
國 立 交 通 大 學 
 

 

生物資訊研究所 
 

 

碩 士 論 文 
 

 

 

 

 

從蛋白質序列預測殘基相對溶劑可接觸性 
 

Prediction of Protein Relative Solvent Accessibility  
from Amino Acid Sequence 

 

 

 

 

 

 

 

研 究 生：徐蔚倫 
 

      指導教授：黃鎮剛  教授 
 

 

 

 

 

 

 

 

中 華 民 國 九 十 四 年 七 月



從蛋白質序列預測殘基相對溶劑可接觸性 
 

Prediction of Protein Relative Solvent Accessibility from Amino Acid Sequence 
 

 

 

研 究 生：徐蔚倫            Student：Wei-Lun Hsu 

指導教授：黃鎮剛            Advisor：Jenn-Kang Hwang 

 

 

 

國 立 交 通 大 學 
生 物 資 訊 研 究 所 

碩 士 論 文 
 

 

 
A Thesis  

Submitted to Institute of Bioinformatics 

College of Biological Science and Technology 

National Chiao Tung University  

in partial Fulfillment of the Requirements 

for the Degree of 

Master 

In 

 

Bioinformatics 

 

July 2005 

 

Hsinchu, Taiwan, Republic of China 

 

 

中華民國九十四年七月 



 

 

從蛋白質序列預測殘基相對溶劑可接觸性

學生：徐蔚倫 指導教授：黃鎮剛 

國立交通大學生物資訊研究所碩士班 

中 文 摘 要 

 

從序列資訊來預測蛋白質三級結構是目前生物學研究上非常重要的目

標之一，而正確的預測蛋白質相對溶劑可接觸性則可以提供蛋白質三級結

構相關的資訊。蛋白質相對溶劑可接觸性(RSA)代表著蛋白質上某一個氨基

酸和溶劑接觸的程度。通常蛋白質的結合處會位於它的表面，因此，若能

正確的預測蛋白質位於表面的氨基酸位置，就能夠更進一步的瞭解該蛋白

質的功能。此外，一個蛋白質位於表面和包埋在蛋白質內部的氨基酸分佈，

也被觀察到和蛋白質在細胞內的位置有很大的關連性。 

我的方法是利用支持向量機將局部和整體的蛋白質資訊，其中最好的

結果是利用位置加權矩陣(PSSM)、二級結構特徵值(secondary structure 

profile)和氨基酸親水程度(hydropathy indexes)作為輸入向量。這個方法對於

RS126 資料群在以 25%為分類閾值時，可以達到 77.2%，和最近幾年的在這

方面的研究成果 75%-78.3%達到相近的程度，而在將 RSA 分成十類的預測

結果中也可達到 15.2% 平均絕對誤差，預測值和實驗值達到 0.51的相關性。 
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Abstract 

 

The prediction of the three-dimensional structure from its sequence is probably one of 

the most important goals of modern biology. The accurate prediction of protein relative 

solvent accessibility is useful for the prediction of tertiary structure of a protein. Amino acid 

solvent accessibility is the degree to which a residue in a protein is accessible to a solvent 

molecule. Because the binding sites of a protein are usually located on its surface, accurately 

predicting the surface residues can be regarded as an important step toward determining its 

function. On the other hand, it has been observed that the distribution of surface residues of a 

protein is correlated with its subcellular environments; consequently, information of surface 

residues may improve the prediction of protein subcellular localization. 

Presently, out best method is based on the support vector machines using as the input 

feature vectors, the sliding window that includes the local environment descriptors such as 

PSSM, secondary structure profile and hydropathy indexes. In my work, relative solvent 

accessibility based on a 2-state model, for 25%, 16%, 5%, and 0% accessibility are predicted 

at 77.2%, 77.1%, 80.4%, and 88.4% accuracy, respectively. Furthermore, solvent accessibility 

prediction methods have in recent years reached accuracy in the range of 75.0-78.3% at 25% 

threshold. And the results based in a 10-state model can reach 15.2% mean absolute error and 

0.51 correlations. 
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1. Introduction 

Knowledge of protein’s three-dimensional (3D) structure is essential for a full 

understanding of its functionality. However, only a small fraction of the enormous number of 

sequenced proteins has their structure determined. In order to reduce the gap between 

sequence and structure, developing reliable and applicable structure prediction methods has 

become a more important task in computational biology. Thus simplification of the problem 

from 3D structures to 1D feature may be useful as a first-step. The relative solvent 

accessibility of an amino acid in protein is a real value that represents the solvent exposed 

surface area of this residue in relative terms. The prediction of secondary structure is more 

familiar and well-defined aspect of the problem and the prediction of residue solvent 

accessibility is another aspect. Secondary structures and solvent accessibilities of amino acid 

residues give a useful insight into the structure and function of a protein. In particular, the 

knowledge of solvent accessibility has assisted alignments in regions of remote sequence 

identity for threading. 

 In addition to providing insight into the conformation of 3D structure, prediction of 

residue solvent accessibility has many other applications. For example, it has been observed 

that the distribution of surface residues of a protein is correlated with its subcellular 

environment. Many studies[1] have suggested that hydrophobic core residues are likely sites 

of deleterious mutations. The residues in site of deleterious mutations may be critical for 

protein stability. Wang and Molt[2] found that the vast majority of disease mutations affected 

protein stability rather than function and could be predicted using straightforward rules. 

There are various approaches have been developed, typically by examining a window of 

residues centered at the test residue and using sequence input or sequence profile as input 

vectors. These include neural network[3-7], Bayesian statistics[8], linear regressions[9, 10], 
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information theory[11], support vector machines[12, 13] and fuzzy k-nearest neighbor 

method[14]. However, in contract to the secondary structure, there is no widely accepted 

criterion for classifying the experimentally determined solvent accessibility into a finite 

number of discrete states such as buried, intermediate and exposed states. Also, the prediction 

accuracies of solvent accessibility are lower than those for secondary structure prediction, 

since the solvent accessibility is less conserved than secondary structure[3], although there 

has been some progress recently. 

In this work, relative solvent accessibility based on a 2-state model in RS126 dataset, for 

25%, 16%, 5%, and 0% accessibility are predicted at 77.2%, 77.1%, 80.4%, and 88.4% 

accuracy, respectively. And the results based in a 10-state model can reach 15.2% mean 

absolute error and 0.51 correlations. 
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2. Material and Methods 

2.1 Definition and thresholds of solvent accessibility 

The relative solvent accessibility of an amino acid is the degree that present the residue in a protein 

is accessible to solvent molecules. The relative solvent accessibility can be calculated by the formula 

as follows, 

MaxACC
ACClACC ⋅= 100Re                                                     (1) 

RelACC : relative solvent accessibility 

ACC : solvent accessible surface areas 

MaxACC : maximum value of solvent accessible surface areas of each kind of residue 

Where ACC of ith residue is the solvent accessible surface areas calculated by the dictionary of 

protein secondary structure program (DSSP) [15], and the MaxACC are taken from MOLSIM 

program (Table 1). RelACC is derived from normalizing ACC by dividing the DSSP 

accessibility by the maximum accessibility of amino acid residues corresponding to 

accessibility for a Gly-X-Gly extended tripeptide conformation. RelACC can hence adopt 

values between 0% and 100%, with 0% corresponding to a fully buried and 100% to a fully 

accessible residue, respectively. 

