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Student: Chao-Hui Huang Advisor: Jack C. Lee

Graduate Institute of Finance

National Chiao Tung University

Abstract

This thesis develops a GARCH eption.pricing model with its innovation following a
Normal Inverse Gaussian (NIG) distribution as proposed by Barndorff-Nielsen (1997).
The model is called NIG-GARCH and will include the GARCH option pricing model of
Duan (1995) as a limiting case. In addition, we also consider the “leverage effects” in the
model, called NIG-NGARCH, which can explain the asymmetric effect of asset return
volatility, observed often in financial time series. Empirical studies on S&P500 index
shows that model checking of our models perform better than the GARCH models of
Duan (1995) and Heston and Nandi (2000). Studies on pricing S&P500 index options
also shows that our model in the out-of-sample performance is superior to other models
for at-the-money calls. The improvement is due to the distribution with fat tails and thus

can explain excess kurtosis often observed in financial time series.
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1. Introduction

Since the seminal paper on the autoregressive conditional heteroskedasticitic
(ARCH) model introduced by Engle (1982), various works on the financial time series
have been dominated by the extensions of the ARCH process. Bollerslev (1986) extended
the work of Engle to the generalized autoregressive conditional heteroskedasticitic
(GARCH) process to include past conditional variances in the current conditional
variance equation. The GARCH process can capture the empirical regularities observed
in the time series data such as “volatility clustering “. Duan (1995) developed a GARCH
option pricing model that relaxes the assumption of constant volatility in Black and

Scholes (1973) formula.

However, the GARCH process fails .to, explain the characteristics of “leverage
effects” often observed in financial time series. The concept of leverage effects, first
discovered by Black (1976), refers to the-tendency for changes in stock returns to be
negatively correlated with changes in returns volatility..In other words, the impact of the
“good news” is different from the“impact of the “bad' news” volatility, i.e., volatility tends
to rise in response to “bad news” and to-fall in-résponse to “good news”. Duan, Gauthier
and Simonato (1999) used nonlinear asymmetric GARCH (NGARCH) of Engle and Ng
(1993) to obtain an analytical approximation for option pricing model which is similar to
the Black and Scholes formula with adjustments used for skewness and kurtosis. Heston
and Nandi (2000) developed a closed-form solution for European option values in
GARCH model which simultaneously captures path dependence in volatility (volatility

clustering) and the negative correlation of volatility with asset returns (leverage effects).

However, financial time series exhibit excess kurtosis in empirical studies.
Therefore, the assumption of Gaussian innovation seems inappropriate for financial time
series. In addition to the Gaussian distribution, several alternative innovation distributions
had been proposed in the early GARCH literature, including the t-distribution proposed
by Bollerslev (1987), the Generalized Error Distribution (GED) proposed by Nelson
(1991), and the Normal Inverse Gaussian (NIG) distribution proposed by Andersson



(2001) and Bollerslev (2002). These distributions have fatter tails than the Gaussian
distribution and can be used to explain excess kurtosis. But, there is no literature
proposed properly about GARCH option valuation with innovations following the NIG
distribution. In this thesis, we propose a model combining the GARCH option valuation
and innovations for the asset returns following the NIG distribution. The model is called
NIG-GARCH and will include the GARCH option pricing model of Duan (1995) as a
limiting case. In addition, the “leverage effects” is also considered in our model called

NIG-NGARCH.

There are two parts in our empirical studies. One is the empirical studies on daily
returns of S&P 500 index that we can use standardized innovations (or called
standardized residuals) of stock returns to check the model assumption. Another is the
empirical studies on S&P 500 (SPX) index call options that we use three loss functions to
compare the out-of-sample performance. We choose the GARCH option pricing models
of Duan (1995) and Heston and Nandi (2000) as benchmark models. The former result is
that our models can well fit the daily returns on S&P 500 index because only our models
follow the distribution assumption. The latter result is that our model is superior to other
models for at-the-money calls and does not perform too badly for in-the-money or
out-of-the-money calls. Besides, we alsé ‘find 'that non analytical solution GARCH-type
models can fit the observed implied volatility of call option data much better than the

closed-form model.

The remainder of this thesis is organized as follows. In section 2, we introduce the
distribution, process and GARCH model of the normal inverse Gaussian. We then
construct the NIG-GARCH option pricing model and describe the parameter estimation

in section 3. Section 4 shows the empirical study. Finally, section 5 concludes.



