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摘          要 

 
 

理解蛋白質交互作用的機制，對於分析蛋白質功能或是了解蛋白質

交互作用網路有著舉足輕重的角色。因此，若能預測蛋白質交互作用

的區域(protein-protein interaction sites)，對於解讀蛋白質功能

與其反應將很有幫助。在這篇論文中，我們使用機器學習

(machine-learning approach)的方法，利用胺基酸組成、蛋白質二級

結構、胺基酸相對暴露率(relative solvent accessible surface 

area)、演化資訊與蛋白質結構等資訊，從蛋白質的三級結構來預測此

蛋白質與其他蛋白質發生交互作用的區域。我們在一個蛋白質基準集

合上，測試了我們的方法，並且順利地預測了蛋白質交互作用區域。

這結果顯示出我們的方法在預測蛋白質交互作用區域上是有用的。 
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ABSTRACT 

 

 
The knowledge of protein-protein interactions is essential for the 

understanding of protein functions and protein-protein interaction networks. 
Hence, the capability to identify protein-protein interaction sites is crucial 
to decipher the reaction mechanisms of protein function.  

In this work we develop am approach based on machine-learning 
method to predict protein-protein interaction sites from three-dimensional 
structure. We have tried a multiple of feature vectors such as amino acid 
composition, secondary structure, relative solvent accessible surface area, 
position substitution specific matrix and structural neighboring residues. 
Our results compare favorably with those of others for a benchmark 
dataset. 
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Figure 1. Coding scheme AA. Target residue is colored red and flanking residues are 
colored yellow. If target residue is interface, target residue will be assigned 1-bit, 
otherwise, assigned 0-bit. 
Figure 2. Coding scheme SS. Target residue is colored red and flanking residues are 
colored yellow. If target residue is interface, target residue will be assigned 1-bit, 
otherwise, assigned 0-bit. 
Figure 3. Coding scheme RSA. Target residue is colored red and flanking residues are 
colored yellow. If target residue is interface, target residue will be assigned 1-bit, 
otherwise, assigned 0-bit. 
Figure 4. Coding scheme PSSM. Target residue is colored red and flanking residues are 
colored yellow. Interface residue is assigned 1-bit, otherwise, 0-bit. 
Figure 5. Coding scheme 3D-PSSM’. Target residue is colored red. Structurally 
neighboring residues are colored orange and are sorted by distances between they and 
target residue. If target residue is interface, target reisdue will be assigned 1-bit, 
otherwise, assigned 0-bit. Value of elements from PSSM are rescaled by sigmoid 
function. 
Figure 6. Criteria of determination exposed residue and interface residue. 
Figure 7. The way to get structural homology structures. 
Figure 8. Flow chat of SVM with training scheme Dn. 
Figure 9. Flow chat of SVM with training scheme Dh. 
Figure 10. Prediction results by coding scheme PSSM with structural homology 
information. 
Figure 11. Barstar (barnase inhibitor) from Bacillus amyloliquefaciens. Barstar is 
colored lightblue and is represented in mesh and its partner barnase is colored red and is 
represented in line. Blue region is interface and green region is predicted as interface. 
Figure 12. Barstar (barnase inhibitor) from Bacillus amyloliquefaciens. Barstar is 
colored lightblue and is represented in mesh. Violet region denotes underprediction 
(false negative) and blue region is predicted correctly (true positive). Yellow region 
denotes overprediction (false positive) and green region is predicted correctly (true 
positive).  
Figure 13. Barnase from Bacillus amyloliquefaciens. Barnase colored lightblue and is 
represented in mesh and its partner barstar is colored red and is represented in line. Blue 
region is interface and green region is predicted as interface. 1brsA 

Figure 14. Barnase from Bacillus amyloliquefaciens. Barnase is colored lightblue and is 
represented in mesh. Violet region denotes underprediction (false negative) and blue 
region is predicted correctly (true positive). Yellow region denotes overprediction (false 
positive) and green region is predicted correctly (true positive).  
Figure 15. Soybean trypsin inhibitor from Soybean (Glycine max). Soybean trypsin 
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inhibitor colored lightblue and is represented in mesh and its partner is colored red and 
is represented in line. Blue region is interface and green region is predicted as interface. 
1avwB 

