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Abstract:  This paper presents a methodology for including the photometric 
raw data sets into the diffuse illumination design process. The method is 
based on computing the luminance distribution on the outgoing side of 
diffusing elements from measured bidirectional scattering distribution 
functions (BSDFs). The model is limited to specimens that create 
rotationally symmetric scattering distribution. The calculation procedure 
includes the linear superposition and the correcting feedback. As an 
application example, the method is verified by a commercially available 
diffusing sheet illuminated by a 32-inch backlighting module. Close 
agreement (correlation coefficient = 98.6%) with the experimental 
measurement confirmed the validity of the proposed procedure. 
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1. Introduction  

Diffuse illuminations have been widely used for many fields, including projectors, liquid 
crystal displays, traffic signs, and luminaries. Generally, the diffusing components are the 
optical sheets that scatter a collimated incident light into a divergent angle in the transmittance 

space or the reflection space without spatial position shifts on the component surface. Here 

the light is diffused into a defined radiance angles for the purpose of beam shaping, brightness 
homogenizing, antiglare, directionality adjustment, and so on. Meanwhile, the rapid progress 
in the manufacture technologies also led to many new diffusing components for various 
purposes. To characterize the diffuse properties becomes essential for illumination design 
practice. However, a general and effective methodology for diffusing behavior in different 
area is still insufficient.  

The diffuse phenomena are mainly caused by the optical scattering. Generally, scattering 
from the sheet components is caused by four mechanisms: surface topography, surface 
contamination, bulk index fluctuation and bulk particulates [1]. The physical phenomena 
involved in the scattering are most properly described by the Maxwell’s equations with 
appropriate boundary conditions. The modeling approaches can be conducted by either 
analytical or numerical solution. The analytical approaches include Kirchhoff approximation 
[2-5], the small perturbation method [2,4], the integral equation method [5], the small slope 
approximation [6,7], the facet method [8-10], and so on. Besides, the numerical methods, such 
as finite-difference time-domain (FDTD) [11,12] and Monte Carlo ray-tracing [13,14], have 
also been developed. However, only one kind of mechanisms, such as surface topography, can 
be considered in one physics model, where a few conditions are assumed before the 
calculation. Unfortunately, the appearance of objects in the real world is usually modeled as a 
combination of these four mechanisms, which occur simultaneously and are mutually coupled. 
Thus, physically based models are still used only occasionally, both because of their 
complexity and that the parameters are not readily available. In addition, since the commercial 
diffusing components are quite discrepant from the individual supplier, to analyze the 
complex structures is not necessary. This paper presents a new calculation approach, which 
can directly calculate the output field of a diffusing sheet under arbitrary illumination. 

In this study, we present the methodology, where the measured photometric raw data sets 
are imported into the iterative process. Firstly, we characterize the diffusing capability of 
tested sample in terms of bidirectional scatter distribution function (BSDF) [15]. Secondly, 
the sample will be illuminated by a reference Lambertian source which is decomposed into 
many elementary functions with respect to different weighting factors. Thirdly, the correlation 
coefficient [16] between the measured and simulation results would gauge the sampling 
number of BSDF superposition in the calculation process, and provide a feedback factor to 
ensure the modeling accuracy. Finally, the tested specimen will be illuminated by a 
commercially available 32-inch backlighting system to validate the methodology. The 
conclusions will show that the proposed approach can be used to accurately predict the 
diffused field in the laminating systems.  
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2. BS(T)DFs of Diffusing Components 

 
 

Abbreviations  Greek letters  Subscripts 

L luminance (cd/m2)  ω, ω, ω, ω, ΩΩΩΩ    solid angle (sr)  i incident 

E illuminance (lx)  θ, φθ, φθ, φθ, φ polar coordinates   t transmitted 

CC correlation coefficient  ττττ transmittance  c calculated 

W weighting factor  ΦΦΦΦ    light flux   e experimental 

q bidirectional transmission 
distribution function (sr-1) 

 

δδδδ    delta function  j, m count 

     r reference 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

2.1 Bidirectional Transmittance Distribution Function 

In this section, we briefly review the characteristics and terminology of the bidirectional 
scatter distribution function (BSDF). The BSDF is typically split into reflected and 
transmitted components, which are treated separately as the bidirectional reflectance 
distribution function (BRDF) and the bidirectional transmittance distribution function (BTDF). 
The associated photometric and geometric quantities in polar coordinates are illustrated in Fig. 
1, where all the scientific symbols and names through this paper are listed in Table 1. In order 
to simplify the analysis, we restrict the discussion to the transmissive type. Of course, the 
study can be easily applied to the reflective type without loss of generality. First of all, we 
define the bidirectional transmittance distribution function (BTDF) q [17] as following: 

