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Abstract

In this paper, we introduce the conventional structural credit risk model and
propose several different models to approach the default prediction. We apply sev-
eral different option pricing frameworks which make asset value follows different
distribution processes to predict the bankruptcy probability. We hope these dis-
tinct setups can predict the bankruptcy probability much accuracy. Finally, we will
test these models and compare which one is the best of them.
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1 INTRODUCTION

Credit risk is a possibility of a creditor’s financial loss occurring due to the contractual
counterparty does not meet its debt obligations. In common sense, a bond involving a
high amount of credit risk must promise a higher return to the investor than a less credit-
risky contract. If we are able to obtain a good relation between the credit risk and bond

price, then we will easily to predict the value for both of them.

Black and Scholes [2] are harbingers to discuss the relationship of bond price and its
credit risk by option pricing model. Merton [32] further develope the intuition of Black
and Scholes and put it into an analytical framework. A large amount of research followed
the work of Black, Merton and Scholes.

Merton [32] use “Basic Accounting Equation”, firm asset value equal to its liability
and stock market value, to define what the bankruptcy event is. The approach assumed
that the bankruptcy is occurred when the firm’s asset values lower than its liability. When
the corporation only issue one zero coupon bond, applying Merton’s [32] credit risk model

will facilitate to calculate the default probability of the corporate bond.

In addition to Merton model, Black and Cox [1] present an explicit equilibrium model
which assumed the bond default at any time before maturity when the asset price touch
threshold K. This threshold is exogenous, i.e., it can be different with the bond face
value. Furthermore, Longstaff and Schwartz [30] import the dynamic riskless interest
rate r, which follows the Vasicek [42] model. The correlation of diffusion term in asset
price and interest rate is negative. Zhou [46] follows the assumption of Longstaff and
Schwartz [30] and extends their result. He assume the asset value follows the normal jump
diffusion model. Chen and Panjer [8] demonstrate that structural model® is consistent

with reduced-form model? in theoretically.

However, because K is exogenously specified, it maybe gets an illogical result, as
mentioned by Briys and Varenne [4]. Thus, Briys and Varenne [4] describe a model
which assume the bankruptcy threshold is equal to the multiple of discount at the risk-
free interest rate up to maturity date of the corporate bond. Hui et al [20] propose an
extension model which can not only include the Longstaff and Schwartz [30] and Briys

and Varenne [4] results, but also fulfill the situation when economical deterioration.

LAl of the credit risk models which base on “Basic Accounting Equation”, such as Merton [32], Black
and Cox [1], Longstaff and Schwartz [30], Zhou [46], etc., are called “structural model”.

2There are three different reduce-form models which try to capture the default risk of bond: recovery
of market value (RMV), recovery of treasury (RT) and recovery of face value (RFV). Duffie and Singleton
[16] propose RMV model. Jarrow and Turnbull [22] propose RT model. Brenann and Schwartz [3] and
Duffee [15] propose RFV model. Chen and Panjer [8] verify that structural model is not only equivalent
to RT model, but also converges to RMV model.



All models as mentioned above ignore the leverage ratios effect in credit risk. They
assumed the value of the firm is independent of the capital structure of the firm. This is the
standard assumption that the Modigliani-Miller Theorem holds. That is, the corporations
will not change the credit spread of the old debt when they issue a new one. However,
Collin-Dufresne and Goldstein [9] argue that the stationary leverage ratios will increase

the credit spreads. Their model is also an extension of Longstaff and Schwartz [30].

Structural model can do very well for fitting the feature of the term structure of
credit spread. Unfortunately, these models at least contain two unknown variables in
one equation. As pointed out in Jarrow and Turnbull [23], we can not get the model
parameters (the assets’ expected return and volatility in the case of Merton model) from
the market index directly. There are at least three different approaches to overcome
this problem in academic literature, as pointed out by Duan et al [14]. Jones et al [24]
and Ronn and Verma [34] (JMR-RV) apply It6’s lemma to make simultaneous equations
and solve two unknown variables,; asset value and its volatility. Eom et al [18] (EHH)
propose the second approach. They apply the sum of the market value of equity and
total debt as a proxy of firm implied asset value. In their empirical study, Merton model
overestimates corporate bond prices substantially. The third approach is proposed by
Duan [12]. This approach is based on the maximum likelihood estimation and applying
the transformed-data to estimate two unknown variables. Although all of these three
different approaches have their reasonable evidence to support their idea, two of the first
are contradict with some other theoretical results. The deficiencies of first approach are
explained by Duan [12] and Bruche [6]. They argue that the volatility of equity be a
constant was unreasonable, especially when the asset value of the firm changes greatly
during the estimation period. Besides, because the volatility equation is derived from
[to’s lemma, it is redundancy. For the second approach, Wang and Li [45] verify it
theoretically conflict with the boundary condition of option pricing model. Also, the
Monte Carlo simulation shows that approach is bias the prediction very seriously. Under
the simulation, Bruche [6], Wang and Li [45] and Duan et al [14] demonstrate the third
method is the best approach in three of them.

Although JMR-RV approach has some defects, there are a lot of literatures and text-
books, such as Hull [21] and Schonbucher [38] , introduce this approach only to estimate
unknown parameters. Based on this approach, KMV? proposed another methodology to
find the firm asset value its volatility. Duan et al [14] and Lando [27] show that the KMV
approach is equivalent to the maximum likelihood estimation approach in the case of Mer-
ton model. In theoretically, Duan et al [14] shows this method is a kind of EM algorithm,
a well-known approach for obtaining maximum likelihood estimates under missing data

environment.

3KMYV is a company which produce several softwares to monitor the credit events. For more detail,
please see: http://www.moodyskmv.com/



Under Merton framework, the asset price follows lognormal distribution. However,
some empirical studies in stock price, like Tsay [41] and Schroder [36], show that log-
normal distribution can not describe the price data very well. It’s because the empirical
distribution of daily log returns are skewness and excess kurtosis. This mean the empir-
ical distribution of log return is asymmetric and fat tails. If the asset value have a good
relation with equity value, we reasonable to doubt the assumption of distribution of asset
is good or not. Therefore, in this article, we try to introduce two different asset processes
and measure the performance of default forecast under these different assumptions in

empirical study:.

Cox [10] derives the renowned of Constant Elasticity of Variance (CEV) option pricing
model. Cox et al [11] use the similar idea to derive the close form of well-known CIR term
structure model. The difference between CEV and Black-Scholes models is that the CEV
model has elasticity in the variance term of the diffusion model. Schroder [36] show
the stock process under CEV model follows noncentral Chi-square distribution. Lee et
al [29] derive Schroder’s result in much detail. Macbeth and Merille [31] and Lee et al
[28] demonstrate that CEV model is much better than Black-Scholes model. Since the
empirical performance of CEV model is perfect in the stock markets, we rationally hope

to apply their modelling idea and try to get good results in the credit risk forecasting.

Alternatively, Kou [25] derive the analytical solution of double exponential jump
diffusion (JDF) model. It can alleviate the asymmetric and leptokurtic features in some
empirical studies of equity price. The model also has better performance in kurtosis than
normal jump diffusion model. We will introduce this model and apply it in credit risk

prediction.

Although KMV and MLE methods are equivalent in point estimates in Merton model,
KMV method cannot work for structural credit risk models that involve any unknown
capital structures parameters. Duan et al [14] shows this result. Therefore, we apply
MLE method, instead of KMV method, to estimate all parameters in CEV and double

exponential JDF models.

Alternatively, following Black and Cox [1] approach, Brockman and Turtle [5] pro-
posed barrier option framework to capture the default information. They thought the
market value is an down-and-out option of asset value. The firm’s debt maybe default if
its asset value touch the default barrier before the debt maturity. Although Wang and
Choi [44] and Duan et al [14] argue the estimating method is not adequate, the model’s

assumption and idea are still very well.

In empirical study, we choose debt, equity value and interest rate data during 2001
to 2004 from Taiwan Economic Journal. We calculate the default probability of all firms

by these three distinct pricing models. In order to discriminate the performance of these

3



models, we adopt the Cumulative Accuracy Profile (CAP), Accuracy Ratios (ARs) and
Receiver Operating Characteristic (ROC), which proposed by Sobehart et al [40] and

Engelmann et al [17], to evaluate the results.

The scheme of this article is as follows. In the following section, we describe the
mixture of standard structural model framework with three different option pricing meth-
ods. Four different estimating approaches are introduced in section 3. We do the Monte
Carlo simulation to test the performance of four different estimating methods under Mer-
ton model in section 4. Section 5 present the empirical result for these different option

pricing models under Taiwanese data. Section 6 conclude the results.