Figure 16. Soybean trypsin inhibitor from Soybean (Glycine max). Soybean trypsin 
inhibitor is colored lightblue and is represented in mesh. Violet region denotes 
underprediction (false negative) and blue region is predicted correctly (true positive). 
Yellow region denotes overprediction (false positive) and green region is predicted 
correctly (true positive). 
Figure 17. Pancreatic trypsin inhibitor, BPTI from Cow (Bos taurus). BPTI is colored 
lightblue and is represented in mesh and its partner is colored red and is represented in 
line. Blue region is interface and green region is predicted as interface. 1bthP 

Figure 18. Pancreatic trypsin inhibitor, BPTI from Cow (Bos taurus). BPTI is colored 
lightblue and is represented in mesh. Violet region denotes underprediction (false 
negative) and blue region is predicted correctly (true positive). Yellow region denotes 
overprediction (false positive) and green region is predicted correctly (true positive). 
Figure 19. Ovomucoid domains from Turkey (Meleagris gallopavo). This protein is 
colored lightblue and is represented in mesh and its partner is colored red and is 
represented in line. Blue region is interface and green region is predicted as interface.  

Figure 20. Ovomucoid domains from Turkey (Meleagris gallopavo). This protein is 
colored lightblue and is represented in mesh. Violet region denotes underprediction 
(false negative) and blue region is predicted correctly (true positive). Yellow region 
denotes overprediction (false positive) and green region is predicted correctly (true 
positive). 
Figure 21. beta2-microglobulin from Human (Homo sapiens). This protein is colored 
lightblue and is represented in mesh and its partner is colored red and is represented in 
line. Blue region is interface and green region is predicted as interface. 1ao7B 

Figure 22. beta2-microglobulin from Human (Homo sapiens). This protein is colored 
lightblue and is represented in mesh. Violet region denotes underprediction (false 
negative) and blue region is predicted correctly (true positive). Yellow region denotes 
overprediction (false positive) and green region is predicted correctly (true positive). 
Figure 23. Hirudin from Leech (Hirudo medicinalis). Hirudin is colored lightblue and is 
represented in mesh and its partner is colored red and is represented in line. Blue region 
is interface and green region is predicted as interface. 4htcI 
Figure 24. Hirudin from Leech (Hirudo medicinalis). Hirudin is colored lightblue and is 
represented in mesh. Violet region denotes underprediction (false negative) and blue 
region is predicted correctly (true positive). Yellow region denotes overprediction (false 
positive) and green region is predicted correctly (true positive).
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INTRODUCTION 

Protein-protein interactions are important in numerous biological processes such 

as immune response, enzyme catalysis, and signal transduction.1 The discovery of 

interaction sites is useful for the prediction of unknown protein-protein interactions, 

for the drug design as targets in proteomics2, for the library design of phage display 

and for limiting search space for docking studies3. Although prediction of interaction 

sites with protein complexation is important, it remains a challenge in molecular 

biophysics.4  

Protein-protein interaction sites can be deduced by experimental and 

computational methods. Experimental methods can be grouped into several categories. 

Analyzing protein complexes structures5 is the most direct method. Analyzing 

structures requires atom coordinates of protein complexes structures, but it is 

generally more difficult to obtain the structure of protein complexes than that of 

protein monomer structures.6 Phage display7-9 and mutagenesis10-12 have also been 

attempted to discover interaction sites. These experimental methods usually lead to 

relatively high accuracy, but most of them are time-consuming and cost-expensive.2 

By using patch analysis on six chemico-physical properties (salvation potential, 

residue interface propensity, hydrophobicity, planarity, protrusion and accessible 

surface area) from protein structures, Jones and Thornton obtain 66% accuracy in 

protein level.13 Gallet et al.,14 detected DNA-binding sites (95% detected) and 

Ca-binding domains (85% detected) by exploiting the difference of hydrophobicity 

distribution in linear stretches of sequences of interface residues and of non-interface 

residues. But Fariselli et al.15 confirmed that the chemico-physical properties of 

interaction residues are difficult to distinguish from protein surface residue. Fariselli 

et al.15 used neural network with sequence profile from HSSP16 and obtained 73% 
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prediction accuracy in three-fold cross-validation. Zhou et al.1 included sequence 

profile and residue neighbor list and used neural network to obtain 70% prediction 

accuracy. In addition to sequence profile information, Liang et al.6 analyzed 16 

protein chains and showed that the residue with the highest energy score on the 

surface of a small protomer is very possibly the key interaction residue. Gao et al.17 

achieved 88% success rate on 75 hot-spot residues from their structure-based method.  