Various thresholds have been used to classify residues as buried and exposed (2-state 

prediction) or buried, intermediate and exposed (3-state prediction) in previously published 

results. In this work, thresholds of 0, 5, 16, 25% for buried/exposed in the 2-state predictions, 

thresholds of 9, 36% for buried/intermediate/exposed in the 3-state predictions and 10, 20, 30, 

40, 50, 60, 70, 80, 90% for classifying residues in 10 classes are used. 
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2.2 Training and data sets 

The solvent accessibility was predicted for three sets of proteins in order to evaluate the 

performance of our method. They are a 126-protein dataset of Rost and Sander[3] (Table 2), a 

set of 215 protein chains selected by Naderi-Manesh[11] (Table 3), and 480 proteins from 

Kim and Park[13] (Table 4). Each of these data sets consists of protein sequence with less 

than 25% homology. To perform 7-fold cross validation test, we randomly divided these data 

sets into 7 groups, each containing a roughly equal number of protein sequences. One group 

was chosen as the testing set, while others were merged into the training set. 

2.3 Feature vectors 

In the first phase, we have individually benchmarked 8 different local descriptor types in 

prediction experiment in RS126 dataset. Our results revealed that the five best-performing 

sets of local descriptors were using PSSM (position-specific scoring matrices), secondary 

structure profiles, hydropathy indexes, amino acid composition and amino acid properties by 

their R groups. In second phase, the five top-performing local descriptors were combined to 

obtain a new method with improved performance. And then, we add 2 different global 

descriptors types into the method to see if global descriptors are useful for solvent 

accessibility prediction. 

2.3.1 Local descriptors 

We represent the local environment of sequences by using sliding window coding scheme. 

Increasing the window size can provide more local information and it is reasonable to expect 

that prediction accuracy would increase with the enlargement of the window size. But the past 

research[12] found that window size has a very limited effect on prediction accuracy. 
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Therefore, we followed the paper and selected 15 for the window size for the prediction of 

protein relative solvent accessibility  

2.3.1.1 PSSM (position-specific scoring matrices) 

We use PSI-BLAST[16] against non-redundant protein sequence database for 5 iterations 

to produce PSSM, which has 20*m elements, where m is the length of query sequences and 

each element represents the log-likelihood of that specific residue substitution at that position 

in the template (based on a weighted average of BLOSUM62 matrix scores for the given 

alignment position). PSI-BLAST uses a simple but effective scheme for weighting the 

contribution of locally different numbers of sequences to the resulting profiles. The profile 

matrix elements are scaled to the required 0-1 range by using the standard logistic function as 

below, where x of the equation is the raw profile matrix value.  

xe
Score −+

=
1

1                                                          (2) 

Then, the input vector has 20*15 components (Illustrated in Figure 1). Each component 

can be expressed as PSSMijk, where i is the predicted residue, j is the location in the sliding 

window and k is the type of amino acid. 

2.3.1.2 Secondary structure profiles  

The secondary structure profile has 3*m elements. The elements describe the probabilities of each 

residue in the three kinds of secondary structures which are Helix, Sheet and Coil. These profiles were 

generated from the PSIPRED[17] program, and each input vector has 3*15 components (Illustrated 

in Figure 2). Each component can be expressed as SSijk, where i is the predicted residue, j is 

the location in the sliding window and k is the type of secondary structure including helix, 
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strand and coil. 

2.3.1.3 Hydropathy indexes 

In this study, we use the hydropathy indexes to represent each residue (Table 5). In general, the 

hydropathy indexes can be used to measure the tendency of an amino acid to seek an aqueous 

environment or a hydrophobic environment. The hydropathy indexes refer to the book “Lehninger 

Principles of Biochemistry”. Each input vector has 1*15 components (Illustrated in Figure 3). Each 

component can be expressed as Hij, where i is the predicted residue and j is the location in the 

sliding window. 

2.3.1.4 Amino acid in binary coding 

We code the protein sequences in binary mode, such as “1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0” represents A (alanine). Each input vector has 20*15 components (Illustrated in Figure 4). 

Each component can be expressed as AAijk, where i is the predicted residue, j is the location in 

the sliding window and k is the type of amino acid. 

2.3.1.5 Amino acid properties in binary coding 

Knowledge of chemical properties of the standard amino acids is central to an 

understanding of biochemistry. The chemical properties can be simplified by grouping the 

standard amino acids into 5 main classes based on the properties of their R groups, and others 

into the sixth class.(Table 6) The classification refer to the book “Lehninger Principles of 

Biochemistry”. Each input vector has 6*15 components (Illustrated in Figure 5). Each 

component can be expressed as PROPijk, where i is the predicted residue, j is the location in 

the sliding window and k is the property of amino acid. 

 - 6 -



 

 

 

2.3.1.6 Local amino acid composition  

The amino acid percentage is the percentage of each residue in the sliding window. Each 

input vector has 20 components (Illustrated in Figure 6). Each component can be expressed as 

LAAik, where i is the predicted residue and k is the type of amino acid. 

2.3.1.7 Local amino acid properties composition 

The amino acid properties percentage is the percentage of each residue property in the 

sliding window. Each input vector has 6 components (Illustrated in Figure 7). Each 

component can be expressed as LPROPik, where i is the predicted residue, j is the location in 

the sliding window and k is the property of amino acid. 

2.3.1.8 Residue size 

We use the volume of amino acid as the input vector (Table 1). Each input vector has 1*15 

components (Illustrated in Figure 8). Each component can be expressed as Rij, where i is the 

predicted residue and j is the location in the sliding window. 

2.3.2 Global descriptors 

We also represent the global environment of sequences by using global sequence 

composition and global character composition method.  

2.3.2.1 Global amino acid composition 

 - 7 -



 

The amino acid percentage is the percentage of each residue in a given protein sequence 

totally. Each input vector has 20 components (Illustrated in Figure 9). Each component can be 

expressed as GAAk, where k is the type of amino acid. 

2.3.2.2 Global amino acid properties composition 

The amino acid properties percentage is the percentage of each residue property in a given 

protein sequence totally. Each input vector has 6 components (Illustrated in Figure 10). Each 

component can be expressed as GPROPk, where k is the property of amino acid. 

2.4 Performance measures 

In order to compare with other works, we use different measures to evaluate 2-state, 

3-state and 10-state prediction methods as below. 

2.4.1 In 2-state prediction and 3-state prediction 

In this work, two measures are used to evaluate the performance of prediction methods. 

One is accuracy, the percentage of correctly classified residues, and the other is Matthew’s 

correlation coefficients (MCC). These measures can be calculated by the following equation: 

N
p

Accuracy
c

i i∑=                                                       (3) 

( )( )( )( )iiiiiiii

iiii
i unonupop

uonp
MCC

++++

−
=                                   (4) 

Where N is the total number of residues, and c is the class number. And pi, ni, oi and ui are 

the number of true positives, true negatives, false positives and false negatives for class i, 
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respectively. The MCCs have the same value for the two classes in the case of the 2-state 

prediction. 

