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ABSTRACT

A complete protein sequence usually determines a unique structure;
however the situation is different for shorter subsequence. Studies found
that both designed and nature.occurring subsequences may have different
secondary structures in different contexts: This feature of short sequence
is called “chameleon” which was first reported by Kabsch and Sander
when they used sequence-homology to predict protein structures. They
found that several pentapeptides which have identical sequence adopt
different secondary structures in different protein structures. For nature
occurring proteins, systematic search on PDB shows that identical
subsequences could have very different conformations. Here we
developed a method to compute structure conservation from protein
sequence. During protein folding process, there are some structured
regions which are similar to folded conformation. Hydrogen isotope
exchange (HX) rate is usually used to identify those structured regions.
We applied this method to a set of proteins with known HX rate data and
found a strong correlation between structure conservation and slow HX
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rate.

One of the most important topics in biological science is to
understand the protein function. It is well-known that protein dynamics is
closely related to the function of protein. Several computational methods
have been developed to get the protein dynamics. Molecular dynamics
(MD) simulation has been widely used in the study of protein function
and dynamics. It simulates the interactions between each atom, bonding
force, van der Waals force, charge-charge interaction, etc. The
computation time is extremely long when the size of the protein is large
and the selection of appropriate parameters of force field itself is a
complicated problem. Gaussian network -model (GNM) transfers the
protein structure“into a network it Which each Ca atoim pair is connected
together if their distance is smaller than a given,cutoff value. Using this
protein-convérted network, GNM can.compute the theéretical thermal
fluctuation of each atom and correlation of motions between each atom
pair. Recently we have /developed a model to predict the thermal
fluctuation from protein structure, which is called: protein-fixed-point
(PFP) model. The PEP model only uses the coordinates of Co atoms and
simply determines the center of mass of the-protein. We found that the
thermal fluctuation is proportional to the squared distance from the atom
to the center of mass of the structure. Another model called weighted
contact number (WCN) model computes the number of neighboring
atoms weighted by the inverse distance between each atom pair. The PFP
and WCN model show that the protein dynamics can be extracted directly
from the intrinsic property of protein structure without the use of any
mechanical model. The order parameter obtained by the NMR experiment
is widely used to study the dynamic-related protein functions. Here, we
use the PFP and WCN model to predict the N-H S* order parameter
directly from the protein structure. Our results show that the WCN model
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can more accurately reproduce the experimental order parameter than

previous publication.

The biological function of proteins is closely related to cooperative
motions and correlated fluctuations which involve large portions of the
structure. Normal Mode Analysis (NMA) had been used to study
biomolecules since early 1980s. It decomposes the protein dynamics into
a collection of motions which include large scale/low frequency and
small scale/high frequency motions. Biologists usually focus on the large
scale/low frequency motions which are relevant to protein functions. The
major contribution of NMA to the biological research field is the ability
to provide the information of large, domain-scale protein motions which
is hard to compute by other methods. The classical approach of NMA is
to diagonalize the Hessian matrix, i.e. the sécond derivative of the
potential function of a molecular dynamics (MD) simulation. The major
shortcoming of the classical NMA:isthat th¢ sampling time increases
dramatically“with the size of'the protein. The Elastic Network Model
(ENM), whichis able to-describes protem dynamics; without amino acid
sequence and atemic coordimates, has been widely used in the studies of
protein dynamics and structure-function relationship. The ENM views the
protein structure as an elastic network, [the nodes of which are the Ca
atoms of individual residues. Residue pairs within a cutoff distance are
connected by springs which have a uniform force constant in the network.
Based on ENM, a coarse-grained version of NMA is developed and
widely used because of its low computation cost and the ability to extend
the dynamics to longer timescale and larger motions. The coarse-grained
NMA had been applied to various topics, for example, protein functions
and catalytic residues. One of the most widely used ENM-based methods
is the Gaussian network model (GNM). The protein-fixed-point (PFP)
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model is a simple method to compute the protein dynamics only using the
coordinates of Ca atoms. Despite its simplicity, it has been shown to be
able to accurately predict the B-factors for a dataset of 972 proteins. Here,
we compared the results of NMA based on the PFP model with those by
Gaussian network model (GNM).

--vil



R e m#p Wk 4R X EF >
B PR

KX B = F BB R
£ Rhidc oo foit 1 AHA P TS Y AR e
Bl o R Foaptfpr g Eh X KA FIF T - 2 M oorrt
g ehd Firs B BAPRE B o6 hfle o i A X
PR REREF BT R R K A

v 7 &gk 2 op

SEES B Sam

é‘miﬂ fr’i—f?ﬂﬂ
RS RS EoE R SR

/./ E{EL} Eﬁél("\-' m%fl’

\-u

LRS!

- F Ee s 5 F sy
\g;g\

- §

BREER - AME L O T H L ﬁ%«pm—, = gfﬂ,%frgé o

B PRAT S 5 S R0 B R F K P R g 7
g LA FI T PR B T e &

] B B T - B A
e i B A B e ¥ BT P T A B RHT %R E
B 5 RS U A IR BN e R
Wh \geg \—};ﬁix,]\‘f‘\‘\ A

K: ANV A
s

™E

BT TE R R A edE )

PR RS PR - 4 R OB
ﬁﬁmﬁ@fﬁ%ﬁ’&gﬁﬁg‘m‘ﬁ AR

AT k)
/)vi g%\-” 34—\. ]Fa.i NET

Hrs et X b g B A F £ en
F s im’%W£in%*%\¢¢m F A =
Fl I ;E %% - i— ~N ;J: l}i ~N /J\ 72

) R R P e

B kop L AR AR B E

K

ol A

s

_l‘
BE R R B Rk 0§ § o) T K R Aok < o R

--viii



AR BEY TP R A
R RS A AR

Fos - B X

i R o PR Y Tl R )

-Ix



Index
Tables
Figures

Abbreviations

Chapter 1

1.1
1.2
1.3
1.4
Chapter 2

2.1
2.2
2.3
24
Chapter 3
3.1
3.2
33
3.4
Appendix

B

D
E
References

........................................................................ i
........................................................................ v
........................................................................ viil
........................................................................ X
........................................................................ X1
........................................................................ xii
........................................................................ X1v
Computation of Conformational Entropy from Protein

Sequence

INtrodUCHION. .. .. . e de 5 it e e e e eeeeee et 1
Methods. . g T Tl e ... 4
Resultgs Wil - . . "l e .. 10
DISCUSSION. ...ttt ettt e e B e e, 28
NMR Order Parameter Prediction, Using Protein-fixed-point
Model and Weighted"Contact Number Model

INEroduction .......cie i e e 30
NGt h GO T e o . Sl 34
1 | T o o - By ... 36
Discussion .. ....ee it 47
Normal Moede Analysis by the Protein-fixed-point Model

IGO0 CtiOTEE. R B .. -t . . . ...l 49
VepthiGits . W X, I, . W 51
ResSUltS. cun e 53
DISCUSSION. et e ettt et e et e, 64
........................................................................ 67
........................................................................ 68
........................................................................ 69
........................................................................ 71
........................................................................ 72
........................................................................ 77



Table 1
Table 2
Table 3

Table 4
Table 5

Tables

The predicted backbone N-H order parameters computed

with the WCN, PFP, CM, and rCENM...................ooail. 36
The Pearson correlation coefficient between the correlation

maps computed by the PFP model and the GNM............... 53
RS126 dataset......c..vvvveiiiiiiiiiiiiiiiiiii e 67
Hydrogen exchange dataset....................coooiiiiiein... 68