It is difficult to judge the importance of features or the advantage of prediction 

methods in protein-protein interaction sites prediction because different features, 

different methods and different validation methods are used previously.1,3,6,13,15,17-21  

Different validation methods are used and find a looked better result because 

prediction of protein-protein interaction sites is difficult. The difficulty of 

protein-protein interaction sites prediction comes from the large diversity of 

protein-protein interactions.18 

The support vector machine (SVM) method22 has recently become popular in 

computational biology.23-27 It is successful in applying the SVM based on multiple 

feature vectors on protein fold assignment28 and subcellular localization prediction.24 

In addition, knowledge of a protein’s tertiary structure is a prerequisite for the proper 

understanding of its function.29 It is assumed that using information from structurally 

homologous structures on prediction is more potential than using that from 

non-homologous structures. In this work, the SVM is used to predict the 

protein-protein interaction sites based on multiple feature vectors from structural 

homologous structures and from non-homologous structures in order to prove the 

aforementioned hypothesis. 
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METHODS 

Support Vector Machine  

The SVM22 tries to find the separating hyperplane with the largest distance 

between two classes, measured along a line perpendicular to this hyperplane. 

However, in practice, these data to be classified may not be linearly separable. To 

overcome this difficulty, SVM non-linearly transforms the original input space into a 

higher dimensional space, it is possible that data can be linearly separated. In the 

training process, only part of the training data are used to construct the hyperplane, 

hence avoiding the overfitting problem usually plaguing other machine learning 

methods. These data constructing the classifier are called support vectors. Preliminary 

tests show that the radial basis function (RBF) kernel gives results better than other 

kernels. Therefore, in this work we use the RBF kernel for all the experiments. 

An important issue of optimizing SVM results is to deal with data unbalance. We 

avoided data unbalance by adjusting the weight of penalty parameter. The reciprocal 

of the data number of each class is used as its penalty parameters. In this work, all 

SVM calculations are performed by using LIBSVM30, a general library for support 

vector classification and regression. 

Coding schemes 

Previous work3 shows that protein descriptors based on the generalized n-peptide 

compositions are effective in protein-protein interaction sites prediction. If n = 1, then 

the n-peptide composition reduces to the amino acid composition, and if n = 2, the 

n-peptide composition gives dipeptide composition. When n gets larger, the n-peptide 

compositions will cover more global sequence information, but at the same time, such 
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a coding scheme becomes not only impractical from a computational viewpoint but 

also undoable from a learning viewpoint. However, the size problem can be overcome 

if we regroup the amino acids into smaller groups of classes according to their 

physicochemical properties or structural properties. Previous work shows that 

9-peptide composition with one target residue and four flanking residues on both sides 

of target residue is better in protein-protein interaction sites prediction3 so 9-peptide 

composition is used in this work. Notation AA denotes the 9-peptide composition of 

amino acids. Figure 1 shows coding scheme AA. Notation SS denotes secondary 

structure information of 9-peptide composition of amino acids. Figure 2 shows coding 

scheme SS. Notation RSA denotes relative solvent accessibility31 information of 

9-peptide composition. Figure 3 shows coding scheme RSA. Profile element values in 

PSSM are rescaled by Kim’s function26 given by 

 . (1)  
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5 x5 if      1.05.0
5 if                    0
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>>+
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Notation PSSM denotes above PSSM information of 9-peptide composition and is 

showed by figure 4. Notation PSSM’ denotes PSSM information (rescaled by sigmoid 

function) of 9-peptide composition. Coding scheme PSSM is work in secondary 

structure prediction.26 We use the notation 3D to denotes information from 9 nearest 

residues in three-dimensional structure. The notation 3D-AA and 3D-PSSM (see figure 

5) are used when these 10 residues (one target residue and nine neighboring residues) 

are encoded by their amino acid composition and PSSM information, respectively. 

