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Abstract

This study investigates the complexity of the global set of output patterns for one-dimensional multi-layer
cellular neural networks with input. Applying labeling to the output space produces a sofic shift space. Two
invariants, namely spatial entropy and dynamical zeta function, can be exactly computed by studying the
induced sofic shift space. This study gives sofic shift a realization through a realistic model. Furthermore,
a new phenomenon, the broken of symmetry of entropy, is discovered in multi-layer cellular neural networks
with input.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The cellular neural network (CNN) proposed by Chua and Yang is a large aggregate of ana-
logue circuits [8,9]. The system presents itself as an array of identical cells which are all locally
coupled. Many such systems have been studied as models for spatial pattern formation in biology
[10–12,16,17], chemistry [13], physics [6], image processing and pattern recognition [7].
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The complexity of the set of global patterns for one- or two-dimensional cellular neural net-
works has been widely discussed [1–5,14,15,19]. However, this study is the first to explore
the complexity for one-dimensional multi-layer CNN. The two-dimensional sofic and two-
dimensional multi-layer CNN are discussed in other papers.

A one-dimensional multi-layer CNN system with input is realized as the following form,
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One-layer CNN with input is first considered. Let

P n+2 = {
(A,B, z): A,B ∈ M1×(2d+1)(R), z ∈ R

}
, (1.5)

where n = 4d + 1. The parameter space P n+2 can be partitioned into finite subregions, such that
each region has the same mosaic patterns. Once the region of the parameter space is chosen, the
basic set of admissible local patterns B ⊆ {+,−}Z3×2 is then determined. The ordering matrix of
all local patterns in {+,−}Z3×2 is defined. For a given basic set B, the transition matrix T(B) is
then obtained, and a shift space is induced. For simplicity, consider the case d = 1, i.e., each cell
can only interact with their nearest neighbors. In one-dimensional one-layer CNN without input,
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every partition is associated with a unique set of admissible patterns B = B3×1 and the transition
matrix T = T(B3×1) [15]. Let

Y = {
(yi)i∈Z

∣∣ yi−1yiyi+1 ∈ B for all i ∈ Z
}
, (1.6)

then Y is a shift of finite type (SOFT). The number of global admissible patterns with length n

and the number of periodic patterns with period m can then be formulated from the transition
matrix T. However, this cannot be done when the basic set of admissible local patterns B = B3×2
is derived from the one-layer CNN with input. More precisely, each pattern that is produced from
the system is a coupled pattern y1y2y3

u1u2u3
, where y1y2y3 denotes the output pattern, and u1u2u3

denotes the input pattern. For simplicity, rewrite the coupled pattern as y1y2y3 � u1u2u3. The
output space is defined as

YU =
{

(· · ·y−1y0y1 · · ·) ∈ {+,−}Z: there exists (· · ·u−1u0u1 · · ·) ∈ {+,−}Z

such that (· · ·y−1y0y1 · · · � · · ·u−1u0u1 · · ·) ∈ Σ(B)

}
, (1.7)

where Σ(B) ⊆ {+,−}Z∞×2 is a subshift space generated by B ⊆ {+,−}Z3×2 . Analytical results
indicate that YU is not a SOFT, but a sofic shift (Theorem 2.13). Under this situation, the formula
of spatial entropy (entropy) h(B) (Theorem 2.17) and dynamical zeta function (zeta function)
ζσ (t) (Theorem 2.24) can be computed. Therefore, the dynamics of the mosaic solutions of
multi-layer CNN are understood. Conversely, the sofic shift is realized through a realistic model.

The analysis gets more complicated in N -layer CNN, N � 2. However, once recognizing the
elaborate content of one-layer CNN with input, all results for one-layer CNN with input can be
extended to general case with analogous method. We like to emphasize that each layer induces
a sofic shift and the N -layer coupled system induces the convolution of N -many independent
sofic shifts. Hence, Section 2 studies one-layer CNN with and without input and emphases the
difference. Without input, the dynamical system is subshift of finite type and then sofic when
input appears. Section 3 consists those general results introduced in Section 2.

The dynamics of multi-layer CNN with input produce a phenomenon that is never seen in
one-layer CNN without input. The entropy of the one-layer CNN without input has a “symmetry”
about the parameters. More precisely, consider the one-dimensional CNN,

dxi

dt
= −xi + alyi−1 + ayi + aryi+1 + z, (1.8)

and select one of the partitions of parameter space {(al, ar): al, ar ∈ R} = R
2. The parameters a

and z thus have 25 subregions, each with the same entropy. Furthermore,

h
(

B
([m,n]))= h

(
B
([n,m])) for 0 � m,n � 4. (1.9)

The details as in [15]. However, when considering multi-layer CNN with input, not only the
entropy and zeta function are varied, but the symmetry of the entropy is broken even for the
simplest case one-layer CNN with input. Hence, input adding for a CNN system is the main
mechanism that breaks the symmetry of entropy.

The rest of this study is organized as follows. Section 2 describes the complexity of the global
set of output patterns for one-layer CNN with input. The entropy and zeta function can be exactly
computed through the induced sofic shift space. Section 3 extends all results in Section 2 to N -
layer CNN, where N � 2. Finally, Appendix A lists the detail of the partition in Example 2.5.
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2. One-layer cellular neural networks with input

The complexity of the global set of output patterns for one-layer CNN with input is investi-
gated in this section.

2.1. Ordering matrix and transition matrix

In this section, the parameter space P n+2 as in (1.5) will be partitioned into finite subregions,
such that each region has the same mosaic patterns. Once the region of the parameter space is
chosen, the basic set of admissible local patterns B ⊆ {+,−}Z3×2 is then determined. Then, the
ordering matrix of all local patterns in {+,−}Z3×2 will be defined. For a given basic set B, the
transition matrix T(B) will be obtained.

2.1.1. Partition of parameter space
This subsection explores the relationship between the parameters of templates and the admis-

sible local output patterns. The differential equation of CNN with input is of the form

dxi

dt
= −xi +

∑
|k|�d

akyi+k +
∑
|�|�d

b�ui+� + z, (2.1)

where A = [−ad, . . . , a, . . . , ad ],B = [−bd, . . . , b, . . . , bd ] are the feedback and controlling
templates, respectively, y = f (x) = 1

2 (|x +1|− |x −1|) is the output function, z is the threshold,
and a ≡ a0, b ≡ b0.

The quantity xi represents the state of the cell at i. The stationary solution x = (xi) of (2.1)
satisfies

xi =
∑

|k|�d

akyi+k +
∑
|�|�d

b�ui+� + z.

The output y = (yi) is called output pattern. A mosaic solution x satisfies |xi | > 1 and its
corresponding pattern y is called a mosaic output pattern. Consider the mosaic solution x, the
necessary and sufficient conditions for state “+” at cell Ci , i.e., xi > 1, are

a − 1 + z > −
( ∑

0<|k|�d

akyi+k +
∑
|�|�d

b�ui+�

)
. (2.2)

Similarly, the necessary and sufficient conditions for state “−” at cell Ci , i.e., xi < −1, are

a − 1 − z >
∑

0<|k|�d

akyi+k +
∑
|�|�d

b�ui+�. (2.3)

For simplicity, denote yi by yi and rewrite the output patterns y−d · · ·y · · ·yd coupled with
input u−d · · ·u · · ·ud as

y−d · · ·y · · ·yd

u · · ·u · · ·u = Y � U, (2.4)
−d d
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where Y = y−d · · ·y · · ·yd , U = u−d · · ·u · · ·ud . Let

V n = {
v ∈ R

n: v = (v1, v2, . . . , vn), and |vi | = 1, 1 � i � n
}
,

where n = 4d +1, (2.2) and (2.3) can be rewritten in a compact form by introducing the following
notation.

