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NIG-GARCH 選擇權訂價模型 

 

研究生:黃兆輝                指導教授:李昭勝 

 

國立交通大學財務金融研究所 

 

摘要 

   這篇論文發展了一個誤差項服從由 Barndorff-Nielsen (1997) 所提出之 Normal 

Inverse Gaussian 分配來做 GARCH 選擇權訂價模型。這個模型叫做 NIG-GARCH 且

將包含 Duan (1995)之 GARCH 選擇權訂價模型為其極限特例。此外吾人也提出另一

個可考慮到“槓桿效應＂現象之 NIG-NGARCH 模型，其可以解釋財務時間序列上常

發生之資產報酬波動率不對稱的現象。在史坦普爾 500 指數的實證研究上顯示我們的

模型檢驗比 Duan (1995) 和 Heston and Nandi (2000)之 GARCH 模型還要好。而另一個

在史坦普爾 500 指數選擇權訂價上的研究也顯示我們的模型在比較價內的買權時優於

其他的 GARCH 模型。這改善是由於“厚尾分配＂假設所致，且因此可以解釋財務時

間序列上“超越峰態＂的現象。
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Abstract 
    This thesis develops a GARCH option pricing model with its innovation following a 

Normal Inverse Gaussian (NIG) distribution as proposed by Barndorff-Nielsen (1997). 

The model is called NIG-GARCH and will include the GARCH option pricing model of 

Duan (1995) as a limiting case. In addition, we also consider the “leverage effects” in the 

model, called NIG-NGARCH, which can explain the asymmetric effect of asset return 

volatility, observed often in financial time series. Empirical studies on S&P500 index 

shows that model checking of our models perform better than the GARCH models of 

Duan (1995) and Heston and Nandi (2000). Studies on pricing S&P500 index options 

also shows that our model in the out-of-sample performance is superior to other models 

for at-the-money calls. The improvement is due to the distribution with fat tails and thus 

can explain excess kurtosis often observed in financial time series. 
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1. Introduction  

 
Since the seminal paper on the autoregressive conditional heteroskedasticitic 

(ARCH) model introduced by Engle (1982), various works on the financial time series 

have been dominated by the extensions of the ARCH process. Bollerslev (1986) extended 

the work of Engle to the generalized autoregressive conditional heteroskedasticitic 

(GARCH) process to include past conditional variances in the current conditional 

variance equation. The GARCH process can capture the empirical regularities observed 

in the time series data such as “volatility clustering “. Duan (1995) developed a GARCH 

option pricing model that relaxes the assumption of constant volatility in Black and 

Scholes (1973) formula.  

 
However, the GARCH process fails to explain the characteristics of “leverage 

effects” often observed in financial time series. The concept of leverage effects, first 

discovered by Black (1976), refers to the tendency for changes in stock returns to be 

negatively correlated with changes in returns volatility. In other words, the impact of the 

“good news” is different from the impact of the “bad news” volatility, i.e., volatility tends 

to rise in response to “bad news” and to fall in response to “good news”. Duan, Gauthier 

and Simonato (1999) used nonlinear asymmetric GARCH (NGARCH) of Engle and Ng 

(1993) to obtain an analytical approximation for option pricing model which is similar to 

the Black and Scholes formula with adjustments used for skewness and kurtosis. Heston 

and Nandi (2000) developed a closed-form solution for European option values in 

GARCH model which simultaneously captures path dependence in volatility (volatility 

clustering) and the negative correlation of volatility with asset returns (leverage effects). 

 

However, financial time series exhibit excess kurtosis in empirical studies. 

Therefore, the assumption of Gaussian innovation seems inappropriate for financial time 

series. In addition to the Gaussian distribution, several alternative innovation distributions 

had been proposed in the early GARCH literature, including the t-distribution proposed 

by Bollerslev (1987), the Generalized Error Distribution (GED) proposed by Nelson 

(1991), and the Normal Inverse Gaussian (NIG) distribution proposed by Andersson 
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(2001) and Bollerslev (2002). These distributions have fatter tails than the Gaussian 

distribution and can be used to explain excess kurtosis. But, there is no literature 

proposed properly about GARCH option valuation with innovations following the NIG 

distribution. In this thesis, we propose a model combining the GARCH option valuation 

and innovations for the asset returns following the NIG distribution. The model is called 

NIG-GARCH and will include the GARCH option pricing model of Duan (1995) as a 

limiting case. In addition, the “leverage effects” is also considered in our model called 

NIG-NGARCH.  

 

There are two parts in our empirical studies. One is the empirical studies on daily 

returns of S&P 500 index that we can use standardized innovations (or called 

standardized residuals) of stock returns to check the model assumption. Another is the 

empirical studies on S&P 500 (SPX) index call options that we use three loss functions to 

compare the out-of-sample performance. We choose the GARCH option pricing models 

of Duan (1995) and Heston and Nandi (2000) as benchmark models. The former result is 

that our models can well fit the daily returns on S&P 500 index because only our models 

follow the distribution assumption. The latter result is that our model is superior to other 

models for at-the-money calls and does not perform too badly for in-the-money or 

out-of-the-money calls. Besides, we also find that non analytical solution GARCH-type 

models can fit the observed implied volatility of call option data much better than the 

closed-form model. 