Similar sequence and structure coding schemes has also been successfully applied to 

interaction sites prediction19 and to metal-binding sites prediction32. 
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SVM training and testing 

Criteria of correctness in prediction 

Each residue of structures is either exposed residue or buried residue. The 

solvent accessibility (ACC) of residues from DSSP33 are used to determine residues 

are exposed or not. A residue is exposed if its relative solvent accessibility (RACC = 

ACC/MaxACC, with maximal accessibility for the amino acids)31 is larger than the 

threshold RACC. Threshold RACC is 25% used by Yan et al.3 and just these exposed 

residues (also called surface residues) are used in experiment. Each exposed residue is 

either in interface or not in interface. The state of an exposed residue (in interface or 

not) is demanded in training SVM and in validation of prediction results. An exposed 

residue is defined to be an interface residue if its ACC in the complex is less than its 

ACC in the monomer by at least 1 Å2.3 These procedures are showed in figure 6. 

SVM Training schemes with and without structural homology information 

Two different schemes are used in SVM to build training dataset. The first 

method is, for each testing protein chain in data set, the rest protein chains are used as 

its training dataset. Because the sequence identities between sequences is data set are 

below 30%, there is no homology between training dataset and testing protein chain. 

This training scheme is without structural homology information. Dn denotes this 

training scheme showed in figure 8. 

Structurally homologous structures are collected as training datasets. Figure 7 

shows the collection strategy. If query structure is in SCOP34, entries except query 

with the same superfamily label in SCOP are collected as query’s training dataset. 

Superfamily level are used in collection for the reason that proteins in the same 
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superfamily are suggested a common evolutionary origin.35 If query structure does not 

belong to any superfamily in SCOP, program ALIGN36 is used to search the most 

similar structure in SCOP. Entries with the same superfamily label of this similar 

structure in SCOP are collected as training dataset. If the sequence identity calculated 

by ALIGN between query structure and the most similar structure is below 30%, 

program CE37 is executed to search the most similar structure in SCOP. Entries 

belonging to the superfamily of this most similar structure are used as training dataset.  

If the query structure is composed of two chains, results of each individual chain are 

merged to a new result for this structure. Dh denotes above training scheme with 

structural homology information. Figure 9 is the flow chart of training scheme Dh. 

The testing dataset of my method is different from the training dataset of mine. When 

searching for structural homologous structures, CE and ALIGN cannot always find 

out reasonable similar structures in SCOP alone, so previous procedures are necessary 

to collect the structural homology training datasets. Figure 9 shows the flow of our 

prediction. 

Evaluation of Predictive Performances 

Predictive performance is assessed by sensitivity (sens), specificity (spec), 

accuracy (accu) and Matthews Correlation Coefficient (MCC)38. The overall 

prediction accuracy (accu) is given by: 

 
FNFPTNTP

TNTPaccu
+++

+
= , (2) 

where TP, FP, TN, FN are the numbers of true positives, false positives, true 

negatives and false negatives, respectively. sens is the fraction of positive examples 

predicted for the interface residue and is given by 

 FNTP
TPsens
+

=
. (3) 
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spec is the fraction of all positive predictions that are true positives and is given by  

 FPTP
TPspec
+

=
. (4) 

MCC is given by 

 ))()()((
**

FNTNFPTNFPTPFNTP
FNFPTNTPMCC

++++
−

=
. (5) 

Data Sets 

We use the dataset from Yan et al.3 as the benchmark data set which is denoted 

by YDH77. In YDH77, the sequence lengths of 77 protein chains are more than 10 

residues and the sequence identities between these chains are below 30%.3 7823 

residues are exposed residues in YDH77 and 2352 residues (30.1%) of the exposed 

residues are in interface. Protein chains in YDH77 are assigned to 6 categories 

according to the scheme of Chakrabarti et al.39 The six categories and the number of 

representative in each category are: protease-inhibitor (11), large protease complexes 

(6), antigen-antibody (13), enzyme complexes (13), G-protein, cell cycle, signal 

transduction (16) and miscellaneous (18). In order to check the robust of our method, 

the dataset used by Liang et al.6 is also tested. LZZG16 denote this data set because it 

is composed of 16 protein chains from 8 hetero-dimers. 

