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Abstract

In this thesis, we investigate the adequacy of different loss functions when evaluating option
pricing models. Our analysis shows that it is important to have a reasonable yardstick to assess
the relative merits of competing models. Based on the viewpoint of a hedger, we recommend the
hedging error to be the loss function in judging out-of-sample performance. We illustrate the
effect on the three types of error in an application of the Black-Scholes model to TAIEX index
options and compare with the constant elasticity of variance model. Our empirical results show
that a better model may be rejected when using an inappropriate criterion. Thus, it is vital to

choose a relevant loss function.
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1. Introduction

Over the past few decades, the derivatives market has been expanding dramatically.
Accompanied with this expansion is a delicate problem in pricing and risk
management of derivatives. In particular, option pricing has played a central role in
the theory of asset pricing. Since Black and Scholes (1973, henceforth BS) and
Merton (1973), the theory of option pricing has advanced considerably. Because of
the inconsistencies between the assumptions of the BS model and real world many
researchers proposed alternative approaches to remedy. For instance, an important
class of models specifies the volatility of the underlying asset as a deterministic
function of time and the underlying asset (Derman and Kani, 1994; Dupire, 1994;
Rubinstein, 1944). In addition, more new models that each relax some of the
restrictive BS assumptions has developed, e.g.the constant elasticity of variance
model by Cox (1975), and Schreder (1989), the stochastic interest rate option models
of Merton (1973) and Amin and Jarow-(1992), the stochastic volatility models of
Scott (1987), Hull and White (1987);-Heston (1993), Melino and Turnbull (1990),
jump model of Bates(1996), and discrete-time GARCH models of Duan (1995),
Heston and Nandi (2000) etc..

The adequacy of an option-pricing model is typically evaluated in an out-of-sample
pricing exercise. Generally, we utilize the method that minimizes the price differences
to the observed market prices. However, the choice of the particular loss function for
the in-sample estimation and the out-of-sample influences the result of that pricing
model. Christoffersen and Jacobs (2004) emphasize that consistency in the choice of
loss functions is crucial. First, for any given model, the loss function used in
parameter estimation and model evaluation should be the same, otherwise suboptimal
parameter estimates may be obtained. Second, when comparing models, the

estimation loss function should be identical across models, otherwise it will lead to
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inappropriate comparisons. In contrast, empirical researchers are inconsistent in their
choice of the loss functions. They do not align the estimation and evaluation loss
functions and therefore the results of these studies may be misleading. It is well
known in the statistics literature that the choice of loss function is critical for model
estimation and evaluation. Engle (1993) pointed that the choice of loss function
implicitly defines the model under consideration. Therefore, it may happen that a
misspecified model may outperform a “correctly specified” model, if different loss
functions in estimation and evaluation are used. Renault (1997) argued that standard
theoretical option valuation models imply a deterministic option price and thus do not
tell the empirical researcher how to specify the error term. The choice of loss function
is vital because it implicitly assumes a particular error structure.

However, the majority of option:valuation studies focus on the theoretical models
and the importance of the consistent loss funetion is-ignored. They use different loss
functions at the estimation and evaluation-stages. In-contrast, Dumas, Flemming, and
Whaley (1998) compare the out-of-sample performance of the ad hoc BS model with
the out-of-sample performance of deterministic volatility models implemented with
identical in- and out-of-sample loss function. In this thesis, we focus only on
evaluation of the option pricing models. The inconsistency problem can be avoided
because we estimate the parameters with the stock data instead of the option data.

Although Christoffersen and Jacobs (2004) do not recommend any particular loss
function, they mention that the choice of loss function is particularly important in
option valuation. However, the particular loss function used in the empirical analysis
characterizes the model specification under consideration. Therefore, it is still
possible that a misspecified model will outperform a “correctly specified” model
when the “inappropriate” loss function is used even if the loss functions are aligned.

For different purposes, like hedging, speculating, or market making, a variety of loss
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functions can be applied. Generally, the participants of option markets trade to hedge
their portfolio and option valuation models are also based on hedge related arguments.
Bakshi, Cao and Chen (1997) mention that hedging errors measure how well a model
captures the dynamic properties of option and underlying security prices. In other
words, in-sample and out-of-sample pricing errors reflect a model’s static
performance, while hedging errors reflect the model’s dynamic performance. In the
later, we will discuss the loss function in more detail.

