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Abstract

One strategy for protein structure prediction is to generate a large number of possible
structures (decoys) and select the most fitting ones based on a scoring or energy function.
The conformational spaces of a protein are huge, and chances are rare that any heuristically
generated structures will directly fall_inythe .neighborhood of the native structure. It is
desirable that the unfitting decoy=structures can. provide insights into native structures, so
prediction can be made progressively. In this thesis, we develop two simple energy
functions for protein folding and “show—that their good performance with popular
benchmarks. One is MOLSIM, a physics-based energy function; another is GEMSCORE,
an empirical energy function based on physical mechanisms with simplified model. Instead
of hundreds or thousands parameters used in other physics-based energy functions by
previous authors, we adopt only few overall weights and use an evolutionary algorithm to
optimize the parameters of these two energy functions. Here we present a systematic
comparison of our results with the works based on physics-based energy functions by
previous authors. Six testing decoy sets, including 96 protein sequences with more 70,000
structures were evaluated. There are 70 and 73 native proteins that identified from these
decoy sets with MOLSIM and GEMSCORE, respectively. We believe that our energy
functions are fast and simple to discriminate between native and nonnative structures for

protein structure prediction.
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Chapter 1 Introduction

1.1 Protein Structure Prediction and Energy Functions

Protein structure prediction (PSP) at atomic detail, which is an important aspect of the
protein folding problem, remains one of the fundamental unsolved problems in the field of
computational structural biology. The PSP computational method involves two basic critical
elements: an efficient search method and a reliable energy function. The former should be
able to search a large number of potential structure candidates with reasonable accuracy and
speed. Energy functions for PSP should effectively discriminate between the native

structure and non-native structures during the search structure candidates.

Many methods have been proposed to for PSP.by generating a reliable structure from a
given sequence whose structure is, unknown. These methods are separated into three
categories: homology modeling (comparative-medeling), fold recognition (threading), and
ab initio folding. The main concept of hemelogy modeling and fold recognition is to find
out the best known structure as template for a given target sequence. The evolutionary
relationship can be deduced from sequence similarity [1-3] or by threading a sequence
against a library of structures and selecting the best match [4, 5]. Then generate candidate
structures by aligning the target sequence and the template structure. The template selection

and alignment are the critical steps for modeling methods.

Unlike homology modeling and fold recognition, ab initio folding generates candidate
structure only from sequence information. No dependence on database information is
needed and predictions are based on sampling of the protein conformational space to
optimize an energy function [6-14]. In one possible scenario for selecting the most reliable

structure, a large number of candidate structures are generated and evaluated with an energy



function that can distinguish the native and misfolded ones (decoys).

Regardless of which class a prediction method belongs to, an effective energy function
is usually required. These functions are typically used in one of two ways: they are either
used as optimization criteria to drive conformational search algorithms to sift through the
conformational space (folding problem) or they are used as selection criteria to select a
conformation from a set of possible structures (reverse folding problem). Energy functions
of PSP computational methods are generally rooted in the thermodynamic hypothesis that
the native-state conformations is the most stable conformation and, therefore, must occupy
the lowest energetic state [15]. Effective energy functions that can accurately depict the
energy landscape of protein conformation space are a common requirement for all
computational approaches to the PSP _problem: Toward the aim of developing such energy
functions, three different types of approaches are under investigation: knowledge-based

energy functions, physics-based energy functions.

1.2 Related Works

Knowledge-based energy functions are generally derived from distributions of
experiment structural data [16, 17]. A previous comparative study showed that
knowledge-based functions usually perform better [18]. This is part of the reason that most
previous works have been focused on knowledge-based energy functions in structure
prediction applications [16, 17, 19-21]. Given a database of high-quality structural
information, knowledge-based energy functions can often produce the desired results with
far less computational overhead. However, there are a few exceptions. For example, the
Park et al. compared various knowledge-based and physics-based functions and found that
the knowledge-based functions are not better than physics-based functions at ranking native

structures [22]. In addition, the Tobi et al. showed that it is not possible to find a pairwise



knowledge-based potential with a resolution of 1 A or better [23, 24].

Energy functions derived from experimental structure information are constrained by
their underlying statistics, which means that their accuracy and applicability are intrinsically
tied to the data source used for parameterization; if the particular data set overrepresents a
certain class of structural properties (e.g., helical structures), the resulting energy function
would also reflect this statistical bias in its scoring. For the reasons of simplification and
fast, reduced representation are usually used in knowledge-based energy functions. These

energy functions may contain pseudo-potentials which lack the physical meanings.

On the other hand, physics-based energy functions are based on physical mechanisms.
And they do not have such inherent limitations when they are carefully parameterized.
Because they are derived from ab'initio quantum mechanical calculations based on the
principles of physics alone, they .do not have any-intrinsic bias toward any particular
structural properties. Physics-based approaches-assume that the protein potential energy
functions can be broken down into ‘terms.of bond stretching, angle bending, torsional, and
non-bonded interactions. These parameters in these terms are then fitted to high-level ab
initio quantum mechanical calculations and small molecule thermodynamic and
spectroscopy data. The advantage of a physics-based energy function is the clear physical
meaning of each individual term. Great efforts have been invested to understand the driving

forces or dominant forces in its discriminative ability.

Despite their perceived advantages, physics-based energy functions have not been
widely considered practical for fold recognition or protein structure prediction types of
applications. This finding was mostly due to the high-computation cost required and the
cumulative inaccuracies introduced in parameterization of the energy functions

compounded by the fact that most of the earlier energy functions were calibrated against



rather sparse and often qualitative experimental data. Because of the continued
improvement in computer speed and advances in energy function design, this situation has
begun to change in recent years; physics-based energy functions are now showing signs of

living up to their potential [25-33].

As more new energy functions are being developed, one problem that became apparent
was the lack of a standardized benchmark to allow comparisons of performances across
different energy functions parameterized by using different properties and methodologies.
One of the earliest studies that resembled a benchmarking test for protein potentials was the
study carried out by Novotny et al. [34], in which two proteins with the same number of
residues but different folds were considered and the sequence of one was “threaded” onto
the fold of the other. The resulting correct'and,incorrect models were then evaluated with
use of the CHARMM potential. The conclusion of this study was frequently misinterpreted
as supporting evidence that modern molecular mechanics-based potentials were not of

sufficient accuracy to discriminaté.between native and non-native folds.

In the spirit of the Novotny test, several groups have created decoy sets (non-native or
near-native conformations) as a testing benchmark for evaluating the usefulness of a new
scoring function [22, 35-37]. These decoy sets provide an objective common platform on
which new energy functions can be evaluated. Furthermore, one may also view the decoys
as the products of a previous step in a hierarchical structure prediction scheme; a
high-quality scoring function could then be integrated as a filter to select the best candidate

from among a set of low-resolution prediction of the native fold.

Another problem for developing a physics-based energy function is that the
determination of potential parameters is conceptually and practically difficult. Although it

would seem the most deductive and logical, determining potential parameters solely from



electronic structure calculation of small molecules does not necessarily give the best
performance for modeling proteins in solvent. Instead of this bottom-up approach, we might
ask whether we can infer physical forces from their consequences, that is, the structures of
proteins already in the structural database. Recently, structural genomics projects have
started to produce thousands of 3D protein structures. If we can use this information to
improve protein energy functions, this would yield energy functions that are practically
powerful for many purposes and should be conceptually helpful for gaining insight into the

physical principles of protein architecture.

In this thesis, we try to develop a new energy function that combine the advantages
both of knowledge-based and physics-based energy functions and avoid the disadvantages
of them. We used simplified energy.sterms,physical mechanisms to form our energy
functions. In order to optimize the parameters of our energy functions for protein folding,
we adopt a reduced optimization:scheme that to consider the overall weight for each energy
term as the parameter of each energy term. For our purpose, we use an evolutionary
algorithm and a well-developed decoy sets”as our training set to optimize the overall

weights.

1.3 Evolutionary Algorithms

An evolutionary algorithm is a generally adaptable concept for problem solving,
especially difficult optimization problems. It is based on ideas genetics and natural selection.
First, a problem is coded to a chromosome, which is represented as solution and initialed
randomly. Then find out batter solution in searching space by mutations and crossovers.
Selection is most important step in an evolutionary algorithm. It is decided by the objective
function of an evolutionary algorithm to pick up the batter solution. It is finished when find

a reliable solution by repeating mutation, crossover, and selection again and again.



Evolutionary algorithms have been used to solve problems involving large search
spaces where traditional optimization methods are less efficient. They were applied to many
biological problems in varying ways. Currently, there are about three main independently
developed but strongly related implementations of evolutionary algorithms: genetic

algorithms [38], evolution strategies [39], and evolutionary programming [40].

In general the coding function of genetic algorithms was binary-represented. These
genetic algorithms may introduce an additional multimodality, making the combined
objective function more complex than the original function. To achieve better performance,
real-coded genetic algorithms [41, 42] have been introduced. However, they generally
employ random-based mutations and hence, still require lengthy local searches near local
minimums. In contrast, evolution strategiesiand evolutionary programming [43, 44], mainly
use real-valued representation and focusron self-adaptive Gaussian mutations. This type of
mutation has succeeded in continuous optimization and has been widely regarded as a good
operator for local searches. Unfortunately, experiments [45] show that self-adaptive

Gaussian mutation leaves individuals trapped near local minimums for rugged functions.

Because none of these three types of original evolutionary algorithms is very efficient,
many modifications have been proposed to improve solution quality and to speed up
convergence. Such a hybrid approach may make a better tradeoff between computational
cost and the global optimality of the solution. However, for existing methods local search
techniques and genetic operators often work separately during the search process. Family
competition evolutionary algorithm (FCEA) is proposed to improve the above approaches

and has a good performance for many problems.

FCEA 1is a multi-operator approach that combines three mutation operators:

decreasing-based Gaussian mutation, self-adaptive Gaussian mutation, and self-adaptive



Cauchy mutation. It incorporates family competition [46, 47] and adaptive rules for
controlling step sizes to construct the relationship among these three operators. To balance
the search power of exploration and exploitation, each of operators is designed to

compensate for the disadvantages of the other.

In this thesis, we use the FCEA to look for the most suitable weights of energy terms
for protein folding. The next section describes the energy functions and the details of FCEA,
such as the scoring function and the representation. In the third section, we analyze the
performance on training set and test our energy functions with optimal weights by popular
benchmark testing sets. We also discuses the differences of energy functions in many

situations. Conclusions and future works are drawn in the fourth section.



Chapter 2 Materials and Methods

For a realizable energy function for protein folding, we adopted two physics-based
energy functions which developed for different problems. We modified these energy
functions and optimized them using evolution algorithm. One of them is MOLSIM that is
based on physical mechanism and originally developed for molecular dynamics. Another is

modified from the energy function of GEMDOCK [48, 49] used in protein-ligand docking.

Figure 1 shows the flowchart of training and testing steps. The quality of native
structures and decoy structures are not generally well and there are some errors in these
structures, like lack of coordinates of atoms. First, we filter these error structures or
incomplete structures in training set and testing sets. Second, calculate the energy values of
each native and decoy structures in training set using our energy functions. Then, optimize
the overall weights of energy terms.in energy.functions by evolutionary algorithm, FCEA,
and get these optimal weights. Repeat-above steps until convergence or maximum
generations of FCEA. Final, apply these.weights into our energy functions and calculate the
energy values of the structures in four testing sets and analyze the results and performances.
Through these steps, we train the optimal weights of energy terms and judge the quality of

our energy functions with benchmarks.

