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Prediction of Protein-Protein Interaction Sites from

Three-Dimensional Structure

Student : Tsun-Tsao Huang Advisor : Dr. Jenn-Kang Hwang

Institute of Bioinformatics

National Chiao Tung University

ABSTRACT

The knowledge of protein-protein interactions is essential for the
understanding of protein functions and protein-protein interaction networks.
Hence, the capability to identify protein-protein interaction sites is crucial
to decipher the reaction mechanisms of protein function.

In this work we develop am approach based on machine-learning
method to predict protein-protein interaction sites from three-dimensional
structure. We have tried a multiple of feature vectors such as amino acid
composition, secondary structure, relative solvent accessible surface area,
position substitution specific matrix and structural neighboring residues.
Our results compare favorably with those of others for a benchmark
dataset.
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Figure 1. Coding scheme AA. Target residue is colored red and flanking residues are
colored yellow. If target residue is interface, target residue will be assigned 1-bit,
otherwise, assigned 0-bit.

Figure 2. Coding scheme SS. Target residue is colored red and flanking residues are
colored yellow. If target residue is interface, target residue will be assigned 1-bit,
otherwise, assigned 0-bit.

Figure 3. Coding scheme RSA. Target residue is colored red and flanking residues are
colored yellow. If target residue is interface, target residue will be assigned 1-bit,
otherwise, assigned 0-bit.

Figure 4. Coding scheme PSSM. Target residue is colored red and flanking residues are
colored yellow. Interface residue is assigned 1-bit, otherwise, 0-bit.

Figure 5. Coding scheme 3D-PSSM’. Target residue is colored red. Structurally
neighboring residues are colored orange and are sorted by distances between they and
target residue. If target residue is interface, target reisdue will be assigned 1-bit,
otherwise, assigned 0-bit. Value of elements from PSSM are rescaled by sigmoid
function.

Figure 6. Criteria of determination exposed residue and interface residue.

Figure 7. The way to get structural homolegy structures.

Figure 8. Flow chat of SVM,with training scheme D,

Figure 9. Flow chat of SVM with training scheme Dj,.

Figure 10. Prediction results by coding scheme PSSM with structural homology
information.

Figure 11. Barstar (barnase inhibitor) from Bacillus amyloliquefaciens. Barstar is
colored lightblue and is represented in mesh and its partner barnase is colored red and is
represented in line. Blue region is interface and green region is predicted as interface.
Figure 12. Barstar (barnase inhibitor) from Bacillus amyloliquefaciens. Barstar is
colored lightblue and is represented in mesh. Violet region denotes underprediction
(false negative) and blue region is predicted correctly (true positive). Yellow region
denotes overprediction (false positive) and green region is predicted correctly (true
positive).

Figure 13. Barnase from Bacillus amyloliquefaciens. Barnase colored lightblue and is
represented in mesh and its partner barstar is colored red and is represented in line. Blue
region is interface and green region is predicted as interface. 1brsA

Figure 14. Barnase from Bacillus amyloliquefaciens. Barnase is colored lightblue and is
represented in mesh. Violet region denotes underprediction (false negative) and blue
region is predicted correctly (true positive). Yellow region denotes overprediction (false
positive) and green region is predicted correctly (true positive).

Figure 15. Soybean trypsin inhibitor from Soybean (Glycine max). Soybean trypsin



inhibitor colored lightblue and is represented in mesh and its partner is colored red and
is represented in line. Blue region is interface and green region is predicted as interface.
lavwB

Figure 16. Soybean trypsin inhibitor from Soybean (Glycine max). Soybean trypsin
inhibitor is colored lightblue and is represented in mesh. Violet region denotes
underprediction (false negative) and blue region is predicted correctly (true positive).
Yellow region denotes overprediction (false positive) and green region is predicted
correctly (true positive).