The purpose of this thesis is to provide evidence that hedging error is more
appropriate in the evaluation of models than other conventional loss functions,
especially pricing error.

In the next section, we discuss the drawbacks of the conventional loss functions and
emphasize the adequacy of the hedging error with.the BS model. A description of the
TAIEX option data is provided-in.section 3..Section: 4 presents the empirical results
for the BS model and compare with-the -more complex CEV model in section 5.

Finally, section 6 concludes.

2. Choice of loss function
The inappropriate loss function may lead to some faults in option valuation. We
describe the deficiency of SMSE and %MSE and then recommend the hedging error

as the criterion.

2.1. Discussion on $SMSE and %MSE
We first discuss the mean-squared dollar errors, which is the most frequently used
criterion for evaluating the performance of different option valuation models. The

form is



SMSE(0) =~ (C, ~C,(0)), (1)

i=1

where C, and C, (9) are respectively the data and model option prices, respectively,
and n is the number of option contracts used. The SMSE loss function has the
advantage that the errors are easily interpreted as $-errors once the square root is
taken of the mean-squared error. However, the relatively wide range of option prices
across moneyness and maturity raises the problem of heteroskedasticity for
$MSE-based option valuation. To present the heteroskedasticity of $MSE, we
simulate the trend with different strike prices and maturity dates. Figure 1 indeed

shows that the pricing error is not homogeneous as we describe previously.

Figure 1: Simulation the trend of pricing error

Simulation - Pricing Error

150
100
50 —— \\
O 1 1

\ 50 100 150 200
_50 \
-100

-150

Pricing Error

-200
Call Price

We set that volatility is 0.04, 0.26 respectively, and compute the pricing error
with the closing prices of call options, which have different strike prices and

maturity dates in May 18, 2005.

Because the SMSE loss function implicitly assigns a lot of weight to options with



high valuations (in-the-money and long time-to-maturity contracts) and therefore high
$-errors, some researchers instead favor the relative or percent mean-squared error

loss function, defined as

%MSE(B)=—3 (¢, ~C,(0)/C, . @

nio

where that the %-sign is a convenient short-hand for relative loss. We do not in fact
multiply the relative loss by 100, and thus the losses are not expressed in percent but
rather decimals.

The %MSE loss function has the advantage that a $1 error on a $50 dollar option
carries less weight than a $1 error on a $5 option, which is sensible from a rate of
return perspective. The disadvantage is that short time-to-maturity out-of-the money
options with valuations close to zero will,implicitly be assigned a lot of weight and

can thus create numerical instability as figure 2;

Figure 2: Simulation of the trénd of percentage pricing error
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Based on the above consideration of heteroskedasticity, SMSE and %MSE seem



inappropriate to be the criteria for option valuation.
We will give an example to verify the implied volatility or hedging ratio is more
relevant than option price. Loss functions based on only prices and pricing errors can

be generally inadequate. Consider, under Black and Scholes’ framework, the

following two option contracts.

Contract 1  Contract 2
Stock price 100 100
Strike 100 95
time to maturity 0.5 0.09
Interest rate 0 0
Actual price 5 5
Implied volatility 17.74% 2.24%
) 0.525 1
Price estimated with 5.64 5.64
6=20%
) 0.528 0.812

The two contracts have the sameé: pricesbut very different implied volatilities.
Suppose that a trader obtains his volatility as 20% and then his fair prices for the two
contracts will each be 5.64. Clearly, both MSE’s and MAE’s will be almost identical.
However, pricing contract 2 with volatility 20% can lead to much larger losses (or

gains) since the two 6 values appear to be very different than those of contract 1.

This example illustrates that loss functions such as MSE or MAE can be very
insensitive to the parameters of the model. In fact, it should be noted that the price of
an option contract contains no information unless its specification and the price of the
underlying asset are all taken into consideration.

2.2. Dynamic hedging performance



As discussed above, we abandon these criteria and recommend a meaningful and

applicable loss function for model evaluation.

We first examine hedges in which only a single instrument (i.e., the underlying

stock) can be employed. In addition, we first describe the assumptions of the

Black-Scholes-Merton differential equation,

1.

ii.

1il.

1v.