2.1 Energy Functions

2.1.1 MOLSIM : physics-based energy function

MOLSIM is a physics-based energy function developed for molecular dynamics and
simulation by Professor Jenn-Kang Huang. This energy function is based on physical
mechanisms contain bond stretching, angle bending, torsional, and non-bonded interactions

as other force fields for molecular dynamics.



The complete energy function is given as

Etot = Ebond + Eangle + Etorsion + Eelect + EvdW; (1)

where Ej,qq 1s covalent bond potential, Eqyg and Ejog0, are bond angles and torsion angles
potentials, respectively. E.., and E,z;w are electrostatics potential and van der Waals
potential, respectively. MOLSIM uses these physics-based potentials for molecular
dynamics and simulation. MOLSIM is all-atom energy function and polar hydrogen atoms
are needed in the energy function. Therefore, there are several steps before the energy

calculation.

First, MOLSIM program reads the information of protein structure from
PDB-format file including coordinates of'atoms,and residue information. At secondary step,
store the structure information with templates of 20 amino acid libraries and check the lacks
of atoms and the errors of residues. Then, add the polar hydrogen atoms in specific location
defined in the templates. The additional hydrogen atoms may lead to form steric crashes.
Energy minimization, steepest descent, 1s used to reduce steric crashes. After energy

minimization, we get the final structure for energy calculation.

Structures may crash or fold to another structure during long molecular dynamic, it
could bring some errors and reduce the effect of protein energy functions. The energy
values of native and decoy structures are calculated after energy minimization and no more

dynamic steps is needed.

Physical mechanisms used in MOLSIM contain bond stretching, angle bending,
torsional, and non-bonded interactions. In this thesis, we simplify the original energy
function by removing bonded interactions which includes bond stretching, angle bending,

and torsional interactions. We consider the energy terms of non-bonded interactions, E.



and E,w, and add extra solvation energy (Esys) to form new MOLSIM energy function. The

physics-based energy function, MOLSIM, we used is given as
Etot = Eelecl + EvdW + ESAS~ (2)

The electrostatic energy (E..;) between atoms i and j is

N N qq
Eelect 222332 — ’ (3)
i=l j=l Ty
where r;; is the distance between the atoms i and j, g; and g; are the atomic partial charges of
atoms 7 and j. and 332 is a factor that converts the electrostatic energy into kilocalories per
mole. The van der Waals potential used here is Lennard-Jones 6,12 potential:

=55 des) 4

i=Lrgl ij i

where r; is the distance between the atoms-i-and j, 4 and B are constants and predefined by
different atom types. For reducing the “computational resource, a cutoff of non-bonded

interactions, 6.0 A, is adopted during energy calculation.

The solvent effect is an important potential in protein folding. Many methods are
proposed to this issue, for example atomic solvation parameters (ASPs) [50, 51] and
generalized Born model (GB) [52] . In this thesis, we use ASPs to approximate to the
solvation energy. The solvation energy is calculated by ASPs and solvent-accessible surface

arca.

The solvation energy, Es4s, 1s given as

)
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where o; is the atomic salvation parameter (ASPs) for atom type 7, and 4; is the Lee and
Richards solvent-accessible surface area of atom type i. In our calculations, we use a probe
radius of 1.4 A to simulate a water molecule to calculate atomic solvent-accessible surface
area. We divide all atoms into six atom types: C, non-charged O, non-charged N, S, charged
O, and charged N, used with Eisenberg et al. [50, 51]. Table 1 shows the detail the

description of each energy term.

2.1.2 GEMSCORE : empirical energy function

In this thesis, we developed another empirical energy function modified from
GEMDOCK [48, 49]. The energy function of GEMDOCK has a good performance in
flexible protein-ligend docking [48, 49] and screening [53, 54]. GEMDOCK was developed
well for docking problem, but thete are different.between docking problem and protein
folding. We need to revise the original energy function of GEMDOCK and redevelop a new

empirical energy function by adding othér-energy-terms for protein folding problem.

The energy function of GEMDOCK is given as

Elol = Einter + Eintra + Epenala (6)

where Ej.- and Ej,, are the intermolecular and intramolecular energy, respectively, Epepas 1S
a large penalty value. We only retain £, and use ASPs and solvent-accessible surface area
as energy term of solvent effect (Esys). Einer 1s including electrostatic energy, simplified van
der Waals and hydrogen-bonding potentials. As for the requirement of later optimization,
we divide the intermolecular energy (Ej..-) to three terms: electrostatic energy (Eeic), van

der Waals potential (E,;») and hydrogen-bonding potential on backbone (Ep5).

The empirical energy function of GEMSCORE is given as
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Etot = Eelect + EvdW + EbHB + ESAS- (7)

Electrostatic energy, E...:, 1s based on general Columbic electrostatic function:

E =3%33094 8
elect — ZZ 4 2 ( )
=l =1 i

where r;; is the distance between the atoms i and j, g; and g; are the formal charges and 332
is a factor that converts the electrostatic energy into kilocalories per mole. The formal
charge of atoms is indicated in Table 2. In order to decrease the incorrect situation, we set

the low bound of electrostatic energy to -10 (see Figure 2).

The van der Waals potential, E,sw, and hydrogen-bonding potential on backbone, Epps,
are both simplified atomic pair-wis¢ potential functions (see Figure 2). In this model, these
two potentials are calculated by :the.same function.form but with different parameters. The

model is given as

Bt/ Bij
oy ry <V
v, - —2L
4
B[/- Bij
Vi =) i<y, <V,
Vz _Vl B,
. V,<p "<V,
E w>Epp =1V5 if 25Ty =0 )
By :
VS_VS(rij V3) 3 ]/‘U SVA
V,-V3 5

2 is the distance between the atoms i and j with the interaction type Bj; forming by the
ij

atomic pairwise where Bj; is a state of either van der Waals potential or hydrogen-bonding

potential on backbone. The parameters of these different potentials, V,..., Vs, given in
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Figure 2. The value of the hydrogen-bonding potential on backbone should be larger than

the one of the van der Waals potential.

In order to calculate the value of the hydrogen-bonding potential, it is must to identify
the hydrogen bond. We assigned hydrogen bonds according to the method used with Baker
and Hubbard [55]. Figure 3 shows the definition of a hydrogen bond used in GEMSCORE.

If the angle of N-H-O (8,,,,) is more than 120° and the distance between hydrogen atom

and oxygen atom (roy) is less than 2.5 A, a hydrogen bond is assigned.

To decide hydrogen bonds, we have to add extra hydrogen atoms which don’t be
contained in PDB-format file before energy calculation. Only the hydrogen bonds formed
with both hydrogen atoms and oxygen atoms located at backbone are considered, and we
ignore the hydrogen bonds located between backbone and side-chain or side-chain and

side-chain.

The solvation energy, Es4s, which 18 the same:as MOLSIM is given as
N
Esas :ZO-[A[ > (10)

where g; is the ASPs for atom type i, and 4; is the Lee and Richards solvent-accessible
surface area of atom type i. We use a probe radius of 1.4 A to simulate a water molecule to
calculate atomic solvent-accessible surface area. We divide all atoms into six atom types: C,
non-charged O, non-charged N, S, charged O, and charged N, used with Eisenberg et al. [50,

51]. Table 1 shows the detail description of each energy term.

2.2 Optimization

The core idea of our evolutionary approach was to design multiple operators that

cooperate using the family competition model [46, 47], which is similar to a local search
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procedure. The Gaussian and Cauchy mutations, continuous genetic operators, search the

weights for the energy terms.

2.2.1 Representation and Initiation

Our optimized method works as follows: It randomly generates a starting population
with N solutions of weights for energy function. Each solution is represented as a set of
3n-dimensional vectors (x', o', y'), where n is the number of energy terms of an energy
function and i = 1,---,N, where N is the population size. The vector x is the adjustable
variables representing a particular weights of a energy term to be optimized. ¢ and y are the
step-size vectors of decreasing-based Gaussian mutation and self-adaptive Cauchy mutation.
In other words, each solution x is associated with some parameters for step-size control. The

initial step size ¢ is 0.8 and v is 0.2,

2.2.2 Family Competition Evolutionary Algorithm (FCEA)

After initializes the solutions, it'enters.the'main evolutionary loop, which consists of 2
stages in everyone iteration: decreasing-based Gaussian mutation and self-adaptive Cauchy
mutation. Each stage is realized by generating a new quasi-population (with N solutions) as
the parent of the next stage. These stages apply a general procedure “FC_adaptive” with
only different working population and the mutation operator. The FC adaptive procedure
employs 2 parameters, namely, the working population (P, with N solutions) and mutation

operator (M), to generate a new quasi-population.

The main work of FC adaptive is to produce offspring and then conduct the family
competition. Each individual in the population sequentially becomes the “family father.”
With a probability p., this family father and another solution that is randomly chosen from

the rest of the parent population are used as parents for a recombination operation. Then the
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new offspring or the family father (if the recombination is not conducted) is operated by
differential evolution to generate a quasi-offspring. Finally, the working mutation is
operates on the quasi-offspring to generate a new offspring. For each family father, such a

procedure is repeated L times, called the family competition length.

Among these L offspring and the family father, only the one with the lowest scoring
function value survives. Since we create L children from one “family father” and perform a
selection, this is a family competition strategy. This method avoids the population
prematureness but also keeps the spirit of local searches. Finally, the FC adaptive
procedure generates N solutions because it forces each solution of the working population to
have one final offspring. In the following, genetic operators are briefly described. We use a
= (x, 6“, y*) to represent the “family, father’>and » = (x”, o, y") as another parent. The
offspring of each operation is represented as ¢ = (x°, 6', v°). The symbol x°; is used to denote

the ith adjustable optimization variable of a-solution s,; Vi e {1,..., N}.
2.2.3 Recombination and MutationOperators

We implemented modified discrete recombination and intermediate recombination. A
recombination operator selected the “family father (a)” and another solution (b) randomly

selected from the working population. The former generates a child as follows:
N E ... 08
X, = with probability . (11)
x; 0.2

The generated child inherits genes from the “family father” with a higher probability

0.8. Intermediate recombination works as
wo=w'+ W —w)/2, (12)
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where w is ¢ or y based on the mutation operator applied in the FC adaptive procedure.
The intermediate recombination only operated on step-size vectors and the modified

discrete recombination was used for adjustable vectors (x).

After the recombination, a mutation operator, the main operator of our evolutionary
approach, is applied to mutate adjustable variables (x). Gaussian and Cauchy Mutations are
accomplished by first mutating the step size (w) and then mutating the adjustable variable x:

W, = w,AC)
X =x +w, D()’

(13)

where w; and x; are the ith component of w and x, respectively. And w; is the respective step
size of the x;, where w is ¢ or y. A(*) is evaluated as exp[t” N(0, 1) + N,(0,1)] if the mutation
is a self-adaptive mutation, where N(0,1) 1s the standard normal distribution, N0, 1) is a
new value with distribution N(Q; 1) that must be. regenerated for each index i. When the
mutation is a decreasing-based mutation4(+) 1s-defined as a fixed decreasing rate y = 0.95.
D() is evaluated as N(0, 1) or C(1)"if the mutatien is, respectively, Gaussian or Cauchy. For

example, the self-adaptive Cauchy mutation is defined as

v =y explr' N(O) + N, (0,11,

(14)
X = x4y C0).

