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Chinese Abstract 
摘要 

 
    在這篇論文裡，我們研究在評比選擇權訂價模型時，不同損失函數的適用性。我們的

分析顯示用一個合理的評價標準去衡量不同模型間相對優點是相當重要的，基於避險者的

角度，我們建議使用避險誤差作為損失函數來評定樣本外的績效。以台指選擇權為資料，

用 Black-Scholes 模型描述三種不同形式的誤差並和 CEV 模型做比較，實證結果發現不適

當的評比標準反而會使較好的模型被拒絕，因此選擇一個恰當的損失函數是必需的。 
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English Abstract 
Abstract 

In this thesis, we investigate the adequacy of different loss functions when evaluating option 

pricing models. Our analysis shows that it is important to have a reasonable yardstick to assess 

the relative merits of competing models. Based on the viewpoint of a hedger, we recommend the 

hedging error to be the loss function in judging out-of-sample performance. We illustrate the 

effect on the three types of error in an application of the Black-Scholes model to TAIEX index 

options and compare with the constant elasticity of variance model. Our empirical results show 

that a better model may be rejected when using an inappropriate criterion. Thus, it is vital to 

choose a relevant loss function.    
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1. Introduction 

Over the past few decades, the derivatives market has been expanding dramatically. 

Accompanied with this expansion is a delicate problem in pricing and risk 

management of derivatives. In particular, option pricing has played a central role in 

the theory of asset pricing. Since Black and Scholes (1973, henceforth BS) and 

Merton (1973), the theory of option pricing has advanced considerably. Because of 

the inconsistencies between the assumptions of the BS model and real world many 

researchers proposed alternative approaches to remedy. For instance, an important 

class of models specifies the volatility of the underlying asset as a deterministic 

function of time and the underlying asset (Derman and Kani, 1994; Dupire, 1994; 

Rubinstein, 1944). In addition, more new models that each relax some of the 

restrictive BS assumptions has developed, e.g. the constant elasticity of variance 

model by Cox (1975), and Schroder (1989), the stochastic interest rate option models 

of Merton (1973) and Amin and Jarow (1992), the stochastic volatility models of 

Scott (1987), Hull and White (1987), Heston (1993), Melino and Turnbull (1990), 

jump model of Bates(1996), and discrete-time GARCH models of Duan (1995), 

Heston and Nandi (2000) etc..  

The adequacy of an option-pricing model is typically evaluated in an out-of-sample 

pricing exercise. Generally, we utilize the method that minimizes the price differences 

to the observed market prices. However, the choice of the particular loss function for 

the in-sample estimation and the out-of-sample influences the result of that pricing 

model. Christoffersen and Jacobs (2004) emphasize that consistency in the choice of 

loss functions is crucial. First, for any given model, the loss function used in 

parameter estimation and model evaluation should be the same, otherwise suboptimal 

parameter estimates may be obtained. Second, when comparing models, the 

estimation loss function should be identical across models, otherwise it will lead to 
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inappropriate comparisons. In contrast, empirical researchers are inconsistent in their 

choice of the loss functions. They do not align the estimation and evaluation loss 

functions and therefore the results of these studies may be misleading. It is well 

known in the statistics literature that the choice of loss function is critical for model 

estimation and evaluation. Engle (1993) pointed that the choice of loss function 

implicitly defines the model under consideration. Therefore, it may happen that a 

misspecified model may outperform a “correctly specified” model, if different loss 

functions in estimation and evaluation are used. Renault (1997) argued that standard 

theoretical option valuation models imply a deterministic option price and thus do not 

tell the empirical researcher how to specify the error term. The choice of loss function 

is vital because it implicitly assumes a particular error structure. 

However, the majority of option valuation studies focus on the theoretical models 

and the importance of the consistent loss function is ignored. They use different loss 

functions at the estimation and evaluation stages. In contrast, Dumas, Flemming, and 

Whaley (1998) compare the out-of-sample performance of the ad hoc BS model with 

the out-of-sample performance of deterministic volatility models implemented with 

identical in- and out-of-sample loss function. In this thesis, we focus only on 

evaluation of the option pricing models. The inconsistency problem can be avoided 

because we estimate the parameters with the stock data instead of the option data.  

Although Christoffersen and Jacobs (2004) do not recommend any particular loss 

function, they mention that the choice of loss function is particularly important in 

option valuation. However, the particular loss function used in the empirical analysis 

characterizes the model specification under consideration. Therefore, it is still 

possible that a misspecified model will outperform a “correctly specified” model 

when the “inappropriate” loss function is used even if the loss functions are aligned. 