Denote α = (a−d , . . . , a−1, a1, . . . , ad), β = (b−d , . . . , b, . . . , bd). Then, α can be used to
represent A′, the surrounding template of A without center, and β can be used to represent the
template B . The basic set of admissible local patterns with “+” state in the center is defined as

B(+,A,B, z) = {
v � w ∈ V n: a − 1 + z > −(α · v + β · w)

}
, (2.5)

where · is the inner product in Euclidean space. Similarly, the basic set of admissible local pat-
terns with “−” state in the center is defined as

B(−,A,B, z) = {
v′ � w′ ∈ V n: a − 1 − z > α · v + β · w}. (2.6)

Furthermore, the admissible local patterns induced by (A,B, z) can be denoted by

B(A,B, z) = (
B(+,A,B, z), B(−,A,B, z)

)
. (2.7)

Let

P n+2 = {
(A,B, z)

∣∣A,B ∈ M1×(2d+1)(R), z ∈ R
}
, (2.8)

where Mr×s(R) means an r × s real matrix. P n+2 can be partitioned so that each subregion
generates the same mosaic patterns, when the controlling template B ≡ 0 is proved in [14]. The
general results for B 	= 0 can be obtained similarly, so the detailed proof is omitted for simplicity.

Theorem 2.1. There exists positive integer K(n) and a unique collection of open subsets {Pk}Kk=1
of P n+2 satisfying

(i) P n+2 =⋃K
k=1 P k ;

(ii) Pk ∩ P� = ∅ for all k 	= �;
(iii) B(A,B, z) = B(Ã, B̃, z̃) if and only if (A,B, z), (Ã, B̃, z̃) ∈ Pk for some k.

Here P is the closure of P in P n+2.

2.1.2. Ordering matrix
This subsection defines the ordering matrix X = X3×2 of all possible local patterns in

{+,−}Z3×2 . First, the notation of the pattern with size 3 × 1 is considered.
Let

a00 = −−, a01 = −+, a10 = +−, a11 = ++, (2.9)

defining

ai i ai′ i = ∅ ⇔ i2 	= i′ . (2.10)
1 2 2 3 2
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Fig. 2.1. The ordering matrix of all local patterns in Z3×2.

If ai1i2ai′2i3 	= ∅, then denote it by ai1ai2ai3 and it is a pattern with size 3 × 1. Define

X =
⎡
⎢⎣

X11 X12 X13 X14
X21 X22 X23 X24
X31 X32 X33 X34
X41 X42 X43 X44

⎤
⎥⎦ , Xij =

⎡
⎢⎣

xij ;11 xij ;12 xij ;13 xij ;14
xij ;21 xij ;22 xij ;23 xij ;24
xij ;31 xij ;32 xij ;33 xij ;34
xij ;41 xij ;42 xij ;43 xij ;44

⎤
⎥⎦ (2.11)

for 1 � i, j � 4 as in Fig. 2.1. xij ;kl means the pattern
ar1r2ar ′

2r3
as1s2as′

2s3
, where

r1 =
[
i − 1

2

]
, r2 = i − 1 − 2r1, r ′

2 =
[
j − 1

2

]
, r3 = j − 1 − 2r ′

2,

s1 =
[
k − 1

2

]
, s2 = k − 1 − 2s1, s′

2 =
[
l − 1

2

]
, s3 = l − 1 − 2s′

2, (2.12)

and [·] is the Gauss function.
If ar1r2ar ′

2r3
= ∅ or as1s2as′

2s3
= ∅, then xij ;kl = ∅. Furthermore, if xij ;kl 	= ∅, then it is denoted

by the pattern
ar1ar2ar3
as1as2as3

in {+,−}Z3×2 . Hence, the self-similar property appear in X as in Fig. 2.1,
i.e., the upper pattern of Xij is the same as the lower pattern of xkl;ij , for 1 � i, j, k, l � 4. Once
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the basic set of admissible local patterns B ⊆ {+,−}Z3×2 is given, define Σn×2(B) the collection
of all patterns with size n × 2 generated by B as

Σn×2(B) =
{

y1y2 · · ·yn

u1u2 · · ·un
∈ {+,−}Zn×2 :

yi−1yiyi+1
ui−1uiui+1

∈ B for all 2 � i � n − 1

}
. (2.13)

For simplicity, rewrite y1y2 · · ·yn
u1u2 · · ·un

as y1y2 · · ·yn � u1u2 · · ·un, where yi, ui ∈ {+,−},
1 � i � n.

To measure the complexity of the global set of output patterns, the following subshift space
in {+,−}Z is considered. Define the output space YU ≡ YU(B) by

YU =
{

(· · ·y−1y0y1 · · ·) ∈ {+,−}Z: there exists (· · ·u−1u0u1 · · ·) ∈ {+,−}Z

such that (· · ·y−1y0y1 · · · � · · ·u−1u0u1 · · ·) ∈ Σ(B)

}
, (2.14)

where Σ(B) ⊆ {+,−}Z∞×2 is a subshift space generated by B ⊆ {+,−}Z3×2 .

2.1.3. Transition matrix
This subsection derives the transition matrix for a given basic set B. The transition matrix T

is defined as

T(B) = (Tij ), 1 � i, j � 4, (2.15)

where Tij = (tij ;kl) ∈ M4×4(R) and

tij ;kl =
{

1, if xij ;kl ∈ B,

0, if xij ;kl ∈ {+,−}Z3×2 \ B or xij ;kl = ∅,
(2.16)

where xij ;kl = ar1r2ar ′
2r3

as1s2as′
2s3

satisfies (2.12). Once T(B) is constructed, it is then rewritten as T(B) =
(tpq) ∈ M16×16(R), where

tpq = tij ;kl for p = 4(i − 1) + k, q = 4(j − 1) + l. (2.17)

If templates A,B and threshold z are given, then the basic set B(A,B, z) is obtained from
Theorem 2.1. Moreover, the transition matrix T is immediately derived from (2.16) and (2.17).