The risk-free interest rate 7 is constant.
The underlying stock price dynamics are described in continuous time
by the stochastic differential equation:

dS, = uS,dt+0S,dZ, te[0,») 3)
where Z, represents a Wiener process with respect to real-world
probability P.
The stock pays no .dividends, and"there are no stock splits or other
corporate actions during the petiod [t,T}.

Finally, there are no transaction-costs and no bid-ask spreads.

To make the point precise, imagine.a situation in which a financial institution

intends to hedge a short position in a call option with =7 —¢ periods to expiration

and strike price K. As before, we use the BS model for the discussion of the basic idea.

Consider a hedging portfolio consisting of a long position in A, shares of the stock

and a short position in one call option. We calculate the value of A, so that the

portfolio is riskless. A riskless portfolio therefore consists of

and

Long : A, shares

Short : I call option.

Define II, as the value of the portfolio at time t. By definition,

I1,=A,8,-C,. 4

The change dI1 in the value of the portfolio in the time interval dt is given by

7



dll=A,dS —dC. (5)

The [t0's Lemma shows that the function of the call option price follows the process

2
dc=[ %€ 45, 9€ 10 fazsz at+ € 58z (6)
oS ot 288 oS

Substituting equations (3) and (6) into equation (4) yields

azszjdt (7)

Because this equation does not involve dZ (Winner process), the portfolio must be
riskless during time dt . The assumptions listed in the preceding paragraph imply that
the portfolio must instantaneously earn the risk-free interest rate. Otherwise, it will
exist the arbitrage opportunity. Therefore, the change of the portfolio value satisfies
dil = rT1dt (8)
Theoretically, the constructed partial hedge requires continuous rebalancing to
reflect the changing market conditions.-In.practice, only discrete rebalancing is
possible. To derive a hedging “‘effectiveness” measure, suppose that portfolio

rebalancing takes place at intervals of length 6. As described above, the value of the

portfolio is II,at time t. Next, at time ¢+0¢, the value of the risk-free portfolio

becomese’™ -I1,. Thus, we can write the difference between the adjacent portfolios as
., —I,=e"T,-1I, =I1,(” -1) = 0 9)
The hedging error is
HE, =11, —e"™I,

t+0t

,[ (10)
= (AtSt+(5t _Cz+z5z)_em (AtSt _Ct)

At the same time, reconstruct the portfolio, repeat the hedging error calculation at

time #+20t, and so on. Record the hedging errors HE,, for [ =1, 2..., M, where M is



the number of the corresponding contracts which traded at time ¢ and time #+06¢
respectively. Finally, compute the mean absolute hedging error (MAHE) as a function

of rebalancing frequency o
1 M
SMAHE =— " |HE,| (11)
M I=1

Single-instrument hedging errors under other models can be determined with the
same argument.

Besides, we examine the hedging error from a different perspective. It is from the
standpoint of the seller of an option who hedges the position by holding a portfolio
invested in the underlying asset and cash according to proportions consistent with the
Black and Scholes formula. The option and the hedging portfolio is called global
portfolio. Consider now holding a fixed portfolio of D shares of stock and Q dollars of
risk-free security over the interval, oz, 'If volatility is constant, the option can be
replicated by the following portfolio value at time t:

P=D:8540, (12)

In the replicated portfolio, the quantities of stock and risk free bonds are constantly

adjusted to achieve

D=C,
(13)
o=C-C.S
The difference between the call and the portfolio over the period ot is
OP—6C =C .08 +(e” -1)(C-C,S)-6C (14)

which is equivalent to HE,. Equation (14 ) measures the cash flow generated by a
synthetic portfolio that balances a liability for the predicted option price with an
offsetting position in the replicated portfolio. If the model is specified correctly, the
synthetic portfolio will be self-financing, that is, it will generate neither positive nor
negative cash flows. But if the model is misspecified, the synthetic portfolio will

generate random cash flows. The size of the cash flows generated by the synthetic
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portfolio over the life of the option provides a metric with which to evaluate the
option pricing model.