 

The remainder of this thesis is organized as follows. In section 2, we introduce the 

distribution, process and GARCH model of the normal inverse Gaussian. We then 

construct the NIG-GARCH option pricing model and describe the parameter estimation 

in section 3. Section 4 shows the empirical study. Finally, section 5 concludes. 
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2. The Normal Inverse Gaussian distribution and GARCH Model  

 
2.1 The Normal Inverse Gaussian distribution 

 

The normal inverse Gaussian (NIG) distribution proposed by Barndorff-Nielsen 

(1997) is useful for statistical modeling, particularly in finance. It is characterized by four 

parameters ( ), , ,α β μ δ , whereα stands for steepness, β for symmetry, μ  for location, 

and δ  for scale. Consider a pair of random variables X and Z, the marginal distribution 

of X is normal inverse Gaussian where 

 

( ), ,X Z z N z zμ β= +∼          (2.1a) 

         ( , ),Z IG δ γ∼                  (2.1b) 

         2 2= ,0 ,   >0.andγ α β β α μ δ− ≤ < ∈\        (2.1c) 

 

Let ( , )IG δ γ denote the inverse Gaussian distribution with probability density function 

(pdf) 

              

223
2( ; , ) exp ,

22
IGf z z z

z
δ γ δδ γ

γπ
− ⎧ ⎫⎛ ⎞⎪ ⎪= − −⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
         (2.2) 

 

then the pdf of ( , , , )NIG α β μ δ  is   

 

          

( ) ( )
0

1

1

( ; , , , )

exp

                                                     

NIG
ZX Zf x f x z f z dz

x x xq K q

α β μ δ

α μ μ μαδ δ γ β
π δ δ δ

∞

−

=

⎧ ⎫− ⎧ − ⎫ ⎡ − ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= × +⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎣ ⎦⎩ ⎭

∫

(2.3) 

and its moment generating function (M.G.F.) is     

             ( ) ( ){ }2 2; , , , exp ( )XM u u uα β μ δ μ δ γ α β= + − − +               (2.4) 
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where ( ) 21q x x= + , 2 2γ α β= − and 1( )K x  is the modified Bessel function of 

second kind (also called third order by some researchers) and index 1. A special case of 

NIG distribution is normal distribution 2( , )N μ σ which corresponds to 0,β =  α →∞ and 

2.δ σα =  Set 0,  β = 2δ σα =  and αδ η= , then (2.1) become 

 

                    ( ), ,X Z z N zμ= ∼           (2.5a) 

                    2( , ),Z IG σ η∼                (2.5b) 

                    where  >0.η   

 

Let 2( , )IG σ η denote the inverse Gaussian distribution with pdf 

 

2 232 2
2

1( ; , ) exp ,
2 2

IG zf z z
z

ησ ησ ησ η η
π σ

− ⎧ ⎫⎛ ⎞⎪ ⎪= − +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

           (2.6) 

 

then the pdf of 2( ,0, , )NIG σ μ η  is 

 

               

( ) ( )

( )

2

0

11
2

11 1
2 2

( ; ,0, , )

exp   

                                                       

NIG
ZX Zf x f x z f z dz

x xq K q

σ μ η

η μ μη η
πσ ση ση

∞

−

=

⎧ ⎫⎛ ⎞ ⎛ ⎞− −⎪ ⎪⎜ ⎟ ⎜ ⎟= ⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

∫

             (2.7) 

and its moment generating function is          

 

( ) ( ){ }2 2 2 2; ,0, , exp .XM u u uσ μ η μ η η ησ= + − −           (2.8) 

 

Asη →∞ , then 

( )
2

2exp
2XM u u uσμ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
       (2.9) 
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which is M.G.F. of ( )2, .  N μ σ By the uniqueness of M.G.F., we can see that normal 

distribution is a limiting case of NIG distribution. In order to model time-varying 

conditional variance, let  and μ β  be 0 and assume that   

     

( )0, ,t t t tX Z z N z= ∼           (2.10) 

and 

           ( )2
1 , ,t t tZ IG σ η−Ω ∼           (2.11) 

then 

         ( ) ( ) ( )2
1 1 10

( ) , ,0,0,NIG
t t t t t t t tt

f x f x z f z dz NIG σ η
∞

− − −Ω = Ω Ω∫ ∼    (2.12) 

where                                                                        

           ( )2 ,IG σ η  and ( )2 ,0,0,NIG σ η  are given by (2.6) and (2.7)  

and 

           tΩ  is the information set of all information up to and including time t. 

 

2.2 The Normal Inverse Gaussian GARCH Model 

 

Consider a one-period rate of return for the underlying asset and let St be the asset 

price at time t and ht be the conditional variance of the log return over time interval [t-1, 

t]. Assume price process under the physical measure P can be modeled as following: 

 

                    
1

1ln
2

t
t t t

t

S r g g
S

λ ε
−

= − + +          (2.13) 

 

where ( )22t tg hη η η= − − and tε  is a sequence of independent random variables with 

mean zero and variance th ; r is the constant one-period risk-free interest rate and λ  

could be interpreted as “excess return with respect to a risk-free investment per unit of 

risk” or called the unit risk premium. 
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Traditionally, tε  is assumed normally distributed with mean zero and variance 2σ . 

