國立交通大學

生物資訊研究所

碩士論文

從蛋白質序列預測殘基相對溶劑可接觸性

Prediction of Protein Relative Solvent Accessibility from Amino Acid Sequence

研究生:徐蔚倫

指導教授:黃鎮剛 教授

中華民國九十四年七月

從蛋白質序列預測殘基相對溶劑可接觸性

Prediction of Protein Relative Solvent Accessibility from Amino Acid Sequence

研究生:徐蔚倫

指導教授:黃鎮剛

Student : Wei-Lun Hsu

Advisor : Jenn-Kang Hwang

國 立 交 通 大 學 生 物 資 訊 研 究 所 碩 士 論 文

A Thesis Submitted to Institute of Bioinformatics College of Biological Science and Technology National Chiao Tung University in partial Fulfillment of the Requirements for the Degree of Master

In

Bioinformatics

July 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年七月

從蛋白質序列預測殘基相對溶劑可接觸性

學生:徐蔚倫

指導教授:黃鎮剛

國立交通大學生物資訊研究所碩士班

中文摘要

從序列資訊來預測蛋白質三級結構是目前生物學研究上非常重要的目標之一,而正確的預測蛋白質相對溶劑可接觸性則可以提供蛋白質三級結構相關的資訊。蛋白質相對溶劑可接觸性(RSA)代表著蛋白質上某一個氨基酸和溶劑接觸的程度。通常蛋白質的結合處會位於它的表面,因此,若能正確的預測蛋白質位於表面的氨基酸位置,就能夠更進一步的瞭解該蛋白質的功能。此外,一個蛋白質位於表面和包埋在蛋白質內部的氨基酸分佈,也被觀察到和蛋白質在細胞內的位置有很大的關連性。

我的方法是利用支持向量機將局部和整體的蛋白質資訊,其中最好的 結果是利用位置加權矩陣(PSSM)、二級結構特徵值(secondary structure profile)和氨基酸親水程度(hydropathy indexes)作為輸入向量。這個方法對於 RS126 資料群在以 25%為分類閾值時,可以達到 77.2%,和最近幾年的在這 方面的研究成果 75%-78.3% 達到相近的程度,而在將 RSA 分成十類的預測 結果中也可達到 15.2% 平均絕對誤差,預測值和實驗值達到 0.51 的相關性。

i

Prediction of Protein Relative Solvent Accessibility from Amino Acid Sequence

Student : Wei-Lun Hsu

Advisor : Jenn-Kang Hwang

Institute of Bioinformatics, National Chiao Tung University

Abstract

The prediction of the three-dimensional structure from its sequence is probably one of the most important goals of modern biology. The accurate prediction of protein relative solvent accessibility is useful for the prediction of tertiary structure of a protein. Amino acid solvent accessibility is the degree to which a residue in a protein is accessible to a solvent molecule. Because the binding sites of a protein are usually located on its surface, accurately predicting the surface residues can be regarded as an important step toward determining its function. On the other hand, it has been observed that the distribution of surface residues of a protein is correlated with its subcellular environments; consequently, information of surface residues may improve the prediction of protein subcellular localization.

Presently, out best method is based on the support vector machines using as the input feature vectors, the sliding window that includes the local environment descriptors such as PSSM, secondary structure profile and hydropathy indexes. In my work, relative solvent accessibility based on a 2-state model, for 25%, 16%, 5%, and 0% accessibility are predicted at 77.2%, 77.1%, 80.4%, and 88.4% accuracy, respectively. Furthermore, solvent accessibility prediction methods have in recent years reached accuracy in the range of 75.0-78.3% at 25% threshold. And the results based in a 10-state model can reach 15.2% mean absolute error and 0.51 correlations.

誌 謝

在求知的路上總是要一直不斷的經歷各種學習的過程,才能不斷的成 長進步。在研究所二年的時間裡,各方面我都是收穫良多,真的很慶幸能 身處在這樣一個優質的學習環境中體驗研究生生活。

首先,很感謝我的指導教授黃鎮剛老師,帶領我進入研究的領域,不 但提供我們一個良好獨立的研究環境,更不斷的在我研究遇到問題、瓶頸 時,給予我適當的建議與協助。在老師身上,我學習到的不只是研究方面 的知識和方法,更重要的是一個學者對求知的熱誠和執著態度。

另外,也很謝謝實驗室的夥伴們,除了生活上的彼此協助照應、精神 上的鼓勵之外,很多研究上的問題也是透過大家的討論和互相協助,才能 夠順利的解決,讓我的研究能如期完成。

最後,我也要感謝我的家人,在我求學路上,一直全力支持我,讓我 能夠在研究上全力以赴、順利完成學業。僅以此論文作為我碩士研究生涯 的總結,並將此獻給所有關心我及我所誠摯感謝的人。

iii

中文摘要		i
英文摘要		ii
誌謝		iii
目錄		iv
表目錄		vi
圖目錄		vii
1.	Introduction	1
2.	Material and Methods	3
2.1	Definition and thresholds of solvent accessibility	3
2.2	Training and data sets	4
2.3	Feature vectors	4
2.3.1	Local descriptors	4
2.3.1.1	PSSM (position-specific scoring matrices) ······	5
2.3.1.2	Secondary structure profiles	5
2.3.1.3	Hydropathy indexes ·····	5
2.3.1.4	Amino acid in binary coding	6
2.3.1.5	Amino acid properties in binary coding	6
2.3.1.6	Local amino acid composition ·····	6
2.3.1.7	Local amino acid properties composition	6
2.3.1.8	Residue size ·····	6
2.3.2	Global descriptors	7
2.3.2.1	Global amino acid composition	7
2.3.2.2	Global amino acid properties composition	7
2.4	Performance measures	7
2.4.1	In 2-state prediction and 3-state prediction	7
2.4.2	In 10-state prediction	8

2.5	Support vector machine	8
3.	Server Development and Administration System Overview	10
4.	World Wide Web Interface	11
4.1	Models trained by the three benchmark data sets	11
4.2	Models of different state thresholds	11
4.3	Query sequence	11
4.4	Website	11
5.	Results and Discussion	12
5.1	Prediction accuracies and MCC values using individual local descriptors	
	with RS126 dataset in 2-state prediction model	12
5.2	Prediction accuracies and MCC values using comprehensive local	
	descriptors with RS126 dataset in 2-state prediction model	12
5.3	Prediction accuracies and MCC values of the benchmark test on the RS126,	
	NM215 and KP480 datasets in 2-state prediction model and its comparison	
	with other methods	13
5.4	MAE and Pearson's "r" values of the benchmark test on the RS126 and	
	KP480 datasets in 10-state prediction model	13
6.	Conclusion	15
參考文獻		43

圖目錄

Figure 1	An outline of the PSSM input vectors, which shows how the PSI-BLAST
	score matrices are processed 16
Figure 2	The input vectors called "secondary structure profiles" 17
Figure 3	The input vectors called "hydropathy indexes" 18
Figure 4	The input vectors called "amino acid in binary coding" 19
Figure 5	The input vectors called "amino acid properties in binary coding" 20
Figure 6	The input vectors called "local amino acid composition" 21
Figure 7	The input vectors called "local amino acid properties composition" 22
Figure 8	The input vectors called "residue size"
Figure 9	The input vectors called "global amino acid composition" 24
Figure 10	The input vectors called "global amino acid properties composition" 25
Figure 11	The figure shows the components of SAS prediction server, and most of
	the connection was built using the Perl language and CGI package 26
Figure 12	The World Wide Web interface of the RSA prediction server
Figure 13	The standard output webpage of prediction
	The second se

表目錄

Table 1	Maximum value of solvent accessible surface areas of each kind of residue	
	calculated by MOLSIM program	29
Table 2	The RS126 dataset used in this study	30
Table 3	The NM215 dataset used in this study	31
Table 4	The KP480 dataset used in this study	32
Table 5	The hydropathy index of the standard amino acids	35
Table 6	The classification of the standard amino acids by R groups	36
Table 7	Prediction accuracies and MCC values using individual local descriptors	
	with RS126 datasets in 2-state prediction model	37
Table 8	Prediction accuracies and MCC values using comprehensive local	
	descriptors with RS126 datasets in 2-state prediction model	38
Table 9	Prediction accuracies of the benchmark tests on the RS126, NM215 and	
	KP480 datasets in 2-state prediction model and its comparison with other	
	methods.	39
Table 10	MCC values of the benchmark tests on the RS126, NM215 and KP480	
	datasets in 2-state prediction model and its comparison with other	
	methods	40
Table 11	MAE and Pearson's "r" values of the benchmark tests on the RS126 and	
	KP480 datasets in 10-state prediction model	41

1. Introduction

Knowledge of protein's three-dimensional (3D) structure is essential for a full understanding of its functionality. However, only a small fraction of the enormous number of sequenced proteins has their structure determined. In order to reduce the gap between sequence and structure, developing reliable and applicable structure prediction methods has become a more important task in computational biology. Thus simplification of the problem from 3D structures to 1D feature may be useful as a first-step. The relative solvent accessibility of an amino acid in protein is a real value that represents the solvent exposed surface area of this residue in relative terms. The prediction of secondary structure is more familiar and well-defined aspect of the problem and the prediction of residue solvent accessibility is another aspect. Secondary structures and solvent accessibilities of amino acid residues give a useful insight into the structure and function of a protein. In particular, the knowledge of solvent accessibility has assisted alignments in regions of remote sequence identity for threading.