Figure 17. Pancreatic trypsin inhibitor, BPTI from Cow (Bos taurus). BPTI is colored
lightblue and is represented in mesh and its partner is colored red and is represented in
line. Blue region is interface and green region is predicted as interface. 1bthP

Figure 18. Pancreatic trypsin inhibitor, BPTI from Cow (Bos taurus). BPTI is colored
lightblue and is represented in mesh. Violet region denotes underprediction (false
negative) and blue region is predicted correctly (true positive). Yellow region denotes
overprediction (false positive) and green region is predicted correctly (true positive).
Figure 19. Ovomucoid domains from Turkey (Meleagris gallopavo). This protein is
colored lightblue and is represented:in mesh and its partner is colored red and is
represented in line. Blue region is interface and green region is predicted as interface.
Figure 20. Ovomucoid domains from Turkey (Meleagris gallopavo). This protein is
colored lightblue and is represented in‘mesh. Violet region denotes underprediction
(false negative) and blue region is predicted correctly (true positive). Yellow region
denotes overprediction (false positive) and green region is predicted correctly (true
positive).

Figure 21. beta2-microglobulin from Human (Homo sapiens). This protein is colored
lightblue and is represented in mesh and its partner is colored red and is represented in
line. Blue region is interface and green region is predicted as interface. lao7B

Figure 22. beta2-microglobulin from Human (Homo sapiens). This protein is colored
lightblue and is represented in mesh. Violet region denotes underprediction (false
negative) and blue region is predicted correctly (true positive). Yellow region denotes
overprediction (false positive) and green region is predicted correctly (true positive).
Figure 23. Hirudin from Leech (Hirudo medicinalis). Hirudin is colored lightblue and is
represented in mesh and its partner is colored red and is represented in line. Blue region
is interface and green region is predicted as interface. 4htcl

Figure 24. Hirudin from Leech (Hirudo medicinalis). Hirudin is colored lightblue and is
represented in mesh. Violet region denotes underprediction (false negative) and blue
region is predicted correctly (true positive). Yellow region denotes overprediction (false

positive) and green region is predicted correctly (true positive).



INTRODUCTION

Protein-protein interactions are important in numerous biological processes such
as immune response, enzyme catalysis, and signal transduction.' The discovery of
interaction sites is useful for the prediction of unknown protein-protein interactions,
for the drug design as targets in proteomics®, for the library design of phage display
and for limiting search space for docking studies’. Although prediction of interaction
sites with protein complexation is important, it remains a challenge in molecular
biophysics.*

Protein-protein interaction sites can be deduced by experimental and
computational methods. Experimental methods can be grouped into several categories.
Analyzing protein complexes structures’.is the most direct method. Analyzing
structures requires atom coordinates .of “protein’.complexes structures, but it is
generally more difficult to obfain the structure of protein complexes than that of
protein monomer structures.® Phage-display’= and- mutagenesis''? have also been
attempted to discover interaction sites. ‘These experimental methods usually lead to
relatively high accuracy, but most of them are time-consuming and cost-expensive.”

By using patch analysis on six chemico-physical properties (salvation potential,
residue interface propensity, hydrophobicity, planarity, protrusion and accessible
surface area) from protein structures, Jones and Thornton obtain 66% accuracy in
protein level.” Gallet et al.,'* detected DNA-binding sites (95% detected) and
Ca-binding domains (85% detected) by exploiting the difference of hydrophobicity
distribution in linear stretches of sequences of interface residues and of non-interface
residues. But Fariselli et al.'”> confirmed that the chemico-physical properties of
interaction residues are difficult to distinguish from protein surface residue. Fariselli

1.15

et al."”” used neural network with sequence profile from HSSP'® and obtained 73%



prediction accuracy in three-fold cross-validation. Zhou et al.' included sequence
profile and residue neighbor list and used neural network to obtain 70% prediction
accuracy. In addition to sequence profile information, Liang et al.’ analyzed 16
protein chains and showed that the residue with the highest energy score on the
surface of a small protomer is very possibly the key interaction residue. Gao et al."”
achieved 88% success rate on 75 hot-spot residues from their structure-based method.