2. The Normal Inverse Gaussian distribution and GARCH Model

2.1 The Normal Inverse Gaussian distribution

The normal inverse Gaussian (NIG) distribution proposed by Barndorff-Nielsen

(1997) is useful for statistical modeling, particularly in finance. It is characterized by four
parameters(a, B, 1,0 ) , where  stands for steepness, £ for symmetry, x for location,

and o for scale. Consider a pair of random variables X and Z, the marginal distribution

of X is normal inverse Gaussian where

X‘Z:Z~N(ﬂ+ﬂz,z), (2.1a)
Z ~1G(3,y), (2.1b)
y=ya’ - > 0|p|<a,uc Rand 5>0. (2.1¢c)

Let/G(0,y) denote the inverse Gaussian distribution Wwith probability density function

(pdf)

s 5 20 5Y
f’G(z;é,;/):Tzéexp —7—[2——) > (2.2)

T 2z

then the pdf of NIG(e, B, 1,0) is

Y a, p,p1,6) = I:fx‘z (x|2) f, (z)dz
:%q(x;ﬂj K, {aé‘q(%)}xeXp{é{V+ﬂ(x;uﬂ}(2.3)

and its moment generating function (M.G.F.) is

M, (w0, B.11,6) = exp{uwa(y—./az —(B+uy )} 2.4)




where ¢(x)=+v1+x’, y=4a’-p* and K,(x) is the modified Bessel function of

second kind (also called third order by some researchers) and index 1. A special case of

NIG distribution is normal distribution N(x, o) which corresponds to =0, & — © and

%202. Set =0, %20'2 and a0 =7, then (2.1) become

X|Z=z~N(uz), (2.52)

Z ~1G(c*,n), (2.5b)

where 7>0.

LetIG(c*,n7) denote the inverse Gaussian distribution with pdf

2 3 1 2
f’G(z;az,n)a/—U; z ACXP{U——(—W +n—§]} (2.6)
e 2\ =z o

then the pdf of NIG(c?,0, 11,17) s

fNIG(X;Gzaoaﬂan):I:fX‘z (x|Z)fZ (Z)dZ

n X—u X—u
=1 T2l K 2=
— exp(ﬂ)CI[m]%} 1 nq[m]%} 2.7)

and its moment generating function is

M (u30°,0,1,m) = eXP{uw(n—\/nz —nou’ )} (2.8)
Asn — oo, then

MX(u)=exp[u,u+U—2u2j (2.9)



which is M.G.F. of N(,u, 02). By the uniqueness of M.G.F., we can see that normal

distribution is a limiting case of NIG distribution. In order to model time-varying

conditional variance, let x and f be 0 and assume that

X,|Z,=z,~N(0,z,), (2.10)
and
Z,|9Q,,~1G(c7.n), (2.11)
then
@)= F(x]z.9.) F(210,.)dz ~ NIG(07,0,0,7)  (2.12)
where
IG(o?,n) and NIG(o”,0,0,7) are given by (2.6) and (2.7)
and

Q, is the information set of all information up to and including time t.

2.2 The Normal Inverse Gaussian GARCH Model

Consider a one-period rate of return for the underlying asset and let S; be the asset
price at time ¢ and 4, be the conditional variance of the log return over time interval [z-1,

f]. Assume price process under the physical measure P can be modeled as following:

mSS, —r—%gt+/1\/g_t+gt (2.13)

t-1

where g, = 2(77 —\n’ —nh, ) and &, is a sequence of independent random variables with

mean zero and variance 4, ; r is the constant one-period risk-free interest rate and A

could be interpreted as “excess return with respect to a risk-free investment per unit of

risk” or called the unit risk premium.



Traditionally, &, is assumed normally distributed with mean zero and variance o .
Duan (1995) assumes that ¢, conditional on the information set €, is normally
distributed with mean zero and variance 4, , which follows a GARCH(p,q) process of
Bollerslev (1986) under measure P. We assumes that & conditional on the
information set €, is normal inverse Gaussian with mean zero and variance 4, , which

follows a nonlinear asymmetric GARCH (NGARCH) model proposed by Engle and Ng

(1993) under P-measure as below:

P
£1Q,_, ~NIG(h,,0,0,7) (2.14)

ho=wta(s,~0h, ) +ph.,

where 6 is a non-negative parameter to'capture the negative correlation between the
innovations of asset return and:its-conditional velatility. The parametric restrictions

ofw>0,a20,5>0 ensures that conditional velatility is non-negative. And, to ensure
that the unconditional variance of asset return is bounded (or covariance stationarity) the

parameter restriction @ (1 +6 ) + f <1 isrequired. From (2.16) the unconditional variance

can be derived:

a)/(l—a(1+6’2)—ﬂ). (2.15)

Combining (2.13) and (2.14), we label this model as NIG-NGARCH (1, 1). If€=0, we
call the model as NIG-GARCH (1,1). By taking the limit of 7 approach infinity, the
GARCH (1,1) option pricing model of Duan (1995) is a limiting case of
NIG-GARCH(1,1) and the NGARCH (1,1) option pricing model is also a limiting case of
NIG-NGARCH (1,1). The Black-Scholes model is also a special case of NIG-GARCH
(1,1) as 7 approach infinity, ¢ =0 and f=0.