If a set of input patterns U ≡ {u1u2u3} ⊆ {+,−}Z3×1 is assigned, then the basic set of admis-
sible local patterns is denoted by

B
(
(A,B, z); U

)=
{

y1y2y3
u1u2u3

∈ B(A,B, z): u1u2u3 ∈ U
}
. (2.18)

The transition matrix for U is defined by U = (uij ) ∈ M4×4(R), where

uij =
{

1, if u1u2u3 ∈ U ,

0, otherwise.
(2.19)

If T̂ denotes the transition matrix of B((A,B, z); U ), then the following theorem is obtained.
Before the theorem is stated, two products of matrices are defined as follows.
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Definition 2.2. For any two matrices M = (mij ) ∈ Mk×k(R), N = (ni′j ′) ∈ M�×�(R), the Kro-
necker product (tensor product) M ⊗ N of M and N is defined by

M ⊗ N = (mij N) ∈ Mk�×k�(R). (2.20)

Next, for any P = (pij ),Q = (qij ) ∈ Mr×r (R), the Hadamard product P ◦ Q of P and Q is
defined by

P ◦ Q = (pij qij ) ∈ Mr×r (R). (2.21)

Theorem 2.3. If (A,B, z) and U are given, then

T̂
(

B
(
(A,B, z); U

))= T
(

B(A,B, z)
) ◦ (E4 ⊗ U), (2.22)

where ◦ and ⊗ is the Hadamard product and Kronecker product in Definition 2.2, respectively,
E4 = (eij ) ∈ M4×4(R) with eij = 1 for all i, j , is the full matrix.

Proof. Let the transition matrix T̂ = (t̂pq) ∈ M16×16(R), rewriting t̂pq = t̂ij ;kl , where

i =
[
p − 1

4

]
+ 1, j = p − 4(i − 1), k =

[
q − 1

4

]
+ 1,

and l = q − 4(j − 1). By (2.16) and (2.18), t̂pq = t̂ij ;kl = tij ;kl · ukl is obtained. This completes
the proof. �
2.1.4. Patterns generation

This subsection introduces the patterns generation problem induced by (A,B, z). Some re-
sults of patterns generation problem induced by (A, z) must be recalled before stating the main
theory [18]. The basic set of admissible local patterns B(A, z) ≡ B is then determined once (A, z)

is given. The shift space generated by B, denoted by Σ(B), is given by

Σ(B) = {
y = (yi)i∈Z ∈ {+,−}Z: yi−1yiyi+1 ∈ B for all i ∈ Z

}
. (2.23)

The shift space Σ(B) is thus a subshift of finite type for all B = B(A, z). Let Σn(B) denote the
set of n-blocks (i.e., the pattern with size n × 1) in Σ(B), and Γn(B) denote the number of the
set of n-blocks. The theorem follows below [18].

Theorem 2.4. If B = B(A, z) is given, T is the transition matrix induced by B, then Γn(B) =
|Tn−2| for all n ∈ N, n � 3, where |T| ≡∑

1�i,j�k |tij | for all T = (tij ) ∈ Mk×k(R).

Consider (A,B, z) with B 	= 0, let B(A,B, z) ≡ B denote the basic set of admissible local
patterns, Σn(YU ) denote the set of n-blocks in YU , i.e.,

Σn(YU) =
{

y = (yi)
n
i=1 ∈ {+,−}Zn×1 : ∃u = (ui)

n
i=1 ∈ {+,−}Zn×1

such that y � u ∈ Σ (B)

}
, (2.24)
n
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Fig. 2.2. The basic set of patterns for some templates A,B, z and input U .

and Γn(YU ) denote the number of n-blocks of output patterns generated by B. Theorem 2.4 is
invalid in general for deriving the precise value of Γn(YU ) for n ∈ N. An example is given below.
Appendix A explains the theorem in detail.

Example 2.5. Let A = [al, a, ar ],B = [bl, b, br ] satisfy the following conditions:

(i) al > bl > ar > b > br > 0.
(ii) al + b > ar + bl + br , al + br > bl + b.

(iii) bl + b > al > ar + b + br .
(iv) ar + b > bl + br , bl > ar + br , ar > b + br .

The positions of �+
i and �−

j on the (a − 1, z) plane are determined exactly as in Appendix A.

Given region R = [23,18], i.e., R is bounded by �+
23, �

+
24, �

−
18 and �−

19, and the set of input patterns
is given by U = {− + −,− + +,+ − +}. Thus, Fig. 2.2 illustrates the basic set of admissible
local patterns B = B((A,B, z); U ).

According to Theorem 2.3, the transition matrix of B((A,B, z); U ) is

T̂ = T̂
(

B
(
(A,B, z); U

))=

⎛
⎜⎜⎝

T̂11 T̂12 0 0

0 0 0 T̂24

T̂31 0 0 0

0 0 T̂43 T̂44

⎞
⎟⎟⎠ ,

where

T̂11 = T̂12 = T̂43 = T̂44 =
⎛
⎜⎝

0 0 0 0
0 0 1 1
0 1 0 0
0 0 0 0

⎞
⎟⎠ , T̂31 =

⎛
⎜⎝

0 0 0 0
0 0 1 1
0 0 0 0
0 0 0 0

⎞
⎟⎠ ,

T̂24 =
⎛
⎜⎝

0 0 0 0
0 0 0 1
0 1 0 0
0 0 0 0

⎞
⎟⎠ .

From the transition matrix, the output patterns {− + +,+ + −,+ − −} exist. By the concept
of subshift of finite type, the output pattern − + + − − is admissible. However, there exists
no u1u2u3u4u5 ∈ Σ5(U ) such that − + + − − � u1u2u3u4u5 ∈ Σ5(B). This finding shows that
the inner structure needs to be considered. More precisely, since T̂24T̂43T̂31 = 0, no input could
possibly produce the output pattern − + + − −.
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So far, this work has shown that Γn(YU ) 	= |T̂n−2| in general, since different input patterns
might have the same output pattern. To overcome this difficulty, the next subsection introduces
the concept of sofic shift in the symbolic dynamical system.

2.2. Definition and background of sofic shifts

This subsection recalls some definitions and main results of sofic shifts. Lind and Marcus has
described sofic shifts in detail [18].

Definition 2.6. A labeled graph G = (G, L) consists of an underlying graph G with edge set E ,
and the labeling L : E → A assigns to each edge a label from the finite alphabet A. A sofic shift
is defined by X = XG for some labeled graph G .

Definition 2.7. A labeled graph G = (G, L) is right-resolving if, for each vertex of I of G, the
edges starting from I carry different labels. In other words, G is right-resolving if, for each I , the
restriction of L to EI is one-to-one, where EI consists of those edges starting from I .

The following theorem shows that every sofic shift has a right-resolving presentation. The
method for finding an explicit right-resolving presentation is called the subset construction
method.

Subset construction method. Let X be a sofic shift over the alphabet A having a presentation
G = (G, L) so that X = XG . If G is not right-resolving, then a new labeled graph H = (H, L′) is
constructed as follows.

The vertices I of H are the nonempty subsets of the vertex set V (G) of G. If I ∈ V (H) and
a ∈ A, let J denote the set of terminal vertices of edges in G starting at some vertices in I and
labeled a, i.e., J is the set of vertices reachable from I using the edges labeled a. There are two
cases.

1. If J = ∅, do nothing.
2. If J 	= ∅, J ∈ V (H) and draw an edge in H from I to J labeled a.

Carrying this out for each I ∈ V (H) and each a ∈ A produces the labeled graph H. Then, each
vertex I in H has at most one edge with a given label starting at I . This implies that H is
right-resolving.

Theorem 2.8. Let G = (G, L) be a labeled graph which is not right-resolving, H = (H, L′) be a
right-resolving labeled graph constructed under the subset construction method. Then XG = XH,
i.e., G and H present the same shift space.

2.3. Entropy and zeta function

This subsection investigates the entropy and zeta function for the global set of output patterns
using the concepts of sofic shifts.
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Fig. 2.3. The labeled graph of CNN with input.