2.4.2 In 10-state prediction 

Here, we applied several different measures, including the mean absolute error (MAE) of 

prediction defined as the absolute difference between the predicted and experimental value of 

relative solvent accessibility, per residue. 

( ) ( )
N

ASAASA
MAE pred∑ −

=
exp                                            (5) 

Where summation is carried out for all residues and N is the total number of predictions. 

In addition, Pearson’s “r” is also used in some places, and it is calculated as the ratio of the 

covariance between the predicted and experimental relative solvent accessibility as below. 

( ) ( )( ) ( )( ) ( )( )
( ) ( )( )[ ] ( ) ( )( )[ ]∑ ∑∑ ∑

∑∑∑
−−

−
=

2
exp

2
exp

22

expexp

ASAASANASAASAN

ASAASAASAASAN
r

predpred

predpred           (6) 

 

2.5 Support vector machine 

Support vector machine (SVM), first proposed by Vapnik and co-workers[18] based on 

statistical learning theory, has quickly become one of the most popular classification and 

regression methods, due to its flexibility in choosing a similarity function, the ability to 

handle large feature spaces and accuracy. It has been used in various area, such as protein 

structure prediction[19], protein fold recognition[20] and microarray data analysis[21]. 
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An SVM finds a nonlinear decision function in the input space by implicitly mapping the 

data into a linear separable higher dimensional feature space and separating the data there by 

maximizing the geometric margin and minimizing the training error at the same time. Yuan et 

al.5 implemented SVMlight to predict solvent accessibility. Here, we use LIBSVM version 2.6, 

which is a multi-class SVM developed by Chang and Lin.[22]  
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3. Server Development and Administration System Overview 

Figure 2 shows the flowchart of RSA prediction server, and most of the process was built 

using the Perl language and CGI package. And the prediction result can automatically show 

on the webpage when the relative solvent accessibility prediction was finished. 
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4. World Wide Web Interface 

4.1 Models trained by the three benchmark data sets 

User can select an appropriate training dataset of the three benchmark datasets. The 

consuming time will increase depending on the dataset size. 

4.2 Models of different state thresholds 

User can choose a 2-state model (25%), 3-state model (9%;36%) or 10-state model 

(10%;20%;30%;40%;50%;60%;70%;80%;90%) for different purposes. 

4.3 Query sequence 

User can input their query sequence in FASTA format or directly upload the FASTA 

format file to the SAS prediction server. 

4.4 Website 

The RSA prediction server is available at http://e100.life.nctu.edu.tw/~weilun/. Figure3 

shows the World Wide Web interface of RSA prediction server. Figure 4 shows the standard 

output webpage of prediction. 
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5. Results and Discussion 

5.1 Prediction accuracies and MCC values using individual local descriptors with RS126 

dataset in 2-state prediction model 

In the first phase, the performance was evaluated in terms of Qtotal, Qb, Qe and MCC 

(Table 7). Of the 8 local descriptors, 5 were ranging 65.73% to 75.33%. They are PSSM, 

amino acid composition, secondary structure profiles, character information and hydropathy 

indexes in order.  

5.2 Prediction accuracies and MCC values using comprehensive local descriptors with 

RS126 dataset in 2-state prediction model 

In the second phase, we combined the top 5 best-performing local descriptors and 2 global 

descriptors in many kinds of combinations. In Table 8 we show the results.  

Here, we found that PSSM involved more useful information in relative solvent 

accessibility prediction. The hydropathy indexes performed worse than secondary structure 

profiles in the individual test, but when combining with PSSM, the hydropathy indexes could 

increase the prediction accuracy more than the secondary structure profiles did. The 

combination of these three input vectors can reach the accuracy rate at 77.23% in RS-126 

dataset. However, amino acid composition and amino acid properties also seem to offer 

duplicated information with PSSM, but the amino acid composition could slightly improve 

the prediction accuracy about 0.5%. The other feature vectors seem not to give useful 

information about prediction including global descriptors.  
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Overall, the best combinations of input vector were PSSM, secondary structure profiles, 

hydropathy indexes and amino acid composition in this stage. Compared with the individual 

performance of the 8 different descriptors, the increased accuracy was in the range 68.40% to 

77.78%.  

5.3 Prediction accuracies and MCC values of the benchmark test on the RS126, NM215 

and KP480 datasets in 2-state prediction model and its comparison with other methods 

The performances of prediction in this study are showed in Table9 and Table10. In this 

stage, the result of top-4 outperforming feature vectors is almost the same as the result of 

top-3 outperforming feature vectors. To reduce the training space, we took the top-3 

outperforming feature vectors as our best work. They are PSSM, secondary structure profiles 

and hydroparthy indexes. Our best work shows 60.2% accuracy for 3-state prediction 

(9%;36% thresholds) and 88.4%,81.4%,77.9% and 77.2% for the 2-state prediction with 

thresholds of 0%,5%,16% and 25% on the RS126 dataset, respectively. It shows slightly 

better prediction than other methods on the RS126 dataset expect for "Fuzzy k-NN".  

5.4 MAE and Pearson’s “r” values of the benchmark test on the RS126 and KP480 

datasets in 10-state prediction model 

We used the 10-state prediction model to simulate the real value prediction of solvent 

accessibility prediction. We took the same measured way to compare with the other real value 

prediction methods. All results were shown in Table11 and our best work achieved 

comparable results. The MAE value is 15.2 and Pearson's r is 0.506 in RS-126 dataset. We 

also transform the 10-state prediction into 2-state to give a rough evaluation. At the threshold 

of 20%, the accuracy achieved 72.8%, 74.4% in RS-126 and KP-480 dataset.  
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6. Conclusion 

In this study, our best method achieved the similar performance as the researches did in 

the recent years. Hence, we can conclude that the three input vectors in our best work can 

catch enough information to predict relative solvent accessibility accurately.  

Our research shows that local descriptors are sufficient for predicting accurately without 

global descriptors. Secondary structure profiles and hydropathy indexes both can be 

complementary to PSSM, but in individual case, hydropathy indexes can only achieve poor 

performance. Sequence information and character information offer overlapped information 

with PSSM. 

In conclusion, our work achieves good prediction accuracy on the three benchmark 

datasets in 2-state, 3-state and 10-state model. And in the future work, we can apply our 

method in real value prediction. 
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Window of 

15 rows 

 

 

15*20 scaled 

inputs 

 

Figure 1. An outline of the PSSM input vectors, which shows how the PSI-BLAST score 

matrices are processed. 
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Coil   Helix   Strand  

 

15*3 scaled 

inputs 

 

 

Figure 2. The input vectors called “secondary structure profiles”. 
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AA  Hydropathy index Scaled index     