3. The GARCH-Type Option Pricing Model

There are two kinds of discrete time GARCH models to value the European option.
One is the nonanalytical solution for option values which use Monte-Carlo simulation to
compute the option prices. Another is the closed-form solution which uses the inversion
formula of Heston and Nandi (2000) in terms of the characteristic function. The former is
usually used to compute the option price in empirical work but it takes more time than the

latter. The GARCH —type option pricing models are presented in next two sections.
3.1 The NIG-GARCH Option Pricing Model

In order to develop the GARCH option pricing model, Duan(1995) introduced the
locally risk-neutral valuation relationship (LRNVR) as a counterpart of the

conventional risk-neutral argument extended in Rubinstein(1976) and Brennan (1979).
From another economically meaningful assumption that S, |QI_, essentially does not allow
the arbitrage profits, which wecan just profit with risk free rate or can be written

¢ . Under this risk-neutralized ‘probability measure O, the price

as E(S]Q,)=S$
process in (2.13) and (2.14) becomes

t

1 .
In =I"—5gt+5t (3.1)

t-1

and

*

&

o
Q,, ~NIG(h,,0,0,7) (3.2)

h = W+0((8:11 _‘9%_2 8 )2 + ph,_,

where ¢, conditional on €, , is a normal inverse Gaussian with mean zero and
variance 4, . (3.1) is risk-neutral and can easily be showed in appendix C. The risk-neutral

NIG-NGARCH (1,1) option pricing model contains six parametersn, ® , o, , 0, A .

From (3.1) we can easily derive the following terminal asset price:



1 < L

S.=S, exp|:(T—t)r—§Zgj+Z & :| (3.3)
j=tHl j=t+1

The principle of no arbitrage (or called the law of one price) indicates that a European

call option with strike price K and expiring at maturity T must have the following value at

time t:

CI\HG-NG — o (T E, [max (S; -K,0) |Qt ] (3.4)

where E,[] denotes the expectation under the risk-neutral distribution. By letting n

approach infinity, from (3.1) to (3.4) also converge to GARCH option pricing model of
Duan under measure Q. Since the option price can’t be derived analytically, Monte Carlo

simulations are used to compute the approximate option prices.
3.2 The Heston-Nandi GARCH Option Pricing Model

Another famous discrete-time pricing model is the Heston-Nandi GARCH option
valuation model (2000). They developed a-clesed-form solution for European option
values in GARCH model which simultaneously captures path dependence in volatility
(volatility clustering) and the negative correlation of volatility with asset returns
(leverage effects). Considering the Heston-Nandi GARCH (1,1) process that asset price

process under measure P is defined as

St_

In r+ b+ hz, (3.5)

-1

h=o+a(z, ,—yh ) +Bh

where w>0,0>0,>0; z

. 1s standard normal random variable; r is the constant
one-period continuously compounding interest rate. The parameter y controls the
skewness or the asymmetry of the distribution of the log returns. Under the

risk-neutralized probability measure Q, the asset price process in (3.5) become



S 1 .
In—=r——h+./hz
5 > \/jt (3.6)

11—

h = w+a(zt*-l _7*\/}’:71 )? +ph_,

where
ri=z [ 405 ) b

. 1
=y+A+—.
- 2

If the characteristic function of the log spot price is f(ip), then a European call option
with strike price K and expiring at maturity T is worth the following value at time t:

HN _  —r(T-1)
C=¢e

E, [max(S; = K,0)]

—r(T=1)

:lS +e_J-ooRe[K—i¢f;§i¢+l)}d¢ 3.7)
0 1

2! Vi

—Ke "D l_,_l wRe w d g
i ’

2 "m0

where f'(i@) can be obtained from the conditional moment generating function f(¢) by

substituting i¢ for ¢,

f(@=E[S’]

=S’ exp(A(t;T, )+ B(t;T,$)) h(t +1), (38)

where,
At;T, )= At +1;T,9)+¢r+ B(t+1;T,9)w

_ % In(1—2aB( +1:T, $)) (3-92)



B(:T.¢) = p(A + y)—%ﬁ BB+ LT.$)

3.9b
Vig-ry (3:90)
+ ,
1-2aB(;T,9)
with the terminal conditions:
A(T:T,¢) =0. (3.10a)
B(T;T,¢$)=0. (3.10b)

3.3 Parameter Estimation

In GARCH models, the most commonly ‘used method in estimating the vector of

unknown parameters, & , is' the; maximum- likelihood estimates (MLE).

Assuming th%h— are indeépendently “and identically distributed standardized
t

innovations with common density function f'which'has mean zero and variance one. The

log-likelihood function can be expressed as

@)= ¥ log(1z)) 3 oe(1,) | an

t=1

If the density function fis NIG(1,0,0,77) (2.7), then log-likelihood function is

r A -
— n Z, Z, 1
1(9) =] log| T— 2| g Lol 2 1 oe(n
) ; 0g . exp(ﬂ)q 77% 114 77% A Og( t) (3.12)
=2 %log(n)-log(ﬂ)m—%1og(1+%t)+1og(1<1 (77(1+%D_ %log(ht)}

t

-10 -



where Q = (a), a, f, 1,0, 77) for NIG-NGARCH (1,1). If the density function fis

N(0,1), then log-likelihood function is

1 1
1(9)=> |log \/ﬂe ? —Elog(ht) (3.13)

where 8 =(w, a, B, A, 6) for NGARCH (1,1),

0=(w, a,B, A, 7) for HN-GARCH(1,1).