Duan (1995) assumes that tε  conditional on the information set tΩ  is normally 

distributed with mean zero and variance th , which follows a ( , )GARCH p q  process of 

Bollerslev (1986) under measure P.  We assumes that tε  conditional on the 

information set 1t−Ω  is normal inverse Gaussian with mean zero and variance th , which 

follows a nonlinear asymmetric GARCH (NGARCH) model proposed by Engle and Ng 

(1993) under P-measure as below: 

 

                    ( )1 ,0,0,
P

t t tNIG hε η−Ω ∼             (2.14) 

                    ( )2

1 1 1t t t th w h hα ε θ β− − −= + − +         

 

where θ  is a non-negative parameter to capture the negative correlation between the 

innovations of asset return and its conditional volatility. The parametric restrictions 

of 0, 0, 0w α β> ≥ ≥  ensures that conditional volatility is non-negative. And, to ensure 

that the unconditional variance of asset return is bounded (or covariance stationarity) the 

parameter restriction ( )21 1α θ β+ + <  is required. From (2.16) the unconditional variance 

can be derived: 

                       ( )21 (1 ) .ω α θ β− + −         (2.15) 

 

Combining (2.13) and (2.14), we label this model as NIG-NGARCH (1, 1).  If 0θ = , we 

call the model as NIG-GARCH (1,1). By taking the limit of η  approach infinity, the 

GARCH (1,1) option pricing model of Duan (1995) is a limiting case of 

NIG-GARCH(1,1) and the NGARCH (1,1) option pricing model is also a limiting case of 

NIG-NGARCH (1,1). The Black-Scholes model is also a special case of NIG-GARCH 

(1,1) as η  approach infinity, 0α =  and 0β = .  
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3. The GARCH-Type Option Pricing Model 

 
There are two kinds of discrete time GARCH models to value the European option. 

One is the nonanalytical solution for option values which use Monte-Carlo simulation to 

compute the option prices. Another is the closed-form solution which uses the inversion 

formula of Heston and Nandi (2000) in terms of the characteristic function. The former is 

usually used to compute the option price in empirical work but it takes more time than the 

latter. The GARCH –type option pricing models are presented in next two sections. 

 

3.1 The NIG-GARCH Option Pricing Model      

 

In order to develop the GARCH option pricing model, Duan(1995) introduced  the 

locally risk-neutral valuation relationship (LRNVR) as a counterpart of the  

conventional risk-neutral argument extended in Rubinstein(1976) and Brennan (1979). 

From another economically meaningful assumption that 1t tS −Ω essentially does not allow 

the arbitrage profits, which we can just profit with risk free rate or can be written 

as ( )1 1
r

t t tE S S e− −Ω = . Under this risk-neutralized probability measure Q, the price 

process in (2.13) and (2.14) becomes  

                      *

1

1ln
2

t
t t

t

S r g
S

ε
−

= − +           (3.1) 

and 

                    ( )*
1 ,0,0,

Q

t t tNIG hε η−Ω ∼         (3.2) 

                      ( )2
*

1 1 1 1t t t t th w h g hα ε θ λ β− − − −= + − − +  

 

where *
tε  conditional on 1t−Ω  is a normal inverse Gaussian with mean zero and      

variance th . (3.1) is risk-neutral and can easily be showed in appendix C. The risk-neutral 

NIG-NGARCH (1,1) option pricing model contains six parameters η , ω , α , β , θ , λ . 

From (3.1) we can easily derive the following terminal asset price: 
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T T

*
T t j j

j=t+1 j=t+1

1=S exp (T t)r g + .
2

S ε
⎡ ⎤

− −⎢ ⎥
⎣ ⎦

∑ ∑     (3.3) 

The principle of no arbitrage (or called the law of one price) indicates that a European 

call option with strike price K and expiring at maturity T must have the following value at 

time t: 

                     
NIG-NG (T t)
t Q T tC =e E max (S K , 0) .r− − ⎡ − Ω ⎤⎣ ⎦   (3.4) 

 

where Q[]E  denotes the expectation under the risk-neutral distribution. By letting η 

approach infinity, from (3.1) to (3.4) also converge to GARCH option pricing model of 

Duan under measure Q. Since the option price can’t be derived analytically, Monte Carlo 

simulations are used to compute the approximate option prices. 

   

3.2 The Heston-Nandi GARCH Option Pricing Model 

 

Another famous discrete-time pricing model is the Heston-Nandi GARCH option 

valuation model (2000). They developed a closed-form solution for European option 

values in GARCH model which simultaneously captures path dependence in volatility 

(volatility clustering) and the negative correlation of volatility with asset returns 

(leverage effects). Considering the Heston-Nandi GARCH (1,1) process that asset price 

process under measure P is defined as 

 

1

ln ,t
t t t

t

S r h h z
S

λ
−

= + +        (3.5) 

2
1 1 1( ) ,t t t th z h hω α γ β− − −= + − +  

 

where 0, 0, 0w α β> ≥ ≥ ; tz  is standard normal random variable; r is the constant 

one-period continuously compounding interest rate. The parameter γ controls the 

skewness or the asymmetry of the distribution of the log returns. Under the 

risk-neutralized probability measure Q, the asset price process in (3.5) become  
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*
t