Normal mode analysis dataset................ccooeeiiiinnann... 71

- Xl



Figure 1

Figure 2

Figure 3

Figure 4
Figure 5

Figure 6
Figure 7

Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Figure 13
Figure 14

Figure 15
Figure 16

Figure 17
Figure 18

Figure 19
Figure 20
Figure 21

Figure 22
Figure 23

Figures

The AVLAE sequence (red color) forms an a-helix in potassium
channel (right, 1BL8) but forms a B-sheet in a transposase inhibitor
(Ieft, IBTE) . i
Flowchart of conformational entropy calculation from protein
1T 18 1S) 0 Lo
Maximum-margin hyperplanes for a SVM trained with samples from
two classes. Samples along the hyperplanes are called the support
VECTOTS. oottt e
Conformational entropy profile of hen egg-white lysozyme..............
Spatial distribution of residues with the slowest exchanging protons
(blue) and the lowest conformational entropy (red) on the ribbon
diagram of hen egg-white lysozyme.................c.oooiii
Conformational entropy profile of chymotrypsin inhibitor 2.............
Spatial distribution of residues with the slowest exchanging protons
(blue) and-the lowest conformational entropy (red) on the ribbon
diagram of chymotrypsininhibitor 2. ... .o i e covii e,
Conformational entropy profile of cytochrome €...................... ...
Spatial distribution of residues-with the slowest exchanging protons
(blue) and the Towest conformational entropy (red) on the ribbon
diagram of CytoChTOME C.....vvvve il
Conformational entropy profile of.each unfolding unit'of cytochrome
¢ and the corresponding average values..........................oooeenl .
Conformational entropy profile of barnase.............00............... ...
Spatial distribution-of residues with the-slowest exchanging protons
(blue) and the lowest conformationalentropy (red) on the ribbon
diagram of barnase. ... ... e
Conformational entropy profile of a-lactalbuming.........................
Spatial distribution of residues with the slowestexchanging protons
(blue) and the lowest conformational-entropy (red) on the ribbon
diagram of a-lactalbuminzessst oo
Conformational entropy profile of CTX II.................coooiiiiiint,
Spatial distribution of residues with the slowest exchanging protons
(blue) and the lowest conformational entropy (red) on the ribbon
diagram of CTX IIL......coiii e,
Conformational entropy profile of ribonuclease H ........................
Spatial distribution of residues with the slowest exchanging protons
(blue) and the lowest conformational entropy (red) on the ribbon
diagram of ribonuclease H...............cooooiiiiiiiiiiiiien,
Conformational entropy profile of BPTI.................oot,
Spatial distribution of residues with the slowest exchanging protons
(blue) and the lowest conformational entropy (red) on the ribbon
diagram of BPTL.......oooiiii e
Superposition of apo Aquifex Adk (red) and Aquifex Adk in complex

Predicted and experimental order parameter of BARK1 PH domain....
Predicted and experimental order parameter of Calbindin................

--Xii

11
12

13

14

15

16
18



Figure 24
Figure 25

Figure 26
Figure 27

Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33

Figure 34

Figure 35

Figure 36

Figure 37

Figure 38
Figure 39

Figure 40

Predicted and experimental order parameter of Cold-shock protein A
from E-COli.... ..o
Predicted and experimental order parameter of Frenolicin acyl carrier
0001731 D PP
Predicted and experimental order parameter of Lysozyme...............
Predicted and experimental order parameter of SH2 domain of p85
subunit of phosphoinositide 3-kinase..............ccccoviiiiiiiiiinnin....
Predicted and experimental order parameter of Ubiquitin.................
Predicted and experimental order parameter of Ketosteroid isomerase.
Predicted and experimental order parameter of 4-oxalocrotonate
TAULOMETASE. ..o eve it
Predicted and experimental order parameter of Interleukin-4............
The correlation maps of (a) Prot-glu methylesterase (1RPT), (b)
Ribonuclease T2 (1BOL), and (¢) Uridine nucleosidase (1EUG)
computed:with.the PFP model (left) and GNM (right), respectively....
Distribtition of displacements along the first mode, second mode, and
third. mode computed for thiol-endopeptidase (ORAP)..........cccccceeneeee.
The.regions subject to opposite direction displacements computed by
the PFP model (left) andsthe GNM (right) of (a) theifirst mode, (b) the
second mode, and (c¢):the third' mode for thiol-endopeptidase (9PAP)...
Ribbon diagram colored blue-yellow-red in the ordef'of increasing
mobility along the first mode of the PFP model (left) and GNM

Distribution of displacements along the first mode, second mode, and
third mode computed for G/11 xylanase (IBVV)......i.ooiiiiiii
The regions subject toroppositerdirection’displacements computed by
the PFP model (left) and the GNM (right) of (a) the first mode, (b) the
second mode, and (c) the third mode for G/11 xylanase (IBVV)..........
The displacements of actinidin (1AEC) subject to opposite directions
along the fistmoede. ...l
Ribbon diagram of actinidin ‘colored blue-yellow-red in the order of
increasing mobility along the/first mode.........................
The flowchart of computing normal mode motions by PFP model and

-xiii

58



Chapter 1
BLAST
BPTI

CI2

HEWL

HX
PSI-BLAST
PSSM
RNaseH
SVM

Chapter 2

CM

CspA
Frendicin ACP
GNM

MD

PFP

rCENM

WCN

Chapter 3
ENM
GNM
MD
NMA
PEFP

Abbreviations

Basic local alignment search tool
Bovine pancreatic trypsin inhibitor
Chymotrypsin inhibitor 2

Hen egg-white lysozyme

Hydrogen exchange
Position-specific iterative BLAST
Position-specific substitution matrix
Ribonuclease H

Support vector machine

Contact model

Cold-shock protein A

Frendicin acyl carrier protein

Gaussian network model

Molecular dynamics

Protein-fixed-point

Reorientational contact-weighted elastic network model

Weighted contact number

Elastic network model
Gaussian network model
Molecular dynamics
Normal mode analysis

Protein-fixed-point

-X1v



CHAPTER ONE

Computation of Conformational Entropy

from Protein Sequence

Introduction

A complete protein sequence usually determines a unique structure;
however the situatien is different for shorter subsequence. Studies'* on both
designed and mnature occurring subsequences found: that they may have
different secondary structures in' different contexts. This feature of short
sequence is called “chameleon” which.was first reported by Kabsch and
Sander! using sequence homology ‘to predict protein structures. They found
that several pentapeptides which~havevidentical' sequence adopt different
secondary structures.in different protein structures: For nature occurring
proteins, systematic{search!?* on PDB° shows that identical subsequences
could have very different” conformations. For example, the pentapeptide
AVLAE forms an a-helix in a potassium channel but forms a -sheet in a
transposase inhibitor (Figure 1.1). Following the observation of Kabsch and
Sander!, Cohen et al.® discovered eight pairs of hexapeptides sequences which
adopt a-helix in one protein and (-strand in the other using a larger protein

dataset.



subsequence was

conformations.

However, some of the shorter subsequences are able to form unique
conformation in different contexts. In the case of subsequence AALAE, the
conformation remains the same a-helix in different proteins. This property of
structural conservation or variability is determined by the local and non-local

interactions.



Here we developed a method to compute structure conservation from
protein sequence. The main idea is to predict, for each residue, the
possibilities distribution of each secondary structure type. Based on the
distribution, a conformational entropy value is computed for each residue
and is assumed to be related to the structural conservation. The low
conformational entropy parts indicate highly structural conserved regions.
During protein folding process, there are some structured regions which is

similar to folded conformation”!’. Hydrogen isotope exchange (HX) rate!'% is

usually used to identify those s 4 Ne applied this method to a
set of proteins with

between structut



Methods

Overview

The structure conservation (conformational entropy) of each residue is
calculated from predicted secondary structure distribution from protein
sequence. We use the evolutionary information'from PSI-BLAST™ as training
data of support vector machine (SVM) to predict the secondary structure

distribution. Figiare 1.2 shows the flowchart of our method:

Input sequence
Probabilities of secondary structures
|:> Support Vector |:> Helix : 0.7
Machine Sheet : 0.2
Turn: 0.1

T g

Computation of conformational entropy

Training Dataset N
RS126 S, ==Y p,logp,
J

AAAmMmorm<k<mrCr>»0OM>

Figure 1.2 Flowchart of conformational entropy calculation from protein sequence.



The Support Vector Machine

The idea of support vector machine method (SVM)® is to find the
separating hyperplane with largest distance between two classes. However in
many cases, the data can not be separated linearly. To solve this problem,
SVM uses kernel functions to nonlinearly transform the input space into
higher dimensional feature space, and the data may be well separated in the

higher dimensional space.

Consider the data points of the form: (x1, c1), (X2, €2), ..., (Xn, cn) where the
ci is the class to which the data point Xi belongs (either 1 or'-1 in this example).
Each xi is a n-dimensional vector of input training data which we would like
SVM to distinguish, by means of the dividing hyperplane, which takes the

form
Wx X +=b.=0 (1.1)

We want this hyperplane to have maximum.distance (called margin) to

the closest data points from both classes, as shown'in figure 1.3.

Figure 1.3 Maximum-margin hyperplanes for a
SVM trained with samples from two classes.
Samples along the hyperplanes are called the

support vectors.