A 1.8 1.8 / 4.5  1 T -0.7 / 4.5 

C 2.5 2.5 / 4.5  2 S -0.8 / 4.5 

D -3.5 -3.5 / 4.5  3 P 1.6 / 4.5 

E -3.5 -3.5 / 4.5  4 Q -3.5 / 4.5 

F 2.8 2.8 / 4.5  5 R -4.5 / 4.5 

G -0.4 -0.4 / 4.5  6 E -3.5 / 4.5 

H -3.2 -3.2 / 4.5  7 A 1.8 / 4.5 

I 4.5 4.5 / 4.5  8 T -0.7 / 4.5 

K -3.9 -3.9 / 4.5  9 C 2.5 / 4.5 

L 3.8 3.8 / 4.5  10 T -0.7 / 4.5 

M 1.9 1.9 / 4.5  11 S -0.8 / 4.5 

N -3.5 -3.5 / 4.5  12 E -3.5 / 4.5 

P 1.6 1.6 / 4.5  13 V 4.2 / 4.5 

Q -3.5 -3.5 / 4.5  14 S -0.8 / 4.5 

R -4.5 -4.5 / 4.5  15 G -0.4 / 4.5 

S -0.8 -0.8 / 4.5  16 C 2.5 / 4.5 

T -0.7 -0.7 / 4.5  17 P 1.6 / 4.5 

V 4.2 4.2 / 4.5  18 K -3.9 / 4.5 

W -0.9 -0.9 / 4.5  19 I 4.5 / 4.5 

Y -1.3 -1.3 / 4.5  20 Y -1.3 / 4.5 

15*1 scaled 

inputs 

 

 

Figure 3. The input vectors called “hydropathy indexes”. 
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AA ID  

A 1  1 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

C 2  2 S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

D 3  3 P 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

E 4  4 Q 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

F 5  5 R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

G 6  6 E 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

H 7  7 A 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

I 8  8 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

K 9  9 C 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

L 10  10 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

M 11  11 S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

N 12  12 E 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P 13  13 V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

Q 14  14 S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

R 15  15 G 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S 16  16 C 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

T 17  17 P 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

V 18  18 K 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

W 19  19 I 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

Y 20  20 Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

15*20 scaled 

inputs 

 

 

Figure 4. The input vectors called “amino acid in binary coding”. 
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Class ID AA  
Nonpolar, aliphatic R groups  1 G  
  1 A  1 T 0 0 1 0 0 0 

  1 P  2 S 0 0 1 0 0 0 

  1 V  3 P 1 0 0 0 0 0 

  1 L  4 Q 0 0 1 0 0 0 

  1 I  5 R 0 0 0 1 0 0 

  1 M  6 E 0 0 0 0 1 0 

Aromatic R groups 2 F  7 A 1 0 0 0 0 0 

  2 Y  8 T 0 0 1 0 0 0 

  2 W  9 C 0 0 1 0 0 0 

Polar, uncharged R groups  3 S  10 T 0 0 1 0 0 0 

  3 T  11 S 0 0 1 0 0 0 

  3 C  12 E 0 0 0 0 1 0 

  3 N  13 V 1 0 0 0 0 0 

  3 Q  14 S 0 0 1 0 0 0 

Positively charged R groups  4 K  15 G 1 0 0 0 0 0 

  4 H  16 C 0 0 1 0 0 0 

  4 R  17 P 1 0 0 0 0 0 

Negatively charged R groups 5 D  18 K 0 0 0 1 0 0 

  5 E  19 I 1 0 0 0 0 0 

Others 6    20 Y 0 1 0 0 0 0 

15*6 scaled 

inputs 

 

Figure 5. The input vectors called “amino acid properties in binary coding”. 
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AA  ID     AA N P 

A 1  1 T  A 1 1 / 15 

C 2  2 S  C 2 2 / 15 

D 3  3 P  D 0 0 

E 4  4 Q  E 2 2 / 15 

F 5  5 R  F 0 0 

G 6  6 E  G 1 1 / 15 

H 7  7 A  H 0 0 

I 8  8 T  I 0 0 

K 9  9 C  K 0 0 

L 10  10 T  L 0 0 

M 11  11 S  M 0 0 

N 12  12 E  N 0 0 

P 13  13 V  P 1 1 / 15 

Q 14  14 S  Q 1 1 / 15 

R 15  15 G  R 1 1 / 15 

S 16  16 C  S 3 3 / 15 

T 17  17 P  T 2 2 / 15 

V 18  18 K  V 1 1 / 15 

W 19  19 I  W 0 0 

Y 20  20 Y  Y 0 0 

20 scaled 

inputs 

 

 

 

Figure 6. The input vectors called “local amino acid composition”. 
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Class ID AA   
  1 A  1 T  Class N P 

 Nonpolar, 
aliphatic R groups 

1 P  2 S  Nonpolar, 
aliphatic R groups

4 4 / 15 

  1 V  3 P  Aromatic R 
groups 

0 0 

  1 L  4 Q  Polar, uncharged 
R groups  

8 8 / 15 

  1 I  5 R  Positively charged 
R groups 

0 0 

  1 M  6 E  Negatively 
charged R groups 

1 1 / 15 

    7 A  Others 2 2 / 15 

Aromatic R groups 2 F     

  2 Y  8 T  

  2 W  9 C  

Polar, uncharged 
R groups  

3 S  10 T  

  3 T  11 S  

  3 C  12 E  

  3 N  13 V  

  3 Q  14 S  

Positively charged 
R groups  

4 K  15 G  

  4 H  16 C  

  4 R  17 P  

Negatively 
charged R groups  

5 D  18 K  

  5 E  19 I  

Others 6    20 Y 

6 scaled 

inputs 

 

 

Figure 7. The input vectors called “local amino acid properties composition”. 
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AA MaxACC Scaled MaxACC   

A 117.2 117.2 / 270.7      

C 142.0 142.0 / 270.7  1 T 152.8 / 270.7 

D 169.8 169.8 / 270.7  2 S 135.2 / 270.7 

E 202.0 202.0 / 270.7  3 P 148.9 / 270.7 

F 233.0 233.0 / 270.7  4 Q 199.4 / 270.7 

G 87.9 87.9 / 270.7  5 R 242.9 / 270.7 

H 195.4 195.4 / 270.7  6 E 202.0 / 270.7 

I 182.1 182.1 / 270.7  7 A 117.2 / 270.7 

K 214.2 214.2 / 270.7  8 T 152.8 / 270.7 

L 176.2 176.2 / 270.7  9 C 142.0 / 270.7 

M 204.0 204.0 / 270.7  10 T 152.8 / 270.7 

N 169.6 169.6 / 270.7  11 S 135.2 / 270.7 

P 148.9 148.9 / 270.7  12 E 202.0 / 270.7 

Q 199.4 199.4 / 270.7  13 V 162.4 / 270.7 

R 242.9 242.9 / 270.7  14 S 135.2 / 270.7 

S 135.2 135.2 / 270.7  15 G 87.9 / 270.7 

T 152.8 152.8 / 270.7  16 C 142.0 / 270.7 

V 162.4 162.4 / 270.7  17 P 148.9 / 270.7 

W 270.7 270.7/ 270.7  18 K 214.2 / 270.7 

Y 253.8 253.8/ 270.7  19 I 182.1 / 270.7 

    20 Y 253.8/ 270.7 

15 scaled 

inputs 

 

 

Figure 8. The input vectors called “residue size”. 
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AA  ID     AA N P 