2 EUROPEAN OPTION PRICING MODEL FRAMEWORK

2.1 Merton Model

Merton [32] provide the analytical framework to evaluate the firm’s credit risk. The
structure of the Merton’s model was built on the firm’s capital structure. Assume the
firm’s total asset value is V. Consider a company issues a single liability with promised
payoff K at maturing time 7. This claim can be interpreted as a zero-coupon bond. For
a bond holder, his payoff relies on the relation of V and K. If V> K, the bond holder
will obtain all principal K, as he anticipate. However, if V' < K, he will only obtain all
firm’s asset value V', which is less than K. Consequently, the payoff ¢ of the bond holder

is
¢ =min(V, K) = K —max(K — V,0). (1)

The relation of ¢ and V' is shown in Figure 1. We can see that when V; < K, the payoff
¢ is less than K. However, when V5, > K, the payoff ¢ is equal to K.

From Equation (1), we can evaluate the expected value of max(K — V,0) to find the
risky bond price at time ¢t < T. Assume the asset value follows a geometric Brownian
motion:

2
dnV; = (u . %) dt + odW,. 2)

where 1 and o are the expected return and instantaneous standard deviation of the asset

value V', respectively. W; is a Wiener process. Thus, we know

VT:WGXP{(,U—O;)T—FO'\/;Z}, (3)



Vi K Vo Assets(V)
Figure 1: The payoff of the bond holder

where Z ~ N(0,1) and 7 = T'—t. Under Black-Scholes framework, the price of the firm’s
risky debt Dy is

Dy=Ke " — Ke "N (—d; + 0/T) + ViN(—d,)

) (4)
— KN (dy = ov/7) + VN (—dy),

where N(-) is the cumulate standard normal distribution function and

A In(V;/K) + (r—i— %(72) T
t 5 7 .

In addition, from “Basic Accounting Equation”, we know

Employing Equation (5), we can get the formula that the equity price as a call option of

asset value,
Sy =ViN(d;) — Ke "N (d; — /7). (6)
We can conclude the default probability of the risky bond is

B B In(K/V;) — (,u — %02) T
Pdef—P(VTgK)—P<Z§ o )

_Pp (Z < /K :\5‘; ~57) T) = N(—(d; — o/7)).




2.2 CEV Option Pricing Model
2.2.1 CEV OPTION PRICING FORMULA

CEV model is first derived by Cox [10]. Schorder [36] and Lee et al [29] proof the pricing
formula in much detail. We cite the same notations in Lee et al [29] and describe some

important proof procedure.

The CEV option pricing model assumes that the stock price is governed by the

diffusion process
dSt = (,u - Q)Stdt + USf‘th, (8)

where ¢ is stock dividend rate. Under risk neutral environment, every one can not get
any risk premium in the financial market. They only earn riskless interest r. So we set
i = r, a constant interest rate. Let X, = Stl/v, where 1/v = 2 — 2. From It6’s lemma,

Equation (8) can be rewrote as
1 11,1
dXt = (;(7’ — q>Xt 2= 5;(; = 1)0'2> dt + %\/ Xtth. (9)

Before we go ahead to get our results, we need the following two useful tools, the Kol-

mogorov Forward (or Fokker-Planck) Equation and Theorem 1.

Kolmogorov Forward Equation. (Also called the Fokker-Planck equation). Consider

the stochastic differential equation
dX (u) = B(u, X (u))du + 5(u, X (u))dW (u). (10)

where dW (u) is a Brownian motion. Let X (t) = x > 0 for any initial time t, 0 <t < T,
T is the termination time for this process, X(T) =y, X(u) > 0, Yu € (t,T]. Assume
p(t,T,x,y) be the transition density for the solution to the Equation (10), p(t,T,x,y) =0
for0<t<T andy <0. Then p(t,T,z,y) satisfies the Kolomogorov forward equation

0 0 1 9
—p(t, T = T —— (YT T . 11
Gb(t Do) = = (B yp(t Do) + 5o (0 (Typ(t Tory)). (1)
Proof. Please see Appendix A. O
Theorem 1. Consider the parabolic equation
0 0? 0
prih @(axu) — a—x((bx + h)u), 0 <z < oo, (12)



where u = u(x,t), and a, b, h are constants, a > 0. The explicit form of the fundamental

solution of Equation (12) is given by

ult,, o) =a(e+_l>exp {%}

bt (h;a) 2b (13)
e r @ —bt 1

where I (z) is the modified Bessel function of the first kind of order k and is defined as

0o (£)2r+k
I(z) = 2 . 14
k(@) gr!F(r+1+k) (14)
Proof. Please see Feller [19]. O

Remark 1. y = I () is the solution of differential equation x*y” + xy — (x> 4+ k?)y = 0.
We can find that I_p(x) is also a solution of this differential equation. Furthermore,

Using Kolmogorov forward equation can get the transition density function p(t, T, z, y)

of X which follows the equation

o 0 (1 =] : 19 (o
o0 = o (=00 5, (0 -1)#)r) + 3y (o) - 9
Applying Theorem 1, let

1
a=55 b=-(r—9q) ( )o©,

=, xp=vy, T=1—1,

the transition probability p(¢, T, x,y) is

% (exp (%(r —q)T

)
" (ye_qu(r—Q)T "2 %(’r’ — q) (exp <—%(T - q>7—)

a
v 5z (L —exp (3 (r —q)7)

Let

2v(r —q)
o2 (exp (%(7’ — q)T) — 1)’

1 1
ZE*:Qk*xeXp —(r—q)7 :2k*St1/veXp Z(r—g)7),
v v

gt =2k*y = 2k* S = dy* = 2k*dy,

k=

7



then
c o Lfan\E Lo,
p(t, T,a*y") = = ) o —5(95 +y°) ) L(Vz*y*)
i (17)
Ly \ 2 Lo
=s(=) ep|—5@ +y) )l (Very).

2 \zx 2

We know the pdf of noncentral chisquare distribution with noncentrality A and degree of

freedom v, x.2(\), is

1 px\ (w=2)/4 1
Pypony(@) = B (X) I1(y_9)(VAT) exp (—5()\ + I)) :

Thus we can conclude that y* follows a noncentral chisquare distribution with noncen-

trality 2* and degree of freedom 2 — 2v, x5, (2*).

Finally, we can get the option pricing formula under the CEV model is

C, =77 / p(t, T,S;, ST)(ST — K)dST

K

=e 7 </ p(t, T, Sy, St)SrdSt — K/ p(t, T, S, ST)dST>

:e_TT / p(t; T) :E )y ) (ka*> dy -y K 1 p(t’ T7 J;*’ y*)dy*)
2

2k*K v

o [ () s (5w

—e K - <%> exp (—5(33 + y*)) I, (VZ*y*) dy*

w

(Let w = 2k*Kv)
:e_qTStCl — E_TTKOQ,

where
Cy = j%(‘y—i)QeXp( ( +y*)>1(\/ﬁ)dy,
a= /3 (—I)_%exp< ( +y*>) Iy (VEF) dy

2.2.2 GREEK LETTERS IN CEV MODEL

The Greek Letters is very useful to test the sensibility of option price versus various
parameters, including underlying asset, interest rate, time to maturity, volatility and

Delta hedge ratio. The definition of them are shown in Table 1.

Unfortunately, it is too complicate to get the close-form for all Greek letters under

CEV model. We have to apply numerical method to find the results.

8



Delta Gamma Theta Rho Vega or Lambda

oc  o*Cc  0C  0C ¢
oS 052 ot or Oo
Table 1: The Greek letters.

Theorem 2. Suppose a function f € C?*[a,b]. For any zy € (a,b), consider some h # 0
such that xo + h € (a,b). The approzimation of first derivative of the function f at xq is

(o) = (0 = 20) = 87 (wy — ) + 8z + ) = [ (w0 + 20)]

h4 5) (19)
+%f (€),

where £ € (xg — h,zo + h), the error term is of the form O(h*). The approzimation of

second derivative is

" 1
[ (20) ~12

Also, € € (wg — h,zo + h), the error term is of the form O(h?).

(w0 — ) = 2f o) + Flay + h)] — 1= F0(c). (20

Proof. Please see Burden and Faires [7]. O

Applying Theorem 2 can not only get all numerical results of Table 1, but also do
trading strategy to hedge portfolio very easily.