The maximum-margin hyperplane can be defined by finding the parallel
hyperplanes closest to the support vectors in either class. These parallel
hyperplanes can be described by equations

wxXx—-b=1

1.2
WxX—b=-1 (12)

We would like these hyperplanes to have maximum distance from the

dividing hyperplane and no data points between them. To exclude data points,

(1.3)
or

(1.4)
We can rewrite;

(1.5)
So we want to maximize the perplanes (2/lw!) subject

to the constraint (1.5). After training, we can use SVM to classify test data

points by following decision rule

(1.6)

I, if wxx+b=>0
-1, if wxx+b<0

SVM had been successfully applied to secondary structure prediction'®®,
solvent  accessibility = prediction!’, fold assignment®?!,  subcellular

localization?>? and other computation biology problems??. In this work, the



software package LIBSVM? was used.

Computation of Conformational Entropy

The conformational entropy of each residue is calculated from predicted
secondary structure distribution from protein sequence. We use the
evolutionary information from PSI-BLAST as training data of SVM to predict

the secondary structure distribution.
PSI-BLAST

BLAST (Basic local alignment search tool) is used to search similar
sequences of a query sequence from a large database. The algorithm will find
subsequences of the query resemble tosthe subsequences of database.
PSI-BLAST (Position-specific iterative BLAST) is developed.to find distant
homologues. After the first round of BLAST search, sequences which are
similar to the query sequence_are collected.and: combined into a profile. This
profile is called position=specific substitution matrix (PSSM) and is used as
query in the second round of search against the database. The rebuilding of
profile and searching procedure is then repeated. PSSM contains the
information of relate sequences and is more sensitive in finding distant relate

sequences.
Secondary structure definition

In this work, the secondary structure is defined by DSSP? program. DSSP
assigns secondary structures of a given 3D structure according to the atom

coordinates and hydrogen bonding patterns. Eight classes of secondary



structures are defined in DSSP

« H= a-helix
e B=residueinisolated S-bridge

o E=extended strand, participates in S ladder

e G =23/10 helix

o I= 7-helix

o T=hydrogen bonded turn
e S=bend

e U =undefined

Conformational entropy calculation

We compute the probability distribution of the secondary structure by
SVM. The inputs of SVM are in the form of W * 20 PSSM profiles, where W is
the sliding window size. The sliding’winhdow is used to include the
information of neighboring residues on sequence. In the work, window size is
chosen to be 15. PSSM profile is obtained aftér 3 iterations of PSI-BLAST
search against a non-redundant database with the E-valuesthreshold set to 1 *

1073.

Each element in PSSM profile represents the score of a particular residue
substitution at that position. These elements are usually in the range +7 and

are normalized to the range [0, 1] by the following function

0.0 ifx<-5
7(X)=10.5+0.1x if-5<x<5 (1.7)
1.0 if x>5



where x is the original matrix element value. The output of SVM for the target
residue is an eight-element vector O = (01, 02, ...,0s), where oi is the decision
value of secondary structure type i. The output of SVM does not give the
probability for each classification, so we use a function [arctan(oi)+7t] to
transform the decision value to probability in the range [0, 1]. With P=(ps,
p2, ..., ps), where pi is the probability of secondary type i of target residue, we

calculate conformational entropy by the following equation
N
Sii= _z Pjj log Pij (1.8)
i

where Si is the conformational entropy of residue i, and pixis the probability of
residue i classified to be secondany type j.| N .is the number of secondary

structure types:

Training Dataset

We train SVM using ‘a standard non-redundant dataset RS126%, with
sequence identity less than 25% over a length of more than 80 residues. See

appendix A for more detail.



Results

Hen egg-white lysozyme

Hen egg-white lysozyme (HEWL) contains two sub-domains: the
a-domain which has four a-helices (A, B,'Csand D), two 310 helices, and the
B-domain composed: of three B-strands. Hydrogen. exchange study® on
HEWL showed that the slowest exchange amide protons are located in the
a-domain: helix A (M12), helix B (W28-A31), and helix C/(A95, K96, 198); and

the next slowest in strand 33 (I58).

0.9

0.7 -

0.3

Conformational entropy

-0.1 . |
1 31 61 91 121

Residue number

Figure 1.4 Conformational entropy profile of hen egg-white lysozyme. Residues with the

slowest exchanging protons (blue) and the lowest conformational entropy (red) are labeled.
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Figure 1.4 shows the conformational entropy profile of HEWL. The
lowest entropy regions are A11-K13 (helix A), W28-K33 (helix B), and
N93-V99 (helix C), respectively. These amino acids overlap with the slow
exchange amide protons in helices A, B, and C. Note the residues in helix D
(V109-R114) have relatively higher entropy. This result is supported by the
experiment that amino acids in helix D have much higher amide exchange
rate. Figure 1.5 is the ribbon diagrams of HEWL colored by low

conformational entropy and slow exchange regions.

Figure 1.5 Spatial distribution of residues with the slowest exchanging protons (blue) and the

lowest conformational entropy: (red) on the ribbenrdiagram of hen egg-white lysozyme.
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Chymotrypsin inhibitor 2

Chymotrypsin inhibitor 2 (CI2) is a monomeric protein of 64 residues and
folds by simple two-state kinetics. The only well developed region during
intermediate state is an N-terminal a-helix and some distant residues in
sequence which contact with it. The a-helix packs with the B-sheet to form the
hydrophobic core. Studies®*2 showed that the slowest exchange-rate residues
are located in the C-terminus of the a-helix (I20-121) and the central strand of
B-sheet (V47, L49-V51); the other slowest exchange amide protons are K11([32),

130 and L32 (B3).

e
~
I

0.5 -

0.3 -

0.1 ~

Conformational entropy

-0.1 . .
1 31 61

Residue number

Figure 1.6 Conformational ‘entropy profile-of.chymotrypsin inhibitor 2. Residues with the

slowest exchanging protons (blue) and the lowest conformational entropy (red) are labeled.

Figure 1.6 shows that most residues having the lowest conformational
entropy overlap with those of the slowest hydrogen exchange rates, except
K11. Most of them are on the a-helix, 3-strands 3 and 4. Figure 1.7 compares
the spatial distribution of the lowest conformational entropy and the slowest

exchange-rate regions on ribbon diagram of CI2.

12



Figure 1.7 Spatial distribution of residues with the slowest exchanging protons (blue) and the

lowest conformational entropy (red) on the ribbon diagram of chymotrypsin inhibitor 2.
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Cytochrome c

Hydrogen exchange study® shows that the slowest exchanging amide
protons are located in the three major helical segments of cytochrome c. F10

(N-helix) and L94-K99 (C-helix) carry the slowest exchanging amide protons.
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Figure 1.8 Conformational entropy profile of cytochrome c. Residues” with the slowest

exchanging protons (blue) and the lowest conformational entropy (red) are labeled.

Figure 1.8.shows the conformational entropy profile of cytochrome c.
[9-V11 and D93-L98 are the residues having:the lowest'entropy values which
match the slowest €xchanging residues on N-helix'and C-helix suggested by
experiment. Note that the 60’s helix also has relative low entropy values. This
is consistent with the experimental results that the next slowest exchanging
amide protons are located in the 60’s helix. Figure 1.9 shows the spatial
distribution of residues with the slowest exchanging protons and the lowest

conformational entropy on ribbon diagram of cytochrome c.
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Figure 1.9 Spatial distribution of residues with the slowest exchanging protons (blue) and the

lowest conformational entropy (red) on the ribbon diagram of cytochrome c.
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Equilibrium Protein Folding

Cytochrome c is a good model system in studies®? of protein folding
and unfolding. Under native conditions, most proteins exist in their unique
native conformation. However some of them also exist in higher energy states
and continue to cycle through totally unfolded states and partially folded
states. These non-native forms are usually hard to be detected because of the
abundant native conformational signals. Hydrogen exchange experiment can
be used to detect these partially folded conformations and define the

unfolding units of proteins.