For different purposes, like hedging, speculating, or market making, a variety of loss 
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functions can be applied. Generally, the participants of option markets trade to hedge 

their portfolio and option valuation models are also based on hedge related arguments. 

Bakshi, Cao and Chen (1997) mention that hedging errors measure how well a model 

captures the dynamic properties of option and underlying security prices. In other 

words, in-sample and out-of-sample pricing errors reflect a model’s static 

performance, while hedging errors reflect the model’s dynamic performance. In the 

later, we will discuss the loss function in more detail. 

The purpose of this thesis is to provide evidence that hedging error is more 

appropriate in the evaluation of models than other conventional loss functions, 

especially pricing error. 

In the next section, we discuss the drawbacks of the conventional loss functions and 

emphasize the adequacy of the hedging error with the BS model. A description of the 

TAIEX option data is provided in section 3. Section 4 presents the empirical results 

for the BS model and compare with the more complex CEV model in section 5. 

Finally, section 6 concludes. 

 

 

2. Choice of loss function 

The inappropriate loss function may lead to some faults in option valuation. We 

describe the deficiency of $MSE and %MSE and then recommend the hedging error 

as the criterion. 

 

2.1. Discussion on $MSE and %MSE 

 We first discuss the mean-squared dollar errors, which is the most frequently used 

criterion for evaluating the performance of different option valuation models. The 

form is  
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( )( )∑
=

−=
n

i
ii θCC

n
θMSE

1

2 ,1)($                      (1) 

where iC  and ( )θCi  are respectively the data and model option prices, respectively, 

and n is the number of option contracts used. The $MSE loss function has the 

advantage that the errors are easily interpreted as $-errors once the square root is 

taken of the mean-squared error. However, the relatively wide range of option prices 

across moneyness and maturity raises the problem of heteroskedasticity for 

$MSE-based option valuation. To present the heteroskedasticity of $MSE, we 

simulate the trend with different strike prices and maturity dates. Figure 1 indeed 

shows that the pricing error is not homogeneous as we describe previously.   

 

Figure 1: Simulation the trend of pricing error 
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We set that volatility is 0.04, 0.26 respectively, and compute the pricing error 

with the closing prices of call options, which have different strike prices and 

maturity dates in May 18, 2005. 

 

 

Because the $MSE loss function implicitly assigns a lot of weight to options with 
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high valuations (in-the-money and long time-to-maturity contracts) and therefore high 

$-errors, some researchers instead favor the relative or percent mean-squared error 

loss function, defined as 

( ) ( )( )( )∑
=

−=
n

i
iii CθCC

n
θMSE

1

2 ,/1%                  (2) 

where that the %-sign is a convenient short-hand for relative loss. We do not in fact 

multiply the relative loss by 100, and thus the losses are not expressed in percent but 

rather decimals. 

The %MSE loss function has the advantage that a $1 error on a $50 dollar option 

carries less weight than a $1 error on a $5 option, which is sensible from a rate of 

return perspective. The disadvantage is that short time-to-maturity out-of-the money 

options with valuations close to zero will implicitly be assigned a lot of weight and 

can thus create numerical instability as figure 2. 

 

Figure 2: Simulation of the trend of percentage pricing error 
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Based on the above consideration of heteroskedasticity, $MSE and %MSE seem 



 6

inappropriate to be the criteria for option valuation. 

  We will give an example to verify the implied volatility or hedging ratio is more 

relevant than option price. Loss functions based on only prices and pricing errors can 

be generally inadequate. Consider, under Black and Scholes’ framework, the 

following two option contracts. 

 

 Contract 1 Contract 2
Stock price 100 100 

Strike 100 95 
time to maturity 0.5 0.09 

Interest rate 0 0 
Actual price 5 5 

Implied volatility 17.74% 2.24% 
δ 0.525 1 

Price estimated with 
σ=20% 

5.64 5.64 

δ 0.528 0.812 
 

The two contracts have the same prices but very different implied volatilities. 

Suppose that a trader obtains his volatility as 20% and then his fair prices for the two 

contracts will each be 5.64. Clearly, both MSE’s and MAE’s will be almost identical. 

However, pricing contract 2 with volatility 20% can lead to much larger losses (or 

gains) since the two δ values appear to be very different than those of contract 1. 