2.2.3 THE DEFAULT PROBABILITY OF RIsSKy BoND IN CEV MODEL

Employing CEV model in the credit framework, we derive the relation between the market

value and asset value is
St = V;Cl — G_TTKCQ, (21)

where

Ci= | 5 (i_> exp <_§(1’* + y*>) L (Vary®) dy,
Cy = = (—*> exp (——(I +y )) I, (Va*y*) dy*,
w 2 \x 2 (22)
. 2’07’ * x1r1/v E
C ey e ().

2k* 1

gt =2V s dyt =V AV, =T —t, w=2k'K+
v




Let the return of the asset value is p. Then the default probability of corporate bond is

K W* KT
Paey = P(Vp < K) = / p(t, T, Vi, Vr)dVr = / p(t, T,z y")dy"
0 0

:1_027

(23)

where all riskless interest rate r in the Equation (22) is instead of p.

2.3 JDF Option Pricing Model

In addition to CEV model in previous section, Kou [25] propose a JDF model to describe
the asymmetric leptokurtic and heavy fat tails properties in the return distribution. In
this model, the stock price is assumed to follow a Brownian motion plus a compound
Poisson process with jump sizes double exponentially distributed. As mentioned by Kou

[25], this model has some more excellent properties than other models:

1. The CEV model does not have the leptokurtic feature. The volatility smile in option

pricing can not fit very well.

2. Merton [33] propose a jump-diffusion model with normal distribution in jump size.
Almost all results are similar with double exponential jump-diffusion models ex-
cept the analytical path-dependent options. Since Kou’s [25] model can handle the
“overshoot” problem very well, it can derive the analytical solution of American

option, Lookback option and Barrier option.

3. Schoutens [37] propose a theoretical and empirical study in option pricing models
based on several different Lévy processes. Because based on the infinitely divisible
property in these processes, the empirical study shows that these option pricing
models can fit the realize stock price very well. Actually, the double exponential
jump-diffusion model is a special case of Lévy process. Although this model is not
as well as other distribution in Lévy process pricing model, it is easier to calculate

the theoretical price than other distributions.

2.3.1 THEORETICAL RESULTS IN JDF OPTION PRICING MODEL

Assume the stock price, S;, follows the jump-diffusion process, i.e.,

# = pdt +odW,+d (Y (Ji—1) ], (24)
- =1

10



where N(t) is a Poisson process with rate A, and {J;} is a sequence of independent
identically distributed (i.i.d.) nonnegative random variables such that Y = In(.J) has an

asymmetric double exponential distribution with the density

fy(y) =p-mexp(—my)lyzo + q - n2exp(my)ly<o, (25)

where n; > 1, 7o > 0, p > 0, ¢ > 0 and p+ ¢ = 1. All other notations are same as
previously. p and ¢ are the probabilities of upward and downward jumps, i.e.,

&+, with probability p

: . ; (26)
—&~, with probability ¢

mﬂzyi{

where T and £~ are exponential random variables with means 1/n; and 1/, respectively,

d e
and = means equal in distribution.

Applying It6’s lemma in Equation (24), the process of In S; is

N(t)

1,
dlnSt:<u—§a —)\() dt + odW; + d ;Yi , (27)
where
P qm2
- L 1, ptg=1.
= BN .

Before go ahead to evaluate the option pricing by the double exponential jump-diffusion

model, we need to use following results.

Proposition 1. For everyn > 0, the Hh function is a non increasing function defined by
o 1 o

Hh,(z) = / Hhy, 1 (y)dy = — (t —z)"e /%dt > 0,

n!
n=20,1,2... (28)
Hh_(z) = e /2, Hho(z) = V2rN(—z),

where N(-) is a cumulate standard normal distribution function. Hh function can also be

written as,
Hhy(x) =27\ /e
{lmém bt R 1’%%} —
V2T (14 In) ACRE N
and

nHh,(x) = Hhy_o(x) — xHhy_1(x), n > 1.

These three equations are equivalent.

Proof. Please see the description in Kou [25] and other properties in Kou and Wang
[26]. O

11



Proposition 2. Define

I(c;a, 3,0) = /Oo e®*Hhy,(Bx — 0)dx, n >0, (29)
. If B >0 and o # 0, then for alln > —1,
L(c;a, 3,) ——EZ( ) Hhi(Be - 9)
n+1 \/_ (30)
+( ) 2T SiE N <—ﬁc+6—g).
oY B
If 6 <0 and o < 0, then for all n > —1,
L(c; 0, 6,0) ——fi< ) Hhi(fe - 8)
(31)

n+1 5 a2
+ <a> ge%J’WN (ﬁc -0+ %) .

If 6> 0 and o =0, then for alln >0, L,(c;a, 3,0) =

L Hhy1(—Be — 0).

4. If B <0 and a > 0, then for alln >0, I,(¢;a, 3,0) =

5. If 6 =0 and o < 0, then for all n > 0, I,(c;a, 3,0) =

Hh,(—8)e .

Proof. Please see Kou [25].

Proposition 3. Suppose {1, &, ..

with rate n > 0, and Z is a random variable with distribution N(0,0?).

n > 1, we have
1. The density function are given by
fZ+E?:1 & (t) =
frsp, &) =

2. The tail probabilities are given by

P <Z+i£i Za:)
i=1

P (Z—Zn:& Zx)
i=1

Je

€% H by (—6)da

O

.} is a sequence of i.i.d. exponential random variables

Then for every

6(077) /2 - t
0_\/— n—1 <_; +07]) ) 32
6(017) /2 J— " ( )
o2 " (5 - 077) '
n 1
m€(€m)2/2[n—l <I7 -n,—, U77> )
oV 2T o
(o) X (33)
gn)_ (on)?*/2 < : )
— e L,1|x;n,— —on).
JG 1 n o n

12



Proof. Please see Kou [25].

O

Theorem 3. With 7, := P(N(T) = n)e ' (\T)"/n! and I,, in Proposition 2, we have

0171 2r/2 ™

P(Z(T)>a)—0\/_ zwnzpnk<0\/7m)
x1@4(a—+ﬂ1—nh—;§?wﬂh¢f>

0172 2T/2

0 n k
+ /— Z T Z Qn,k <U\/T772)
2T =1 k=1
1
X Iy (a—uT; —ny, ——— omoV/T
k—1 ( 1% T2 0‘\/? T2 )

a— ul
+ 1N | —
’ ( 0\/7>

and
6(0771 T/2 i

fz(a) = o ZW”ZP”’“ (U\/_7h> ~(a=nTn

xHhk_1< aa\/_ +a\/_771>

0'772 212 0
\/ﬁ Zﬂ-nZan (O’\/_’f]2> (a wLm

0 #r
XHhk_1< 0-\//% —I—O‘\/T??g)

()
7T )
0¥ O'\/T
n—1 i—k n—i
n—k—1\(n T T2 P n—i
Pog = . | i,
* Z< i—k ><Z) (771+772> (771+772> P
n—1 n—i i—k
_ n—k—1\(n n "2 n—i_i
QM_;< i—k ><Z) (771+772> <771+772> p

N(T)
Z(T)=pT+oVTZ+ Y Vi, Pon=p", Qui=4"

1=1

and ¢(+) is a standard normal distribution density function.

where

(35)

Proof. Kou [25] show the result of Equation (34). The proof of Equation (35) is similar

with Equation (34).

Employing Equation (27) and (35) can derive the pdf of stock price, S,

[z (111 s%)

fS(Sl‘SO) = g ’

13
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where 1 in Equation (35) is instead by p—02/2 — AX(pni/(n1 — 1)+ (1 —p)na/ (e +1) — 1).

2 4 -4 2 4

Figure 2: In left panel, the parameters are: =0, 0 =1, =5, 7 = 0.5, A =1 and
p = q = 0.5. The parameters in right panel is: u=0,0 =1, 1, =1.01, 7 =5, A =1 and
p=q=0.5.

Figure 2 shows the comparing of two different density functions, fz(:) in Equation
(35) and standard normal distribution. The left graph shows the jump of the return
is negative amplitude, and right graph is positive. Because fz(-) owns the heavy tail

property in both side of distribution, it can fit the return of stock prices very well.

0.0175
0.015
0.0125
0.01
0.0075
0.005

0.0025

Figure 3: The shape of three different distributions.

Figure 3 shows shape of three different distributions. The parameters are setup as
follows: Sy = 30, r = 1.5%, T'=1/252, 0 = 0.2, v = 0.2, n; = 50, 9, = 25, A = 10,
p = 0.3. The black thin line is noncentral chisquare distribution, the gray thick line is
lognormal distribution, and the black thick line is fs(-) in Equation (36).