1

1ln
2

t
t t

t

S r h h z
S −

= − +        (3.6) 

                     * * 2
t-1 1 1( ) ,t t th z h hω α γ β− −= + − +  

where 

                     
*
t t t

1z =z + +  h ,
2

λ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

                     * 1= + + .
2

γ γ λ  

 

If the characteristic function of the log spot price is )( φif , then a European call option 
with strike price K and expiring at maturity T is worth the following value at time t: 
 
 

               

[ ]( )HN
t Q

( ) *

0

*
( )

0

C max( ,0)

1 ( 1)= Re
2

1 1 ( ) Re ,
2

r T t
T

r T t i

t

i
r T t

E S K

K f iS d
i

K f iKe d
i

e
e φ

φ

φ φ
π φ

φ φ
π φ

− −

− − −∞

−∞− −

= −

⎡ ⎤+
+ ⎢ ⎥

⎣ ⎦
⎛ ⎞⎡ ⎤

− +⎜ ⎟⎢ ⎥
⎣ ⎦⎝ ⎠

∫

∫

   (3.7) 

 

where ( )f iφ can be obtained from the conditional moment generating function ( )f φ  by 

substituting iφ  for φ , 

 

                  ( )
T( ) [ ]

        exp ( ; , ) ( ; , ) ( 1),
t

t

f E S

S A t T B t T h t

φ

φ

φ

φ φ

=

= + +
            (3.8) 

 

where, 

              

( ; , ) ( 1; , ) ( 1; , )
1                  ln(1 2 ( 1; , ))
2

A t T A t T r B t T

B t T

φ φ φ φ ω

α φ

= + + + +

− − +       (3.9a) 
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2

2

1( ; , ) ( ) ( 1; , )
2

1 ( )2                  ,
1 2 ( ; , )

B t T B t T

B t T

φ φ λ γ γ β φ

φ γ

α φ

= + − + +

−
+

−

      (3.9b) 

 

 with the terminal conditions:  

 

                        ( ; , ) 0.A T T φ =          (3.10a) 
 
      ( ; , ) 0.B T T φ =          (3.10b) 
 
 

3.3 Parameter Estimation 

 

In GARCH models, the most commonly used method in estimating the vector of 

unknown parameters, θ
�

, is the maximum likelihood estimates (MLE). 

Assuming t
t

t

z =
h

ε are independently and identically distributed standardized 

innovations with common density function f which has mean zero and variance one. The 

log-likelihood function can be expressed as  

 

                      ( ) ( )t t
1

1( ) log f(z ) log h .
2

T

t
l θ

=

⎡ ⎤= −⎢ ⎥⎣ ⎦
∑�              (3.11) 

 

If the density function f is (1,0,0, )NIG η (2.7), then log-likelihood function is        

            

( ) ( )
11

2
t t

1 t1 1
2 21

z z 1( ) log exp log h2
T

t

l q K qηθ η η
π η η

−

=

⎡ ⎤⎛ ⎞⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟= −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭⎢ ⎥⎝ ⎠⎣ ⎦
∑�     (3.12) 

( )
2 2
t t

1 t
1

z z1 1 1     = log ( )-log( )+ log (1+ )+ log (1+ log h2 2 2
T

t

Kη π η η
η η=

⎡ ⎤⎛ ⎞⎛ ⎞
− −⎢ ⎥⎜ ⎟⎜ ⎟

⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
∑  
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where ( ), , , , , θ ω α β λ θ η=
�

for NIG-NGARCH (1,1). If the density function f is 

N(0,1), then log-likelihood function is 

 

                  ( )
2
tz

2
t

1

1 1( ) log e log h    
22

T

t

l θ
π

−

=

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑�           (3.13) 

                      ( ) ( )2
t t

1

1 1 1= log 2 z log h
2 2 2

T

t
π

=

⎡ ⎤− − −⎢ ⎥⎣ ⎦
∑  

 

where ( ), , , , θ ω α β λ θ=
�

 for NGARCH (1,1), 

( ), , , , θ ω α β λ γ=
�

 for HN-GARCH(1,1). 

 

The parameters θ
�

 can be estimated by using numerical methods such as non-linear 

minimization as well. 
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4. Empirical study  

 
4.1 Empirical study on stock index 

 

We can check the adequacy of a fitted GARCH-type model by examining the series 

of standardized innovations{ }tz . First, using the Ljung-Box (LB)-Q statistic to check for 

serial correlation (autocorrelation) on the series of{ }tz and conditional heteroscedasticity 

(or called (G)ARCH effects) on the series of{ }2
tz . The null hypothesis of the former is 

“no autocorrelation” and the latter is “no ARCH effects”. Second, using QQ-plot to check 

the distribution assumption. In addition, we can also use Jarque-Bera (JB) test to check 

the normal assumption and Kolmogorov-Smirnov (KS) test to check the NIG assumption 

on the series of{ }tz . 

 

We use daily returns on S&P 500 index from July 1, 1988 to June 28, 1991 to 

estimate the models’ parameters under measure P. Table 1 shows the maximum 

likelihood estimates and some characteristics of the GARCH-type models. The 

annualized volatility (252days) of NGARCH (1,1) and NIG-NGARCH (1,1) is 

( )2 252 1 (1 )ω α θ β− + −  and the Heston-Nandi GARCH(1,1) is ( )2252( ) 1 .ω α αγ β+ − −  

All the GARCH models imply a 14% annualized volatility and Ljung-Box-Q statistic for 

testing autocorrelation and GARCH effect shows those models are adequate for the data 

at the 5% significance level. 