 

 
2

( , ) ( , )
( , , , ) ,

( , ) ( , ) cos

t t t t t t
i i t t

i i i i i i i i

dL dL cd
q

dE L d m lx

θ φ θ φ
θ φ θ φ

θ φ θ φ θ ω
 = =   

 (1)  

where (θi,φi) and (θt,φt) represent the incident and transmitted angle of the light transmitting 
the specimen. BTDF describes the luminance dLt, which is visible under the angles of 

Table 1. Nomenclature 

Fig. 1. Photometric and geometric quantities in the polar coordinate system.  
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observation (θt,φt), induced by the illuminance dEi from an incident-side luminance Li for an 

incident direction (θi,φi) with a solid angle dωi. Since Li is an available functional description, 
illuminance E can be decomposed into a linear combination of elementary functions. 
Equivalently, BTDF can be treated as the two-dimensional impulse response and completely 
describes the light spreading characteristics of a tested sample. The amount of light 
transmitted in the outgoing direction can be written as the integral of the BTDF multiplied by 

the incident flux from each incident direction (θi,φi) [17], 

 ( , ) ( , , , ) ( , ) cos ,t t t i i t t i i i i iL q L dθ φ θ φ θ φ θ φ θ ω
Ω

= ∫  (2) 

where Lt indicates the overall luminance distribution of the transmitted light. Also, the integral 
can be expressed in a discrete way as following:  

 , , , , , ,( , ) ( , , , ) ( , ) cos ,
t t t j i j i j t t i j i j i j i j j

j

L q Lθ φ θ φ θ φ θ φ θ ω= ⋅ ∆∑  (3) 

where ∆ωj indicates the solid angle around the specific incident angle (θi,j,φi,j). Based on the 
linear composition of every j-th components, the hemispherical luminance distributions over 
the transmission side can be solved accordingly. 

2.2 BTDF measurement 

 

 

 

 

 

 

 

 

 

 

 

 

 

BTDF measurement of a commercially available diffusing specimen for LCDs was performed 
by the conoscopic approach [17,18]. As the schematic description in Fig. 2(a), the specimen is 

illuminated by a collimated beams with a set of discrete incident directions (φi ,θi,j), and the 
corresponding scattered light can be collected by an objective lens with moderate numerical 
aperture for observation of imaged hemisphere. Figure 2(b) shows a set of the measured 

angular spread functions of an arbitrary specimen with different incident polar angle θi along a 

(a) 

(b) 

Fig. 2. (a) Schematic measurement setup of BTDFs, (b) the measured angular spread 
functions of an available diffuser. 
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constant azimuthal angle φi = 90
o
. Every incident beam illuminating the specimen would lead 

to specific BTDFs. For the commercial diffusing sheets, the randomly distributed beads are in 
circular shape. Thus, the scattering fields, which are highly relevant to the geometric natures 
of the particulates, are circularly symmetric. As the measured BTDFs vary smoothly under 

different incident angle θi,j, the adequate angular sampling are sufficiently complete to 

represent the diffusing behavior. In this case, the angular interval ∆θi was 10 degree.  

2.3 Characterizations by BTDFs 

BTDFs represent the angular spread function of the diffusing specimen, which have a variety 
of optical features due to various manufacturers’ recipes about the refractive index, the size of 
scattering particles, the density of the bead distribution, and so on. In the following, we use 
the measured BTDFs to analyze two commercial diffusers with different bead sizes. As the 
tops of Fig. 3(a) and (b) show, the diffusive layer on the top of Polyethylene Terephthalate 
(PET) substrate has some beads buried in an acrylic binding layer and other beads protrude 

partially out of the binder layer. Here the beads are in a range of 10~25 µm. The bottoms of 
Fig 3 show the one-dimensional BTDFs. From the envelope of every transmitted peak, the 
diffusing power and particle size has a reciprocal relationship. For the case of a laser beam 
illuminating the diffusing structure with respectively different incident angles, the transmitted 
angular spectrum can be roughly found by the Fourier transform of the amplitude 
transmittance function of the bead aperture [19-21]. Thus, the smaller the bead size, the 
broader the scattering power after passing through the diffuser will be caused. This effect is 
entirely analogous to the broadening of the angular spectrum with the corresponding special 
frequency. 