 

This example illustrates that loss functions such as MSE or MAE can be very 

insensitive to the parameters of the model. In fact, it should be noted that the price of 

an option contract contains no information unless its specification and the price of the 

underlying asset are all taken into consideration. 

2.2. Dynamic hedging performance 
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  As discussed above, we abandon these criteria and recommend a meaningful and 

applicable loss function for model evaluation. 

We first examine hedges in which only a single instrument (i.e., the underlying 

stock) can be employed. In addition, we first describe the assumptions of the 

Black-Scholes-Merton differential equation, 

i. The risk-free interest rate r is constant. 

ii. The underlying stock price dynamics are described in continuous time 

by the stochastic differential equation: 

    [ )∞∈+= ,0t     dZSσdtSμdS tttt                  (3) 

    where tZ  represents a Wiener process with respect to real-world 

probability P. 

iii. The stock pays no dividends, and there are no stock splits or other 

corporate actions during the period [t,T]. 

iv. Finally, there are no transaction costs and no bid-ask spreads. 

To make the point precise, imagine a situation in which a financial institution 

intends to hedge a short position in a call option with tT −=τ  periods to expiration 

and strike price K. As before, we use the BS model for the discussion of the basic idea. 

Consider a hedging portfolio consisting of a long position in tΔ  shares of the stock 

and a short position in one call option. We calculate the value of tΔ  so that the 

portfolio is riskless. A riskless portfolio therefore consists of 

 shares Long tΔ:  

and 

.option call 1 :Short  

Define tΠ  as the value of the portfolio at time t. By definition, 

tttt CS −Δ=Π .                            (4) 

The change Πd  in the value of the portfolio in the time interval dt  is given by 
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dCdSd t −= ΔΠ .                           (5) 

The Lemma soIt 'ˆ  shows that the function of the call option price follows the process 

SdZσ
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Substituting equations (3) and (6) into equation (4) yields 

dtSσ
S
C

t
Cd ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

−= 22
2

2

2
1Π                     (7) 

Because this equation does not involve dZ (Winner process), the portfolio must be 

riskless during time dt . The assumptions listed in the preceding paragraph imply that 

the portfolio must instantaneously earn the risk-free interest rate. Otherwise, it will 

exist the arbitrage opportunity. Therefore, the change of the portfolio value satisfies 

dtrd ΠΠ =                               (8) 

Theoretically, the constructed partial hedge requires continuous rebalancing to 

reflect the changing market conditions. In practice, only discrete rebalancing is 

possible. To derive a hedging effectiveness measure, suppose that portfolio 

rebalancing takes place at intervals of length δt. As described above, the value of the 

portfolio is tΠ at time t. Next, at time t+δt, the value of the risk-free portfolio 

becomes t
tδre Π⋅ . Thus, we can write the difference between the adjacent portfolios as  

0)1(ΠΠΠΠΠ ≈−=−=−+
tδr

ttt
tδr

ttδt ee                    (9) 

The hedging error is  

( ) ( )ttt
tδr

tδttδtt

t
tδr

tδtl

CSeCS         

eHE

−−−=

−=

++

+

ΔΔ 

ΠΠ
                  (10) 

At the same time, reconstruct the portfolio, repeat the hedging error calculation at 

time t+2δt, and so on. Record the hedging errors lHE , for l = 1, 2…, M, where M is 
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the number of the corresponding contracts which traded at time t and time t+δt 

respectively. Finally, compute the mean absolute hedging error (MAHE) as a function 

of rebalancing frequency δt:  

∑
=

=
M

l
lHE

M
MAHE

1

1$                    (11) 

Single-instrument hedging errors under other models can be determined with the 

same argument.  

Besides, we examine the hedging error from a different perspective. It is from the 

standpoint of the seller of an option who hedges the position by holding a portfolio 

invested in the underlying asset and cash according to proportions consistent with the 

Black and Scholes formula. The option and the hedging portfolio is called global 

portfolio. Consider now holding a fixed portfolio of D shares of stock and Q dollars of 

risk-free security over the interval, δt. If volatility is constant, the option can be 

replicated by the following portfolio value at time t:  

tttt QSDP +=                          (12) 

In the replicated portfolio, the quantities of stock and risk free bonds are constantly 

adjusted to achieve 

SCCQ
CD

s

s

−=
=

                         (13) 

The difference between the call and the portfolio over the period δt is  

CδSCCeSδCCδPδ s
tδr

s −−−+=− ))(1(               (14) 

which is equivalent to lHE . Equation（14）measures the cash flow generated by a 

synthetic portfolio that balances a liability for the predicted option price with an 

offsetting position in the replicated portfolio. If the model is specified correctly, the 

synthetic portfolio will be self-financing, that is, it will generate neither positive nor 

negative cash flows. But if the model is misspecified, the synthetic portfolio will 

generate random cash flows. The size of the cash flows generated by the synthetic 
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portfolio over the life of the option provides a metric with which to evaluate the 

option pricing model. 