It is difficult to judge the importance of features or the advantage of prediction
methods in protein-protein interaction sites prediction because different features,
different methods and different validation methods are used previously.'”!%!>172!
Different validation methods are used and find a looked better result because
prediction of protein-protein interaction sites is difficult. The difficulty of
protein-protein interaction sites Jprediction comes from the large diversity of
protein-protein interactions.'®

The support vector machine (SVM)-method™ has recently become popular in
computational biology.”**” Tt is suecessful in‘applying the SVM based on multiple
feature vectors on protein fold assignment™ and subcellular localization prediction.**
In addition, knowledge of a protein’s tertiary structure is a prerequisite for the proper
understanding of its function.” It is assumed that using information from structurally
homologous structures on prediction is more potential than using that from
non-homologous structures. In this work, the SVM 1is used to predict the
protein-protein interaction sites based on multiple feature vectors from structural

homologous structures and from non-homologous structures in order to prove the

aforementioned hypothesis.



METHODS

Support Vector Machine

The SVM? tries to find the separating hyperplane with the largest distance
between two classes, measured along a line perpendicular to this hyperplane.
However, in practice, these data to be classified may not be linearly separable. To
overcome this difficulty, SVM non-linearly transforms the original input space into a
higher dimensional space, it is possible that data can be linearly separated. In the
training process, only part of the training data are used to construct the hyperplane,
hence avoiding the overfitting problem usually plaguing other machine learning
methods. These data constructing the classifier are called support vectors. Preliminary
tests show that the radial basis function’(RBF) ketnel gives results better than other
kernels. Therefore, in this work-we use the RBF kernel for all the experiments.

An important issue of optimizing SVM-results 1s to deal with data unbalance. We
avoided data unbalance by adjusting the weight of penalty parameter. The reciprocal
of the data number of each class is used as its penalty parameters. In this work, all
SVM calculations are performed by using LIBSVM™, a general library for support

vector classification and regression.
Coding schemes

Previous work® shows that protein descriptors based on the generalized n-peptide
compositions are effective in protein-protein interaction sites prediction. If n = 1, then
the n-peptide composition reduces to the amino acid composition, and if n = 2, the
n-peptide composition gives dipeptide composition. When n gets larger, the n-peptide

compositions will cover more global sequence information, but at the same time, such



a coding scheme becomes not only impractical from a computational viewpoint but
also undoable from a learning viewpoint. However, the size problem can be overcome
if we regroup the amino acids into smaller groups of classes according to their
physicochemical properties or structural properties. Previous work shows that
9-peptide composition with one target residue and four flanking residues on both sides
of target residue is better in protein-protein interaction sites prediction’ so 9-peptide
composition is used in this work. Notation 44 denotes the 9-peptide composition of
amino acids. Figure 1 shows coding scheme A4A4. Notation SS denotes secondary
structure information of 9-peptide composition of amino acids. Figure 2 shows coding
scheme SS. Notation RSA denotes relative solvent accessibility’' information of
9-peptide composition. Figure 3 shows coding scheme RSA. Profile element values in

PSSM are rescaled by Kim’s function®® given by

0 if x <-5
f(x)=10.5+00x if S5>x>5 . (1)
1 fx=>5

Notation PSSM denotes above PSSM information of 9-peptide composition and is
showed by figure 4. Notation PSSM’ denotes PSSM information (rescaled by sigmoid
function) of 9-peptide composition. Coding scheme PSSM is work in secondary
structure prediction.”® We use the notation 3D to denotes information from 9 nearest
residues in three-dimensional structure. The notation 3D-4AA4 and 3D-PSSM (see figure
5) are used when these 10 residues (one target residue and nine neighboring residues)
are encoded by their amino acid composition and PSSM information, respectively.
Similar sequence and structure coding schemes has also been successfully applied to

interaction sites prediction'” and to metal-binding sites prediction®.



