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以高斯演化方式預測蛋白質-蛋白質嵌合位置 

學生: 劉康平                         指導教授: 楊進木 

 

 

國立交通大學生物資訊研究所碩士班 

 

摘要 

研究蛋白質-蛋白質之間的交互作用在分子生物的領域中扮演非常重要的

任務，一個可行的策略是先辨認及研究蛋白質-蛋白質交互作用的區域，再根據

交互作用區域的特性進行分析，並且了解蛋白質的功能。在這篇論文研究中，我

們發展了一個適用於預測蛋白質-蛋白質交互作用區域的函式，結合了原子的疏

水性以及蛋白質的二級結構的特性，利用高斯演算法進行最佳化後，在測試評量

中有不錯的表現。我們使用了104個蛋白質結構進行最佳化函式的訓練，在訓練

的資料中我們成功的預測超過半數以上的蛋白質 -蛋白質交互作用區域

(65.4%)。此外，我們將訓練之後的最佳化函式測試在50個沒有出現在訓練資料

內的蛋白質結構中，我們的函式可以成功的預測其中的46%蛋白質-蛋白質交互

作用區域，我們相信在函式中使用的參數對於分析蛋白質-蛋白質之間的交互作

用是有幫助的，並且可以應用到不同的方法上來預測蛋白質-蛋白質交互作用區

域。此外，我們修改著名的蛋白質-配體嵌合工具”GEMDOCK”成為蛋白質-蛋白

質嵌合工具，並且使用內建的蛋白質-配體計分程式來計算蛋白質-蛋白質嵌合的

結果。我們測試了50個蛋白質結構，並且發現修改後的”GEMDOCK”在搜尋蛋白

質-蛋白質嵌合之空間結構仍然保有相當的水準，可是在計算最佳嵌合結構時，

原始的蛋白質-配體計分程式對於辨認蛋白質-蛋白質交互作用的情況仍然不

足。未來，我們將會整合蛋白質-蛋白質交互作用區塊之預測到”GEMDOCK”中，

並且改進蛋白質-配體計分程式成為蛋白質-蛋白質計分程式，以及發展可以改變

蛋白質構形的策略，用以解決”unbound”蛋白質-蛋白質嵌合問題。
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Abstract 

Protein-protein interactions play a pivotal role in modern molecular biology. 

Therefore, identifying the interface between two interacting proteins is a matter of 

great scientific and practical interest. In this study, we proposed a Gaussian 

Evolutionary Method (GEM) to optimal atomic and 2nd structure parameters for 

predicting protein-protein interaction sites. The training set of GEM consist 104 

unbound proteins from PDB, and we are able to predict the location of the interface 

on 65.4%. In addition, we apply trained GEM to testing set of 50 unbound proteins. 

Our method can predict 98% proteins among whole testing set and have 46% 

successfully prediction and 42.3% average specificity. A prediction is assumed 

successful if over half of the predicted continuous interface patch is indeed interface 

(specificity). The parameters of GEM may be useful for analysis of protein-protein 

interfaces, and can apply to different methods for interfaces prediction. Furthermore, 

we have modified famous protein-ligand docking tool “GEMDOCK” for 

protein-protein docking using original scoring functions. We tested 50 bound 

protein-protein docking and found that search strategies of GEMDOCK works well in 

rigid-body protein-protein docking, however, the scoring functions of protein-ligand 

docking seems poor to identify correct protein-protein binding conformations. In the 

future, we will combine protein-protein interaction sites prediction into GEMDOCK 
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and improve scoring function of GEMDOCK for protein-protein docking and develop 

soft-body protein-protein docking strategies for solving unbound-unbound protein 

docking problems. 
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1 Introduction 

1.1 Protein-protein interacting interface prediction 

Protein-protein interactions play a pivotal role in modern molecular biology. 

Study of the energetics and mechanism of protein-protein association is a matter of 

great scientific and practical interest. In the recent years, large-scale experiments on whole 

genomes [1-5] have identified many interacting protein pairs. However, the residues involved 

in these interactions are generally not known and the vast majority of the interactions remain 

to be characterized structurally. The prediction of the specific amino acid residues that play 

essential roles in protein-protein interactions is an important step towards deciphering the 

functional mechanism of proteins. Identifying the interface between two interacting 

proteins is an essential intermediate step for a wide range of applications such as the design 

of mutants for experimental verification of the interactions, the development of drugs that 

target protein-protein interactions, understanding the mechanism of the molecular recognition 

and as an aid to predicting complexes through docking and homology modeling.  

It is widely accepted that protein structural knowledge on a residue and atom 

level share common properties that can be used to distinguish a protein-protein 

interacting interface from the rest of a protein [6-9]. The hydrophobic interaction is 

one of the major contributors to the affinity of the association [10, 11]. 