A 1  1 T  A 1 1 / 20 

C 2  2 S  C 2 2 / 20 

D 3  3 P  D 0 0 

E 4  4 Q  E 2 2 / 20 

F 5  5 R  F 0 0 

G 6  6 E  G 1 1 / 20 

H 7  7 A  H 0 0 

I 8  8 T  I 1 1 / 20 

K 9  9 C  K 1 1 / 20 

L 10  10 T  L 0 0 

M 11  11 S  M 0 0 

N 12  12 E  N 0 0 

P 13  13 V  P 2 2 / 20 

Q 14  14 S  Q 1 1 / 20 

R 15  15 G  R 1 1 / 20 

S 16  16 C  S 3 3 / 20 

T 17  17 P  T 3 3 / 20 

V 18  18 K  V 1 1 / 20 

W 19  19 I  W 0 0 

Y 20  20 Y  Y 1 1 / 20 

20 scaled 

inputs 

 

 

Figure 9. The input vectors called “global amino acid composition”. 
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Class ID AA  

Nonpolar, 
aliphatic R groups  

1 G  1 T  Class N P 

  1 A  2 S  Nonpolar, 
aliphatic R 
groups 

6 6 / 20 

  1 P  3 P  Aromatic R 
groups 

1 1 / 20 

  1 V  4 Q  Polar, uncharged 
R groups  

9 9 / 20 

  1 L  5 R  Positively 
charged R groups

1 1 / 20 

  1 I  6 E  Negatively 
charged R groups

1 1 / 20 

  1 M  7 A  Others 2 2 / 20 

Aromatic R groups 2 F  8 T  

  2 Y  9 C  

  2 W  10 T  

Polar, uncharged 
R groups  

3 S  11 S  

  3 T  12 E  

  3 C  13 V  

  3 N  14 S  

  3 Q  15 G  

Positively charged 
R groups  

4 K  16 C  

  4 H  17 P  

  4 R  18 K  

Negatively 
charged R groups  

5 D  19 I  

  5 E  20 Y  

Others 6    

6 caled 

inputs 

 

Figure 10. The input vectors called “global amino acid properties composition”. 
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Figure 11. The figure shows the components of SAS prediction server, and most of the 

connection was built using the Perl language and CGI package. 
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Figure 12. The World Wide Web interface of the RSA prediction server. 
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*Prob X: probability of the residue belongs to class X 
*PredRSA: the predicted relative class 

 

 

Figure 13. The standard output webpage of prediction. 
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Tables 

 
 
Table 1. Maximum value of solvent accessible surface areas of each kind of residue calculated by 
MOLSIM program 

 
 

Amino acid  MaxACC 
A 117.2 
B 160.0 
C 142.0 
D 169.8 
E 202.0 
F 233.0 
G 87.9 
H 195.4 
I 182.1 
K 214.2 
L 176.2 
M 204.0 
N 169.6 
P 148.9 
Q 199.4 
R 242.9 
S 135.2 
T 152.8 
V 162.4 
W 270.7 
X 180.0 
Y 253.8 
Z 196.0 
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Table 2. The RS126 dataset used in this study 

 
 

 
 

 
256b_a 
9api_b 
7cat_a 
6cpa_ 
3ebx_ 
2fox_ 
6hir_ 
1l58_ 
2mev_4 
1pyp_ 
3rnt_ 
2stv_ 
2utg_a 
2aat_ 
1azu_ 
1cbh_ 
6cpp_ 
5er2_e 
1g6n_a 
3hmg_a 
1lap_ 
2or1_l 
1r09_2 
7rsa_ 
2tgp_i 
9wga_a 

 
8abp_ 
1cyo_ 
1cc5_ 
4cpv_ 
1etu_ 
2gbp_ 
3hmg_b 
5ldh_ 
1ovo_a 
2mhu_ 
2rsp_a 
1tgs_i 
2wrp_r 
6acn_ 
1bbp_a 
2ccy_a 
1crn_ 
1fc2_c 
1a45_ 
2hmz_a 
1gdj_ 
2pab_a 
1mrt_ 
4rxn_ 
3tim_a 
1bks_a 
 

 
1acx_ 
1bds_ 
1cdh_ 
1cse_i 
1fdl_h 
1gdl_o 
5hvp_a 
2lhb_ 
1paz_ 
1ppt_ 
1s01_ 
6tmn_e 
1bks_b 
8adh_ 
1bmv_1 
1cdt_a 
6cts_ 
1dur_ 
2gls_a 
2i1b_ 
1lmb_3 
9pap_ 
1rbp_ 
3sdh_a 
2tmv_p 
4xia_a 
 

 
3ait_ 
1bmv_2 
3cla_ 
2cyp_ 
1fkf_ 
2gn5_ 
3icb_ 
2ltn_a 
2pcy_ 
1rhd_ 
4sgb_i 
1tnf_a 
1prc_c 
2ak3_a 
3blm_ 
3cln_ 
5cyt_r 
1fnd_ 
1gp1_a 
7icd_ 
2ltn_b 
4pfk_ 
4rhv_1 
1sh1_ 
4ts1_a 
1prc_h 

 
2alp_ 
4bp2_ 
4cms_ 
1eca_ 
1iqz_ 
4gr1_ 
1il8_a 
5lyz_ 
3pgm_ 
4rhv_3 
2sns_ 
2tsc_a 
1prc_l 
9api_a 
2cab_ 
4cpa_i 
6dfr_ 
1fxi_a 
1hip_ 
9ins_b 
1mcp_l 
2phh_ 
4rhv_4 
2sod_b 
1ubq_ 
1prc_m 
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Table 3. The NM215 dataset used in this study 

 
 

 

 
119l_ 
1bnca 
1dktb 
1ggga 
1knya 
1ofga 
1pud_ 
1svpa 
1vls_ 
2chsa 
2sns_ 
153l_ 
1btma 
1dkza 
1gnd_ 
1kpta 
1onra 
1pyta 
1tadc 
1wba_ 
2ctc_ 
2tysa 
1aba_ 
1btn_ 
1dosa 
1gotb 
1kte_ 
1opr_ 
1qapa 
2tdx_ 
1whi_ 

 
2end_ 
3chy_ 
1abrb 
1cem_ 
1dxy_ 
1gpc_ 
1kuh_ 
1ospo 
1ra9_ 
1tfe_ 
1who_ 
2gdm_ 
3cox_ 
1afra 
1ceo_ 
1ecea 
1gpl_ 
1lba_ 
1pbc_ 
1rcf_ 
1tfr_ 
1bksb 
2hft_ 
3grs_ 
1afwa 
1cewi 
1ecpa 
1gsa_ 
1lcl_ 
1pda_ 
1rec_ 
 

 
1thv_ 
1xgsa 
2hhma 
3mdda 
1amm_ 
1cfya 
1ede_ 
1gtma 
1lki_ 
1pdo_ 
1rgs_ 
1thx_ 
1xnb_ 
2hpda 
3minb 
1amp_ 
1chd_ 
1edg_ 
1hava 
1lkka 
1pea_ 
1rnl_ 
1tib_ 
1xvaa 
2i1b_ 
3nll_ 
1aoca 
1chka 
1edt_ 
1hfc_ 
1ltsa 
 

 
1pex_ 
1rro_ 
1tml_ 
1xyza 
2liv_ 
3sdha 
1atla 
1chma 
1erv_ 
1hgxa 
1mai_ 
1pgs_ 
1rsy_ 
1tupc 
1yasa 
2mtac 
5p21_ 
1atna 
1cmke 
1esc_ 
1hlb_ 
1maz_ 
1phe_ 
1rvaa 
1tys_ 
1ysc_ 
2naca 
5ptp_ 
1axn_ 
1cnv_ 
1exnb 
 