In addition to providing insight into the conformation of 3D structure, prediction of residue solvent accessibility has many other applications. For example, it has been observed that the distribution of surface residues of a protein is correlated with its subcellular environment. Many studies[1] have suggested that hydrophobic core residues are likely sites of deleterious mutations. The residues in site of deleterious mutations may be critical for protein stability. Wang and Molt[2] found that the vast majority of disease mutations affected protein stability rather than function and could be predicted using straightforward rules.

There are various approaches have been developed, typically by examining a window of residues centered at the test residue and using sequence input or sequence profile as input vectors. These include neural network[3-7], Bayesian statistics[8], linear regressions[9, 10],

information theory[11], support vector machines[12, 13] and fuzzy k-nearest neighbor method[14]. However, in contract to the secondary structure, there is no widely accepted criterion for classifying the experimentally determined solvent accessibility into a finite number of discrete states such as buried, intermediate and exposed states. Also, the prediction accuracies of solvent accessibility are lower than those for secondary structure prediction, since the solvent accessibility is less conserved than secondary structure[3], although there has been some progress recently.

In this work, relative solvent accessibility based on a 2-state model in RS126 dataset, for 25%, 16%, 5%, and 0% accessibility are predicted at 77.2%, 77.1%, 80.4%, and 88.4% accuracy, respectively. And the results based in a 10-state model can reach 15.2% mean absolute error and 0.51 correlations.

2. Material and Methods

2.1 Definition and thresholds of solvent accessibility

The relative solvent accessibility of an amino acid is the degree that present the residue in a protein is accessible to solvent molecules. The relative solvent accessibility can be calculated by the formula as follows,

$$\operatorname{Re} lACC = 100 \cdot \frac{ACC}{MaxACC} \tag{1}$$

RelACC : relative solvent accessibility

ACC : solvent accessible surface areas

MaxACC : maximum value of solvent accessible surface areas of each kind of residue

Where ACC of ith residue is the solvent accessible surface areas calculated by the dictionary of protein secondary structure program (DSSP) [15], and the MaxACC are taken from MOLSIM program (Table 1). RelACC is derived from normalizing ACC by dividing the DSSP accessibility by the maximum accessibility of amino acid residues corresponding to accessibility for a Gly-X-Gly extended tripeptide conformation. RelACC can hence adopt values between 0% and 100%, with 0% corresponding to a fully buried and 100% to a fully accessible residue, respectively.

Various thresholds have been used to classify residues as buried and exposed (2-state prediction) or buried, intermediate and exposed (3-state prediction) in previously published results. In this work, thresholds of 0, 5, 16, 25% for buried/exposed in the 2-state predictions, thresholds of 9, 36% for buried/intermediate/exposed in the 3-state predictions and 10, 20, 30, 40, 50, 60, 70, 80, 90% for classifying residues in 10 classes are used.

2.2 Training and data sets

The solvent accessibility was predicted for three sets of proteins in order to evaluate the performance of our method. They are a 126-protein dataset of Rost and Sander[3] (Table 2), a set of 215 protein chains selected by Naderi-Manesh[11] (Table 3), and 480 proteins from Kim and Park[13] (Table 4). Each of these data sets consists of protein sequence with less than 25% homology. To perform 7-fold cross validation test, we randomly divided these data sets into 7 groups, each containing a roughly equal number of protein sequences. One group was chosen as the testing set, while others were merged into the training set.

2.3 Feature vectors

In the first phase, we have individually benchmarked 8 different local descriptor types in prediction experiment in RS126 dataset. Our results revealed that the five best-performing sets of local descriptors were using PSSM (position-specific scoring matrices), secondary structure profiles, hydropathy indexes, amino acid composition and amino acid properties by their R groups. In second phase, the five top-performing local descriptors were combined to obtain a new method with improved performance. And then, we add 2 different global descriptors types into the method to see if global descriptors are useful for solvent accessibility prediction.

2.3.1 Local descriptors

We represent the local environment of sequences by using sliding window coding scheme. Increasing the window size can provide more local information and it is reasonable to expect that prediction accuracy would increase with the enlargement of the window size. But the past research[12] found that window size has a very limited effect on prediction accuracy.

- 4 -

Therefore, we followed the paper and selected 15 for the window size for the prediction of protein relative solvent accessibility

2.3.1.1 PSSM (position-specific scoring matrices)

We use PSI-BLAST[16] against non-redundant protein sequence database for 5 iterations to produce PSSM, which has 20*m elements, where m is the length of query sequences and each element represents the log-likelihood of that specific residue substitution at that position in the template (based on a weighted average of BLOSUM62 matrix scores for the given alignment position). PSI-BLAST uses a simple but effective scheme for weighting the contribution of locally different numbers of sequences to the resulting profiles. The profile matrix elements are scaled to the required 0-1 range by using the standard logistic function as below, where x of the equation is the raw profile matrix value.

$$Score = \frac{1}{1 + e^{-x}} \tag{2}$$

Then, the input vector has 20*15 components (Illustrated in Figure 1). Each component can be expressed as $PSSM_{ijk}$, where i is the predicted residue, j is the location in the sliding window and k is the type of amino acid.

2.3.1.2 Secondary structure profiles

The secondary structure profile has 3*m elements. The elements describe the probabilities of each residue in the three kinds of secondary structures which are Helix, Sheet and Coil. These profiles were generated from the PSIPRED[17] program, and each input vector has 3*15 components (Illustrated in Figure 2). Each component can be expressed as SS_{ijk} , where i is the predicted residue, j is the location in the sliding window and k is the type of secondary structure including helix,

strand and coil.

2.3.1.3 Hydropathy indexes

In this study, we use the hydropathy indexes to represent each residue (Table 5). In general, the hydropathy indexes can be used to measure the tendency of an amino acid to seek an aqueous environment or a hydrophobic environment. The hydropathy indexes refer to the book "Lehninger Principles of Biochemistry". Each input vector has 1*15 components (Illustrated in Figure 3). Each component can be expressed as H_{ij}, where i is the predicted residue and j is the location in the sliding window.

2.3.1.4 Amino acid in binary coding

AND REAL PROPERTY.

2.3.1.5 Amino acid properties in binary coding

Knowledge of chemical properties of the standard amino acids is central to an understanding of biochemistry. The chemical properties can be simplified by grouping the standard amino acids into 5 main classes based on the properties of their R groups, and others into the sixth class.(Table 6) The classification refer to the book "Lehninger Principles of Biochemistry". Each input vector has 6*15 components (Illustrated in Figure 5). Each component can be expressed as PROP_{ijk}, where i is the predicted residue, j is the location in the sliding window and k is the property of amino acid.

2.3.1.6 Local amino acid composition

The amino acid percentage is the percentage of each residue in the sliding window. Each input vector has 20 components (Illustrated in Figure 6). Each component can be expressed as LAA_{ik}, where i is the predicted residue and k is the type of amino acid.

2.3.1.7 Local amino acid properties composition

The amino acid properties percentage is the percentage of each residue property in the sliding window. Each input vector has 6 components (Illustrated in Figure 7). Each component can be expressed as $LPROP_{ik}$, where i is the predicted residue, j is the location in the sliding window and k is the property of amino acid.

annun .

2.3.1.8 Residue size

We use the volume of amino acid as the input vector (Table 1). Each input vector has 1*15 components (Illustrated in Figure 8). Each component can be expressed as R_{ij} , where i is the predicted residue and j is the location in the sliding window.

2.3.2 Global descriptors

We also represent the global environment of sequences by using global sequence composition and global character composition method.

2.3.2.1 Global amino acid composition

The amino acid percentage is the percentage of each residue in a given protein sequence totally. Each input vector has 20 components (Illustrated in Figure 9). Each component can be expressed as GAA_k, where k is the type of amino acid.

