.2 Bo: 2 \times 10^{-4} - 23 \times 10^{-4}$ $\Delta T_{sat}: 2.8 - 18.2^{\circ}C$
Z. Y. Bao et al. [28]	R-11, R-123	$h_{lp}/h_l = 1 + 3000Bo^{0.86} + 1.12(x/(1-x))^{0.75} (\rho_l/\rho_g)^{0.41}$	$D:1.95mm G:50-1800 kg/m^2 s$ $q:50-200 kW/m^2 \text{Re}:860-5500$ P:2-5bar x:-0.3-0.9 $\Delta T_{sat}:5-15^{\circ}C$
G.R. Warrier et al. [29]	FC-84	$\frac{h_{\eta p}}{h_{l}} = 1 + 6Bo^{\gamma_{16}} + f_{2}(Bo)(x)^{0.65}$ $f_{2}(Bo) = -5.3 \cdot [1 - 855Bo]$	$D: 0.75mm G: 557 - 1600 kg/m^2 s$ $q: 0-59.9 kW/m^2 \text{Re}: 418 - 2015$

Table 1.4 Heat transfer correlations for two-phase flow boiling in small channels

Reference	Fluid Heat Transfer C	orrelations		Application Range
S. G. Kandlikar [60]	$\frac{h_p}{h_l} = [C_1 \cdot Co^{C_2} \cdot ($	$25 \cdot Fr_l)^{c_5} + C_3 \cdot Bo^{C_4} \cdot$	F_f]	$D:4-32mm$ $G:13-8179 kg/m^2 s$
	Constant	Convection	Nucleate	$q(0,0) = 220 MW / M$ $\Gamma(0,0) = 0.001 O 0.001$
	CI	1.136	0.6683	x: 0.001 - 0.98
	C2	-0.9	-0.2	C5=0, for vertical tube and for horizontal tube
	C3	667.2	1058	with
	C4	0.7	0.7	Fr]>0.04
	CS	0.3	0.3	
S. G. Kandlikar [63]	$h_{p}/h_{l} = \text{maximuu}$ Nucleate boilir $[h_{p}/h_{l}]_{NBD} = 0.6($ $+1058Bo^{0.7}F_{f}(1-$ $+1058Bo^{0.7}F_{f}(1-$ $Convection bo$ $[h_{p}/h_{l}]_{CBD} = 1.12$ $+667.2Bo^{0.7}F_{f}(1-$ $f(F_{l}) = \frac{(25F_{l})}{1 \text{ for}}$	a of $[h_{\eta\nu}/h_l]_{NBD}$ i of $[h_{\eta\nu}/h_l]_{CBD}$ ig dominant regic 583 $(\rho_l/\rho_g)^{0.1} x^{0.16} (1-5)^{0.8}$ - $x)^{0.8}$ illing dominant re $(60(\rho_l/\rho_g)^{0.45} x^{0.72} (1-5)^{0.45} x^{0.72} (1-5)^{0.8}$ - $x)^{0.8}$ $Fr_l > 0.04 for H. \& 1$	on $f(Fr_l)$ $f(Fr_l)$ $f_2(Fr_l)$ rHtube rtube	$D: 8.1 - 20mm G: 123 - 1523 kg/m^2 s$ $q: 0.8 - 82.1 kW/m^2 P: 1.6 - 14.8 bar$ $x: 0 - 0.868 Bo: 0.035 \times 10^{-4} - 24.02 \times 10^{-4}$

Table 1.4 Continued

19

Fig. 1.1 Schematic diagram of boiling regimes for a subcooled liquid refrigerant entering an annular duct with constant heat flux.

 $\log (T_w - T_s)$