Fernandez-Recio et al. [12, 13] successfully extract the desolvation properties of 

protein surface to construct atomic solvation parameters for predicting protein-protein 

interaction sites. However, no single attribute absolutely identifies interface from the 

rest of a protein [8] , and parameters from different analysis cause different prediction 

results. Therefore, combination of more physical–chemical properties [7, 14-17] and 

using computational methods to assist the finding of best parameters are needed for 

predicting protein-protein interaction sites. 
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The aim of this work is to combine secondary structure information with atomic 

solvation parameters and optimize these parameters using GEM [18-23] method for 

developing an interface prediction program. The GEM was used to optimize the 18 

parameters, which composed of 10 of the atom properties derived form 

Fernandez-Recio et al. [12, 13] and 8 of the secondary structure properties from 

DSSP [24]. Based on these visualized optimizing parameters, we are able to predict 

and analyze interface residues of proteins not included in the training set, without any 

prior knowledge of the binding partner. 
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1.2 Related Works 

Many groups have attempted to discern the distinguishing features of 

protein-protein interaction interfaces and these features can be divided into two 

groups, those that require knowledge of the structures of the interacting proteins (for 

example surface area, B-factors) and those that require no structure input (for example 

multiple sequence alignment information, amino acid hydrophobicity). Because 

sequence and structural features have been much studied in predicting protein-protein 

interaction surfaces, no single feature has been inextricably linked to protein-protein 

interfaces. 

The sequence-based features in predicting protein-protein interaction surfaces 

have several methods, such as a) residue composition and propensity, b) 

hydrophobicity, c) features derived from MSAs. For example, Jones and Thornton [7]  

first used residue interface propensities as a feature, the ratios of amino acids 

contributing to the interface compared to amino acid composition of the whole protein 

surface. They showed that the mean frequency of tryptophan was higher than that of 

alanine. Dong Q et al. [25] used Z-scores rather than residue frequencies and interface 

propensities have been calculated at the profile level 

The hydrophobic effect is often a major contributor to binding affinity and has 

been noted that many interfaces have a hydrophobic core surrounded by a ring of 

polar residues [26, 27]. Gallet X et al. [28] showed that the interface residues can be 

predicted to some extent by using the hydrophobic moment and averaged 

hydrophobicity. However, other studies have shown that hydrophobic features do not 

appear to be useful for general interface prediction [29] and the magnitude of the 

hydrophobic effect is insufficient to identify interfaces [7, 30, 31]. 

Residue conservation at the interface is observed to be slightly higher than those 

of general surface residues. Various methods have been used PSI-BLAST to capture 
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characteristics indicative of interaction sites and calculate conservation from 

multiple-sequence alignments [32, 33]. However, residue conservation is not 

significantly different from those in the protein interior [34-36], since many conserved 

residues are buried and contribute to protein folding and stability. The conservation is 

really only discriminatory when surface residues are compared and Guharoy and 

Chakrabarti [37] found that the interface core tends to be more conserved than the 

periphery in protein complexes.  

The structure-based features in predicting protein-protein interaction surfaces 

have several methods, such as a) solvent accessible surface area, b) B Factors, c) 

electrostatic potential, d) sensitive sub-family specific methods. Many studies used 

the solvent accessibilities of individual residues or those averaged over a surface 

patch to predict protein-protein interaction sites. For example, Jones et al. [7, 8] found 

that surface patches of complex residues in the unbound interface have a higher 

solvent accessible surface area than other surface patches. Porollo and Meller [38] 

predicted RSA and the observed RSA in detached monomers (dSA) and found that 

predicted RSA tended to be more consistent with the level of surface exposure in 

protein complexes than the unbound structures of individual protein chains. 

The feature of B Factors has been used to improve predictor performance, since 

interface surfaces are less flexible than the rest of the protein surface [39]. For 

example, Chung et al. [40] weighted conservation scores by a normalized B-factor, in 

this way, the conservation scores of the residues in the flexible regions are reduced 

and the conservation scores of the residues in the rigid regions are increased. 

The simple electrostatics could drive the formation of many complexes, and has 

been the presence of a significant population of charged and polar residues on 

protein-protein interfaces [31, 41-44]. Chung et al. [40] and Bradford et al. [45] have 

successfully used electrostatic potentials to improve predicting performance. 
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The sensitive sub-family specific methods have been developed to uncover 

functionally important residues in proteins with known structure using information 

from the differential conservation at the sub-family level [46-48]. Ofran et al. [49] 

and Pazos et al. [50] have used Evolutionary Trace to locate protein–protein binding 

sites successfully. Wang et al. [51] also showed that combination of sequence profiles 

methods and evolutionary trace methods seemed to improve predicting performance. 
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1.3 Evolutionary Algorithms 

An evolutionary algorithm is based on ideas genetics and natural selection to 

solve problems, especially difficult optimization problems. The first step is coded to a 

chromosome, which is represented as solution and initialed randomly. The second 

step is that find out batter solution in searching space by mutations and crossovers. 

The final step is to find a reliable solution by repeating mutation, crossover, and 

selection again and again. Selection is most important function which is decided to 

pick up the batter solution in an evolutionary algorithm.  

In general the coding function of genetic algorithms has two main developed but 

strongly related implementations. First coding function is binary-represented which 

may introduce an additional multimodality, making the combined objective function 

more complex than the original function. To achieve better performance, second 

coding function is real-coded genetic algorithms. However, they generally employ 

random-based mutations and hence, still require lengthy local searches near local 

minimums. In contrast, evolution strategies and evolutionary programming [52], 

mainly use real-valued representation and focus on self-adaptive Gaussian mutations. 