We set T and t”to(+/2n)™ and (y/24/2n)™", respectively, according to the suggestion of
evolution strategies. A random variable is said to have the Cauchy distribution [C(¢)] if it
has the density function: £ (y;¢)=(¢t/7)/(t* + y*),—0 < y <oo. In this thesis, ¢ is set to 1.

Our decreasing-based Gaussian mutation uses the step-size vector o with a fixed decreasing

rate y = 0.95 and works as ¢ =yc“ and x° = x* + ¢°N,(0,)).
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2.2.4 Objective Function of FCEA

For optimization, the energy function becomes

E=Y wu, (15)

where w; is the weight of energy term ;. Given an energetic weight set w (in this thesis, it’s
8 and 9 for MOLSIM and GEMSCORE, respectively), we used FCEA to look for the most
suitable energy function by minimizing a well-developed objective function. Eight energy
terms of MOLISM are define in Equations 2 and 5 and nine energy terms of GEMDOCK

are define in Equations 7 and 10.

A successful energy function not only; has to be able to correctly distinguish between
native and native-like structures but must/also-de so convincingly. In the regard, the quality
of an energy function is judged by the size of energy gap assigns to the native structure and
the average energy of the rest of the non-native structures. A mostly used measure for

assessing this quality is the Z-score. We'defined the Z-score as follows:

Z — Enat[ve_ < E > , (16)
AE
where
AE:\/Z(Ed—<E>)2. (17)
d

E,aive 18 the energy value of a native structure, E, is the energy score of a decoy structure d,
and <E> is the mean of energy values of all non-native structures in a decoy set. Z-score is
used for measuring the energy separation between the native structure and the other decoy
structures in the units of the standard deviation of the ensemble. The Z-score above is only

for a single protein. While we seek the weights of an energy function, we makes Z-scores of
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“all” proteins simultaneously low enough, that is, negative and large in the absolute value.

We need an objective function that reflects the Z-scores of the many proteins in the
training set. We have many approaches to develop an objective function. For example, we
minimize the summation of Z-scores over proteins and we obtain an energy function that
gives small Z-scores for many proteins but large Z-scores for a few proteins. This is not
desired because the Z-scores of “all” proteins need to be small. This problem arises partly
because proteins in the training set have different quality decoys and the current energy
function allows some proteins to be more easily recognized than others. Another approach
may be to minimize the maximum of Z-score of proteins in the training set. However, the
optimized weights are probably determined by few proteins, which may be exceptional ones
that could be structures with some errors. This tends to lead to unreasonable energy weights.
Some intermediate approaches have jbeen proposed:by Koretke er al. [56] as well as by

Mirny and Shakhnovich [57].

To avoid the effects of few proteins and-minimize the Z-scores of “all” proteins, we
chose a normalized Z-scores. When the Z-scores of some proteins are very small, it is
difficult to optimize other proteins which have large Z-scores. In order to reduce the ill

effect mentioned above, we normalize the Z-scores with

f@)=—— (18)

l+exp™

which f(z) maps Z-scores to the value among 0 and 1.

Even the Z-score is low enough; it does not guarantee the native structure can be
distinguished from the decoy set, because Z-score is based on the different value between
energy value of the native structure and the mean of energy values of all non-native
structures in a decoy set. To ensure that energy value of a native structure is the lowest
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among a decoy set, we added a related measure Z’-score [30] given as

Z'= Enative — E

lowest , 19
£ (19)

where Ej,.s 18 the lowest energy value of the non-native structure among the decoy set, and
AE is the same used in Z-score (in Equation 17). In contrast to the Z-score, the Z’-score
gives a quantitative measure of how well separated the native structure is from its lowest
energy neighbor from within the decoy set. We applied the same normalized approach into

Z’-score. Finally, our objective function of evolutionary approach is
N
S=2.(f(2)+ 1)), (20)

where i is the protein 7, and N is the.nimber of proteins in a training set. We minimize the

score S to find out optimal weights for enetgy terms of our energy functions.

2.3 Data Sets of Decoys

A popular approach to test energy functions is to partially sample the conformational
space utilizing constructed decoy sets. Publicly available decoy sets not only provide a
means to evaluate performance of energy functions, but also permit comparisons between
different structure discrimination methods [50, 51, 58]. Many of these decoy sets contain a
large number of candidate conformations, with varying degrees of similarity to the native
conformation. The goal of developing an efficient energy function is to recognize the best

conformation that is most similar to the native structure.
2.3.1 Training Sets

To develop our new energy functions to discriminate the native structures and

non-native structures, we used well-developed decoy set, Rosetta-Tsai [59], as our training
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sets. The decoy set was obtained from the Baker Laboratory website
(ftp://ftp.bakerlab.org/pub/decoys/decoys 11-14-01.tar.gz). These Rosetta-Tsai decoy set is
modified from Rosetta all-atom decoy set [60] and generated from fragments of 3 to 9
residues from known structures matched to the targets through a multiple sequence
alignment process. These fragments were assembled to native-like structures from a
fragment insertion simulated annealing procedure which is using Bayesian scoring functions
[12, 36, 61, 62]. The decoy sets increase the number of proteins and frequency of near

native models building on side-chains and minimizing clashes.

The decoy set contains structural decoys for 41 different and diverse protein targets.
For the training step, we preprocess some error structures in the decoy set. We filter out the
proteins with incomplete residues whiehimake inaccuracies of energy functions and the
proteins that included in the six testing decoy sets. Table 3 lists the final 30 protein targets
and the length ranging from 35:to 85 residues. These protein targets are used for training

our energy functions to obtain the‘overall weights of €nergy terms.

2.3.2 Testing Sets

We tested the performances of our energy functions with optimal weights on six decoy
sets. They are the EMBL misfolded set of Holm and Sander [63] , the 4state reduced set of
Park and Levitt [22], local-minima decoy set of Kesar and Levitt [35], the lattice ssfit set of
Samudrala et al. [64], and fisa decoy set of Simons et al. [61]. These decoy sets are
obtained from the Decoys’R’Us database [35] (http://dd.stanford.edu/). The Rosetta
all-atom decoy set [60] could be download from the Baker Laboratory website
(ftp://ftp.bakerlab.org/pub/decoys/RosettaAllAtomDecoys.tar.gz). The protein lists of decoy
sets are summarized in Tables 3. Since these sets contain thousands of conformations

generated by different conformational search algorithms, the performance of an energy

20



function depends on each set. Success in one decoy set does not guarantee success in
another [65]. Therefore, testing on a variety and large number of decoy sets is to provide a

rigorous evaluation of how well an energy function works.

The EMBL misfolded set [63] is set of intentionally misfolded structures and their
corresponding native structures. This decoy set contains structural decoys for 25 protein
targets including from 36 to 317 residues and was constructed by swapping side-chains on
pairs of crystallographically determined structures with the same number of residues while
keeping the backbone geometry unperturbed. The resulting chimeric structures were then
subjected to 500 steps of steepest descent energy minimization using the GROMOS

program.

The 4state reduced [22] decey set contains.structural decoys for 7 small proteins
including from 54 to 75 residues-with varying topological folds. The protein structures have
been generated by exhaustively-eénumerating-the backbone rotamer states of 10 selected
residues in each protein using an off-lattice model with four discrete dihedral angles states
per rotatable bond. Among hundreds of thousands of generated conformations, only those
compact structures scoring well by using a variety of scoring functions and having

reasonable RMSD from the native conformation have been selected.

The local-minima decoy set (Imds) [35] also contains structural decoys for 10 small
proteins including from 36 to 68 residues. These decoys are conformations that occupy
minima in a modified classical ENCAD [66-69] force field using united and soft atoms.
Initially ten thousand structures were generated by randomly modifying only the dihedral
angles in the loop regions. After minimization in torsion space to the local minima in the
potential, up to 500 of the lowest energy conformations for each protein were kept to make

up the decoy sets.
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The lattice_ssfit [64] decoy set contains structural decoys for 7 proteins including from
55 to 98 residues. These decoy conformations have been generated by ab initio protein
structure prediction methods. The conformational space of a sequence was exhaustively
enumerated on a tetrahedral lattice. A lattice-based scoring function was used to select the
10,000 best-scoring conformations. All-atom structures were then generated by fitting an
off-lattice four-state torsion model to the lattice conformations, using predicted secondary
structure. The 10,000 conformations were further scored with a combination of RAPDF
(residue-specific all-atom probability discriminatory function) [70], HCF (hydrophobic
compactness function) [64], and the Shell energy function (one-point-per-residue scoring
function) [23]. The 2000 best-scoring conformations for each protein were selected for the

decoy sets.

The fisa [61] decoy set contains; struetural decoys for 4 proteins including from 43 to
76 residues. These decoy conformations are generated by the same protocol as in training
set. Use a fragment insertion Simulated annealing procedure to assemble native-like
structures from fragments of unrelated protein structures with similar local sequences
(determined through a multiple sequence alignment process) based on Bayesian scoring

functions.

The Rosetta all-atom decoy set [60] was generated from the same protocol which used
in the training set and fisa decoy set. Fragments of 3 to 9 residues from known structures
matched to the targets through a multiple sequence alignment process were selected to
assemble native-like structures by fragment insertion simulated annealing procedure which
is using Bayesian scoring functions [12, 36, 61, 62]. The terms of the scoring function
included those for hydrophobic burial, electrostatics, disulfide bonds, the packing of
a-helices and B-strands, and the formation of B-sheets. During annealing only, another term

used to promote compactness was added based on the radius of gyration. The number of
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decoy structures in the sets ranges from 994 to 1999. The native structures are not been
within the downloaded decoy set and we copy the native structures from PDB database. But,
the native structures are different from the decoy structures. The residue sequences of decoy
structures are incomplete sequences contrast to the sequences of native structures. We filter
the incomplete proteins to avoid inaccuracies of energy calculation. The protein which has
difference between the number of residues of decoy structure and ones of native structure is
small than 10 and the length of sequence of decoy structure is less than 30 residues was
filtered off. We then cut the native sequences to fit the length of the residue sequences of
decoy structures to reduce the computational error of our energy functions. Final, 42

proteins were left in the decoy set and include from 34 to 149 residues.
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Chapter 3 Results and Discussions

3.1 Parameters in optimization

The parameters of an evolutionary algorithm may conduce to different results.
Population sizes and maximum generations are usually adjusted for searching best results in
an evolutionary algorithm, but difference may result from the same parameters. In this
thesis, we examine many different population sizes and maximum generations to ensue least
differences. The final values of weights are not slimily because of different initial random
values. To observe the variations of weights, therefore, we consider the weight of
electrostatic potential as the base and calculate ratios of other energy terms to electrostatic

potential.

Table 4 shows the variation§ of weights of MOLSIM with different population sizes
and fixed maximum generations, 200. Each result -of different population sizes is the
average value of five independent.runs.“The standard deviation shows that our evolutionary
algorithm can find the best weights and are stable in many different runs. Table 5 lists the
similar results for different maximum generations and a fixed population size, 200,
excluding maximum generations, 100 and 200 steps. Although the variation of maximum
generations, 100 and 200, doesn’t like other results, the standard deviation values are

enough small.