Let us define

T(N707 )‘7pa nlan2;a’T) = P(Z(T) > a)' (37)

Under the Proposition 1 to Proposition 3 and Theorem 3, Kou [25] showed the option

price is
1 ~
=81 ( b 20?200 A In (/) ,7)

1
— Ke™ Y (T — 50'2 - )\<707 )‘7p7 7’]177’]2;11’1 (K/St) ’T> ’
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where

~ p U - N
e — 5 = — ]_’ = —|— 1’
b= 1+ C m—1 =1 2 =12
pm qn2
<C ) m—1 mn+1

2.3.2 THE DEFAULT PROBABILITY OF RISKY BOND IN JDF MODEL

Assume the firm value process V; follows the jump diffusion process as in Equation (24),
ie.,

dv; il

t

— = pdt + odWy +d Ji—1], 39

=t odWed | 350 =) (39)
where 1 is the asset return, o is the volatility of the asset value. Notations W3, N(¢) and
J; and properties in Equation (39) are same as before. Employing Equation (38), the
market value S; is

1 ~
St :‘/tT (T + 50-2 e )‘Caa> )‘7257 ﬁlaﬁ%ln (K/V;) aT)

40
— Ke Y (r - %& — A, 0, A, p, e In (K / V) ,T) : "
where
p= %C Um 2 m=m=l p=mnitl
=AC+1), pil1+n2qj_21—1,r_T—t
The default probability is
Pis=P(Vpr < K)=1-P(Vp > K)
(41)

1
=1-7 <,U_ 5 —0'2)\4,0',)\,]),771,772;1H(K/‘/t),7‘) .

3 ESTIMATING APPROACHES

As mentioned in introduction, there are at least three different approaches to estimating

unknown parameters. We describe much detail in this section.

3.1 JMR-RV Approach

JMR-RV approach is derived from It6’s lemma. From Equation (6), the equity value S;

is an option premium of asset value V;. Applying [td’s lemma can easy to derive the

15



following equation,

05, 0Sy  10%S; o, 05,
dS; = | =—u,Vi + — + = Vo) dt — o, Vi | dW;. 42
t (avt“ T Taap et )i ey ) (12)
On the other hand, we also assume the equity value follows geometric Brownian motion,
dSt = /.LSStdt + USStth- (43)

Comparing the Equation (42) and (43), we can get the following equation,
95 Vi

=—— 0,
oV, St

In addition, Equation (6) shows that S; is a one to one function of V;, say S; = g(Vi; u, o).

gg (44)

The inverse of g,(-) (g;'(-)) is exist. Thus, the two unknown variables, V; and o, can be

solved by the simultaneous equations,

S =ViN(d) — Ke""N(d; — /7)
v o5 (45)
os =0y Sav-

Duan [12] and Bruche [6] argued two deficiencies for this approach. First, set the
volatility of equity be a constant was unreasonable, especially when the asset value changes
greatly during the estimation period. On the other hand, because the volatility equation
is derived from It6’s lemma, it is redundant and can not be used as a separate restriction.

We will use Monte Carlo simulation to demonstrate it in section 4.

3.2 KMV Approach

Consider the Equation (45). If L, = V;/S; is small, then % is close to 1 and the approxi-
mation o, = L;o, works well. Furthermore, if L; doesn’t vary too much over the observa-
tion period, then the stock looks like a Brownian motion. Assume the equity value data are
observed at n + 1 equal time interval points. They are denoted by {So, Si, Son, - - -, Sun},
where h is the ratio of the time length between two data over one year. Applying MLE

procedure, which described by Duan [14], can estimate these unknown variables:

1. Compute the implied asset value ‘A/}(&(m)) corresponding to the observed equity value
Sy, for all t =0, h,...,nh.

2. Compute the implied asset returns fiz(m) =1In (Vih(&(m)) / ‘A/(i_l)h(&(m))), for all i =

1,...,n. and update the asset drift and volatility parameters as follows:

_ 1 < .
(m) _ — (m)
R™ = - E Rk
k=1

(60m+D)* = ih > (Rfj") — R(m))2

k=1

ﬂ(m+1)



3. If |+ — pm=1| < tol and |60 — 6(m=1| < tol, then stop this procedure.
Otherwise, go back to step 1 and repeat it again.

3.3 EHH Approach

In EHH approach, they apply the sum of the market value of equity and total debt as a
proxy of firm implied asset value, i.e., V00, = K+ 5. After get V,,,05y, applying Equation
(44) can estimate the volatility of asset very quickly. Furthermore, asset return p comes
from average monthly change in V. However, Wang and Li [45] show this assumption is
unreasonable. Under the option theory, assume the true of asset value is V..., it is easy
to fund

C(Virues K, T) = 8 = Vo — K < C(Vprorys K, T).

Because call option function is an increasing function of underlying asset, it implies
Vorozy > Virue, Overestimate the true value. So this method will get the bias result.

Wang and Li [45] also used Monte Carlo simulation to support the result.

3.4 The Transform data MLE Approach
3.4.1 IN MERTON’S MODEL

Duan [12], Duan [13] and Duan et al [14] propose a transform data maximum likelihood

estimation to resolve limitation of several unknown variables in one equation.

From Equation (3) and (6), the relation between probability density function of S;
and V; is
991 I(St)

F51) = flar* )| 2

B 1 - {_( } (46)
91_1<St) V2ro? 20 N(dt<91_1(5t)))‘

We use the fact that 0V;/9S; = N(d;) in Equation (6).

Under this framework, we obtain the log-likelihood function of S; is

~ ~

LS(/’L7 g, SO7 Sh7 S2h7 ey S?’Lh) :LV(/’L7 g, %(U)7 ‘A/h(0->7 ‘/2h(0-)7 ceey Vnh(O'))

— > In(N(di(0))),

i=1
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LY (1, 0:V(0), Vi(0), Van(0), . . ., Vin(0))

2
o (i () (- 2)n)
Vo 1n () > =) Vi (o),
=1

1
2 o2h

oV —ih

The Algorithm for this procedure is described as follows:

1. Assign an initial value to p and o respectively to evaluate the implied asset value

~

V.
2. Applying Equation (47) to evaluate the MLE of p and o.

3. Comparing the absolutely error between MLE and initial value. If it less than a
convergence criterion, we stop this procedure. Otherwise, go back to step 1 and

repeat this procedure.

4. Using the MLE of o, 6, to calculate the imply asset value Von and its default
probability FPyey.

3.4.2 IN CEV MODEL

In Macbeth and Merville [31], they propose the following regression, which comes from

Equation (8), to estimate unknown parameter v
In(dS; — (1 — q)Sidt)* —Indt = 2Ino + 2aIn Sy + In xy,

Taking 1/v = 2 — 2 to get v. However, S; is the stock price, a known value. V; is
the firm price, an unknown value. Thus, we can’t use this method to estimate unknown

parameters.

From Equation (17) and (22), we can obtain the probability density function of
random variable V7 is

*

dy

p<t7T7‘/t7VT) :p<t7T7 I*7y*> dVT

*

:1% (erTVtVT%—s> : I <2k* (erTVtVT)i) (48)
X exp {—k;* (Vt% exp (%—) + V;)} .
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Obviously, if v tends to infinity, Equation (48) can reduce to the pdf of lognormal distri-
bution. We have to mention that r in the above equations have to be replaced by pu if the

market is not complete.
Similar with Equation (47), the log-likelihood of L*(u, o, v; S, S, Sons - - - Spn) is

LS(,U’7 g, v; SO7 Sh7 S2h7 R th)

. A . . - oS,
=LY (, 0,v; Vo(o,v), Vi(0,0), Van(o,0), . .., Van(o, v)) — In||l—2—
; OVip(o,v)

n lnﬁ+u—h +1§1nf/( )+ 1.3 ilnf/( )
— " 5 5 - h\ O, U U B - ih\ O,V (49)
+ Z ln{ <2k* <e“hVZh(a Vi (o, v)) 2) }

* l ,uh GS,h
- E* |V} (o,v)ex + V” In
Z < i P < ) (DA ) ; < 3%h(0 v) )
where Vip(o,v) = g3 (Si;0,v) and k* = —2% 9V, (0,v)/dSy can easily be

o2 (exp(42)-1)
calculated from Theorem 2.

The computing procedure is the same as mentioned in the previous section.