2.3.2.2 Global amino acid properties composition

The amino acid properties percentage is the percentage of each residue property in a given protein sequence totally. Each input vector has 6 components (Illustrated in Figure 10). Each component can be expressed as $GPROP_k$, where k is the property of amino acid.

2.4 Performance measures

In order to compare with other works, we use different measures to evaluate 2-state, 3-state and 10-state prediction methods as below.

2.4.1 In 2-state prediction and 3-state prediction

In this work, two measures are used to evaluate the performance of prediction methods. One is accuracy, the percentage of correctly classified residues, and the other is Matthew's correlation coefficients (MCC). These measures can be calculated by the following equation:

$$Accuracy = \frac{\sum_{i}^{c} p_i}{N}$$
(3)

$$MCC_{i} = \frac{p_{i}n_{i} - o_{i}u_{i}}{\sqrt{(p_{i} + o_{i})(p_{i} + u_{i})(n_{i} + o_{i})(n_{i} + u_{i})}}$$
(4)

Where N is the total number of residues, and c is the class number. And p_i , n_i , o_i and u_i are the number of true positives, true negatives, false positives and false negatives for class i,

respectively. The MCCs have the same value for the two classes in the case of the 2-state prediction.

2.4.2 In 10-state prediction

Here, we applied several different measures, including the mean absolute error (MAE) of prediction defined as the absolute difference between the predicted and experimental value of relative solvent accessibility, per residue.

$$MAE = \frac{\sum \left| (ASA)_{pred} - (ASA)_{exp} \right|}{N}$$
(5)

Where summation is carried out for all residues and N is the total number of predictions. In addition, Pearson's "r" is also used in some places, and it is calculated as the ratio of the covariance between the predicted and experimental relative solvent accessibility as below.

$$r = \frac{N\left(\sum (ASA)_{pred} (ASA)_{exp}\right) - \left(\sum (ASA)_{pred}\right)\left(\sum (ASA)_{exp}\right)}{\sqrt{\left[N\sum (ASA)_{pred}^2 - \left(\sum (ASA)_{pred}\right)^2\right]\left[N\sum (ASA)_{exp}^2 - \left(\sum (ASA)_{exp}\right)^2\right]}}$$
(6)

2.5 Support vector machine

Support vector machine (SVM), first proposed by Vapnik and co-workers[18] based on statistical learning theory, has quickly become one of the most popular classification and regression methods, due to its flexibility in choosing a similarity function, the ability to handle large feature spaces and accuracy. It has been used in various area, such as protein structure prediction[19], protein fold recognition[20] and microarray data analysis[21].

An SVM finds a nonlinear decision function in the input space by implicitly mapping the data into a linear separable higher dimensional feature space and separating the data there by maximizing the geometric margin and minimizing the training error at the same time. Yuan et al.⁵ implemented SVM^{light} to predict solvent accessibility. Here, we use LIBSVM version 2.6, which is a multi-class SVM developed by Chang and Lin.[22]

3. Server Development and Administration System Overview

Figure 2 shows the flowchart of RSA prediction server, and most of the process was built using the Perl language and CGI package. And the prediction result can automatically show on the webpage when the relative solvent accessibility prediction was finished.

4. World Wide Web Interface

4.1 Models trained by the three benchmark data sets

User can select an appropriate training dataset of the three benchmark datasets. The consuming time will increase depending on the dataset size.

4.2 Models of different state thresholds

User can choose a 2-state model (25%), 3-state model (9%;36%) or 10-state model (10%;20%;30%;40%;50%;60%;70%;80%;90%) for different purposes.

4.3 Query sequence

User can input their query sequence in FASTA format or directly upload the FASTA format file to the SAS prediction server.

4.4 Website

The RSA prediction server is available at http://e100.life.nctu.edu.tw/~weilun/. Figure3 shows the World Wide Web interface of RSA prediction server. Figure 4 shows the standard output webpage of prediction.

5. Results and Discussion

5.1 Prediction accuracies and MCC values using individual local descriptors with RS126 dataset in 2-state prediction model

In the first phase, the performance was evaluated in terms of Q_{total} , Q_b , Q_e and MCC (Table 7). Of the 8 local descriptors, 5 were ranging 65.73% to 75.33%. They are PSSM, amino acid composition, secondary structure profiles, character information and hydropathy indexes in order.

5.2 Prediction accuracies and MCC values using comprehensive local descriptors with RS126 dataset in 2-state prediction model

In the second phase, we combined the top 5 best-performing local descriptors and 2 global descriptors in many kinds of combinations. In Table 8 we show the results.

1111

Here, we found that PSSM involved more useful information in relative solvent accessibility prediction. The hydropathy indexes performed worse than secondary structure profiles in the individual test, but when combining with PSSM, the hydropathy indexes could increase the prediction accuracy more than the secondary structure profiles did. The combination of these three input vectors can reach the accuracy rate at 77.23% in RS-126 dataset. However, amino acid composition and amino acid properties also seem to offer duplicated information with PSSM, but the amino acid composition could slightly improve the prediction accuracy about 0.5%. The other feature vectors seem not to give useful information about prediction including global descriptors.

Overall, the best combinations of input vector were PSSM, secondary structure profiles, hydropathy indexes and amino acid composition in this stage. Compared with the individual performance of the 8 different descriptors, the increased accuracy was in the range 68.40% to 77.78%.

5.3 Prediction accuracies and MCC values of the benchmark test on the RS126, NM215 and KP480 datasets in 2-state prediction model and its comparison with other methods

The performances of prediction in this study are showed in Table9 and Table10. In this stage, the result of top-4 outperforming feature vectors is almost the same as the result of top-3 outperforming feature vectors. To reduce the training space, we took the top-3 outperforming feature vectors as our best work. They are PSSM, secondary structure profiles and hydroparthy indexes. Our best work shows 60.2% accuracy for 3-state prediction (9%;36% thresholds) and 88.4%,81.4%,77.9% and 77.2% for the 2-state prediction with thresholds of 0%,5%,16% and 25% on the RS126 dataset, respectively. It shows slightly better prediction than other methods on the RS126 dataset expect for "Fuzzy k-NN".

5.4 MAE and Pearson's "r" values of the benchmark test on the RS126 and KP480 datasets in 10-state prediction model

We used the 10-state prediction model to simulate the real value prediction of solvent accessibility prediction. We took the same measured way to compare with the other real value prediction methods. All results were shown in Table11 and our best work achieved comparable results. The MAE value is 15.2 and Pearson's r is 0.506 in RS-126 dataset. We also transform the 10-state prediction into 2-state to give a rough evaluation. At the threshold of 20%, the accuracy achieved 72.8%, 74.4% in RS-126 and KP-480 dataset.

6. Conclusion

In this study, our best method achieved the similar performance as the researches did in the recent years. Hence, we can conclude that the three input vectors in our best work can catch enough information to predict relative solvent accessibility accurately.

Our research shows that local descriptors are sufficient for predicting accurately without global descriptors. Secondary structure profiles and hydropathy indexes both can be complementary to PSSM, but in individual case, hydropathy indexes can only achieve poor performance. Sequence information and character information offer overlapped information with PSSM.

Million .

In conclusion, our work achieves good prediction accuracy on the three benchmark datasets in 2-state, 3-state and 10-state model. And in the future work, we can apply our method in real value prediction.

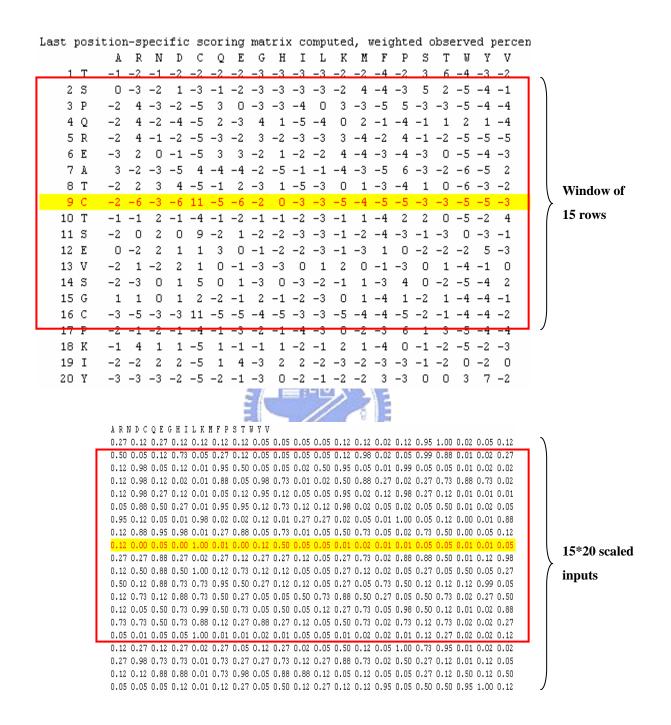


Figure 1. An outline of the PSSM input vectors, which shows how the PSI-BLAST score matrices are processed.