Tables 6 and 7 list the variations of weights of GEMSCORE. For the same reason,
the different values of weights from different initial random values, we use the van der
Waals potential as the base to calculate the ratios of other energy terms. The results show
that similar conclusion. The evolutionary algorithm we used in this thesis is stable for
optimizing the weights of our energy functions. To ensure to find the best weights, we use

population sizes, 200, and maximum generations, 300, in our evolutionary algorithm. The
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final overall weights of energy terms in two energy functions are presented in Table 8. We

use these weights for testing popular benchmarks latter.

3.2 Results of training set

As the description in section 2.2.4 of Materials and Methods, the Z-score of a native
structure is calculated to describe how far the effective energy of the native structure is
separated from the energy spectrum of the decoy structures and we judge the size of energy
gap between the native structure and the lowest energy non-native structures with Z’-score.
Results of the Z-score and Z’-score from the optimized training decoy set are presented in

Table 9. Bold faced values indicate the rank of the native structure is larger than 500.

There are 17 X-Ray and 13 NMR structures in the training set. Figure 4 shows the
performances of our energy functions on different structure determination by X-ray and
NMR on training set. In Figure:4, Rankl and Rank5-mean that the native structures rank
within top 1 and top 5 among its cotresponding-decoy set after the training process,
respectively. The ranks of the native structures are in the top 10 percent (Rank10%, ~186)
and the rest 90 percent (Other) among its corresponding decoy set, respectively. In both
Rank1 and Rank5, our methods have better performance in X-Ray structures than NMR
structures. MOLSIM presents the results in NMR structure as batter as X-Ray structures in
Rank10%. GEMSCORE can identify all X-Ray structures completely, but misidentify the

about 40 percent of NMR structures.

In general, our energy functions have better ability to find out the native structures
which are X-Ray structures. These worse structures are most NMR structures and contain
many models in original PDB file. But only one model was considered as the native
structure used in training set. It may be part of reason that the bad performances of our

energy functions for some NMR structures. Though, our energy functions don’t have the
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performances for some NMR structures as well as X-Ray structures, native structures of
NMR structures are mostly ranked before the 50 percent among its corresponding decoy set

in the training set.

3.3 Test with popular benchmarks

After weights of energy terms are yielded, we tested our optimized energy functions
with popular benchmarks. The results of EMBL misfolded decoy set are listed in Table 10.
There are 24 proteins identified from 25 native-misfolded protein pairs in MOLSIM.
GEMSCORE identify all 25 proteins in this decoy set. Only one protein, 2cdv, is
misidentified in MOLSIM. There is no Z-score in EMBL misfolded decoy set because of

only one decoy structure in the set.

The results of the Z-score®and Z'-score .from the other five testing decoy sets,
4state reduced, Imds, lattice ssfit, fisa, and Rosetta -all-atom decoy set, are presented in
Tables 11-15. The results of total'six testing sets ¢ompared with previous works based on
physics-based energy functions by previous authors [27-32] are summarized in Table 16.
There are 44 and 46 native proteins that ranked first in total 71 decoy sets with MOLSIM

and GEMSCORE, respectively.

Figure 5 plots correlations between the energies and the all-atom root mean square
deviation (RMSD) of decoys from their corresponding native structures in 4state reduced
decoy set on 4state_reduced set. Table 17 shows the details of comparison with previous
works in 4state reduced decoy set. Z’-score isn’t used in general, therefore, we compare the
rank and Z-score of native structure. The number before slash is the rank of native structure
in this decoy sets. Another is the Z-score of native structure. Our results are as well as

previous works, which used AMBER, or other force-fields.
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There is one native structure, 3icb, could not be distinguished in both our energy
functions. Protein 3icb is a vitamin D-dependent calcium-binding protein and contains two
calcium ions. Figure 6 shows the location of calcium ions in the three-dimension structure
of 3icb. The two Ca”" of 3icb locate in the loop section of native structure and that may be
one reason for worse result. Lack of Ca®" at loop could make unstable loop of native
structure. Therefore, we refine the native structure with two Ca®" and calculate energy with
the same weights again. Because of problems of programs, only GEMSCORE energy
function was used to re-calculate the refined structure. Native structure is distinguished
from non-native structures after put calcium ions back to the native structure. Result is
presented in Table 18.

The results of other three testing sets, Imds, lattice ssfit, and fisa, are listed in Table
19-21. As 4state reduced set, the'performances.of our energy functions are good as
previous works. Although there-are 'some native, structures that can’t be identified from
decoys, they are 1fc2 in fisa, 160n-B, 1bba, 1dtk and 1fc2 in Imds, 1dkt-A, and 1trl-A in
lattice_ssfit. Some proteins, like tbbarand 1fc2.in lmds, were ranked as worse energy. They
were missed by previous work [27]. The teason for this massive failure is not entirely clear.
Perhaps, this is because 1bba is pancreatic hormone with a long loop. 1fc2 and 1bOn-B are
both protein complexes and have many missing coordinates (>15 residues) in their native

structures. Figure 8 shows the whole protein structures of 1fc2 and 1bOn-B. The numbers of

residues with coordinates of these three proteins are less than 45.

The others proteins, 1dtk in Imds, 1trl-A in lattice ssfit, which can’t be distinguished
from decoys are both NMR structures and contains 20 and 8 models, respectively. One
reason for the worse results is that the native structure adopted in decoy sets may not fit for
our energy functions. The same results that performances of our energy functions are weak
for NMR structures are presented in training set. Figure 7, 9, and 10 plot correlations
between the energies and the all-atom RMSD of decoys from their corresponding native

structures on Imds, lattice ssfit, fisa decoy sets, respectively.
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The same result that has better performance in X-Ray structures than NMR structures
on the Rosetta all-atom decoy set. The result is presented in Table 15. There are 20 X-Ray
and 22 NMR structures in the decoy set. Native structures are most identified using
MOLSIM. 16 and 18 native structures are ranked within top 1 and top 5, respectively. There
are 19 native structures ranked first using GEMSCORE and one misidentified structure is
ranked four. However, our methods have the worse performance in NMR structures.
MOLSIM identified 9 and 12 native structures from decoy structures within top 1 and top 5,
respectively. 7 and 10 native structures are identified as top 1 and top 5 using GEMSCORE

in total 22 structures.

Figure 11 summaries the results on five testing decoy sets excluded EMBL misfolded
decoy set. There are 45 X-Ray structutes:and:26 NMR structures in these decoy sets. Topl
and TopS mean that the native structure. ranks “within top 1 and top 5 among its
corresponding decoy set, respectively. The-tanks of the native structures are in the top 10
percent (Top10%) and the rest 90 percent (Other) among its corresponding decoy set,
respectively. GEMSCORE presents the better power in distinguishing X-Ray structures than
MOLSIM. MOLSIM have the better performance to identify NMR structures than

GEMSCORE and distinguish X-Ray structures as well as GEMSCORE.

3.4 Hydrogen-bonding interactions in GEMSCORE

Hydrogen-bonding interactions are important interactions during protein folding. In
this thesis, however, we only consider the hydrogen-bonding interactions on backbone as a
part of GEMSCORE. The original energy function using in GEMDOCK used the
hydrogen-bonding interactions as the main potential during protein-ligand docking.
Nevertheless, it may not suit to apply the hydrogen-bonding potential used in GEMDOCK

for protein folding directly. Table 22 compares the results on six testing decoy sets by
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GEMSCORE with hydrogen-bonding potential (Exp) and hydrogen-bonding potential on
backbone (Epyp). Enp is a potential of all hydrogen-bonding interactions and calculate
energy with the same protocol of E,gp. Definition of hydrogen-bonding potential, Epyp, is
described in section 2.1.2 (in Equation 7). The result of GEMSCORE with Eyz haves

performance as well as GEMSCORE with Ejyp excluding 4state_reduced decoy set.

We analyzed the result on 4state _reduced decoy set with different hydrogen-bonding
potentials, Eyp, Epmp, and E,pyp. Table 23 presents the result on 4state reduced decoy set.
Epp means the potential of all hydrogen-bonding interactions. Eyyp and E,ppp mean the
potentials of hydrogen-bonding interactions on backbone and hydrogen-bonding
interactions which do not locate on backbone, respectively. (i.e., Eyg= Epup+ Epnp). Result
of E,»up has terrible performance than Epgaidn the analysis on training set, we can see the
same result as the result on 4state reduced decoy set. Figure 10 shows the percentages of
native structures ranked within L, 5,100, 500, 1000 and larger 1000 in the training set with

different hydrogen-bonding potentials, Eys, Epyp, and E,pys.

The terrible result on E,;z3 may be caused from the definition of hydrogen-bonding
interactions used in the energy function of GEMDOCK. In order to reduce computational
time of GEMDOCK, a simplify strategy was adopt. It does not to add hydrogen atoms and
assign hydrogen bonds depended on nitrogen atoms and oxygen atoms during energy
calculation. Hydrogen bonds are assigned based on the distance between nitrogen atom and
oxygen atom. However, it is impossible to from hydrogen bond at some angle of N-H-O
(@10 ), even the distance is enough close. When the all hydrogen-bonding interactions are
divided to hydrogen-bonding interactions on backbone and not on backbone, E,,z5 contains
the all inaccuracy hydrogen-bonding interactions described above and has terrible

performance.
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This strategy works fine in protein-lignad docking because of the few
hydrogen-bonding interactions and space restrictions. Nevertheless, many hydrogen bonds
from secondary structures to stable protein structure during protein folding. It is effective to
consider the hydrogen-bonding potential for developing energy function. The result (Figure
12) shows that the major contribution of hydrogen-bonding potential is from
hydrogen-bonding potential on backbone. It also proves why the performance of potential
of all hydrogen-bonding interactions (Epz) as well as potential of hydrogen-bonding
interactions on backbone (Epzp). It is enough to cover the error caused from the potential of

hydrogen-bonding interactions which do not locate on backbone (E,5x35).

3.5 Solvent effects in MOLSIM/GEMSCORE

The original energy functions:we used in this.thesis don’t contain solvation potential.
However, solvent effect plays an-important role to.stable the protein structure in the native
situation. We added extra solvation potential-to improve our energy functions. Table 24
present the performances of MOLSIM and GEMSCORE. Original and Optimized mean the
original energy function without optimization and the optimized energy function without
solvation energy, respectively. Optimized+Esys means the optimized energy function with
solvation energy. We can see a lot of improvement in MOLSIM energy function. Not only
average Z-scores but also the number of native structures ranked first in a decoy set has best

performance with optimized energy function that contains solvation energy function.

GEMSCORE also presents the same result in average Z-scores. But the number of
native structure ranked number one doesn’t have variation excluding EMBL misfolded and
4state_reduced decoy sets. The reason for this is not entirely clear. It may the solvation
energy we adopted couldn’t be suitable for GEMSCORE energy function. Nevertheless,

additionally solvation potential improve the performances of our energy functions whether
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MOLSIM or GEMSCORE.