 

Figure 1 shows the QQ-plots of the six GARCH-type models on standardized 

innovations. We can find that the NIG-GARCH and NIG-NGARCH option pricing 

model can almost capture the empirical data. However, the GARCH models of Duan 

(1995) and Heston and Nandi (2000) can not capture the empirical data on the fatter tails 

which often observed in financial time series. Further evidence can be seen from the 

testing results in Table 1. The value of the Kolmogorov-Smirnov test statistic on the 
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NIG-GARCH and NIG-NGARCH are 0.025 and 0.028 with p-values 0.741 and 0.602 

which do not reject the null hypothesis of NIG at the 5% significance level. The p-value 

of the Jarque-Bera test on GARCH model with normal assumption almost equal to zero 

that also rejects the null hypothesis of normality at the 5% significance level. Therefore, 

our model can well fit the daily returns on S&P 500 index. 

 

4.2 Empirical study on Options  
 

The previous section has already showed the empirical results on index data. We 

proceed to investigate the performance of these models on option pricing. Special 

attention is paid to the out-of-sample performance. For this empirical study, S&P 500 

(SPX) index call options which are European-type and traded on the Chicago Board 

Options Exchange (CBOE) are considered. Because of the active market, S&P 500 index 

options have been included as illustrations in many researches, including Bakshi, Cao and 

Chen (1997), Dumas, Fleming and Whaley (1998), Heston and Nandi (2000) and so on. 

The data set here is identical to that of Bakshi, Cao and Chen (1997). We use call option 

contracts on 235 trading days from January 8, 1991 to December 31, 1991 and apply the 

same filters of Bakshi, Cao and Chen (1997). Table 2 gives the basic description on the 

options data including the average call option prices and the number of call option 

contracts across days to maturity (DTM) and moneyness. We restrict the maturities of 

option contract between 7 and 80 days and define the moneyness as S K  where S is the 

S&P 500 index level and K is the strike price. Our call option data set contains 4324 

option contracts and the average option price is $13.51. In next section we will discuss 

the interesting question on how to examine the models’ performance in out-of-sample 

analysis. 

 

We analyze the out-of-sample performance by the following steps. First, the 

parameters of all the models are estimated from the previous three years’ S&P 500 index 

and forecast the next one month call option prices. Second, we roll the parameters every 

month and repeat step 1 twelve times then we can get the one year forecasted model 

option prices. We note that the parameters in one month (about 20 trading days) do not 
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change significantly if the stock market structure does not vary largely. Finally, the 

forecasted option prices are plugged into the Black-Scholes formula to get the 

model-implied volatility. Then three loss functions in terms of the root mean square error 

(RMSE), the mean absolute percentage error (MAPE), and the mean absolute error of 

log-implied volatility (log-IVMAE) are calculated to evaluate the performance of 

different option pricing models. The loss functions mentioned above are defined as: 

 

                ( )2
model

1 ,obsRMSE C C
n

= −∑          (4.1) 

                ( )model
1 ,obs obsMAPE C C C
n

= −∑      (4.2) 

                model
1log - log( ) log( ) ,obsIVMAE
n

σ σ= −∑     (4.3) 

 

where Cmodel and Cobs are the model forecasted and data observed call prices, respectively, 

and n is the total number of call option contracts, ( )1
model model , , , ,BS C S K T rσ −= ,  

( )1 , , , ,obs obsBS C S K T rσ −= , and 1BS − is the inverse of the Black-Scholes formula with 

respect to σ, S the stock index, K the strike price, T the time-to-maturity, and r the 

riskfree interest rate. The loss functions in (4.1) and (4.2) are the most commonly used in 

out-of-sample performance. However, there are some drawbacks in using the call price to 

compare the model performance. Using the RMSE loss function indeed puts much more 

weight on expensive options, such as in-the-money or long time-to-maturity call option 

contracts. On the other hand, using MAPE loss function puts much more weight on cheap 

options, such as out-of-money or short time-to-maturity call option contracts. Since the 

market convention is to quote in terms of volatility, some literature proposes alternative 

loss function to compare the model with the implied Black-Scholes volatility, such as 

PAN (2002), Christoffersen and Jacobs (2004). 

 

Table 3 shows the out-of-sample RMSE loss function across days to maturity and 

moneyness for NIG-NGARCH, NGARCH and HN-GARCH models during the 
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out-of-sample period from January 8, 1991 to December 31, 1991. The overall RMSE are 

0.9964, 1.0010, and 1.0500 for the NIG-NGARCH, NGARCH and HN-GARCH, 

respectively. Through the overall RMSE we can know which model is best, but it does 

not reveal too much information. So, we report the RMSE by moneyness category which 

has some interesting results. First, the NIG-NGARCH model appears to have the smallest 

valuation error for at-the-money call options, NGARCH model has the smallest valuation 

error for (deep) out-of-the-money call options and the HN-GARCH model has the 

smallest valuation error for (deep) in-the-money call options. Second, the performance of 

HN-GARCH is worst for (deep) out-of-the-money call options and the NGARCH is 

worst for (deep) in-the-money call options. Generally specking, the NIG-NGARCH 

model’s performance is superior to other GARCH models for at-the-money calls and does 

not perform too badly for in-the-money or out-of-the-money calls. It is also true for the 

mean absolute percentage error (MAPE) and the mean absolute error of log-implied 

volatility (log- IVMAE) reported in Table 4 and Table 5, respectively. 

