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摘  要 

蛋白質結構預測的方法中，一個可行的策略是產生大量可能的結構，再依據計分

函式或能量函式從中挑選出最適當的結構。蛋白質摺疊的結構範圍相當廣闊，直接利

用計算方法產生出類似自然結晶結構的結構有相當的難度；在理想的情況下，非自然

的摺疊結構或許可以提供相當的助益，利用非自然的摺疊結構來修正計分函式或能量

函式，並利用修正過後的計分函式或能量函式來分辨出自然和非自然的結構，也許是

個可行的方法。在這篇論文研究中，我們發展了兩個適用於蛋白質摺疊問題上的能量

函式，並且在常見的測試評量中有不錯的表現。其中的一個能量函式為 MOLSIM，是以

基本物理作用為基礎，所發展出的能量函式。另外一個能量函式是 GEMSCORE，也是以

物理作用為基礎，但是卻是以簡化過的物理公式來算能量。與其他利用物理作用所發

展出的能量函式不同的是設定的參數數量，一般以物理作用為基礎的能量函式可能會

需要幾百甚至幾千個參數設定。而我們的能量函式只針對不同的能量計算項目給予不

同的比例參數，並利用演化式方法來最佳化這些參數。我們詳細地分析和比較我們的

能量函式與之前其他研究者所發展的能量函式，在六個測試的資料中，包含有 96 種不

同的蛋白質，超過 70,000 個結構。MOLSIM 和 GEMSCORE 分別能從中辨識中 70 和 73 個

正確的自然結構。我們相信我們的能量函式夠快並且夠簡單，而且應用在結構預測上，

可以分辨出自然和非自然的結構。 

 i



Optimizing New Energy Functions for Protein Folding 
 

Student: Yi-Yuan Chiu                    Advisor: Dr. Jinn-Moon Yang 
Student: Yi-Yuan Chiu                    Advisor: Dr. Jenn-Kang Huang 

  
Institute of Bioinformatics 

National Chiao Tung University 

Abstract 

One strategy for protein structure prediction is to generate a large number of possible 

structures (decoys) and select the most fitting ones based on a scoring or energy function. 

The conformational spaces of a protein are huge, and chances are rare that any heuristically 

generated structures will directly fall in the neighborhood of the native structure. It is 

desirable that the unfitting decoy structures can provide insights into native structures, so 

prediction can be made progressively. In this thesis, we develop two simple energy 

functions for protein folding and show that their good performance with popular 

benchmarks. One is MOLSIM, a physics-based energy function; another is GEMSCORE, 

an empirical energy function based on physical mechanisms with simplified model. Instead 

of hundreds or thousands parameters used in other physics-based energy functions by 

previous authors, we adopt only few overall weights and use an evolutionary algorithm to 

optimize the parameters of these two energy functions. Here we present a systematic 

comparison of our results with the works based on physics-based energy functions by 

previous authors. Six testing decoy sets, including 96 protein sequences with more 70,000 

structures were evaluated. There are 70 and 73 native proteins that identified from these 

decoy sets with MOLSIM and GEMSCORE, respectively. We believe that our energy 

functions are fast and simple to discriminate between native and nonnative structures for 

protein structure prediction. 

 ii



Acknowledgements 

The most appreciation is for my advisors, Dr. Jinn-Moon Yang and Dr. Jenn-Kang 

Huang. Because of their advices and instructions, I could finish this thesis. I am very grateful 

for Dr. Jenn-Kang Huang and thanks for his suggestions on energy functions and molecular 

dynamic. He helped me to understand the problem of protein folding and how to solve 

mistakes. I also thank goes to my thesis adviser, Dr. Jinn-Moon Yang. Without his 

suggestions and comments on writing thesis and GEMSCORE, I can’t accomplish this work. 

Thanks my two advisors very much. 

 I also must thank to everyone in Yang’s lab. We work together, and have funs together. 

Thanks for guys who discuss with me, especially Hung-Chu Chen. Thanks for their company 

with me during past two years. Finally, I would thank my whole family, for their support 

during past twenty-four years. 

 iii



Table of Contents 

摘  要 .........................................................................................................................................i 
Abstract.......................................................................................................................................ii 
Acknowledgements ...................................................................................................................iii 
Table of Contents.......................................................................................................................iv 
List of Tables ..............................................................................................................................v 
List of Figures...........................................................................................................................vii 
Chapter 1 Introduction................................................................................................................1 

1.1 Protein Structure Prediction and Energy Functions......................................................1 
1.2 Related Works...............................................................................................................2 
1.3 Evolutionary Algorithms ..............................................................................................5 

Chapter 2 Materials and Methods...............................................................................................8 
2.1 Energy Functions..........................................................................................................8 

2.1.1 MOLSIM : physics-based energy function .......................................................8 
2.1.2 GEMSCORE : empirical energy function....................................................... 11 

2.2 Optimization ...............................................................................................................13 
2.2.1 Representation and Initiation...........................................................................14 
2.2.2 Family Competition Evolutionary Algorithm (FCEA) ...................................14 
2.2.3 Recombination and Mutation Operators..........................................................15 
2.2.4 Objective Function of FCEA...........................................................................17 

2.3 Data Sets of Decoys....................................................................................................19 
2.3.1 Training Sets....................................................................................................19 
2.3.2 Testing Sets .....................................................................................................20 

Chapter 3 Results and Discussions...........................................................................................24 
3.1 Parameters in optimization .........................................................................................24 
3.2 Results of training set .................................................................................................25 
3.3 Test with popular benchmarks ....................................................................................26 
3.4 Hydrogen-bonding interactions in GEMSCORE .......................................................28 
3.5 Solvent effects in MOLSIM/GEMSCORE ................................................................30 
3.6 MOLSIM vs. GEMSCORE........................................................................................31 

Chapter 4 Conclusions and Future Works ................................................................................33 
4.1 Conclusions ................................................................................................................33 
4.2 Future Works ..............................................................................................................33 

References ................................................................................................................................72 

 iv



List of Tables 

Table 1. The energy terms and descriptions in MOLSIM and GEMSCORE.......................35 

Table 2. Atomic formal charge used in GEMSCORE..........................................................36 

Table 3. The training set and testing sets..............................................................................37 

Table 4. Variations of parameters of MOLSIM with different population sizes and the 

maximum number of generations of FCEA is set to 200 .......................................38 

Table 5. Variations of parameters of MOLSIM with different maximum number of  

generations and the population size is set to 200 ...................................................39 

Table 6. Variations of parameters of GEMSCORE with different population sizes and the 

maximum number of generations of FCEA is set to 200 .......................................40 

Table 7. Variations of weights of GEMSCORE with different maximum number of  

generations and the population size is set to 200 ...................................................41 

Table 8. The final weights of MOLSIM and GEMSCORE for energy terms ......................42 

Table 9. Content of the training decoy set ............................................................................43 

Table 10. Content of the EMBL misfolded decoy set ..........................................................44 

Table 11. Content of the 4state_reduced decoy set ..............................................................45 

Table 12. Content of the local minima decoy set..................................................................46 

Table 13. Content of the lattice_ssfit decoy set ....................................................................47 

Table 14. Content of the fisa decoy set.................................................................................48 

Table 15. Content of the Rosetta all-atom decoy set ............................................................49 

Table 16. Summary of our results and comparison with previous works on six testing data 

 sets ........................................................................................................................51 

Table 17. Comparison of our methods with previous works on 4state_reduced decoy set ..52 

 v



Table 18. Comparison of our methods with previous works on 4state_reduced decoy set  

with refined 3icb...................................................................................................53 

Table 19. Comparison of our methods with previous works on local minima decoy set .....54 

Table 20. Comparison of our methods with previous works on lattice_ssfit decoy set........55 

Table 21. Comparison of our methods with previous works on fisa decoy set ....................56 

Table 22. Comparison of GEMSCORE with different hydrogen-bond potentials, EHB and 

EbHB, on six testing sets .........................................................................................57 

Table 23. Comparison of different hydrogen-bonding potentials, EHB, EbHB, and EnbHB on  

4state_reduced decoy set ......................................................................................58 

Table 24. Solvation effects on MOLSIM and GEMSCORE................................................59 

 

 vi



List of Figures 

Figure 1. The flowchart of training step and testing step, including decoy sets preparation,  

energy calculation, and optimization....................................................................60 

Figure 2. The linear energy function of the pairwise atoms for the van der Waals interactions 

 and hydrogen bonds, and electrostatic potential in GEMSCORE. .......................61 

Figure 3. The definition of a hydrogen bond used in GEMSCORE.....................................62 

Figure 4. Performances of (a) MOLSIM and (b) GEMSCORE on different structure 

determination by X-ray and NMR on training set................................................63 

Figure 5. The scatter plots of correlations between the energies and the all-atom RMSD of  

decoys from their corresponding native structures on 4state_reduced decoy set using  

(a) MOLSIM energy function and (b) GEMSCORE energy function. ................64 

Figure 6. The location of calcium ions in the three-dimension structure of protein 3icb in  

4state_reduced decoy set.. ....................................................................................65 

Figure 7. The scatter plots of correlations between the energies and the all-atom RMSD of 

 decoys from their corresponding native structures on lmds decoy set using  

(a) MOLSIM energy function and (b) GEMSCORE energy function. ................66 

Figure 8. The native structures of misidentified targets, (a) 1b0n-B and (b) 1fc2-C, in local  

minima decoy set (lmds) ......................................................................................67 

Figure 9. The scatter plots of correlations between the energies and the all-atom RMSD of  

decoys from their corresponding native structures on lattice_ssfit decoy set using  

(a) MOLSIM energy function and (b) GEMSCORE energy function. ................68 

Figure 10. The scatter plots of correlations between the energies and the all-atom RMSD of  

decoys from their corresponding native structures on fisa decoy set using  

(a) MOLSIM energy function and (b) GEMSCORE energy function. ................69 

 vii



Figure 11. Performances of (a) MOLSIM and (b) GEMSCORE on different structure  

determination by X-ray and NMR on five testing sets........................................70 

Figure 12. Comparison of different hydrogen-bonding potentials, EHB, EbHB, and EnbHB on  

the training set. ....................................................................................................71 

 viii



Chapter 1 Introduction 

1.1 Protein Structure Prediction and Energy Functions 

Protein structure prediction (PSP) at atomic detail, which is an important aspect of the 

protein folding problem, remains one of the fundamental unsolved problems in the field of 

computational structural biology. The PSP computational method involves two basic critical 

elements: an efficient search method and a reliable energy function. The former should be 

able to search a large number of potential structure candidates with reasonable accuracy and 

speed. Energy functions for PSP should effectively discriminate between the native 

structure and non-native structures during the search structure candidates. 

Many methods have been proposed to for PSP by generating a reliable structure from a 

given sequence whose structure is unknown. These methods are separated into three 

categories: homology modeling (comparative modeling), fold recognition (threading), and 

ab initio folding. The main concept of homology modeling and fold recognition is to find 

out the best known structure as template for a given target sequence. The evolutionary 

relationship can be deduced from sequence similarity [1-3] or by threading a sequence 

against a library of structures and selecting the best match [4, 5]. Then generate candidate 

structures by aligning the target sequence and the template structure. The template selection 

and alignment are the critical steps for modeling methods.  

Unlike homology modeling and fold recognition, ab initio folding generates candidate 

structure only from sequence information. No dependence on database information is 

needed and predictions are based on sampling of the protein conformational space to 

optimize an energy function [6-14]. In one possible scenario for selecting the most reliable 

structure, a large number of candidate structures are generated and evaluated with an energy 
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function that can distinguish the native and misfolded ones (decoys). 

Regardless of which class a prediction method belongs to, an effective energy function 

is usually required. These functions are typically used in one of two ways: they are either 

used as optimization criteria to drive conformational search algorithms to sift through the 

conformational space (folding problem) or they are used as selection criteria to select a 

conformation from a set of possible structures (reverse folding problem). Energy functions 

of PSP computational methods are generally rooted in the thermodynamic hypothesis that 

the native-state conformations is the most stable conformation and, therefore, must occupy 

the lowest energetic state [15]. Effective energy functions that can accurately depict the 

energy landscape of protein conformation space are a common requirement for all 

computational approaches to the PSP problem. Toward the aim of developing such energy 

functions, three different types of approaches are under investigation: knowledge-based 

energy functions, physics-based energy functions. 

1.2 Related Works 

Knowledge-based energy functions are generally derived from distributions of 

experiment structural data [16, 17]. A previous comparative study showed that 

knowledge-based functions usually perform better [18]. This is part of the reason that most 

previous works have been focused on knowledge-based energy functions in structure 

prediction applications [16, 17, 19-21]. Given a database of high-quality structural 

information, knowledge-based energy functions can often produce the desired results with 

far less computational overhead. However, there are a few exceptions. For example, the 

Park et al. compared various knowledge-based and physics-based functions and found that 

the knowledge-based functions are not better than physics-based functions at ranking native 

structures [22]. In addition, the Tobi et al. showed that it is not possible to find a pairwise 
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knowledge-based potential with a resolution of 1 Å or better [23, 24].  