3.6 MOLSIM vs. GEMSCORE

In the thesis, we show two energy functions. One is simplified physics-based energy
function, MOLSIM, and another is empirical energy function, GEMSCORE. We optimized
these energy functions for protein folding. Both of them show the ability that identifies the
native structure from lots of non-native structures. These two energy functions have similar
energy terms and optimized by the same optimization strategy, however, it still has some

differences between them.

Computational resources and time are main discrepancies. MOLSIM is all-atom energy
function and need extra information of hydrogen atoms during energy calculation. Although,
only specified hydrogen atoms are needed in MOLSIM, evaluate the coordinates of these
hydrogen atoms and energy minimization after adding hydrogen atoms require more
computational resources and time'than GEMSCORE. And these extra hydrogen atoms also
increase the computation when energy value is evaluated. For example, GEMSCORE need
1.80 seconds in calculating energy values of 1ctf which contains 65 residues and 486 atoms.
MOLSIM costs 3.31 seconds with lctf. When evaluate a large protein, like 2tmn that
includes 316 residues and 2431 atoms, GEMSCORE (10.7 seconds) still fast then MOLSIM

(18.8 seconds).

Nevertheless, MOLSIM has better performance then GEMSCORE in most decoy sets.
MOLSIM also presents better ability when identifies NMR structures. Some researches
believe that molecular dynamic is needed with all-atom energy function; especially extra
hydrogen atoms are added. Molecular dynamic with a short time can provide reliable
structure. In this thesis, no molecular dynamic is adopted in MOLSIM developed originally

for molecular dynamics. Molecular dynamic may have more accuracy, but more
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computational resources and time are needed during energy calculation. That is
disadvantage of most physics-based energy functions. However, GEMSCORE, an empirical
energy function based on physical mechanisms with simplified model, presents a good
performance with popular benchmarks and costs less computational resources and time then
physics-based energy function. It may be more suitable for protein structure prediction

system to select the best structure from thousands and thousands candidate structures.
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Chapter 4 Conclusions and Future Works

4.1 Conclusions

In this thesis, we develop two simple energy functions for protein folding and have
well performance on six popular benchmarks. We adopt only few weights to optimize the
energy functions with few terms and the performance as well as previous works. However,
most of previous used AMBER or other force fields. The costs of computational resources
and time are huge and parameters used to optimize the force fields during optimization are
hundreds and thousands. The difficulty and time are as more as numbers of parameters in

optimization.

The parameters of energy functignibased on physics mechanical are usually optimized
from chemical compounds or snfall proteins. The optimal parameters may not reflect the
native protein structures. We us¢ the information from: well-developed decoy set and obtain
these optimal parameters of energy function using:evolutionary algorithm. This would yield
energy functions that are practically powerful for many purposes and should be

conceptually helpful for gaining insight into the physical principles of protein architecture.

4.2 Future Works

In the near future, we will apply our derived energy functions for protein structure
prediction with CASP6 (Critical Assessment of Techniques for Protein Structure Prediction,
http://predictioncenter.llnl.gov/casp6/Casp6.html) targets which many researches have
submitted in the world. By this progress, we hope to prove the ability of our energy
functions which selects the best structures from many different candidate generation
methods. After examination, we will integrate our energy functions with other methods that

generate candidate structures and pick up the best candidate structure from thousands and
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thousands of ones. Finally, we will build a reliable system to predict protein structure from

only protein sequences.

Besides building a reliable system to predict protein structure, many shortcomings can
be reformed in our energy functions. A better training set may increase the performance of
our methods. Sovation energy used in this thesis is ASPs. In past years, GB was proved to
have good performance for solvent effect. It may have better results by combining GB and
ASPs. More accuracy and high-speed are also needed for -calculating atomic

solvent-accessible surface area.
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Table 1. The energy terms and descriptions in MOLSIM and GEMSCORE

Term Name Description

ELC Electrostatic energy

VDW van der Waals potential

BHB Hydrogen-bonding potential on backbone
C Summation of surface area of each C atom
S Summation of surface area of each S atom
0 Summation of surface area of each O atom
0 Summation of surface area of each negative charged O atom in ASP (OD1 and OD2),

GLU (OE1 and OE2)

N Summation of surface area of each N atom
oN Summation of surface area of each positive charged N atom in HIS (ND1 and NE2), ARG

(NH1 and NH2), LYS (NZ)
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Table 2. Atomic formal charge used in GEMSCORE

Formal charge Atom Description
0.5 N N atom in HIS (ND1 and NE2)
0.5 N N atom in ARG (NH1 and NH2)
1.0 N N atom in LYS (NZ2)
-0.5 @) O atom in ASP (OD1 and OD2)
-0.5 @) O atom in GLU (OE1 and OE2)
0 Other atoms
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Table 3. The training set and testing sets

Training Set

Name

List of Protein ID (PDB ID)

RosettaTasi

1a32, 1aa3, 1afi, lail, 1lam3, 1bq9, 1bwe, 1cc5, 1cei, 1dol,
1hyp, 1Kkjs, 1lfb, 1msi, 1mzm, 1nkl, 1lnre, 1pou, 1ptq, 1res
1sro, 1tif, lutg, 1uxd, 1vcc, 1vif, 2ezh, 2fow, 2fxb, 2ptl

Testing Sets

Name

List of Protein ID (PDB ID)

EMBL misfold

4state_reduced

Imds

lattice_ssfit

fisa

RosettaAll

1bp2(2paz) ¢ 1cbh(1ppt), 1fdx(5rxn), 1hip(2b5c),
11h1(2ilb), 1p2p(1rn3), 1ppt(1cbh), 1rei(5pad),
1rhd(2cyp), 1rn3(1p2p), 1sn3(2ci2), 1sn3(2cro),
2b5c(1hip), 2cdv(2ssi), 2¢i2(1sn3), 2ci2(2cro),
2cro(1sn3), 2cro(2ci2), 2cyp(lrhd), 2ilb(11h1),
2paz(1bp2), 2ssi(2cdv), 2tmn(2tsl), 2ts1(2tmn),
5pad(Lrei)

1ctf, 1r69, 1sn3, 2cro, 3ich, 4pti, 4rxn

1bOn-B, 1bba, 1ctf, 1dtk, 1fc2, ligd, 1shf-A, 2cro,
20V0; 4pti

1beo, 1ctf, 1dkt-A, 1fca, 1nkl, 1pgb, 1trl-A
1fc2, 1hdd-C, 2cro, 4ich

laa2, lacf, 1lag2, 1aj3, lapf, lark, layj, 1bdo,
1bor, 1btb, 1ctf, 1dec, lerv, 1fbr, 1fwp, 1gbl,
1gpt, 1gvp, 1ksr, 1kte, 1mbd, 1pdo, 1r69, 1ris,
1svq, 1tit, 1tul, 1vls, 1vtx, 1who, 1wiu, 2acy,
2cdx, 2erl, 2ezk, 2fdn, 2gdm, 2ktx, 2ncm, 2pac,
4fgf, Spti

%5 No. of X-Ray and No. of NMR are the numbers of the native structures determination by X-ray and

NMR, respectively

° Average numbers of decoy sets and the values in the parentheses are the number of proteins

in the decoy set

Y The PDB code of a crystal structures and the PDB IDs in the parentheses are their
corresponding intentionally misfolded structures
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Table 4. Variations of parameters of MOLSIM with different population sizes and the
maximum number of generations of FCEA is set to 200

Energy Pop 100 Pop 200 Pop 300 Pop 400 Pop 500
Term® AVG °+STD °© AVG+ STD AVG = STD AVG =+ STD AVG =+ STD
ELC 1.000+ 0.000 1.000+ 0.000 1.000+ 0.000 1.000+ 0.000 1.000+ 0.000
VDW 3.189+ 0.001 3.189+0.002 3.188+0.001 3.189+0.001 3.189+0.001
C 0.392+0.001 0.392+0.001 0.391+0.001 0.392+0.001 0.391+0.001
S 0.779+ 0.000 0.779+ 0.000 0.779+ 0.000 0.779+ 0.000 0.779+ 0.000
o) -0.161 £ 0.000 -0.161+0.000 -0.161+0.000 -0.161+0.000 -0.161+0.000
nO -0.085+ 0.000 -0.085+ 0.000 -0.085+ 0.000 -0.085+ 0.000 -0.085+ 0.000
N -0.161 £ 0.000 -0.161+0.000 -0.161+0.000 -0.161+ 0.000 -0.161+ 0.000
pN -0.592 £+ 0.000 -0.592+ 0.000 -0.591+ 0.001 -0.592 + 0.000 -0.591+0.001

 These terms defined in Table 1
®¢ The average (AVG) and standard deviation (STD) were calculated from five independent

runs.
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Table 5. Variations of parameters of MOLSIM with different maximum number of
generations and the population size is set to 200

Energy Gen 100 Gen 200 Gen 300 Gen 400 Gen 500 Gen 1000
Term® AVG °+STD ¢ AVG+STD AVG £ STD AVG £ STD AVG =+ STD AVG =+ STD
ELC 1.000+0.000 1.000£0.000 1.000%+0.000 1.000+0.000 1.000+0.000 1.000= 0.000
VDW 3.191+0.007 3.188+0.001 3.189+0.000 3.189+0.000 3.189+0.000 3.189+ 0.000
C 0.391+0.001 0.391+0.001 0.392+0.000 0.392+0.000 0.392+0.000 0.392+ 0.000
S 0.779+0.002 0.779£0.000 0.779+0.000 0.779+0.000 0.779+0.000 0.779+ 0.000
o) -0.161+0.001 -0.161+0.001 -0.161+0.000 -0.161+0.000 -0.161+0.000 -0.161+0.000
nO -0.085+0.001 -0.085+0.000 -0.085+0.000 -0.085+0.000 -0.085%+0.000 -0.085+ 0.000
N -0.161+0.001 -0.161+0.001 -0.161+0.000 -0.161+0.000 -0.161+0.000 -0.161+0.000
pN -0.593+0.002 -0.591+0.001 -0.592+0.000 -0.592+0.000 -0.592+0.000 -0.592+ 0.000

 These terms defined in Table 1
®¢ The average (AVG) and standard deviation (STD) were calculated from five independent

runs.
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Table 6. Variations of parameters of GEMSCORE with different population sizes and

the maximum number of generations of FCEA is set to 200

Energy Pop 100 Pop 200 Pop 300 Pop 400 Pop 500

Term® AVG °+STD °© AVG+ STD AVG = STD AVG =+ STD AVG =+ STD
ELC 5.846+ 0.006 5.849+ 0.003 5.844 1 0.003 5.845+ 0.006 5.843+0.003
VDW 1.000+ 0.000 1.000+ 0.000 1.000+ 0.000 1.000 £ 0.000 1.000 £ 0.000
BHB 3.245+0.003 3.249+ 0.005 3.247+0.003 3.246+0.003 3.245+0.003
C 0.406 £ 0.000 0.407 £ 0.000 0.406 £+ 0.001 0.406 £+ 0.001 0.406 £ 0.000
S 1.132+0.001 1.134+0.001 1.133+0.001 1.132+0.002 1.132+0.001
0 -0.297 £ 0.000 -0.297 £ 0.000 -0.297 £ 0.000 -0.297 £ 0.000 -0.297 £ 0.000
nO -0.338+£0.001 -0.337£0.000 -0.337£0.001 -0.338+0.001 -0.338 £ 0.000
N -0.297 £ 0.000 -0.297 £ 0.000 -0.297 £ 0.000 -0.297 £ 0.000 -0.297 + 0.000
pN -0.678 £ 0.001 -0.678+0.001 -0.678 £ 0.001 -0.678 £ 0.000 -0.678 £ 0.000