 

Figure 2 displays the data observed and model forecasted implied volatility where 

the horizontal axis is the number of call option contracts and the vertical axis is the 

annualized volatility (252 days). It shows that the model forecasted implied volatility of 

the NIG-NGARCH and the NGARCH can almost capture the data observed implied 

volatility. However, the forecasted implied volatility of the HN-GARCH model does not 

vary much over the number of call option contracts. As mentioned before, the GARCH 

model can capture the volatility clustering of return for the underlying asset. We also see 

that the forecasted implied volatility of nonanalytical solution GARCH models 

(NIG-NGARCH and NGARCH models) can fit the observed implied volatility of call 

option data. The HN-GARCH can capture path dependence in volatility of return, but it 

can not fit the observed implied volatility of call option data that indicates that there may 

be some question in this closed-form model. 
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5. Conclusion   
 

This thesis proposes a model combining the GARCH option valuation and 

innovations for the asset returns following the NIG distribution. The model is called 

NIG-GARCH and will include the GARCH option pricing model of Duan (1995) as a 

limiting case. In addition, we also consider the “leverage effects” in the model, called 

NIG-NGARCH, which can explain the asymmetric effect of stock volatility. There are 

two results in our empirical studies. First, empirical results on index shows that our 

models can adequately fit the daily returns on S&P 500 index because the distribution 

assumption of normal inverse Gaussian has fatter tails than the Gaussian and can be used 

to explain excess kurtosis. Second, empirical results on call option shows that in 

out-of-sample performance our model is superior to the GARCH models of Duan (1995) 

and Heston and Nandi (2000) for at-the-money calls and does not perform too badly for 

in-the-money or out-of-the-money calls. Besides, we also find that although nonanalytical 

solution GARCH models take a lot of time in computing, they can fit the observed 

implied volatility of call option data much better than the closed-form models.  
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Appendix A. Tables 

Table 1 Maximum likelihood estimates and Model characteristics 
 

        

GARCH NGARCH NIG- 
GARCG 

NIG- 
NGARCH 

HN(γ= 0) HN(γ≠ 0)

ω 1.10E-06 3.80E-06 6.30E-07 3.50E-06 5.30E-13 6.10E-13 
α 0.0194 0.0233 0.0218 0.0307 1.10E-06 7.00E-07 
β 0.9665 0.8653 0.9702 0.8783 0.9854 0.9648 
λ 0.0301 0.0179 0.0439 0.0306 2.6393 2.8516 
θ   - 1.6299   - 1.2167   -   - 
η   -   - 2.0469 2.303   -   - 
γ   -   -   -   - 0 191.73 

persistence 0.9859 0.9505 0.992 0.9545 0.9854 0.9906 
Annualized 
Volatility 0.1388 0.1395 0.1412 0.1388 0.1395 0.1374 

JB test 59.63 
(1.1E-13) 

36.93 
(9.6E-09)   -   - 56.65 

(5.0E-13) 
56.63   

(5.0E-13) 

KS test 0.042 
(0.142) 

0.042 
(0.142)

0.025 
(0.741)

0.028 
(0.602) 

0.046 
(0.081) 

0.045 
(0.089) 

LB-Qz(1) 2.196 
(0.138) 

1.190 
(0.275)

2.218 
(0.136)

1.280 
(0.258) 

2.267 
(0.132) 

2.267 
(0.132) 

LB-Qz2(1) 0.313 
(0.576) 

1.184 
(0.277)

0.403 
(0.525)

1.280 
(0.258) 

0.102 
(0.750) 

0.101 
(0.751) 

LB-Qz(10) 7.696  
(0.659) 

6.193 
(0.799)

7.322 
(0.695)

5.744 
(0.836) 

8.451 
(0.585) 

8.449 
(0.585) 

LB-Qz2(10) 3.825 
(0.955) 

6.160 
(0.802)

4.146 
(0.940)

6.374 
(0.783) 

3.512 
(0.967) 

3.530 
(0.966) 

Maximum likelihood estimates of all the GARCH (1,1) models using the daily 
returns on S&P 500 index from July 1,1988 to June 28,1991. The sample size of 
observations is equal to 756. JB test = Jarque-Bera test, KS test = 
Kolmogorov-Smirnov (KS) test, LB-Qz (p) = Ljung-Box Q test on autocorrelation 
for p lagged standardized innovations, LB-Qz2 (q) = Ljung-Box Q test on GARCH 
effects for q lagged squared standardized innovations. The parenthesis gives the 
p-value of all the tests. 
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Table 2 Basic description of Call Options data 