Energy functions derived from experimental structure information are constrained by 

their underlying statistics, which means that their accuracy and applicability are intrinsically 

tied to the data source used for parameterization; if the particular data set overrepresents a 

certain class of structural properties (e.g., helical structures), the resulting energy function 

would also reflect this statistical bias in its scoring. For the reasons of simplification and 

fast, reduced representation are usually used in knowledge-based energy functions. These 

energy functions may contain pseudo-potentials which lack the physical meanings. 

On the other hand, physics-based energy functions are based on physical mechanisms. 

And they do not have such inherent limitations when they are carefully parameterized. 

Because they are derived from ab initio quantum mechanical calculations based on the 

principles of physics alone, they do not have any intrinsic bias toward any particular 

structural properties. Physics-based approaches assume that the protein potential energy 

functions can be broken down into terms of bond stretching, angle bending, torsional, and 

non-bonded interactions. These parameters in these terms are then fitted to high-level ab 

initio quantum mechanical calculations and small molecule thermodynamic and 

spectroscopy data. The advantage of a physics-based energy function is the clear physical 

meaning of each individual term. Great efforts have been invested to understand the driving 

forces or dominant forces in its discriminative ability.  

Despite their perceived advantages, physics-based energy functions have not been 

widely considered practical for fold recognition or protein structure prediction types of 

applications. This finding was mostly due to the high-computation cost required and the 

cumulative inaccuracies introduced in parameterization of the energy functions 

compounded by the fact that most of the earlier energy functions were calibrated against 
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rather sparse and often qualitative experimental data. Because of the continued 

improvement in computer speed and advances in energy function design, this situation has 

begun to change in recent years; physics-based energy functions are now showing signs of 

living up to their potential [25-33]. 

As more new energy functions are being developed, one problem that became apparent 

was the lack of a standardized benchmark to allow comparisons of performances across 

different energy functions parameterized by using different properties and methodologies. 

One of the earliest studies that resembled a benchmarking test for protein potentials was the 

study carried out by Novotny et al. [34], in which two proteins with the same number of 

residues but different folds were considered and the sequence of one was “threaded” onto 

the fold of the other. The resulting correct and incorrect models were then evaluated with 

use of the CHARMM potential. The conclusion of this study was frequently misinterpreted 

as supporting evidence that modern molecular mechanics-based potentials were not of 

sufficient accuracy to discriminate between native and non-native folds.  

In the spirit of the Novotny test, several groups have created decoy sets (non-native or 

near-native conformations) as a testing benchmark for evaluating the usefulness of a new 

scoring function [22, 35-37]. These decoy sets provide an objective common platform on 

which new energy functions can be evaluated. Furthermore, one may also view the decoys 

as the products of a previous step in a hierarchical structure prediction scheme; a 

high-quality scoring function could then be integrated as a filter to select the best candidate 

from among a set of low-resolution prediction of the native fold.  

Another problem for developing a physics-based energy function is that the 

determination of potential parameters is conceptually and practically difficult. Although it 

would seem the most deductive and logical, determining potential parameters solely from 
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electronic structure calculation of small molecules does not necessarily give the best 

performance for modeling proteins in solvent. Instead of this bottom-up approach, we might 

ask whether we can infer physical forces from their consequences, that is, the structures of 

proteins already in the structural database. Recently, structural genomics projects have 

started to produce thousands of 3D protein structures. If we can use this information to 

improve protein energy functions, this would yield energy functions that are practically 

powerful for many purposes and should be conceptually helpful for gaining insight into the 

physical principles of protein architecture.  

In this thesis, we try to develop a new energy function that combine the advantages 

both of knowledge-based and physics-based energy functions and avoid the disadvantages 

of them. We used simplified energy terms physical mechanisms to form our energy 

functions. In order to optimize the parameters of our energy functions for protein folding, 

we adopt a reduced optimization scheme that to consider the overall weight for each energy 

term as the parameter of each energy term. For our purpose, we use an evolutionary 

algorithm and a well-developed decoy sets as our training set to optimize the overall 

weights.  

1.3 Evolutionary Algorithms 

An evolutionary algorithm is a generally adaptable concept for problem solving, 

especially difficult optimization problems. It is based on ideas genetics and natural selection. 

First, a problem is coded to a chromosome, which is represented as solution and initialed 

randomly. Then find out batter solution in searching space by mutations and crossovers. 

Selection is most important step in an evolutionary algorithm. It is decided by the objective 

function of an evolutionary algorithm to pick up the batter solution. It is finished when find 

a reliable solution by repeating mutation, crossover, and selection again and again. 
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Evolutionary algorithms have been used to solve problems involving large search 

spaces where traditional optimization methods are less efficient. They were applied to many 

biological problems in varying ways. Currently, there are about three main independently 

developed but strongly related implementations of evolutionary algorithms: genetic 

algorithms [38], evolution strategies [39], and evolutionary programming [40]. 

In general the coding function of genetic algorithms was binary-represented. These 

genetic algorithms may introduce an additional multimodality, making the combined 

objective function more complex than the original function. To achieve better performance, 

real-coded genetic algorithms [41, 42] have been introduced. However, they generally 

employ random-based mutations and hence, still require lengthy local searches near local 

minimums. In contrast, evolution strategies and evolutionary programming [43, 44], mainly 

use real-valued representation and focus on self-adaptive Gaussian mutations. This type of 

mutation has succeeded in continuous optimization and has been widely regarded as a good 

operator for local searches. Unfortunately, experiments [45] show that self-adaptive 

Gaussian mutation leaves individuals trapped near local minimums for rugged functions.  

Because none of these three types of original evolutionary algorithms is very efficient, 

many modifications have been proposed to improve solution quality and to speed up 

convergence. Such a hybrid approach may make a better tradeoff between computational 

cost and the global optimality of the solution. However, for existing methods local search 

techniques and genetic operators often work separately during the search process. Family 

competition evolutionary algorithm (FCEA) is proposed to improve the above approaches 

and has a good performance for many problems.  

FCEA is a multi-operator approach that combines three mutation operators: 

decreasing-based Gaussian mutation, self-adaptive Gaussian mutation, and self-adaptive 
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Cauchy mutation. It incorporates family competition [46, 47] and adaptive rules for 

controlling step sizes to construct the relationship among these three operators. To balance 

the search power of exploration and exploitation, each of operators is designed to 

compensate for the disadvantages of the other.  

In this thesis, we use the FCEA to look for the most suitable weights of energy terms 

for protein folding. The next section describes the energy functions and the details of FCEA, 

such as the scoring function and the representation. In the third section, we analyze the 

performance on training set and test our energy functions with optimal weights by popular 

benchmark testing sets. We also discuses the differences of energy functions in many 

situations. Conclusions and future works are drawn in the fourth section. 
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Chapter 2 Materials and Methods 

 For a realizable energy function for protein folding, we adopted two physics-based 

energy functions which developed for different problems. We modified these energy 

functions and optimized them using evolution algorithm. One of them is MOLSIM that is 

based on physical mechanism and originally developed for molecular dynamics. Another is 

modified from the energy function of GEMDOCK [48, 49] used in protein-ligand docking.  

Figure 1 shows the flowchart of training and testing steps. The quality of native 

structures and decoy structures are not generally well and there are some errors in these 

structures, like lack of coordinates of atoms. First, we filter these error structures or 

incomplete structures in training set and testing sets. Second, calculate the energy values of 

each native and decoy structures in training set using our energy functions. Then, optimize 

the overall weights of energy terms in energy functions by evolutionary algorithm, FCEA, 

and get these optimal weights. Repeat above steps until convergence or maximum 

generations of FCEA. Final, apply these weights into our energy functions and calculate the 

energy values of the structures in four testing sets and analyze the results and performances. 

Through these steps, we train the optimal weights of energy terms and judge the quality of 

our energy functions with benchmarks. 

2.1 Energy Functions 

2.1.1 MOLSIM : physics-based energy function 

 MOLSIM is a physics-based energy function developed for molecular dynamics and 

simulation by Professor Jenn-Kang Huang. This energy function is based on physical 

mechanisms contain bond stretching, angle bending, torsional, and non-bonded interactions 

as other force fields for molecular dynamics.  
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The complete energy function is given as 

Etot = Ebond + Eangle + Etorsion + Eelect + EvdW,                  (1) 

where Ebond is covalent bond potential, Eangle and Etosion are bond angles and torsion angles 

potentials, respectively. Eelect and EvdW are electrostatics potential and van der Waals 

potential, respectively. MOLSIM uses these physics-based potentials for molecular 

dynamics and simulation. MOLSIM is all-atom energy function and polar hydrogen atoms 

are needed in the energy function. Therefore, there are several steps before the energy 

calculation.  

First, MOLSIM program reads the information of protein structure from 

PDB-format file including coordinates of atoms and residue information. At secondary step, 

store the structure information with templates of 20 amino acid libraries and check the lacks 

of atoms and the errors of residues. Then, add the polar hydrogen atoms in specific location 

defined in the templates. The additional hydrogen atoms may lead to form steric crashes. 

Energy minimization, steepest descent, is used to reduce steric crashes. After energy 

minimization, we get the final structure for energy calculation. 

 Structures may crash or fold to another structure during long molecular dynamic, it 

could bring some errors and reduce the effect of protein energy functions. The energy 

values of native and decoy structures are calculated after energy minimization and no more 

dynamic steps is needed. 

Physical mechanisms used in MOLSIM contain bond stretching, angle bending, 

torsional, and non-bonded interactions. In this thesis, we simplify the original energy 

function by removing bonded interactions which includes bond stretching, angle bending, 

and torsional interactions. We consider the energy terms of non-bonded interactions, Eelect 
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and EvdW, and add extra solvation energy (ESAS) to form new MOLSIM energy function. The 

physics-based energy function, MOLSIM, we used is given as 

Etot = Eelect + EvdW + ESAS.                          (2) 

The electrostatic energy (Eelect) between atoms i and j is 

∑∑
= =

=
N

i

N

j ij

ji
elect r

qq
E

1 1

332 ,                          (3) 

where rij is the distance between the atoms i and j, qi and qj are the atomic partial charges of 

atoms i and j. and 332 is a factor that converts the electrostatic energy into kilocalories per 

mole. The van der Waals potential used here is Lennard-Jones 6,12 potential: 

∑∑
= =

−=
N

i

N

j ijij
vdW r

B
r
AE

1 1
612 )( ,                         (4) 

where rij is the distance between the atoms i and j, A and B are constants and predefined by 

different atom types. For reducing the computational resource, a cutoff of non-bonded 

interactions, 6.0 Å, is adopted during energy calculation. 

The solvent effect is an important potential in protein folding. Many methods are 

proposed to this issue, for example atomic solvation parameters (ASPs) [50, 51] and 

generalized Born model (GB) [52] . In this thesis, we use ASPs to approximate to the 

solvation energy. The solvation energy is calculated by ASPs and solvent-accessible surface 

area. 

The solvation energy, ESAS, is given as 

∑
=

=
N

i
iisas AE

1
σ ,                             (5) 
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where σi is the atomic salvation parameter (ASPs) for atom type i, and Ai is the Lee and 

Richards solvent-accessible surface area of atom type i. In our calculations, we use a probe 

radius of 1.4 Å to simulate a water molecule to calculate atomic solvent-accessible surface 

area. We divide all atoms into six atom types: C, non-charged O, non-charged N, S, charged 

O, and charged N, used with Eisenberg et al. [50, 51]. Table 1 shows the detail the 

description of each energy term. 

2.1.2 GEMSCORE : empirical energy function 

In this thesis, we developed another empirical energy function modified from 

GEMDOCK [48, 49]. The energy function of GEMDOCK has a good performance in 

flexible protein-ligend docking [48, 49] and screening [53, 54]. GEMDOCK was developed 

well for docking problem, but there are different between docking problem and protein 

folding. We need to revise the original energy function of GEMDOCK and redevelop a new 

empirical energy function by adding other energy terms for protein folding problem. 

The energy function of GEMDOCK is given as 

Etot = Einter + Eintra + Epenal,                        (6) 

where Einter and Eintra are the intermolecular and intramolecular energy, respectively, Epenal is 

a large penalty value. We only retain Einter and use ASPs and solvent-accessible surface area 

as energy term of solvent effect (ESAS). Einter is including electrostatic energy, simplified van 

der Waals and hydrogen-bonding potentials. As for the requirement of later optimization, 

we divide the intermolecular energy (Einter) to three terms: electrostatic energy (Eelect), van 

der Waals potential (EvdW) and hydrogen-bonding potential on backbone (EbHB). 