Through HX studies®3,~there are four cooperativé unfolding units
defined in cytochrome c: the blue bi-helix'(B), the green € loop and the 60’s
helix (G) , the“yellow (Y) and the red QJoop (R) in the order of decreasing
unfolding free energy. These unfolding units may define the folding and
unfolding pathways of | cytochrome e by forming various intermediates

through different combinations.
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Figure 1.10 Conformational entropy profile of each unfolding unit of cytochrome c and the

corresponding average values.
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Figure 1.10 shows the conformational entropy profile of each unfolding
unit and the corresponding average values. Unit B has the lowest average
conformational entropy, unit G has second lowest entropy, and then Y, and R.
The order of increasing conformational entropy follows the order of

decreasing unfolding free energy.
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Barnase

Barnase has three a-helices and a five-stranded [(3-sheet. The first helix
packs onto the (3-sheet to form the major hydrophobic core of the protein. The
second and the third a-helices pack onto another side of the (3-sheet to form a

smaller hydrophobic core.
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Figure 1.11 Conformational entropy profile of barnase. Residues with the.slowest exchanging

protons (blue) and'thellowest conformational entropy. (red).are labeled.

Figure 1.11 "“shows .the conformational entrepy . profile of barnase.
Previous study®® showed that.L.14, 125, A74; L89 and Y97 have the lowest
exchange rates. L14 on the first a-helix and 125, A74 ad L89 on the [(3-sheet are
located in the major hydrophobic core of the protein. Y97 is in the center of
the smaller hydrophobic core formed by the two smaller helices and part of
the (-sheet. Figure 1.12 shows the spatial distribution of residues with the
slowest exchanging protons and the lowest conformational entropy on the

ribbon diagram of barnase.
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Figure 1.12 Spatial distribution of residues with the slowest exchanging protons (blue) and

the lowest conformational entropy (red) on the ribbon diagram of barnase.
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a-Lactalbumin

a-lactalbumin is a calcium-binding protein which consists of a (-sheet
domain and a a-helical domain. The helical domain is composed of four
helices: helix A (C6-E11), helix B (P24-534), helix C (D87-D97) and helix D
(D102- L105). Previous studies®* showed that in the helical domain, the
C-helix is the most protected, having the lowest exchanging rate, followed by

the B and then the A-helix.
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Figure 1.13 Conformational entropy profile of a-lactalbumin:’Residues with the slowest

exchanging protons (blue)and the lowest conformational entropy (red) are labeled.

Figure 1.13 shows the profile of the conformational entropy. The residues
in C-helix have the lowest conformational entropy and the residues which
have second lowest conformational entropy are located in helix B and helix A.
The regions which have low conformational entropy are consistent with those
having slow exchanging rate’*#. Note that a previous study* showed that
helix D exchanges too fast and the exchanging rates are not measurable. Our
calculation also indicates that helix D has high conformational entropy. Figure

1.14 shows the spatial distribution of residues with the slowest exchanging
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protons and the lowest conformational entropy on the ribbon diagram of

a-lactalbumin.
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Cardiotoxin III

Cardiotoxin III (CTX III) is a 60-amino acid, all B-sheet protein. The
secondary structure of CTX III includes five B-strands forming double and
triple-stranded anti-parallel B-sheets. Hydrogen exchange study* on CTX III
showed that residues K23, 139, and Y51-N55 constitute the hydrophobic

cluster of the protein.
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Figure 1.15 Conformational entropy profile of CTX III. Residues with the slowest exchanging

protons (blue) and the lowest conformational entropy (red) are labeled.

Figure 1.15 shows: the conformational.entropy profile of CTX III. Our
calculation of low conformational ‘entropy residues covers most of the slow
exchange residues (Y22-M24, V52). Figure 1.16 shows the spatial distribution
of residues with the slowest exchanging protons and the lowest

conformational entropy on the ribbon diagram of cardiotoxin III.
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Figure 1.16 Spatial distribution of residues with the slowest exchanging protons (blue) and

the lowest conformational entropy (red) on the ribbon diagram of CTX III.
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Ribonuclease H

Ribonuclease H (RNaseH) is a 155-residue protein with four a-helices
packing with a five-stranded B-sheet. A previous study** showed that helix A

(T43-L56) and helix D (V101-L111) are the most stable regions in the protein.
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Figure 1.17 Conformational entropy profile of ribonuclease H. Residues with the slowest

exchanging protons (blue) and the lowest conformational entropy (red) arelabeled.

Figure 1.17"shows the conformational:entropy profile ‘of RNaseH. The
slowest exchanging_ residues are L49-153 and A55-Li56 which are located on
helix A. The conformational entropies of 149-V54 are the lowest from our
calculation. L107 on helix D" also" has slow exchanging rate and its
conformational entropy is relative low. Figure 1.18 shows the spatial
distribution of residues with the slowest exchanging protons and the lowest

conformational entropy on the ribbon diagram of RNaseH.
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Figure 1.18 Spatial distribution of residues with the slowest exchanging protons (blue) and

the lowest conformational entropy (red) on the ribbon diagram of ribonuclease H.
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Bovine pancreatic trypsin inhibitor

Bovine pancreatic trypsin inhibitor (BPTI) is a 58-residue protein
composed of two a-helices and a two-stranded anti-parallel [(3-sheet.
Hydrogen exchange study* showed that the slowest exchanging residues are

R20-Y23, Q31, F33, and F45.
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Figure 1.19 Conformational entropy prefilerof BPTL. Residues with the-slowest exchanging

protons (blue) and'thellowest conformational entropy.(red).are labeled.

Figure 1.19 'shows, the conformational entropy profile of BPTI. The
residues with the lowest confoermational entropy.are 118-F22 and C30-V34
which are located on the two (-strands. The slow exchanging residues and
low conformational entropy residues overlap well. Figure 1.20 shows the
spatial distribution of residues with the slowest exchanging protons and the

lowest conformational entropy on the ribbon diagram of BPTIL
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Figure 1.20 Spatial distribution of residues with the slowest exchanging protons (blue) and

the lowest conformational entropy (red) on the ribbon diagram of BPTI.
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Discussion

We developed a method to compute structure conservation from protein
sequence. The basic idea is to know whether the secondary structure of a
residue is predictable from its context.. Although chameleon sequences are
usually thought to be.ja problem in the prediction of secondary structures
using sequence homology'**, we instead use this kind of property to develop
our method tojcompute structure conservation. The residual property of the
predictabilitysis quantified to a value, the: conformational entropy. The
secondary structure of the structure-conserved residues cam be predicted
more easily than that of the |structurally variable residues. Asja consequence,

the structure-conserved residués have lower:conformational entropy.

We applied our. method to a set -of proteins with known
hydrogen-exchange rate data and found ‘a strong correlation between
structure  conservation and slow hydrogen-exchange rate. The
hydrogen-exchange rates are measurement of the exchanging rate of
backbone amide protons. They are involved in the formation of secondary
structures and related to the local structure stability. For example, in the
typical 4-helices, strong hydrogen bonds are formed between the backbone
oxygen atom of residue i and the backbone nitrogen atom of residue i+3. The
atoms which are located in rigid environment or involving in more

complicated hydrogen-bond networks are usually observed to have slow
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hydrogen-exchange rates. Our results show that these atoms are more

structurally conserved.

Our method only considered the local interactions. On the other hand,
structure conservation is also affected by long-range interactions. It would be
interesting to know how long-range interactions contribute to the property of

structure conservation. In addition to secondary structures, there are other

attributes of protein structure can be used to describe the structure
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CHAPTER TWO

NMR Order Parameter Prediction Using
Protein-fixed-point Model and Weighted Contact Number Model

Introduction

One of the fnost importantytopics in biological sciencé is to understand
the protein funétion. It is well-known that protein dynamics‘is closely related
to the function of protein. For example, the Aquifex adenylate kinase changes
its conformation for the phosphotransfer function. Figure 2.1 shows the
structure of the protein | before (red) and-after(green) the conformational
change. The two'lids must clese to exclude bulk water.from the active site and

to bring the substratelinto position for phosphotransfer:

Figure 2.1 Superposition of apo Aquifex
Adk (red) and Aquifex Adk in complex

(green)
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The advance of X-ray diffraction technology gives us the information
about how the protein moves, i.e. B-factor or temperature factor, in the
experiment environment. However, the development of computational

theories to predict protein dynamics directly from structure is still needed:

1. Only a small fraction of protein structures are solved (52013 solved
structures in PDB?® due to July 31, 2008).
2. The X-ray B-factors are heavily affected by the experimental conditions:

temperature, solvent,or biological unit.