SVM training and testing

Criteria of correctness in prediction

Each residue of structures is either exposed residue or buried residue. The
solvent accessibility (ACC) of residues from DSSP** are used to determine residues
are exposed or not. A residue is exposed if its relative solvent accessibility (RACC =
ACC/MaxACC, with maximal accessibility for the amino acids)’' is larger than the
threshold RACC. Threshold RACC is 25% used by Yan et al.” and just these exposed
residues (also called surface residues) are used in experiment. Each exposed residue is
either in interface or not in interface. The state of an exposed residue (in interface or
not) is demanded in training SVM.and in validation of prediction results. An exposed
residue is defined to be an interface residue if its ACC in the complex is less than its

ACC in the monomer by at least-1 A%’ These-procedures are showed in figure 6.
SVM Training schemes with and without structural homology information

Two different schemes are used in SVM to build training dataset. The first
method is, for each testing protein chain in data set, the rest protein chains are used as
its training dataset. Because the sequence identities between sequences is data set are
below 30%, there is no homology between training dataset and testing protein chain.
This training scheme is without structural homology information. D, denotes this
training scheme showed in figure 8.

Structurally homologous structures are collected as training datasets. Figure 7
shows the collection strategy. If query structure is in SCOP™, entries except query
with the same superfamily label in SCOP are collected as query’s training dataset.

Superfamily level are used in collection for the reason that proteins in the same
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superfamily are suggested a common evolutionary origin.” If query structure does not
belong to any superfamily in SCOP, program ALIGN™ is used to search the most
similar structure in SCOP. Entries with the same superfamily label of this similar
structure in SCOP are collected as training dataset. If the sequence identity calculated
by ALIGN between query structure and the most similar structure is below 30%,
program CE’’ is executed to search the most similar structure in SCOP. Entries
belonging to the superfamily of this most similar structure are used as training dataset.
If the query structure is composed of two chains, results of each individual chain are
merged to a new result for this structure. D) denotes above training scheme with
structural homology information. Figure 9 is the flow chart of training scheme D.
The testing dataset of my method is different from the training dataset of mine. When
searching for structural homologous structures, €E and ALIGN cannot always find
out reasonable similar structures in.SCOP alone, so previous procedures are necessary
to collect the structural homology training-datasets. Figure 9 shows the flow of our

prediction.
Evaluation of Predictive Performances

Predictive performance is assessed by sensitivity (sens), specificity (spec),
accuracy (accu) and Matthews Correlation Coefficient (MCC)*®. The overall

prediction accuracy (accu) is given by:

TP + TN
accu = 5 (2)
TP+TN + FP+FN

where TP, FP, TN, FN are the numbers of true positives, false positives, true
negatives and false negatives, respectively. sens is the fraction of positive examples

predicted for the interface residue and is given by

TP

sens = ————
TP + FN (3)



spec is the fraction of all positive predictions that are true positives and is given by

TP
spec = ————
TP + FP 4)
MCC is given by
* _ *
MCC = TP*IN - FP*FN
\/(TP+FN)(TP+FP)(TN+FP)(TN+FN) (5)
Data Sets

We use the dataset from Yan et al.” as the benchmark data set which is denoted
by YDH77. In YDH77, the sequence lengths of 77 protein chains are more than 10
residues and the sequence identities between these chains are below 30%.° 7823
residues are exposed residues in YDH77 and 2352 residues (30.1%) of the exposed
residues are in interface. Protein chains|'in-YDH77 are assigned to 6 categories
according to the scheme of Chakrabarti et al.’> The six categories and the number of
representative in each category are: protease-inhibitor (11), large protease complexes
(6), antigen-antibody (13), enzyme ‘complexes (13), G-protein, cell cycle, signal
transduction (16) and miscellaneous (18). In order to check the robust of our method,
the dataset used by Liang et al.° is also tested. LZZG16 denote this data set because it

is composed of 16 protein chains from 8 hetero-dimers.