This type of mutation has succeeded in continuous optimization and has been widely 

regarded as a good operator for local searches. Unfortunately, experiments show that 

self-adaptive Gaussian mutation leaves individuals trapped near local minimums for 

rugged functions. 

GEM is proposed to improve the above approaches and has a good performance 

for many problems. GEM is a multi-operator approach that combines three mutation 

operators: decreasing-based Gaussian mutation, self-adaptive Gaussian mutation, and 

self-adaptive Cauchy mutation. It incorporates family competition and adaptive rules 

for controlling step sizes to construct the relationship among these three operators. To 

balance the search power of exploration and exploitation, each of operators is 
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designed to compensate for the disadvantages of the other. The details of GEM were 

described as previous works [21, 23], and had been successfully applied for some 

specific problems, such as protein-ligand docking, drug screening, and protein 

side-chain prediction [18-20, 22, 23]. In this study, we use the GEM to find out the 

most suitable weight of each parameter for protein-protein interacting interface 

prediction. 
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2 Materials and Methods  

2.1 Flowchart of our method 

Prepare training data set and 
optimize the parameters

Prepare test set and
predict interfaces

Training set 

Generate surface and interface 
residues of each protein

Calculate surface residue scores with
atomic and structure parameters

Optimize overall parameters using
global continuous search for best

solution of predicting results

Output optimized parameters

Testing set

Generate surface 
residues of protein

Calculate surface residue 
score using optimized 

parameters 

Predict interface residue 
according to surface 
residue score with 
score < threshold 

 

Figure 1. Flowchart of the GEM training and prediction strategies 

Figure 1 shows the scheme of our method for predicting protein-protein 

interaction binding site. First, we prepared a training data set which consisted of 52 

complexes (104 chains) from a widely used benchmark [53]. For each chain in this 

data set, the protein surface and interacting interface are generated. Based on these 

data, we calculated all surface residues scores and trained the GEM parameters to 

distinguish interacting residues from non-interacting residues by ranking scores of 

surface residues. The surface residue with the score lower than a given threshold was 

predicted as an interface residue. To each predicted area, we apply specificity and 

sensitivity [45] to measure performance of our method. Specificity was defined as 

number of interface residues in predicted area/number of predicted area residues. 

Sensitivity was defined as number of interface residues in predicted area/number of 

interface residues. A prediction was deemed a success if predicted area with over 50% 
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specificity [16]. The results were than used to calculate accuracy of success, and 

GEM tuned atomic and structure parameters of scoring function using global 

continuous search to find best solution of average specificity and success rate from 

104 training proteins. Second, in order to prediction, for each protein, we generated 

surface residues and these residues could then be calculated their scores using the 

optimized parameters from above. Residues predicted to be part of the interface were 

according to the scores lower than a given threshold. 
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2.2 Training data set 

Here we used 104 unbound protein chains according to 52 protein complexes 

selected from the protein-protein docking benchmark [53] which was a non-redundant 

benchmark for testing protein-protein docking algorithms. We discarded 7 complexes, 

which have large structure conformation change between unbound and bound 

structures, from the original benchmark. Our data set consisted of 22 (44 chains) 

enzyme-inhibitor complexes, 19 (38 chains) antibody-antigen complexes, and 11 

complexes (22 chains) others. Table 1 list the training set using in this study. 

 

Table 1. List of training data set 
Complexes Receptor Receptor description Ligand Ligand description 

Enzyme-inhibitor (22) 

1ACB(E:I) 5CHA(A) α-Chymotrypsin 1CSE(I) Eglin C 

1AVW(A:B) 2PTN Trypsin 1BA7(A) Soybean trypsin inhibitor 

1BRC(E:I) 1BRA Trypsin 1AAP(A) APPI 

1BRS(A:D) 1A2P(B) Barnase 1A19(A) Barstar 

1CGI(E:I) 1CHG α-Chymotrypsinogen 1HPT Pancreatic secretory trypsin inhibitor

1CHO(E:I) 5CHA(A) α-Chymotrypsin 2OVO Ovomucoid 3rd domain 

1CSE(E:I) 1SCD Subtilisin Carlsberg 1ACB(I) Eglin C 

1DFJ(I:E) 2BNH Ribonuclease inhibitor 7RSA Ribonuclease A 

IFSS(A:B) 2ACE(E) Snake venom acetylcholinesterase 1FSC Fasciculin II 

1MAH(A:F) 1MAA(B) Mouse acetylcholinesterase 1FSC Fasciculin II 

1TGS(Z:I) 2PTN Trypsinogen 1HPT Pancreatic secretory trypsin inhibitor

1UGH(E:I) 1AKZ Human Uracil-DNA glycosylase 1UGI(A) Inhibitor 

2KAI(AB:I) 2PKA(XY) Kallikrein A 6PTI Trypsin inhibitor 

2PTC(E:I) 2PTN β-Trypsin 6PTI Pancreatic trypsin inhibitor 

2SIC(E:I) 1SUP Subtilisin BPN 3SSI Subtilisin inhibitor 

2SNI(E:I) 1SUP Subtilisin Novo 2C12(I) Chymotrypsin inhibitor 2 

1PPE(E:I) 2PTN Trypsin 1PPE(I) CMT-I 

1STF(E:I) 1PPN Papain 1STF(I) Stefin B 

1TAB(E:I) 2PTN Trypsin 1TAB(I) BBI 

1UDI(E:I) 1UDH Virus Uracil-DNA glycosylase 1UDI(I) Inhibitor 

2TEC(E:I) 1THM Thermitase 2TEC(I) Eglin C 

4HTC(LH:I) 2HNT(LCEF) A-Thrombin 4HTC(I) Hirudin 
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Antibody-antigen (19) 