The empirical energy function of GEMSCORE is given as 
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Etot = Eelect + EvdW + EbHB + ESAS.                    (7) 

Electrostatic energy, Eelect, is based on general Columbic electrostatic function: 

∑∑
= =

=
N

i

N

j ij

ji
elect r

qq
E

1 1
24

332 ,                          (8) 

where rij is the distance between the atoms i and j, qi and qj are the formal charges and 332 

is a factor that converts the electrostatic energy into kilocalories per mole. The formal 

charge of atoms is indicated in Table 2. In order to decrease the incorrect situation, we set 

the low bound of electrostatic energy to -10 (see Figure 2). 

The van der Waals potential, EvdW, and hydrogen-bonding potential on backbone, EbHB, 

are both simplified atomic pair-wise potential functions (see Figure 2). In this model, these 

two potentials are calculated by the same function form but with different parameters. The 

model is given as 
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is the distance between the atoms i and j with the interaction type Bij forming by the 

atomic pairwise where Bij is a state of either van der Waals potential or hydrogen-bonding 

potential on backbone. The parameters of these different potentials, V1,…, V6, given in 
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Figure 2. The value of the hydrogen-bonding potential on backbone should be larger than 

the one of the van der Waals potential.  

In order to calculate the value of the hydrogen-bonding potential, it is must to identify 

the hydrogen bond. We assigned hydrogen bonds according to the method used with Baker 

and Hubbard [55]. Figure 3 shows the definition of a hydrogen bond used in GEMSCORE. 

If the angle of N-H-O ( NHOθ ) is more than 120∘and the distance between hydrogen atom 

and oxygen atom (rOH) is less than 2.5 Å, a hydrogen bond is assigned.  

To decide hydrogen bonds, we have to add extra hydrogen atoms which don’t be 

contained in PDB-format file before energy calculation. Only the hydrogen bonds formed 

with both hydrogen atoms and oxygen atoms located at backbone are considered, and we 

ignore the hydrogen bonds located between backbone and side-chain or side-chain and 

side-chain.  

The solvation energy, ESAS, which is the same as MOLSIM is given as 

∑
=

=
N

i
iisas AE

1
σ ,                            (10) 

where σi is the ASPs for atom type i, and Ai is the Lee and Richards solvent-accessible 

surface area of atom type i. We use a probe radius of 1.4 Å to simulate a water molecule to 

calculate atomic solvent-accessible surface area. We divide all atoms into six atom types: C, 

non-charged O, non-charged N, S, charged O, and charged N, used with Eisenberg et al. [50, 

51]. Table 1 shows the detail description of each energy term. 

2.2 Optimization 

The core idea of our evolutionary approach was to design multiple operators that 

cooperate using the family competition model [46, 47], which is similar to a local search 
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procedure. The Gaussian and Cauchy mutations, continuous genetic operators, search the 

weights for the energy terms. 

2.2.1 Representation and Initiation 

Our optimized method works as follows: It randomly generates a starting population 

with N solutions of weights for energy function. Each solution is represented as a set of 

3n-dimensional vectors (xi, σi, ψi), where n is the number of energy terms of an energy 

function and i = 1,⋯,N, where N is the population size. The vector x is the adjustable 

variables representing a particular weights of a energy term to be optimized. σ and ψ are the 

step-size vectors of decreasing-based Gaussian mutation and self-adaptive Cauchy mutation. 

In other words, each solution x is associated with some parameters for step-size control. The 

initial step size σ is 0.8 and ψ is 0.2.  

2.2.2 Family Competition Evolutionary Algorithm (FCEA) 

After initializes the solutions, it enters the main evolutionary loop, which consists of 2 

stages in everyone iteration: decreasing-based Gaussian mutation and self-adaptive Cauchy 

mutation. Each stage is realized by generating a new quasi-population (with N solutions) as 

the parent of the next stage. These stages apply a general procedure “FC_adaptive” with 

only different working population and the mutation operator. The FC_adaptive procedure 

employs 2 parameters, namely, the working population (P, with N solutions) and mutation 

operator (M), to generate a new quasi-population.  

The main work of FC_adaptive is to produce offspring and then conduct the family 

competition. Each individual in the population sequentially becomes the “family father.” 

With a probability pc, this family father and another solution that is randomly chosen from 

the rest of the parent population are used as parents for a recombination operation. Then the 
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new offspring or the family father (if the recombination is not conducted) is operated by 

differential evolution to generate a quasi-offspring. Finally, the working mutation is 

operates on the quasi-offspring to generate a new offspring. For each family father, such a 

procedure is repeated L times, called the family competition length. 

Among these L offspring and the family father, only the one with the lowest scoring 

function value survives. Since we create L children from one “family father” and perform a 

selection, this is a family competition strategy. This method avoids the population 

prematureness but also keeps the spirit of local searches. Finally, the FC_adaptive 

procedure generates N solutions because it forces each solution of the working population to 

have one final offspring. In the following, genetic operators are briefly described. We use a 

= (xa, σa, ψa) to represent the “family father” and b = (xb, σb, ψb) as another parent. The 

offspring of each operation is represented as c = (xc, σc, ψc). The symbol xs
i is used to denote 

the ith adjustable optimization variable of a solution s, ∈∀i {1,…, N}. 

2.2.3 Recombination and Mutation Operators 

We implemented modified discrete recombination and intermediate recombination. A 

recombination operator selected the “family father (a)” and another solution (b) randomly 

selected from the working population. The former generates a child as follows: 
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where w is σ or ψ based on the mutation operator applied in the FC_adaptive procedure. 

The intermediate recombination only operated on step-size vectors and the modified 

discrete recombination was used for adjustable vectors (x). 

After the recombination, a mutation operator, the main operator of our evolutionary 

approach, is applied to mutate adjustable variables (x). Gaussian and Cauchy Mutations are 

accomplished by first mutating the step size (w) and then mutating the adjustable variable x:  
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ii ,                          (13) 

where wi and xi are the ith component of w and x, respectively. And wi is the respective step 

size of the xi, where w is σ or ψ. A(·) is evaluated as exp[τ’N(0, 1) + Ni(0,1)] if the mutation 

is a self-adaptive mutation, where N(0,1) is the standard normal distribution, Ni(0, 1) is a 

new value with distribution N(0, 1) that must be regenerated for each index i. When the 

mutation is a decreasing-based mutation A(·) is defined as a fixed decreasing rate γ = 0.95. 

D(·) is evaluated as N(0, 1) or C(1) if the mutation is, respectively, Gaussian or Cauchy. For 

example, the self-adaptive Cauchy mutation is defined as 
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We set τ and τ’to 1)2( −n and 1)22( −n , respectively, according to the suggestion of 

evolution strategies. A random variable is said to have the Cauchy distribution [C(t)] if it 

has the density function: . In this thesis, t is set to 1. 

Our decreasing-based Gaussian mutation uses the step-size vector σ with a fixed decreasing 

rate γ = 0.95 and works as σ

∞<<−∞+= yytttyf ),/()/();( 22π
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2.2.4 Objective Function of FCEA 

For optimization, the energy function becomes 

∑=
i

iiwE µ ,                            (15) 

where wi is the weight of energy term µi. Given an energetic weight set w (in this thesis, it’s 

8 and 9 for MOLSIM and GEMSCORE, respectively), we used FCEA to look for the most 

suitable energy function by minimizing a well-developed objective function. Eight energy 

terms of MOLISM are define in Equations 2 and 5 and nine energy terms of GEMDOCK 

are define in Equations 7 and 10. 

A successful energy function not only has to be able to correctly distinguish between 

native and native-like structures but must also do so convincingly. In the regard, the quality 

of an energy function is judged by the size of energy gap assigns to the native structure and 

the average energy of the rest of the non-native structures. A mostly used measure for 

assessing this quality is the Z-score. We defined the Z-score as follows: 

E
EEZ native

∆
><−

= ,                          (16) 

where 

∑ ><−=∆
d

d EEE 2)( .                       (17) 

Enative is the energy value of a native structure, Ed is the energy score of a decoy structure d, 

and <E> is the mean of energy values of all non-native structures in a decoy set. Z-score is 

used for measuring the energy separation between the native structure and the other decoy 

structures in the units of the standard deviation of the ensemble. The Z-score above is only 

for a single protein. While we seek the weights of an energy function, we makes Z-scores of 
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“all” proteins simultaneously low enough, that is, negative and large in the absolute value. 

We need an objective function that reflects the Z-scores of the many proteins in the 

training set. We have many approaches to develop an objective function. For example, we 

minimize the summation of Z-scores over proteins and we obtain an energy function that 

gives small Z-scores for many proteins but large Z-scores for a few proteins. This is not 

desired because the Z-scores of “all” proteins need to be small. This problem arises partly 

because proteins in the training set have different quality decoys and the current energy 

function allows some proteins to be more easily recognized than others. Another approach 

may be to minimize the maximum of Z-score of proteins in the training set. However, the 

optimized weights are probably determined by few proteins, which may be exceptional ones 

that could be structures with some errors. This tends to lead to unreasonable energy weights. 

Some intermediate approaches have been proposed by Koretke et al. [56] as well as by 

Mirny and Shakhnovich [57]. 

To avoid the effects of few proteins and minimize the Z-scores of “all” proteins, we 

chose a normalized Z-scores. When the Z-scores of some proteins are very small, it is 

difficult to optimize other proteins which have large Z-scores. In order to reduce the ill 

effect mentioned above, we normalize the Z-scores with 

zzf −+
=

exp1
1)( ,                         (18) 

which f(z) maps Z-scores to the value among 0 and 1. 

Even the Z-score is low enough; it does not guarantee the native structure can be 

distinguished from the decoy set, because Z-score is based on the different value between 

energy value of the native structure and the mean of energy values of all non-native 

structures in a decoy set. To ensure that energy value of a native structure is the lowest 
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among a decoy set, we added a related measure Z’-score [30] given as  

E
EEZ lowestnative

∆
−

=' ,                         (19) 

where Elowest is the lowest energy value of the non-native structure among the decoy set, and 

∆E is the same used in Z-score (in Equation 17). In contrast to the Z-score, the Z’-score 

gives a quantitative measure of how well separated the native structure is from its lowest 

energy neighbor from within the decoy set. We applied the same normalized approach into 

Z’-score. Finally, our objective function of evolutionary approach is 

∑ +=
N
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zfzfS ))'()(( ,                         (20) 

where i is the protein i, and N is the number of proteins in a training set. We minimize the 

score S to find out optimal weights for energy terms of our energy functions. 

2.3 Data Sets of Decoys 

A popular approach to test energy functions is to partially sample the conformational 

space utilizing constructed decoy sets. Publicly available decoy sets not only provide a 

means to evaluate performance of energy functions, but also permit comparisons between 

different structure discrimination methods [50, 51, 58]. Many of these decoy sets contain a 

large number of candidate conformations, with varying degrees of similarity to the native 

conformation. The goal of developing an efficient energy function is to recognize the best 

conformation that is most similar to the native structure. 

2.3.1 Training Sets 

 To develop our new energy functions to discriminate the native structures and 

non-native structures, we used well-developed decoy set, Rosetta-Tsai [59], as our training 
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sets. The decoy set was obtained from the Baker Laboratory website 

(ftp://ftp.bakerlab.org/pub/decoys/decoys_11-14-01.tar.gz). These Rosetta-Tsai decoy set is 

modified from Rosetta all-atom decoy set [60] and generated from fragments of 3 to 9 

residues from known structures matched to the targets through a multiple sequence 

alignment process. These fragments were assembled to native-like structures from a 

fragment insertion simulated annealing procedure which is using Bayesian scoring functions 

[12, 36, 61, 62]. The decoy sets increase the number of proteins and frequency of near 

native models building on side-chains and minimizing clashes. 

The decoy set contains structural decoys for 41 different and diverse protein targets. 

For the training step, we preprocess some error structures in the decoy set. We filter out the 

proteins with incomplete residues which make inaccuracies of energy functions and the 

proteins that included in the six testing decoy sets. Table 3 lists the final 30 protein targets 

and the length ranging from 35 to 85 residues. These protein targets are used for training 

our energy functions to obtain the overall weights of energy terms. 

2.3.2 Testing Sets 

We tested the performances of our energy functions with optimal weights on six decoy 

sets. They are the EMBL misfolded set of Holm and Sander [63] , the 4state_reduced set of 

Park and Levitt [22], local-minima decoy set of Kesar and Levitt [35], the lattice_ssfit set of 

Samudrala et al. [64], and fisa decoy set of Simons et al. [61]. These decoy sets are 

obtained from the Decoys’R’Us database [35] (http://dd.stanford.edu/). The Rosetta 

all-atom decoy set [60] could be download from the Baker Laboratory website 

(ftp://ftp.bakerlab.org/pub/decoys/RosettaAllAtomDecoys.tar.gz). The protein lists of decoy 

sets are summarized in Tables 3. Since these sets contain thousands of conformations 

generated by different conformational search algorithms, the performance of an energy 
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function depends on each set. Success in one decoy set does not guarantee success in 

another [65]. Therefore, testing on a variety and large number of decoy sets is to provide a 

rigorous evaluation of how well an energy function works. 