RESULTS AND DISCUSSION

Comparison results with and without structural homology information

Prediction without structural homology information

Table I shows the performance of our prediction without structurally homology

information. Secondary structure information from coding scheme SS gives the best



performance in sens. This result is consistent to the result that binding sites have a
preference for B-sheets and for relatively long-structured chains, but not for
a-helices.” Table I also shows that results with evolutionary information from coding
scheme PSSM is better than results with amino acid composition information from
coding scheme AA. Structurally neighboring residue information gives almost the
same performance to sequence information when comparing 3D-4AA4 and AA. This
result is consistent to the result that the majority of interacting residues are clustered
in sequence segments of several contacting residues.”’ The results of coding scheme
3D-PSSM and of 3D-PSSM’ are similar, it is implied that rescaling profile element

values doesn’t improve the performance to prediction protein-protein interaction sites.
Prediction with structural homology information

Table II shows results with. structural homology information. Evolutionary
information from coding scheme PSSM-gives the best performance. Structural
homology information from SCOP contains some evolutionary information®’, so the
results that the evolutionary information from coding scheme PSSM is with the same
performance to the information from coding scheme 44 when both using structural
homology information are reasonable. In Figure 10, the sens of 64% proteins are more

than 60% and there are 7 proteins with 100% sensitivity.
The performance of structural homology information

When comparing the best results between training scheme D, and training
scheme Dy, D, is significantly better than D,. We also have to notice that coding
scheme SS gives best results with training scheme D, but coding scheme PSSM gives
best results with training scheme D;,. sens is increased 22%, 24% and 14% by coding

scheme PSSM, AA and 3D-AA with structural homology information. But sens is
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decrease 1% by coding scheme SS with structural homology information. spec is
increased 21%, 20%, 24% and 20% with coding scheme SS, PSSM, A4 and 3D-AA.
Table I and Table II show that with same coding scheme except SS, training scheme
Dy is better than training scheme D,. This suggests that structural homology

information is useful to predict protein-protein interaction sites.
Comparison in multiple feature vectors

We try to combine different coding schemes to new feature vector. Table II
shows that multiple feature vectors are not helpful to performance. Table II also
shows that coding scheme PSSM is the best feature vector by itself with training

scheme Dy,
Compare with others’ works

Table III lists the performanceiof. different method on the benchmark dataset
YDH77. Gallet et al.’s method'* ‘is good on:sens but not on spec while Yan et al.’s
two-stage method’ is good on spec but not sens. These two method just use amino
acid composition information, so we use the results of coding scheme A4 in order to
show the ability of structural homology information. Our method is good not only on
sens but also on spec, so the structural homology information is indeed useful while
predict the protein-protein interaction sites. The MCC obtained on the class label
shuffled dataset (Table III, column 5) is -0.01° (as compared with 0.38 on YDH77 by
our method) indicating that our method performs significantly better than a random

prediction.
Another benchmark dataset

Our method with both evolutionary information and structural homology

9



information is useful on a benchmark YDH77. We use the same training scheme and
coding scheme on LZZG16. In table 1V, the results are even better when using our

method on LZZG16. This shows the robust property of our method.

Cases study

Barstar

The interaction of barnase, an extracellular RNase of Bacillus anylolique-faciens,
with its intracellular inhibitor barstar is a good example for protein-protein interaction
study because the structures of both the free and the complexed proteins are available
at high resolution'’. When using evolutionary information from with training scheme
Dy, the outcome sens, spec and aceu of prediction on barstar are 100%, 93.3% and

98.2% respectively. Figurell and figure 12 shoew this-complex.
G protein [-subunit