The residual risk incurred by such a discrete strategy is typically measured by the
variance of the hedging error, denoted by HE), that is the variance of the difference
between changes in the value of the option to be hedged, when rebalancing is
performed every &t. Under standard assumptions (the underlying assets follows a
geometric Brownian motion with constant volatility), Leland (1985) has derived

theoretically

Lo o2 o5 (OSY
HE =2 C, 8% o%0t-| < +0(or?) (15)

E(HE) =%CSSS2[0251 —(%SJ ] , (16)

and argued that E(HE,): 0 as- ot - 0. Henrotte (1993) and Martellini (2000) show

the variance of HE,

Var(HE, )~ %F02504a4ét2 (17)

Hence, the hedging error has a zero mean. It also has a vanishing variance as the time
period, o¢, approaches zero, that is as the time resolution approaches infinity, so that
one recovers a BS type of perfect replication as a limiting case.

Hedging errors measure how well a model captures the dynamic properties of
options and underlying security prices. In other words, out-of-sample pricing errors
reflect a model’s static performance, while hedging errors reflect the model’s dynamic
performance.

2.3. The difficulties in hedging and the causes of the hedging errors

Hedging performance is a meaningful method to judge which model is the best, but

10



several irresistible factors could lead to biases in hedging effectiveness. First, frequent
adjustments for portfolio can result in more efficient hedging performance if the
transaction costs are not considered. Because the replicated portfolio is not rebalanced
continuously, the cash flow in equation (10) may be non-zero even if the constant
volatility model is true. An argument due to Leland (1985) shows that, in the absence
of misspecification, the size of the cash flows in equation (10) can be made arbitrarily
small by using a suitably chosen revision period. Second, when transaction costs
become significant, hedging strategies can be infeasible. That is, hedging strategies
without cost consideration are indeed inoperative. Third, our dynamic hedge only
takes the delta value into account but in fact the option prices changes nonlinearly in
the price of the asset, the hedging effects can be biased. Besides, the market illiquidity
is also a special source of model risk in the hedging of derivatives. Finally, since delta
is a function of the volatility of-the underlying asset,-estimation of volatilities plays a
central role and affects hedging performances:

All of the factors above can result in.poor.performances in hedging. Many authors
have been devoted to solving this problem. In this thesis, only adequacy of loss
functions for option pricing is emphasized, so we will not discuss more about hedging

strategies.

3. The Taiwan TAIEX Index Options

3.1. Market description
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We begin with a brief description of the Taiwan Stock Exchange Corporation
(TSEC). The Exchange maintains a total of 28 stock price indices, to allow investors
to grab both overall market movement and different industrial sectors' performances
conveniently. The indices may be grouped into market value indices and price
average indices. The former are similar to the Standard & Poor's Index, weighted by
the number of outstanding shares, and the latter are similar to the Dow Jones
Industrial Average and the Nikkei Stock Average. The TSEC Capitalization Weighted
Stock Index (TAIEX) is the most widely quoted of all TSEC indices.

TAIEX covers all of the listed stocks excluding preferred stocks, full-delivery
stocks and newly listed stocks, which are listed for less than one calendar month. Up
to December 2002, 593 issues were selected as component stocks from the 638
companies listed on the Exchange.

Trading on the Exchange starts.at 09:00 and closes at 13:30. The orders can be
entered half an hour before the trading session starts. Buy or sell orders are in
standard unit or multiples of standard units. One standard trading unit is 1,000 shares,
which is applicable to all listed stocks. Orders below 1,000 shares are considered
odd-lot and that over 500,000 shares are block trading.

Under current trading rules, the closing price of a stock is simply the last traded
price of the intra-day continuous auction of the trading day. Given that the closing
price of securities is widely used by market participants as a benchmark for portfolio
valuation as well as index calculation, the new system will accumulate orders for 5
minutes (from 1:25 p.m. to 1:30 p.m.) before the closing call auction.

The TSEC imposes a 7% price limits for all traded stocks. Within a trading day, the
price for a single stock cannot move more than 7% from the previous price after
adjusting for dividend and stock splits. Therefore, the maximum close to close 1-day

return is 7% and the minimum return is -7%.
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The official derivative market for risky assets, which is known as Taiwan Futures
Exchange (TAIFEX), trades future contracts on TAIEX, the equivalent option
contracts for calls and puts, and individual option contracts for blue-chip stocks.
Trading in the derivative market started in 1998. The market has experienced
tremendous growth from the very beginning. Launched on December 24th, 2001, the
TAIEX index options achieved a total of 43,824,511 contracts by the end of 2004,
accounting for 74.10% of the market total for the year.