2.3.1. Sofic shift
This subsection shows that the output space of one-layer CNN with input is a sofic shift.

For a given basic set B, the transition matrix T is defined as (2.15)–(2.17). Let the alphabet
S = {sij }1�i,j�4, where

sij = ar1r2ar ′
2r3

, (2.25)

arkrk+1 is defined in (2.9), and

r1 =
[
i − 1

2

]
, r2 = i − 1 − 2r1, r ′

2 =
[
j − 1

2

]
, r3 = j − 1 − 2r ′

2. (2.26)

By (2.10), sij = ∅ if r2 	= r ′
2. The symbolic transition matrix is defined as

S = (sij Tij )1�i,j�4 = (sij tij ;kl) ∈ M16×16(R), (2.27)

where sij tij ;kl = ∅ if sij = ∅ or tij ;kl = 0. Rewrite S = (s̃pq), where s̃pq = sij tij ;kl for

p = 4(i − 1) + k, q = 4(j − 1) + l.

Let GT be the underlying graph induced by T with edge set

E = {epq : tpq = 1, 1 � p,q � 16},

and the labeling L : E → S defined by L(epq) = sij . GS = (GT, L) is thus a labeled graph as in
Fig. 2.3. By (2.25), a word si i si i in S Z can be defined by si i si i = ar r ar r ar r . The edge
1 2 2 3 1 2 2 3 1 2 2 3 3 4
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shift with alphabet S is defined by

XGS =
{

(· · · si−1i0si0i1si1i2 · · ·) ∈ S Z: there exists (· · · k−1k0k1 · · ·)
such that tij ij+1;kj kj+1 	= 0 for all j ∈ Z

}
. (2.28)

The following theorem is thus obtained.

Theorem 2.9. X = XGS is a sofic shift.

The relationship between output space YU and induced sofic shift XGS is then investigated.

Definition 2.10. Let A, U be finite alphabets, X be a shift space over A, Bk(X) denote the
set of k-blocks that occur in points in X, Φ : Bm+n+1(X) → U be a block map. Then the map
φ : X → U Z defined by y = φ(x) with

yi = Φ(xi−m · · ·xi−1xixi+1 · · ·xi+n) = Φ(x[i−m,i+n])

is called the sliding block code with memory m and anticipate n induced by Φ .

Let Σ3(YU ) be the set of 3-blocks in YU as in (2.24). A block map Φ : Σ3(YU ) → S is thus
defined by

Φ(yiyi+1yi+2) = sΨ (yiyi+1)Ψ (yi+1yi+2), (2.29)

where Ψ (yiyi+1) = 1 +ϕ(yi+1)+ 2ϕ(yi) and ϕ is defined by ϕ(+) = 1 and ϕ(−) = 0. Then the
map φ : YU → S Z defined by

φ(· · ·y−1y0y1 · · ·) = (· · · si−1i0si0i1si1i2 · · ·) (2.30)

with sikik+1 = Φ(yikyik+1yik+2) is a sliding block code from YU to XGS .

Definition 2.11. Let φ : X → Y be a sliding block code, then φ is a conjugacy if φ is invertible.
It is also called X is conjugate to Y.

Theorem 2.12. (See [18].) If a sliding code is one-to-one and onto, then it is a conjugacy.

The conjugacy between YU and XGS can be proved now.

Theorem 2.13. Given a basic set B, the transition matrix T and the output space YU are then
obtained. Let GS = (GT, L) be the labeled graph induced by B, then YU is conjugate to XGS

under the sliding block code φ defined in (2.30).

Proof. It suffices to prove that φ is one-to-one and onto. If there exist x 	= y ∈ YU such that
φ(x) = φ(y), without loss of generality, assuming that there is a number n such that xn 	= yn and
xi = yi for all i < n. This means that at state xn−1 = yn−1 and xn−2 = yn−2,

Ψ (xn−1xn) = 1 + ϕ(xn−1) + 2ϕ(xn) 	= 1 + ϕ(yn−1) + 2ϕ(yn) = Ψ (yn−1yn).
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Therefore,

Φ(xn−2xn−1xn) = sΨ (xn−2xn−1)Ψ (xn−1xn) 	= sΨ (yn−2yn−1)Ψ (yn−1yn) = Φ(yn−2yn−1yn).

This contradicts to φ(x) = φ(y). Thus, φ is one-to-one.
For every s = (· · · si−1i0si0i1si1i2 · · ·) ∈ XGS , by (2.28) there exists a sequence

(· · · k−1k0k1 · · ·) such that tij ij+1;kj kj+1 	= 0 for all j ∈ Z. By (2.16), the related pattern

· · ·xi−1i0;k−1k0xi0i1;k0k1xi1i2;k1k2 · · · is admissible, i.e.,
· · ·ar−1ar0ar1 · · ·
· · ·as−1as0as1 · · · is admissible. By the def-

inition of output space (2.14), the pattern · · ·ar−1ar0ar1 · · · ∈ YU . Moreover, by the relation in
(2.12),

ik = 1 + rk+1 + 2rk, and rk =
{

1, if ar0 = +,

0, if ar0 = −.

Hence, there exists · · ·ar−1ar0ar1 · · · ∈ YU such that φ(· · ·ar−1ar0ar1 · · ·) = s. This shows that φ

is onto, and the proof is completed. �
2.3.2. Entropy

Let Σn(YU) ⊆ {+,−}Zn×1 denote the set of n-blocks in YU as in (2.24). The spatial entropy
of YU is defined by

h(YU ) = lim
n→∞

logΓn(YU )

n
, (2.31)

where Γn(YU ) is the cardinal number of Σn(YU). Example 2.5 demonstrates that Theorem 2.4
is invalid in computing the spatial entropy of YU . However, Theorem 2.13 shows that the output
space YU is conjugate to the sofic shift XGS . The entropy of YU can be computed by the following
theorems show in [18].

Theorem 2.14. (See [18].) If two shift spaces X and Y are conjugate, then h(X) = h(Y).

Theorem 2.15. (See [18].) Let G = (G, L) be a labeled graph. If G is right-resolving, then
h(XG ) = h(XG).

Theorem 2.16. For YU is given, GS is the sofic shift induced by YU . If GS is right-resolving, then
h(YU ) = logρ(T), where ρ(T) denotes the maximal eigenvalue of T.

Proof. Since YU is conjugate to XGS , and GS is right-resolving, by Theorems 2.14, 2.15, and
Perron–Frobenius theorem,

h(YU) = h(XGS) = h(XT) = logρ(T). (2.32)

This completes the proof. �
In general, GS induced by YU(B) might not be right-resolving. However, a sofic shift

H = (H, L′) which is right-resolving can be constructed and still conjugate to YU(B) via the
subset construction method stated in Section 2.2. Thus Theorem 2.16 can be extended to the
general case.
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Fig. 2.4. A right-resolving labeled graph via subset construction.