			Coil	Helix	Strand	
1	G	С	0.998	0.000	0.005	
2	Κ	Ε	0.561	0.001	0.642	
3	Ι	Ε	0.085	0.000	0.981	
4	Т	Ε	0.020	0.000	0.996	
5	F	Ε	0.029	0.001	0.991	
6	Y	Ε	0.080	0.005	0.969	
7	Ε	Ε	0.340	0.010	0.770	
8	D	С	0.944	0.005	0.089	
9	R	С	0.907	0.029	0.030	15*3 sca
10	G	С	0.962	0.020	0.006	inputs
11	F	С	0.885	0.019	0.070	
12	Q	С	0.523	0.012	0.490	
13	G	Ε	0.243	0.007	0.576	
14	R	Ε	0.306	0.019	0.531	
15	Η	Ε	0.174	0.016	0.811	
16	Y	Ε	0.131	0.056	0.756	
17	Ε	Ε	0.236	0.054	0.551	
18	С	Н	0.223	0.342	0.231	
19	S	С	0.454	0.216	0.134	
20	S	С	0.582	0.206	0.066	

Figure 2. The input vectors called "secondary structure profiles".

AA	Hydropathy index	Scaled index					
А	1.8	1.8 / 4.5		1	Т	-0.7 / 4.5	
С	2.5	2.5 / 4.5		2	S	-0.8 / 4.5	
D	-3.5	-3.5 / 4.5		3	Р	1.6 / 4.5	
Е	-3.5	-3.5 / 4.5		4	Q	-3.5 / 4.5	
F	2.8	2.8 / 4.5		5	R	-4.5 / 4.5	
G	-0.4	-0.4 / 4.5		6	Е	-3.5 / 4.5	
Н	-3.2	-3.2 / 4.5		7	А	1.8 / 4.5	
Ι	4.5	4.5 / 4.5		8	Т	-0.7 / 4.5	15*1 scaled
Κ	-3.9	-3.9 / 4.5		9	С	2.5 / 4.5	inputs
L	3.8	3.8 / 4.5		10	Т	-0.7 / 4.5	inputs
М	1.9	1.9 / 4.5		11	S	-0.8 / 4.5	
Ν	-3.5	-3.5 / 4.5	Inne.	12	Е	-3.5 / 4.5	
Р	1.6	1.6 / 4.5		13	V	4.2 / 4.5	
Q	-3.5	-3.5/4.5		14	S	-0.8 / 4.5	
R	-4.5	-4.5 / 4.5	C^{2}	15	G	-0.4 / 4.5	
S	-0.8	-0.8/4.5	<mark>و ا ه</mark>	16	С	2.5 / 4.5)
Т	-0.7	-0.7 / 4.5	11110	17	Р	1.6 / 4.5	
V	4.2	4.2 / 4.5		18	Κ	-3.9 / 4.5	
W	-0.9	-0.9 / 4.5		19	Ι	4.5 / 4.5	
Y	-1.3	-1.3 / 4.5		20	Y	-1.3 / 4.5	

Figure 3. The input vectors called "hydropathy indexes".

AA	ID																									
А	1	1	Т	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0			
С	2	2	S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0)		
D	3	3	Р	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0			
Е	4	4	Q	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0			
F	5	5	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0			
G	6	6	E	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Н	7	7	А	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Ι	8	8	Т	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0			15*20 scaled
Κ	9	9	С	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		>	inputs
L	10	10	Т	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0			mputs
М	11	11	S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0			
Ν	12	12	E	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Р	13	13	V	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0			
Q	14	14	S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0			
R	15	15	G	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
S	16	16	С	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)		
Т	17	17	Р	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	-		
V	18	18	Κ	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0			
W	19	19	Ι	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0			
Y	20	20	Y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1			

Figure 4. The input vectors called "amino acid in binary coding".

Class	ID	AA]											
Nonpolar, aliphatic R groups	1	G												
	1	А		1	Т	0	0	1	0	0	0	1)		
	1	Р		2	S	0	0	1	0	0	0		L	
	1	V		3	Р	1	0	0	0	0	0			
	1	L		4	Q	0	0	1	0	0	0			
	1	Ι		5	R	0	0	0	1	0	0			
	1	Μ	ļ	6	E	0	0	0	0	1	0			
Aromatic R groups	2	F	1	7	А	1	0	0	0	0	0			
	2	Y	1	8	Т	0	0	1	0	0	0		15*6 scale	ed
	2	W	1	9	С	0	0	1	0	0	0		inputs	
Polar, uncharged R groups	3	S	_	10	Т	0	0	1	0	0	0			
	3	T		"11	S	0	0	1	0	0	0			
	3	C	E	12	Ê	0	0	0	0	1	0			
	3	Ν		13	V	1	0	0	0	0	0			
	3	Q	4	14	S	0	0	1	0	0	0			
Positively charged R groups	4 🍕	K		15	G	1	0	0	0	0	0			
	4	H	111	16	С	0	0	1	0	0	0	J		
	4	R	ļ	17	Р	1	0	0	0	0	0			
Negatively charged R groups	5	D	ļ	18	Κ	0	0	0	1	0	0			
	5	E	ļ	19	Ι	1	0	0	0	0	0			
Others	6			20	Y	0	1	0	0	0	0			

Figure 5. The input vectors called "amino acid properties in binary coding".

AA	ID					AA	Ν	Р		
А	1		1	Т		А	1	1 / 15)	
С	2		2	S		С	2	2 / 15		
D	3		3	Р		D	0	0		
Е	4		4	Q		Е	2	2 / 15		
F	5		5	R		F	0	0		
G	6		6	E		G	1	1 / 15		
Н	7		7	А		Н	0	0		
Ι	8		8	Т		Ι	0	0		
Κ	9		9	С		Κ	0	0		
L	10		10	Т		L	0	0		20 scaled
М	11		11	S		Μ	0	0		inputs
Ν	12		12	E 🔬	THE REAL	Ν	0	0		
Р	13		13	V	ES	Р	1	1 / 15		
Q	14		14	V S G C		Q	1	1 / 15		
R	15		15	G	//	R	1	1 / 15		
S	16		16	C	5 189	°S∕ 3	3	3 / 15		
Т	17		17	P 🐬	44000	T	2	2 / 15		
V	18		18	Κ		V	1	1 / 15		
W	19		19	Ι		W	0	0		
Y	20]	20	Y		Y	0	0)	

Figure 6. The input vectors called "local amino acid composition".

Class	ID	AA						
	1	А	1	Т	Class	Ν	Р	
Nonpolar,	1	Р	2	S	Nonpolar,	4	4 / 15	\mathbf{i}
aliphatic R groups					aliphatic R groups			
	1	V	3	Р	Aromatic R	0	0	
					groups			
	1	L	4	Q	Polar, uncharged	8	8 / 15	
					R groups			> 6 scaled
	1	Ι	5	R	Positively charged	0	0	inputs
					R groups			
	1	М	6	Е	Negatively	1	1 / 15	
					charged R groups			
			7	А	Others	2	2 / 15)
Aromatic R groups	2	F						
	2	Y	8	Т				
	2	W	9	С				
Polar, uncharged	3	S	10	Tu	ALLAN .			
R groups			5%					
	3	Т	11	SEL	E A			
	3	С	12	E				
	3	Ν	13	V 11	396			
	3	Q	14	S	uumut			
Positively charged	4	K	15	G	n			
R groups								
	4	Н	16	С				
	4	R	17	Р				
Negatively	5	D	18	Κ				
charged R groups								
	5	E	19	Ι				
Others	6		20	Y				

Figure 7. The input vectors called "local amino acid properties composition".