The TAIEX option contract is a cash-settled European option with trading during
the three nearest consecutive months and the other 2 months of the March quarterly
cycle (March, June, September, and December). The last trading day is the third
Wednesday of the delivery month and the expiration day is the first business day
following the last trading day. Trading occurs from 08:45 to 13:45. During the sample
period covered by this researchs the.contract size is' 50 New Taiwan dollars times the
TAIEX index, and prices are quotéd in-peints, with a minimum price change of
one-tenth point (NT$5). The exercise prices.are given in 100 index point intervals in
spot month, the next two calendar months and 200 index point intervals in the
additional two months from the March quarterly cycle.

It is important to point out that liquidity is concentrated on the nearest expiration
contract.

Thus, during 2002 and 2004 almost 90% of crossing transactions occurred in

contracts of this type.

Figure 3: TAIEX index level each trading day during the period of June 2002 through
May 2004.
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3.2.  The data

Based on the following consideration, we use TAIEX call option traded daily on
TAIFEX during the period from July 1, 2002 through June 30, 2004 for our empirical
work. To ease computational burden and avoid the non-simultaneous data, for each
day in the sample, only the last reported quote (prior to 1:30 py) of each option
contract is employed in the empirical tests. Note that the recorded TAIEX index
values are not the daily closing index levels. Rather, they are the corresponding index
levels at the moment when the option quote is recorded. Thus, there is no
nonsynchronous price issue here.

Several exclusion filters are applied to construct the option price data. First, option

price quotes that are time-stamped later than 1:30 py; are eliminated. This ensures that
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the spot price is recorded synchronously with its option counterpart. Second, as
options with less than six days and more than 100 days to expiration may induce

liquidity-related biases, they are excluded from the sample.

Table 1: Sample Properties of TAIEX index options

Days-to-Expiration

Moneyness Subtotal
S/K <30 30-60 >60
15.15 32.07 72.25
<0.94 (15.41) (44.05) (47.86) {1961}
OT™M {973} {813} {175}
39.77 88.56 128.08
0.94 ~0.97 (28.61) (40.66) (57.29) {1355}
{624} {566} {165}
83.84 144.86 190.07
0.97~1.00 (40.52) (51.78) (66.76) {1354}
ATM {673} 1572} {109}

164,19 22287 289.95
1.00~1.03  “(51.89) (62.06)  (85.74) {1101}

{610} {431} {60}
280.38 325.32 404.24 {689}
1.03 ~1.06 (64.49) (79.26) (93.36)
ITM {427} {233} {29}
523.79 507.72 687.54
=1.06 (170.03) (158.47) (214.93) {555}
{340} {174} {41}
Subtotal (3647} (2789} (579} {7015}

The reported numbers are respectively the average quoted price, the standard deviation which are
shown in parentheses, and the total number of observations (in braces), for each moneyness and

maturity category.

These criteria yield a final daily sample of 7015 observations. Table 1 describes the
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sample properties of the call option prices employed in this work. Average prices,
standard deviations, and the number of available calls are reported for each
moneyness category. Moneyness is defined as the ratio of the spot price to the
exercise price.

A call option is said to be deep out-of-the money if the ratio S/K belongs to the
interval( 0 ,0.94); out-of-the-money (OTM) 1f0.94 < S/ K < 0.97 ; at-the-money (ATM)
when 097<S/K <1.03 ; in-the-money (ITM) when 1.03<S§/K <1.06 ; and
deep-in-the-money if S/K >1.06.

To proxy for riskless interest rates, we use the daily series of annualized Taiwan

deposit 1 month rates from the Bank of Taiwan.

4. Empirical results

We examine the homogeneity of pricing error and hedging error respectively with
the BS model.

4.1. Black-Scholes (BS) Option Pricing Model
Black and Scholes (1973) proposed the option pricing model. The model of stock
price behavior developed is
dS = uSdt +oSdZ, (18)
where u is the expected rate of return of the stock price and ¢ is its volatility; dZ

is a Weiner process. Due to the model implies S, has a lognormal distribution,
0_2
InS, ~n[lnSo+(,u—7jT,0'ﬁ} : (19)

we estimate the volatility from historical data. Define:
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n+ I1: Number of observations
S, :Stock price at end of ith (i =0,1,...,n) interval
7: Length of time intervalin years
and let
u, =ln£ij fori=12,..,n.
Si—l

The usual estimate, s, of the standard deviation of the u, is given by

S R

where u is the mean of the u,.