Theorem 2.17. For a given B ⊆ {−,+}Z3×2 , let YU ≡ YU(B) be the shift space induced by B.
Then there exists a labeled graph representation H = (H, L′) such that

h(YU) = h(XH) = logρ(H). (2.33)

Proof. For the admissible local patterns B given, let T and the labeled graph representation
GS be defined as above. If GS is already right-resolving, then it is done. If not, using subset
construction method, there is a labeled graph representation H such that XGS = XH and is right-
resolving. Note that the underlying graph and transition matrix of H, H and H, are also derived.
Moreover, by Theorems 2.8 and 2.13, YU is conjugate to XH. Thus, by Theorem 2.16, h(YU) =
h(XH) = logρ(H). �
Example 2.18 (Continued). Let (A,B, z) be the same as in Example 2.5, S = {s11, s12, s24, s31,

s43, s44}, by (2.27), the symbolic transition matrix is

S =

⎛
⎜⎜⎝

s11T11 s12T12 0 0

0 0 0 s24T24

s31T31 0 0 0

0 0 s43T43 s44T44

⎞
⎟⎟⎠ . (2.34)

Then, the labeled graph representation of B, GS = (GT, L), is not right-resolving. For simplic-
ity, denote the vertex set of GT by V = {1,2, . . . ,16}. Use the subset construction method
to construct another labeled graph H = (H, L′) as in Fig. 2.4. Theorem 2.8 shows that
XG = XH.
S
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The transition matrix of XH is obtained as below:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.35)

Thus, h((A,B, z); U ) = logλ > 0, where λ
.= 1.324718 is the root of f (t) = t6 − 2t4 +

t2 − 1.

In the next subsection, the zeta function of YU will be discussed.

2.3.3. Zeta function
Given a sofic shift YU with shift map σ , invariant values and invariant functions of the shift

space (YU ,σ ) are interested. In the last subsection, the entropy h(B) is studied. This subsection
examines the zeta function ζσ (t) with respect to the shift map σ .

Let pn(σ ) = {y = (yi)i∈Z ∈ YU | σn(y) = y} be the collection of all periodic patterns of
period n. The zeta function of σ is defined as

ζσ (t) = exp

( ∞∑
n=1

pn(σ )

n
tn

)
, (2.36)

where exp(x) =∑∞
n=0

xn

n! is the classical exponential function.
If a shift space X is a shift of finite type, then there is an edge shift XA conjugate to X. The

following theorem computes the zeta function of any shift of finite type.

Theorem 2.19. (See [18].) Let A be a k × k nonnegative integer matrix, σA the associated shift
map. Then

ζσA
(t) = 1

det(Ik − tA)
, (2.37)

where Ik is the k×k identity matrix. Thus the zeta function of a shift of finite type is the reciprocal
of a polynomial.

The following notations are needed to investigate the zeta function of sofic shift. Let
F = {f1, f2, . . . , fm} be a finite set. A permutation π of F is given below as an impression
(fi , . . . , fim), i.e., π(f�) = fi for 1 � � � m.
1 �
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Definition 2.20. A permutation π is said to be even (odd, resp.) if the number of interchanges
(or transpositions) needed to generate the permutation is even (odd, resp.) Moreover, the sign of
π is defined as

sgn(π) =
{

1, π is even,

−1, π is odd.
(2.38)

Let H = (H, L′) be a labeled graph which is right-resolving with r many vertices, assuming
that V = {1,2, . . . , r}. Let HS denote the symbolic transition matrix of H and H the transition
matrix of the underlying graph H .

For 1 � k � r , construct a labeled graph Hk with alphabet {±sij : sij ∈ S} as follows.

1. The vertex set of Hk is the set Vk of all subsets of V having k elements, i.e., |Vk| = (
r
k

)
.

Moreover, the ordering on the states in each element of Vk is fixed.
2. For each sij ∈ S , we denote sij (I ) the terminal state of sij starts at I . For I =

{I1, . . . , Ik}, J = {J1, . . . , Jk} ∈ Vk , there is an edge from I to J provided there exists
sij ∈ S such that sij (I1), . . . , sij (Ik) are well defined and (sij (I1), . . . , sij (Ik)) is a permuta-
tion of J . More than this, the edge is labeled as sij (−sij , resp.) if the permutation is even
(odd, resp.) Otherwise, there is no edge with label ±sij from I to J .

Definition 2.21. Let HSk
denote the symbolic transition matrix of Hk , Hk be obtained from HSk

by setting all the symbols in S equal to 1. We call Hk the kth signed subset matrix of H.

Theorem 2.22. (See [18].) Let H = (H, L′) be a right-resolving labeled graph with r many
vertices, and Hk be its kth signed subset matrix. Then

ζσH (t) =
r∏

k=1

det(I − tHk)
(−1)k , (2.39)

where I is the identity matrix.

Theorem 2.23. (See [18].) If two shift spaces X and Y are conjugate, then ζσX(t) = ζσY(t).

Therefore, the zeta function of the sofic shift XGS can be derived using the following theorem.

Theorem 2.24. For a given B ⊆ {−,+}Z3×2 , let YU ≡ YU(B) be the shift space induced by B
with shift map σ . Then there exists a labeled graph representation H such that

ζσ (t) =
n∏

k=1

det(I − tHk)
(−1)k , (2.40)

where Hk is the kth signed subset matrix of H, and n is the cardinal number of the underlying
graph H .
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Proof. Let GS be the labeled graph representation of YU , and XGS be the sofic shift induced by
GS with shift map σGS . By Theorem 2.13, XGS is conjugate to YU . Thus, we have

ζσ (t) = ζσGS
(t). (2.41)

If GS is right-resolving, then it is done by Theorem 2.22. Otherwise, construct a labeled graph
H which is right-resolving and represents the same shift space as GS via subset construction
method. This completes the proof. �
Example 2.25 (Continued). Continuing with Examples 2.5 and 2.18, for the investigation of
zeta function, all the kth signed subset matrix Hk of H are needed to be constructed. Therefore,
H1 = H as in (2.35),

H2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 −1 0 0 0 0 0
0 −1 −1 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 −1
0 0 0 0 0 0 −1 −1
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and H3 = H4 = · · · = H12 = 0, the zero matrix. Hence, by Theorem 2.22, ζσ (t) = (1+t)2

1−2t2+t4−t6 .

3. Multi-layer cellular neural networks

In this section, all results in one-layer CNN with input will be extended to multi-layer CNN.

3.1. Partition of parameter space

As in (1.1), an N -layer CNN system with input is of the form

dx
(n)
i

dt
= −x

(n)
i +

∑
|k|�d

a
(n)
k y

(n)
i+k +

∑
|k|�d

b
(n)
k u

(n)
i+k + z(n), (3.1)

for some d ∈ N, 1 � n � N ∈ N, i ∈ Z, where

u
(n)
i = y

(n−1)
i for 2 � n � N, u

(1)
i = ui, xi(0) = x0

i . (3.2)

The feedback and controlling templates of each layer are

A(n) = (
a

(n)
−d, a

(n)
−d+1, . . . , a

(n)
d

)
and B(n) = (

b
(n)
−d , b

(n)
−d+1, . . . , b

(n)
d

)
,

where 1 � n � N . The parameter space and the admissible local patterns of each layer can
be represented by P (n) = {(A(n),B(n), z(n))} and B(n)(A(n),B(n), z(n)), where 1 � n � N .
Let A = (A(1),A(2), . . . ,A(N)), B = (B(1),B(2), . . . ,B(N)), z = (z(1), z(2), . . . , z(N)), P m =
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(P (1), P (2), . . . , P (N)), where m = N(2d + 1) − 1, Y (n) = y
(n)
−dy

(n)
−d+1 · · ·y(n)

d , where 1 � n � N ,
and U = u−du−d+1 · · ·ud , then

B(A,B, z) =
{

Y (N) � Y (N−1) � · · · � Y (1) � U :

Y (n) � Y (n−1) ∈ B(n) for 2 � n � N, and Y (1) � U ∈ B(1)

}
, (3.3)

where � is defined in (2.4). The generalized partition theorem of N -layer CNN then follows.