The residual risk incurred by such a discrete strategy is typically measured by the 

variance of the hedging error, denoted by HEl, that is the variance of the difference 

between changes in the value of the option to be hedged, when rebalancing is 

performed every δt. Under standard assumptions (the underlying assets follows a 

geometric Brownian motion with constant volatility), Leland (1985) has derived 

theoretically 

( )2/3
2

22

2
1 tδO

S
SδtδσSCHE ss +

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=  ,              (15) 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

2
22

2
1)(

S
SδtδσSCHEE ss    ,                (16) 

 

and argued that ( ) 0=lHEE  as 0→tδ . Henrotte (1993) and Martellini (2000) show 

the variance of HEl 

( ) 244
0

2
0Γ2

1~ tδσSHEVar l                   (17) 

Hence, the hedging error has a zero mean. It also has a vanishing variance as the time 

period, δt, approaches zero, that is as the time resolution approaches infinity, so that 

one recovers a BS type of perfect replication as a limiting case.  

  Hedging errors measure how well a model captures the dynamic properties of 

options and underlying security prices. In other words, out-of-sample pricing errors 

reflect a model’s static performance, while hedging errors reflect the model’s dynamic 

performance. 

2.3. The difficulties in hedging and the causes of the hedging errors 

  Hedging performance is a meaningful method to judge which model is the best, but 
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several irresistible factors could lead to biases in hedging effectiveness. First, frequent 

adjustments for portfolio can result in more efficient hedging performance if the 

transaction costs are not considered. Because the replicated portfolio is not rebalanced 

continuously, the cash flow in equation (10) may be non-zero even if the constant 

volatility model is true. An argument due to Leland (1985) shows that, in the absence 

of misspecification, the size of the cash flows in equation (10) can be made arbitrarily 

small by using a suitably chosen revision period. Second, when transaction costs 

become significant, hedging strategies can be infeasible. That is, hedging strategies 

without cost consideration are indeed inoperative. Third, our dynamic hedge only 

takes the delta value into account but in fact the option prices changes nonlinearly in 

the price of the asset, the hedging effects can be biased. Besides, the market illiquidity 

is also a special source of model risk in the hedging of derivatives. Finally, since delta 

is a function of the volatility of the underlying asset, estimation of volatilities plays a 

central role and affects hedging performances.  

  All of the factors above can result in poor performances in hedging. Many authors 

have been devoted to solving this problem. In this thesis, only adequacy of loss 

functions for option pricing is emphasized, so we will not discuss more about hedging 

strategies.  

 

 

 

 

 

 

3. The Taiwan TAIEX Index Options 

3.1. Market description  
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We begin with a brief description of the Taiwan Stock Exchange Corporation 

(TSEC). The Exchange maintains a total of 28 stock price indices, to allow investors 

to grab both overall market movement and different industrial sectors' performances 

conveniently. The indices may be grouped into market value indices and price 

average indices. The former are similar to the Standard & Poor's Index, weighted by 

the number of outstanding shares, and the latter are similar to the Dow Jones 

Industrial Average and the Nikkei Stock Average. The TSEC Capitalization Weighted 

Stock Index (TAIEX) is the most widely quoted of all TSEC indices.  

TAIEX covers all of the listed stocks excluding preferred stocks, full-delivery 

stocks and newly listed stocks, which are listed for less than one calendar month. Up 

to December 2002, 593 issues were selected as component stocks from the 638 

companies listed on the Exchange.  

Trading on the Exchange starts at 09:00 and closes at 13:30. The orders can be 

entered half an hour before the trading session starts. Buy or sell orders are in 

standard unit or multiples of standard units. One standard trading unit is 1,000 shares, 

which is applicable to all listed stocks. Orders below 1,000 shares are considered 

odd-lot and that over 500,000 shares are block trading.  

Under current trading rules, the closing price of a stock is simply the last traded 

price of the intra-day continuous auction of the trading day. Given that the closing 

price of securities is widely used by market participants as a benchmark for portfolio 

valuation as well as index calculation, the new system will accumulate orders for 5 

minutes (from 1:25 p.m. to 1:30 p.m.) before the closing call auction. 