3.4.3 IN JDF MODEL

Combine the Equation (27) and (35), we know the density function of asset value at time
T, Vy, is

(Ve V) = £ (1= 30 = X0 A psIn(Vi Vo7 )

( d.
L ZWnZ P (U\/;m)ke_dmlﬂhk—l (—0—\/? + 0%771)

k drn d—T
+ nz T, ; Qn,k (O'\/?’f]g) € 2Hhk—1 <0_\/7—_ + O'\/;’fb)

(50)

where

1
d, =In(Vp/V;) — <,u— 502 — )\() T, T=T—1,

1 —
c—_Pm L=
m—1  n+l

Also, if 1y =1 and 7, =0, Vn > 1, the model will reduce to Merton model.
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Before we derive the transform-data ML estimation in JDF model, we need to find
the delta hedge of this model at first.

Theorem 4. From Equation (40), the delta hedge of JDF model is

0S 1
4 T( + -0 _)\CU)\p7n177]271n(K/%> )

v, 2
1 ~
+.f <T+§0—2_)\<>Ua)\a]§7ﬁlaﬁ2;ln(K/W)7T> (51)
Ke |
- f/v f(r_ioj_)‘Caay)\ap7/’71a772;1n(K/V;)aT)
t

All of the notations in Equation (51) are same as Equation (40).
Proof. Please see Appendix B. O

According to the Equation (51) and the ML Estimation transform data framework,
the log-likelihood of L (u, o, 11, m2, A, 25 So, Sy Sons - - -, Spp) is

LS(M7 g,M, 72, )\7]9; 507 Sh7 S2h7 o g th)
:LV(M7 g,M, 72, )\7]9; ‘70(0-7 71,5 12, Avp)7 Vh(o-a T, 12, )\7p>7 ey Vnh<07 N1, M2, Aap)>

— 2”: In OSin
— 5Vz‘h(0 1, M2, )\,p)

—Zln< ( 507 = AC 0, 12, X, pi In Vin/ Viie1yn), h))

—Zln( <r+10 — N, A By i, Tias In (K Vi) )

(52)

1 ~
+ f (T + 50-2 - )‘C7U7 )\7ﬁ7 771,77]2;111 (K/‘/Zh> ) h)

Ke™h 1
-2 f(7‘—502—AC,U7)\7P7W17U2§1H(K/%h>7h))
t

4 MONTE CARLO SIMULATION

We do the Monte Carlo simulation to demonstrate which estimating approaches is the

best under Merton’s model.

From Equation (2), it is easy to derive the following equation:

2
InV; =InV,_, + <u - %) h+ e, (53)
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where

& =0 (W, —W,_p) ~ N(0,0%h), and Cov(e;, e,_;) = 0, Vi > 1.

In this simulation, we set r = 6%, u = 0.1, 0 = 0.3 and initial firm value V' = 10000.
The data which is generated according to Equation (53) have daily (253 days each year)
formate. Consider the debt which is maturity after two years has three possible face
value, 3000, 5000 and 7000, which represent different leverage level of a company. We
simulate one year data for 5000 pathes under each possible debt and assess market value
in all different scenarios. Finally, we apply four different approaches to estimate unknown

variable, V', and parameters, ;4 and o, and comparing the results, which is shown in Table
2.

In this table, we use i and & to denote the estimating results of unknown parameters
i and o, and V, is the implied asset value at the end of one year. All statistics are come
from sample estimation, that is, the results of 5000 pathes estimation results. Although
the bias of all approaches are increased when increase K, the best approach is KMV, then
MLE, JMR-RV, and the worse approach is EHH. The standard deviation in all approaches

are also increased as K is increased.

Although KMV looks better than MLE approach, it can’t provide any point esti-
mation information. For MLE approach, we can consider MLEs to be consistent and
asymptotically efficient by Cramér-Rao Lower Bound. Duna [12] has shown the results.
Besides, because KMV approach can’t update other unknown parameters, it also don’t
suitable to estimate the model which contains other unknown variables. Barrier option

pricing model, as proposed by Brockman and Turtle [5], and CEV model are examples.

5 DATA AND EMPIRICAL STUDY

5.1 Data

We investigate the performance of these models in Taiwanese industry in our empirical
study. The data formate is weekly (in case study is daily), and collected from Taiwan
Economic Journal (TEJ). We pick all firms which list on Taiwan Stock Exchange Cor-
poration (TSE) during 2001 to 2004. The default event follows Article 49, 50, and 50-1
of “Operating Rules of the Taiwan Stock Exchange Corporation” to define whether the
firms are bankruptcy or not during the sample period. In other words, the corporation
is called bankruptcy if it has one of these situations, “altered-trading-method”, “suspend
the trading of such securities”, or “Unlisted”. We adopt market value and debt value
data from two years ago to one year before if the firm has bankruptcy juring our sample
period. Otherwise, we adopt all data in 2003 to predict the default probability at the end
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K Statistic Approach il o Vl -V
True  0.1000 0.3000  0.0000
IMRRY 02975 0.2542
2000 Mean KMV 01008 02999 -0.0083
EHH  0.0395 02925 175.0257
MLE  0.1008 0.2999  -0.0376
JMR-RV  — 02991 0.0000
KMV 0.0949 0.3000  0.0000

Ved
3000 edian  LoH 00315 0.2942  174.7085
MLE  0.0948 0.3000  0.0000
JMR-RV  — 0.0251  1.8459
KMV 02972 00134  0.5064

td
30005 EHH  0.2920 0.0257  2.0560
MLE 02971 00137  0.6147
IMRRY 02917  15.9458
000 Mean KMV 0.1009 0.3000  -0.1692
EHH  0.0297 0.2825 314.3872
MLE  0.1041 03113 -7.1959
JMR-RV - 02967 0.0828
c000 Medin KMV 00958 0.3000  0.0000
EHH  0.0182 0.2882 293.6056
MLE  0.0948 03101  -0.2892
IMRRY - 0.0480 56.2363
KMV 0.2973 0.0146  10.2210

5000  Std
EHH  0.2828 0.0499 64.7591
MLE  0.2964 00188 19.7715
IMR-RV  — 02749 119.8667
000 Mews KMV 0011 0.3002 09099
EHH  0.0229 0.2556 595.5345
MLE  0.1127 0.3268 -40.2969
IMR-RY 02833  12.1483
KMV 0.0953 0.3000  0.0002

7000 Medi
AL EHH 0.036 0.2652 472.2824
MLE  0.1118 0.3275 -23.9145
JMR-RV - 0.0770 273.2714
KMV 0.2973 0.0185  49.5603

td
70005 EHH  0.2545 0.0824 305.9758
MLE  0.2986 0.0241 79.2341

Table 2: Simulation results.
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of 2004. If the trading data is less than one year, we omit this firm. The trading day in
each year is set 53 weeks (in case study is 253 days). Thus, we use 53 trading data in
each firm to predict its default probability after one year. As the result, the sample size

is 618. 64 of them have default event juring the four years.

Because the liquidity of the Taiwanese bond market is not very well, we adopt One
Year Time Deposits interest rate of Bank of Taiwan for interest rate parameter. Besides,
the same as Vassalou and Xing [43], we use the “Debt in One Year” plus half of the

“Long-Term Debt” to represent variable K in our model.

5.2 Testing Methodology

We use following three nonparametric methods to test the performance of our model

result.

5.2.1 KOLMOGOROV-SMIRNOV TEST

The Kolmogorov-Smirnov (K-S) test is a very useful tool to judge whether two distri-
butions have common distribution function or not. Test statistic D is the maximum
difference between two distribution function. Ross [35] showes how to test whether the

empirical distribution function of sample points fit a parametric distribution function.

In addition to one sample test, K-S test also can judge whether two empirical distri-
bution functions can fit with each other. We use this method to test whether our models
can predict default event or not. If the model is powerful, the cumulative distribution
of model’s output in all bankruptcy firms will be different with survival firms. Thus, we
divide the sample into two class, A and B. Class A contains all predict result of survival
firms. Class B contains all others. The hypothesis test Hj is the class A and B have same

empirical distribution function. The test procedure is shown as follows.
1. Calculate the cumulative bankruptcy probability of class A, Sy(x).
2. Calculate the cumulative survival probability of class B, S,q(z).

3. Find the K-S statistic D = max, |Sy(z) — Spa(z)].

4. Set the significant level a.. Calculate the P-value Pr = P(D < d). If Pr < «, then

we reject Hy. Otherwise, we can’t reject our hypothesis.
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5.2.2 CUMULATIVE ACCURACY PROFILE

K-S test can measure whether the model can discriminate the default and survival groups.
However, it can not compare the power of two different rating systems. Cumulative
Accuracy Profile (CAP) is a good method to assess them. Engelmann,et al [17] show
statistical properties in the method. We only introduce the basic idea and describe how

to employ it in our models.