Theorem 3.1. There exist K(m) ∈ N and unique collection of open subsets {Pk}K(m)
k=1 of P m such

that

(i) P m =⋃K(m)
k=1 P k ;

(ii) Pk ∩ Pj = ∅ for k 	= j ;
(iii) B(A,B, z) = B(Ã, B̃, z̃) ⇔ (A,B, z), (Ã, B̃, z̃) ∈ Pk for some k.

Proof. For simplicity, the case N = 2 is proved. The general case can be done analogously, the
details are omitted here.

By Theorem 2.1, there exist Ki ∈ N and a unique collection of open subsets {P (i)
k }Ki

k=1 of P (i)

such that

(1) P 4d+3
(i) =⋃Ki

k=1 P
(i)
k ;

(2) P
(i)
k ∩ P

(i)
� = ∅ for k 	= �;

(3) B(i)(A(i),B(i), z(i)) = B(i)(Ã(i), B̃(i), z̃(i)) if and only if

(
A(i),B(i), z(i)

)
,
(
Ã(i), B̃(i), z̃(i)

) ∈ P
(i)
k for some k,

where i = 1,2.

Let K ′ = K1 · K2, define P ′
k = (P

(1)
k1

,P
(2)
k2

), where k = (k1 − 1)K2 + k2, 1 � k1 � K1, 1 �
k2 � K2. Let

P1 = P ′
i , where i = min

{
k
∣∣ there exist Y (2) � Y (1) ∈ B(2) and Y (1) � U ∈ B(1)

}
, (3.4)

and

P� = P ′
i , where i = min

k>k�−1

{
k
∣∣ there exist Y (2) � Y (1) ∈ B(2) and Y (1) � U ∈ B(1)

}
, (3.5)

for � � 2 and kj ∈ N such that P ′
kj

= Pj . Then there exists a positive integer K � K ′ such that

{Pk}Kk=1 satisfies (i)–(iii), then the proof is completed. �
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3.2. Ordering matrix

The ordering matrix X3×N of all possible local patterns in {+,−}Z3×N is defined recursively
as

X3×N =

⎡
⎢⎢⎣

X11 X12 ∅ ∅
∅ ∅ X23 X24

X31 X32 ∅ ∅
∅ ∅ X43 X44

⎤
⎥⎥⎦ , (3.6)

where

Xi1j1 =

⎡
⎢⎢⎣

Xi1j1;11 Xi1j1;12 ∅ ∅
∅ ∅ Xi1j1;23 Xi1j1;24

Xi1j1;31 Xi1j1;32 ∅ ∅
∅ ∅ Xi1j1;43 Xi1j1;44

⎤
⎥⎥⎦ , (3.7)

Xi1j1;i2j2;...;ikjk

=

⎡
⎢⎢⎣

Xi1j1;i2j2;...;ikjk;11 Xi1j1;i2j2;...;ikjk;12 ∅ ∅
∅ ∅ Xi1j1;i2j2;...;ikjk;23 Xi1j1;i2j2;...;ikjk;24

Xi1j1;i2j2;...;ikjk;31 Xi1j1;i2j2;...;ikjk;32 ∅ ∅
∅ ∅ Xi1j1;i2j2;...;ikjk;43 Xi1j1;i2j2;...;ikjk;44

⎤
⎥⎥⎦ ,

(3.8)

for 1 � k � N − 2, and

Xi1j1;i2j2;...;iN−1jN−1

=

⎡
⎢⎢⎣

xi1j1;...;iN−1jN−1;11 xi1j1;...;iN−1jN−1;12 ∅ ∅
∅ ∅ xi1j1;...;iN−1jN−1;23 xi1j1;...;iN−1jN−1;24

xi1j1;...;iN−1jN−1;31 xi1j1;...;iN−1jN−1;32 ∅ ∅
∅ ∅ xi1j1;...;iN−1jN−1;43 xi1j1;...;iN−1jN−1;44

⎤
⎥⎥⎦ ,

(3.9)

where 1 � ik , jk � 4, and 1 � k � N . The construction contains a self-similarity property in
X3×N . As in Section 2.1.2, xi1j1;i2j2;...;iN−1jN−1;iN jN

means the pattern

(ar11r12ar ′
12r13

) � (ar21r22ar ′
22r23

) � · · · � (arN1rN2ar ′
N2rN3

)

in {+,−}Z3×N , where ark1rk2ar ′
k2rk3

is defined in (2.10), and

rk1 =
[
ik − 1

]
, rk2 = ik − 1 − 2rk1, r ′

k2 =
[
jk − 1

]
, rk3 = jk − 1 − 2r ′

k2.
2 2



J.-C. Ban et al. / J. Differential Equations 246 (2009) 552–580 571
The pattern is ∅ if ark1rk2ar ′
k2rk3

= ∅ for some 1 � k � N . Otherwise, it is denoted by the pattern

(ar11ar12ar13) � (ar21ar22ar23) � · · · � (arN1arN2arN3)

in {+,−}Z3×∞ .
As long as the basic set of the admissible local patterns B ⊆ {+,−}Z3×(N+1) is given, Σm(B)

denotes the collection of all m-blocks generated by B. The subshift space of {+,−}Z is then
defined by

YU =
{

Y (N) = (y
(N)
i )i∈Z: there exist U,Y (1), Y (2), . . . , Y (N−1)

such that Y (N) � Y (N−1) � · · · � Y (1) � U ∈ Σ(B)

}
, (3.10)

where Σ(B) ⊆ {+,−}Z∞×(N+1) is generated by B ⊆ {+,−}Z3×(N+1) .

3.3. Transition matrix

The basic set of admissible local patterns B = B(A,B, z) can be determined from the N -layer
CNN parameters (A,B, z). Denote by Tn the transition matrix induced by B(n) ⊆ {+,−}Z3×2 ,
where B(n) is the basic set of admissible local patterns in the nth layer, and 1 � n � N . Let
T̂N = T(B; U ) be the transition matrix induced by B with the set of input patterns U . The fol-
lowing theorem is then obtained.

Theorem 3.2.

T̂N = (TN ⊗ E4N−1) ◦ (E4 ⊗ TN−1) ∈ M4n+1×4n+1(R), (3.11)

where

Tn = (Tn ⊗ E4n−1) ◦ (E4 ⊗ Tn−1) ∈ M4n+1×4n+1(R) for 2 � n � N − 1, (3.12)

and

T1 = T1 ◦ (E4 ⊗ U) ∈ M16×16(R), (3.13)

U is the transition matrix of U . Hence T1 is the transition matrix given in Theorem 2.3.
In particular, if N = 2,

T̂2 = (T2 ⊗ E4) ◦ (E4 ⊗ (
T1 ◦ (E4 ⊗ U)

))
. (3.14)

Proof. For simplicity, the case N = 2 is proved. For N � 2, it can be done by mathematical
induction, thus is omitted.