RESULTS AND DISCUSSION 

Comparison results with and without structural homology information 

Prediction without structural homology information 

 Table I shows the performance of our prediction without structurally homology 

information. Secondary structure information from coding scheme SS gives the best 
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performance in sens. This result is consistent to the result that binding sites have a 

preference for β-sheets and for relatively long-structured chains, but not for 

α-helices.18 Table I also shows that results with evolutionary information from coding 

scheme PSSM is better than results with amino acid composition information from 

coding scheme AA. Structurally neighboring residue information gives almost the 

same performance to sequence information when comparing 3D-AA and AA. This 

result is consistent to the result that the majority of interacting residues are clustered 

in sequence segments of several contacting residues.20 The results of coding scheme 

3D-PSSM and of 3D-PSSM’ are similar, it is implied that rescaling profile element 

values doesn’t improve the performance to prediction protein-protein interaction sites. 

Prediction with structural homology information 

Table II shows results with structural homology information. Evolutionary 

information from coding scheme PSSM gives the best performance. Structural 

homology information from SCOP contains some evolutionary information35, so the 

results that the evolutionary information from coding scheme PSSM is with the same 

performance to the information from coding scheme AA when both using structural 

homology information are reasonable. In Figure 10, the sens of 64% proteins are more 

than 60% and there are 7 proteins with 100% sensitivity. 

The performance of structural homology information 

When comparing the best results between training scheme Dn and training 

scheme Dh, Dh is significantly better than Dn. We also have to notice that coding 

scheme SS gives best results with training scheme Dn but coding scheme PSSM gives 

best results with training scheme Dh. sens is increased 22%, 24% and 14% by coding 

scheme PSSM, AA and 3D-AA with structural homology information. But sens is 
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decrease 1% by coding scheme SS with structural homology information. spec is 

increased 21%, 20%, 24% and 20% with coding scheme SS, PSSM, AA and 3D-AA. 

Table I and Table II show that with same coding scheme except SS, training scheme 

Dh is better than training scheme Dn. This suggests that structural homology 

information is useful to predict protein-protein interaction sites. 

Comparison in multiple feature vectors 

 We try to combine different coding schemes to new feature vector. Table II 

shows that multiple feature vectors are not helpful to performance. Table II also 

shows that coding scheme PSSM is the best feature vector by itself with training 

scheme Dh. 

Compare with others’ works 

Table III lists the performance of different method on the benchmark dataset 

YDH77.  Gallet et al.’s method14 is good on sens but not on spec while Yan et al.’s 

two-stage method3 is good on spec but not sens. These two method just use amino 

acid composition information, so we use the results of coding scheme AA in order to 

show the ability of structural homology information. Our method is good not only on 

sens but also on spec, so the structural homology information is indeed useful while 

predict the protein-protein interaction sites. The MCC obtained on the class label 

shuffled dataset (Table III, column 5) is -0.013 (as compared with 0.38 on YDH77 by 

our method) indicating that our method performs significantly better than a random 

prediction. 

Another benchmark dataset 

 Our method with both evolutionary information and structural homology 
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information is useful on a benchmark YDH77. We use the same training scheme and 

coding scheme on LZZG16. In table IV, the results are even better when using our 

method on LZZG16. This shows the robust property of our method. 

Cases study 

Barstar 

The interaction of barnase, an extracellular RNase of Bacillus anylolique-faciens, 

with its intracellular inhibitor barstar is a good example for protein-protein interaction 

study because the structures of both the free and the complexed proteins are available 

at high resolution17. When using evolutionary information from with training scheme 

Dh, the outcome sens, spec and accu of prediction on barstar are 100%, 93.3% and 

98.2% respectively. Figure11 and figure 12 show this complex. 

G protein β-subunit 

1got is a heterotrimeric G protein and the resolution is 2.0 Å. Gβ is the β subunit 

of this G protein40. The complex 1got belongs to category “G-proteins, cell cycle, 

signal transduction”39. When the G protein is activated by binding GTP, the 

heterotrimer dissociates into the α subunit and a βγ heterodimer29. Most false 

negatives or underpredictions of my prediction are in α-βγ interaction region of β 

subunit, because this region is not interface when G protein is activated. When using 

evolutionary information from with training scheme Dh, the outcome sens, spec and 

accu of prediction on barstar are 83%, 78% and 79% respectively. 