1got is a heterotrimeric G protein and the resolution is 2.0 A. Gy is the B subunit
of this G protein®”. The complex lgot belongs to category “G-proteins, cell cycle,
signal transduction”™. When the G protein is activated by binding GTP, the
heterotrimer dissociates into the a subunit and a By heterodimer’”. Most false
negatives or underpredictions of my prediction are in a-fy interaction region of 3
subunit, because this region is not interface when G protein is activated. When using
evolutionary information from with training scheme Dj, the outcome sens, spec and

accu of prediction on barstar are 83%, 78% and 79% respectively.
Others

Six other results from our prediction in different functional categories are

10



showed from figure 13 to figure 24. Figure 13 and figure 14 show barnase. Barnase is
from PDB lbrs, chain A. Figure 15 and figure 16 show soybean trypsin inhibitor.
Soybean trypsin inhibitor is from PDB lavw, chain B. Figure 17 and figure 18 show
pancreatic trypsin inhibitor (BPTI). BPTI is from PDB 1bth, chain P. Figure 19 and
figure 20 show ovomucoid domains from Turkey. This domain is from PDB 1cho,
chain I. Figure 21 and figure 22 show VH single domain of an antibody from Human.
This domain is from PDB lao7, chain B. Figure 23 and 24 show hemagglutinin.

Hemagglutinin is from PDB 1qfu, chain A.

CONCOUSIONS

Our structural homology information is beneficial to predict protein-protein
interaction sites. Evolutionary information. is comparably important by itself when
using structural homology training datasets. The sensitivity, specificity, accuracy and
Matthew Correlation Coefficient with both evolutionary information and structural
homology information on a benchmark.dataset YDH77 are 59%, 55%, 74% and 0.38,

respectively. Our results are better than‘those of others for benchmark dataset YDH77.
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TABLE I: Performance without structural homology information

SS RS4 PSSM AA 3D-PSSM 3D-PSSM” 3D-A4
sens 0.50 0.42 0.37 0.33 0.32 0.32 0.31
spec 0.33 0.32 0.35 0.32 0.33 0.32 0.32
accu 0.54 0.58 0.60 0.59 0.60 0.60 0.59
MccC 0.06 0.04 0.06 0.03 0.04 0.02 0.02

On testing dataset YDH77 and results are sorted by sens.

SS: information from protein secondary structure

PSSM: evolutionary information

AA: amino acid composition information

3D-AA: information from protein tertiary structure

3D-PSSM: evolutionary information from structurally neighbering residues

3D-PSSM’: evolutionary information from structurally neighboring residues
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TABLE I1: Performance with structural homology training datasets

PSSM AA RSA4 SS 3D-AA AA+RSA AA+SS AA+PSSM  SS+PSSM AA+SS AA+SS

+PSSM +PSSM+RSA
sens 0.59 0.57 0.58 0.49 0.45 0.57 0.57 0.54 0.56 0.55 0.54
spec 0.55 0.56 0.45 0.56 0.52 0.55 0.55 0.54 0.56 0.56 0.57
accu 0.74 0.74 0.66 0.68 0.72 0.74 0.74 0.74 0.75 0.75 0.75
MccC 0.38 0.37 0.26 0.27 0.29 0.38 0.37 0.36 0.38 0.38 0.38

On testing dataset YDH77 and results are sorted by sens.
PSSM: evolutionary information

AA: amino acid composition information

RS4: information from relative solvent accessibility

SS: information from secondary structure

3D-AA: information from protein tertiary structure
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TABLE I1l: Performances of different methods

Coding scheme A4 with . SVM Method of Two-stage method ~ Two-stage method® of
o Method of Gallet et al.
training scheme Dj, Yan et al. of Yan et al. Yan et al.
sens 0.57 0.44 0.43 0.39 0.37
spec 0.56 0.30 0.44 0.58 0.31
accu 0.74 0.51 0.66 0.72 0.53
MCC 0.37 -0.02 0.19 0.30 -0.01

On testing dataset YDH77 and results are sorted by sens.
“Data from Yan et al. using method of Gallet et al.