Denote T̂2 = (T̂i1j1)1�i1,j1�4 and T2 = (Ti1j1)1�i1, j1�4, where T̂i1j1 ∈ M16×16(R) and
Ti1j1 ∈ M4×4(R) for 1 � i1, j1 � 4. The case i1 = j1 = 1 is proved, the others can be treated
analogously.

Denote T̂11 = (T̂11;i2j2)1�i2,j2�4, where T̂11;i2j2 = (t̂11;i2j2;i3j3)1�i3,j3�4 ∈ M4×4(R), for
fixed 1 � i2, j2 � 4, and T11 = (t11;i j )1�i ,j �4 ∈ M4×4(R). Since the output patterns of the
2 2 2 2
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first layer will be treated as the input patterns of the second layer, let U2 be the output patterns of
the first layer coupled with input U . By Theorem 2.3, the transition matrix of U2 is

T1 = T1 ◦ (E4 ⊗ U) ∈ M16×16(R). (3.15)

Denote

T1 = (T i2j2)1�i2,j2�4, T i2j2 = (t i2j2;i3j3)1�i3,j3�4 ∈ M4×4(R). (3.16)

Then

t̂11;i2j2;i3j3 = 1 ⇔ t11;i2j2 = 1 and t i2j2;i3j3 = 1, (3.17)

for 1 � i2, j2, i3, j3 � 4. That is,

T̂11 = (T11 ⊗ E4) ◦ (T1 ◦ (E4 ⊗ U)
)
. (3.18)

The proof is completed. �
3.4. Entropy and zeta function

This subsection introduces the formula for calculating entropy and zeta function of N -layer
CNN. Let S (n) = {s(n)

ij }1�i,j�4 be the alphabets, and let Sn and S be the symbolic transition

matrices of Tn over S (n) and T̂N for 1 � n � N . By Theorem 2.9, XGSn
is a sofic shift induced

by B(n), where GSn
is the labeled graph representation of the nth layer. Furthermore, YU is the

output space induced by the N -layer CNN as defined in (3.10). The following theorem can be
obtained by the same method in Theorem 2.13, so the details are omitted.

Theorem 3.3. YU is conjugate to XGS .

The definition of convolution is given below.

Definition 3.4. Let X,Y be two shift spaces with graph representation GX = (VX, EX),
GY = (VY, EY), resp., then the convolution of X,Y, denoted by X ∗ Y, is the shift space with
underlying graph GX∗Y = (VX∗Y, EX∗Y), where

VX∗Y = {
f (x) ∈ EY

∣∣ x ∈ VX
}

(3.19)

for some f : VX → EY.

The convolution theorem for an N -many sofic shift is then obtained.

Theorem 3.5. Let XGS be the sofic shift induced by B, then

XG = XG ∗ · · · ∗ XG ∗ XG (3.20)
S SN S2 S1
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is the convolution of XGS1
, . . . ,XGSN

,

ŜN = (SN ⊗ E4N−1) ◦ (E4 ⊗ SN−1), (3.21)

where

Sn = (Sn ⊗ E4n−1) ◦ (E4 ⊗ Sn−1) ∈ M4n+1×4n+1(R) for 2 � n � N − 1, (3.22)

and

S1 = S1 ◦ (E4 ⊗ U) ∈ M16(R). (3.23)

Proof. This can be done using the same method used in the proof of Theorem 3.2, the details are
omitted. �

Thus, the theorems for entropy and zeta function can be found via the same methods as de-
scribed in the last section.

Theorem 3.6. For a given B ⊆ {+,−}Z3×(N+1) , let YU ≡ YU(B) be the shift space induced by B.
Then there exists a labeled graph representation H = (H, L′) such that

h(YU ) = h(XH) = logρ(H), (3.24)

and

ζσ (t) =
r∏

k=1

det(I − tHk)
(−1)k , (3.25)

where Hk is the kth signed subset matrix of H, and r is the cardinal number of the underlying
graph H .

An example for 2-layer CNN is illustrated here.

Example 3.7. Consider (A,B, z) with A(1) = A(2) ≡ A, B(1) = B(2) ≡ B , z(1) = z(2) ≡ z, and
A, B and z satisfy the same condition described in Example 2.5. Moreover, the set of input
patterns is given by U = {− + −,− + +,+ − +}. Then B(1) = B(A(1),B(1), z(1); U ) consists of
the following patterns:
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Denote U2 the output patterns of B(1), i.e.,

U2 = {− − −,− − +,+ − −,+ + +,+ + −,− + +}.

Then B(2) = B(A(2),B(2), z(2); U2) consists of the following patterns:

The transition matrix T̂ = T((A,B, z); U ) is then

T̂ =
⎛
⎜⎝

T̂11 T̂12 0 0
0 0 T̂23 T̂24

T̂31 0 0 0
0 0 T̂43 T̂44

⎞
⎟⎠ , (3.26)

where

T̂11 = T̂43 = T̂44 =
⎛
⎜⎝

T1 T1 0 0
0 0 0 T3
T2 0 0 0
0 0 T1 T1

⎞
⎟⎠ , T̂12 =

⎛
⎜⎝

T1 T1 0 0
0 0 0 T3
T2 0 0 0
0 0 0 0

⎞
⎟⎠ ,

T̂23 =
⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 T1 T1

⎞
⎟⎠ , T̂24 =

⎛
⎜⎝

0 0 0 0
0 0 0 T3
T2 0 0 0
0 0 T1 T1

⎞
⎟⎠ , T̂31 =

⎛
⎜⎝

T1 T1 0 0
0 0 0 T3
0 0 0 0
0 0 0 0

⎞
⎟⎠ ,

and

T1 =
⎛
⎜⎝

0 0 0 0
0 0 1 1
0 1 0 0

⎞
⎟⎠ , T2 =

⎛
⎜⎝

0 0 0 0
0 0 1 1
0 0 0 0

⎞
⎟⎠ , T3 =

⎛
⎜⎝

0 0 0 0
0 0 0 1
0 1 0 0

⎞
⎟⎠ .
0 0 0 0 0 0 0 0 0 0 0 0



J.-C. Ban et al. / J. Differential Equations 246 (2009) 552–580 575
Table 3.1
Some maximal eigenvalues produced in one-layer CNN with input

Maximal eigenvalue Characteristic polynomial

λ1 =2 t − 2
λ2

.=1.9479 t5 − 2t4 + t3 − 2t2 + t − 1
λ3

.=1.8832 t4 − 2t3 + t2 − 2t + 1
λ4

.=1.8393 t3 − t2 − t + 1
λ5

.=1.7549 t3 − 2t2 + t − 1
λ6

.=1.7417 t8 − 2t7 + t6 − t5 + t4 − 2t3 + t2 − 1
λ7

.=1.6992 t5 − 2t4 + t3 − 2t + 1
λ8 =g

.= 1.618 t2 − t − 1
λ9

.=1.5618 t6 − 2t5 + t4 − t2 + t − 1
λ10

.=1.5289 t5 − 2t4 + t3 − 1

Let S = {s11, s12, s23, s24, s31, s43, s44}, the symbolic transition matrix is

S =

⎛
⎜⎜⎝

s11T̂11 s12T̂12 0 0

0 0 s23T̂23 s24T̂24

s31T̂31 0 0 0

0 0 s43T̂43 s44T̂44

⎞
⎟⎟⎠ , (3.27)

which is not right-resolving. Using subset construction method, the spatial entropy then can be
found, h((A,B, z); U ) = logλ, where λ

.= 1.49676 is a root of f (t) = t8 − 2t6 + t4 − 3t2 − 1.
Moreover, the zeta function is

ζσ (t) = (1 + t + t3)(1 + t − t3)

1 − 2t2 + t4 − 3t6 − t8
.