1AHW(DE:F) 1FGN(LH) Antibody Fab 5G9 1BOY Tissue factor 

1BVK(DE:F) 1BVL(LH) Antibody Hulysll Fv 3LZT Lysozyme 

1DQJ(AB:C) 1DQQ(LH) Hyhel–63 Fab 3LZT Lysozyme 

1MLC(AB:E) 1MLB(AB) IgG1 D44.1 Fab fragment 1LZA Lysozyme 

1WEJ(LH:F) 1QBL(LH) IgG1 E8 Fab fragment 1HRC Cytochrome C 

1BQL(LH:Y) 1BQL(LH) Hyhel-5 Fab 1DKJ Lysozyme 

1EO8(LH:A) 1EO8(LH) Bh151 Fab 2VIU(A) Influenza virus hemagglutinin 

1FBI(LH:X) 1FBI(LH) IgG1 Fab fragment 1HHL Lysozyme 

1IAI(MI:LH) 1AIF(LH) IgG1 Idiotypic Fab 1IAI(LH) Igg2A anti-idiotypic Fab 

1JHL(LH:A) 1JHL(LH) IgG1 Fv fragment 1GHL(A) Lysozyme 

1KXQ(D:E) 1PIF(A) α-Amylase 1KXQ(E) Camelid AMD9 Vhh domain 

1KXT(A:B) 1PIF(A) α-Amylase 1KXT(B) Camelid AMB7 Vhh domain 

1KXV(A:C) 1PIF(A) α-Amylase 1KXV(C) Camelid AMD10 Vhh domain 

1MEL(B:M) 1MEL(B) Vh single-domain antibody 1LZA Lysozyme 

1NCA(LH:N) 1NCA(LH) Fab NC41 7NN9 Influenza virus neuraminidase 

1NMB(LH:N) 1NMB(LH) Fab NC10 7NN9 Influenza virus neuraminidase 

1QFU(LH:A) 1QFU(LH) Igg1-k Fab 2VIU(A) Influenza virus hemagglutinin 

2JEL(LH:P) 2JEL(LH) Jel42 Fab fragment 1POH A06 phosphotransferase 

2VIR(AB:C) 2VIR(AB) Igg1-lamda Fab 2VIU(A) Influenza virus hemagglutinin 

Others (11) 

1AVZ(B:C) 1AVV HIV-1 NEF 1SHF(A) FYN tyrosin kinase SH3 domain 

1L0Y(A:B) 1BEC T-cell receptor βchain 1B1Z(A) Exotoxin A1 

1WQ1(G:R) 1WER RAS activating domain 5P21 RAS 

2MTA(LH:A) 2BBK(LH) Methylamine dehydrogenase 1AAN Amicyanin 

2PCC(A:B) 1CCA Cytochrome C peroxidase 1YCC Iso-1-Cytochrome C 

1A0O(A:B) 1CHN Che A 1A0O(B) Che Y 

1ATN(A:D) 1ATN(A) Actin 3DNI Deoxyribonuclease I 

1GLA(G:F) 1GLA(G) Glycerol kinase 1F3G GSF III 

1IGC(LH:A) 1IGC(LH) IgG1 Fab fragment 1IGD ProteinG 

1SPB(S:P) 1SUP Subtilisin 1SPB(P) Subtilisin prosegment 

2BTF(A:P) 2BTF(A) β-Actin 1PNE Profilin 
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2.3 Atomic and structure parameters for protein interface prediction 

In order to describe interface behavior clearly, we used atomic and structure 

parameters which combined attributes of hydrophobic properties and structure 

properties to achieve this purpose. The atomic parameters consisted of 10 

hydrophobic parameters δ based on octanol/water transfer energies optimized for 

protein-protein binding [12, 13] and the structure parameters consisted of 8 secondary 

structure parametersσ based on DSSP [24] as described in Table 2. Training set of 

104 high-resolution crystal structures was then used to train the overall parameters by 

GEM. 

 
 

Table 2. Atomic parameters used for protein-protein interaction sites prediction 
Atom type δ 2nd structure type σ 
C aliphatic -8.607 H 3.06 
C aromatic -257.134 G 15.12 
N uncharged 11.500 I -5.14 
Nζ in Lys+ 295.247 B -13.74 
Nη1,Nη2 in Arg+ 26.958 E 12.22 
O hydroxyl 6.091 T 15.22 
O carbonyl 1.619 S 18.18 
O- in Glu, Asp 41.291 others 13.84 
S in SH -281.919   
S in Met -298.668   
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2.4 Definition of surface and interface 

Surface and interface residues for the proteins were identified based on 

information in the PDB coordinate files. Briefly, solvent accessible surface areas 

(ASA) for each residue are calculated using DSSP [24]. A residue is defined to be a 

surface residue if its ASA is at least 25% of its nominal maximum area [54] as 

defined by Rost and Sander [55] . The distance-based definition of interface used here 

was that a surface residue is defined as an interface residue if its side-chain center is 

within 4.5Å of the side-chain center of a residue belonging to another chain in the 

complex. There is no indication that this criterion is better or worse than others [56]. 