°Class label are randomly shuttled for all the examples before training and-testing the classifier
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TABLE IV: Performances of different testing datasets

YDH77 LZ7ZG16
sens 0.57 0.62
spec 0.56 0.68
accu 0.75 0.79
MccC 0.38 0.49

Using coding scheme PSSM and training scheme Dj,



TABLE V(a): 11 protease-inhibitors

Protein chain Description sens spec accu MCC
lhiaAB Hirustasin 43.23% 90.91% 26.09% 0.20
dlavwb Soybean Trypsin Inhibitor, Orthorhomic Crystal Form 81.40% 45.45% 71.43% 0.46
dlchoi_ Alpha-chymotrypsin Complex with OMTKY3 88.89% 81.82% 81.82% 0.74
diflei Elafin 45.16% 0.00% 0.00% 0.00
dlhiai Hirustasin 94 .59% 100.00% 86.67% 0.89
dlstfe Papain (E.C. 3.4.22.2) 82.29% 63.64% 35.00% 0.38
dlstfi Papain (E.C. 3.4.22.2) 85.45% 68.18% 93.75% 0.70
dltgsi Tripsinogen Complex with Trypsin Inhibiton 77.50% 75.00% 70.59% 0.54
d2sici_ Subtilisin (serine protease) 100.00% 100.00% 100.00% 1.00
d3sgbe Proteinase B from Streptomyces Criseus(SGPB) 87.80% 58.82% 76.92% 0.60
d4cpai Carboxypeptidase A (Cox) Complexe with-Cox Inhibitor 64.00% 50.00% 11.11% 0.09
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TABLE V(b): 6 large protease complexes

Protein chain Description sens spec accu MCC
IdanTU Soluble Tissue Factor 46.03% 66.67% 21.05% 0.06
dlbthp Bovine Pancreatic Trpsin Inhibitor 83.72% 100.00% 65.00% 0.71
dltbgr Rhodniin 48.05% 47.37% 23.08% -0.04
dltocb Thrombin 48.98% 75.00% 16.07% 0.13
dltocr Ornithodorin 57.47% 55.56% 37.50% 0.13
d4htci Thrombin Complex With Recombinant Hirudin 94.00% 93.94% 96.88% 0.87
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TABLE 1V(c): 13 enzyme complexes

Protein chain Description sens spec accu MCC
dlbrsa_ Barnase (G specific endonuclease) 50.82% 44 .44% 61.54% 0.04
dlbrsd Barstar 98.15% 93.33% 100.00% 0.95
dldfje Ribonuclease A 43.48% 33.33% 34.48% -0.15
dldfji Ribonuclease Inhibitor 72.86% 27.42% 58.62% 0.26
dldhka Procine Pancreatic - Amylase 82.83% 33.33% 6.25% 0.08
d1dhkb Bean Lectin-like Inhibitor 50.00% 18.75% 22.22% -0.16
dlfssa Acetycholinesterase (E.C. 3.1.1.7) 89.71% 0.00% 0.00% 0.00
d1fssb Fasciculin 11 95.45% 94.12% 94.12% 0.90
dlglaf Glycerol Kinase 95.29% 80.00% 100.00% 0.87
dlglag Glycerol Kinase 77.38% 30.77% 12.12% 0.08
dludie Uracil-DNA Glycosylase 85.19% 100.00% 23.81% 0.45
dludii_ Uracil-DNA Glycosylase Inhibitor 90.91% 86.36% 90.48% 0.81
dlydre C-Amp-Dependent Protein Kinase 95.89% 76.00% 100.00% 0.85
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TABLE 1V(d): 13 antigen-antibody