 

 

 

 

 

 

 

 

 

 

In addition to the dependence of scattering power on the particle size, there is another 
issue needed to be mentioned. As the definition, BTDF is simultaneously a function of the 

incident direction (θi,φi) and the transmitted direction (θt,φt). J. E. Harvey [22] has mentioned 
that a general scattering surface has the shift-invariant behavior, which just requires one set of 
numerical data to completely characterize the scattering properties of a surface. The most 
conventional diffusers are circularly symmetric, so the variations of the incident impulse 

along azimuthal angle φi would be ignored. However, as shown in Fig. 3, the BTDFs exhibit a 

(b) (a) 

Fig. 3. The measured BTDFs and their corresponding OM pictures with (a) low spatial 

frequency and (b) high spatial frequency. 
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discrepant scattering shape and peak shift with different inclining illumination. Especially, the 
phenomena are more observable in larger angles of incidence. Thus, in the incident side, 

BTDF is a function of pure inclination θi. A comprehensive model for such shift-variant 
system is essential for the diffuse illumination design flow. 

3. Algorithm for modeling diffusers 

The proposed procedure for modeling a diffusing specimen is shown in Fig. 4. The conception 
is to find the acceptable sampling points of the diffusing component through comparing the 
outgoing fields by our construction and the reference measurement. The algorithm is started 
with the aforementioned BTDF measurement. Based on the measured BTDFs, a rotational 
superposition was performed to implement the rotationally-constructed BTDFs (R-BTDFs). A 
rotationally symmetric source, that is practically available, illuminated on the sample for the 
purpose of calculation reference, and the luminance weights at different inclinations of the 
reference source were introduced into the R-BDTFs to calculate the outgoing field. After that, 
we will introduce a merit value (correlation coefficient) to compare the simulated far field 
luminance with the measured results. The correlation coefficient provides a feedback to 
correct the sampling point until the merit value converges to an acceptable value. In the 
following, the sample in Fig 3 (b) will be taken for the demonstration of the algorithm. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.1 Rotational Construction by BTDFs 

Because the procedure is based on calculating the transmitted field by constructing the BTDFs, 
the rotational sampling of the BTDF is performed first. A rotationally symmetric field is 
assumed to illuminate the specimen. Therefore, the dependence along the azimuthal direction 
can be degenerated by taking convolution between the measured BTDFs qj, which is the j-th 
inclination set as shown in Fig. 2, and a comb function along the azimuthal direction: 

 

Fig. 4. Modeling procedure for a commercially available diffusing specimen.  
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where j and ∆θ represent the shifts along  θ direction with the interval ∆θ. mj and ∆φj indicate 

the shifts along φ direction of the j-th inclination. qj
R
 is the j-th rotationally-constructed BTDF 

(R-BTDF). In our case, the width of the horizontal band ∆θ is 10 degrees, which is mentioned 

in the measured results in section 2.2. Here the sampling number Mj, which means 2π is 
equally divided into Mj divisions, is increased with the outer band, so the sampling interval 

∆φj is varied with different j. Fig. 5 shows an numerical calculation of convolution of the 40°-
inclination (j=4 the fourth ring) BTDF. Because of the nature of the integrated solid angle, the 
arrangement of Mj should be directly proportional to the zonal constant [23], which is a 
convenient factor to calculate the luminous flux emitted into a narrow band and multiplying 
the summation by a solid angle factor. After a number of straight manipulations, eight donut-
like R-BTDF qj

R
 can be obtained accordingly. 

 
 
 
 
 
 
 
 
 
 
 

3.2. Weighting & Superposition of R-BTDFs 

A rotationally symmetric reference light source is essential in the calibration of the algorithm. 
Usually, a Lambertian field is adopted due to its uniform luminance and easily offered by the 
conventional sources, which include the surfaces of fluorescent lamps or the light diffused by 
a thick diffusing plate. In our case, the measurement is performed by the setup where the light 
emitted from a tungsten lamp passes through a diffusion plate and Lambertian emission is 
measured by conoscopic system. In order to calculate the transmitted field under the reference 
illumination by BTDFs, each R-BTDF (j=0~7) is weighted by the factor Wj in accordance 
with the Lambertian reference source subject to the corresponding inclinations. The weights 

Wj is the luminance at j-th inclination θj of the reference incident function Li,r over the value in 

normal direction θ0 under a constant azimuth φ0. 
 

 

0 0

, 0 , 0

,

, 0 0 , 0 0 0 , 90
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.
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= ° = °

⋅ − −
= =

⋅ − −

∆∆∆∆
 (5) 

The scattering light field is determined by the superposition of the eight weighted R-BTDFs. 
Normalized luminance distribution of the transmitted light can be represented as: 

Fig. 5. The convolution of 40°-inclination (j=4) BTDF. 
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where A is the normalized coefficient, and calculated by 
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Similar to Eq. (3), Eq. (6) has an identical form expect the weighting factors Wj are introduced 
by the reference Lambertian source. Here the cosine term is a tilt factor between the light 
source and the illuminated plane. Fig. 6 exhibits the individual R-BTDFs and their 
superposition results, which means the constructed outgoing distribution. Although the 
normalized luminance distribution through the diffusing specimen from a Lambertian source 
is obtained, however, the accuracy of the calculation highly depends on the number of discrete 
sampling component. Consequently, an additional merit index is required to gauge the 
accuracy of the proposed algorithm. The amount of sampling number is sequentially increased 
and correlated with its measurement. In the absence of continuity, the algorithm would obtain 
the discrete points for BTDF superposition and keep the outgoing field in certain accuracy.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.3 Correlation Coefficient 