The parameters € can be estimated:by using numerical methods such as non-linear

minimization as well.

-11 -



4. Empirical study

4.1 Empirical study on stock index

We can check the adequacy of a fitted GARCH-type model by examining the series

of standardized innovations {Zt} . First, using the Ljung-Box (LB)-Q statistic to check for
serial correlation (autocorrelation) on the series of {Zt} and conditional heteroscedasticity

(or called (G)ARCH effects) on the series of {th} . The null hypothesis of the former is

“no autocorrelation” and the latter is “no ARCH effects”. Second, using QQ-plot to check
the distribution assumption. In addition, we can also use Jarque-Bera (JB) test to check

the normal assumption and Kolmogorov-Smirnov (KS) test to check the N/G assumption

on the series of{Zt} .

We use daily returns on S&P 500 index from July 1, 1988 to June 28, 1991 to
estimate the models’ parametets. under -“measure P. Table 1 shows the maximum
likelihood estimates and some “characteristics «of the GARCH-type models. The
annualized volatility (252days) of NGARCH (1,1) and NIG-NGARCH (1,1) is

J 252a)/(1—a(1+92)—ﬂ) and the Heston-Nandi GARCH(1,1) is J 252(a)+a)/(1—a72— B).

All the GARCH models imply a 14% annualized volatility and Ljung-Box-Q statistic for
testing autocorrelation and GARCH effect shows those models are adequate for the data

at the 5% significance level.

Figure 1 shows the QQ-plots of the six GARCH-type models on standardized
innovations. We can find that the NIG-GARCH and NIG-NGARCH option pricing
model can almost capture the empirical data. However, the GARCH models of Duan
(1995) and Heston and Nandi (2000) can not capture the empirical data on the fatter tails
which often observed in financial time series. Further evidence can be seen from the

testing results in Table 1. The value of the Kolmogorov-Smirnov test statistic on the

-12 -



NIG-GARCH and NIG-NGARCH are 0.025 and 0.028 with p-values 0.741 and 0.602
which do not reject the null hypothesis of NIG at the 5% significance level. The p-value
of the Jarque-Bera test on GARCH model with normal assumption almost equal to zero
that also rejects the null hypothesis of normality at the 5% significance level. Therefore,

our model can well fit the daily returns on S&P 500 index.

4.2 Empirical study on Options

The previous section has already showed the empirical results on index data. We
proceed to investigate the performance of these models on option pricing. Special
attention is paid to the out-of-sample performance. For this empirical study, S&P 500
(SPX) index call options which are European-type and traded on the Chicago Board
Options Exchange (CBOE) are considered. Because of the active market, S&P 500 index
options have been included as illustrations'in many researches, including Bakshi, Cao and
Chen (1997), Dumas, Fleming and:Whaley(1998), Heston and Nandi (2000) and so on.
The data set here is identical to that.of Bakshi,«Cao.and Chen (1997). We use call option
contracts on 235 trading days from January 8, 1991 to December 31, 1991 and apply the
same filters of Bakshi, Cao and Chen (1997). Table.2 gives the basic description on the
options data including the average call ‘option prices and the number of call option
contracts across days to maturity (DTM) and moneyness. We restrict the maturities of

option contract between 7 and 80 days and define the moneyness as §/K where S is the

S&P 500 index level and K is the strike price. Our call option data set contains 4324
option contracts and the average option price is $13.51. In next section we will discuss
the interesting question on how to examine the models’ performance in out-of-sample

analysis.

We analyze the out-of-sample performance by the following steps. First, the
parameters of all the models are estimated from the previous three years’ S&P 500 index
and forecast the next one month call option prices. Second, we roll the parameters every
month and repeat step 1 twelve times then we can get the one year forecasted model

option prices. We note that the parameters in one month (about 20 trading days) do not

-13-



change significantly if the stock market structure does not vary largely. Finally, the
forecasted option prices are plugged into the Black-Scholes formula to get the
model-implied volatility. Then three loss functions in terms of the root mean square error
(RMSE), the mean absolute percentage error (MAPE), and the mean absolute error of
log-implied volatility (log-IVMAE) are calculated to evaluate the performance of

different option pricing models. The loss functions mentioned above are defined as:

1
RMSE :\/ZZ(Cmodel _Cobs )2’ (41)

, (4.2)

obs

1
MAPE = P Z ‘(Cmodel = Cos )/ ¢

1
log -IVMAE = —Z |10g(0'm0del) ~log(o,,.)|, (4.3)
n

where C,04.and C,ys are the model forecasted and.data observed call prices, respectively,

=BS™(C

model

and n is the total number of call option contracts, o,

model

S) K’ T7r) b
o,, =BS"(C,,.S,K,T,r), and BS \is" the ‘inverse of the Black-Scholes formula with

respect to o, S the stock index, K the strike*price, T the time-to-maturity, and r the

riskfree interest rate. The loss functions in (4.1) and (4.2) are the most commonly used in
out-of-sample performance. However, there are some drawbacks in using the call price to
compare the model performance. Using the RMSE loss function indeed puts much more
weight on expensive options, such as in-the-money or long time-to-maturity call option
contracts. On the other hand, using MAPE loss function puts much more weight on cheap
options, such as out-of-money or short time-to-maturity call option contracts. Since the
market convention is to quote in terms of volatility, some literature proposes alternative
loss function to compare the model with the implied Black-Scholes volatility, such as

PAN (2002), Christoffersen and Jacobs (2004).