AA	MaxACC	Scaled MaxACC						
А	117.2	117.2 / 270.7						
С	142.0	142.0 / 270.7		1	Т	152.8 / 270.7	_	
D	169.8	169.8 / 270.7		2	S	135.2 / 270.7		
Е	202.0	202.0 / 270.7		3	Р	148.9 / 270.7		
F	233.0	233.0 / 270.7		4	Q	199.4 / 270.7		
G	87.9	87.9 / 270.7		5	R	242.9 / 270.7		
Н	195.4	195.4 / 270.7		6	Е	202.0 / 270.7		
Ι	182.1	182.1 / 270.7	11III	1720	A	117.2 / 270.7		
K	214.2	214.2 / 270.7 🔬		8	Т	152.8 / 270.7		15 scaled
L	176.2	176.2 / 270.7		9	С	142.0 / 270.7		inputs
М	204.0	204.0 / 270.7	1	10	° Т	152.8 / 270.7		mputs
Ν	169.6	169.6 / 270.7 🌏	15	1896	S	135.2 / 270.7		
Р	148.9	148.9 / 270.7	2000	12,	Е	202.0 / 270.7		
Q	199.4	199.4 / 270.7		13	V	162.4 / 270.7		
R	242.9	242.9 / 270.7		14	S	135.2 / 270.7		
S	135.2	135.2 / 270.7		15	G	87.9 / 270.7		
Т	152.8	152.8 / 270.7		16	С	142.0 / 270.7		
V	162.4	162.4 / 270.7		17	Р	148.9 / 270.7		
W	270.7	270.7/ 270.7		18	Κ	214.2 / 270.7		
Y	253.8	253.8/ 270.7		19	Ι	182.1 / 270.7		
				20	Y	253.8/ 270.7		

Figure 8. The input vectors called "residue size".

AA	ID			AA	N	Р]		
А	1	1	Т	А	1	1 / 20			
С	2	2	S	С	2	2 / 20			
D	3	3	Р	D	0	0			
Е	4	4	Q	Е	2	2 / 20			
F	5	5	R	F	0	0			
G	6	6	Е	G	1	1 / 20			
Η	7	7	А	Н	0	0			
Ι	8	8	T	They.	1	1 / 20			
Κ	9	9	C S	K	1	1 / 20			
L	10	10	TE	L	0	0			20 scaled
М	11	11	s	M	0	0		(inputs
Ν	12	12	Е 18	° N	0	0			
Р	13	13	V Martin	Pur	2	2 / 20			
Q	14	14	S	Q	1	1 / 20			
R	15	15	G	R	1	1 / 20			
S	16	16	С	S	3	3 / 20			
Т	17	17	Р	Т	3	3 / 20			
V	18	18	Κ	V	1	1 / 20			
W	19	19	Ι	W	0	0			
Y	20	20	Y	Y	1	1 / 20] /		

Figure 9. The input vectors called "global amino acid composition".

	I	1.	1						
Class	ID	AA	-						
Nonpolar,	1	G	1	Т	Class	Ν	Р		
aliphatic R groups			-						
	1	А	2	S	Nonpolar,	6	6 / 20		
					aliphatic R				
			-		groups				
	1	Р	3	Р	Aromatic R	1	1 / 20		
			-		groups				
	1	V	4	Q	Polar, uncharged	9	9 / 20	\mathbf{b}	6 caled
			-		R groups			(inputs
	1	L	5	R	Positively	1	1 / 20		
			-		charged R groups				
	1	Ι	6	Ε	Negatively	1	1 / 20		
			-		charged R groups				
	1	М	7	A	Others	2	2 / 20)	
Aromatic R groups	2	F	8	TF	SIA E				
	2	Y	- 9	C					
	2	W	10	V/					
Polar, uncharged	3	S	-11	S 1	896				
R groups				1111	111111				
	3	Т	12	E					
	3	С	13	V					
	3	Ν	14	S					
	3	Q	15	G					
Positively charged	4	Κ	16	С					
R groups			-						
	4	Н	17	Р					
	4	R	18	Κ					
Negatively	5	D	19	Ι					
charged R groups			4						
	5	Е	20	Y					
Others	6								

Figure 10. The input vectors called "global amino acid properties composition".

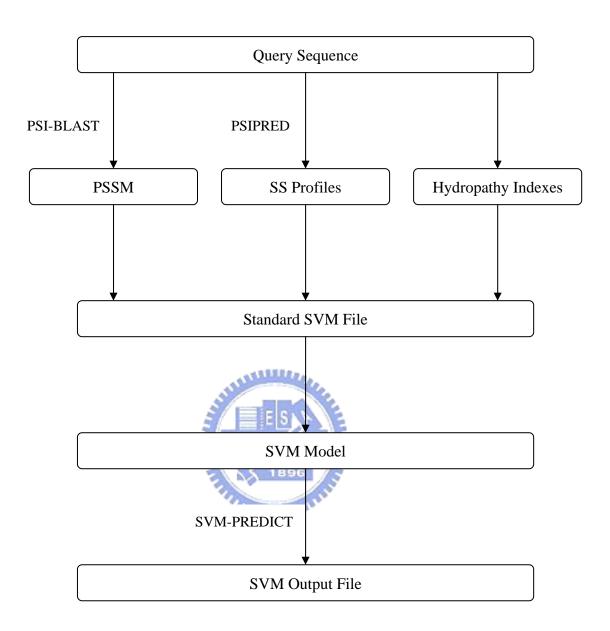


Figure 11. The figure shows the components of SAS prediction server, and most of the connection was built using the Perl language and CGI package.

The RSA Prediction Server - Microsoft Internet Explorer	_ 7 🛛
檔案(E) 編輯(E) 檢視(Y) 我的最愛(A) 工具(I) 説明(H)	A.
③ 上一頁 ▼ ② ▼ ▲ ② ☆ ◇ 搜尋 ☆ 我的最爱 ④ 媒體 ④ ◇ ● ▲ ◎ ▼ □ ↓ ④ ▲ ④ ▲	
網址② @ http://e100 life.nctu.edu.tw/-weilun/	▶ ▶ 移至 連結 >
MBC Molecular Bioinformatics Center Natl ChiaoTung Univ Natl Central Univ Natl TsingHua Univ Home About Research Databases Tools Education The RSA Prediction Server	
Choose a training data sets:	E
>2stv_ THRAVKRMINTHLEHKRFALINSGNTNATAGTVQNLSNGIIQGDDINQRSGDQVRIVSHKLHVRGTA ITVSQTFRFIWRRNMNRGTTPTVLEVLNTANFMSQVNPITLQQKRFTILKDVTLNCSLTGESIKDR IINLPGQLVNYNGATAVAASNGPGAIFMLQIGDSLVGLWDSSYEAVYTDA	
or upload from file:	
	2 網際網路

Figure 12. The World Wide Web interface of the RSA prediction server.

					nternet Explor	er						_ 0
_	鳥輯(E) 檢視											4
3 上─頁	- 🕑 -	🞽 🛃 1	🏠 🔎 捜	尋 🌟 我的;	最愛 😢 媒體	2 🥴 🖾	- 🍓 🔳	* 📃 顓				
扯(1) 🍓	http://e100.life.	.nctu.edu.tw/~w	eilun/cgi/sas.cgi								⊻ >	移至 連結
-2stv_												
Seq	Т	М	R	А	V	К	R	М	Ι	Ν	Т	Н
rob 1	0.050794	0.121492	0.0179591	0.240009	0.67592	0.134899	0.0712779	0.661522	0.590451	0.0541217	0.105132	0.175004
rob 2	0.042195	0.122418	0.0726218	0.244331	0.106767	0.141333	0.094565	0.135556	0.127269	0.0610481	0.0743548	0.162561
rob 3	0.0469644	0.11402	0.0883239	0.128952	0.0676013	0.230456	0.132491	0.056966	0.0690666	0.146585	0.0947987	0.156086
rob 4	0.0978698	0.187858	0.117612	0.0795583	0.0409017	0.149456	0.159155	0.0539895	0.062623	0.165466	0.132212	0.130398
rob 5	0.124876	0.176749	0.132728	0.130316	0.0639886	0.155156	0.204237	0.0316461	0.0858714	0.226279	0.152743	0.139374
rob 6	0.0978956	0.0825417	0.248834	0.100201	0.0215428	0.0790649	0.136823	0.0174816	0.0275779	0.178414	0.115011	0.091983
ob 7	0.0803115	0.0507004	0.191979	0.0397036	0.0113644	0.0659975	0.0807862	0.0290395	0.0160081	0.0925628	0.203819	0.069994
rob 8	0.0541289	0.0240185	0.0864208	0.0189429	0.00528764	0.0202665	0.0553152	0.00834947	0.0116778	0.0489122	0.0818818	0.054324
rob 9	0.146024	0.0822669	0.0250518	0.01371	0.00483157	0.0170227	0.0601007	0.00470226	0.00664234	0.0191982	0.0320606	0.015750
rob 10	0.25894	0.037937	0.0184706	0.00427662	0.00179465	0.00634916	5 0.00524963	3 0.000747727	0.00281295	0.00741329	0.00798829	0.004523
redRSA	. 10	4	6	2	1	3	5	1	1	5	7	1
<u>ownloa</u>	<u>d the output</u>	file										
…											約 網際網話	ک

*Prob X: probability of the residue belongs to class X *PredRSA: the predicted relative class

Figure 13. The standard output webpage of prediction.