The EMBL misfolded set [63] is set of intentionally misfolded structures and their 

corresponding native structures. This decoy set contains structural decoys for 25 protein 

targets including from 36 to 317 residues and was constructed by swapping side-chains on 

pairs of crystallographically determined structures with the same number of residues while 

keeping the backbone geometry unperturbed. The resulting chimeric structures were then 

subjected to 500 steps of steepest descent energy minimization using the GROMOS 

program. 

The 4state_reduced [22] decoy set contains structural decoys for 7 small proteins 

including from 54 to 75 residues with varying topological folds. The protein structures have 

been generated by exhaustively enumerating the backbone rotamer states of 10 selected 

residues in each protein using an off-lattice model with four discrete dihedral angles states 

per rotatable bond. Among hundreds of thousands of generated conformations, only those 

compact structures scoring well by using a variety of scoring functions and having 

reasonable RMSD from the native conformation have been selected. 

The local-minima decoy set (lmds) [35] also contains structural decoys for 10 small 

proteins including from 36 to 68 residues. These decoys are conformations that occupy 

minima in a modified classical ENCAD [66-69] force field using united and soft atoms. 

Initially ten thousand structures were generated by randomly modifying only the dihedral 

angles in the loop regions. After minimization in torsion space to the local minima in the 

potential, up to 500 of the lowest energy conformations for each protein were kept to make 

up the decoy sets. 
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The lattice_ssfit [64] decoy set contains structural decoys for 7 proteins including from 

55 to 98 residues. These decoy conformations have been generated by ab initio protein 

structure prediction methods. The conformational space of a sequence was exhaustively 

enumerated on a tetrahedral lattice. A lattice-based scoring function was used to select the 

10,000 best-scoring conformations. All-atom structures were then generated by fitting an 

off-lattice four-state torsion model to the lattice conformations, using predicted secondary 

structure. The 10,000 conformations were further scored with a combination of RAPDF 

(residue-specific all-atom probability discriminatory function) [70], HCF (hydrophobic 

compactness function) [64], and the Shell energy function (one-point-per-residue scoring 

function) [23]. The 2000 best-scoring conformations for each protein were selected for the 

decoy sets. 

The fisa [61] decoy set contains structural decoys for 4 proteins including from 43 to 

76 residues. These decoy conformations are generated by the same protocol as in training 

set. Use a fragment insertion simulated annealing procedure to assemble native-like 

structures from fragments of unrelated protein structures with similar local sequences 

(determined through a multiple sequence alignment process) based on Bayesian scoring 

functions. 

The Rosetta all-atom decoy set [60] was generated from the same protocol which used 

in the training set and fisa decoy set. Fragments of 3 to 9 residues from known structures 

matched to the targets through a multiple sequence alignment process were selected to 

assemble native-like structures by fragment insertion simulated annealing procedure which 

is using Bayesian scoring functions [12, 36, 61, 62]. The terms of the scoring function 

included those for hydrophobic burial, electrostatics, disulfide bonds, the packing of 

α-helices and β-strands, and the formation of β-sheets. During annealing only, another term 

used to promote compactness was added based on the radius of gyration. The number of 
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decoy structures in the sets ranges from 994 to 1999. The native structures are not been 

within the downloaded decoy set and we copy the native structures from PDB database. But, 

the native structures are different from the decoy structures. The residue sequences of decoy 

structures are incomplete sequences contrast to the sequences of native structures. We filter 

the incomplete proteins to avoid inaccuracies of energy calculation. The protein which has 

difference between the number of residues of decoy structure and ones of native structure is 

small than 10 and the length of sequence of decoy structure is less than 30 residues was 

filtered off. We then cut the native sequences to fit the length of the residue sequences of 

decoy structures to reduce the computational error of our energy functions. Final, 42 

proteins were left in the decoy set and include from 34 to 149 residues. 
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Chapter 3 Results and Discussions 

3.1 Parameters in optimization 

The parameters of an evolutionary algorithm may conduce to different results. 

Population sizes and maximum generations are usually adjusted for searching best results in 

an evolutionary algorithm, but difference may result from the same parameters. In this 

thesis, we examine many different population sizes and maximum generations to ensue least 

differences. The final values of weights are not slimily because of different initial random 

values. To observe the variations of weights, therefore, we consider the weight of 

electrostatic potential as the base and calculate ratios of other energy terms to electrostatic 

potential.  

Table 4 shows the variations of weights of MOLSIM with different population sizes 

and fixed maximum generations, 200. Each result of different population sizes is the 

average value of five independent runs. The standard deviation shows that our evolutionary 

algorithm can find the best weights and are stable in many different runs. Table 5 lists the 

similar results for different maximum generations and a fixed population size, 200, 

excluding maximum generations, 100 and 200 steps. Although the variation of maximum 

generations, 100 and 200, doesn’t like other results, the standard deviation values are 

enough small.  

 Tables 6 and 7 list the variations of weights of GEMSCORE. For the same reason, 

the different values of weights from different initial random values, we use the van der 

Waals potential as the base to calculate the ratios of other energy terms. The results show 

that similar conclusion. The evolutionary algorithm we used in this thesis is stable for 

optimizing the weights of our energy functions. To ensure to find the best weights, we use 

population sizes, 200, and maximum generations, 300, in our evolutionary algorithm. The 
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final overall weights of energy terms in two energy functions are presented in Table 8. We 

use these weights for testing popular benchmarks latter. 

3.2 Results of training set 

 As the description in section 2.2.4 of Materials and Methods, the Z-score of a native 

structure is calculated to describe how far the effective energy of the native structure is 

separated from the energy spectrum of the decoy structures and we judge the size of energy 

gap between the native structure and the lowest energy non-native structures with Z’-score. 

Results of the Z-score and Z’-score from the optimized training decoy set are presented in 

Table 9. Bold faced values indicate the rank of the native structure is larger than 500.  

 There are 17 X-Ray and 13 NMR structures in the training set. Figure 4 shows the 

performances of our energy functions on different structure determination by X-ray and 

NMR on training set. In Figure 4, Rank1 and Rank5 mean that the native structures rank 

within top 1 and top 5 among its corresponding decoy set after the training process, 

respectively. The ranks of the native structures are in the top 10 percent (Rank10%, ~186) 

and the rest 90 percent (Other) among its corresponding decoy set, respectively. In both 

Rank1 and Rank5, our methods have better performance in X-Ray structures than NMR 

structures. MOLSIM presents the results in NMR structure as batter as X-Ray structures in 

Rank10%. GEMSCORE can identify all X-Ray structures completely, but misidentify the 

about 40 percent of NMR structures.  

In general, our energy functions have better ability to find out the native structures 

which are X-Ray structures. These worse structures are most NMR structures and contain 

many models in original PDB file. But only one model was considered as the native 

structure used in training set. It may be part of reason that the bad performances of our 

energy functions for some NMR structures. Though, our energy functions don’t have the 
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performances for some NMR structures as well as X-Ray structures, native structures of 

NMR structures are mostly ranked before the 50 percent among its corresponding decoy set 

in the training set. 

3.3 Test with popular benchmarks 

After weights of energy terms are yielded, we tested our optimized energy functions 

with popular benchmarks. The results of EMBL misfolded decoy set are listed in Table 10. 

There are 24 proteins identified from 25 native-misfolded protein pairs in MOLSIM. 

GEMSCORE identify all 25 proteins in this decoy set. Only one protein, 2cdv, is 

misidentified in MOLSIM. There is no Z-score in EMBL misfolded decoy set because of 

only one decoy structure in the set. 

The results of the Z-score and Z’-score from the other five testing decoy sets, 

4state_reduced, lmds, lattice_ssfit, fisa, and Rosetta all-atom decoy set, are presented in 

Tables 11-15. The results of total six testing sets compared with previous works based on 

physics-based energy functions by previous authors [27-32] are summarized in Table 16. 

There are 44 and 46 native proteins that ranked first in total 71 decoy sets with MOLSIM 

and GEMSCORE, respectively. 

 Figure 5 plots correlations between the energies and the all-atom root mean square 

deviation (RMSD) of decoys from their corresponding native structures in 4state_reduced 

decoy set on 4state_reduced set. Table 17 shows the details of comparison with previous 

works in 4state_reduced decoy set. Z’-score isn’t used in general, therefore, we compare the 

rank and Z-score of native structure. The number before slash is the rank of native structure 

in this decoy sets. Another is the Z-score of native structure. Our results are as well as 

previous works, which used AMBER, or other force-fields.  
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There is one native structure, 3icb, could not be distinguished in both our energy 

functions. Protein 3icb is a vitamin D-dependent calcium-binding protein and contains two 

calcium ions. Figure 6 shows the location of calcium ions in the three-dimension structure 

of 3icb. The two Ca2+ of 3icb locate in the loop section of native structure and that may be 

one reason for worse result. Lack of Ca2+ at loop could make unstable loop of native 

structure. Therefore, we refine the native structure with two Ca2+ and calculate energy with 

the same weights again. Because of problems of programs, only GEMSCORE energy 

function was used to re-calculate the refined structure. Native structure is distinguished 

from non-native structures after put calcium ions back to the native structure. Result is 

presented in Table 18. 

The results of other three testing sets, lmds, lattice_ssfit, and fisa, are listed in Table 

19-21. As 4state_reduced set, the performances of our energy functions are good as 

previous works. Although there are some native structures that can’t be identified from 

decoys, they are 1fc2 in fisa, 1b0n-B, 1bba, 1dtk and 1fc2 in lmds, 1dkt-A, and 1trl-A in 

lattice_ssfit. Some proteins, like 1bba and 1fc2 in lmds, were ranked as worse energy. They 

were missed by previous work [27]. The reason for this massive failure is not entirely clear. 

Perhaps, this is because 1bba is pancreatic hormone with a long loop. 1fc2 and 1b0n-B are 

both protein complexes and have many missing coordinates (≥15 residues) in their native 

structures. Figure 8 shows the whole protein structures of 1fc2 and 1b0n-B. The numbers of 

residues with coordinates of these three proteins are less than 45. 

The others proteins, 1dtk in lmds, 1trl-A in lattice_ssfit, which can’t be distinguished 

from decoys are both NMR structures and contains 20 and 8 models, respectively. One 

reason for the worse results is that the native structure adopted in decoy sets may not fit for 

our energy functions. The same results that performances of our energy functions are weak 

for NMR structures are presented in training set. Figure 7, 9, and 10 plot correlations 

between the energies and the all-atom RMSD of decoys from their corresponding native 

structures on lmds, lattice_ssfit, fisa decoy sets, respectively. 
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The same result that has better performance in X-Ray structures than NMR structures 

on the Rosetta all-atom decoy set. The result is presented in Table 15. There are 20 X-Ray 

and 22 NMR structures in the decoy set. Native structures are most identified using 

MOLSIM. 16 and 18 native structures are ranked within top 1 and top 5, respectively. There 

are 19 native structures ranked first using GEMSCORE and one misidentified structure is 

ranked four. However, our methods have the worse performance in NMR structures. 

MOLSIM identified 9 and 12 native structures from decoy structures within top 1 and top 5, 

respectively. 7 and 10 native structures are identified as top 1 and top 5 using GEMSCORE 

in total 22 structures. 

Figure 11 summaries the results on five testing decoy sets excluded EMBL misfolded 

decoy set. There are 45 X-Ray structures and 26 NMR structures in these decoy sets. Top1 

and Top5 mean that the native structure ranks within top 1 and top 5 among its 

corresponding decoy set, respectively. The ranks of the native structures are in the top 10 

percent (Top10%) and the rest 90 percent (Other) among its corresponding decoy set, 

respectively. GEMSCORE presents the better power in distinguishing X-Ray structures than 

MOLSIM. MOLSIM have the better performance to identify NMR structures than 

GEMSCORE and distinguish X-Ray structures as well as GEMSCORE. 

3.4 Hydrogen-bonding interactions in GEMSCORE 

 Hydrogen-bonding interactions are important interactions during protein folding. In 

this thesis, however, we only consider the hydrogen-bonding interactions on backbone as a 

part of GEMSCORE. The original energy function using in GEMDOCK used the 

hydrogen-bonding interactions as the main potential during protein-ligand docking. 

Nevertheless, it may not suit to apply the hydrogen-bonding potential used in GEMDOCK 

for protein folding directly. Table 22 compares the results on six testing decoy sets by 
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GEMSCORE with hydrogen-bonding potential (EHB) and hydrogen-bonding potential on 

backbone (EbHB). EHB is a potential of all hydrogen-bonding interactions and calculate 

energy with the same protocol of EbHB. Definition of hydrogen-bonding potential, EbHB, is 

described in section 2.1.2 (in Equation 7). The result of GEMSCORE with EHB haves 

performance as well as GEMSCORE with EbHB excluding 4state_reduced decoy set.  