 These terms defined in Table 1
®¢ The average (AVG) and standard deviation (STD) were calculated from five independent

runs.
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Table 7. Variations of weights of GEMSCORE with different maximum number of
generations and the population size is set to 200

Energy Gen 100 Gen 200 Gen 300 Gen 400 Gen 500 Gen 1000

Term® AVG °+STD ¢ AVG+STD AVG £ STD AVG £ STD AVG =+ STD AVG =+ STD
ELC 5.860+0.039 5.846+0.003 5.845+0.000 5.845+0.000 5.845+0.000 5.845+ 0.000
VDW 1.000+0.000 1.000+0.000 1.000%+0.000 1.000+0.000 1.000+0.000 1.000% 0.000
BHB 3.284+0.034 3.244+0.006 3.244+0.000 3.244+0.000 3.244+0.000 3.244+0.000
C 0.411+0.002 0.406%+0.000 0.406+0.000 0.406+0.000 0.406+0.000 0.406+ 0.000
S 1.144+0.008 1.132+0.002 1.1324+0.000 1.132+0.000 1.132+0.000 1.132+0.000
0 -0.298+0.000 -0.297+0.000 -0.297+0.000 -0.297+0.000 -0.297+0.000 -0.297 £ 0.000
nO -0.336 £0.008 -0.338+0.000 -0.338+0.000 -0.338+0.000 -0.338%+0.000 -0.338+0.000
N -0.298+0.000 -0.297+0.000 -0.297+0.000 -0.297+0.000 -0.297+0.000 -0.297 £ 0.000
pN -0.684+0.007 -0.678+0.001 -0.678+0.000 -0.678+0.000 -0.678+0.000 -0.678+ 0.000

 These terms defined in Table 1
®¢ The average (AVG) and standard deviation (STD) were calculated from five independent

runs.
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Table 8. The final weights of MOLSIM and GEMSCORE for energy terms

Energy Term? MOLSIM GEMSCORE

ELC 1.000 5.845
VDW 4.207 1.000
BHB 3.244
C 0.403 0.406

S 0.841 1.132
o) -0.144 -0.297
noO -0.254 -0.338
N -0.144 -0.297
pN -0.586 -0.678

2 These terms defined in Table 1
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Table 9. Content of the training decoy set

PDB ID Type  Structure  Nies® Neecoys” MOLSIM GEMSCORE

z° 7 Rank® Z Z'  Rank

1a32 a X-RAY 65 1610 -0.64 2.53 398 -2.04 0.53 20
1ail a X-RAY 67 1807 -0.47 1.92 572 -3.72 -0.69 1
lam3 a X-RAY 57 1898 -0.47 2.87 606 -1.33 1.69 157
1bg9 b X-RAY 53 1825 -3.07 -0.81 1 -4.89 -1.47 1
lcch a X-RAY 76 1892 -1.82 1.48 52 -1.49 1.63 124
1cei a X-RAY 85 1897 -1.63 0.48 11 -4.84 -1.86 1
1dol ab X-RAY 62 1871 -3.91 -1.11 1 -4.27 -1.19 1
lhyp a X-RAY 75 1893 -1.99 1.01 43 -2.12 1.10 31
1Itb a X-RAY 69 1893 -1.04 1.55 279 -1.40 1.91 167
Imsi b X-RAY 60 1894 -3.79 -0.95 1 -3.61 -1.03 1
Imzm a X-RAY 71 1934 -0.99 1.94 311 -2.31 0.39 15
1ptq ab X-RAY 43 1885 -1.93 0.67 9 -1.89 1.22 55
1tif ab X-RAY 59 1849 -3.87 -0.63 1 -4.86 -1.69 1
lutg a X-RAY 62 1897 0.04 2.65 1009 -1.56 1.90 111
1lvce ab X-RAY 17 1857 -4.38 -1.51 1 -5.58 -2.48 1
1vif b X-RAY 48 1896 -2.28 0.37 4 -3.31 0.12 2
2fxb ab X-RAY 81 1800 -3.52 -0.68 1 -4,16 -0.85 1
laa3 ab NMR 56 1865 =2.68 0.40 4 -1.02 1.85 289
1afi ab NMR 72 1824 -0.77 -0.02 1 -3.81 -0.84 1
1bw6 a NMR 56 1900 -2.01 1.70 38 -1.74 1.54 72
1kjs a NMR 74 1893 -0.70 2.31 480 -0.05 2.96 914
1nkl a NMR 70 1898 -1.04 1.92 290 -3.48 -0.67 1
lnre a NMR 66 1893 -1.88 1.52 38 -4.06 -0.68 1
1pou a NMR 70 1898 -1.51 1.29 84 -1.77 1.08 66
1res a NMR 35 1723 -0.47 2.57 563 0.63 3.47 1288
1sro b NMR 66 1881 -1.51 1.04 76 -1.20 1.86 225
luxd a NMR 43 1896 -2.59 -0.01 1 -2.63 -0.33 1
2ezh a NMR 65 1893 -1.73 1.35 45 -1.31 1.37 156
2fow ab NMR 66 1834 -1.11 191 231 0.06 3.08 982
2ptl ab NMR 60 1835 -2.61 -0.19 1 -1.92 0.96 32

Averages 64 1867 -1.88 0.92 -2.52 0.50

2 N, number of residues in the protein; Ngecoys, NUmber of decoys in the decoy set
©d Z-score of native structure and Z’-score of native structure in the decoy set

¢ Rank, the ranking of the native structure in the decoy set

Bold faced values indicate the rank of the native structure is larger than 500
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Table 10. Content of the EMBL misfolded decoy set

Sequence Backbone MOLSIM GEMSCORE
RMSD Nyes®

PDBID  PDBID Enative " Enmisfold Enative Emisfold
1bp2 2paz 15.79 123 -5031.52 -4642.28 -2286.71 -1439.91
1cbh 1ppt 10.62 36 -1228.36 -868.79 -282.12 -61.01
1fdx 5rxn 9.52 54 -1747.71 -1388.31 -262.63 50.99
lhip 2b5¢ 14.62 85 -3166.54 -2509.60 -1154.69 -297.39
1lhl 2ilb 17.81 153 -6081.44 -5609.86 -3235.29 -1849.85
1p2p 1rn3 18.97 124 -4900.35 -4523.35 -1873.18 -1461.13
1ppt 1cbh 10.87 36 -1134.21 -995.96 -631.69 -151.09
Lrei 5pad 18.65 107 -9081.74 -7721.60 -4476.66 -2504.34
1rhd 2¢cyp 22.21 293 -12212.07 -10728.13 -5224.37 -4255.46
1rn3 1p2p 18.77 124 -5388.80 -4710.54 -2490.50 -1891.59
1sn3 2ci2 13.64 65 -2451.59 -2108.86 -910.46 -415.65
1sn3 2cro 11.25 65 -2451.59 -1971.55 -910.46 -388.97
2b5c¢ lhip 14.74 93 -3478.60 -3127.09 -1961.70 -1138.25
2cdv 2ssi 14.60 107 -3745.05 -4026.40 -1048.87 -946.45
2ci2 1sn3 13.43 83 -2282.23 -2111.40 -1073.66 -746.40
2ci2 2cro 11.68 83 -2282.23 -2173.94 -1073.66 -907.07
2cro 1sn3 11.89 /1 -2473.87 -2258.42 -1232.25 -733.32
2cro 2ci2 11.24 71 <2473.87 -2152.53 -1232.25 -687.41
2¢cyp 1rhd 21.91 294 -13070.15 -11356.26 -7111.14 -4372.74
2ilb 1lh1 17.87 153 -6628.59 -5327.57 -3426.45 -2160.80
2paz 1bp2 15.59 123 -5038.94 -4135.44 -2344.92 -1189.98
2ssi 2cdv 15.10 113 -3717.92 -2829.38 -834.46 -226.07
2tmn 2tsl 23.06 317 -14650.89 -12035.76 -8156.72 -4917.97
2tsl 2tmn 23.12 317 -13753.93 -12888.26 -7482.59 -6405.27
5pad Lrei 19.09 214 -90125.48 -7472.12 -3744.01 -2659.26

Averages 15.84 132

# Nres, number of residues in the protein

° Enaives €nergy value of native structure in the decoy set; Enistoie, €nergy value of misfolded
structure in the decoy set
Bold faced values indicate the error results
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Table 11. Content of the 4state_reduced decoy set

o . RMSD A MOLSIM GEMSCORE
PDB ID Description res decoys
Range ¢ z7¢ Rank® Zz Z' Rank
1ctf  Cterminal domain of 68 22-102 631 -343 -057 1 541 -273 1
ribosomal protein L7/L12 ' ' ‘ ' ' '
169 N-terminal domain of 63 2395 676 -268 -021 1 314 037 1
phage 434 repressor
1sn3  Scorpion toxin variant 65 25-105 661 -2.72 -0.09 1 -295 -021 1
2cro  Phage 434 Cro protein 65 2.1-9.7 675 -3.41 -0.37 1 -342 -0.08 1
3icp  Vitamin D-dependent. 75  18-107 654 -211 031 3 140 116 39
calcium-binding protein
4pti Trypsin inhibitor 58 2.8-10.8 688 -4.10 -1.30 1 -424 -1.45 1
4rxn Rubredoxin 54 2.6-9.3 678 -3.83 -1.16 1 -456 -1.94 1
Averages 64 666 -3.18 -0.48 -3.59 -0.80

2 N, number of residues in the protein; Ngecoys, NUmber of decoys in the decoy set

©d Z-score of native structure and Z’-sgore of native structure in the decoy set

¢ Rank, the ranking of the native structure in the decoy set
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Table 12. Content of the local minima decoy set

o . RMSD ) MOLSIM GEMSCORE
PDB ID Description Nres Ndecoys
Range z¢ z2% Rank® Z Z° Rank
1bon-g  SWI protein/Sini protein 31 245603 498 -117 136 73 -083 198 110
complex
lpba  Dovine pancreatic 36 278-891 501 523 803 501 291 560 498
polypeptide
C-terminal domain of
It hocomal protein Ly/L1z 68 359125 498 398 -179 1 -625 -359 1
1dtk  DendrotoxinK 57 432-126 216 -176 051 7 <141 138 17

Immunoglobulin Fc and
1fc2  Fragment B Of Protein A 43 3.99-845 501 191 567 487 216 531 494

Complex
ligd  ProteinG 61 3.11-126 501 -410 -131 1 -589 -331 1
1shf-A E{{rgs‘?;‘émklggggge“e 59 439-12.3 438 -484 -2.13 1 523 -216 1
2cro 434 cro protein 65 3.87-135 501 -6.32 -3.22 1 -549 -253 1
2ovo  Ovomucoid third domain 564% 4.38-13.4 +.348 -3.22 -0.29 1 -320 -048 1
4pti Trypsin inhibitor 58 4.94-132 344 -530 -2.50 1 -5.08 -2.33 1
Averages 53 435+ -236 043 -2.83 -0.01