Others 

Six other results from our prediction in different functional categories are 
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showed from figure 13 to figure 24. Figure 13 and figure 14 show barnase. Barnase is 

from PDB 1brs, chain A. Figure 15 and figure 16 show soybean trypsin inhibitor. 

Soybean trypsin inhibitor is from PDB 1avw, chain B. Figure 17 and figure 18 show 

pancreatic trypsin inhibitor (BPTI). BPTI is from PDB 1bth, chain P. Figure 19 and 

figure 20 show ovomucoid domains from Turkey. This domain is from PDB 1cho, 

chain I. Figure 21 and figure 22 show VH single domain of an antibody from Human. 

This domain is from PDB 1ao7, chain B. Figure 23 and 24 show hemagglutinin. 

Hemagglutinin is from PDB 1qfu, chain A. 

CONCOUSIONS 

Our structural homology information is beneficial to predict protein-protein 

interaction sites. Evolutionary information is comparably important by itself when 

using structural homology training datasets. The sensitivity, specificity, accuracy and 

Matthew Correlation Coefficient with both evolutionary information and structural 

homology information on a benchmark dataset YDH77 are 59%, 55%, 74% and 0.38, 

respectively. Our results are better than those of others for benchmark dataset YDH77. 
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TABLE I: Performance without structural homology information 
 SS      RSA PSSM AA 3D-PSSM 3D-PSSM’ 3D-AA

sens 0.50       0.42 0.37 0.33 0.32 0.32 0.31

spec 0.33       

       

       

0.32 0.35 0.32 0.33 0.32 0.32

accu 0.54 0.58 0.60 0.59 0.60 0.60 0.59

MCC 0.06 0.04 0.06 0.03 0.04 0.02 0.02

On testing dataset YDH77 and results are sorted by sens. 
SS: information from protein secondary structure 
PSSM: evolutionary information 
AA: amino acid composition information 
3D-AA: information from protein tertiary structure 
3D-PSSM: evolutionary information from structurally neighboring residues 
3D-PSSM’: evolutionary information from structurally neighboring residues 
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TABLE II: Performance with structural homology training datasets 
 PSSM        AA RSA SS 3D-AA AA+RSA AA+SS AA+PSSM SS+PSSM AA+SS

+PSSM 

AA+SS 

+PSSM+RSA

sens 0.59           0.57 0.58 0.49 0.45 0.57 0.57 0.54 0.56 0.55 0.54

spec 0.55           

           

           

0.56 0.45 0.56 0.52 0.55 0.55 0.54 0.56 0.56 0.57

accu 0.74 0.74 0.66 0.68 0.72 0.74 0.74 0.74 0.75 0.75 0.75

MCC 0.38 0.37 0.26 0.27 0.29 0.38 0.37 0.36 0.38 0.38 0.38

On testing dataset YDH77 and results are sorted by sens. 
PSSM: evolutionary information 
AA: amino acid composition information 
RSA: information from relative solvent accessibility  
SS: information from secondary structure 
3D-AA: information from protein tertiary structure 
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TABLE III:  Performances of different methods 
 Coding scheme AA with 

training scheme Dh
Method of Gallet et al.a

SVM Method of 
Yan et al. 

Two-stage method 
of Yan et al. 

Two-stage methodb of 
Yan et al. 

sens 0.57     0.44 0.43 0.39 0.37

spec 0.56     

     

     

0.30 0.44 0.58 0.31

accu 0.74 0.51 0.66 0.72 0.53

MCC 0.37 -0.02 0.19 0.30 -0.01

On testing dataset YDH77 and results are sorted by sens. 
aData from Yan et al. using method of Gallet et al.  
bClass label are randomly shuttled for all the examples before training and testing the classifier 
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TABLE IV:  Performances of different testing datasets 
 YDH77 LZZG16 

sens 0.57  0.62

spec 0.56  

  

  

0.68

accu 0.75 0.79

MCC 0.38 0.49

Using coding scheme PSSM and training scheme Dh  
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TABLE V(a): 11 protease-inhibitors 
Protein chain Description sens    spec accu MCC