Tables

Amino acid	MaxACC
А	117.2
В	160.0
С	142.0
D	169.8
E	202.0
F	233.0
G	87.9
Н	195.4
Ι	182.1
Κ	214.2
L	176.2
Μ	1896 204.0
Ν	169.6
Р	148.9
Q	199.4
R	242.9
S	135.2
Т	152.8
V	162.4
W	270.7
Х	180.0
Y	253.8
Ζ	196.0

Table 1. Maximum value of solvent accessible surface areas of each kind of residue calculated by

 MOLSIM program

256b_a	8abp_	lacx_	3ait_	2alp_
9api_b	1cyo_	1bds_	1bmv_2	4bp2_
7cat_a	1cc5_	1cdh_	3cla_	4cms_
6cpa_	4cpv_	1cse_i	2cyp_	1eca_
3ebx_	1etu_	1fdl_h	1fkf_	1iqz_
2fox_	2gbp_	1gdl_o	2gn5_	4gr1_
6hir_	3hmg_b	5hvp_a	3icb_	1il8_a
1158_	5ldh_	2lhb_	2ltn_a	5lyz_
2mev_4	1ovo_a	1paz_	2pcy_	3pgm_
1pyp_	2mhu_	1ppt_	1rhd_	4rhv_3
3rnt_	2rsp_a	1s01_	4sgb_i	2sns_
2stv_	1tgs_i 🔗	6tmn_e	1tnf_a	2tsc_a
2utg_a	2wrp_r	1bks_b	1prc_c	1prc_l
2aat_	2wrp_r 6acn_ 1bbp a	8adh_	2ak3_a	9api_a
1azu_	1bbp_a 📃	1bmv_1	3blm_	2cab_
1cbh_	2ccy_a 🦷	1cdt_a	3cln_	4cpa_i
6срр_	1crn_	6cts_	5cyt_r	6dfr_
5er2_e	1fc2_c	1dur_	1fnd_	1fxi_a
1g6n_a	1a45_	2gls_a	1gp1_a	1hip_
3hmg_a	2hmz_a	2i1b_	7icd_	9ins_b
1lap_	1gdj_	11mb_3	2ltn_b	1mcp_l
2or1_l	2pab_a	9pap_	4pfk_	2phh_
1r09_2	1mrt_	1rbp_	4rhv_1	4rhv_4
7rsa_	4rxn_	3sdh_a	1sh1_	2sod_b
2tgp_i	3tim_a	2tmv_p	4ts1_a	1ubq_
9wga_a	1bks_a	4xia_a	1prc_h	1prc_m

Table 2. The RS126 dataset used in this study

1191_	2end_	1thv_	1pex_	1hsba	1csn_	1dela
1bnca	3chy_	1xgsa	1rro_	1mbd_	1fjma	1gai_
1dktb	1abrb	2hhma	1tml_	1php_	1ido_	1itg_
1ggga	1cem_	3mdda	1xyza	1sbp_	1mml_	1nbab
1knya	1dxy_	1amm_	2liv_	1ubi_	1pmi_	1poc_
1ofga	1gpc_	1cfya	3sdha	1ytw_	1slua	1sra_
1pud_	1kuh_	1ede_	1atla	2pgd_	luxy_	1vhra
1svpa	1ospo	1gtma	1chma	6gsva	2arca	1m85_
1vls_	1ra9_	1lki_	1erv_	1bbpa	2pia_	2rspb
2chsa	1tfe_	1pdo_	1hgxa	1csee	8atcb	1bib_
2sns_	1who_	1rgs_	1mai_	1ezm_	1bfg_	1dfji
1531_	2gdm_	1thx_ 🔬	1pgs_	1htp_	1cyx_	1gcb_
1btma	3cox_	1xnb	lrsy_	1mkaa	1ftpa	1jkw_
1dkza	1afra	2hpda	1tupc	🔒 1pioa	lifc_	1nox_
1gnd_	1ceo_	3minb	1yasa	l sftb	1mola	1pot_
1kpta	1ecea	1amp_	2mtac	🕴 1uby_	1pne_	1std_
1onra	1gpl_	1chd_	5p21	256ba	1smea	1vid_
1pyta	11ba_	1edg_	1atna	2phla	1vcaa	2cba_
1tadc	1pbc_	1hava	1cmke	6pfka	2ayh_	2scpa
1wba_	1rcf_	1lkka	lesc_	1bdo_	2pspa	1bmfg
2ctc_	1tfr_	1pea_	1hlb_	1csga	1bgc_	1dhr_
2tysa	1bksb	1rnl_	1maz_	1fds_	1deaa	1gdoa
1aba_	2hft_	1tib_	1phe_	1idaa	1fua_	1knb_
1btn_	3grs_	1xvaa	1rvaa	1mlda	1irk_	1noza
1dosa	1afwa	2i1b_	1tys_	1plc_	1nar_	1ppn_
1gotb	1cewi	3nll_	1ysc_	1sig_	1poa_	1stfi
1kte_	1ecpa	1aoca	2naca	1udii	1smpi	1vin_
1opr_	1gsa_	1chka	5ptp_	2abk_	1vhh_	2ccya
1qapa	1lcl_	1edt_	1axn_	2phy_	2bbvc	2sil_
2tdx_	1pda_	1hfc_	1cnv_	7rsa_	2rn2_	
1whi_	1rec_	11tsa	1exnb	1beo_	1bhmb	

1541-1-AUTO.1	1cbg-1-AS	1ctn-1-AS.1	1edd-1-DOMAK	2gep-3-AS
1aazb-1-DOMAK	1cbh	1ctn-3-AS.1	1edmc-1-AUTO.1	1gflb-1-AS
1acx	1cc5	1ctu-1-AUTO.1	1eft-3-DOMAK	1ghsb-1-GJB
1add-1-AS	1cdta	1ctu-2-AUTO.1	1efud-2-AUTO.1	1gky-2-AS
1adeb-2-AUTO.1	1cei-1-GJB	1eu1a-4-AUTO.1	1epbb-1-DOMAK	1gln-2-AS
1ahb-2-GJB	1celb-1-AUTO.1	1cyx-1-AUTO.1	1ese-1-AUTO.1	1gln-4-AS
1alkb-1-AS	1cem-1-GJB	1daab-1-AS	1esl-1-GJB	1gmpb-1-DOMA
1amp-1-AS	1cewi-1-DOMAK	1daab-2-AS	1etu	1gnd-2-JAC
1aorb-1-AS	1cfb-1-AS	1dar-3-AS	1euu-2-JAC	1gog-1-AS.1
1aorb-3-AS	1cgu-2-GJB	1dfji-1-AUTO.1	1fbab-1-DOMAK	1gog-2-AS.1
1aozb-1-AS	1cgu-3-GJB	1dih-2-AS	1fbl-1-AS	1gog-3-AS.1
1aozb-2-AS	1cgu-4-GJB	1dik-1-AS.1	1fc2c	1gp1a
1aozb-3-AS	2chbe-1-DOMAK	1dik-2-AS.1	1 fdlh	1gp2g-2-AS
1asw-1-AUTO.1	1chd-1-AS 🔬	1dik-3-AS.1	1fdt-1-AS	1gpc-1-AS
1avhb-3-AS	1chkb-2-AUTO.1	1dik-4-AS.1	1dur	1gpmd-4-AS
1avhb-4-AS	1chmb-1-DOMAK	1din-1-AS	1find-1-AUTO.1	1gpmd-5-AS
1ayab-1-GJB	1cksc-1-AUTO.1	1dkza-1-JAC	1find-2-AUTO.1	1grj-1-AS
1azu	1clc-1-AS.1 🥎	1dlc-1-AS.1	1fjmb-2-AS	1grj-2-AS
1bam-1-AS	1clc-2-AS.1	1dlc-3-AS.1	1fkf	1gtmc-2-AUTO.1
1bbpa	1clc-3-AS.1	1dnpb-1-AUTO.1	1fnd	1gtqb-1-AUTO.1
1bcx-1-DOMAK	1cnsb-1-AUTO.1	1dnpb-2-AUTO.1	1fua-1-AUTO.1	1gym-1-AUTO.1
1bdo-1-AS	1colb-1-DOMAK	1dpgb-1-AUTO.1	1fuqb-1-AUTO.1	1han-1-AUTO.1
1bet-1-DOMAK	1comc-1-DOMAK	1dpgb-2-AUTO.1	1fuqb-2-AUTO.1	1han-2-AUTO.1
1bfg-1-DOMAK	1cpcl-1-DOMAK	1dsbb-2-AUTO.1	1fuqb-3-AUTO.1	1hcgb-1-AS
1bmv1	1cpn-1-DOMAK	1dts-1-AUTO.1	1fxia	1hcra-1-DOMAK
1bmv2	1cqa-1-AUTO.1	1dupa-1-AS	1gal-2-AS	1hip
1bncb-1-AS	1crn	1dynb-1-AUTO.1	1gal-3-AS	1hiws-1-AS
1bncb-3-AS	1csei	leca	1gcb-2-AS	1hjrd-1-AUTO.1
1bncb-4-AS	1csmb-1-AUTO.1	1eceb-1-AUTO.1	1gcmc-1-AUTO.1	1hmpb-1-AUTO.1
1bovb-1-DOMAK	1ctf-1-DOMAK	1ecl-1-AS	1gd1o	1hnf-1-AS
1brse-1-DOMAK	2cthb-1-DOMAK	1ecl-4-AS	1gdj	1hnf-2-AS
1bsdb-1-DOMAK	1ctm-2-DOMAK	1ecpf-1-AUTO.1	2gep-2-AS	1horb-1-AUTO.1