Table 3 shows the out-of-sample RMSE loss function across days to maturity and
moneyness for NIG-NGARCH, NGARCH and HN-GARCH models during the

-14-



out-of-sample period from January 8, 1991 to December 31, 1991. The overall RMSE are
0.9964, 1.0010, and 1.0500 for the NIG-NGARCH, NGARCH and HN-GARCH,
respectively. Through the overall RMSE we can know which model is best, but it does

not reveal too much information. So, we report the RMSE by moneyness category which
has some interesting results. First, the NIG-NGARCH model appears to have the smallest
valuation error for at-the-money call options, NGARCH model has the smallest valuation
error for (deep) out-of-the-money call options and the HN-GARCH model has the
smallest valuation error for (deep) in-the-money call options. Second, the performance of
HN-GARCH is worst for (deep) out-of-the-money call options and the NGARCH is
worst for (deep) in-the-money call options. Generally specking, the NIG-NGARCH
model’s performance is superior to other GARCH models for at-the-money calls and does
not perform too badly for in-the-money or out-of-the-money calls. It is also true for the
mean absolute percentage error (MAPE) and the mean absolute error of log-implied

volatility (log- IVMAE) reported in Table 4 and Table 5, respectively.

Figure 2 displays the data observed and model forecasted implied volatility where
the horizontal axis is the number of'call-eption contracts and the vertical axis is the
annualized volatility (252 days). It 'shows that the model forecasted implied volatility of
the NIG-NGARCH and the NGARCH can almost capture the data observed implied
volatility. However, the forecasted implied volatility of the HN-GARCH model does not
vary much over the number of call option contracts. As mentioned before, the GARCH
model can capture the volatility clustering of return for the underlying asset. We also see
that the forecasted implied volatility of nonanalytical solution GARCH models
(NIG-NGARCH and NGARCH models) can fit the observed implied volatility of call
option data. The HN-GARCH can capture path dependence in volatility of return, but it
can not fit the observed implied volatility of call option data that indicates that there may

be some question in this closed-form model.

-15-



5. Conclusion

This thesis proposes a model combining the GARCH option valuation and
innovations for the asset returns following the NIG distribution. The model is called
NIG-GARCH and will include the GARCH option pricing model of Duan (1995) as a
limiting case. In addition, we also consider the “leverage effects” in the model, called
NIG-NGARCH, which can explain the asymmetric effect of stock volatility. There are
two results in our empirical studies. First, empirical results on index shows that our
models can adequately fit the daily returns on S&P 500 index because the distribution
assumption of normal inverse Gaussian has fatter tails than the Gaussian and can be used
to explain excess kurtosis. Second, empirical results on call option shows that in
out-of-sample performance our model is superior to the GARCH models of Duan (1995)
and Heston and Nandi (2000) for at-the-money calls and does not perform too badly for
in-the-money or out-of-the-money calls: Besides; we also find that although nonanalytical
solution GARCH models take a-:lot of time in.computing, they can fit the observed

implied volatility of call option dataimuch bettet than the closed-form models.

-16 -



References

Andersen, J. (2001), “On the Normal Inverse Gaussian Stochastic Volatility Model,”
Journal of Business and Economic Statistics, 19, 44-54.

Bakshi, G., C. Cao and Z. Chen (1997), “Empirical Performance of Alternative Option
Pricing Models,” Journal of Finance, 52, 2003-2049.

Barndorft-Nielsen, O. E. (1997), “Normal Inverse Gaussian Distributions and Stochastic
Volatility Modeling,” Scandinavian Journal of Statistics, 24, 1-13.

Barndorft-Nielsen, O. E. (1998), “Processes of Normal Inverse Gaussian Type,” Finance
and Stochastics, 2, 41-68.

Barndorff-Nielsen, O. E. and N. Shephard (2001), “Non-Gaussian
Ornstein-Uhlenbeck-based Models and Some of their Uses in Financial Economics,”
Journal of the Royal Statistical Society, Series B, 63, 167-241.

Barndorff-Nielsen, O. E. and Shephard, N. (2003), “Integrated OU Processes and
non-Gaussian OU-based Stochastic Volatility,” Scandinavian Journal of Statistics,
30, 277-295.

Black, F. and Scholes, M. (1973),“The Pricing of ©Options and Corporate Liabilities,”
Journal of Political Economy, 81, 637-654.

Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroskedasticity,
Journal of Econometrics, 31, 307-327.

Bollerslev T. (1987), “A Conditionally Heteroskedastic Time Series Model for
Speculative Prices and Rates of Return,” Review of Economics and Statistics, 69,
542-547.