3.5. The broken of symmetry

The basic set of admissible local patterns B can be determined from (A,B, z). The entropy
of each partition is symmetrical in one-dimensional CNN without input, i.e., where B ≡ 0 [15].
For example, if (A, z) is picked such that al > ar > 0, then parameters a and z have 25 regions.
Clearly,

h
(

B
([m,n]))= h

(
B
([n,m])) for 1 � m,n � 4. (3.28)

The symmetry is broken for the one-layer CNN with input, as shown below with an example.
Consider

dxi

dt
= −xi + alyi−1 + ayi + aryi+1 + blui−1 + bui + brui+1 + z, (3.29)

where bl = 0, then the symmetry of entropy is broken, as revealed in Fig. 3.1.



576 J.-C. Ban et al. / J. Differential Equations 246 (2009) 552–580
Fig. 3.1. The effect of input patterns. The parameters al, ar , b, br are considered as follows. (i) al > ar > b > br > 0,
(ii) al < b+br , (iii) al +br < ar +b. Subfigure (a) lists regions that produce positive entropy. Those regions with positive
entropy are symmetric, i.e., h([m,n]) = h([n,m]). However, such property would be destroyed when input patterns are
given. Subfigure (b) lists the same regions as in (a) but the input patterns U = {−−,−+,+−} are considered. It is seen
that the symmetry is no longer hold. Herein, ki = logλi for 1 � i � 10 are listed in Table 3.1.
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Appendix A

This appendix introduces in detail the relationship between the admissible local patterns and
the partition of parameter space in Example 2.5. A one-dimensional CNN with input is of the
form

dxi

dt
= −xi + alyi−1 + ayi + aryi+1 + blui−1 + bui + brui+1 + z, (A.1)

where A = [al, a, ar ],B = [bl, b, br ] represent the feedback and controlling templates, respec-
tively; y = f (x) = 1

2 (|x + 1| − |x − 1|) is the output function, and z is the threshold.
Consider that al , ar , bl , b, br satisfies the inequality in Example 2.5, i.e., the partition for the

parameter space {(al, ar , bl, b, br )} is chosen. For a given mosaic solution x, the state at cell Ci

is +, i.e., xi > 1, if and only if

a − 1 + z > −(alyi−1 + aryi+1 + bui + brui+1). (A.2)

Similarly, the state at cell Ci is −, i.e., xi < −1, if and only if

a − 1 − z > alyi−1 + aryi+1 + bui + brui+1. (A.3)

Let α = (al, ar ), β = (bl, b, br), V n = {v = (vi) ∈ R
n: |vi | = 1 for all 1 � i � n}, the basic set

of admissible local patterns with “+” state in the center is defined as

B(+,A,B, z) = {
v � w: a − 1 + z > −(α · v + β · w)

}
, (A.4)

where v ∈ V 2 and w ∈ V 3. Similarly, the basic set of admissible local patterns with “−” state in
the center is defined as

B(−,A,B, z) = {v′ � w′: a − 1 − z > α · v′ + β · w′}. (A.5)

Furthermore, the basic set of admissible local patterns derived from (A,B, z) is denoted by

B(A,B, z) = (
B(+,A,B, z), B(−,A,B, z)

)
. (A.6)

Let �+
i , �−

j denote the linear maps

a − 1 + z = c+
i and a − 1 − z = c−

j

for some c+
i , c−

j ,1 � i, j � 32, respectively. By the conditions (i)–(iv) in Example 2.5, the fol-
lowing relation can be obtained:

c−
1 < c−

2 < · · · < c−
16 < 0 < c−

17 < c−
18 < · · · < c−

32, (A.7)

and c− = −c+ ,1 � k � 32, where
k 33−k
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Fig. A.1. The (a − 1, z) bifurcation diagram.

c−
1 = −al − ar − bl − b − br , c−

17 = al − ar − bl + b − br ,

c−
2 = −al − ar − bl − b + br , c−

18 = al − ar − bl + b + br ,

c−
3 = −al − ar − bl + b − br , c−

19 = al + ar − bl − b − br ,

c−
4 = −al − ar − bl + b + br , c−

20 = −al + ar + bl + b − br ,

c−
5 = −al + ar − bl − b − br , c−

21 = al + ar − bl − b + br ,

c−
6 = −al + ar − bl − b + br , c−

22 = −al + ar + bl + b + br ,

c−
7 = −al − ar + bl − b − br , c−

23 = al − ar + bl − b − br ,

c−
8 = −al − ar + bl − b + br , c−

24 = al − ar + bl − b + br ,

c−
9 = −al + ar − bl + b − br , c−

25 = al + ar − bl + b − br ,

c−
10 = −al + ar − bl + b + br , c−

26 = al + ar − bl + b + br ,

c−
11 = al − ar − bl − b − br , c−

27 = al − ar + bl + b − br ,

c−
12 = −al − ar + bl + b − br , c−

28 = al − ar + bl + b + br ,

c−
13 = al − ar − bl − b + br , c−

29 = al + ar + bl − b − br ,

c−
14 = −al − ar + bl + b + br , c−

30 = al + ar + bl − b + br ,

c−
15 = −al + ar + bl − b − br , c−

31 = al + ar + bl + b − br ,

c−
16 = −al + ar + bl − b + br , c−

32 = al + ar + bl + b + br .

Fig. A.1 depicts a bifurcation diagram of the (a −1, z) parameter space. The basic set of admissi-
ble local patterns is then determined once the parameters a and z are chosen, i.e., some specified
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Fig. A.2. The order of the appearance of the patterns with state “+” in the center.

Fig. A.3. The order of the appearance of the patterns with state “−” in the center.

region in the bifurcation diagram is selected. More precisely, if a region [m,n] in the bifurcation
diagram has been chosen, then for y � u ∈ B(+,A,B, z), the admissible local pattern with state
“+” in the center, y � u satisfies the following inequalities:

a − 1 + z > −(α · y + β · u), (A.8)

c+
m < a − 1 + z < c+

m+1. (A.9)

Similarly, for y′ � u′ ∈ B(−,A,B, z), y′ � u′ satisfies the following inequalities:

a − 1 − z > α · y′ + β · u′, (A.10)

c−
n < a − 1 − z < c−

n+1. (A.11)

In other words, m patterns have the center state “+”, and n patterns have the center state “−”.
The chosen partition uniquely determines the order of those patterns. Fig. A.2 lists the order of
the patterns with “+” in the center. Fig. A.3 lists the order of the patterns with “−” in the center.
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