1hiaAB Hirustasin 43.23% 90.91% 26.09% 0.20

d1avwb_ Soybean Trypsin Inhibitor, Orthorhomic Crystal Form 81.40% 45.45% 71.43% 0.46

d1choi_ Alpha-chymotrypsin Complex with OMTKY3 88.89% 81.82% 81.82% 0.74

d1flei_ Elafin 45.16% 0.00% 0.00% 0.00

d1hiai_ Hirustasin 94.59% 100.00% 86.67% 0.89

d1stfe_ Papain (E.C. 3.4.22.2) 82.29% 63.64% 35.00% 0.38

d1stfi_ Papain (E.C. 3.4.22.2) 85.45% 68.18% 93.75% 0.70

d1tgsi_ Tripsinogen Complex with Trypsin Inhibitor 77.50% 75.00% 70.59% 0.54

d2sici_ Subtilisin (serine protease) 100.00% 100.00% 100.00% 1.00

d3sgbe_ Proteinase B from Streptomyces Criseus(SGPB) 87.80% 58.82% 76.92% 0.60

d4cpai_ Carboxypeptidase A (Cox) Complexe with Cox Inhibitor 64.00% 50.00% 11.11% 0.09
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TABLE V(b): 6 large protease complexes 
Protein chain Description sens    spec accu MCC

1danTU Soluble Tissue Factor 46.03% 66.67% 21.05% 0.06 

d1bthp_ Bovine Pancreatic Trpsin Inhibitor 83.72% 100.00% 65.00% 0.71 

d1tbqr_ Rhodniin 48.05% 47.37% 23.08% -0.04 

d1tocb_ Thrombin 48.98% 75.00% 16.07% 0.13 

d1tocr_ Ornithodorin 57.47% 55.56% 37.50% 0.13 

d4htci_ Thrombin Complex With Recombinant Hirudin 94.00% 93.94% 96.88% 0.87 
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TABLE IV(c): 13 enzyme complexes 
Protein chain Description sens    spec accu MCC

d1brsa_ Barnase (G specific endonuclease) 50.82% 44.44% 61.54% 0.04 

d1brsd_ Barstar 98.15% 93.33% 100.00% 0.95 

d1dfje_ Ribonuclease A 43.48% 33.33% 34.48% -0.15 

d1dfji_ Ribonuclease Inhibitor 72.86% 27.42% 58.62% 0.26 

d1dhka_ Procine Pancreatic - Amylase 82.83% 33.33% 6.25% 0.08 

d1dhkb_ Bean Lectin-like Inhibitor 50.00% 18.75% 22.22% -0.16 

d1fssa_ Acetycholinesterase (E.C. 3.1.1.7) 89.71% 0.00% 0.00% 0.00 

d1fssb_ Fasciculin II 95.45% 94.12% 94.12% 0.90 

d1glaf_ Glycerol Kinase 95.29% 80.00% 100.00% 0.87 

d1glag_ Glycerol Kinase 77.38% 30.77% 12.12% 0.08 

d1udie_ Uracil-DNA Glycosylase 85.19% 100.00% 23.81% 0.45 

d1udii_ Uracil-DNA Glycosylase Inhibitor 90.91% 86.36% 90.48% 0.81 

d1ydre_ C-Amp-Dependent Protein Kinase 95.89% 76.00% 100.00% 0.85 
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TABLE IV(d): 13 antigen-antibody 
Protein chain Description sens    spec accu MCC