It follows that o itself can be estimated by 6, where
6=
N
4.2. BS Option Pricing Formula
The Black-Scholes formulas for:the prices.at time zero of a European call option
on a non-dividend-paying stock is

C=e " TE,[max(S, =K,0)]

20
e N s 08 .
where
J _ln(S,/K)+(r+02/2XT—t)
b oNT —t ’ @1)

(S /K)+(r=0?2)T-1)
d, = o'\/T_—l‘ =d, cr\/T_t.

The function N(x) is the cumulative probability distribution function for a
standardized normal distribution, S, is the stock price at time t, K is the strike

price, r is the risk-free rate, and (7' —¢) is the time to maturity.

4.3. Hedge ratio with Delta (A ) and Gamma (I") in the BS model
Consider a portfolio consisting of a long position in A (orA") shares of the stock

and a short position in one call option. We calculate the value of A (orA”) that makes
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the portfolio riskless. In other words, the delta of an option, A (or A"), is defined as
the rate of change of the option price with respect to the price of the stock price. In

general,

¢

=75 (22)

where C is the price of the call option and S is the stock price.
Further, Gamma represents the rate of change of the delta as the underlying risk S,
changes. Changes in delta were seen to play a fundamental role in determining the
price of a vanilla option. Hence, gamma is another important Greek.

The delta and gamma in the BS model are

A% =N(d,),
s _ N'(d,) (23)
SKIT -t

4.4. Comparison of the homogeneity among different loss functions

We define
Pricing Error (PE)=C-C(8)

Percentage Pricing Error (PPE) = €=ce9)

and HE has been shown in the section 2.2. To obtain the hedging results, we follow
the three steps below. First, estimate the set of parameter values implied by all call
options. Next, on day ¢z, use these parameter estimates and the current day’s stock
index and interest rates to compute the hedge ratio and construct the hedging portfolio.
Finally, calculate the hedging error as of day #+1 if the portfolio is rebalanced daily.
These steps are repeated for each option and every trading day in the sample. We now
estimate the historical volatility monthly with the data of TAIEX index from June,

2002 to May,2004 and Figure 4 shows the trend of the historical volatilities.

18



Figure 4: Historical volatility trend each month during the period of June 2002

through May 2004.
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Using the TAIEX index option data described in previous section and the historical
volatilities, we can compute the three errors with the BS model. Figure 5 shows
patterns of the two error forms. It is apparent the both patterns of PE and PPE display
the heteroskedasticity and the HE almost supplies a homogeneity pattern. Our
discussion about the three errors is verified. The PE and PPE are inappropriate to
judge what model is better and HE works better. On pricing error, the maximum error
from the cheap call option almost equals to the price and the maximum error from the
expensive call is also the same. The consequence of one dollar error over one dollar
market price is more serious than over one hundred dollars. The phenomenon is
particularly apparent at the interval (0,200) of panel A. In addition, pricing errors

A

=C—-C > 0 imply price underrated by the BS model and price must be more than
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zero so that the errors cannot exceed the upper line with the slope being one. The
reason for some errors to exceed the lower line with the slope being one is that the
option pricing model overrate more than 100% of the price. Panel A also shows that

the BS model is not sensitive to pricing for the cheap calls and easy to overrate.

Figure 5: PE and PPE patterns of BS model
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However, percentage pricing error proposed to solve the drawback from the
pricing error represents the error in one dollar call on average. But it may cause the
overcorrected result, e.g., with an error of five dollars, the error rate would be 500% if
the call price is one dollar while the error rate would be only 5%, if the call price is
one hundred dollars. It leads to the model which is the best determined entirely by

fraction of calls overvalued significantly so that many calls priced perfectly are
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ignored. Thus, we desire to find a criterion with which error pattern scatter equally.
Figure 6 results the hedging error satisfies the property better than the others. The
empirical with the BS model shows that the hedging error is more appropriate for

model valuation.