1hplb-1-AS	11ehb-3-AS	1nozb-2-AUTO.1	1ptr-1-AUTO.1	1sfe-1-AS
1hplb-2-AS	1lib-1-DOMAK	1oacb-1-AS.1	1ptx-1-AS	1sfe-2-AS
1hslb-2-DOMAK	1lis-1-DOMAK	1oacb-2-AS.1	1рур	1sftb-2-AS
1htrp-1-AS	1lki-1-AS	1oacb-3-AS.1	1pyta-1-AS	1sh1
1hvq-1-AUTO.1	11mb3	1oacb-4-AS.1	1qbb-1-AUTO.1	1smnb-1-AUTO.1
1hxn-1-AS	11pba-1-DOMAK	1onrb-1-AUTO.1	1qbb-2-AUTO.1	1smpi-1-AS
1hyp-1-DOMAK	11pe-1-DOMAK	1otgc-1-AS	1qbb-3-AUTO.1	1spbp-1-AS
1ignb-2-GJB	1mai-1-JAC	1ovb-1-GJB	1qbb-4-AUTO.1	1sra-1-AS
1il8a	1masb-1-AUTO.1	1ovoa	1qrdb-1-AUTO.1	1srja-1-DOMAK
1ilk-1-AS	1mdam-1-DOMAK	10xy-3-AS	1r092	1stfi-1-DOMAK
1ilk-2-AS	1mdta-1-AS	1oyc-1-AS	1rbp	1stme-1-AUTO.1
1inp-1-AS.1	1mdta-2-AS	1paz	1rec-1-DOMAK	1svb-1-AS
1inp-2-AS.1	1mdta-3-AS 💉	1pbp-2-DOMAK	1rec-2-DOMAK	1svb-2-AS
1irk-1-AS	1mjc-1-DOMAK	1pbwb-1-AS	1regy-1-AUTO.1	1tabi-1-DOMAK
1irk-2-AS	1mla-2-AS.1	1pda-2-AS	1reqc-2-AS	1taq-2-AS
1isab-1-GJB	1mmoh-1-AS	1pda-3-AS	1rhd	1tcra-2-GJB
1isab-2-GJB	1mns-2-AS	1pdnc-2-AS	1rhgc-1-DOMAK	1tfr-1-GJB
1isub-1-DOMAK	1mof-1-AS	1pdo-1-GJB	1rie-1-GJB	1thtb-1-AUTO.1
1jud-1-GJB	1mrrb-1-DOMAK	1pga-1-DOMAK	1ris-1-DOMAK	1thx-1-AUTO.1
1kimb-1-AUTO.1	1mrt	1pht-1-AUTO.1	1rlds-1-DOMAK	1tie-1-DOMAK
1knb-1-AS	1mspb-1-AS	1pii-2-DOMAK	1rlr-1-JAC	1tif-1-AS
1krca-1-AUTO.1	1nal4-1-AUTO.1	1pkyc-2-AUTO.1	1rlr-2-JAC	1tig-1-AUTO.1
1krcb-1-AS	1nar-1-DOMAK	1pkyc-3-AUTO.1	1rpo-1-AUTO.1	1tml-1-AS
1kte-1-AS	1nbac-1-AS	1pmi-2-GJB	1rsy-1-AS	1tndb-2-DOMAK
1ktq-1-AUTO.1	1ncg-1-AUTO.2	1pnmb-2-AS	1rvvz-1-AUTO.1	1tnfa
1kuh-1-AS	1ndh-1-AS	1pnt-1-AS	1s01	1tplb-3-AS
1158	1ndh-2-AS	1poc-1-DOMAK	1scud-1-AS	1trb-2-AS
1lap	1nfp-1-AS	1powb-1-DOMAK	1scue-2-AS	1trh-1-AS
1latb-1-AUTO.1	1nga-2-AS.1	1powb-2-DOMAK	1scue-3-AS	1trkb-1-AS
1lba-1-DOMAK	1nlkl-1-DOMAK	1powb-3-DOMAK	1seib-1-AUTO.1	1trkb-3-AS
1lbu-1-AS	1nol-1-AUTO.2	1ppi-2-AS	1seib-2-AUTO.1	1tsp-1-AS
1lbu-2-AS	1nox-1-GJB	1ppt	1sesa-2-AS	2tssb-2-DOMAK

1tul-1-JAC	2afnc-2-AUTO.1	2i1b	2utga	4fisb-1-DOMAK
1tupc-1-AUTO.1	2ak3a	2ltna	2wrpr	4gr1
1ubq	2alp	2ltnb	2yhx-3-DOMAK	4pfk
1udh-1-AUTO.1	2asr-1-DOMAK	2mev4	3ait	4rhv1
1umub-1-AS	2bat-1-GJB	2mtac-1-AS	1cyo	4rhv3
1vcab-1-AUTO.1	2bltb-2-AUTO.1	2nadb-2-AS.1	4bcl-1-DOMAK	4rhv4
1vcab-2-AUTO.1	2bopa-1-DOMAK	2npx-3-AS.1	3blm	4rxn
1vcc-1-AS	2cab	20lba-2-AS	3cd4	4sdha
1vhh-1-AS	2ccya	20lba-3-AS	3chy-1-DOMAK	4sgbi
1vhrb-2-AUTO.1	2cmd-2-GJB	2or11	3cla	4ts1a
1vid-1-JAC	2cpo-1-AUTO.1	2paba	3cln	4xiaa
1vjs-3-GJB	2cyp	2pgd-1-AUTO.1	3cox-1-AS.1	5cytr
1vmob-1-AS	2dkb-2-AS	2pgd-2-AUTO.1	3cox-2-AS.1	5er2e
1vnc-1-JAC	2dln-1-AS	2phh	3ecab-1-AS	5ldh
1vokb-1-AS	2dln-3-AS	2phy-1-GJB	3ecab-2-AS	5lyz
1vpt-1-JAC	2dnja-1-AS 🔧	2polb-1-AS	1g6na	5sici-1-DOMAK
1wapv-1-AUTO.1	2ebn-1-AS	2reb-1-DOMAK	3hmga	6acn
1whi-1-AS	2end-1-DOMAK	2reb-2-DOMAK	3hmgb	бсра
1bksa	2fox	2rsla-1-GJB	3icb	6срр
1bksb	1iqz	2rspa	3inkd-1-DOMAK	6cts
1xvab-1-GJB	2gbp	2scpb-1-DOMAK	3mddb-1-AS	6dfr
1yptb-1-AUTO.1	1a45	2sil-1-AS	3mddb-2-AS	6hir
1yrna-2-AS	2glsa	2sns	3mddb-3-AS	6tmne
1znbb-1-AS	2gn5	2sodb	3pgk-2-AS	7cata
1zymb-2-AUTO.1	2gsq-2-AS	2spt-1-DOMAK	3pgm	7icd
256ba	2hft-1-AS	2spt-2-DOMAK	3pmgb-1-AS	7rsa
2aaib-2-DOMAK	2hft-2-AS	2tgi-1-DOMAK	3pmgb-2-AS	821p-1-DOMAK
2aat	2hhmb-1-DOMAK	2tgpi	3pmgb-3-AS	8adh
2abk-2-AS	2hhmb-2-DOMAK	2tmdb-3-AS	3pmgb-4-AS	9apia
2admb-1-AUTO.1	2hipb-1-DOMAK	2tmvp	3rnt	9apib
2admb-2-AUTO.1	2hmza	2trt-1-AUTO.1	3tima	9pap
2afnc-1-AUTO.1	2hpr-1-DOMAK	2tsca	4bp2	9wgaa

Table 4. The KP480 dataset used in this study (continued)

Table 5. The hydropathy index of the standard amino acids.