Ofran et al. [49], for example, used a cut-off distance that if any of residue atoms < 

6Å from any atom of the other protein. Sternberg and coworkers [57] set a cut-off 

distance of 8 Å between the Cα atoms. 
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2.5 Definition of different-sized surface patch 

E i = +5.1 E i = -8.9 E i = -10.2

0

20

10

-10

-20

E i

0 5 10 15 20
d (Å)

ODA Value -10.2

Surface residues
i = 1,2…N

i = 1

d d d

(A)

(B)

(C)

 

Figure 2. Flowchart of identifying different-sized surface patch 

Figure 2 showed the procedures of identifying different-sized surface patch. A 

patch was defined as a surface area decided by the radius size of a residue at a protein 

surface as a centre. Thus, a protein with 100 surface residues would have 100 surface 

patches. To ensure that we did not measure through the protein, the following 

procedure was followed. (A) A Cβ of every surface residue on the protein (a Cα for 

glycine) was used to calculate distances between all surface residues. The patch was 

grown from the single starting (seed) residue and subsequently used to generate series 

of surface patch. However, equal-area patches may poorly represent the real protein 

interaction sites that vary significantly in size. Therefore, (B) different-sized surface 

patches were generated by selecting all surface residues at different distances (d = 1, 

2, …, 20Å) from a given seed [13]. (C) The final patch size of the seed was according 

to the lowest score of a surface patch. Scores of different-sized surface patches were 

calculated based on the atomic ASA of their component residues and secondary 
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structure (section 2.7). This process was iterated using the newly acquired residues, 

until the total number of residues in the patch was equal to the total number of 

residues in the surface.  

2.6 Definition of specificity, sensitivity and success 

To each predicted area, we apply specificity and sensitivity [45] to measure 

performance of our method. In this study, specificity was defined as number of 

interface residues in predicted area/number of predicted area residues. Sensitivity was 

defined as number of interface residues in predicted area/number of interface residues. 

A prediction was deemed a success if predicted area with over 50% specificity [16]. 
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2.7 Scoring function of surface residue 

The desolvation properties of a given surface residue were calculated using an 

atomic ASA-based model [58, 59], and we combined new attribute of secondary 

structure properties to consider interface structure information. 

The surface residue score S of residue k is calculated as 

,)(∑ +×=
m

i
iiik ASAS σδ  

where m is total number residues of different-sized surface patch. δi is the atomic 

parameter for atom type i. σi is the structure parameter for 2nd structure type i. ASAi is 

solvent accessible surface area of atom i. The atomic parameters for the different atom 

types are shown in Table 2. The lowest score of different-sized surface patch is 

selected for the final score of residue k. 

To assess how hydrophobic a surface residue is with respect to the whole protein, 

the Z score of its hydrophobic pocket is calculated as 

,
γ

SSZ k
k

−
=  

where S  is the average surface patch score of all of the residues in the protein 

surface, and γ  is the standard deviation. Residues with Zk lower than a given 

threshold (Zcut) are taken as the hydrophobic pockets and we find Zcut = -1.5 has better 

performance. 
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2.8 Training procedure of GEM 

GEM is a multi-operator approach that combines three mutation operators: 

decreasing-based Gaussian mutation, self-adaptive Gaussian mutation, and 

self-adaptive Cauchy mutation. It incorporates family competition and adaptive rules 

for controlling step sizes to construct the relationship among these three operators. To 

balance the search power of exploration and exploitation, each of operators is 

designed to compensate for the disadvantages of the other. The details of GEM were 

described as previous works [21, 23], and had been successfully applied for some 

specific problems, such as protein-ligand docking, drug screening, and protein 

side-chain prediction [18-20, 22, 23]. 

Here, we provide an outline of our GEM for predicting protein-protein interaction 

sites, which can be represented by adjustable variables of atomic and structure 

parameters (Table 2) as 

),,...,,,,...,,( 8211021 σσσδδδ  

where δ is the atomic parameter and σ is the structure parameter of surface residue 

scoring function. The values of parameters are then used in the surface residue scoring 

function and predicting results are presented as specificity and success rate. In order 

to determine that the performance of adjustable parameters, we use a fitness function 

which combines specificity and success rate for GEM training. In this work, we use 

GEM to look for the most suitable atomic and structure parameters for identifying 

protein interfaces by minimizing a fitness function which is described as fellow 

,)1(∑ +−=
N

p
ppFitness ωψ  

where N is total number of training proteins. ψp is the specificity of predicting results 

of the protein p based on the training values of atomic parameters. In order to raise 

success rate of prediction, we add information of success rate to our fitness function 
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(ωp). The value of ωp is depend on ψp. When ψp is over 0.5 or equal to 0, than ωp 

would be set to -1 or 0.5, respectively. If ψp is lower than 0.5 and not equal to 0, then 

ωp would be set to 0. 