Figure 6: HE patterns of BS model

BS-Empirical Pattern

Panel A: Hedging Error (rebalancing 1 day)

S
o o
(o))
£ n
()] o
o o
z
0 1000 42000 3000 ' “4000 5000 6000
Portfolio:value at time t
Panel B: Hedging Error (rebalancing 5 days)
S _
m ]
o O
[ —
'_gn -]
o 1
g §-

0 1000 2000 3000 4000 5000 6000

Portfolio value at time t

5. Comparison with an alternative model

So far, the empirical analysis has focused on testing the impact of different loss
functions using the BS model as the underlying option pricing model. We now
consider the CEV (constant elasticity of variance) option pricing model and

investigate whether the previous results are true for more structural models.
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5.1.  Constant Elasticity of Variance (CEV) Option Pricing Model
Cox (1975) has derived the renowned constant elasticity of variance (CEV) option
pricing model and Schroder (1989) has subsequently extended the model by
expressing the CEV option pricing formula in terms of the noncentral Chi-square
distribution. The diffusion process of stock price S in a CEV model model can be
defined as
dS = uSdt + 57" dZz, (26)
where u is known as the expected rate of return; 6 and f are constants; dZ
is a Weiner process. The CEV model assumes the following relationship between
stock price S and volatility:
o(S,t)=0-8%" (27)
The elasticity of return variance'with respect to price equals f—2, and, if f< 2,
volatility and price are inversely related.. Inthe limiting case f =2, the CEV model
returns to the conventional Black-Secholes .model in which the variance rate is
independent of stock price. In option pricing theory, the risk-neutrality assumption
allows us to replace the expected rate of return by risk-free rate of interest,», and
hence the only unobservable value is the volatility. The parameters 6 and £ can

be estimated from the transition probability density function f (ST,T ;St,t) derived
by Cox (1975).
£(8,.T58,,0)= (2= B w22 ) P emmep o) (28)
where
2(_r - a)

k =
52 (2 _ ﬂ)l-e(r—u)(Z—ﬁ)r _ IJ 4
X = kS elr-ae-pe

w=kS; 7,
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andz=T-t; I, (-) is the modified Bessel function of the first kind of order q; r

denotes the riskless interest rate; and a denotes the continuous proportional dividend

rate.

5.2.  CEV Option Pricing Formula
Following Schroder (1989), the European call option pricing formula for f <2
under the CEV model is
C=e"[ 1(S;.T;58,,1)S; —E)dS,
=Se” J:O e (w/x)l/(4_2ﬁ)ll/(2_ﬁ)<2M)dw
+ Ee™” J:O e (x / w)l/(4_2ﬁ)ll/(2_ﬁ)(2M)dw
=S¢ 02y 2+2/(2- B).2x] (29)

—Ee Q22— 2/(2<8),2x]
=S e ™0[2y:2 £ 2122 p)2x]

—Ee " (1=02x:2/(2- 5)2y))

where E is the exercise Pprice, y=kE*"  ‘and Q[x;v,i] is the noncentral
Chi-square complementary distribution ‘function with v degrees of freedom and
noncentral parameter A .

For > 2, Emanuel and MacBeth (1982) derive a pricing formula, which can be

shown to be equivalent to

C=S.e"Q2x2+2/(f-2)2y]

- Ee " (1-0[2y:2/(8-2).2x)) o

5.3. Hedge ratio with Delta (A ) and Gamma (I") in the CEV model

in the CEV model

2
The components of hedge ratio, A”" = g—g and'"” = aS =

are tough to derive in closed-forms. Instead, we utilize numerical method to obtain the

differentiation.
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Lemma 1.
Suppose a function f € C’ [a,b} Foranyx, (a,b), consider some h # ()
such that x, +h e (a,b). The approximation of first derivative of the

function f at x, is

f'(xo) 1

:E[f(xo _2h)_8f(x0 _h)+ Sf(xo +h)—f(x0 +2h)]+£f(5)(é:),
where

30

= (x(, —h,x,+ h), the error termis of the form O(h")

The approximation of second derivative is

4 1 hz
S (xo):h_z[f(xo —h)—2f(x0)+f(x0 +h)]_af(4)(f)-
Also, & € (x, —h,x, +h), the error term is of the form O(hz)
Proof. Please see Burden and Faires (2001).

The numerical result applying Theorem 1 can aid portfolio hedging and then we

can calculate the hedging error easily.

5.4. CEV model parameter estimation

The parameters, p, & and 3, shown in Table 3 are estimated by maximizing the

likelihood function of the transition probability density function f (ST,T ;S ,t). Table 2

contains the descriptive statistics for all parameters during the sample period.