Consider the rating system contains k different scores, {s1, s2, ..., Sk}, 51 < 892 < ... <
sg. This system can assign one of them to each debtor. Follows the K-S test, consider
the class A and B has distribution Sy and S,.4, respectively. St is the distribution of
total firms. Assume the defaulter has probability p}, to earn score value s; , Zle Py =1
Alternatively, the survival firms have probability p! ; to be assigned score value s;. Given

the default probability 7 of all debtors, we can suspect the pk. is
pr =g+ (1 = 7)ppg

for any debtor has a score value s;. The cumulative probabilities are defined by

CRPED> p¥e1,...k
j=1

Gl Sy i &=1,.. .k
G=1

CD;=) pl, i=1,...k
j=1

The CAP curve is obtained by the graph of all points (C'D;, C’Dg)izo,,,,,k where the
points are connected by a straight line. The concave curve of the rating system means
the system is perfect. Otherwise, if the curve is a diagonal line, this means the system
assign score randomly. It can’t predict the default event very well. We show the graph in

Figure 4.

Let the area of perfect model is a,, and the area of rating system is a,. We can define
the Accuracy Ratio, AR, is
a
AR = —",

ap
where 0 < AR < 1. The higher of the AR is, the better of the rating model.

5.2.3 RECEIVER OPERATING CHARACTERISTIC

Similar with CAP, Engelmann et al [17] demonstrate the statistical properties about

Receiver Operating Characteristic (ROC). We also introduce some important definitions

24



CDq perfect model

ay

rating model

AN

random model

Figure 4: CAP curve.

Rating Score Default No Default

Below C Correct Wrong
Above C Wrong Correct

Table 3: Decision result given the cut-off value C.

and notations at here. Assume someone who assign cut-off value C to classify each debtor
into two groups. The debtor whose score less than C' means it will default latter, and
higher than C' if it will non-default. Thus, there are four situation for this prediction,

which summarized in Table 3.

If the score of debtor is less than C' and the debtor is default subsequently, it means
our predict is correct. Otherwise, the rating system make a wrong decision for this debtor
(type I error). Alternatively, if the rating score is higher than C' and the debtor is survival,

then the prediction is correct. Otherwise, also, the decision is wrong (type II error).

Under this assumption, we define the hit rate HR(C') as
HR(C)=P(S4<C).
The false alarm rate FAR(C) is defined as

FAR(C) = P(Spy < O)
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For different cut-off value C', we can compute its HR(C) and FAR(C). The ROC
curve is constructed by plotting HR(C') versus FAR(C), for all C. This method is

.....

A

CDy
1

perfect model

rating model

\4

\

random model

1 ODnd

Figure 5: ROC curve.

5.3 Empirical Results
5.3.1 CASE STUDY

We adopt Procomp Informatics Ltd. to do case study. This company is builded in
1990, and the main product is sound card. About ten years ago, Procomp founded the
photoelectricity department. It changed the main product to gallium arsenide microchip
and IC design. Procomp also do a lot of 3C products, like motherboard, graphic card and
sound card. Although Procomp was a famous electronic company in overseas, it didn’t
sell any product in Taiwan. Procomp planed to become the best microchip company in
the world in 2000.

However, in 1999, Procomp CEO do a lot of “fail sale” in order to increase the
“revenue”. In addition, the CEO took over the firms capital about 500 million N'T dollars.
The CFO also changed very quickly since 1999. Under these events, we can deduce that

there are a lot of manage problems in company.

Because Procomp is listed since 1999/12/18, and default at 2004/06/15, we adopt all
trading data exclude one year of default date, i.e., from 1999/12/18 to 2003/06/18. We
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i Sin  T—ih VKMV [ MLE
246 6224400000 1.020 13645366000 13633708000
247 5882400000 1.016 13296957000 13283675000
248 5985000000 1.012 13402714000 13390083000
249 6121800000 1.008 13543182000 13531345000
250 5882400000 1.004 13299525000 13286579000
251 5882400000 1.000 13300377000 13287542000

Table 4: KMV and MLE estimating results for Procomp Informatics company.

Model Lognormal CEV
K-S Value 6.449 6.049
P-value 0 0

Table 5: The K-S test result.

are interested in which estimating method can not only give an alarm as soon as possible,
but also forecast default probability very well, for one year predict power. The results are

shown in following four graphs.

In Figure 6, it is very clear that the default probability is almost zero although the
time is close to the end of sample. The maximum default probability in our sample is
0.0442 at date 824. It is also very clear that EHH method in Figure 7 is worse than
JMR-RV result.

From Figure 8 and 9, we can find the shape all curves in these two estimating method
are very similar. Duan et al [14] has showed the equivalent result in theoretically. Our
estimating result in Table 4 also support this idea. For all /i and & are: p*MY = —0.358,
GEMV = 0.3116, pMEP = —0.3535, 6MLF = (0.328. Because MLE approach can evaluate
the standard error to measure the asymptotic efficiency, and the values are s.e.(aL¥) =

0.328, and s.e.(6MEF) = 0.016154375, we know our estimation is efficiency.

5.3.2 POWER OF THE RATING SYSTEMS

We use K-S test to measure the discriminative power between Merton’s model and CEV
model. The result is shown in Table 5. Because the p-value of two models are booth zero,
we can conclude that these models have the power to discriminate two different events

very well.
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Figure 6: JMR-RV estimating method result.
EHH Result for Procomp Informatics
4 T T T T T T T T
— — — —-mu
= - oosig |

Value

400 500 900

Days

600 700 800
Figure 7: EHH estimating method result.
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Figure 9: MLE transform data method result.
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However, in AR test, we see the AR of Merton model is 0.9359, and CEV model is
0.8896. Merton model is more powerful than CEV. In CAP curve and ROC curve also
show the similar results. Thus the CAP, ROC and AR test are consistent.

CAP Curve

— Merton
- - —CEV_ |-

CDD

0.1t : ‘ : ‘ ‘ : ‘ : b

0 0.2 0.4 0.6 0.8 1
CDND

Figure 10: CAP for Merton and CEV models.

6 CONCLUSIONS

In this paper, we apply several different firm value assumptions to test which one can fit
the Taiwanese company very well. As the empirical results, the Merton model is prefer
than CEV. Although the CEV model is more consistent with options price than Merton

model, our study can not support this result in credit risk area.

To investigate why the CEV model is under performance, we due to the following

reasons:

1. Although some firms has high default probability in CEV model and not default
after the end of one year, they usually default before 1.5 year. That is, they still
have high probability to default after the end of one year. Tsin Tsin Corp. is a good
example. In Merton and CEV model, the default probability at the end of 2004 are
1.8% and 15.12%, respectively. The default event is occurred at 2005/04/22. Thus
the CEV model assign a higher default probability than Merton model, even the
company still live at the end of 2004.
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ROC Curve
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Figure 11: ROC for Merton and CEV models.

2. Some survival firms have higher liability in the third or forth quarter and lower
market value in the forth quarter than other time period. The noncentral chisquare
distribution can catch this trend. However, the lognormal distribution can not
catch very well. Although CEV model do well job in catch trend, the debt of firm
actually not default after the end of one year. Edimax Technology Co., Ltd. is
a good example. At the begin of 2003, the market value is 9.88FE + 08 dollars,
and the debt value is 6.02E + 08 dollars. However, at the end of 2003, the market
value is 5.44F + 08 dollars, and the debt value is 8.26 ' + 08 dollars. That is, the
market value is decrease and debt value is increase largely. The forecasting default
probability at the end of 2004 for Merton and CEV model are 8.22% and 25.41%,
respectively. From fundamental option pricing theorem and the numerical result,

we find the CEV model is more reasonable than Merton model.

3. Since maximum likelihood estimator of parameters in noncentral chisquare distrib-
ution is very hard to derive, even in numerical method, the computing procedure
for some firms maybe escape the calculating loop although the numerical results are

not converge.

We should discuss these problems much detail in future.

Although the power of CEV model is less than Merton model, our empirical study

shows not all firm value data fit lognormal distribution. In CEV model, if v is very small,
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the distribution will be different with lognormal distribution. Table 6 shows all v value
for all firms in our empirical study. Obviously, not all of v higher than 20. Some of them
are less than one. It means not all firm value fit lognormal distribution. CEV model is

much better than Merton model to fit firm value distribution.