 We analyzed the result on 4state_reduced decoy set with different hydrogen-bonding 

potentials, EHB, EbHB, and EnbHB. Table 23 presents the result on 4state_reduced decoy set. 

EHB means the potential of all hydrogen-bonding interactions. EbHB and EnbHB mean the 

potentials of hydrogen-bonding interactions on backbone and hydrogen-bonding 

interactions which do not locate on backbone, respectively. (i.e., EHB = EbHB + EnbHB). Result 

of EnbHB has terrible performance than EbHB. In the analysis on training set, we can see the 

same result as the result on 4state_reduced decoy set. Figure 10 shows the percentages of 

native structures ranked within 1, 5, 100, 500, 1000 and larger 1000 in the training set with 

different hydrogen-bonding potentials, EHB, EbHB, and EnbHB. 

The terrible result on EnbHB may be caused from the definition of hydrogen-bonding 

interactions used in the energy function of GEMDOCK. In order to reduce computational 

time of GEMDOCK, a simplify strategy was adopt. It does not to add hydrogen atoms and 

assign hydrogen bonds depended on nitrogen atoms and oxygen atoms during energy 

calculation. Hydrogen bonds are assigned based on the distance between nitrogen atom and 

oxygen atom. However, it is impossible to from hydrogen bond at some angle of N-H-O 

( NHOθ ), even the distance is enough close. When the all hydrogen-bonding interactions are 

divided to hydrogen-bonding interactions on backbone and not on backbone, EnbHB contains 

the all inaccuracy hydrogen-bonding interactions described above and has terrible 

performance.  
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This strategy works fine in protein-lignad docking because of the few 

hydrogen-bonding interactions and space restrictions. Nevertheless, many hydrogen bonds 

from secondary structures to stable protein structure during protein folding. It is effective to 

consider the hydrogen-bonding potential for developing energy function. The result (Figure 

12) shows that the major contribution of hydrogen-bonding potential is from 

hydrogen-bonding potential on backbone. It also proves why the performance of potential 

of all hydrogen-bonding interactions (EHB) as well as potential of hydrogen-bonding 

interactions on backbone (EbHB). It is enough to cover the error caused from the potential of 

hydrogen-bonding interactions which do not locate on backbone (EnbHB).  

3.5 Solvent effects in MOLSIM/GEMSCORE 

The original energy functions we used in this thesis don’t contain solvation potential. 

However, solvent effect plays an important role to stable the protein structure in the native 

situation. We added extra solvation potential to improve our energy functions. Table 24 

present the performances of MOLSIM and GEMSCORE. Original and Optimized mean the 

original energy function without optimization and the optimized energy function without 

solvation energy, respectively. Optimized+ESAS means the optimized energy function with 

solvation energy. We can see a lot of improvement in MOLSIM energy function. Not only 

average Z-scores but also the number of native structures ranked first in a decoy set has best 

performance with optimized energy function that contains solvation energy function.  

GEMSCORE also presents the same result in average Z-scores. But the number of 

native structure ranked number one doesn’t have variation excluding EMBL misfolded and 

4state_reduced decoy sets. The reason for this is not entirely clear. It may the solvation 

energy we adopted couldn’t be suitable for GEMSCORE energy function. Nevertheless, 

additionally solvation potential improve the performances of our energy functions whether 
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MOLSIM or GEMSCORE. 

3.6 MOLSIM vs. GEMSCORE 

In the thesis, we show two energy functions. One is simplified physics-based energy 

function, MOLSIM, and another is empirical energy function, GEMSCORE. We optimized 

these energy functions for protein folding. Both of them show the ability that identifies the 

native structure from lots of non-native structures. These two energy functions have similar 

energy terms and optimized by the same optimization strategy, however, it still has some 

differences between them.  

Computational resources and time are main discrepancies. MOLSIM is all-atom energy 

function and need extra information of hydrogen atoms during energy calculation. Although, 

only specified hydrogen atoms are needed in MOLSIM, evaluate the coordinates of these 

hydrogen atoms and energy minimization after adding hydrogen atoms require more 

computational resources and time than GEMSCORE. And these extra hydrogen atoms also 

increase the computation when energy value is evaluated. For example, GEMSCORE need 

1.80 seconds in calculating energy values of 1ctf which contains 65 residues and 486 atoms. 

MOLSIM costs 3.31 seconds with 1ctf. When evaluate a large protein, like 2tmn that 

includes 316 residues and 2431 atoms, GEMSCORE (10.7 seconds) still fast then MOLSIM 

(18.8 seconds).  

Nevertheless, MOLSIM has better performance then GEMSCORE in most decoy sets. 

MOLSIM also presents better ability when identifies NMR structures. Some researches 

believe that molecular dynamic is needed with all-atom energy function; especially extra 

hydrogen atoms are added. Molecular dynamic with a short time can provide reliable 

structure. In this thesis, no molecular dynamic is adopted in MOLSIM developed originally 

for molecular dynamics. Molecular dynamic may have more accuracy, but more 
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computational resources and time are needed during energy calculation. That is 

disadvantage of most physics-based energy functions. However, GEMSCORE, an empirical 

energy function based on physical mechanisms with simplified model, presents a good 

performance with popular benchmarks and costs less computational resources and time then 

physics-based energy function. It may be more suitable for protein structure prediction 

system to select the best structure from thousands and thousands candidate structures. 
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Chapter 4 Conclusions and Future Works 

4.1 Conclusions 

 In this thesis, we develop two simple energy functions for protein folding and have 

well performance on six popular benchmarks. We adopt only few weights to optimize the 

energy functions with few terms and the performance as well as previous works. However, 

most of previous used AMBER or other force fields. The costs of computational resources 

and time are huge and parameters used to optimize the force fields during optimization are 

hundreds and thousands. The difficulty and time are as more as numbers of parameters in 

optimization.  

The parameters of energy function based on physics mechanical are usually optimized 

from chemical compounds or small proteins. The optimal parameters may not reflect the 

native protein structures. We use the information from well-developed decoy set and obtain 

these optimal parameters of energy function using evolutionary algorithm. This would yield 

energy functions that are practically powerful for many purposes and should be 

conceptually helpful for gaining insight into the physical principles of protein architecture. 

4.2 Future Works 

In the near future, we will apply our derived energy functions for protein structure 

prediction with CASP6 (Critical Assessment of Techniques for Protein Structure Prediction, 

http://predictioncenter.llnl.gov/casp6/Casp6.html) targets which many researches have 

submitted in the world. By this progress, we hope to prove the ability of our energy 

functions which selects the best structures from many different candidate generation 

methods. After examination, we will integrate our energy functions with other methods that 

generate candidate structures and pick up the best candidate structure from thousands and 
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thousands of ones. Finally, we will build a reliable system to predict protein structure from 

only protein sequences. 

Besides building a reliable system to predict protein structure, many shortcomings can 

be reformed in our energy functions. A better training set may increase the performance of 

our methods. Sovation energy used in this thesis is ASPs. In past years, GB was proved to 

have good performance for solvent effect. It may have better results by combining GB and 

ASPs. More accuracy and high-speed are also needed for calculating atomic 

solvent-accessible surface area.  
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Table 1. The energy terms and descriptions in MOLSIM and GEMSCORE 

Term Name Description 

ELC Electrostatic energy 

VDW van der Waals potential 

BHB Hydrogen-bonding potential on backbone 

C Summation of surface area of each C atom 

S Summation of surface area of each S atom 

O Summation of surface area of each O atom 

nO 
Summation of surface area of each negative charged O atom in ASP (OD1 and OD2), 

GLU (OE1 and OE2) 

N Summation of surface area of each N atom 

pN 
Summation of surface area of each positive charged N atom in HIS (ND1 and NE2), ARG 

(NH1 and NH2), LYS (NZ) 
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Table 2. Atomic formal charge used in GEMSCORE 

Formal charge Atom Description 

0.5 N N atom in HIS (ND1 and NE2) 
0.5 N N atom in ARG (NH1 and NH2) 
1.0 N N atom in LYS (NZ) 
-0.5 O O atom in ASP (OD1 and OD2) 
-0.5 O O atom in GLU (OE1 and OE2) 

0 Other atoms  
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Table 3. The training set and testing sets 

Training Set     

Name 
No. of 

Decoys 

No. of 

X-Ray a

No. of 

NMR b List of Protein ID (PDB ID) 

RosettaTasi 1867(30) c 17 13 

1a32, 1aa3, 1afi, 1ail, 1am3, 1bq9, 1bw6, 1cc5, 1cei, 1dol,

1hyp, 1kjs, 1lfb, 1msi, 1mzm, 1nkl, 1nre, 1pou, 1ptq, 1res 

1sro, 1tif, 1utg, 1uxd, 1vcc, 1vif, 2ezh, 2fow, 2fxb, 2ptl 

Testing Sets     

Name 
No. of 

Decoys 

No. of 

X-Ray 

No. of 

NMR 
List of Protein ID (PDB ID) 

EMBL misfold 1(25) 24 1 

1bp2(2paz) d, 1cbh(1ppt), 1fdx(5rxn), 1hip(2b5c), 

1lh1(2ilb), 1p2p(1rn3), 1ppt(1cbh), 1rei(5pad), 

1rhd(2cyp), 1rn3(1p2p), 1sn3(2ci2), 1sn3(2cro), 

2b5c(1hip), 2cdv(2ssi), 2ci2(1sn3), 2ci2(2cro),  

2cro(1sn3), 2cro(2ci2), 2cyp(1rhd), 2i1b(1lh1),  

2paz(1bp2), 2ssi(2cdv), 2tmn(2ts1), 2ts1(2tmn),  

5pad(1rei) 

4state_reduced 665(7) 7 0 1ctf, 1r69, 1sn3, 2cro, 3icb, 4pti, 4rxn 

lmds 434(10) 8 2 
1b0n-B, 1bba, 1ctf, 1dtk, 1fc2, 1igd, 1shf-A, 2cro, 

2ovo, 4pti 

lattice_ssfit 2000(7) 6 2 1beo, 1ctf, 1dkt-A, 1fca, 1nkl, 1pgb, 1trl-A 

fisa 500(4) 4 0 1fc2, 1hdd-C, 2cro, 4icb 

RosettaAll 1024(42) 20 22 

1aa2, 1acf, 1ag2, 1aj3, 1apf, 1ark, 1ayj, 1bdo, 

1bor, 1btb, 1ctf, 1dec, 1erv, 1fbr, 1fwp, 1gb1, 

1gpt, 1gvp, 1ksr, 1kte, 1mbd, 1pdo, 1r69, 1ris, 

1svq, 1tit, 1tul, 1vls, 1vtx, 1who, 1wiu, 2acy,  

2cdx, 2erl, 2ezk, 2fdn, 2gdm, 2ktx, 2ncm, 2pac, 

4fgf, 5pti 

a, b No. of X-Ray and No. of NMR are the numbers of the native structures determination by X-ray and 
NMR, respectively 
c Average numbers of decoy sets and the values in the parentheses are the number of proteins 
in the decoy set 
d The PDB code of a crystal structures and the PDB IDs in the parentheses are their 
corresponding intentionally misfolded structures 
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Table 4. Variations of parameters of MOLSIM with different population sizes and the 
maximum number of generations of FCEA is set to 200 

Pop 100 Pop 200 Pop 300 Pop 400 Pop 500 Energy 

Term a AVG b± STD c AVG± STD AVG± STD AVG STD ± AVG± STD 

ELC 1.000 0.000 ± 1.000± 0.000 1.000± 0.000 1.000 0.000 ± 1.000± 0.000

VDW 3.189 0.001 ± 3.189± 0.002 3.188± 0.001 3.189 0.001 ± 3.189± 0.001

C 0.392 0.001 ± 0.392± 0.001 0.391± 0.001 0.392 0.001 ± 0.391± 0.001

S 0.779 0.000 ± 0.779± 0.000 0.779± 0.000 0.779 0.000 ± 0.779± 0.000

O -0.161 0.000 ± -0.161± 0.000 -0.161± 0.000 -0.161 0.000 ± -0.161± 0.000

nO -0.085 0.000 ± -0.085± 0.000 -0.085± 0.000 -0.085 0.000 ± -0.085± 0.000

N -0.161 0.000 ± -0.161± 0.000 -0.161± 0.000 -0.161 0.000 ± -0.161± 0.000

pN -0.592 0.000 ± -0.592± 0.000 -0.591± 0.001 -0.592 0.000 ± -0.591± 0.001

a These terms defined in Table 1 
b, c The average (AVG) and standard deviation (STD) were calculated from five independent  
runs. 
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Table 5. Variations of parameters of MOLSIM with different maximum number of 
generations and the population size is set to 200 