 
1hsba 
1mbd_ 
1php_ 
1sbp_ 
1ubi_ 
1ytw_ 
2pgd_ 
6gsva 
1bbpa 
1csee 
1ezm_ 
1htp_ 
1mkaa 
1pioa 
1sftb 
1uby_ 
256ba 
2phla 
6pfka 
1bdo_ 
1csga 
1fds_ 
1idaa 
1mlda 
1plc_ 
1sig_ 
1udii 
2abk_ 
2phy_ 
7rsa_ 
1beo_ 
 

 
1csn_ 
1fjma 
1ido_ 
1mml_ 
1pmi_ 
1slua 
1uxy_ 
2arca 
2pia_ 
8atcb 
1bfg_ 
1cyx_ 
1ftpa 
1ifc_ 
1mola 
1pne_ 
1smea 
1vcaa 
2ayh_ 
2pspa 
1bgc_ 
1deaa 
1fua_ 
1irk_ 
1nar_ 
1poa_ 
1smpi 
1vhh_ 
2bbvc 
2rn2_ 
1bhmb 
 

 
1dela 
1gai_ 
1itg_ 
1nbab 
1poc_ 
1sra_ 
1vhra 
1m85_ 
2rspb 
1bib_ 
1dfji 
1gcb_ 
1jkw_ 
1nox_ 
1pot_ 
1std_ 
1vid_ 
2cba_ 
2scpa 
1bmfg 
1dhr_ 
1gdoa 
1knb_ 
1noza 
1ppn_ 
1stfi 
1vin_ 
2ccya 
2sil_ 
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Table 4. The KP480 dataset used in this study 

 
 

2gep-3-AS 1edd-1-DOMAK 

1edmc-1-AUTO.1 

1ctn-1-AS.1 

1ctn-3-AS.1 

154l-1-AUTO.1 

1aazb-1-DOMAK 

1acx 

1add-1-AS 

1adeb-2-AUTO.1 

1ahb-2-GJB 

1alkb-1-AS 

1amp-1-AS 

1aorb-1-AS 

1aorb-3-AS 

1aozb-1-AS 

1aozb-2-AS 

1aozb-3-AS 

1asw-1-AUTO.1 

1avhb-3-AS 

1avhb-4-AS 

1ayab-1-GJB 

1azu 

1bam-1-AS 

1bbpa 

1bcx-1-DOMAK 

1bdo-1-AS 

1bet-1-DOMAK 

1bfg-1-DOMAK 

1bmv1 

1bmv2 

1bncb-1-AS 

1bncb-3-AS 

1bncb-4-AS 

1bovb-1-DOMAK 

1brse-1-DOMAK 

1bsdb-1-DOMAK 

 

1cbg-1-AS 

1cbh 

1cc5 

1gflb-1-AS 

1ghsb-1-GJB 1eft-3-DOMAK 1ctu-1-AUTO.1 

1gky-2-AS 1efud-2-AUTO.1 

1epbb-1-DOMAK 

1ctu-2-AUTO.1 

1eu1a-4-AUTO.1 

1cdta 

1gln-2-AS 

1gln-4-AS 

1cei-1-GJB 

1ese-1-AUTO.1 1cyx-1-AUTO.1 1celb-1-AUTO.1 

1gmpb-1-DOMAK 1esl-1-GJB 

1etu 

1daab-1-AS 

1daab-2-AS 

1cem-1-GJB 

1gnd-2-JAC 

1gog-1-AS.1 

1cewi-1-DOMAK 

1euu-2-JAC 1dar-3-AS 1cfb-1-AS 

1gog-2-AS.1 1fbab-1-DOMAK 1dfji-1-AUTO.1 

1dih-2-AS 

1cgu-2-GJB 

1gog-3-AS.1 

1gp1a 

1fbl-1-AS 1cgu-3-GJB 

1fc2c 1dik-1-AS.1 1cgu-4-GJB 

1gp2g-2-AS 1fdlh 1dik-2-AS.1 

1dik-3-AS.1 

2chbe-1-DOMAK 

1chd-1-AS 1gpc-1-AS 

1gpmd-4-AS 

1fdt-1-AS 

1dur 1dik-4-AS.1 1chkb-2-AUTO.1 

1gpmd-5-AS 1find-1-AUTO.1 1din-1-AS 

1dkza-1-JAC 

1chmb-1-DOMAK 

1cksc-1-AUTO.1 1grj-1-AS 

1grj-2-AS 

1find-2-AUTO.1 

1fjmb-2-AS 1dlc-1-AS.1 1clc-1-AS.1 

1gtmc-2-AUTO.1 1fkf 1dlc-3-AS.1 

1dnpb-1-AUTO.1 

1clc-2-AS.1 

1clc-3-AS.1 1gtqb-1-AUTO.1 

1gym-1-AUTO.1 

1fnd 

1fua-1-AUTO.1 1dnpb-2-AUTO.1 1cnsb-1-AUTO.1 

1han-1-AUTO.1 1fuqb-1-AUTO.1 1dpgb-1-AUTO.1 

1dpgb-2-AUTO.1 

1colb-1-DOMAK 

1comc-1-DOMAK 1han-2-AUTO.1 

1hcgb-1-AS 

1fuqb-2-AUTO.1 

1fuqb-3-AUTO.1 1dsbb-2-AUTO.1 1cpcl-1-DOMAK 

1hcra-1-DOMAK 1fxia 1dts-1-AUTO.1 

1dupa-1-AS 

1cpn-1-DOMAK 

1cqa-1-AUTO.1 1hip 

1hiws-1-AS 

1gal-2-AS 

1gal-3-AS 1dynb-1-AUTO.1 1crn 

1hjrd-1-AUTO.1 1gcb-2-AS 1eca 

1eceb-1-AUTO.1 

1csei 

1csmb-1-AUTO.1 1hmpb-1-AUTO.1 

1hnf-1-AS 

1gcmc-1-AUTO.1 

1gd1o 1ecl-1-AS 1ctf-1-DOMAK 

1hnf-2-AS 1gdj 1ecl-4-AS 

1ecpf-1-AUTO.1 

2cthb-1-DOMAK 

1ctm-2-DOMAK 2gep-2-AS 

   

1horb-1-AUTO.1 
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Table 4. The KP480 dataset used in this study (continued) 

 
 

 

1hplb-1-AS 

1hplb-2-AS 

1hslb-2-DOMAK 

1htrp-1-AS 

1hvq-1-AUTO.1 

1hxn-1-AS 

1hyp-1-DOMAK 

1ignb-2-GJB 

1il8a 

1ilk-1-AS 

1ilk-2-AS 

1inp-1-AS.1 

1inp-2-AS.1 

1irk-1-AS 

1irk-2-AS 

1isab-1-GJB 

1isab-2-GJB 

1isub-1-DOMAK 

1jud-1-GJB 

1kimb-1-AUTO.1 

1knb-1-AS 

1krca-1-AUTO.1 

1krcb-1-AS 

1kte-1-AS 

1ktq-1-AUTO.1 

1kuh-1-AS 

1l58 

1lap 

1latb-1-AUTO.1 

1lba-1-DOMAK 

1lbu-1-AS 

1lbu-2-AS 

 