The TSEC imposes a 7% price limits for all traded stocks. Within a trading day, the 

price for a single stock cannot move more than 7% from the previous price after 

adjusting for dividend and stock splits. Therefore, the maximum close to close 1-day 

return is 7% and the minimum return is -7%.  
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The official derivative market for risky assets, which is known as Taiwan Futures 

Exchange (TAIFEX), trades future contracts on TAIEX, the equivalent option 

contracts for calls and puts, and individual option contracts for blue-chip stocks. 

Trading in the derivative market started in 1998. The market has experienced 

tremendous growth from the very beginning. Launched on December 24th, 2001, the 

TAIEX index options achieved a total of 43,824,511 contracts by the end of 2004, 

accounting for 74.10% of the market total for the year.  

The TAIEX option contract is a cash-settled European option with trading during 

the three nearest consecutive months and the other 2 months of the March quarterly 

cycle (March, June, September, and December). The last trading day is the third 

Wednesday of the delivery month and the expiration day is the first business day 

following the last trading day. Trading occurs from 08:45 to 13:45. During the sample 

period covered by this research, the contract size is 50 New Taiwan dollars times the 

TAIEX index, and prices are quoted in points, with a minimum price change of 

one-tenth point (NT$5). The exercise prices are given in 100 index point intervals in 

spot month, the next two calendar months and 200 index point intervals in the 

additional two months from the March quarterly cycle.  

It is important to point out that liquidity is concentrated on the nearest expiration 

contract.  

  Thus, during 2002 and 2004 almost 90% of crossing transactions occurred in 

contracts of this type. 

 

 

 

Figure 3: TAIEX index level each trading day during the period of June 2002 through 
May 2004. 
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3.2.  The data 

Based on the following consideration, we use TAIEX call option traded daily on 

TAIFEX during the period from July 1, 2002 through June 30, 2004 for our empirical 

work. To ease computational burden and avoid the non-simultaneous data, for each 

day in the sample, only the last reported quote (prior to 1:30 PM) of each option 

contract is employed in the empirical tests. Note that the recorded TAIEX index 

values are not the daily closing index levels. Rather, they are the corresponding index 

levels at the moment when the option quote is recorded. Thus, there is no 

nonsynchronous price issue here.  

Several exclusion filters are applied to construct the option price data. First, option 

price quotes that are time-stamped later than 1:30 PM are eliminated. This ensures that 
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the spot price is recorded synchronously with its option counterpart. Second, as 

options with less than six days and more than 100 days to expiration may induce 

liquidity-related biases, they are excluded from the sample.  

 

Table 1: Sample Properties of TAIEX index options 

Days-to-Expiration   
Moneyness 

S/K <30 30-60 >60 

 
Subtotal 

 
<0.94 

15.15 
(15.41)
{973} 

32.07 
(44.05)
{813} 

72.25 
(47.86) 
{175} 

 
{1961} 

 
 

OTM 
 

0.94 ~ 0.97 
39.77 

(28.61)
{624} 

88.56 
(40.66)
{566} 

128.08 
(57.29) 
{165} 

 
{1355} 

 
0.97~1.00 

83.84 
(40.52)
{673} 

144.86 
(51.78)
{572} 

190.07 
(66.76) 
{109} 

 
{1354} 

` 
 

ATM 
 

1.00 ~ 1.03 
164.19 
(51.89)
{610} 

222.87 
(62.06)
{431} 

289.95 
(85.74) 
{60} 

 
{1101} 

 
1.03 ~ 1.06 

 

280.38 
(64.49)
{427} 

325.32 
(79.26)
{233} 

404.24 
(93.36) 
{29} 

{689}  
 

ITM 
 

≧1.06 
523.79 

(170.03)
{340} 

507.72 
(158.47)
{174} 

687.54 
(214.93) 

{41} 

 
{555} 

Subtotal  {3647} {2789} {579} {7015} 

The reported numbers are respectively the average quoted price, the standard deviation which are 

shown in parentheses, and the total number of observations (in braces), for each moneyness and 

maturity category.  

 

 

These criteria yield a final daily sample of 7015 observations. Table 1 describes the 
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sample properties of the call option prices employed in this work. Average prices, 

standard deviations, and the number of available calls are reported for each 

moneyness category. Moneyness is defined as the ratio of the spot price to the 

exercise price.  