Gen 100 Gen 200 Gen 300 Gen 400 Gen 500 Gen 1000 Energy 

Term a AVG b± STD c AVG STD ± AVG± STD AVG± STD AVG STD ± AVG± STD 

ELC 1.000 0.000 ± 1.000 0.000± 1.000± 0.000 1.000± 0.000 1.000 0.000 ± 1.000± 0.000

VDW 3.191 0.007 ± 3.188 0.001± 3.189± 0.000 3.189± 0.000 3.189 0.000 ± 3.189± 0.000

C 0.391 0.001 ± 0.391 0.001± 0.392± 0.000 0.392± 0.000 0.392 0.000 ± 0.392± 0.000

S 0.779 0.002 ± 0.779 0.000± 0.779± 0.000 0.779± 0.000 0.779 0.000 ± 0.779± 0.000

O -0.161 0.001 ± -0.161 0.001± -0.161± 0.000 -0.161± 0.000 -0.161 0.000 ± -0.161± 0.000

nO -0.085 0.001 ± -0.085 0.000± -0.085± 0.000 -0.085± 0.000 -0.085 0.000 ± -0.085± 0.000

N -0.161 0.001 ± -0.161 0.001± -0.161± 0.000 -0.161± 0.000 -0.161 0.000 ± -0.161± 0.000

pN -0.593 0.002 ± -0.591 0.001± -0.592± 0.000 -0.592± 0.000 -0.592 0.000 ± -0.592± 0.000

a These terms defined in Table 1 
b, c The average (AVG) and standard deviation (STD) were calculated from five independent  
runs. 
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Table 6. Variations of parameters of GEMSCORE with different population sizes and 
the maximum number of generations of FCEA is set to 200 

Pop 100 Pop 200 Pop 300 Pop 400 Pop 500 Energy 

Term a AVG b± STD c AVG± STD AVG± STD AVG STD ± AVG± STD 

ELC 5.846 0.006 ± 5.849± 0.003 5.844± 0.003 5.845 0.006 ± 5.843± 0.003

VDW 1.000 0.000 ± 1.000± 0.000 1.000± 0.000 1.000 0.000 ± 1.000± 0.000

BHB 3.245 0.003 ± 3.249± 0.005 3.247± 0.003 3.246 0.003 ± 3.245± 0.003

C 0.406 0.000 ± 0.407± 0.000 0.406± 0.001 0.406 0.001 ± 0.406± 0.000

S 1.132 0.001 ± 1.134± 0.001 1.133± 0.001 1.132 0.002 ± 1.132± 0.001

O -0.297 0.000 ± -0.297± 0.000 -0.297± 0.000 -0.297 0.000 ± -0.297± 0.000

nO -0.338 0.001 ± -0.337± 0.000 -0.337± 0.001 -0.338 0.001 ± -0.338± 0.000

N -0.297 0.000 ± -0.297± 0.000 -0.297± 0.000 -0.297 0.000 ± -0.297± 0.000

pN -0.678 0.001 ± -0.678± 0.001 -0.678± 0.001 -0.678 0.000 ± -0.678± 0.000

a These terms defined in Table 1 
b, c The average (AVG) and standard deviation (STD) were calculated from five independent  
runs. 
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Table 7. Variations of weights of GEMSCORE with different maximum number of 
generations and the population size is set to 200 

Gen 100 Gen 200 Gen 300 Gen 400 Gen 500 Gen 1000 Energy 

Term a AVG b± STD c AVG STD ± AVG± STD AVG± STD AVG STD ± AVG± STD 

ELC 5.860 0.039 ± 5.846 0.003± 5.845± 0.000 5.845± 0.000 5.845 0.000 ± 5.845± 0.000

VDW 1.000 0.000 ± 1.000 0.000± 1.000± 0.000 1.000± 0.000 1.000 0.000 ± 1.000± 0.000

BHB 3.284 0.034 ± 3.244 0.006± 3.244± 0.000 3.244± 0.000 3.244 0.000 ± 3.244± 0.000

C 0.411 0.002 ± 0.406 0.000± 0.406± 0.000 0.406± 0.000 0.406 0.000 ± 0.406± 0.000

S 1.144 0.008 ± 1.132 0.002± 1.132± 0.000 1.132± 0.000 1.132 0.000 ± 1.132± 0.000

O -0.298 0.000 ± -0.297 0.000± -0.297± 0.000 -0.297± 0.000 -0.297 0.000 ± -0.297± 0.000

nO -0.336 0.008 ± -0.338 0.000± -0.338± 0.000 -0.338± 0.000 -0.338 0.000 ± -0.338± 0.000

N -0.298 0.000 ± -0.297 0.000± -0.297± 0.000 -0.297± 0.000 -0.297 0.000 ± -0.297± 0.000

pN -0.684 0.007 ± -0.678 0.001± -0.678± 0.000 -0.678± 0.000 -0.678 0.000 ± -0.678± 0.000

a These terms defined in Table 1 
b, c The average (AVG) and standard deviation (STD) were calculated from five independent  
runs. 
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Table 8. The final weights of MOLSIM and GEMSCORE for energy terms 

Energy Term a MOLSIM GEMSCORE 

ELC 1.000 5.845 

VDW 4.207 1.000 

BHB － 3.244 

C 0.403 0.406 

S 0.841 1.132 

O -0.144 -0.297 

nO -0.254 -0.338 

N -0.144 -0.297 

pN -0.586 -0.678 

a These terms defined in Table 1 
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Table 9. Content of the training decoy set 

MOLSIM GEMSCORE 
PDB ID Type  Structure Nres 

a Ndecoys 
b

Z 
c Z’ 

d Rank 
e Z Z’ Rank

1a32 a X-RAY 65 1610 -0.64 2.53 398 -2.04  0.53 20

1ail a X-RAY 67 1807 -0.47 1.92 572 -3.72  -0.69 1

1am3 a X-RAY 57 1898 -0.47 2.87 606 -1.33  1.69 157

1bq9 b X-RAY 53 1825 -3.07 -0.81 1 -4.89  -1.47 1

1cc5 a X-RAY 76 1892 -1.82 1.48 52 -1.49  1.63 124

1cei a X-RAY 85 1897 -1.63 0.48 11 -4.84  -1.86 1

1dol ab X-RAY 62 1871 -3.91 -1.11 1 -4.27  -1.19 1

1hyp a X-RAY 75 1893 -1.99 1.01 43 -2.12  1.10 31

1lfb a X-RAY 69 1893 -1.04 1.55 279 -1.40  1.91 167

1msi b X-RAY 60 1894 -3.79 -0.95 1 -3.61  -1.03 1

1mzm a X-RAY 71 1934 -0.99 1.94 311 -2.31  0.39 15

1ptq ab X-RAY 43 1885 -1.93 0.67 9 -1.89  1.22 55

1tif ab X-RAY 59 1849 -3.87 -0.63 1 -4.86  -1.69 1

1utg a X-RAY 62 1897 0.04 2.65 1009 -1.56  1.90 111

1vcc ab X-RAY 77 1857 -4.38 -1.51 1 -5.58  -2.48 1

1vif b X-RAY 48 1896 -2.28 0.37 4 -3.31  0.12 2

2fxb ab X-RAY 81 1800 -3.52 -0.68 1 -4.16  -0.85 1

1aa3 ab NMR 56 1865 -2.68 0.40 4 -1.02  1.85 289

1afi ab NMR 72 1824 -0.77 -0.02 1 -3.81  -0.84 1

1bw6 a NMR 56 1900 -2.01 1.70 38 -1.74  1.54 72

1kjs a NMR 74 1893 -0.70 2.31 480 -0.05  2.96 914

1nkl a NMR 70 1898 -1.04 1.92 290 -3.48  -0.67 1

1nre a NMR 66 1893 -1.88 1.52 38 -4.06  -0.68 1

1pou a NMR 70 1898 -1.51 1.29 84 -1.77  1.08 66

1res a NMR 35 1723 -0.47 2.57 563 0.63  3.47 1288

1sro b NMR 66 1881 -1.51 1.04 76 -1.20  1.86 225

1uxd a NMR 43 1896 -2.59 -0.01 1 -2.63  -0.33 1

2ezh a NMR 65 1893 -1.73 1.35 45 -1.31  1.37 156

2fow ab NMR 66 1834 -1.11 1.91 231 0.06  3.08 982

2ptl ab NMR 60 1835 -2.61 -0.19 1 -1.92  0.96 32

 Averages  64 1867 -1.88 0.92  -2.52  0.50  

a, b Nres, number of residues in the protein; Ndecoys, number of decoys in the decoy set 
c, d Z-score of native structure and Z’-score of native structure in the decoy set 
e Rank, the ranking of the native structure in the decoy set 
Bold faced values indicate the rank of the native structure is larger than 500 
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Table 10. Content of the EMBL misfolded decoy set 

MOLSIM GEMSCORE Sequence 

PDB ID 

Backbone 

PDB ID 
RMSD Nres 

a

Enative 
b Emisfold 

c Enative Emisfold

1bp2 2paz 15.79 123 -5031.52 -4642.28 -2286.71  -1439.91 

1cbh 1ppt 10.62 36 -1228.36 -868.79 -282.12  -61.01 

1fdx 5rxn 9.52 54 -1747.71 -1388.31 -262.63  50.99 

1hip 2b5c 14.62 85 -3166.54 -2509.60 -1154.69  -297.39 

1lh1 2ilb 17.81 153 -6081.44 -5609.86 -3235.29  -1849.85 

1p2p 1rn3 18.97 124 -4900.35 -4523.35 -1873.18  -1461.13 

1ppt 1cbh 10.87 36 -1134.21 -995.96 -631.69  -151.09 

1rei 5pad 18.65 107 -9081.74 -7721.60 -4476.66  -2504.34 

1rhd 2cyp 22.21 293 -12212.07 -10728.13 -5224.37  -4255.46 

1rn3 1p2p 18.77 124 -5388.80 -4710.54 -2490.50  -1891.59 

1sn3 2ci2 13.64 65 -2451.59 -2108.86 -910.46  -415.65 

1sn3 2cro 11.25 65 -2451.59 -1971.55 -910.46  -388.97 

2b5c 1hip 14.74 93 -3478.60 -3127.09 -1961.70  -1138.25 

2cdv 2ssi 14.60 107 -3745.05 -4026.40 -1048.87  -946.45 

2ci2 1sn3 13.43 83 -2282.23 -2111.40 -1073.66  -746.40 

2ci2 2cro 11.68 83 -2282.23 -2173.94 -1073.66  -907.07 

2cro 1sn3 11.89 71 -2473.87 -2258.42 -1232.25  -733.32 

2cro 2ci2 11.24 71 -2473.87 -2152.53 -1232.25  -687.41 

2cyp 1rhd 21.91 294 -13070.15 -11356.26 -7111.14  -4372.74 

2i1b 1lh1 17.87 153 -6628.59 -5327.57 -3426.45  -2160.80 

2paz 1bp2 15.59 123 -5038.94 -4135.44 -2344.92  -1189.98 

2ssi 2cdv 15.10 113 -3717.92 -2829.38 -834.46  -226.07 

2tmn 2ts1 23.06 317 -14650.89 -12035.76 -8156.72  -4917.97 

2ts1 2tmn 23.12 317 -13753.93 -12888.26 -7482.59  -6405.27 

5pad 1rei 19.09 214 -9125.48 -7472.12 -3744.01  -2659.26 

 Averages 15.84 132     

a Nres, number of residues in the protein 
b, c Enative, energy value of native structure in the decoy set; Emisfold, energy value of misfolded 
structure in the decoy set 
Bold faced values indicate the error results 
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Table 11. Content of the 4state_reduced decoy set 

MOLSIM GEMSCORE 
PDB ID Description Nres 

a RMSD 

Range 
Ndecoys 

b

Z 
c Z’ 

d Rank 
e Z Z’ Rank

1ctf C-terminal domain of 
ribosomal protein L7/L12 68 2.2–10.2 631 -3.43 -0.57  1 -5.41 -2.73 1

1r69 N-terminal domain of 
phage 434 repressor 63 2.3–9.5 676 -2.68 -0.21  1 -3.14 -0.37 1

1sn3 Scorpion toxin variant 65 2.5–10.5 661 -2.72 -0.09  1 -2.95 -0.21 1

2cro Phage 434 Cro protein 65 2.1–9.7 675 -3.41 -0.37  1 -3.42 -0.08 1

3icb Vitamin D-dependent 
calcium-binding protein 75 1.8–10.7 654 -2.11 0.31  3 -1.40 1.16 39

4pti Trypsin inhibitor 58 2.8–10.8 688 -4.10 -1.30  1 -4.24 -1.45 1

4rxn Rubredoxin 54 2.6–9.3 678 -3.83 -1.16  1 -4.56 -1.94 1

 Averages 64  666 -3.18 -0.48   -3.59 -0.80 

a, b Nres, number of residues in the protein; Ndecoys, number of decoys in the decoy set 
c, d Z-score of native structure and Z’-score of native structure in the decoy set 
e Rank, the ranking of the native structure in the decoy set 
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Table 12. Content of the local minima decoy set 