Protein chain Description sens spec accu MCC
1kb5AB Kb5-C20 T-Cell Antigen Receptor (antibody) 69.12% 62.22% 52.83% 0.34
2jelLH Jel42 Fab Fragment (antibody) 70.75% 54.55% 51.85% 0.32
dlao7a Hia-A 0201 80.65% 71.43% 68.63% 0.56
dlao7b_ Beta-2 Microglobulin 90.77% 84.38% 96.43% 0.82
dljhla_ Fv Fragment (antibody) 61.19% 12.50% 14.29% -0.12
dlmela_ Vh Single-Domain Antiboy 83.10% 56.25% 64.29% 0.50
dinfdb T-Cell Receptor(antigen) 55.97% 60.78% 44 .29% 0.13
dlnmbn_ N9 Neuraminidase 82.58% 34.15% 100.00% 0.53
dlnsns Staphylococcal Nuclease 67.57% 0.00% 0.00% -0.11
dlospo Outer Surface Protein A 71.53% 0.00% 0.00% -0.16
dlgfua_ Hemagglutinin (antigen) 69.05% 63.41% 70.27% 0.38
dlgfub Hemagglutinin 65.57% 57.89% 96.49% 0.42
d2jelp Histindine-Contating Protein (Jel42 Fab/Hpr complex) 23.53% 4.17% 5.88% -0.58
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TABLE IV(e): 16 G-protein, cell cycle, signal transduction

Protein chain Description sens spec accu MCC
dlaOoa CheY 94 .44% 81.25% 92.86% 0.83
dlaOob CheA 97.87% 100.00% 93.33% 0.95
dla2ka Nuclear Transport Factor 2 78.67% 85.71% 73.17% 0.58
dla2kc Ras-family GTPase Ran 64.58% 21.21% 46.67% 0.11
dlagra Guanine Nucleotide-Binding Protein G(I) 71.60% 23.53% 26.67% 0.08
dlagre Rgs4(regulator of guanine nucleotide-binding protein) 86.49% 76.92% 58.82% 0.59
dlaipa Elogation Factor Tu 80.56% 0.00% 0.00% -0.07
dlaipc Elogation Factor Ts 64.17% 76.67% 38.98% 0.32
dlfina Cycline-dependent Kinase 2 91.43% 86.67% 86.67% 0.80
d1finb_ Cycline A 57.26% 31.71% 37.14% 0.03
dlgotb B subunit of G protein 79.35% 76.83% 82.89% 0.59
dlguaa RaplA (one member of Ras family) 78.16% 36.84% 50.00% 0.30
dlguab C-Rafl 93.48% 82.35% 100.00% 0.86
dltxd4a P50-Rhogap(GTPase-activating protein rthogap) 88.12% 65.52% 90.48% 0.70
dltx4b Transforming Protein Rhoa 71.59% 51.85% 53.85% 0.33
d2trep Phosducin 79.71% 72.22% 59.09% 0.51
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TABLE I1V(f): 13 miscellaneous

Protein chain Description sens spec accu MCC
IsebAB Hia Class I Histocompatibility Antigen 52.81% 67.37% 45.07% 0.10
dlak4a Cyclophilin A 69.86% 27.59% 88.89% 0.38
dlak4c HIV-1 Capsid 94.32% 91.67% 88.00% 0.86
dlatna Deoxyribonuclease I Complex with Actin 57.89% 19.05% 80.00% 0.22
dlatnd Deoxyribonuclease I Complex with Actin 84.40% 0.00% 0.00% 0.00
dldkga Nucleotide Exchange Factor Grpe 68.91% 78.57% 63.77% 0.39
dldkgd Molecular Chaperone Dnak 82.32% 18.18% 8.00% 0.03
dlefna Fyn Tryosine Kinase 91.67% 78.57% 100.00% 0.83
dlefnb HIV-1 Nef Protein (SH3 domain) 93.33% 86.96% 95.24% 0.86
dlfc2c Immunoglobulin Fc and Fragment B 75.76% 61.11% 91.67% 0.56
dlfc2d Immunoglobin Fc and Fragment B (antibody) 63.64% 11.63% 45.45% 0.07
dlhwga Human Growth Hormone 92.93% 90.24% 92.50% 0.85
dlhwgb Growth Hormone Binding Protein 67.62% 55.56% 14.29% 0.14
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Figure 4
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Figure 5
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Figure 10
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