2 N, number of residues in the protein; Necoys, DUMber of decoys in the decoy set
©d Z-score of native structure and Z’-score of native structure in the decoy set
¢ Rank, the ranking of the native structure in the decoy set
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Table 13. Content of the lattice_ssfit decoy set

o . RMSD b MOLSIM GEMSCORE
PDB ID Description Nres Ndecoys
Range z¢ 7% Rank® Z Z' Rank
lbeo  Beta-cryptogein 98 7.0-156 2001 -5.36 -2.68 1 -8.44 -546 1

C-terminal domain of
Lctf ribosomal protein L7/L12 68 55-128 2001 -490 -1.35 1 -838 -4.75 1

Type 1 human cyclin-

1dkt-A - . 72 6.7-14.1 2001 -257 0.25 3 -331 -0.28 1
dependent kinase subunit
1fca  Ferredoxinfrom 55 51-114 2001 -543 -1.90 1 561 -264 1
clostridium Acidurici
1nkl NKk-lysin from pig 78 53-13.6 2001 -449 -1.85 1 -835 -492 1
1pgh the'.”e (BllgG-binding 56 58 199 2001 -584 -315 1 -894 576 1
omain)
1trl-A Thermolysin fragment 62 5.4-125 2001 -212 0.30 13 -290 047 8
4icb  Calbindin-binding Protein 65 4.7-129 2001 -2.82 -0.54 1 -335 0.25 5
Averages 69 2001 -4.39 -1.48 -6.16 -2.89

" N, number of residues in the protein; Neecayss.NUMber of decoys in the decoy set
¢4 Z-score of native structure and:Z’-score-of-native structure in the decoy set
¢ Rank, the ranking of the nativestructure in‘the decoy-set
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Table 14. Content of the fisa decoy set

PDB L . RMSD MOLSIM GEMSCORE
Description Nres decoys
ID Range ¢ z2¢ Rank® Z Z’ Rank
Immunoglobulin Fc and
1fc2  Fragment B Of Protein A 43 2.1-103 501 -037 1.72 184 015 247 299
Complex
1lhdd-C Engrailed Homeodomain 57 2.8-129 501 -3.06 -0.10 1 -237 084 4
2cro  Phage 434 Cro protein 65 43-126 501 -354 -1.16 1 -382 -145 1
4icb  Calbindin-binding Protein 76  4.8-141 501 -487 -240 1 -412 -155 1
Averages 60 501 -2.96 -0.49 -2.54  0.08

2 N, number of residues in the protein; Necoys, NUMber of decoys in the decoy set

©d Z-score of native structure and Z’-score of native structure in the decoy set
® Rank, the ranking of the native structure in the decoy set
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Table 15. Content of the Rosetta all-atom decoy set

PDBID  Structure  Npes® Nares”  Naecoys® MOLST™ CEMBCORE

z¢ z* Rank' Z Z'  Rank

laa2  X-RAY 109 105 999 -479  -2.65 1  -650 -3.78 1
lacf  X-RAY 126 123 1999 565 -2.93 1 -799  -4.99 1
lbdo  X-RAY 81 75 999 515  -2.36 1 -68 -3.87 1
Lctf X-RAY 69 67 999 334  -0.64 1  -608 -3.14 1
lerv  X-RAY 106 105 999 534  -2.82 1 712 -456 1
1gvp  X-RAY 88 82 997 118 142 102 -363 -0.25 1
lkte  X-RAY 106 100 998 359  -1.28 1 -6.05 -3.45 1
Imbd  X-RAY 154 147 999 491 -2.37 1 -862 -586 1
lpdo  X-RAY 130 121 999 474 212 1 -760 -4.21 1
1169  X-RAY 64 61 999 249 031 3 317 -052 1
1ris X-RAY 98 92 999 360 -0.91 1 -634 -391 1
1tul X-RAY 103 97 999 -467  -2.38 1 511  -2.69 1
vls  X-RAY 147 143 999 -2.87  0.06 2 495 204 1
lwho  X-RAY 95 88 999 400  -1.87 1 -659 -4.07 1
2acy  X-RAY 99 92 994 502 -2.68 1 771 492 1
2erl X-RAY 41 35 999 129 119 93 -249 022 4
2fdn  X-RAY 56 55 999 -389 -0.96 1 -391 -1.10 1
2gdm  X-RAY 154 149 999 085 -0.32 1 -816 -555 1
4fgf  X-RAY 125 121 999 573 -343 1 -7.88 -4.89 1
Spti X-RAY 59 55 999 379 -1.37 1 -433  -1.30 1
lag2 NMR 104 97 998 371 -168 1 -629 -3.67 1
1aj3 NMR 99 95 999 094 352 831 -134 165 74
lapf NMR 50 47 999 223 041 6 -253 043 3
lark NMR 61 55 998 281  0.00 1 -155 143 51
layj NMR 51 46 999 147 153 53 -094 18 166
1bor NMR 57 52 999 251 0.05 3 -180 125 23
1bth NMR 90 89 999 472 -2.34 1 -58  -3.00 1
1dec NMR 40 35 999 257  0.23 3 -369 -0.73 1
1fbr NMR 94 93 999 434 -150 1 526 -2.27 1
1fwp NMR 70 66 999 057 0.00 1 -121 133 101
1gbl NMR 57 54 999 194 081 15 260  0.46 3
1gpt NMR 48 47 999 171 074 28 -217 091 12
1ksr NMR 101 92 999 353  -0.77 1 200 089 15
1svq NMR 95 90 999 214 0.08 3 140 124 69
1tit NMR 90 85 999 399 -1.02 282 -0.06 1
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Table 15. Content of the Rosetta all-atom decoy set (cont.)

PDBID  Structure  Npes® Nares”  Naecoys® MOLST™ CEMBCORE
z° Z'®  Rank' Z Z'  Rank
1vtx NMR 43 36 999 011 243 476 051 318 718
1wiu NMR 94 90 999 419 -0.73 1 -518 -1.31 1
2cdx NMR 61 54 997 158 1.13 34 -180  0.98 26
2ezk NMR 94 93 998 171 0.90 22 -212 063 7
2ktx NMR 39 34 999 092 185 192 -215 019 4
2ncm NMR 100 96 998 502  -2.28 1 -688 -355 1
2pac NMR 83 77 999 090  1.88 176  -0.90  1.88 195
Averages 86 81 1022 -3.06 -0.54 -4.31 -1.46

&b N, Number of residues in the native structure: N,

structures

“ Ngecoys, NUMber of decoys in the decoy set

4. 7-score of native structure and Z’-score of native structure in the decoy set
"Rank, the ranking of the native structure,in the decoy set
Bold faced values indicate the rank.of the native structure is larger than 500
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Table 16. Summary of the our results and comparison with previous works on six testing

data sets
B ) Zhang et al. [32]
Decoy Zhou Zhu Fujitsuka Lee Hsieh
Set MOLSIM = GEMSCORE o o1 [27] etal.[28] etal.[29] etal[30] etal.[3] DFIRE- DFIRE-
SCM allatom
misfold 24/25°2 25/25 25/25 24/25 18/19
(N/A®) (N/A) (N/A) (N/A)  (N/A)
Astate 6/7 6/7 6/7 N/A 5/7 N/A 6/7 6/7 6/7
(-3.18) (-3.59) (3.49)  (-3.96)  (-2.36)  (-4.95) (-3.43) (3.94)  (3.49)
Imds 6/10 6/10 7/10 N/A 4/6 N/A 3/10 7/10
(-2.36) (-2.83) (0.67)  (-1.75)  (-3.85)  (-4.49) (256)  (0.90)
lattice 6/8 6/8 8/8 N/A N/A 8/8 8/8
(-4.19) (-6.16) (8.94)  (-4.08) (-6.75) (6.19)  (9.47)
fisa 3/4 2/4 3/4 N/A N/A 3/4 3/4
(-2.96) (-2.54) (4.49)+11/(-3.09) (-2.09) (4.70)  (4.80)
25/42 26/42
RosettaAll (-3.06) (-4.31)

2 The first number is the number of native structures ranked number one; the second number is

total number of proteins in the decoy set.

® The numbers in parentheses are the average Z-scores. There is no average Z-score in EMBL
misfolded decoy set because of only one decoy structure in the set
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Table 17. Comparison of our methods with previous works on 4state_reduced decoy set

PDB ID MOLSIM GEMSCORE etzar;.Ol[JZY] et zazl.hl[st] ;uejtilt.SEZl;a] et ali.e tE}C%O] etgls.iigl]
lctf 1/-3.43 1/-5.41 1/3.86 -/-3.33 1/-2.50 -/-4.26 1/-2.76
1r69 1/-2.68 1/-3.14 1/4.23 -/-3.63 1/-2.50 -/-5.35 1/-3.01
1sn3 1/-2.68 1/-2.95 1/3.79 -/-5.70 1/-3.20 -/-6.33 1/-4.88
2cro 1/-3.41 1/-3.42 1/3.29 -/-3.55 1/-2.30 -/-5.11 1/-2.58
3ich 3/-2.11 39/-1.40 4/2.28 -/-1.97 3/-1.60 -/-2.86 21/-2.06
4pti 1/-4.03 1/-4.24 1/3.62 -/-5.09 1/-2.70 -/-5.35 1/-4.77
4rxn 1/-3.83 1/-4.56 1/3.33 -/-4.43 12/-1.70 -/-5.36 1/-3.95

2 The first number is the rank of native structure; the second number is Z-score of native
structure in the decoy set. The absolute value of Z-score is the larger the better
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Table 18. Comparison of our methods with previous works on 4state_reduced decoy set
with refined 3icb

PDB ID MOLSIM GEMSCORE etzar;.Ol[JZY] et zazl.hl[st] ;uejtilt.SEZl;a] et ali.e tE}C%O] etgls.iigl]
lctf 1/-3.43 1/-5.41 1/3.86 -/-3.33 1/-2.50 -/-4.26 1/-2.76
1r69 1/-2.68 1/-3.14 1/4.23 -/-3.63 1/-2.50 -/-5.35 1/-3.01
1sn3 1/-2.68 1/-2.95 1/3.79 -/-5.70 1/-3.20 -/-6.33 1/-4.88
2cro 1/-3.41 1/-3.42 1/3.29 -/-3.55 1/-2.30 -/-5.11 1/-2.58
3ich 3/-2.11 1/-3.78 4/2.28 -/-1.97 3/-1.60 -/-2.86 21/-2.06
4pti 1/-4.03 1/-4.24 1/3.62 -/-5.09 1/-2.70 -/-5.35 1/-4.77
4rxn 1/-3.83 1/-4.56 1/3.33 -/-4.43 12/-1.70 -/-5.36 1/-3.95

2 The first number is the rank of native structure; the second number is Z-score of native
structure in the decoy set. The absolute value of Z-score is the larger the better
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Table 19. Comparison of our methods with previous works on local minima decoy set