Several computational -methods. have been developed.to determine the
protein dynamics. Molecular dynamics (MD) simulation has been widely
used in themstudy ‘of protein function-and dynamics. Itssimulates the
interactions bétween each| atom, ‘bonding force, van der Waals force,
charge-charge interaction, etc, The computation time is extrémely long when
the size of the protein is large and the selection of-apprepriate parameters of
force field itself is a complicated. problem. Gaussian network model (GNM)*
transfers the protein structure into a network in which each Ca atom pair is
connected together if their distance is smaller than a given cutoff value. Using
this protein-converted network, GNM can compute the theoretical thermal
fluctuation of each atom and the correlation of motions between each atom
pair. Recently we have developed a model to predict the thermal fluctuation
from protein structure, which is called protein-fixed-point (PFP) model*. The
PFP model only uses the coordinates of Ca atoms and simply determines the

center of mass of the protein. We found that the thermal fluctuation is
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proportional to the squared distance from the atom to the center of mass of
the structure. Another model called weighted contact number (WCN) model*
computes the number of neighboring atoms weighted by the inverse distance
between each atom pair. The PFP and WCN models show that the protein
dynamics can be extracted directly from the intrinsic property of protein

structure without the use of any mechanical model.

The order parameter according to the NMR experiment is widely used to
study the dynamic-related protein functions: Zhang and Brushweiler*® used a
contact model to predict the order parameter from protein structure. They
expressed the backbone .S’ order parameter as a function of close contacts
between the amide proton-and the‘carbonyl oxygen, of the preceding amino

acid and the surrounding protein atoms, i.e.,

S? = tanh[a(X e "0+ g )]+ 2.1)

where 17, is the distance,between the carbonyl oxygen ofiresidue i—1 and
heavy atom k and! 't is.the distance between the amide proton and heavy
atom k. The parametera, £ and y were determined empirically and p is
set to 1 A. We will refer to this method the contact model (CM). Though Eq.
2.1 is quite simple, it predicts quite accurate order parameters. Later, to take
into account of motional correlation effects, Bruschweiler and coworker
developed a hybrid between the CM and the elastic network model (ENM)
H¥referred to as reorientational contact-weighted elastic network model

(tCENM)®.

Here, we use the PFP and WCN model to predict the N-H $? order

parameter directly from the protein structure. Our results show that the WCN
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model can more accurately reproduce the experimental order parameter than

the previous published results.
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Methods

Protein-fixed-point Model (PFP)

Let Xo be the center of mass of the protein,

;mkxk

X, (2.2)

where mr and X« position of atom k,

respectively. The er of mass of the
protein is com

(2.3)

Each protein o n by (1, 3, ,

1¥), referred as th is directly related to

the predicted order para ine the computed order

arameter S® to lying between 0 and 1, we apply the hyperbolic tangent
p ymng ppPly ypP g

function to .

S’ ~1-tanh’r’ (2.4)

We will refer this method as the protein-fixed-point (PFP) model.
Weighted-Contact Number Model (WCN)

We define the weighted protein contact number as
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v, = ZN:I/ ry (2.5)

IEdl

where 1; is the distance between Co atoms of residue i and j. This equation

defines the number of neighboring Co atoms surrounding that of the i

residue -- the contribution of each surrounding atom j to the central atom i is

scaled down by the factor 1/r;. In order to confine the computed order

parameter S° to lying between 0 and 1, we apply the hyperbolic tangent

function to v,.
S’ ~ tanh® v, (2.6)

We will refer this method-as-the 'weighted protein contact-number (WCN)

model.
Dataset

We used therdatasets of . Zhang and_Bruschweiler® "and Ming and
Bruschweiler®. However, ‘ouridataset ‘is' not completely identical with the
original one, since we' deleted some of the order parameters that are not
consistent with those of ‘the original dataset, and we also added some new
ones from current literatures. Our current dataset is larger than the original
dataset and comprises BARK1 PH domain (1BAK), calbindin (4ICB), CspA
(BMEF), frenolicin acyl carrier protein (10R5), lysozyme (1JEF), P85a SH2
domain (1BFJ), ubiquitin (1UBQ), ketosteroid isomerase (8CHO), tautomerase

(40TA), and interleukin-4 (1HIK).
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Results

We computed S* values for the following proteins: BARK1 PH domain
(IBAK), calbindin (4ICB), CspA (3MEEF), frenolicin acyl carrier protein (10R5),
lysozyme (1JEF), P85_SH2 domain (1BFJ]), ubiquitin (1UBQ), ketosteroid
isomerase (8CHO), tautomerase (4OTA), and interleukin-4 (1HIK). Table 2.1
summarizes the Pearson.cotrelation coefficients,between the experimental
and the computed ;N-H S* order parameters by the WCN, PFP, CM, and

rCENM.

Table 2.1 The experimental backbene-N-H-order parameter'data: BARK 1 'PH.domain’', Calbindin®,
CspA™, Frenolicin acyl carrier protein®!, Lysozyme™, P85a/SH2 domain-of phosphoinostide 3-kinase™,
Ubiquitin®” , Ketosteroid isomerase’®, Taotomerase”’; and’ Interleukin-4°. * The average correlation

coefficient over the 7 structures for WCN, PFP, €M and rCENM!'are 0.82, 0574, 0.73 and 0.81,

respectively.

Protein PDB WCN PFP CM rCENM
BARK1 PH domain 1BAK 0.83 0.83 0.53 0.84
Calbindin 41CB 0.75 0.79 0.65 0.72
CspA 3MEF 0.78 0.74 0.71 -
Frenolicin acyl carrier protein 10R5 0.85 0.81 0.89 0.87
Lysozyme 1JEF 0.83 0.76 0.72 0.68
P85a SH2 domain 1BF] 0.86 0.76 0.79 --
Ubiquitin 1UBQ 0.96 0.92 0.96 0.97
Ketosteroid isomerase 8CHO 0.82 0.75 0.57 0.78
Taotomerase 40TA 0.51 0.28 0.44 -
Interleukin-4 1HIK 0.71 0.57 0.81 0.81
Average 0.79 0.72 0.71 --*

The average correlation coefficient of WCN model is 0.79, while that of the
CM is 0.71. The average correlation coefficient of rCENM is 0.81 (for the 7

available proteins), while that of WCN is 0.82. In general, the WCN model
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performs better than the CM, except two cases, 10R5 and 1HIK. The results of
WCN is comparable to the rCENM, however, there is no available software
for rCENM which can be used to make a complete comparison. The following
sections discuss each case in the dataset.

BARK1 PH domain

SARK1 PH domain has the same topology as other PH domains, which are
characterized by several f-strands forming a f-sandwich flanked on one
side by an extended C-terminal a-helix that behaves as a molten helix”'. The
Pearson correlation coefficient between the computed N-H order parameter
Swcy and the experimental one S;,. is 0.83. Figure 2.2 shows the
experimental and predicted order parameters for SARK1 PH domain by

using WCN, CM, and PFP models.
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Figure 2.2 Upper part: computed S2 values of WCN model (solid line) and CM (dotted line)
and experimental S? values (circle). Lower part: computed S? values of PFP model (solid line)

and experimental 52 values (circle).
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Calbindin

Calbindin Do is composed of four a-helices, the N-terminal (E17-524) and
C-terminal Ca*-binding loops (D54-562), and the linker loop. Our prediction
correctly identifies the most mobile linker loop and the C-terminal
Ca*-binding loop which have significant lower S? values. The rigid helical
regions are also predicted to have higher order parameters. The experimental
data does not produce the S* value of the residue P20 on the N-terminal
Ca*-binding loop because of the limit of NMR relaxation experiment.
However P20 shows higheritemperature factor than its neighboring residues
in the X-ray ', which is consistent with our prediction. Despite the missing
data of P20, thelcorrelation coefficient is still high (r=0.79): Figure 2.3 shows
the experimental and predicted order parameters for calbindin by using WCN,

CM, and PFP'model.