Panel A. Average Call Option Prices 

moneyness DTM<20 20<DTM<50 50<DTM<80 All 

S / K<0.95 0.91  1.34  2.98  2.07  

0.95<S / K<0.99 1.60  3.42  6.21  3.87  

0.99<S / K<1.01 4.82  8.41  12.09  8.42  

1.01<S / K<1.05 12.96  16.16  19.53  16.17  

1.05<S / K 25.47  27.65  30.70  27.87  

All 11.79  13.25  15.49  13.51  

     

Panel B. Number of Call Options 

moneyness DTM<20 20<DTM<50 50<DTM<80 All 

<0.95 2  84  70  156  

[0.95,0.99) 210  712  339  1261  

[0.99,1.01) 164  354  163  681  

[1.01,1.05) 299  658  286  1243  

>1.05 216  542  225  983  

All 891  2350  1083  4324  

The table shows the basic description of call option contracts written on the 
S&P 500 index for a total 235 trading days from January 8, 1991 to December 
31, 1991. Panel A describes the average call option prices and Panel B describes 
the number of call options across days to maturity (DTM) and moneyness (S/K) 
where S/K is defined as the S&P500 index value over the option strike price. 
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Table 3 Out-of-Sample Performance with loss function RMSE 

Panel A. NIG-NGARCH Model RMSE 

moneyness DTM<20 20<DTM<50 50<DTM<80 All 

S / K<0.95 0.6704  0.7767  1.1945  0.9853  

0.95<S / K<0.99 0.5439  1.1522  1.5337  1.1963  

0.99<S / K<1.01 0.6531  1.1815  1.3820  1.1338  

1.01<S / K<1.05 0.5240  0.8985  1.1383  0.8897  

1.05<S / K 0.4200  0.7021  0.8749  0.6970  

All 0.5331  0.9809  1.2717  0.9964  

     

  Panel B. NGARCH Model RMSE 

moneyness DTM<20 20<DTM<50 50<DTM<80 All 

S / K<0.95 0.6802  0.7394  1.2058  0.9761  

0.95<S / K<0.99 0.5216  1.1345  1.5252  1.1821  

0.99<S / K<1.01 0.6651  1.2011  1.3819  1.1461  

1.01<S / K<1.05 0.5319  0.9508  1.1289  0.9164  

1.05<S / K 0.4147  0.7126  0.8727  0.7015  

All 0.5322  0.9928  1.2666  1.0010  

     

  Panel C. Heston-Nandi Model RMSE 

moneyness DTM<20 20<DTM<50 50<DTM<80 All 

S / K<0.95 0.4360  1.0603  1.6100  1.3308  

0.95<S / K<0.99 0.5957  1.3006  1.7922  1.3703  

0.99<S / K<1.01 0.6687  1.1686  1.4306  1.1434  

1.01<S / K<1.05 0.5132  0.8197  1.0462  0.8190  

1.05<S / K 0.4327  0.6599  0.7379  0.6371  

All 0.5479  1.0198  1.3723  1.0500  

The table shows the root mean square error (RMSE) of call option across 
days to maturity (DTM) and moneyness (S/K).  Panel A, B, C stand for the
models of NIG-NGARCH, NGARCH and HN-GARCH, respectively. 
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Table 4 Out-of-Sample Performance with loss function MAPE 

Panel A. NIG-NGARCH Model MAPE 

moneyness DTM<20 20<DTM<50 50<DTM<80 All 

S / K<0.95 0.0067  0.6192  0.4377  0.5391  

0.95<S / K<0.99 0.3218  0.3971  0.2733  0.3513  

0.99<S / K<1.01 0.1296  0.1347  0.1054  0.1265  

1.01<S / K<1.05 0.0368  0.0514  0.0533  0.0483  

1.05<S / K 0.0136  0.0209  0.0238  0.0199  

All 0.1170  0.1819  0.1487  0.1602  

     

    Panel B. NGARCH Model MAPE 

moneyness DTM<20 20<DTM<50 50<DTM<80 All 

S / K<0.95 0.0068  0.5887  0.4426  0.5250  

0.95<S / K<0.99 0.3035  0.3851  0.2734  0.3414  

0.99<S / K<1.01 0.1332  0.1368  0.1067  0.1287  

1.01<S / K<1.05 0.0369  0.0543  0.0530  0.0498  

1.05<S / K 0.0134  0.0211  0.0241  0.0201  

All 0.1133  0.1784  0.1493  0.1577  

     

  Panel C. Heston-Nandi Model MAPE 

moneyness DTM<20 20<DTM<50 50<DTM<80 All 

S / K<0.95 0.0042  0.8587  0.5909  0.7333  

0.95<S / K<0.99 0.3712  0.4763  0.3269  0.4187  

0.99<S / K<1.01 0.1361  0.1355  0.1099  0.1295  

1.01<S / K<1.05 0.0351  0.0467  0.0481  0.0442  

1.05<S / K 0.0138  0.0195  0.0189  0.0181  

All 0.1287  0.2130  0.1737  0.1858  

The table shows the mean absolute percentage error (MAPE) of call option
contracts across days to maturity (DTM) and moneyness (S/K). Panel A, B,
C stand for the models of NIG-NGARCH, NGARCH and HN-GARCH, 
respectively. 
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Table 5 Out-of-Sample Performance with loss function log-IVMAE 