PDB ID MOLSIM GEMSCORE etzan.OI[J27] et aﬁ.hl[JZS] eFtu;ilt.s[uzl;? et ali.e ([ESO] etgls.iigl]
1b0n-B 73/-1.17° 110/-0.82 430/-1.17 -/-2.55 N/A -/-0.61 N/A
1bba 501/ 5.22 498/ 2.91 501/-16.3 N/A N/A -/ 4.99 N/A
lctf 1/-3.98 1/-6.25 1/ 3.54 -/-4.38 1/-4.70 -/-5.12 N/A
1dtk 7/-1.76 17/-1.41 1/ 2.62 -/-3.51 2/-2.30 -/-6.10 N/A
1fc2 487/ 1.91 494/ 2.16 501/-5.72 -/-0.22 N/A -/-3.38 N/A
ligd 1/-4.10 1/-5.89 1/ 5.16 -/-5.80 1/-6.20 -/-6.16 N/A
1shf-A 1/-4.83 1/-5.22 1/ 6.68 -/-7.53 N/A -/-8.26 N/A
2cro 1/-6.32 1/-5.49 1/ 4.70 -/-5.97 1/-4.00 -/-8.03 N/A
20v0 1/-3.22 1/-3.20 1/ 3.21 -/-4.51 1/-4.10 -/-6.00 N/A
4pti 1/-5.30 1/-5.08 1/ 3.96 -/-7.04 17/-1.80 -/-6.24 N/A

2 The first number is the rank of native structure; the second number is Z-score of native
structure in the decoy set. The absolute value of Z-score is the larger the better

54



Table 20. Comparison of our methods with previous works on lattice_ssfit decoy set

PDB ID MOLSIM GEMSCORE etzan.OI[J27] et aﬁ.hl[JZS] eFtu;ilt.s[uzl;? et ali.e ([ESO] etgls.iigl]
1beo 1/-5.36° 1/-8.44 1/12.09 -/-4.86 N/A -/-7.95 N/A
lctf 1/-4.90 1/-8.38 1/10.05 -/-3.22 N/A -/-6.98 N/A

1dkt-A 3/-2.55 1/-3.31 1/ 6.87 -/-5.89 N/A -/-6.40 N/A
1fca 1/-5.43 1/-5.61 1/ 7.18 -/-5.89 N/A -/-8.30 N/A
1nkl 1/-4.49 1/-8.35 1/ 9.29 -/-3.97 N/A -/-2.60 N/A
1pgb 1/-5.84 1/-8.94 1/11.87 -/-2.66 N/A -/-9.55 N/A
1trl-A 13/-2.12 8/-2.91 1/12.09 -[-4.27 N/A -/-5.49 N/A
4dich 1/-2.82 5/-3.35 1/10.05 -/-1.85 N/A N/A N/A

2 The first number is the rank of native structure; the second number is Z-score of native
structure in the decoy set. The absolute value of Z-score is the larger the better
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Table 21. Comparison of our methods with previous works on fisa decoy set

PDB ID MOLSIM GEMSCORE etzar;.Ol[JZY] et eﬁ.hl[JZS] eFtu;iIt.s[usz? et aLI.eF30] etgls.i?gl]
1fc2 184/-0.37% 299/ 0.15 254/0.23 -/-1.94 N/A -/ 0.23 N/A

1hdd-C 1/-3.06 4/-2.37 1/4.50 -/-2.86 N/A -/-3.62 N/A
2cro 1/-3.54 1/-3.82 1/6.33 -/-4.54 N/A -/-5.31 N/A
4dich 1/-4.87 1/-4.12 1/6.91 -/-3.00 N/A -[-2.26 N/A

2 The first number is the rank of native structure; the second number is Z-score of native
structure in the decoy set. The absolute value of Z-score is the larger the better
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Table 22. Comparison of GEMSCORE with different hydrogen-bond potentials, Eys
and Epyg, 0N six testing sets

GEMSCORE
Decoy Set
Ens* Ebrg”
misfold 25/25° (N/A %) 25/25 (N/A)
4state 3/7 (-3.12) 6/7 (-3.59)
Imds 6/10 (-3.22) 6/10 (-2.83)
lattice 6/8 (-4.87) 6/8 (-6.16)
fisa 214 (-2.97) 2/4 (-2.54)
RosettaAll 29/42 (-4.92) 26/42 (-4.31)

> Eg, potential of all hydrogen-bonding interactions; Epqg (in Equation 7), potential of
hydrogen-bonding interactions in backbone

® The first number is the number ofnative structures ranked number one; the second number is
total number of proteins in the decoy set.

Y The numbers in parentheses are the average Z-scores; There is no average Z-score in EMBL
misfolded decoy set because of only one decoy structure in the set
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Table 23. Comparison of different hydrogen-bonding potentials, Exg, Epns, and Eppus 0N
4state_reduced decoy set

PDBID Ens® Eore” EnbHg ©
z¢ Z’*  Rank' z z’ Rank z z’ Rank

lctf -1.09 1.66 105 -3.15 -0.76 1 1.37 4.43 575
1r69 0.98 3.88 568 -0.89 1.89 135 2.23 5.07 663
1sn3 -0.49 2.65 200 -2.57 0.96 7 1.26 4.52 592
2cro -1.80 1.01 26 -1.95 1.35 22  -0.67 2.54 168
3icb 0.14 2.65 356 0.03 2.59 362 0.17 291 365
4pti 0.91 4.32 567 -1.85 1.32 26 241 5.35 684
4rxn -0.25 3.95 276 -2.87 0.42 5 1.37 5.36 615

Average -0.23 2.87 -1.89 1.11 1.16 431

»b¢ E s, potential of all hydrogen-bonding interactions; Epyg, potential of hydrogen-bonding
interactions on backbone; E.png, the potential of hydrogen-bonding interactions which do not
locate on backbone (i.e., Eyg = Epng + Enpus)

¢ Z-score of native structure and Z’-score;of native structure in the decoy set

"Rank, the ranking of the native structure in the decey set
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Table 24. Solvation effects on MOLSIM and GEMSCORE

Decoy MOLSIM

GEMSCORE

Set
Original * Optimized® Optimized + Eqes©  Original

Optimized  Optimized + Egs

misfold ~ 20/25° (NJA®)  23/25(N/A)  24/25 (N/A)  18/25 (N/A)
4state 217 (-153) 07 (-0.79) 6/7 (-3.18) 1/7 (-1.98)
Imds  2/10 (-0.73)  8/10 (-322)  6/10 (-2.36)  8/10 (-4.28)
lattice ~ 6/8 (-2.45)  6/8 (-1.22) 6/8 (-4.19) 6/8 (-3.76)

fisa 3/4 (-153)  3/4 (-0.80) 3/4 (-2.96) 204 (-3.12)

18/25 (N/A)  25/25 (N/A)
37 (-2.14)  6/7 (-3.59)
8/10 (-4.34)  6/10 (-2.83)
6/8 (-4.07)  6/8 (-6.16)

214 (-3.29) 204 (-2.54)

b ¢ Original, the original energy function without optimization; Optimized, the optimized
energy function without solvation energy; Optimized + Eg,s, the optimized energy function with

solvation energy

9The first number is the number of native stiuctures ranked number one; the second number

is total number of proteins in the decoy set:

® The numbers in parentheses arethe average Z-scores. There is no average Z-score in EMBL

misfolded decoy set because of only one decoy structure in the set
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Figure 1. The flowchart:of training step and testing step, including decoy sets

preparation, energy calculation, androptimization.
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Interactive type V¢ Vo Vi Vg Vs Vs
H-bond 23 26 31 36 -25 20
vander Waals 33 36 45 60 -04 20

=
P <
v

5 L — ¢lectrostatic
— H-bond
Distance (r) — van der Waals

-10

Figure 2. The linear energy function of the pairwise atoms for the van der Waals
interactions and hydrogen bonds, and electrostatic potential in GEMSCORE.
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Figure 3. The definition of a hydrogen bond used in GEMSCORE. A hydrogen
bond is assigned if the angle of iN*H-0:(6,,,,) is more than 120° and the distance

between hydrogen atom and-oxygensatom (rgw) is less than 2.5 A.
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Figure 4. Performances of (a) MOLSIM and (b) GEMSCORE on different
structure determination by X-ray and NMR on training set, including 17 X-Ray
structures and 13 NMR structures. Rankl and Rank5 mean that the native
structures rank within top 1 and top 5 among its corresponding decoy set after the
training process, respectively. The ranks of the native structures are in the top 10
percent (Rank10%) and the rest 90 percent (Other) among its corresponding decoy
set after the training process, respectively.
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(a) Scatter plots of 4state_reduced using MOLSIM
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Figure 5. The scatter plots of correlations between the energies and the all-atom
RMSD of decoys from their corresponding native structures in 4state reduced
decoy set using (a) MOLSIM energy function and (b) GEMSCORE energy function.
The value of RMSD is zero means the native structure of the protein target.
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Figure 6. The location of calcium ions in the three-dimension structure of protein
3ich in 4state_reduced decoy set. These two Ca** (blue) stay at the loop between
helixes. One reason for undistinguished native structure may be lack of Ca** at loop

to stable the native structure.

65



(a) Scatter plots of Imds using MOLSIM
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Figure 7. The scatter plots of correlations between the energies and the all-atom
RMSD of decoys from their corresponding native structures in Imds decoy set using
(a) MOLSIM energy function and (b) GEMSCORE energy function. The value of
RMSD is zero means the native structure of the protein target.
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(a) 1bOn-B (b) 1fc2-C

Figure 8. The native structures of misidentified targets, (a) 1bOn-B and (b) 1fc2-C,
in local minima decoy set (Imds). They are both protein complexes and the
misidentified target is one chain of whole protein. It causes the errors during energy
calculation with only single chq?l&é'[ﬂgg_@fay be the reason that our energy functions
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(a) Scatter plots of lattice_ssfit using MOLSIM
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(b) Scatter plots of lattice_ssfit using GEMSCORE
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Figure 9. The scatter plots of correlations between the energies and the all-atom
RMSD of decoys from their corresponding native structures in lattice_ssfit decoy
set using (a) MOLSIM energy function and (b) GEMSCORE energy function. The
value of RMSD is zero means the native structure of the protein target.
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(a) Scatter plots of fisa using MOLSIM
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Figure 10. The scatter plots of correlations between the energies and the all-atom
RMSD of decoys from their corresponding native structures on fisa decoy set using
(a) MOLSIM energy functionrand (b) GEMSCORE energy function. The value of
RMSD is zero means the native structure of the protein target.
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Figure 11. Performances of (a) MOLSIM and (b) GEMSCORE on different
structure determination by X-ray and NMR on five testing sets, including 45 X-Ray
structures and 26 NMR structures. Topl and Top5 mean that the native structure
ranks within top 1 and top 5 among its corresponding decoy set, respectively. The
ranks of the native structures are in the top 10 percent (Top10%) and the rest 90
percent (Other) among its corresponding decoy set, respectively.
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Figure 12. Comparison of different hydrogen-bonding potentials, Eng, Epns, and
Emwne On the training set. Eyg means'sthe potential of all hydrogen-bonding
interactions. Epns, and Eppng mMean: the spotentials of all hydrogen-bonding
interactions on backboneand hydrogen-bonding interactions which do not locate
on backbone, respectively, (i.e., “Eng=Epns + Enpus). Rankl, Rank5, Rank100,
Rank500, Rank1000 and Other -mean the percentages of native structures ranked
within 1, 5, 100, 500, 1000 ‘and-larger-1000 in the training set with different
hydrogen-bonding potentials, Exg, Epns, and Enpys.
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