Alternatively, although we propose the double exponential JDF model, we don’t pro-
vide any empirical result in this paper. Because the model has five unknown parameters,
they are too much to get a converge results in numerical estimation. We will find a
good initial value to estimate them and assess the default probability under this model

in future.
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Ticker v Ticker v Ticker v Ticker v
1101 15.807916 1307  4.7945983 1445  89.782542 1516  11.265695
1102 19.680323 1308 0.53807518 1446  10.297676 1517  0.49888758
1103 0.41322393 1309 0.50127878 1447  15.398132 1519  22.876671
1104 0.43906694 1310 0.55008135 1449  14.084247 1520  280.84972
1107 20.159997 1311  2.8376321 1450 0.32742237 1521  0.30815183
1108  12.703216 1312  14.057446 1451 78.09191 1522 92.136818
1109  233.90125 1313 0.65877008 1452  59.613859 1523  0.43036493
1110 25.658117 1314  16.307827 1454  102.94189 1524  11.416662
1201 14.655319 1315  48.271545 1455  33.645969 1525  3.0659876
1204 0.31349137 1316  16.244498 1456  13.523349 1526  13.957526
1207 7.0250939 1319  28.784252 1457 14.05625 1527 208.10771
1210 0.24654111 1321  17.889003 1458  12.120736 1528  8.0030019
1212 7.4403538 1323 0.11523948 1459 12.55042 1529  17.480487
1213 141.34409 1324  10.692452 1460  59.463652 1530 0.60429701
1215 0.3032653 1325  48.935439 1462  21.916174 1531  0.22097637
1216 9.6055657 1326  7.4478008 1463  267.08961 1532 8.80989
1217 96.228783 1402  14.081433 1464 27.06358 1533 88.70068
1218 85663791 1407  14.784967 1465 0.56118483 1534  10.574197
1219  0.26316806 1408  14.119778 1466  11.780401 1535  9.9592787
1220  61.149794 1409  19.152906 1467 0.46815663 1536  0.27043096
1221 9.1753656 1410 393.7002 1468  172.19052 1537  0.38398095
1224 0.31428558 1413  18.233843 1469  0.3973995 1538  66.360339
1227 0.2161895 1414  14.496862 1470  80.751554 1539  0.43050166
1228  18.841664 1416  12.728027 1471  27.073876 1540  78.991506
1229  15.792868 1417 5.26513 1472 14.911103 4526  2.1118375
1231 47.982197 1418 0.50154198 1473 253.66 4532 38.031503
1232 0.65312152 1419  29.709297 1474 0.22752312 1601  13.723861
1233 11.856904 1422  0.41967498 1475 0.33842562 1602  10.381605
1234 113.68638 1423  31.104663 1476  24.148386 1603  8.4313653
1235  110.88612 1431  21.976953 4414  18.616855 1605  18.957858
1236 0.36218072 1432  7.8466616 1503  9.4046014 1606  10.734243
8722  15.546874 1434  9.9843801 1504 8.72542 1608 35.79069
1301 9.1276637 1438  40.287379 1507  14.953109 1609  9.4603649
1303 15.10464 1439  101.95875 1512  0.40479641 1611  0.2800399
1304  19.915046 1440  15.781695 1513  8.1046387 1612  84.169884
1305  16.996511 1443  10.410289 1514 48.5553 1613 15.376802
1306 0.82269705 1444  18.354448 1515  11.288385 1614  0.4419928
Continue
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Continue

Ticker v Ticker v Ticker v Ticker v
1615  7.3258568 1809  14.785111 2106  15.541137 2333  16.710656
1616  33.778899 1810  14.607316 2107  9.7329192 2335  0.40469672
1617  202.10495 1902 N.A. 2108 159.8126 2336  0.14766339
1618  88.999011 1903  1.3666143 2109  104.38995 2337  31.025494
1701 17.875625 1904  14.560068 2201 0.83704421 2338  106.30455
1702 0.62850101 1905  142.67932 2204 34.67092 2340  15.652741
1704 13.14391 1906  8.0514403 2206 10.34686 2341  11.551822
1708  119.49717 1907  18.639282 2207  14.905526 2342  20.334256
1709  1.0423463 1909  28.444255 1435  40.716727 2343  18.605525
1710 0.49711569 2002  10.052166 1437 0.38710347 2344  20.463139
1711 67.548202 2006  11.902454 1453  0.53566289 2345 12.31367
1712 0.26716336 2007  13.384177 1604  16.643085 2347  1.4094506
1713 2.5783918 2008  9.2549662 2301 7.943008 2348 12.376806
1714 29.556493 2009  35.176454 2302 0.44720803 2349  16.336839
1715 20.76901 2010  2.3459327 2303  19.495424 2350  13.664259
1716 134.00546 2012  8.1295176 2304  32.308407 2351  0.47783137
1717 32.346586 2013  12.055172 2305 0.45093949 2352  21.751811
1718 15.07238 2014  19.447409 2308  3.2409358 2353  71.493388
1720 154.34074 2015 0.51429858 2311  6.6939709 2355  1.9545645
1721 35.148805 2017  18.319816 2312 15957428 2356  14.976199
1723 0.2630486 2022 0.55888406 2313  14.527227 2357  44.655452
1724 160.97977 2023  12.514533 2314  13.957428 2358  28.995508
1725  50.418267 2024  17.078684 2315 0.36623855 2359  14.345877
1726 3.4642013 2025  23.888428 2316 0.57067206 2360 0.19184421
1727 0.31947767 2027  16.581368 2317  14.680037 2361  0.80205754
1729  209.11625 2029  16.027227 2318  30.031286 2362  1.2675568
1730 0.54400627 2030 0.47048353 2321 17.98297 2363  18.875253
1731 0.13453901 2031 0.38239927 2323  34.258143 2364  13.204818
1732 209.8608 2032 0.58040902 2324  27.401684 2365 6.964435
1733 1.6160904 2033  38.559837 2325  8.2101807 2366  0.36560929
1734 101.00931 2034 0.65156081 2326  19.261034 2367  15.553783
1735 49.074978 2101 N.A. 2327 26.37557 2368  7.1882225
1802  275.06774 2102  0.2840711 2328  108.01729 2369  0.6519674
1805  18.192573 2103  15.702141 2329  11.379737 2370  34.821777
1806  12.617012 2104  17.981393 2330  4.6285402 2371  10.539285
1807  38.457594 2105 0.76933408 2332  0.43945417 2373  17.206298
Continue
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Continue

Ticker v Ticker v Ticker v Ticker v
2374 0.53412698 2413  12.300155 2450  85.618348 2486  48.441875
2375 76.832005 2414 12163123 2451  0.5788923 2487  5.6409931
2376 104.23045 2415  215.97714 2452  59.580263 < 2488  29.977097
2377 17.02533 2416  16.009897 2453  0.70487603 2489  5.5334689
2378 22.216958 2417  3.7466813 2454  127.11192 2490  15.767782
2379  17.539154 2418  13.617424 2455  15.775537 2491  15.943891
2380  147.94358 2419 13.29592 2456  46.039658 2492  0.54516226
2381 17.84502 2420  132.86067 2457 0.63737184 2493  12.595111
2382  19.778629 2421 < 12.711949 2458  5.2947103 2494 28.08291
2383  32.800496 2422  37.070435 2459  67.344754 2495  602.16418
2384  0.50368739 2423  101.07127 2460 0.45331745 2496  44.488324
2385  19.162086 2424  61.363318 2461  20.178857 2497  162.97763
2387  5.7443424 2425  12.333916 2462  0.42485808 2498  1.7673094
2388  28.134861 2426 0.29526333 2463  102.53624 2499  0.14204479
2389  18.249108 2427 48997709 2464  0.30888446 2544  0.48634809
2390  36.503427 2428  86.939416 2465 0.35944628 3001 18.43568
2391  2.2394213 2429 0.33050079 2466  15.202508 3002  0.4802825
2392 0.22738523 2430 0.16641713 2467  57.159233 3003  121.53535
2393  106.87882 2431  70.434028 2468  13.184931 3004  9.6769648
2394 4.7994809 2432  55.613369 2469  6.9060712 3005  11.943903
2395  0.45255792 2433  14.031004 2470  26.387472 3006  0.48900396
2396  48.068192 2434  99.863424 2471 182.1732 3007  1.2179026
2397  164.88793 2435 < 7.3452326 2472 0.67689126 3008  634.53644
2398 18.32525 2436  0.30867767 2473 109.3682 3009  17.442787
2399  0.50567283 2437  428.17313 2474  275.91083 3010 0.47966825
2401  0.63488814 2438 0.47933237 2475  15.923493 3011 0.43804661
2402 74.66147 2439 137.4578 2476 43.841853 3012  22.710451
2403  0.46292925 2440  12.024255 2477  0.3028424 3013  0.34718506
2404 28.91038 2441 1.364366 2478 2.6016339 3014  0.47923401
2405  49.413363 2442  10.004294 2479  12.884793 3015  30.486869
2406  0.79037101 2443  16.828574 2480 0.43820239 3016  52.714724
2407  5.9941829 2444  0.38711787 2481 0.48558484 3017  21.388432
2408  10.276401 2446  65.270968 2482  404.60882 3018 = 12.304879
2409  10.034583 2447  0.27491427 2483  489.10742 3019  7.0133003
2411 198.31909 2448  54.693446 2484  63.513002 3020 0.33295334
2412 14.390006 2449  35.597758 2485 0.65364061 3021  18.390914
Continue
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Continue