Generally, the method use global continuous-search mechanisms based on 

Gaussian mutations. And the steps involved are as follows: 

1. Initialize the atomic and structure parameters of surface residue scoring function. 

The initial values for the parameters are selected from the feasible region (-300, 

300). Repeat this N times to generate the initial population of N parameters for a 

surface residue scoring function. Evaluate the objective value of each parameters 

based on the fitness function. 

2. Change the value of atomic and structure parameters by genetic operators to 

generate offspring. Evaluate the objective values of the offspring. 

3. Use selection operators to select N solutions from the atomic and structure 

parameters of both parent and offspring solutions. 

4. Repeat steps 2 and 3 until one of the terminating conditions is satisfied. 

The GEM parameters used in this paper are listed in Table 3 such as population 

size, initial step sizes of Gaussian mutations, recombination probability, and family 

competition length in this work. The GEM optimization stops when either the 

convergence is below certain threshold value or the iterations exceed a maximal 

preset value which was set to 200. These parameters were selected after many 

attempts to predict interaction sites for test proteins with various initial values.  

Table 3. Gaussian Evolutionary Method parameters 
Parameter Value 
Population size 200 
Step size of Gaussian mutations ν = 0.2 and λ= 0.8 (in radius) 
Recombination probability 0.2 
Family competition length L = 3 
Number of maximum generations 200 
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3 Results 

3.1 Training results 

The results of the GEM method for the training set are summarized in Table 4. 

GEM is able to predict the location of the interface on 65.4% (68/104) proteins in the 

training dataset. The average specificity and sensitivity are 57.8% and 27.8%, 

respectively. If we only train atomic parameters by GEM and use optimized atomic 

parameters to predict training set, the success of prediction is decreasing to 51.0% and 

the average specificity and sensitivity are 44.9% and 27.6%, respectively. In addition, 

if we used atomic parameters based on Fernandez-Recio et al. [13] without any 

optimization, the performance of prediction is the worse. Combination of 

physical–chemical properties and using computational methods to assist the finding of 

best parameters are useful for predicting protein-protein interaction sites. 

Table 4. Summary of training results from 104 unbound proteins 
  

Atomic and 2nd parameters  
(GEM a) 

Atomic parameters  
(GEM a) 

Atomic parameters  
(Fernandez-Recio et al. b)  

  Success Specificity Sensitivity Success Specificity Sensitivity Success Specificity Sensitivity

Enzyme 
Inhibitor  

79.5% 
( 35/44 ) 67.1% 27.9% 

65.9% 
(29/44) 56.0% 28.7% 45.5% 

(20/44) 45.9% 25.3% 

Antibody 
antigen 

 
60.5% 

( 23/38 ) 54.3% 33.2% 
39.5% 
(15/38) 37.0% 30.1% 44.7% 

(17/38) 37.2% 25.1% 

Others  
45.5% 

( 10/22 ) 45.2% 18.1% 
40.9% 
(9/22) 36.2% 21.2% 22.7% 

(5/22) 32.3% 19.1% 

Average  65.4% 
(68/104) 57.8% 27.8% 51.0% 

(53/104) 44.9% 27.6% 37.5% 
(39/104) 39.8% 23.9% 

a The parameters which are optimized by GEM 
b The parameters which are based on Fernandez-Recio et al.[13] 
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3.2 Testing results  

The overall accuracy of GEM in predicting the protein-protein interaction sites of 

50 test proteins is shown in Table 5. In order to test our performance of predicting 

protein-protein interaction sites, we tested our parameters against a accompanying 

paper of Fernandez-Recio et al. [13] and found that our Atomic Parameters had 

performed at least as well as their Atomic Solvation Parameters. The results of this 

test are summarized in Table 5, in which it can be seen that our method can predict 

98% proteins among whole testing set and have 42.3% average specificity, better than 

Fernandez-Recio’s results which can predict 60% protein among whole testing set and 

have 37.8% average specificity. 
 

Table 5. Prediction specificities of 50 unbound proteins 

PDB  GEM  
 
Fernandez 
Recio  PDB GEM Fernandez

Recio PDB GEM  Fernandez
Recio 

1a19A  1.000  0.89  1eztA 0.167 0 1pco_ 0.000  0.18 
1a2pA  0.667  —a*  1f00I 0.000 — 1pne_ 0.333  — 
1a5e_  0.600  0.2  1f5wA 0.600 1 1poh_ 0.667  0.8 
1acl_  0.222  0  1fkl_ 0.333 — 1ppp_ 0.500  0.3 
1ag6_  1.000  —  1flzA 0.333 0.9 1rgp_ 0.000  1 
1aje_  0.500  0.4  1fvhA 0.526 0.71 1selA 1.000  0.2 
1ajw_  0.500  —  1g4kA 1.000 1 1vin_ 1.000  1 
1aueA  0.000  0.8  1gc7A 0.214 — 1wer_ 0.300  — 
1avu_  0.333  0.7  1gnc_ 1.000 0.1 1xpb_ 0.429  — 
1b1eA  1.000  0.7  1hh8A 0.000 — 2bnh_ 0.455  — 
1bip_  1.000  1  1hplA 0.000 — 2cpl_ 0.667  — 
1ctm_  0.313  0.63  1hu8A 0.000 0 2f3gA 1.000  — 
1cye_  0.000  0.29  1iob_ 0.250 — 2nef_ 0.000  0.9 
1d2bA  0.500  1  1j6zA 0.542 1 2rgf_ —  1 
1ekxA  0.000  0.22  1jae_ 0.529 1 3ssi_ 1.000  — 
1ex3A  0.600  1  1lba_ 0.000 — 6ccp_ 0.000  — 
1eza_  0.083  —  1nobA 0.000 — average 0.423  0.378 

a*. — means that there are no results of prediction  
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3.3 Rigid-body protein-protein docking using GEMDOCK 