  A call option is said to be deep out-of-the money if the ratio KS /  belongs to the 

interval ( )94.0,0  ; out-of-the-money (OTM) if 97.0/94.0 <≤ KS ; at-the-money (ATM) 

when 03.1/97.0 <≤ KS ; in-the-money (ITM) when 06.1/03.1 <≤ KS ; and 

deep-in-the-money if 06.1/ >KS .  

To proxy for riskless interest rates, we use the daily series of annualized Taiwan 

deposit 1 month rates from the Bank of Taiwan. 

 

 

4. Empirical results 

We examine the homogeneity of pricing error and hedging error respectively with 
the BS model. 

  

4.1. Black-Scholes (BS) Option Pricing Model 

Black and Scholes (1973) proposed the option pricing model. The model of stock 

price behavior developed is  

,SdZσSdtμdS +=                        (18) 

where μ  is the expected rate of return of the stock price and σ  is its volatility; dZ  

is a Weiner process. Due to the model implies TS  has a lognormal distribution,  

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+ TσTσμSnST ,

2
ln~ln

2

0   ,               (19) 

we estimate the volatility from historical data. Define: 
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4.2. BS Option Pricing Formula 

  The Black-Scholes formulas for the prices at time zero of a European call option 

on a non-dividend-paying stock is  

( ) ( )[ ]
( ) ( ) ( )21   

0,max

dNKedNS

KSEeC
tTr

t

TQ
tTr

−−

−−

−=

−=
                  (20) 

where  

( ) ( )( )

( ) ( )( ) .2ln

,2ln

1

2

2

2

1

tTσd
tTσ

tTσrKSd

tTσ
tTσrKSd

t

t

−−=
−

−−+
=

−
−++

=
       (21) 

The function ( )xN  is the cumulative probability distribution function for a 

standardized normal distribution, tS  is the stock price at time t, K  is the strike 

price, r  is the risk-free rate, and ( )tT −  is the time to maturity. 

 

4.3. Hedge ratio with Delta (Δ ) and Gamma (Γ ) in the BS model 

Consider a portfolio consisting of a long position in Δ (or *Δ ) shares of the stock 

and a short position in one call option. We calculate the value of Δ (or *Δ ) that makes 



 18

the portfolio riskless. In other words, the delta of an option, Δ (or *Δ ), is defined as 

the rate of change of the option price with respect to the price of the stock price. In 

general, 

S
C

∂
∂

=Δ                            (22) 

where C  is the price of the call option and S is the stock price. 

Further, Gamma represents the rate of change of the delta as the underlying risk tS  

changes. Changes in delta were seen to play a fundamental role in determining the 

price of a vanilla option. Hence, gamma is another important Greek. 

The delta and gamma in the BS model are  

( )
( ) .Γ

,Δ

1

1

tTS
dN

dN

BS

BS

−

′
=

=
                        (23) 

 

4.4. Comparison of the homogeneity among different loss functions 

We define  

)θC(C −= (PE)Error  Pricing  

C
)θC(C −

= (PPE)Error  Pricing Percentage  

and HE has been shown in the section 2.2. To obtain the hedging results, we follow 

the three steps below. First, estimate the set of parameter values implied by all call 

options. Next, on day t, use these parameter estimates and the current day’s stock 

index and interest rates to compute the hedge ratio and construct the hedging portfolio. 

Finally, calculate the hedging error as of day t+1 if the portfolio is rebalanced daily. 

These steps are repeated for each option and every trading day in the sample. We now 

estimate the historical volatility monthly with the data of TAIEX index from June, 

2002 to May,2004 and Figure 4 shows the trend of the historical volatilities.  
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Figure 4: Historical volatility trend each month during the period of June 2002 

through May 2004. 

Historical volatility Trend

Interval

H
is

to
ric

al
 v

ol
at

ili
ty

0206 0405

0.15

0.20

0.25

0.30

0.35

0.40

0305

 

Using the TAIEX index option data described in previous section and the historical 

volatilities, we can compute the three errors with the BS model. Figure 5 shows 

patterns of the two error forms. It is apparent the both patterns of PE and PPE display 

the heteroskedasticity and the HE almost supplies a homogeneity pattern. Our 

discussion about the three errors is verified. The PE and PPE are inappropriate to 

judge what model is better and HE works better. On pricing error, the maximum error 

from the cheap call option almost equals to the price and the maximum error from the 

expensive call is also the same. The consequence of one dollar error over one dollar 

market price is more serious than over one hundred dollars. The phenomenon is 

particularly apparent at the interval (0,200) of panel A. In addition, pricing errors 

= CC ˆ−  > 0 imply price underrated by the BS model and price must be more than 
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zero so that the errors cannot exceed the upper line with the slope being one. The 

reason for some errors to exceed the lower line with the slope being one is that the 

option pricing model overrate more than 100% of the price. Panel A also shows that 

the BS model is not sensitive to pricing for the cheap calls and easy to overrate. 