 

1lehb-3-AS 

1lib-1-DOMAK 

1lis-1-DOMAK 

1lki-1-AS 

1lmb3 

1lpba-1-DOMAK 

1lpe-1-DOMAK 

1mai-1-JAC 

1masb-1-AUTO.1 

1mdam-1-DOMAK

1mdta-1-AS 

1mdta-2-AS 

1mdta-3-AS 

1mjc-1-DOMAK 

1mla-2-AS.1 

1mmoh-1-AS 

1mns-2-AS 

1mof-1-AS 

1mrrb-1-DOMAK 

1mrt 

1mspb-1-AS 

1nal4-1-AUTO.1 

1nar-1-DOMAK 

1nbac-1-AS 

1ncg-1-AUTO.2 

1ndh-1-AS 

1ndh-2-AS 

1nfp-1-AS 

1nga-2-AS.1 

1nlkl-1-DOMAK 

1nol-1-AUTO.2 

1nox-1-GJB 

 

 

1nozb-2-AUTO.1 

1oacb-1-AS.1 

1oacb-2-AS.1 

1oacb-3-AS.1 

1oacb-4-AS.1 

1onrb-1-AUTO.1 

1otgc-1-AS 

1ovb-1-GJB 

1ovoa 

1oxy-3-AS 

1oyc-1-AS 

1paz 

1pbp-2-DOMAK 

1pbwb-1-AS 

1pda-2-AS 

1pda-3-AS 

1pdnc-2-AS 

1pdo-1-GJB 

1pga-1-DOMAK 

1pht-1-AUTO.1 

1pii-2-DOMAK 

1pkyc-2-AUTO.1 

1pkyc-3-AUTO.1 

1pmi-2-GJB 

1pnmb-2-AS 

1pnt-1-AS 

1poc-1-DOMAK 

1powb-1-DOMAK 

1powb-2-DOMAK 

1powb-3-DOMAK 

1ppi-2-AS 

1ppt 

 

 

1ptr-1-AUTO.1 

1ptx-1-AS 

1pyp 

1pyta-1-AS 

1qbb-1-AUTO.1 

1qbb-2-AUTO.1 

1qbb-3-AUTO.1 

1qbb-4-AUTO.1 

1qrdb-1-AUTO.1 

1r092 

1rbp 

1rec-1-DOMAK 

1rec-2-DOMAK 

1regy-1-AUTO.1 

1reqc-2-AS 

1rhd 

1rhgc-1-DOMAK 

1rie-1-GJB 

1ris-1-DOMAK 

1rlds-1-DOMAK 

1rlr-1-JAC 

1rlr-2-JAC 

1rpo-1-AUTO.1 

1rsy-1-AS 

1rvvz-1-AUTO.1 

1s01 

1scud-1-AS 

1scue-2-AS 

1scue-3-AS 

1seib-1-AUTO.1 

1seib-2-AUTO.1 

1sesa-2-AS 

 

 

1sfe-1-AS 

1sfe-2-AS 

1sftb-2-AS 

1sh1 

1smnb-1-AUTO.1 

1smpi-1-AS 

1spbp-1-AS 

1sra-1-AS 

1srja-1-DOMAK 

1stfi-1-DOMAK 

1stme-1-AUTO.1 

1svb-1-AS 

1svb-2-AS 

1tabi-1-DOMAK 

1taq-2-AS 

1tcra-2-GJB 

1tfr-1-GJB 

1thtb-1-AUTO.1 

1thx-1-AUTO.1 

1tie-1-DOMAK 

1tif-1-AS 

1tig-1-AUTO.1 

1tml-1-AS 

1tndb-2-DOMAK 

1tnfa 

1tplb-3-AS 

1trb-2-AS 

1trh-1-AS 

1trkb-1-AS 

1trkb-3-AS 

1tsp-1-AS 

2tssb-2-DOMAK 
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Table 4. The KP480 dataset used in this study (continued) 

 
 

 

1tul-1-JAC 

1tupc-1-AUTO.1 

1ubq 

1udh-1-AUTO.1 

1umub-1-AS 

1vcab-1-AUTO.1 

1vcab-2-AUTO.1 

1vcc-1-AS 

1vhh-1-AS 

1vhrb-2-AUTO.1 

1vid-1-JAC 

1vjs-3-GJB 

1vmob-1-AS 

1vnc-1-JAC 

1vokb-1-AS 

1vpt-1-JAC 

1wapv-1-AUTO.1 

1whi-1-AS 

1bksa 

1bksb 

1xvab-1-GJB 

1yptb-1-AUTO.1 

1yrna-2-AS 

1znbb-1-AS 

1zymb-2-AUTO.1 

256ba 

2aaib-2-DOMAK 

2aat 

2abk-2-AS 

2admb-1-AUTO.1 

2admb-2-AUTO.1 

2afnc-1-AUTO.1 

 

 

2afnc-2-AUTO.1 

2ak3a 

2alp 

2asr-1-DOMAK 

2bat-1-GJB 

2bltb-2-AUTO.1 

2bopa-1-DOMAK 

2cab 

2ccya 

2cmd-2-GJB 

2cpo-1-AUTO.1 

2cyp 

2dkb-2-AS 

2dln-1-AS 

2dln-3-AS 

2dnja-1-AS 

2ebn-1-AS 

2end-1-DOMAK 

2fox 

1iqz 

2gbp 

1a45 

2glsa 

2gn5 

2gsq-2-AS 

2hft-1-AS 

2hft-2-AS 

2hhmb-1-DOMAK

2hhmb-2-DOMAK

2hipb-1-DOMAK 

2hmza 

2hpr-1-DOMAK 

 

 

2i1b 

2ltna 

2ltnb 

2mev4 

2mtac-1-AS 

2nadb-2-AS.1 

2npx-3-AS.1 

2olba-2-AS 

2olba-3-AS 

2or1l 

2paba 

2pgd-1-AUTO.1 

2pgd-2-AUTO.1 

2phh 

2phy-1-GJB 

2polb-1-AS 

2reb-1-DOMAK 

2reb-2-DOMAK 

2rsla-1-GJB 

2rspa 

2scpb-1-DOMAK 

2sil-1-AS 

2sns 

2sodb 

2spt-1-DOMAK 

2spt-2-DOMAK 

2tgi-1-DOMAK 

2tgpi 

2tmdb-3-AS 

2tmvp 

2trt-1-AUTO.1 

2tsca 

 

 

2utga 

2wrpr 

2yhx-3-DOMAK 

3ait 

1cyo 

4bcl-1-DOMAK 

3blm 

3cd4 

3chy-1-DOMAK 

3cla 

3cln 

3cox-1-AS.1 

3cox-2-AS.1 

3ecab-1-AS 

3ecab-2-AS 

1g6na 

3hmga 

3hmgb 

3icb 

3inkd-1-DOMAK 

3mddb-1-AS 

3mddb-2-AS 

3mddb-3-AS 

3pgk-2-AS 

3pgm 

3pmgb-1-AS 

3pmgb-2-AS 

3pmgb-3-AS 

3pmgb-4-AS 

3rnt 

3tima 

4bp2 

 

 

4fisb-1-DOMAK 

4gr1 

4pfk 

4rhv1 

4rhv3 

4rhv4 

4rxn 

4sdha 

4sgbi 

4ts1a 

4xiaa 

5cytr 

5er2e 

5ldh 

5lyz 

5sici-1-DOMAK 

6acn 

6cpa 

6cpp 

6cts 

6dfr 

6hir 

6tmne 

7cata 

7icd 

7rsa 

821p-1-DOMAK 

8adh 

9apia 

9apib 

9pap 

9wgaa 
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Table 5. The hydropathy index of the standard amino acids. 