MOLSIM GEMSCORE 
PDB ID Description Nres 

a RMSD 

Range 
Ndecoys 

b

Z 
c Z’ 

d Rank 
e Z Z’ Rank

1b0n-B Sinr protein/Sini protein 
complex 31 2.45–6.03 498 -1.17 1.36  73 -0.83 1.98 110

1bba Bovine pancreatic 
polypeptide 36 2.78–8.91 501 5.23 8.03  501 2.91 5.60 498

1ctf C-terminal domain of 
ribosomal protein L7/L12 68 3.59–12.5 498 -3.98 -1.79  1 -6.25 -3.59 1

1dtk DendrotoxinK 57 4.32–12.6 216 -1.76 0.51  7 -1.41 1.38 17

1fc2 
Immunoglobulin Fc and 
Fragment B Of Protein A 
Complex 

43 3.99–8.45 501 1.91 5.67  487 2.16 5.31 494

1igd ProteinG 61 3.11–12.6 501 -4.10 -1.31  1 -5.89 -3.31 1

1shf-A Fyn proto-oncogene 
tyrosine kinase 59 4.39–12.3 438 -4.84 -2.13  1 -5.23 -2.16 1

2cro 434 cro protein 65 3.87–13.5 501 -6.32 -3.22  1 -5.49 -2.53 1

2ovo Ovomucoid third domain 56 4.38–13.4 348 -3.22 -0.29  1 -3.20 -0.48 1

4pti Trypsin inhibitor 58 4.94–13.2 344 -5.30 -2.50  1 -5.08 -2.33 1

 Averages 53  435 -2.36 0.43   -2.83 -0.01 

a, b Nres, number of residues in the protein; Ndecoys, number of decoys in the decoy set 
c, d Z-score of native structure and Z’-score of native structure in the decoy set 
e Rank, the ranking of the native structure in the decoy set 
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Table 13. Content of the lattice_ssfit decoy set 

MOLSIM GEMSCORE 
PDB ID Description Nres 

a RMSD 

Range 
Ndecoys 

b

Z 
c Z’ 

d Rank 
e Z Z’ Rank

1beo Beta-cryptogein 98 7.0–15.6 2001 -5.36 -2.68  1 -8.44 -5.46 1

1ctf C-terminal domain of 
ribosomal protein L7/L12 68 5.5–12.8 2001 -4.90 -1.35  1 -8.38 -4.75 1

1dkt-A Type 1 human cyclin- 
dependent kinase subunit 72 6.7–14.1 2001 -2.57 0.25  3 -3.31 -0.28 1

1fca Ferredoxin from 
clostridium Acidurici 55 5.1–11.4 2001 -5.43 -1.90  1 -5.61 -2.64 1

1nkl Nk-lysin from pig 78 5.3–13.6 2001 -4.49 -1.85  1 -8.35 -4.92 1

1pgb ProteinG (B1 lgG-binding 
domain) 56 5.8–12.9 2001 -5.84 -3.15  1 -8.94 -5.76 1

1trl-A Thermolysin fragment 62 5.4–12.5 2001 -2.12 0.30  13 -2.90 0.47 8

4icb Calbindin-binding Protein 65 4.7–12.9 2001 -2.82 -0.54  1 -3.35 0.25 5

 Averages 69  2001 -4.39 -1.48   -6.16 -2.89 

a, b Nres, number of residues in the protein; Ndecoys, number of decoys in the decoy set 
c, d Z-score of native structure and Z’-score of native structure in the decoy set 
e Rank, the ranking of the native structure in the decoy set 
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Table 14. Content of the fisa decoy set 

MOLSIM GEMSCORE PDB 

ID 
Description Nres 

a RMSD 

Range 
Ndecoys 

b

Z 
c Z’ 

d Rank 
e Z Z’ Rank

1fc2 
Immunoglobulin Fc and 
Fragment B Of Protein A 
Complex 

43 2.1–10.3 501 -0.37 1.72  184 0.15 2.47 299

1hdd-C Engrailed Homeodomain 57 2.8–12.9 501 -3.06 -0.10  1 -2.37 0.84 4

2cro Phage 434 Cro protein 65 4.3–12.6 501 -3.54 -1.16  1 -3.82 -1.45 1

4icb Calbindin-binding Protein 76 4.8–14.1 501 -4.87 -2.40  1 -4.12 -1.55 1

 Averages 60  501 -2.96 -0.49   -2.54 0.08 

a, b Nres, number of residues in the protein; Ndecoys, number of decoys in the decoy set 
c, d Z-score of native structure and Z’-score of native structure in the decoy set 
e Rank, the ranking of the native structure in the decoy set 
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Table 15. Content of the Rosetta all-atom decoy set 

MOLSIM GEMSCORE 
PDB ID Structure Nnres 

a Ndres 
b Ndecoys 

c

Z 
d Z’ 

e Rank 
f Z Z’ Rank

1aa2 X-RAY 109 105 999 -4.79 -2.65 1 -6.50  -3.78 1

1acf X-RAY 126 123 1999 -5.65 -2.93 1 -7.99  -4.99 1

1bdo X-RAY 81 75 999 -5.15 -2.36 1 -6.85  -3.87 1

1ctf X-RAY 69 67 999 -3.34 -0.64 1 -6.08  -3.14 1

1erv X-RAY 106 105 999 -5.34 -2.82 1 -7.12  -4.56 1

1gvp X-RAY 88 82 997 -1.18 1.42 102 -3.63  -0.25 1

1kte X-RAY 106 100 998 -3.59 -1.28 1 -6.05  -3.45 1

1mbd X-RAY 154 147 999 -4.91 -2.37 1 -8.62  -5.86 1

1pdo X-RAY 130 121 999 -4.74 -2.12 1 -7.60  -4.21 1

1r69 X-RAY 64 61 999 -2.49 0.31 3 -3.17  -0.52 1

1ris X-RAY 98 92 999 -3.60 -0.91 1 -6.34  -3.91 1

1tul X-RAY 103 97 999 -4.67 -2.38 1 -5.11  -2.69 1

1vls X-RAY 147 143 999 -2.87 0.06 2 -4.95  -2.04 1

1who X-RAY 95 88 999 -4.00 -1.87 1 -6.59  -4.07 1

2acy X-RAY 99 92 994 -5.02 -2.68 1 -7.71  -4.92 1

2erl X-RAY 41 35 999 -1.29 1.19 93 -2.49  0.22 4

2fdn X-RAY 56 55 999 -3.89 -0.96 1 -3.91  -1.10 1

2gdm X-RAY 154 149 999 -0.85 -0.32 1 -8.16  -5.55 1

4fgf X-RAY 125 121 999 -5.73 -3.43 1 -7.88  -4.89 1

5pti X-RAY 59 55 999 -3.79 -1.37 1 -4.33  -1.30 1

1ag2 NMR 104 97 998 -3.71 -1.68 1 -6.29  -3.67 1

1aj3 NMR 99 95 999 0.94 3.52 831 -1.34  1.65 74

1apf NMR 50 47 999 -2.23 0.41 6 -2.53  0.43 3

1ark NMR 61 55 998 -2.81 0.00 1 -1.55  1.43 51

1ayj NMR 51 46 999 -1.47 1.53 53 -0.94  1.88 166

1bor NMR 57 52 999 -2.51 0.05 3 -1.80  1.25 23

1btb NMR 90 89 999 -4.72 -2.34 1 -5.82  -3.00 1

1dec NMR 40 35 999 -2.57 0.23 3 -3.69  -0.73 1

1fbr NMR 94 93 999 -4.34 -1.50 1 -5.26  -2.27 1

1fwp NMR 70 66 999 -0.57 0.00 1 -1.21  1.33 101

1gb1 NMR 57 54 999 -1.94 0.81 15 -2.60  0.46 3

1gpt NMR 48 47 999 -1.71 0.74 28 -2.17  0.91 12

1ksr NMR 101 92 999 -3.53 -0.77 1 -2.00  0.89 15

1svq NMR 95 90 999 -2.14 0.08 3 -1.40  1.24 69

1tit NMR 90 85 999 -3.99 -1.02 1 -2.82  -0.06 1
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Table 15. Content of the Rosetta all-atom decoy set (cont.) 

MOLSIM GEMSCORE 
PDB ID Structure Nnres 

a Ndres 
b Ndecoys 

c

Z 
d Z’ 

e Rank 
f Z Z’ Rank

1vtx NMR 43 36 999 -0.11 2.43 476 0.51  3.18 718

1wiu NMR 94 90 999 -4.19 -0.73 1 -5.18  -1.31 1

2cdx NMR 61 54 997 -1.58 1.13 34 -1.80  0.98 26

2ezk NMR 94 93 998 -1.71 0.90 22 -2.12  0.63 7

2ktx NMR 39 34 999 -0.92 1.85 192 -2.15  0.19 4

2ncm NMR 100 96 998 -5.02 -2.28 1 -6.88  -3.55 1

2pac NMR 83 77 999 -0.90 1.88 176 -0.90  1.88 195

Averages  86 81 1022 -3.06 -0.54  -4.31  -1.46 

a, b Nnres, number of residues in the native structure; Ndres, number of residues in the decoy 
structures 
c Ndecoys, number of decoys in the decoy set 
d, e Z-score of native structure and Z’-score of native structure in the decoy set 
f Rank, the ranking of the native structure in the decoy set 
Bold faced values indicate the rank of the native structure is larger than 500 
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Table 16. Summary of the our results and comparison with previous works on six testing 
data sets 

Zhang et al. [32] Decoy  

Set 
MOLSIM GEMSCORE Zhou 

 et al. [27]
Zhu 

et al. [28]
Fujitsuka
et al. [29]

Lee 
et al. [30]

Hsieh 
et al. [31] DFIRE-

SCM 
DFIRE-
allatom

misfold 24/25 a 

(N/A b) 
25/25 

(N/A) 
25/25 

(N/A)   24/25 

(N/A) 
18/19 

(N/A)   

4state 6/7 
(-3.18) 

6/7 
(-3.59) 

6/7 
(3.49) 

N/A 
(-3.96) 

5/7 
(-2.36) 

N/A 
(-4.95) 

6/7 
(-3.43) 

6/7 
(3.94) 

6/7 
(3.49) 

lmds 6/10 
(-2.36) 

6/10 
(-2.83) 

7/10 
(0.67) 

N/A 
(-1.75) 

4/6 
(-3.85) 

N/A 
(-4.49)  3/10 

(2.56) 
7/10 

(0.90) 

lattice 6/8 
(-4.19) 

6/8 
(-6.16) 

8/8 
(8.94) 

N/A 
(-4.08)  N/A 

(-6.75)  8/8 
(6.19) 

8/8 
(9.47) 

fisa 3/4 
(-2.96) 

2/4 
(-2.54) 

3/4 
(4.49) 

N/A 
(-3.09)  N/A 

(-2.09)  3/4 
(4.70) 

3/4 
(4.80) 

RosettaAll 25/42 
(-3.06) 

26/42 
(-4.31)        

a The first number is the number of native structures ranked number one; the second number is 
total number of proteins in the decoy set.  
b The numbers in parentheses are the average Z-scores. There is no average Z-score in EMBL 
misfolded decoy set because of only one decoy structure in the set 
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Table 17. Comparison of our methods with previous works on 4state_reduced decoy set 

PDB ID MOLSIM GEMSCORE Zhou 
 et al. [27] 

Zhu 
et al. [28] 

Fujitsuka 
et al. [29] 

Lee 
et al. [30] 

Hsieh 
et al. [31] 

1ctf 1/-3.43a 1/-5.41 1/3.86 -/-3.33 1/-2.50 -/-4.26 1/-2.76

1r69 1/-2.68 1/-3.14 1/4.23 -/-3.63 1/-2.50 -/-5.35 1/-3.01

1sn3 1/-2.68 1/-2.95 1/3.79 -/-5.70 1/-3.20 -/-6.33 1/-4.88

2cro 1/-3.41 1/-3.42 1/3.29 -/-3.55 1/-2.30 -/-5.11 1/-2.58

3icb 3/-2.11 39/-1.40 4/2.28 -/-1.97 3/-1.60 -/-2.86 21/-2.06

4pti 1/-4.03 1/-4.24 1/3.62 -/-5.09 1/-2.70 -/-5.35 1/-4.77

4rxn 1/-3.83 1/-4.56 1/3.33 -/-4.43 12/-1.70 -/-5.36 1/-3.95

a The first number is the rank of native structure; the second number is Z-score of native 
structure in the decoy set. The absolute value of Z-score is the larger the better 
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Table 18. Comparison of our methods with previous works on 4state_reduced decoy set 
with refined 3icb 