1kb5AB Kb5-C20 T-Cell Antigen Receptor (antibody) 69.12% 62.22% 52.83% 0.34 

2jelLH Jel42 Fab Fragment (antibody) 70.75% 54.55% 51.85% 0.32 

d1ao7a_ Hia-A 0201 80.65% 71.43% 68.63% 0.56 

d1ao7b_ Beta-2 Microglobulin 90.77% 84.38% 96.43% 0.82 

d1jhla_ Fv Fragment (antibody) 61.19% 12.50% 14.29% -0.12 

d1mela_ Vh Single-Domain Antiboy 83.10% 56.25% 64.29% 0.50 

d1nfdb_ T-Cell Receptor(antigen) 55.97% 60.78% 44.29% 0.13 

d1nmbn_ N9 Neuraminidase 82.58% 34.15% 100.00% 0.53 

d1nsns_ Staphylococcal Nuclease 67.57% 0.00% 0.00% -0.11 

d1ospo_ Outer Surface Protein A 71.53% 0.00% 0.00% -0.16 

d1qfua_ Hemagglutinin (antigen) 69.05% 63.41% 70.27% 0.38 

d1qfub_ Hemagglutinin 65.57% 57.89% 96.49% 0.42 

d2jelp_ Histindine-Contating Protein (Jel42 Fab/Hpr complex) 23.53% 4.17% 5.88% -0.58 
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TABLE IV(e): 16 G-protein, cell cycle, signal transduction 
Protein chain Description sens    spec accu MCC

d1a0oa_ CheY 94.44% 81.25% 92.86% 0.83 

d1a0ob_ CheA 97.87% 100.00% 93.33% 0.95 

d1a2ka_ Nuclear Transport Factor 2 78.67% 85.71% 73.17% 0.58 

d1a2kc_ Ras-family GTPase Ran 64.58% 21.21% 46.67% 0.11 

d1agra_ Guanine Nucleotide-Binding Protein G(I) 71.60% 23.53% 26.67% 0.08 

d1agre_ Rgs4(regulator of guanine nucleotide-binding protein) 86.49% 76.92% 58.82% 0.59 

d1aipa_ Elogation Factor Tu 80.56% 0.00% 0.00% -0.07 

d1aipc_ Elogation Factor Ts 64.17% 76.67% 38.98% 0.32 

d1fina_ Cycline-dependent Kinase 2 91.43% 86.67% 86.67% 0.80 

d1finb_ Cycline A 57.26% 31.71% 37.14% 0.03 

d1gotb_ β subunit of G protein 79.35% 76.83% 82.89% 0.59 

d1guaa_ Rap1A (one member of Ras family) 78.16% 36.84% 50.00% 0.30 

d1guab_ C-Raf1 93.48% 82.35% 100.00% 0.86 

d1tx4a_ P50-Rhogap(GTPase-activating protein rhogap) 88.12% 65.52% 90.48% 0.70 

d1tx4b_ Transforming Protein Rhoa 71.59% 51.85% 53.85% 0.33 

d2trcp_ Phosducin 79.71% 72.22% 59.09% 0.51 
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    Protein chain Description sens spec accu MCC
1sebAB Hia Class II Histocompatibility Antigen 52.81% 67.37% 45.07% 0.10 

d1ak4a_ Cyclophilin A 69.86% 27.59% 88.89% 0.38 

d1ak4c_ HIV-1 Capsid 94.32% 91.67% 88.00% 0.86 

d1atna_ Deoxyribonuclease I Complex with Actin 57.89% 19.05% 80.00% 0.22 

d1atnd_ Deoxyribonuclease I Complex with Actin 84.40% 0.00% 0.00% 0.00 

d1dkga_ Nucleotide Exchange Factor Grpe 68.91% 78.57% 63.77% 0.39 

d1dkgd_ Molecular Chaperone Dnak 82.32% 18.18% 8.00% 0.03 

d1efna_ Fyn Tryosine Kinase 91.67% 78.57% 100.00% 0.83 

d1efnb_ HIV-1 Nef Protein (SH3 domain) 93.33% 86.96% 95.24% 0.86 

d1fc2c_ Immunoglobulin Fc and Fragment B 75.76% 61.11% 91.67% 0.56 

d1fc2d_ Immunoglobin Fc and Fragment B (antibody) 63.64% 11.63% 45.45% 0.07 

d1hwga_ Human Growth Hormone 92.93% 90.24% 92.50% 0.85 

d1hwgb_ Growth Hormone Binding Protein 67.62% 55.56% 14.29% 0.14 

TABLE IV(f): 13 miscellaneous 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 
 
 
 
 
 
 
 
 
 
 
 

 30



Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 10 

Prediction by coding scheme PSSM  with structural homology information
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Figure 11 
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Figure 12 
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Figure 13 
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Figure 14 
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Figure 15 
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Figure 16 
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Figure 17 
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Figure 18 
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Figure 19 
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Figure 20 
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Figure 21 

 

 47



Figure 22 
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Figure 24. 
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