Ticker v Ticker v Ticker v Ticker v
3022 1.2709064 3059  63.662679 2501  164.74904 2603  18.539024
3023  0.36044549 4096  0.45525316 2504 11.59083 2605  48.012532
3024  0.25636792 5023  117.90618 2506  10.545541 2606  0.70541945
3025 0.52874198 5305 0.46766162 2509  0.27831908 2607  66.812608
3026  9.9655783 5434  121.80133 2511  11.177028 2608  9.5410088
3027 0.21173826 5469  75.688434 2512  21.953106 2609 0.46106138
3028 0.35958859 5471  0.45005766 2514  39.539587 2610  7.3617178
3029  0.23250006 5484  12.872097 2515  11.044165 2611  41.338155
3030  1.9513724 6112 0.35748337 2516  14.256062 2612  165.59671
3031 1.38953 6115  264.45211 2517  14.844087 2613 0.39389514
3032  7.5558311 6116  14.787256 2518  16.481707 2614  7.6613194
3033  8.9844111 6117  8.6051653 2520  15.701434 2615  3.8040159
3034  11.432979 6119 0.42542013 2523  7.6804306 2616  0.33545315
3035 0.56492946 6128  0.17306457 2524  16.785254 2617 284.6432
3036  13.731599 6131  160.19386 2525 16.27133 2618  8.6113553
3037  29.061584 6132  109.00478 2526 8.632467 5607  0.36310734
3038  86.488286 6133  63.044942 2528  11.896091 5608 42.98233
3039  13.004953 6136 0.42187884 2530  19.450004 2701  339.43832
3040 0.50855452 6139  65.220856 2533  25.788547 2702 26.01889
3041  0.48489083 6141 236.3014 2534  13.309915 2704 6.022627
3042 71.725393 6142  52.134964 2535 0.33675743 2705 0.61685644
3043  286.25738 6145 0.65731051 2536  3.7179111 2706  200.77887
3044 0.49183953 6165  11.469234 2537 0.63004606 2707  3.6998207
3045  57.847536 6166  150.35205 2538 12.83936 2901  249.68028
3046  18.807294 6168 0.27937297 2539  18.099372 2902  13.379019
3047  0.28033771 6172  0.5174026 2540  13.552301 2903  21.056324
3048  5.4114185 6189  2.5771611 2542  19.243972 2905  29.292632
3049  16.833259 6192 46.60068 2543 13.940892 2906  6.7282715
3050 0.53367606 6196  105.90507 2545  0.44508709 2908  19.937711
3051  35.581793 6197  437.06246 2546  10.905093 2910  18.189326
3052  27.083219 6202 0.90953255 2547  16.589215 2911  11.582979
3053  11.208225 6206 60.67007 2548  19.687774 2912  60.137393
3054  24.120323 6209  877.46921 5515 0.64754991 2913  14.199292
3055  199.33973 8008 92974526 5525  19.889303 2915  0.22026195
3057  184.86788 9912  0.49926319 5534  4.4202737 9801  10.018894
3058  0.37125725 1436 15.726472 2601 0.63867515 2904  15.598134
Continue
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Continue

Ticker v Ticker v Ticker v Ticker v

6201  407.33788 9914 0.357053 9927 0.40131129 9937  8.8818871
8926 25.38709 9915  15.193508 9928  134.02736 9938  0.43673316
9902  14.202463 9917  116.01749 9929  7.8869169 9939  17.855105
9904  0.4356872 9918  5.2167601 9930  107.33184 9940  440.19738
9905  297.46936 9919 0.23416048 9931 0.21035339 9941  3.1766857
9906  218.56611 9921 0.91152524 9933  0.3723244 9942  0.46424946
9907  10.016128 9922  19.155413 9934  36.164242 9943  21.339835
9908  128.01831 9924  78.737605 9935 17.55793 9944 152.6052
9910  135.63028 9925  117.46192 9936 20.16259 9945  12.789164
9911  9.8365288 9926  178.99729

Table 6: The v value of all firms.

merical procedure does not converge.
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Appendices

A THE PROOF OF KOLMOGOROV FORWARD EQUATION

The prove of this equation is an exercise in Shreve [39]. We just follow the hint and show

more detail.

Let b be a positive constant and let h,(y) be a function with continuous first and
second derivatives such that hy(z) = 0 for all @ < 0, hy(z) = 0 for all z > b, and
hy(b) = hy(b) = 0. Let X (u) be the solution to the stochastic differential equation with
initial condition X (t) = = € (0,b). Under these assumptions, we can use It6’s lemma on
hy(X (w)) to get the following result.

Dax () + D g2
X)) (30 X ()4 (), X ()W () (54)

| )

dhy(X (u)) =hy(X (u

>

(V¥ (u, X ()))du.

Let 0 <t < T be given, and integrate Equation (54) from ¢ to 7. Take expectations on
both sides and use the fact that X (u) has density p(¢, u, x,y) in the y-variable to obtain

b &
/0 hy(y)p(t, T, x,y)dy — hy(z) = E (/t dhb(X(U)))
=E(hy(X(T)) — ho(X (1))

—E (/t ﬂ(u,X(U))hb(X(U))dUJr/t Y((w), X (w)hy (X (w))dW (u) .
by [ X Ce )

//ﬁuy (t,u, 2, y)hy(y)dudy + = // (w, y)p(t, u, 2, y) 1, (y)dudy

:/t /0 & (“’y)p(t’“vﬂf»y)hé(y)dydu+5 /t /0 YV (u, y)p(t, u, x, y)hy (y)dydu.

Integral the integrals fob -+ -dy on the right-hand side of Equation (55) by parts to obtain

/Obhb( )p(t, T, x,y)dy =hy(x / / p(t,u, 2, y)hy(y)|dydu

/ / 0t u, 2, y) he(y)dydu.

(56)
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Differentiate Equation (56) with respect to 7' to obtain

b
/0 () [a%pa,m,y) T a%(ﬁ(T, Wp(t. T, 2. y))
1 02

—Qa—gﬂ(vz(T, Y)p(t, T, z,y))| dy = 0.

(57)

Finally, let

o) = Spp(t T0) + (T DI T0,0) = 3o AT ). 69

Consider 0 < y; <y, < b. Since hy(y) is any second derivative continuous funcion which
satisfies some conditions as above, we can find g(y) = 0, for all y € (y1,y2). This can
conclude that if ¢g(y) is a continuous function, then g(y) = 0 for every y > 0, and hence
p(t, T, x,y) satisfies Equation (11).

B THE PROOF OF THEOREM 4

From Equation (37) and (40), we know

0 1
a—%T (7’ - 50-2 il )\<70-7 )‘7p7 T, T)2; In (K/%) 77—)

0
=’ (Z(7) > In(K/Vy))

:%;WNP (0\/?Z - ZYk > In(K/V;) — <r - %02 — )\() 7')

k=1
:giwnf’ a\/7_'Z+2n:Yk>a (=L
da n=0 k=1 VZ
:iiwngP a\/7_'Z+iYk<a
% n=0 8@ k=1

1

1
:Vf <7’ - 50-2 - )\<7U7 )‘7p7 m, N2, In (K/%) 77—>
t

where
1 N(7)
_ 2
Z(t) = <r— 50 —)\Q)T+a\/7_'Z+Z;Y¢,

2~ NO.D), a=(K/) = (1= 50 =2 7
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The result of aivt'f (7’ + 302 — X(, 0, A, B, i1, io; In (K / V) ,7') is similar. Thus,

a5 1 L o
a—‘/l; =T <’f’—|— 50'2 —)\C’O', Aapanlﬂh;ln(K/‘/lf)?T)

1 ~
+ f <T =+ 50-2 - )\<70-7 )‘7]57 7717772; In (K/‘/t) 7T)

Ke ™ 1
- ‘/t f(T—50’2—)\C,U,)\,]ﬂ,’fh,’f}%lﬂ(K/%),T) )

which complete the proof.
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