(A) 1AVW (A:B) (B) 1FBI (LH:X) (C) 2BTF (A:P)

 

Figure 3. Good test cases for GEMDOCK. Hits within 2.0 Å RMSD were found 

for (a) 1AVW, (b) 1FBI, (c) 2BTF. The bound receptor surface is shown. The best 

ranked hit is shown in blue, the original bound ligand is shown in red. 

We have modified GEMDOCK for rigid-body protein-protein docking and using 

original empirical scoring function which works well in protein-ligand docking. The 

former combines both discrete and continuous global search strategies with local 

search strategies to speed up convergence, whereas the latter results in rapid 

recognition of possible protein-protein interacting conformations. We have tested on 

52 bound protein complexes which are used in our training set and the results are 

listed on Table 6. The results show that modified GEMDOCK predicts 3 times for 

each complex and the performance of enzyme-inhibitor (50%) better than 

antibody-antigen (11%) and others (27%). Figure 3 shows that modified GEMDOCK 

could give us confident binding conformations in some good test cases, and RMSD of 

these cases are smaller than 2Å. However, the overall performance is not satisfied 
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since scoring function using here is for protein-ligand docking, fortunately, the search 

strategies of GEMDOCK is work for protein-protein docking. In the future, we will 

improve scoring function of GEMDOCK for protein-protein docking and develop 

soft-body protein-protein docking strategies for solving unbound-unbound protein 

docking problems. 

 

Table 6. Results of protein-protein docking using GEMDOCK 
Complexes ∆ASAa (Å2) R2Åb R5Åc Best RMSDd (Å) 

Enzyme-inhibitor (22) 

1ACB(E:I) 1540 0 0 42.608 

1AVW(A:B) 1740 2 2 1.147 

1BRC(E:I) 1320 0 0 33.596 

1BRS(A:D) 1560 2 3 1.054 

1CGI(E:I) 2050 1 2 0.766 

1CHO(E:I) 1470 0 2 3.290 

1CSE(E:I) 1490 0 0 38.819 

1DFJ(I:E) 2580 0 0 34.574 

1FSS(A:B) 1970 1 1 1.139 

1MAH(A:F) 2150 0 0 44.698 

1TGS(Z:I) 1720 1 1 1.469 

1UGH(E:I) 2190 2 2 0.990 

2KAI(AB:I) 1420 0 0 35.888 

2PTC(E:I) 1430 2 2 1.021 

2SIC(E:I) 1620 0 0 38.308 

2SNI(E:I) 1630 0 0 41.653 

1PPE(E:I) 1690 2 2 0.405 

1STF(E:I) 1790 0 0 50.064 

1TAB(E:I) 1360 0 2 2.937 

1UDI(E:I) 2020 0 0 52.762 

2TEC(E:I) 1560 0 0 40.941 

4HTC(LH:I) 3320 3 3 0.595 

Antibody-antigen (19) 

1AHW(DE:F) 1900 0 0 42.145 

1BVK(DE:F) 1400 0 0 20.312 

1DQJ(AB:C) 1760 0 0 23.532 

1MLC(AB:E) 1390 0 0 56.737 
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1WEJ(LH:F) 1180 0 0 49.428 

1BQL(LH:Y) 1630 0 0 56.011 

1EO8(LH:A) 1530 0 0 60.475 

1FBI(LH:X) 1690 2 2 0.890 

1IAI(MI:LH) 1890 0 0 66.795 

1JHL(LH:A) 1240 0 0 18.284 

1KXQ(D:E) 2140 0 0 51.302 

1KXT(A:B) 1620 0 0 46.379 

1KXV(A:C) 1620 0 0 29.846 

1MEL(B:M) 1690 0 0 31.372 

1NCA(LH:N) 1950 1 1 1.353 

1NMB(LH:N) 1350 0 0 42.987 

1QFU(LH:A) 1840 0 0 57.265 

2JEL(LH:P) 1500 0 0 46.708 

2VIR(AB:C) 1260 0 0 48.825 

Others (11) 