 
 
 
 
 

Amino acid  Hydropathy index 
A 1.8 
C 2.5 
D -3.5 
E -3.5 
F 2.8 
G -0.4 
H -3.2 
I 4.5 
K -3.9 
L 3.8 
M 1.9 
N -3.5 
P 1.6 
Q -3.5 
R -4.5 
S -0.8 
T -0.7 
V 4.2 
W -0.9 
Y -1.3 
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Table 6. The classification of the standard amino acids by R groups. 

 
 
 
 

Class Amino acid 
Nonpolar, aliphatic R groups G 
 A 
 P 
 V 
 L 
 I 
 M 
Aromatic R groups F 
 Y 
 W 
Polar, uncharged R groups S 
 T 
 C 
 N 
 Q 
Positively charged R groups K 
 H 
 R 
Negatively charged R groups D 
 E 
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Table 7. Prediction accuracies and MCC values using individual local descriptors with RS126 
datasets in 2-state prediction model. 

 
 
 

Features Threshold Qtotal Qb Qe MCC 

PSSM 25 75.33 76.38 74.11 50.43 

Hydropathy indexes 25 65.73 80.43 48.61 30.79 

Secondary structure profile 25 67.80 68.93 66.46 35.34 

Amino acid in binary coding 25 70.59 74.49 66.06 40.70 

Amino acid properties in binary coding 25 67.34 69.51 64.81 34.31 

Local amino acid composition 25 58.22 72.67 41.39 14.82 

Local amino acid properties composition 25 58.04 75.85 37.30 14.27 

Residue size 25 55.8 96.19 8.68 10.18 
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Table 8. Prediction accuracies and MCC values using comprehensive local descriptors with RS126 
datasets in 2-state prediction model. 

 
 
 

Features Threshold Qtotal Qb Qe MCC 

PSSM+H 25 76.45 78.96 73.52 52.57 

PSSM+SS 25 75.98 79.06 72.40 51.60 

H+SS 25 68.40 70.05 66.48 36.50 

PSSM+H+SS 25 77.23 78.53 75.72 54.23 

PSSM+H+SS+AA 25 77.78 79.44 75.84 55.29 

PSSM+H+SS+PROP 25 77.40 79.15 75.36 54.53 

PSSM+H+SS+AA+PROP 25 77.33 78.64 75.80 54.42 

PSSM+H+SS+GAA 25 77.28 78.48 75.88 54.33 

PSSM+H+SS+GPROP 25 77.15 78.29 75.82 54.07 

 
 
 
 
 
*H: hydropathy indexes 
*SS: secondary structure profile 
*AA: amino acid in binary coding 
*PROP: amino acid properties in binary coding 
*GAA: Global amino acid composition 
*GPROP: Global amino acid properties composition
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Table 9. Prediction accuracies of the benchmark tests on the RS126, NM215 and KP480 datasets in 
2-state prediction model and its comparison with other methods 

 
 
 
 
 

State threshold Year Method 

25% 20% 16% 5% 0% 9,36%

[3]1994 PHDacc(RS126)  - - 74.8 - 86.0 57.5 

2000 Jnet(CB480)[7] 76.2 - - 79.8 86.5 - 

2002 BRNNs (PDB-1086)[4] 77.2 77.5 - 81.2 86.5 - 

2003 PP(RS-126)[23] - - 75.1 - - 57.9 

2003 NETASA(NM-215)[24] 70.3 - - 74.6 87.9 - 

2004 SVMpsi (RS126)[13] 76.8 - 77.8 79.8 86.2 59.6 

2004 SVMpsi(KP480)[13] 78.7 - 80.7 82.4 87.4 64.5 

2005 Fuzzy k-NN(RS-126)[14] 78.3 - 79.0 82.2 87.2 63.8 

2005 SVR12(RA-603)[10] 76.7 76.8 - 76.5 - - 

2005 WE(2148 chains)[1] - 80.0 - - - - 

 PSSM+H+SS (RS126) 77.2 77.6 77.9 81.4 88.4 60.2 

 PSSM+H+SS+AA (RS126) 77.8 77.8 78.1 80.0 88.8 61.6 

 PSSM+H+SS (NM215) 78.3 77.7 87.2 87.4 87.0 62.7 

 PSSM+H+SS (KP480) 78.0  78.5 81.3 87.0 62.3 
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Table 10. MCC values of the benchmark tests on the RS126, NM215 and KP480 datasets in 2-state 
prediction model and its comparison with other methods 

 
 
 
 
 

State threshold Year Method 

25% 20% 16% 5% 0% 9,36% 

[3]1994 PHDacc(RS126)  - - - - - - 

2000 Jnet(CB480)[7] - - - - - - 

2002 BRNNs (PDB-1086)[4] - - - - - - 

2003 PP(RS-126)[23] - - 48.5 - - 53.0 

2003 NETASA(NM-215)[24] - - - - - - 

2004 SVMpsi (RS126)[13] - - - - - - 

2004 SVMpsi(KP480)[13] - - - - - - 

2005 Fuzzy k-NN(SCOP-229)[14] 55.4 - 56.0 54.1 43.1 56.0;19.9;50.8 

2005 SVR12(RA-603)[10] - - - - - - 

2005 WE(2148 chains)[1] - 60.0 - - - - 

 PSSM+H+SS (RS126) 54.2 55.2 54.7 49.7 22.2 52.0;17.0;48.4 

 PSSM+H+SS+AA (RS126) 55.3 55.6 55.2 45.7   31.7 53.2;19.3;50.8 

 PSSM+H+SS (NM215) 56.0 56.5 34.2 36.4 38.3 56.3;20.9;50.7 

 PSSM+H+SS (KP480) 55.1  56.6 53.2 35.8 55.2;19.9;50.9 
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Table 11. MAE and Pearson’s “r” values of the benchmark tests on the RS126 and KP480 datasets 
in 10-state prediction model 

 
 
 

Year Method Data Set MAE R Accuracy 

RS-126 19.4 0.477 71%(16%) 

Carugo-338 19.0 0.490  

2003 RVP P

16

 

CB-502 18.8 0.482  

CB-502 18.5 0.520  2004 SVR[25] 

 YH-1277 17.0 0.617 74.6%(15%)

SABLE[5] RA-603 15.3-15.8 0.64-0.67 77%(15%) 

 

182005 SVR12 RA-603 15.8-16.6 0.62-0.63 75.8(15%) 

RS-126 15.2 0.506 72.8(20%) PSSM+H+SS  

KP-480 14.1 0.537 74.4(20%) 
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