10 Calbindin

1 31 61
Residue number

Figure 2.3 Upper part: computed S2 values of WCN model (solid line) and CM (dotted line)
and experimental S? values (circle). Lower part: computed S? values of PFP model (solid line)

and experimental S? values (circle).
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Cold-shock protein A from E-coli

Cold-shock protein A from E-coli (CspA) * is a Greek-key B-barrel protein.
The segment of residues N39 to Y42 between two 3-strands is identified to be
partially disordered in the crystallization environment”. Our method
successfully predicts it to be the most mobile region in the protein except the

N-terminal loop. However there is an disagreement between the predicted

value and the experimental value on residue D46 (S : 0.58, S, : 0.84) which

exp*
did not fit well with any model in the NMR experiment™. The correlation
coefficient increases to 0.78 (from r=0.74) if the data, of residue D46, which is
less reliable, is removed. Figure 2.4 shows the ‘experimental and predicted

order parameters for CspA by using WCN, CM, and PFP model.
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Figure 2.4 Upper part: computed 52 values of WCN model (solid line) and CM (dotted line)
and experimental S? values (circle). Lower part: computed S? values of PFP model (solid line)

and experimental S? values (circle).
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Frenolicin acyl carrier protein

Frendicin acyl carrier protein (frendicin ACP)* is comprised of a three-helix
bundle structure and have a high correlation coefficient between prediction
and experiment (r=0.81). The average value of the order parameters of the
three helices is 0.844, which is consistent with our prediction having high S
values. We also correctly predict that the C-terminal residues and the long
loop (G17-D23) connecting two helices have the first and second lowest
average S* values respectively (0.358 and 0.492). Figure 2.5 shows the
experimental and predicted order parameters for frendicin ACP by using

WCN, CM, and PFP model.
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Figure 2.5 Upper part: computed S2 values of WCN model (solid line) and CM (dotted line)
and experimental S? values (circle). Lower part: computed S? values of PFP model (solid line)

and experimental 52 values (circle).
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Lysozyme

The correlation coefficient of the prediction for lysozyme™ is 0.83. The order
parameter of residue P70 located on the most flexible loop is not available
from NMR relaxation. According to the X-ray structure of lysozyme, P70 has
the sixth highest temperature factor (28.37) in the whole protein® (the four
residues having the highest temperature factors are on the C-terminal region).
Our prediction also shows that P70 is the most flexible except a few residues
located on the C-terminal. Figure 2.6 shows the experimental and predicted

order parameters for lysozyme by using WCN, CM, and PFP model.
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Figure 2.6 Upper part: computed 52 values of WCN model (solid line) and CM (dotted line)
and experimental S? values (circle). Lower part: computed S? values of PFP model (solid line)

and experimental S? values (circle).
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SH2 domain of p85a subunit of phosphoinositide 3-kinase

The SH2 domain of the p85a subunit of phosphoinositide 3-kinase contains
111 residues forming a structure with 3 a-helices and a 3-strand anti-parallel
B-sheet. The correlation coefficient between the experimental value and
predicted value of WCN model is 0.86, which is higher than that of the PFP
model (r=0.76) and the CM (r=0.79). Figure 2.7 shows the experimental and
predicted order parameters for the protein by using WCN, CM, and PFP
model. The result for this protein predicted with the WCN model is basically

excellent.
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Figure 2.7 Upper part: computed S2 values of WCN model (solid line) and CM (dotted line)
and experimental S? values (circle). Lower part: computed S? values of PFP model (solid line)

and experimental S? values (circle).
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Ubiquitin

Ubiquitin®’ is a small single-domain protein with 76 residues containing both
an «-helix and a pB-sheet. The agreement between S, and S;, of
ubiquitin is excellent (r=0.96). Figure 2.8 shows the experimental and
predicted order parameters for ubiquitin by using the WCN, CM, and PFP
model. The CM and PFP model also yield excellent results with correlation

coefficients of 0.96 and 0.92, respectively.
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Figure 2.8 Upper part: computed S2 values of WCN model (solid line) and CM (dotted line)
and experimental S? values (circle). Lower part: computed S? values of PFP model (solid line)

and experimental S? values (circle).
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Ketosteroid isomerase

The ketosteroid isomerase is a 125-residue protein comprising 2 a-helices and
2 anti-parallel B-strands. The correlation coefficient between experimental
value and predicted value of the WCN model is 0.82, which is higher than
that of the PFP model (r=0.43) and CM (r=0.57). Figure 2.9 shows the
experimental and predicted order parameters for ketosteroid isomerase by
using the WCN, CM, and PFP model. Both the PFP and WCN model predict
the Y88-K92 region to be flexible (even the CM). The region is actually an
isolated loop connecting.two B-strands. The reason for the disagreement
between experimental and -predicted value may be that the protein forms a
dimer under experimental condition and the loop is located and stabilized at
the interface between two subunits.
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Figure 2.9 Upper part: computed S2 values of WCN model (solid line) and CM (dotted line)
and experimental S? values (circle). Lower part: computed S? values of PFP model (solid line)

and experimental 52 values (circle).
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4-oxalocrotonate tautomerase

The 4-oxalocrotonate tautomerase is a homohexamer with 62 residues per
unit, consisting of an a-helix, 2 B-strands, a B-hairpin, 2 loops, 2 turns, and a
C-terminal coil. The correlation coefficient between the experimental and
predicted value of the WCN model is 0.51, which is higher than that of the
PFP model (r=0.28) and CM (r=0.44). The PFP model predicts the 528-R39 loop
region to be flexible, however, the region is actually highly ordered according
to the NMR experiment. The reason may be that the loop is away from the
center of the protein but,the environment arotind it is crowded. The WCN
model correctly predicts the loop region to be-highly.ordered. Figure 2.10
shows the experimental and predicted order parameters for 4-oxalocrotonate

tautomerase byusing the WCN, €M, and PFP’ model.
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Figure 2.10 Upper part: computed S2 values of WCN model (solid line) and CM (dotted line)
and experimental S? values (circle). Lower part: computed S? values of PFP model (solid line)

and experimental 52 values (circle).
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Interleukin-4

In the original paper for the experimental NMR data of interleukin-4%, the
authors mentioned an uncommon loop region (H59-A70) which has high
order parameters. The observed average order parameter for the loop is 0.87
which is significantly higher than those of other loops and is only slightly
lower than that observed for the secondary structure regions. The uncommon
loop is predicted to have low order parameter for the WCN model, however,
the correlation coefficient increases to 0.78 if the loop region is removed.
Figure 2.11 shows the experimental and predicted order parameters for

Interleukin-4 by using the WCN, CM, and PFP model.

10 Interleukin-4
. R ooy . &
AR G %‘%’E? £ 2 "
08 i ) o \l : 2 ‘Q'O. 4 :
0.6 | ‘ 4 i
8?2
0.4 -
0.2
0.0 | | | |
1 31 61 91 121
1.0
© e @ c? o P
0.8 o o 0@0
0.6 ¥ © 2
82o 4 °
- Q
] 5 X
0.2
OO 1 | 1
1 31 61 91 121

Residue number

Figure 2.11 Upper part: computed S2 values of WCN model (solid line) and CM (dotted line)
and experimental S? values (circle). Lower part: computed S? values of PFP model (solid line)

and experimental 52 values (circle).
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Discussion

Our results show that the backbone dynamics of protein structures can be
directly inferred from the static structural properties without the assumption
of any additional mechanical model. Since we can compute the order
parameters directly from the topological properties (such as protein contact
number) of protein structures, our study underscores a very direct link
between protein topological structure and its dynamies:In addition, since our
model uses only Caatoms, our results indicate that protein dynamics (such as
the order parameters) can be determined without the knowledge of protein
sequences. As increasing numbers of protein structures are solved, this
method offerssan efficient way to determine backbone motions with high
accuracy and-is practical in the study  of protein function-dynamics

relationship and structural genomics.

To check the effects ‘of the additional information of side-chain groups on
the computed order parameters, we compared the computed S? values with
the side-chain information. However, the inclusion of the side-chain groups
deteriorates the performance of the WCN model (r goes down from 0.79 to
0.73). The reason for this is not clear. It may be that the flexible side-chain
conformations, though conveying more detailed information about the atomic
environments, introduce undesirable noises that overshadow the supposedly

useful information of the former in the computation of the order parameters.
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A recent study by Halle® found a linear correlation between the contact
number of non-covalent neighboring atoms and B-factors. Their result shows
that the B-factor is inversely proportional to the contact density, i.e., the
number of non-covalent neighbors. They assume that the contact density of
covalent neighbors for each Ca atom is similar. Therefore, only the
non-covalent neighbors are needed to be considered. Our method has the

advantage of not using the cut-off distance, while Halle’s method needs to

determine the optimal cut-off distance when computing contact number. In
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CHAPTER THREE
Normal Mode Analysis by the Protein-fixed-point Model

Introduction

The biological ffunction of proteins is closely related to the cooperative
motions and the correlated. fluctuations which involve large portions of the
structure®*. ©Normal Mode Analysis® (NMA) had been used to study
biomolecules;since early 1980s%%°. It decomposes the proteinidynamics into a
collection of .motions which include large scale/low frequency and small
scale/high frequency motions..Biologists usuallyfocus on the large scale/low
frequency motions. thaty are, relevant- to.l'protein functions. The major
contribution of NMA to the biological research field is the ability to provide
the information of large, domain-scale pretéin motions which is hard to
compute by other methods. The'classical approach of NMA is to diagonalize
the Hessian matrix, i.e. the second derivative of the potential function of a
molecular dynamics (MD) simulation. The major shortcoming of the classical
NMA is that the sampling time increases dramatically with the size of the

protein.