PDB ID MOLSIM GEMSCORE Zhou 
 et al. [27] 

Zhu 
et al. [28] 

Fujitsuka 
et al. [29] 

Lee 
et al. [30] 

Hsieh 
et al. [31] 

1ctf 1/-3.43a 1/-5.41 1/3.86 -/-3.33 1/-2.50 -/-4.26 1/-2.76

1r69 1/-2.68 1/-3.14 1/4.23 -/-3.63 1/-2.50 -/-5.35 1/-3.01

1sn3 1/-2.68 1/-2.95 1/3.79 -/-5.70 1/-3.20 -/-6.33 1/-4.88

2cro 1/-3.41 1/-3.42 1/3.29 -/-3.55 1/-2.30 -/-5.11 1/-2.58

3icb 3/-2.11 1/-3.78 4/2.28 -/-1.97 3/-1.60 -/-2.86 21/-2.06

4pti 1/-4.03 1/-4.24 1/3.62 -/-5.09 1/-2.70 -/-5.35 1/-4.77

4rxn 1/-3.83 1/-4.56 1/3.33 -/-4.43 12/-1.70 -/-5.36 1/-3.95

a The first number is the rank of native structure; the second number is Z-score of native 
structure in the decoy set. The absolute value of Z-score is the larger the better 
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Table 19. Comparison of our methods with previous works on local minima decoy set 

PDB ID MOLSIM GEMSCORE Zhou 
 et al. [27] 

Zhu 
et al. [28] 

Fujitsuka 
et al. [29] 

Lee 
et al. [30] 

Hsieh 
et al. [31] 

1b0n-B 73/-1.17a 110/-0.82 430/-1.17 -/-2.55 N/A -/-0.61 N/A 

1bba 501/ 5.22 498/ 2.91 501/-16.3 N/A N/A -/ 4.99 N/A 

1ctf 1/-3.98 1/-6.25 1/ 3.54 -/-4.38 1/-4.70 -/-5.12 N/A 

1dtk 7/-1.76 17/-1.41 1/ 2.62 -/-3.51 2/-2.30 -/-6.10 N/A 

1fc2 487/ 1.91 494/ 2.16 501/-5.72 -/-0.22 N/A -/-3.38 N/A 

1igd 1/-4.10 1/-5.89 1/ 5.16 -/-5.80 1/-6.20 -/-6.16 N/A 

1shf-A 1/-4.83 1/-5.22 1/ 6.68 -/-7.53 N/A -/-8.26 N/A 

2cro 1/-6.32 1/-5.49 1/ 4.70 -/-5.97 1/-4.00 -/-8.03 N/A 

2ovo 1/-3.22 1/-3.20 1/ 3.21 -/-4.51 1/-4.10 -/-6.00 N/A 

4pti 1/-5.30 1/-5.08 1/ 3.96 -/-7.04 17/-1.80 -/-6.24 N/A 

a The first number is the rank of native structure; the second number is Z-score of native 
structure in the decoy set. The absolute value of Z-score is the larger the better 
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Table 20. Comparison of our methods with previous works on lattice_ssfit decoy set 

PDB ID MOLSIM GEMSCORE Zhou 
 et al. [27] 

Zhu 
et al. [28] 

Fujitsuka 
et al. [29] 

Lee 
et al. [30] 

Hsieh 
et al. [31] 

1beo 1/-5.36a 1/-8.44 1/12.09 -/-4.86 N/A -/-7.95 N/A 

1ctf 1/-4.90 1/-8.38 1/10.05 -/-3.22 N/A -/-6.98 N/A 

1dkt-A 3/-2.55 1/-3.31 1/ 6.87 -/-5.89 N/A -/-6.40 N/A 

1fca 1/-5.43 1/-5.61 1/ 7.18 -/-5.89 N/A -/-8.30 N/A 

1nkl 1/-4.49 1/-8.35 1/ 9.29 -/-3.97 N/A -/-2.60 N/A 

1pgb 1/-5.84 1/-8.94 1/11.87 -/-2.66 N/A -/-9.55 N/A 

1trl-A 13/-2.12 8/-2.91 1/12.09 -/-4.27 N/A -/-5.49 N/A 

4icb 1/-2.82 5/-3.35 1/10.05 -/-1.85 N/A N/A N/A 

a The first number is the rank of native structure; the second number is Z-score of native 
structure in the decoy set. The absolute value of Z-score is the larger the better 
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Table 21. Comparison of our methods with previous works on fisa decoy set 

PDB ID MOLSIM GEMSCORE Zhou 
 et al. [27] 

Zhu 
et al. [28] 

Fujitsuka 
et al. [29] 

Lee 
et al. [30] 

Hsieh 
et al. [31] 

1fc2 184/-0.37a 299/ 0.15 254/0.23 -/-1.94 N/A -/ 0.23 N/A 

1hdd-C 1/-3.06 4/-2.37 1/4.50 -/-2.86 N/A -/-3.62 N/A 

2cro 1/-3.54 1/-3.82 1/6.33 -/-4.54 N/A -/-5.31 N/A 

4icb 1/-4.87 1/-4.12 1/6.91 -/-3.00 N/A -/-2.26 N/A 

a The first number is the rank of native structure; the second number is Z-score of native 
structure in the decoy set. The absolute value of Z-score is the larger the better 
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Table 22. Comparison of GEMSCORE with different hydrogen-bond potentials, EHB 
and EbHB, on six testing sets 

GEMSCORE 
Decoy Set 

EHB
 a EbHB

 b

misfold 25/25 c (N/A d) 25/25 (N/A) 

4state 3/7 (-3.12) 6/7 (-3.59) 

lmds 6/10 (-3.22) 6/10 (-2.83) 

lattice 6/8 (-4.87) 6/8 (-6.16) 

fisa 2/4 (-2.97) 2/4 (-2.54) 

RosettaAll 29/42 (-4.92) 26/42 (-4.31) 

a, b EHB, potential of all hydrogen-bonding interactions; EbHB (in Equation 7), potential of 
hydrogen-bonding interactions in backbone 
c The first number is the number of native structures ranked number one; the second number is 
total number of proteins in the decoy set.  
d The numbers in parentheses are the average Z-scores. There is no average Z-score in EMBL 
misfolded decoy set because of only one decoy structure in the set 
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Table 23. Comparison of different hydrogen-bonding potentials, EHB, EbHB, and EnbHB on 
4state_reduced decoy set 

EHB
 a EbHB

 b EnbHB
 c

PDBID 
Z 

d Z’ 
e Rank 

f Z Z’ Rank Z Z’ Rank 

1ctf -1.09 1.66  105 -3.15 -0.76 1 1.37  4.43  575

1r69 0.98 3.88  568 -0.89 1.89 135 2.23  5.07  663

1sn3 -0.49 2.65  200 -2.57 0.96 7 1.26  4.52  592

2cro -1.80 1.01  26 -1.95 1.35 22 -0.67  2.54  168

3icb 0.14 2.65  356 0.03 2.59 362 0.17  2.91  365

4pti 0.91 4.32  567 -1.85 1.32 26 2.41  5.35  684

4rxn -0.25 3.95  276 -2.87 0.42 5 1.37  5.36  615

Average -0.23 2.87  -1.89 1.11 1.16  4.31  

a, b, c EHB, potential of all hydrogen-bonding interactions; EbHB, potential of hydrogen-bonding 
interactions on backbone; EnbHB, the potential of hydrogen-bonding interactions which do not 
locate on backbone (i.e., EHB = EbHB + EnbHB) 
d, e Z-score of native structure and Z’-score of native structure in the decoy set 
f Rank, the ranking of the native structure in the decoy set 
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Table 24. Solvation effects on MOLSIM and GEMSCORE 

MOLSIM GEMSCORE Decoy  

Set 
Original a Optimized b Optimized + Esas

 c Original Optimized Optimized + Esas

misfold 20/25d (N/Ae) 23/25(N/A) 24/25 (N/A) 18/25 (N/A) 18/25 (N/A) 25/25 (N/A) 

4state 2/7 (-1.53) 0/7 (-0.79) 6/7 (-3.18) 1/7 (-1.98) 3/7 (-2.14) 6/7 (-3.59) 

lmds 2/10 (-0.73) 8/10 (-3.22) 6/10 (-2.36) 8/10 (-4.28) 8/10 (-4.34) 6/10 (-2.83) 

lattice 6/8 (-2.45) 6/8 (-1.22) 6/8 (-4.19) 6/8 (-3.76) 6/8 (-4.07) 6/8 (-6.16) 

fisa 3/4 (-1.53) 3/4 (-0.80) 3/4 (-2.96) 2/4 (-3.12) 2/4 (-3.29) 2/4 (-2.54) 

a, b, c Original, the original energy function without optimization; Optimized, the optimized 
energy function without solvation energy; Optimized + Esas

 , the optimized energy function with 
solvation energy 
d The first number is the number of native structures ranked number one; the second number 
is total number of proteins in the decoy set.  
e The numbers in parentheses are the average Z-scores. There is no average Z-score in EMBL 
misfolded decoy set because of only one decoy structure in the set 
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Figure 1. The flowchart of training step and testing step, including decoy sets 
preparation, energy calculation, and optimization. 
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Figure 2. The linear energy function of the pairwise atoms for the van der Waals 
interactions and hydrogen bonds, and electrostatic potential in GEMSCORE. 
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Figure 3. The definition of a hydrogen bond used in GEMSCORE. A hydrogen 
bond is assigned if the angle of N-H-O ( NHOθ ) is more than 120∘and the distance 
between hydrogen atom and oxygen atom (rOH) is less than 2.5 Å.  
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Figure 4. Performances of (a) MOLSIM and (b) GEMSCORE on different 
structure determination by X-ray and NMR on training set, including 17 X-Ray 
structures and 13 NMR structures. Rank1 and Rank5 mean that the native 
structures rank within top 1 and top 5 among its corresponding decoy set after the 
training process, respectively. The ranks of the native structures are in the top 10 
percent (Rank10%) and the rest 90 percent (Other) among its corresponding decoy 
set after the training process, respectively. 
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Figure 5. The scatter plots of correlations between the energies and the all-atom 
RMSD of decoys from their corresponding native structures in 4state_reduced 
decoy set using (a) MOLSIM energy function and (b) GEMSCORE energy function. 
The value of RMSD is zero means the native structure of the protein target. 
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Figure 6. The location of calcium ions in the three-dimension structure of protein 
3icb in 4state_reduced decoy set. These two Ca2+ (blue) stay at the loop between 
helixes. One reason for undistinguished native structure may be lack of Ca2+ at loop 
to stable the native structure. 
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Figure 7. The scatter plots of correlations between the energies and the all-atom 
RMSD of decoys from their corresponding native structures in lmds decoy set using 
(a) MOLSIM energy function and (b) GEMSCORE energy function. The value of 
RMSD is zero means the native structure of the protein target. 
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Figure 8. The native structures of misidentified targets, (a) 1b0n-B and (b) 1fc2-C, 
in local minima decoy set (lmds). They are both protein complexes and the 
misidentified target is one chain of whole protein. It causes the errors during energy 
calculation with only single chain. This may be the reason that our energy functions 
misidentify these protein targets. 
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Figure 9. The scatter plots of correlations between the energies and the all-atom 
RMSD of decoys from their corresponding native structures in lattice_ssfit decoy 
set using (a) MOLSIM energy function and (b) GEMSCORE energy function. The 
value of RMSD is zero means the native structure of the protein target. 
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Figure 10. The scatter plots of correlations between the energies and the all-atom 
RMSD of decoys from their corresponding native structures on fisa decoy set using 
(a) MOLSIM energy function and (b) GEMSCORE energy function. The value of 
RMSD is zero means the native structure of the protein target. 
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Figure 11. Performances of (a) MOLSIM and (b) GEMSCORE on different 
structure determination by X-ray and NMR on five testing sets, including 45 X-Ray 
structures and 26 NMR structures. Top1 and Top5 mean that the native structure 
ranks within top 1 and top 5 among its corresponding decoy set, respectively. The 
ranks of the native structures are in the top 10 percent (Top10%) and the rest 90 
percent (Other) among its corresponding decoy set, respectively. 
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Figure 12. Comparison of different hydrogen-bonding potentials, EHB, EbHB, and 
EnbHB on the training set. EHB means the potential of all hydrogen-bonding 
interactions. EbHB, and EnbHB mean the potentials of all hydrogen-bonding 
interactions on backbone and hydrogen-bonding interactions which do not locate 
on backbone, respectively (i.e., EHB=EbHB + EnbHB). Rank1, Rank5, Rank100, 
Rank500, Rank1000 and Other mean the percentages of native structures ranked 
within 1, 5, 100, 500, 1000 and larger 1000 in the training set with different 
hydrogen-bonding potentials, EHB, EbHB, and EnbHB. 
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