Bollerslev, T. and Forsberg, L. (2002), “Bridging the Gap Between the Distribution of
Realized (ECU) Volatility and ARCH Modelling (of the Euro): The GARCH-NIG
Model,” Journal of Applied Econometrics, 17, 535-548.

Cox, J.C., Ross, S.A., and Rubinstein, M. (1979), “Option Pricing: a Simplied
Approach,” Journal of Financial Economics, 7(3), 229-263.

Christoffersen, P., S. Heston and K. Jacobs (2003), “Option Valuation with Conditional
Skewness,” Manuscript, McGill University.

Christoffersen, P. and K. Jacobs (2004a), “The Importance of the Loss Function in
Option Valuation,” Journal of Financial Economics, 72,291-318.

Christoffersen, P. and K. Jacobs (2004b), “Which GARCH model for Option Valuation?”
Management Science, 50, 1204-1221.

-17 -



Duan, J. C. (1995), “The GARCH Option Pricing Model,” Mathematical Finance, 5,
13-32.

Duan, J. C., G. Gauthier and J. Simonato (1999), “An Analytical Approximation for the
GARCH Option Pricing Model,” Journal of Computational Financl, 2, 75-116.

Dumas, B., J. Fleming, and R. Whaley (1998), “Implied Volatility Functions: Empirical
Tests,” Journal of Finance, 53, 2059-2106.

Engle, R. (1982), “Autoregressive Conditional Heteroskedasticity with Estimates of the
Variance of UK Inflation,” Econometrica, 50, 987-1008.

Engle, R. and V. Ng (1993), “Measuring and Testing the Impact of News on Volatility,”
Journal of Finance, 48, 1749-1778.

Heston, S. L. (1993), “A Closed Form Solution for Options with Stochastic Volatility,
with Applications to Bond and Currency Options,” Review of Financial Studies, 6,
327-343.

Heston, S. L. and Nandi, S., (2000), “A Closed-Form GARCH Option Valuation Model,”
Review of Financial Studies, 13, 5854625

Hull, J. and A. White (1987), “The Pricing of Options‘on Assets with Stochastic
Volatility,” Journal of Finance, 42, 281-300.

Nelson, D.B. (1991), “Conditional Heteroskedasticity ii Asset Returns: A New
Approach,” Econometrica, 59, 347-370.

Pan, J. (2002), “The Jump-Risk Premia Tmplicitin Options: Evidence from an Integrated
Time-Series Study,” Journal of Financial Economics, 63, 3-50.

Scott, L.O. (1987), “Option Pricing when the Variance Changes Randomly: Theory,
Estimation and an Application,” Journal of Financial and Quantitative Analysis, 22,
419-438.

- 18-



Appendix A. Tables

Table 1 Maximum likelihood estimates and Model characteristics

GARCH |NGARCH |NIG- INIG- HN( »=0) [HN(» # 0)
GARCG |NGARCH
@ 1.10E-06 | 3.80E-06 | 6.30E-07 | 3.50E-06 | 5.30E-13 | 6.10E-13
a 0.0194 | 0.0233 | 0.0218 | 0.0307 | 1.10E-06 | 7.00E-07
5 0.9665 | 0.8653 | 09702 | 0.8783 0.9854 0.9648
A 0.0301 | 0.0179 | 0.0439 | 0.0306 2.6393 2.8516
0 ; 1.6299 - 12167 - ;
n ; ; 2.0469 2.303 - ]
v ; ; - - 0 191.73
persistence| 0.9859 | 0.9505 | 0.992 0.9545 0.9854 0.9906
Annualized| ) 1100 | 13095 | 01412 | 0.1388 0.1395 0.1374
Volatility
Brest | 5963 | 3693 ) ] 56.65 56.63
(1.1E-13)[(9.6E-09) (5.0E-13) | (5.0E-13)
KS tost | 0042 | 0.042.51 0.025 0.028 0.046 0.045
(0.142) | (0.142) | (0.741)'| " (0.602) (0.081) (0.089)
LB-0x(1) 2.196 | 1.190 | 2218 1.280 2.267 2.267
(0.138) | (0.275). | (0.136) | - (0.258) (0.132) (0.132)
LB-OZ (1) 0.313 1.184" | 01403 1.280 0.102 0.101
(0.576) | (0.277) |*(0:525) {7 (0.258) (0.750) (0.751)
7696 | 6.193 | 7322 5.744 8.451 8.449
LB-Qz(10) (0.659) | (0.799) | (0.695) | (0.836) (0.585) (0.585)
s 3825 | 6.160 | 4.146 6.374 3512 3.530
LB-QZ(10) 955y | (0.802) | 0.940) | (0.783) | (0.967) | (0.966)

Maximum likelihood estimates of all the GARCH (1,1) models using the daily
returns on S&P 500 index from July 1,1988 to June 28,1991. The sample size of
observations is equal to 756. JB test = Jarque-Bera test, KS test =
Kolmogorov-Smirnov (KS) test, LB-Qz (p) = Ljung-Box Q test on autocorrelation
for p lagged standardized innovations, LB-Qz” (q) = Ljung-Box Q test on GARCH
effects for q lagged squared standardized innovations. The parenthesis gives the
p-value of all the tests.
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Table 2 Basic description of Call Options data