The Elastic Network Model (ENM)*, which describes protein dynamics
without amino acid sequence and atomic coordinates, has been widely used
in the studies of protein dynamics and structure-function relationship. The

ENM views the protein structure as an elastic network, the nodes of which are
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the Ca atoms of individual residues. Residue pairs within a cutoff distance
are connected by springs which have a uniform force constant in the network.
Based on ENM, a coarse-grained version of NMA is developed and widely
used because of its low computation cost and the ability to extend the
dynamics to longer timescale and larger motions. The coarse-grained NMA
had been applied to various topics, for example, protein functions and
catalytic residues. One of the most widely used ENM-based methods is the

Gaussian network model (GNM)#7071,

The protein-fixed-point (PFP) model* is a simple method to compute the
protein dynamics only ‘using the coordinatesiof Co atoms. Despite its
simplicity, the PFP model has been shown to be able tosaccurately predict the
B-factors for a dataset of 972 proteins?>. The PFP model simply computes the
vector ri between residue i-and the center of mass of the protein. The B-factor
of residue 7 has been shown to be correlated tothe inner product of r: itself, i.e.
the square of,the length of ri. However, the ability to compute the normal
mode motions, ile. decomposition of dynamics to motiens of different
frequencies, is more important than calculating theoretical B-factor of single
residues. Since thesthermal fluctuation of residue’i correlates to the auto
product of vector ri, we can get the correlation of motion between residue i
and j by computing the inner product”of vector ri and r. By simply
diagonalizing the correlation matrix, in which the elements are the correlation
of motion between residue pairs, the normal mode motions can be obtained.
Here, we compared the results of NMA based on the PFP model with those by

Gaussian network model (GNM).
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Methods

NMA by Protein-fixed-point Model

Let Xo be the center of mass of the protein,

(3.1)

where mi and X« aze the'm graphic position of atom k,
respectively. Thejg

computed by *

related to the B-factofs (temip rs) fron X-ray experiment. To

compute the correlation of motion 7 between atom i and atom j,

r = (X = XX, = X,) (33)

Each protein of size N will have a correlation matrix of size N xN which

denoted as C =(;,NyysFysely) - The correlation matrix is then
diagonalized,
C=R"Z'R (3.4)
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where 4 and R are the matrix of eigenvalue and eigenvector, respectively.

The eigenvalues are the frequencies and the eigenvectors are the amplitudes

of motions of each corresponding modes. Note that the diagonal term r; of

the correlation matrix is equal to the r? profile (equation 3.2) which is closely

correlated to the atomic thermal fluctuations. In equation 3.4, the eigenvalue

A reversely contributes to r;, hence, the low frequency modes (with small

eigenvalues) dominate the thermal fluctuations.
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Results

Comparison of Correlation Maps

We first compared the correlation maps computed by the PFP model and
the GNM using a dataset of 18 proteins (Appendix D). Table 3.1 summarized

the Pearson correlation coefficie

een the correlation maps by the

aforementioned two metl

1A16
1B6A
1BIO
1BOL
1BR6
1BTL

1BVV _
1BWP L orrelation coefficient between

1BXO ) opr. -~ 0. oL at maps computed by the PFP

Pearson correlation coefficient

Figure 3.1 shows some cases in the dataset (complete results can be found in
Appendix E). Each element in the correlation map represents the correlation
of motion of each residue pair. The color blue-green-yellow-red is in the order
from negative correlation to positive correlation. In general, the correlation
maps computed by the PFP model and the GNM displays similar patterns

(average Pearson correlation coefficient: 0.73).
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Figure 3.1 The correlation maps of (a) Prot-glu methylesterase (IRPT), (b) Ribonuclease T2
(IBOL), and (c) Uridine nucleosidase (1IEUG) computed with the PFP model (left) and GNM
(right), respectively.
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Comparison of Normal Mode Motions by the PFP model and GNM

We compared the results of NMA by the PFP model and the GNM. Table
3.2 summarized the correlation coefficient between the eigenvector of the
three slowest modes of PFP model and GNM. The average correlation
coefficients of the 18 proteins for the three slowest modes are 0.84, 0.63, and
0.45 respectively. In general, the PFP model correlates well with GNM in the
tirst mode, except 1bio (~=0.58), 1bvv (=0.50), and 1chd (=0.56). However, in
the second and third modes, the differ_ences between these two models
increase.

Table 3.2 The correlation coefficient betweerrtheeigenveétors of PEPmodel and that of GNM

in the three slowest modes.

|
1

| '
mode 1  mode2 mode3 mode 1 mode2 mode3

1A16 092 0.57 0.34 1CHD 0.56 0.78 0.93
1B6A 091 0.61 058 1CTT 0.93 0.87 0.69
1BIO 058, 056 | 045 1DNK . 095 0.65 0.48
1BOL 096 0.91 054 1EUG 0.92 0.30 0.25
1BRé 0.88 0.44. 4 010 1LBA:- 072 0.66 0.43
1BTL 094% . 032 ~ 044 1RPT 094, 090 0.40
1BVV 0.50 0.43 046 1YTW 0.84 0.65 0.33
1BWP 0.74 0.24 0.14 STLN 0.96 0.64 0.18
1BXO 0.93 092 055 9PAP 0.97 0.90 0.85

Total average 0.84 0.63 0.45

Here, we focus on the low frequency motions (also called global or large
scale motions) which are opposite to high frequency motions (local motions).
The contribution to fluctuation of each mode is scaled by the inverse of the
mode’s frequency. Hence, the low frequency modes contribute to most of the

fluctuations (see equation 3.4).
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In the following section, we discuss some cases in the dataset.

Thiol-endopeptidase (9PAP)

Thiol-endopeptidase is a single-domain protein of 212 residues,
consisting of 7 a-helices and an anti-parallel B-sheet. Figure 3.2 shows the
eigenvector of each residue along the first mode, second mode, and third
mode for the PFP model and GNM. The agreement between them is excellent

(correlation coefficient: 0.97, 0.90, and 0.85 for the first three slowest modes,

respectively). The positi 3 ve eigenvectors represent the

displacements in oppo directions. Figure 3.3sh he ribbon diagrams of
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Figure 3.2 Distribution of displacements along the first mode, second mode, and third mode

computed for thiol-endopeptidase (9PAP). (solid line: PFP model, dotted line: GNM)
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Figure 3.3 The regions subject to opposite direction displacements computed by the PFP
model (left) and the GNM (right) of (a) the first mode, (b) the second mode, and (c) the third
mode for thiol-endopeptidase (9PAP). Regions colored in blue and red correspond to positive

and negative displacements respectively.
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G/11 xylanase (1BVV)

Figure 3.5 shows the eigenvector of each residue along the first mode, second
mode, and third mode for the PFP model and GNM. The correlation
coefficients are 0.50, 0.43, and 0.46 for the first three slowest modes,
respectively. In the first mode, the major disagreement between these two
methods is a loop region (residue T109-W129). Figure 3.4 illustrates the ribbon

diagram colored blue-yellow-red in the order of increasing mobility along the

first mode. The loop region is highly mobile in the calculation of GNM,;
RANE AT
however, from the con*_gﬁt_{a'ﬁo‘rr’bl? il*—nﬁngbﬂap loop is less flexible in the
-I .- 7-I
il e

o
i r_-I :.-.--..:.:.:..: .......'- ::.IJ

first mode. "~
1rst mode ....E'I_.'"

Figure 3.4 Ribbon diagram colored blue-yellow-red in the order of increasing mobility along
the first mode of the PFP model (left) and GNM (right). The T109-W129 loop is surrounded
by dotted circle.