 

Figure 5: PE and PPE patterns of BS model 
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 However, percentage pricing error proposed to solve the drawback from the 

pricing error represents the error in one dollar call on average. But it may cause the 

overcorrected result, e.g., with an error of five dollars, the error rate would be 500% if 

the call price is one dollar while the error rate would be only 5%, if the call price is 

one hundred dollars. It leads to the model which is the best determined entirely by 

fraction of calls overvalued significantly so that many calls priced perfectly are 
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ignored. Thus, we desire to find a criterion with which error pattern scatter equally. 

Figure 6 results the hedging error satisfies the property better than the others. The 

empirical with the BS model shows that the hedging error is more appropriate for 

model valuation.  

 

Figure 6: HE patterns of BS model 
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5. Comparison with an alternative model 

  So far, the empirical analysis has focused on testing the impact of different loss 

functions using the BS model as the underlying option pricing model. We now 

consider the CEV (constant elasticity of variance) option pricing model and 

investigate whether the previous results are true for more structural models. 
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5.1.  Constant Elasticity of Variance (CEV) Option Pricing Model 

Cox (1975) has derived the renowned constant elasticity of variance (CEV) option 

pricing model and Schroder (1989) has subsequently extended the model by 

expressing the CEV option pricing formula in terms of the noncentral Chi-square 

distribution. The diffusion process of stock price S in a CEV model model can be 

defined as 

,2/ dZSSdtdS βδμ +=                      (26) 

where μ  is known as the expected rate of return; δ  and β  are constants; dZ  

is a Weiner process. The CEV model assumes the following relationship between 

stock price S and volatility: 

2/)2(),( −⋅= βδσ StS                       (27) 

 The elasticity of return variance with respect to price equals 2−β , and, if 2<β , 

volatility and price are inversely related. In the limiting case 2=β , the CEV model 

returns to the conventional Black-Scholes model in which the variance rate is 

independent of stock price. In option pricing theory, the risk-neutrality assumption 

allows us to replace the expected rate of return by risk-free rate of interest, r , and 

hence the only unobservable value is the volatility. The parameters δ  and β  can 

be estimated from the transition probability density function ( )tSTSf tT ,;,  derived 

by Cox (1975). 

( ) ( ) ( ) ( ) ( )
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and tT −=τ ; ( )⋅qI  is the modified Bessel function of the first kind of order q; r  

denotes the riskless interest rate; and a denotes the continuous proportional dividend 

rate. 

 

5.2.  CEV Option Pricing Formula 

  Following Schroder (1989), the European call option pricing formula for 2<β  

under the CEV model is 

( )( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )[ ]
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         (29) 

where E  is the exercise price, βkEy −= 2 , and [ ]λνxQ ,;  is the noncentral 

Chi-square complementary distribution function with ν  degrees of freedom and 

noncentral parameter λ . 

  For 2>β , Emanuel and MacBeth (1982) derive a pricing formula, which can be 

shown to be equivalent to  

( )[ ]
( )[ ]( )xβyQEe

yβxQeSC
τr

τa
t

2,2/2;21     

2,2/22;2 

−−−

−+=
−

−

              (30) 

 

5.3. Hedge ratio with Delta (Δ ) and Gamma (Γ ) in the CEV model 

  The components of hedge ratio, 
S
CCEV

∂
∂

=Δ  and 2

2

Γ
S
CCEV

∂
∂

= , in the CEV model 

are tough to derive in closed-forms. Instead, we utilize numerical method to obtain the 

differentiation. 
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Proof. Please see Burden and Faires (2001). 

 

The numerical result applying Theorem 1 can aid portfolio hedging and then we 

can calculate the hedging error easily.  

 

5.4.  CEV model parameter estimation 

The parameters, μ, δ and β, shown in Table 3 are estimated by maximizing the 

likelihood function of the transition probability density function ( )tSTSf tT ,;, . Table 2 

contains the descriptive statistics for all parameters during the sample period. 