Table 2: Descriptive statistics for TAIEX

Parameters 1) d B
Mean 0.0256 2.2735 1.6842
STD 0.8285 3.2527 0.2996
kurtosis -1.1196 1.9977 -1.2436
skewness -0.0061 1.7562 -0.5297
Min. -1.4254 0.1204 1.1817
Max. 1.4231 10.7540 1.9962
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Table 3: TAIEX parameter estimates

Sample period u 0 B
Jun. 2002 -1.0252 2.6792 1.4506
Jul. -0.0444 0.8323 1.7713
Aug. -0.3411 9.2376 1.1817
Sep. -1.3187 0.2968 1.9919
Oct. 1.1817 9.6418 1.2088
Nov. 0.4246 0.7104 1.7611
Dec. -0.5900 0.2032 1.9777
Jan. 2003 1.4231 3.3128 1.3420
Feb. -1.4254 0.8228 1.7545
Mar. -0.5638 0.7268 1.7654
Apr. -0.4933 0.3028 1.9904
May 10724 2:4023 1.3732
Jun, 05071 0:1574 1.9782
Jul. 0.6886 0.2357 1.9779
Aug. 0.6101 0.5145 1.7830
Sep. -0.1721 0.1782 1.9143
Oct. 0.9364 5.1989 1.1997
Nov. -0.6960 0.1458 1.9916
Dec. 0.0495 0.4602 1.7118
Jan. 2004 0.9760 0.1204 1.9962
Feb. 0.8826 0.1332 1.9908
Mar. -0.7026 10.7540 1.2255
Apr. -0.6876 1.3122 1.6136
May -0.0783 4.1835 1.4694

The period of parameter estimates is June 2002 - May 2004. We maximize the likelihood function of

asset price to estimate monthly.
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5.5. Comparison of the homogeneity

Figure 7 and Figure 8 also show that the HE is more appropriate to evaluate model.
Besides, Figure 8 indicates that more frequent hedge results in little hedging error
without transaction cost consideration and it corresponds to the description in
subsection 2.2. Both BS and CEV models points out that PE and PPE can be

misleading in evaluating model and reject the more appropriate one.

Figure 7: PE and PPE patterns of CEV model
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Figure 8: HE patterns of CEV models
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5.6. Performance of both models

To assess the quality of both models, three measurements, SMSE, %MSE and
$MAHE, introduced in previous section are made. Based on the SMAHE and %MSE
in Table 4, the CEV model is better than the BS model. Nevertheless, according to the
$MSE, the BS model is much better. However, it may be unbelievable since we
discuss previously. Table 5 indicates that a minor proportion of contracts that are
obviously overrated become a critical factor in model valuation. Thus, %MSE cannot

be a good criterion.
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Table 4: Out-of-sample performance

L. Model
Criteria
BS CEV
SMSE 2178.1844 2289.5788
%MSE 0.5672 0.4606
$MAHE
. 10.0129 9.9998
(rebalancing 1 day)
$MAHE
. 26.0007 25.9253
(rebalancing 5 days)
Table 5: More analysis about %MSE
Percentage pricing Model
error <1 BS CEV
%MSE 0.3961 0.2733
Percentage (%) 69.8478 59.3353
number of call
384/7015 339/7015

options
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6. Conclusion

The thesis investigates an important empirical issue concerning criterion selection
for an option model valuation. So far, the empirical literatures have mainly focused on
the relative performance of various option valuation models. The role and the
importance of the loss functions at the evaluation stage have been overlooked
frequently. However, different criteria lead to different results so how to choose a loss
function is important.

We abandon the conventional criteria, like $MSE and %MSE, for their
characteristics of heteroskedasticity. Since delta hedging is the most common hedging
strategy used by traders to protect against risk, so hedging error evaluates properly the
hedging performance. Thus the $MAHE is recommended here as a substitute for
them.

To demonstrate these implications; we-compare the empirical performance of the
BS model to the performance of+the. CEV-model. We find that when using an
inappropriate loss function, the BS model performs better than the CEV model.
However, the BS model performs somewhat worse than the CEV model when the
appropriate loss function is used.

Finally, we stress that when one compares different models, the relevant loss
function for option model valuation should be used carefully otherwise improper

comparisons will be made.
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