1AVZ(B:C) 1260 0 0 33.498 

1L0Y(A:B) 1130 0 0 61.263 

1WQ1(G:R) 2910 1 2 1.319 

2MTA(LH:A) 1460 0 0 36.863 

2PCC(A:B) 1140 0 0 57.244 

1A0O(A:B) 1130 0 0 47.668 

1ATN(A:D) 1770 0 0 53.990 

1GLA(G:F) 1300 0 0 23.888 

1IGC(LH:A) 1330 0 0 45.528 

1SPB(S:P) 2230 2 2 0.242 

2BTF(A:P) 2060 3 3 0.669 

a
∆ASA: change in accessible surface area (ASA) on complex formation was calculated, by using the program NACCESS.[53] 

b
R2Å: Number of predictions with RMSD smaller than 2 Å among 3 rounds 

c
R5Å: Number of predictions with RMSD smaller than 5 Å among 3 rounds 

d
Best RMSD: The smallest RMSD among 3 rounds 
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4 Discussion 

Figure 4 shows six examples of the prediction outcome of the training set (figure 

4a, 4b and 4c) and testing set (figure 4d, 4e and 4f). Predicted interface and 

non-interface residues, identified by the GEM, are shown as color coded patches as 

follows: Red spheres = true positives (TP), actual interface residues that are predicted 

as such; Blue strands = true negatives (TN), non-interface residues that are predicted 

as such; Yellow spheres = false negatives (FN), interface residues that are 

misclassified as non-interface residues; Green spheres = false positives (FP), 

non-interface residues that are misclassified as interface residues. From the figure 4, 

one clearly sees that not all the interface was predicted, but that the predicted part fits 

the interface well.  

(a) (b) (c)

(d) (e) (f)

True  Positives
False Positives
False Negatives
True  Negatives

 

Figure 4. Prediction results of training set and testing set. The partner molecule(s) 

in the bound conformation after superimposition of the corresponding molecule in the 

complex is represented in ribbon. (a) Prediction on 1dqj_r of the Hyhel-63 Fab, (b) 

prediction on 1dfj_r of the ribonuclease inhibitor, (c) prediction on 1acb_r of the 

α-Chymotrypsin, (d) prediction on 2cpl of the Cyclophilin a, (e) prediction on 1ctm of 

the Cytochrome f, (f) prediction on 1a19A of the Barstar. 
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(c) (d)

(a) (b)

 

Figure 5. Case study of limitations. (a) 1ahw_l, green : prediction area, yellow : 

interface, blue : others, red block : fibronectin type III modules; (b) The target protein 

1wej_l is shown in ribbons, green : prediction area, yellow : interface, blue : others, 

purple : heme; (c) pink : 1noc A chain, green : 1noc B chain and grey : 1nos; (d) 1pco, 

green : prediction area, yellow : interface, blue : others; and 1eth A chain (ribbon with 

pink color). 

There are some limitations in the current implementation of the method. Figure 5 

shows the limitations in the performance between the training set (figure 5a and figure 

5b) and testing set (figure 5c and figure 5d). Figure 5a shows the structure of 1ahw_l. 

Although our prediction area is far from the interface, this structure consists of two 

fibronectin type III modules whose hydrophobic cores merge in the domain-domain 

interface and our prediction is almost invariably symmetrical. Figure 5b shows the 

structure of 1wej_l. The prediction of our method is located nearby heme propionate, 

this result may due to the residues nearby the heme are more hydrophobic than 

protein-protein interaction site. Figure 5c shows the structures of bound protein 

complex : 1noc A chain and B chain and unbound protein : 1nos. After structure 
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alignment of 1noc A chain and 1nos, unfortunately, contact residues between 1nos 

and 1noc B chain are less than the bound protein complex, and it is difficult for our 

method to identify interaction site of 1nos. Figure 5d shows the structure of 1pco and 

1eth A chain. The surface of 1eth A chain (colipase) can be divided into a rather 

hydrophilic part, interacting with 1pco (lipase), and a more hydrophobic part, formed 

by the tips of the fingers [60]. This suggests that interface of 1pco is more hydrophilic 

than the surface, and our method do not prove to be very useful in this case. 
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5 Conclusion 

We have developed a method for predicting protein-protein binding sites using 

GEM. To train the GEM and to test the prediction method we collected dataset of 104 

unbound proteins—the nonredundant benchmark for testing protein-protein docking 

algorithms. We were able to successfully predict the location of the binding site on 

65.4% of the 104 proteins in training set. In addition, we tested GEM to predict 50 

unbound proteins and had 46% successfully prediction in testing set. The performance 

were achieved using only 18 attributes so prediction results should be improved when 

more properties that distinguish between interfaces and the rest of the protein surface 

become available. 

This method can be further improved on several aspects. First, we notice that 

hydrophilic effect may be main force of protein-protein interaction in some cases 

(figure 5d), and our predictions are poor. This is due to the fact that most interfaces of 

training set are hydrophobic and our parameters perform this characteristic faithfully. 

Therefore, it may be useful to classify interfaces of training set according to 

hydrophobic or hydrophilic, and each protein has two predicting areas which are 

hydrophobic patch and hydrophilic patch. Second, sequence conservation tends to be 

important attribute to identify protein-protein interface [35]. Third, the effect of 2nd 

structure information is not very clear, therefore, we intend to understand it of our 

model. Finally, we will apply our approach to other data set and to study the behavior 

of our model. In the future, we will combine protein-protein interaction sites 

prediction into GEMDOCK and improve scoring function of GEMDOCK for 

protein-protein docking and develop soft-body protein-protein docking strategies for 

solving unbound-unbound protein docking problems. 
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