 

 

Table 2: Descriptive statistics for TAIEX 

Parameters μ δ β 

Mean 0.0256  2.2735  1.6842  
STD 0.8285  3.2527  0.2996  

kurtosis -1.1196  1.9977  -1.2436  
skewness -0.0061  1.7562  -0.5297  

Min. -1.4254  0.1204  1.1817  
Max. 1.4231  10.7540  1.9962  
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Table 3: TAIEX parameter estimates  

Sample period μ  δ  β  

Jun. 2002 -1.0252 2.6792 1.4506 

Jul. -0.0444 0.8323 1.7713 

Aug. -0.3411 9.2376 1.1817 

Sep. -1.3187 0.2968 1.9919 

Oct. 1.1817 9.6418 1.2088 

Nov. 0.4246 0.7104 1.7611 

Dec. -0.5900 0.2032 1.9777 

Jan. 2003 1.4231 3.3128 1.3420 

Feb. -1.4254 0.8228 1.7545 

Mar. -0.5638 0.7268 1.7654 

Apr. -0.4933 0.3028 1.9904 

May 1.0724 2.4023 1.3732 

Jun. 0.5071 0.1574 1.9782 

Jul. 0.6886 0.2357 1.9779 

Aug. 0.6101 0.5145 1.7830 

Sep. -0.1721 0.1782 1.9143 

Oct. 0.9364 5.1989 1.1997 

Nov. -0.6960 0.1458 1.9916 

Dec. 0.0495 0.4602 1.7118 

Jan. 2004 0.9760 0.1204 1.9962 

Feb. 0.8826 0.1332 1.9908 

Mar. -0.7026 10.7540 1.2255 

Apr. -0.6876 1.3122 1.6136 

May -0.0783 4.1835 1.4694 

The period of parameter estimates is June 2002 - May 2004. We maximize the likelihood function of 

asset price to estimate monthly. 
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5.5. Comparison of the homogeneity  

  Figure 7 and Figure 8 also show that the HE is more appropriate to evaluate model. 

Besides, Figure 8 indicates that more frequent hedge results in little hedging error 

without transaction cost consideration and it corresponds to the description in 

subsection 2.2. Both BS and CEV models points out that PE and PPE can be 

misleading in evaluating model and reject the more appropriate one.  

 

 

Figure 7: PE and PPE patterns of CEV model 
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Figure 8: HE patterns of CEV models 
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5.6. Performance of both models 

  To assess the quality of both models, three measurements, $MSE, %MSE and 

$MAHE, introduced in previous section are made. Based on the $MAHE and %MSE 

in Table 4, the CEV model is better than the BS model. Nevertheless, according to the 

$MSE, the BS model is much better. However, it may be unbelievable since we 

discuss previously. Table 5 indicates that a minor proportion of contracts that are 

obviously overrated become a critical factor in model valuation. Thus, %MSE cannot 

be a good criterion. 
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 Table 4: Out-of-sample performance 

Model 
Criteria 

BS CEV 

$MSE 2178.1844 2289.5788 

%MSE 0.5672 0.4606 

$MAHE 
(rebalancing 1 day) 

10.0129 9.9998 

$MAHE 
(rebalancing 5 days) 

26.0007  25.9253  

 

 

Table 5: More analysis about %MSE 

Model Percentage pricing 
error ≤ 1 BS CEV 

%MSE  0.3961   0.2733  

Percentage (%) 69.8478  59.3353  

number of call 
options  

384/7015 339/7015 
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6. Conclusion 

The thesis investigates an important empirical issue concerning criterion selection 

for an option model valuation. So far, the empirical literatures have mainly focused on 

the relative performance of various option valuation models. The role and the 

importance of the loss functions at the evaluation stage have been overlooked 

frequently. However, different criteria lead to different results so how to choose a loss 

function is important. 

We abandon the conventional criteria, like $MSE and %MSE, for their 

characteristics of heteroskedasticity. Since delta hedging is the most common hedging 

strategy used by traders to protect against risk, so hedging error evaluates properly the 

hedging performance. Thus the $MAHE is recommended here as a substitute for 

them. 

To demonstrate these implications, we compare the empirical performance of the 

BS model to the performance of the CEV model. We find that when using an 

inappropriate loss function, the BS model performs better than the CEV model. 

However, the BS model performs somewhat worse than the CEV model when the 

appropriate loss function is used. 

Finally, we stress that when one compares different models, the relevant loss 

function for option model valuation should be used carefully otherwise improper 

comparisons will be made. 
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