Panel A. NIG-NGARCH Model log-IVMAE 

moneyness DTM<20 20<DTM<50 50<DTM<80 All 

S / K<0.95 0.2362  0.1523  0.1522  0.1542  

0.95<S / K<0.99 0.1256  0.1659  0.1638  0.1586  

0.99<S / K<1.01 0.1280  0.1468  0.1332  0.1387  

1.01<S / K<1.05 0.1655  0.1354  0.1257  0.1400  

1.05<S / K 0.2321  0.1707  0.1445  0.1722  

All 0.1579  0.1547  0.1444  0.1524  

     

  Panel B. NGARCH Model log-IVMAE 

moneyness DTM<20 20<DTM<50 50<DTM<80 All 

S / K<0.95 0.2409  0.1460  0.1539  0.1519  

0.95<S / K<0.99 0.1200  0.1623  0.1636  0.1556  

0.99<S / K<1.01 0.1315  0.1490  0.1354  0.1412  

1.01<S / K<1.05 0.1612  0.1425  0.1263  0.1428  

1.05<S / K 0.2178  0.1697  0.1455  0.1698  

All 0.1533  0.1556  0.1451  0.1522  

     

  Panel C. Heston-Nandi Model log-IVMAE 

moneyness DTM<20 20<DTM<50 50<DTM<80 All 

S / K<0.95 0.1575  0.2026  0.2015  0.2015  

0.95<S / K<0.99 0.1379  0.1921  0.1897  0.1824  

0.99<S / K<1.01 0.1322  0.1471  0.1365  0.1407  

1.01<S / K<1.05 0.1597  0.1248  0.1130  0.1301  

1.05<S / K 0.3041  0.1725  0.1163  0.1757  

All 0.1708  0.1620  0.1470  0.1594  

The table shows the mean absolute error of log-implied volatility (log-
IVMAE) of call option contracts across days to maturity (DTM) and
moneyness (S/K).  Panel A, B, C stand for the models of NIG-NGARCH, 
NGARCH and HN-GARCH, respectively. 
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Table 6 Four characteristics for IG and NIG distributions 

 
               ( , )IG δ γ      2( , ) IG σ η    ( )NIG , , ,α β μ δ  ( )2NIG ,0, ,σ μ η  

Mean             δ
γ

          2σ          βμ δ
γ

+            μ  

variance          3

δ
γ

          
4σ

η
          

2

3

αδ
γ

            2σ    

skewness        3
δγ

         3
η

         3 β
α δγ

           0 

kurtosis       53 1
δγ

⎛ ⎞
+⎜ ⎟

⎝ ⎠
     53 1

η
⎛ ⎞
+⎜ ⎟

⎝ ⎠
     

2 2

2

43 1 α β
α δγ

⎛ ⎞+
+⎜ ⎟

⎝ ⎠
    13 1

η
⎛ ⎞
+⎜ ⎟

⎝ ⎠
   

     The IG and NIG denote inverse Gaussian and normal inverse Gaussian distribution, 

respectively. The densities function of ( , ),IG δ γ  2( , ),IG σ η  ( )NIG , , ,α β μ δ  and 

( )2NIG ,0, ,σ μ η are given by (2.2), (2.6), (2.3) and (2.7), respectively.  
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Appendix B. Figures 

 

Figure 1 QQ-plot of all the GARCH (1,1) models 

The figure shows QQ-plot of the standardized innovations for daily returns on S&P 500 

index from July 1, 1988 to June 28, 1991. 
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Figure 2 Implied volatility of data observed and model forecasted 

The figure shows the implied volatility of data observed and model forecasted where obs 

is data observed implied volatility, NIGNG, NG and HN are model implied volatilities of 

NIG-NGARCH, NGARCH and HN-GARCH, respectively. 

 



 - 27 -

 
Figure 3a NIG densities with different σ 

The figure shows NIG densities with β= 0,μ= 0,η= 3 andσ= 1, 2, 3 (from inner to outer). 

 

 

 
Figure 3b NIG densities with different β 

The figure shows NIG densities withσ= 1,μ= 0,η= 3 andβ= -1.6, -1, 0, 1, 1.6 (from left  

to right). 
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Figure 3c NIG densities with different μ 

The figure shows NIG densities withσ= 1,β= 0,η= 3 andμ= -1, 0, 1 (from left to right). 

           

 

 
Figure 3d NIG densities with different η 

The figure shows NIG densities withσ= 1,β= 0,μ= 3 andη= 0.1, 0.5, 1, 2, 5 (from inner  

to outer). 
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Appendix C. Show that (3.1) is risk-neutral under measure Q  

 

Assuming 1
1

t
t

t

S
S −

−
Ω can be written as *

1

ln t
t t

t

S
S

μ ε
−

= + under measure Q where tμ is 

the conditional mean and *
tε  is NIG ( ,0,0, )th η  process. As mentioned before, the M.G.F. 

of *
tε  is ( ) ( )2 2exp tM u h uη η η= − − , then we can derive that:  
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In order to make 1
1

t
t

t

S
S −

−
Ω  risk-neutral, using the relationship 1

1

rt
t

t

SE e
S −

−

⎛ ⎞
Ω =⎜ ⎟

⎝ ⎠
 we can 

easily see that ( )2
t tr hμ η η η= − − − . Therefore, we make sure that (3.1) is risk-neutral 

under measure Q. 

                          