Figure 3.6 shows the ribbon diagrams of G/11 xylanase, the colored regions

are according to the positive (blue) and negative (red) displacements.
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Figure 3.5 Distribution of displacements along the first mode, second mode, and third mode

computed for G/11 xylanase (1BVYV). (solid line: PFP model, dotted line: GNM)
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(a)

(b)

(c)

W Megh s
- Mg Nt

Figure 3.6 The regions subject to opposite direction displacements computed by the PFP
model (left) and the GNM (right) of (a) the first mode, (b) the second mode, and (c) the third
mode for G/11 xylanase (1BVV). Regions colored in blue and red correspond to positive and

negative displacements respectively.
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Catalytic residues

Recent studies”™ show that the catalytic residues are usually immobilized in
order to maintain the delicate arrangement of function groups. The catalytic
residues are found to located at the center’*”® or have relatively lower
B-factors comparing to other residues in the protein’. Based on GNM, Yang et
al.” analyzed the normal mode motions of several proteins and found that the
catalytic residues are located near the hinge region, i.e. the crossover region
between the parts of oppsitely correlated movement, of the most large scale
motion. Here, we showiia «case of cystéine protease, actinidin (1AEC).
Actinidin is a 218-résidue protein; the catalytic residués are C25, H162, and
N182. Figure 3.7°'show's the normal mode displacemments of actinidin along the
first mode. The catalytic residues-shown in' the sticki model are in the

crossover region  between the two" substrutures undergoing oppositely

correlated motions.

Figure 3.7 The displacements of actinidin (1AEC) subject to opposite directions along the fist

mode. The catalytic residues are shown in the stick model.

62



structure.
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Discussion

It had been shown that the PFP model can accurately compute the
theoretical thermal fluctuations of individual residues*72. In this work, we
further extend the model to compute the correlation of motion between

residue pairs. In addition, the modes of motion which subject to different

similar results,

IRIl=1"

simply calculates
the distance b g e protein; on the
other hand, the D] i the Ca atoms
are balls connecte : pring S suggest that the

dynamics prop i.e. thes elation of motion, and

Recent studies not only focus on the relationship between protein
structure and dynamics but also on the link between protein dynamics and
functions. Chennubhotla” uses elastic network model to study the allostery
mechanism and signal transduction pathways of chaperonin GroEL. Yang”
proposed that protein catalytic sites are located on the “hinge” region based
on the normal mode analysis. Liu” uses the correlation matrices to analyze

the correlated mutations in HIV-1 protease. The widely use of NMA in recent
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articles in the study of protein functions shows the growing importance of
normal mode analysis. In addition to the prediction of thermal fluctuations,
the PFP model has the ability to characterize the normal modes motions

which are relevant to protein functions and catalytic mechanisms.

One of the differences between the PFP-based and GNM-based NMA is
that the PFP-based method directly compute the correlation map from protein
structure and diagonalize the correlation map to get the normal mode

motions. On the other hand, the @NMi needs to first build the Hessian matrix

and the Hessian matrixis inversed to éet the corgélaﬁor_l map. To compute the

.y Y . "
normal mode motions the GNMyg diagonaliz,e the Hessia.n matrix instead of

the Correlatlorf map Higure 3 9|_1]llstl-ates__ j;he dlfferences between the
™ l n I il b

PFP-based and-GNM based NMA. il -
" 1 d - I.I u 1
i |
Protein 1
Structure ;
'J
GNM ' l PFP Model
Hessian Correlation
Matrix ‘ Map

Matrix
Inversion

l Diagonalization

Normal Mode
Motions Figure 3.9 The flowchart of

Diagonalization

computing normal mode

motions by PFP model and
GNM
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The direct computation of normal mode motions from the correlation map
suggests that it is possible to skip the Hessian matrix and obtain the normal

mode motion from correlation maps computed by any method.
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Appendix

1FC2C
2TGPI
1ACX
2UTGA
1GDJ
2LTNB
6CPA
1BKSA
2AK3A
2GN5
4SGBI
1CRN
7ICD
1BMV2
2SODB
3AIT
1HIP
1ETU
IMRT
1CYO

2ALP
1CSEI
7CATA
25NS
1TNFA
1RBP
3BLM
1A45
SADH
3PGM
SABP
3SHMGA
2RSPA
1PYP
1CDTA
256BA
10VOA
IWGAA
1CC5
3EBX

2PCY
1501
2PABA
3RNT
1EXTIA
1TGSI
6HIR
4PFK
2LTNA
4RHV3
6ACN
3HMGB
9APIB
1BDS
1PPT
1ECA
3ICB
7RSA
5HVPA
4RHV1

2TSCA
5CYTIR
2CCYA
5ER2E
1RHD
2GBP
6TMNE
2WRPR
2STV
2CYP
2MEV4
2LHB
1UBQ
2CAB
1FDLH
6CPP
1LAP
1R092
1MCPL
2AAT
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RS126 Dataset

6DFR
1DUR
1GD10
1BBPA
2FOX
6CTS
1GP1A
1BMV1
ARXN
4CPAI
2MHU
5LYZ
3CLN
9APIA
1SH1
11QZ
AXTAA
1FND
9INSB
4CPV

S5LDH
TAZU
3TIMA
4GR1
9PAP
4BP2
3CLA
2TMVP
20R1L
2HMZA
1IL8A
1FKF
1BKSB
4CMS
3CD4
1L58
1LMB3
1G6NA
2GLSA
4SDHA

211B
2PHH
1PAZ
4TS1A
4RHV4
1CBH



Appendix

Hydrogen exchange dataset

Protein

Hen Egg-White
Chymotrypsin

Cytochrome
Barnase

a-Lactalbumin
Cardiotoxin I+
Ribonuclease
Bovine Pancreatie Tr;
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Appendix

C

Hydrogen exchange experiment

During protein'folding process, there are some strtictured regions which
is similar to folded conformation”!?. Hydrogen isotope exchange rate!!® is
usually used to'identify those structtired regions. The basiclassumption of the
hydrogen exchange experiment is that the exchange rate reflects the exposure
of the particular amide to the solvent. Thus an amide whichuis buried inside
the hydrophobic core of a protein will.exchange slowly, while an amide on the
surface will exchange rapidly. The~two-step model of piotein hydrogen

exchange process commonly.accepted.is:

=l it op (C.1)

In this model Cr and Cb represent the protonated and deuterated closed
(unable to exchange) forms of the residue. Ou is the protonated open,
exchangeable form. kop is the rate constant for the opening step and ku is the
rate constant for the closing step. kint is the rate constant for the exchange
reaction or the exposed hydrogen.

The observed rate constant for the exchange process, ke, is given by

_ kop x kint

ex
kcI + kint

(C.2)
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There are two limiting cases for this model. If ka > kint then

in (C.3)

cl

and the process is said to follow EX2 kinetics. In the other limit, termed EX1,
ka < kint and the rate limiting step in the process is the opening step since
Kex=kop. Protons which exchange following EX2 kinetics are usually solvent
exposed in the native state of the protein or require only smaller structural
fluctuations to expose them. In contrast, protons exchanging with EXI1
kinetics are generally deeply buried or have strong hydrogen bonds with
surrounding residues”® and require a more global fluctuation in the
structure of the protein to be exposed to the solvent.
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Appendix

D

Normal mode analysis dataset

Protein PDB ID
Aminopeptidase I’ 1A16
Met aminopeptidase 2 1B6A
Hum complement factor D 1BIO
Ribonuclease:T2 1BOL
Ricin 1BR6
B-Lactamase class A 1BTL
G/11 xylanase 1BVV
2-acetyl-1-hydrolase 1BWP
Penicillopepsin 1BXO
Alkylglycero phosphocholine esterase 1CHD
Cytidine deaminase 1CTT
Deoxyribonuclease I 1DNK
Uridine nucleosidase 1EUG
T7 lysozyme 1LBA
Prot-glu methylesterase 1IRPT
Yersinia protein tyrosine phosphatase 1IYTW
Metalloproteinase M4 8TLN
Thiol-endopeptidase 9PAP
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Appendix E (continued) Correlation maps computed with the PFP model
(left) and GNM (right) for the dataset of 18 proteins
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Appendix E (continued) Correlation maps computed with the PFP model
(left) and GNM (right) for the dataset of 18 proteins
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Appendix E (continued) Correlation maps computed with the PFP model
(left) and GNM (right) for the dataset of 18 proteins
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