Panel A. Average Call Option Prices

moneyness DTM<20 20<DTM<50 50<DTM<g0 All

S / K<0.95 0.91 1.34 2.98 2.07
0.95<S / K<0.99 1.60 3.42 6.21 3.87
0.99<S / K<1.01 4.82 8.41 12.09 8.42
1.01<S / K<1.05 12.96 16.16 19.53 16.17
1.05<S/K 25.47 27.65 30.70 27.87
All 11.79 13.25 15.49 13.51

Panel B. Number of Call Options

moneyness DTM<20 20sDIM<50 50<DTM<80 All
<0.95 2 84 70 156
[0.95,0.99) 210 712 339 1261
[0.99,1.01) 164 354 163 681
[1.01,1.05) 299 658 286 1243
>1.05 216 542 225 983
All 891 2350 1083 4324

The table shows the basic description of call option contracts written on the
S&P 500 index for a total 235 trading days from January 8, 1991 to December
31, 1991. Panel A describes the average call option prices and Panel B describes
the number of call options across days to maturity (DTM) and moneyness (S/K)
where S/K is defined as the S&P500 index value over the option strike price.
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Table 3 Out-of-Sample Performance with loss function RMSE

Panel A. NIG-NGARCH Model RMSE

moneyness | DTM<20 20<DTM<50 50<DTM<80 All
S /K<0.95 0.6704 0.7767 1.1945 0.9853
0.95<S /K<0.99 | 0.5439 1.1522 1.5337 1.1963
0.99<S /K<1.01 | 0.6531 1.1815 1.3820 1.1338
1.01<S/K<1.05| 0.5240 0.8985 1.1383 0.8897
1.05<S/K 0.4200 0.7021 0.8749 0.6970
All 0.5331 0.9809 1.2717 0.9964

Panel B. NGARCH Model RMSE

moneyness | DTM<20 20<DTM<50 50<DTM<80 All
S /K<0.95 0.6802 0.7394 1.2058 0.9761
0.95<S /K<0.99| 0.5216 1.1345 1.5252 1.1821
0.99<S / K<1.01 | 0.6651 1.2011 1.3819 1.1461
1.01<S /K<1.05| 0.5319 0.9508 1.1289 0.9164
1.05<S /K 0.4147 07126 0.8727 0.7015
All 0.5322 0.9928 1.2666 1.0010

Panel C. Heston-Nandi Model RMSE

moneyness | DTM<20 20<DTM<50 50<DTM<80 All
S /K<0.95 0.4360 1.0603 1.6100 1.3308
0.95<S /K<0.99 | 0.5957 1.3006 1.7922 1.3703
0.99<S /K<1.01 | 0.6687 1.1686 1.4306 1.1434
1.01<S/K<1.05| 0.5132 0.8197 1.0462 0.8190
1.05<S /K 0.4327 0.6599 0.7379 0.6371
All 0.5479 1.0198 1.3723 1.0500

The table shows the root mean square error (RMSE) of call option across
days to maturity (DTM) and moneyness (S/K). Panel A, B, C stand for the
models of NIG-NGARCH, NGARCH and HN-GARCH, respectively.
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Table 4 Out-of-Sample Performance with loss function MAPE

Panel A. NIG-NGARCH Model MAPE

moneyness | DTM<20 20<DTM<50 50<DTM<80 All
S /K<0.95 0.0067 0.6192 0.4377 0.5391
0.95<S /K<0.99 | 0.3218 0.3971 0.2733 0.3513
0.99<S /K<1.01| 0.1296 0.1347 0.1054 0.1265
1.01<S /K<1.05| 0.0368 0.0514 0.0533 0.0483
1.05<S/K 0.0136 0.0209 0.0238 0.0199
All 0.1170 0.1819 0.1487 0.1602

Panel B. NGARCH Model MAPE

moneyness | DTM<20 20<DTM<50 50<DTM<80 All
S /K<0.95 0.0068 0.5887 0.4426 0.5250
0.95<S /K<0.99| 0.3035 0.3851 0.2734 0.3414
0.99<S /K<1.01 | 0.1332 0.1368 0.1067 0.1287
1.01<S /K<1.05| 0.0369 0.0543 0.0530 0.0498
1.05<S /K 0.0134 0:0211 0.0241 0.0201
All 0.1133 0.1784 0.1493 0.1577

Panel C. Heston-Nandi Model MAPE

moneyness | DTM<20 20<DTM<50 50<DTM<80 All
S /K<0.95 0.0042 0.8587 0.5909 0.7333
0.95<S /K<0.99 | 0.3712 0.4763 0.3269 0.4187
0.99<S /K<1.01 | 0.1361 0.1355 0.1099 0.1295
1.01<S/K<1.05| 0.0351 0.0467 0.0481 0.0442
1.05<S /K 0.0138 0.0195 0.0189 0.0181
All 0.1287 0.2130 0.1737 0.1858