Correlation coefficient is a merit value to gauge the accuracy of the numerical construction 
and served as a feedback for correcting the sampling points. Thus, we correlate the calculated 
field with its measurement, which are both the response of the reference Lambertian source. 
The correlation coefficient CC is defined as: 
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Fig. 6. The cross-section of individual 1D-BTDF and summation under Lambertian 

illumination.  
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where Lc and Le are the normalized luminance distributions of the calculation and its 

measurement, respectively. 
cL  and 

eL are the mean values of both corresponding datasets. If 

CC is below a threshold value T, it means the calculated field has a certain amount of 
discrepancy with the real one. Because the deviation is mainly due to the finite sampling 

points in the superposition, we would increase the sampling number ΣMj by an incremental 

rate ΣMj×CC
-1

 until CC is above the desirable threshold value. Eventually, the amount of the 

angular sampling ΣMj along the azimuthal direction can converge to an acceptable value. In 
case of the commercially available diffuser in the Fig. 3(b), the correlation coefficient can be 
achieved upon 98% as the sampling number exceeds 357. Certainly, the sampling number is 
related to the optical complexity and dependent on the optical features by case. Because the 
retrieved output field is calculated by the superposition of finite number of BTDFs, the finite 
sampling points easily cause the discrete calculated fields or incorrect results. The profiles of 
BTDFs directly affect the required sampling number. The broader BTDF profile requires less 
sampling points, and the distribution is related to the structure of the diffusing sheets, as we 
mentioned in section 2.2. 

4. Luminance Calculation 

Aforementioned procedure is employed to determine the sampling grid of the BTDFs for 
calculating the optical response of the specimen, so we are able to directly apply the results to 
calculate the transmitted luminance distribution from assigned illuminating sources Li. The 
weighting function W (j,m) corresponding to the known sampling grid, can be obtained by: 
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Thus, the transmitted distribution function can be calculated by two-dimensional 
superposition of the BTDFs multiplied by the corresponding weight function, 
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In addition to the normalized luminance distribution, the absolute value is able to be 

calibrated by the transmittance τ (θ) as following: 
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where the Φt and Φi are the overall luminous flux from the incident and transmitted sides of 

the diffusing sheet. In most case of diffusing sheets, the transmittances τ (θi) are a constant 
with respect to different incident angles, so the absolute value of the transmittance can be 

applied on light sources with variant angular distributions. The transmittances τ can correct 
the normalized luminance distribution to absolute luminance value. The calculated result for 
the sample we mentioned is shown in Fig 7(a), where the transmitted luminance distribution 
was from a commercially available 32”-TV backlighting source. Comparing with the 
experimental results in Fig 7(b), the close agreement with the measurement (CC =98.6%) 
demonstrates the validity of the proposed training process and corresponding diffusing model. 
The negligible deviations at large angles were mainly resulted from the measurement errors 
attributed by the conoscope distortion.  
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5. Conclusions 

A simple and effective algorithm to model the scattering characteristics of the diffuser is 
proposed and demonstrated. The major advantage of this study lies in that there is no need to 
formulate the complex physical mechanism of the scattering in a microscopic viewpoint. In 
stead, as long as a backlighting source (Cold Cathode Fluorescent Lamp or Light Emitting 
Diode) is available, proposed semi-quantitative algorithm can predict the optical radiance and 
efficiency with high precision without expense of computational time. The proposed 
algorithm is based on eight measured BSDFs and a reference Lambertian light source. 
Additional correlation coefficient is employed to evaluate the model accuracy and eventually 
converge to a stable sampling parameter. Thus, this modeling scheme only needs the BTDFs 

and the sampling parameter ΣMj to characterize one diffusing sheet and it is convenient for 
designers or factories to build a diffuser database. We successfully demonstrate the validity by 
using a general backlight source, where calculated emergent luminance distribution is 98.6% 
close to the measurement. In most case, CC can achieve the value larger than 98%. The 
algorithm provides a relatively effective way for diffusing simulation, and is useful for the 
lighting development in display or luminance application.  
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Fig. 7 Angular luminance distribution transmitted through the diffuser from a 32-inch 

backlighting source by (a) calculation, and (b) comparison of the cross-sections at φ = 0 

and 360 degree, where the CC between two curves is 98.6%. 

(a)  (b) 
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