The table shows the mean absolute percentage error (MAPE) of call option
contracts across days to maturity (DTM) and moneyness (S/K). Panel A, B,
C stand for the models of NIG-NGARCH, NGARCH and HN-GARCH,
respectively.
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Table 5 Out-of-Sample Performance with loss function log-IVMAE

Panel A. NIG-NGARCH Model log-IVMAE

moneyness | DTM<20 20<DTM<50 50<DTM<80 All
S /K<0.95 0.2362 0.1523 0.1522 0.1542
0.95<S /K<0.99 | 0.1256 0.1659 0.1638 0.1586
0.99<S /K<1.01| 0.1280 0.1468 0.1332 0.1387
1.01<S/K<1.05| 0.1655 0.1354 0.1257 0.1400
1.05<S/K 0.2321 0.1707 0.1445 0.1722
All 0.1579 0.1547 0.1444 0.1524

Panel B. NGARCH Model log-IVMAE

moneyness | DTM<20 20<DTM<50 50<DTM<80 All
S /K<0.95 0.2409 0.1460 0.1539 0.1519
0.95<S /K<0.99| 0.1200 0.1623 0.1636 0.1556
0.99<S /K<1.01 | 0.1315 0.1490 0.1354 0.1412
1.01<S/K<1.05| 0.1612 0.1425 0.1263 0.1428
1.05<S /K 0.2178 01697 0.1455 0.1698
All 0.1533 0.1556 0.1451 0.1522

Panel C. Heston-Nandi Model log-IVMAE

moneyness | DTM<20 20<DTM<50 50<DTM<80 All
S /K<0.95 0.1575 0.2026 0.2015 0.2015
0.95<S /K<0.99 | 0.1379 0.1921 0.1897 0.1824
0.99<S /K<1.01 | 0.1322 0.1471 0.1365 0.1407
1.01<S/K<1.05| 0.1597 0.1248 0.1130 0.1301
1.05<S /K 0.3041 0.1725 0.1163 0.1757
All 0.1708 0.1620 0.1470 0.1594

The table shows the mean absolute error of log-implied volatility (log-
IVMAE) of call option contracts across days to maturity (DTM) and
moneyness (S/K). Panel A, B, C stand for the models of NIG-NGARCH,
NGARCH and HN-GARCH, respectively.
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Table 6 Four characteristics for IG and NIG distributions

1G(S,7) IG(o>, ) NIG(a,B.1,8) NIG(0,0,10.7)
Mean 2 o’ U+ s U
Ve e
4 2
variance i} g ) a_3 o’
4 n 4
skewness i i 3 s 0
Joy Jn a6y

2 2
kurtosis 314> 3142 3 l+ﬂ 314t
oy n a oy n

The IG and NIG denote inverse Gaussian and normal inverse Gaussian distribution,

respectively. The densities function of IG(8,y), 1G(c’,n7), NIG(a,p,u,6) and

NIG(O'Z,O, ,u,?]) are given by (2.2),.(2.6), (2.3) and (2.7), respectively.
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Appendix B. Figures
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Figure 1 QQ-plot of all the GARCH (1,1) models

The figure shows QQ-plot of the standardized innovations for daily returns on S&P 500

index from July 1, 1988 to June 28, 1991.
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Figure 2 Implied volatility of data observed and model forecasted

The figure shows the implied volatility of data observed and model forecasted where obs
is data observed implied volatility, NIGNG, NG and HN are model implied volatilities of
NIG-NGARCH, NGARCH and HN-GARCH, respectively.
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Figure 3a NIG densities with different o

The figure shows NIG densities with ., 8=0, =0, 7 =3 and o = 1, 2, 3 (from inner to outer).
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Figure 3b NIG densities with different 8

The figure shows NIG densities witho=1,#=0,7=3 and 8=-1.6, -1, 0, 1, 1.6 (from left
to right).
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Figure 3c NIG densities with different g
The figure shows NIG densities withg'='1, 8=0;7 =3 and = -1, 0, 1 (from left to right).
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Figure 3d NIG densities with different 7

The figure shows NIG densities witho=1,5=0,#=3 and 7=10.1, 0.5, 1, 2, 5 (from inner

to outer).
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Appendix C. Show that (3.1) is risk-neutral under measure Q

S .
Assuming % |QH can be written as In S_t = M, + &, under measure Q where 4, is
-1

t-1

the conditional mean and g: 1s NIG(4,,0,0,77) process. As mentioned before, the M.G.F.

of & isM(u)= exp(n -y’ —nhu’ ), then we can derive that:

E[SS ‘QH):E(e“'”’* Q)

t-1

=E(e" |0, )E(e|o.,)

sul o)

In order to make % |QH risk-neutral, using the relationship E( ;t
t-1

t-1

|Qt1] =e’ we can

easily see thaty, = r—(n—wmz —nht). Therefore, ‘we make sure that (3.1) is risk-neutral

under measure Q.
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