Amino acid	Hydropathy index
А	1.8
С	2.5
D	-3.5
E	-3.5
F	2.8
G	-0.4
Н	-3.2
Ι	4.5
Κ	-3.9
L	3.8
Μ	1.9
Ν	-3.5
Р	1.6
Q	-3.5
R	-4.5
S	-0.8
Т	-0.7
V	4.2
W	-0.9
Y	-1.3

Table 6. The classification of the standard amino acids by R groups.

Class	Amino acid
Nonpolar, aliphatic R groups	G
	А
	Р
	V
A STATISTICS	L
	Ι
E I E SAR 3	Μ
Aromatic R groups	F
1896	Y
The second	W
Polar, uncharged R groups	S
	Т
	С
	Ν
	Q
Positively charged R groups	Κ
	Н
	R
Negatively charged R groups	D
	Е

Features	Threshold	Qtotal	Qb	Qe	MCC
PSSM	25	75.33	76.38	74.11	50.43
Hydropathy indexes	25	65.73	80.43	48.61	30.79
Secondary structure profile	25	67.80	68.93	66.46	35.34
Amino acid in binary coding	25	70.59	74.49	66.06	40.70
Amino acid properties in binary coding	25	67.34	69.51	64.81	34.31
Local amino acid composition	25896	58.22	72.67	41.39	14.82
Local amino acid properties composition	25	58.04	75.85	37.30	14.27
Residue size	25	55.8	96.19	8.68	10.18

Table 7. Prediction accuracies and MCC values using individual local descriptors with RS126 datasets in 2-state prediction model.

Table 8. Prediction accuracies and MCC values using comprehensive local descriptors with RS126
 datasets in 2-state prediction model.

Features	Threshold	Qtotal	Qb	Qe	MCC
PSSM+H	25	76.45	78.96	73.52	52.57
PSSM+SS	25	75.98	79.06	72.40	51.60
H+SS	25	68.40	70.05	66.48	36.50
PSSM+H+SS	25	77.23	78.53	75.72	54.23
PSSM+H+SS+AA	25	77.78	79.44	75.84	55.29
PSSM+H+SS+PROP	25 E S	77.40	79.15	75.36	54.53
PSSM+H+SS+AA+PROP	25	77.33	78.64	75.80	54.42
PSSM+H+SS+GAA	25	77.28	78.48	75.88	54.33
PSSM+H+SS+GPROP	25	77.15	78.29	75.82	54.07

*H: hydropathy indexes

- *SS: secondary structure profile
- *AA: amino acid in binary coding
- *PROP: amino acid properties in binary coding
- *GAA: Global amino acid composition
- *GPROP: Global amino acid properties composition

Table 9. Prediction accuracies of the benchmark tests on the RS126, NM215 and KP480 datasets in

 2-state prediction model and its comparison with other methods

Year	Method	State threshold					
		25%	20%	16%	5%	0%	9,36%
1994	PHDacc(RS126) ^[3]	-	-	74.8	-	86.0	57.5
2000	Jnet(CB480)[7]	76.2	-	-	79.8	86.5	-
2002	BRNNs (PDB-1086)[4]	77.2	77.5	-	81.2	86.5	-
2003	PP(RS-126)[23]	SAN A	-	75.1	-	-	57.9
2003	NETASA(NM-215)[24]	70.3	1.576.0	-	74.6	87.9	-
2004	SVMpsi (RS126)[13]	76.8	-	77.8	79.8	86.2	59.6
2004	SVMpsi(KP480)[13]	78.7	-	80.7	82.4	87.4	64.5
2005	Fuzzy k-NN(RS-126)[14]	78.3	-	79.0	82.2	87.2	63.8
2005	SVR12(RA-603)[10]	76.7	76.8	-	76.5	-	-
2005	WE(2148 chains)[1]	-	80.0	-	-	-	-
	PSSM+H+SS (RS126)	77.2	77.6	77.9	81.4	88.4	60.2
	PSSM+H+SS+AA (RS126)	77.8	77.8	78.1	80.0	88.8	61.6
	PSSM+H+SS (NM215)	78.3	77.7	87.2	87.4	87.0	62.7
	PSSM+H+SS (KP480)	78.0		78.5	81.3	87.0	62.3

Table 10. MCC values of the benchmark tests on the RS126, NM215 and KP480 datasets in 2-state

 prediction model and its comparison with other methods

Year	Method	State threshold					
		25%	20%	16%	5%	0%	9,36%
1994	PHDacc(RS126) ^[3]	-	-	-	-	-	-
2000	Jnet(CB480)[7]	-	-	-	-	-	-
2002	BRNNs (PDB-1086)[4]		THE STATE	-	-	-	-
2003	PP(RS-126)[23]	ES		48.5	-	-	53.0
2003	NETASA(NM-215)[24]			-	-	-	-
2004	SVMpsi (RS126)[13]	-	and a state	-	-	-	-
2004	SVMpsi(KP480)[13]		-	-	-	-	-
2005	Fuzzy k-NN(SCOP-229)[14]	55.4	-	56.0	54.1	43.1	56.0;19.9;50.8
2005	SVR12(RA-603)[10]	-	-	-	-	-	-
2005	WE(2148 chains)[1]	-	60.0	-	-	-	-
	PSSM+H+SS (RS126)	54.2	55.2	54.7	49.7	22.2	52.0;17.0;48.4
	PSSM+H+SS+AA (RS126)	55.3	55.6	55.2	45.7	31.7	53.2;19.3;50.8
	PSSM+H+SS (NM215)	56.0	56.5	34.2	36.4	38.3	56.3;20.9;50.7
	PSSM+H+SS (KP480)	55.1		56.6	53.2	35.8	55.2;19.9;50.9

Year	Method	Data Set	MAE	R	Accuracy
2003	RVP ¹⁶	RS-126	19.4	0.477	71%(16%)
		Carugo-338	19.0	0.490	
		CB-502	18.8	0.482	
2004	SVR[25]	CB-502	18.5	0.520	
		YH-1277	17.0	0.617	74.6%(15%)
	SABLE[5]	RA-603	15.3-15.8	0.64-0.67	77%(15%)
		A ALLEN			
2005	SVR12 ¹⁸	RA-603	15.8-16.6	0.62-0.63	75.8(15%)
	PSSM+H+SS	RS-126	15.2	0.506	72.8(20%)
		KP-480	14.1	0.537	74.4(20%)

Table 11. MAE and Pearson's "r" values of the benchmark tests on the RS126 and KP480 datasets
 in 10-state prediction model

參考文獻

- 1. Chen, H. and H.X. Zhou, *Prediction of solvent accessibility and sites of deleterious mutations from protein sequence*. Nucleic Acids Res, 2005. **33**(10): p. 3193-9.
- Wang, Z. and J. Moult, *SNPs, protein structure, and disease*. Hum Mutat, 2001. 17(4): p. 263-70.
- 3. Rost, B. and C. Sander, *Conservation and prediction of solvent accessibility in protein families*. Proteins, 1994. **20**(3): p. 216-26.
- 4. Pollastri, G., et al., *Prediction of coordination number and relative solvent accessibility in proteins*. Proteins, 2002. **47**(2): p. 142-53.
- 5. Adamczak, R., A. Porollo, and J. Meller, *Accurate prediction of solvent accessibility using neural networks-based regression*. Proteins, 2004. **56**(4): p. 753-67.
- 6. Ahmad, S. and M.M. Gromiha, *Design and training of a neural network for predicting the solvent accessibility of proteins*. J Comput Chem, 2003. **24**(11): p. 1313-20.
- 7. Cuff, J.A. and G.J. Barton, *Application of multiple sequence alignment profiles to improve protein secondary structure prediction*. Proteins, 2000. **40**(3): p. 502-11.
- Thompson, M.J. and R.A. Goldstein, *Predicting solvent accessibility: higher accuracy using Bayesian statistics and optimized residue substitution classes*. Proteins, 1996. 25(1): p. 38-47.
- 9. Li, X. and X.M. Pan, *New method for accurate prediction of solvent accessibility from protein sequence.* Proteins, 2001. **42**(1): p. 1-5.
- 10. Wagner, M., et al., *Linear regression models for solvent accessibility prediction in proteins*. J Comput Biol, 2005. **12**(3): p. 355-69.
- 11. Naderi-Manesh, H., et al., *Prediction of protein surface accessibility with information theory*. Proteins, 2001. **42**(4): p. 452-9.
- 12. Yuan, Z., K. Burrage, and J.S. Mattick, *Prediction of protein solvent accessibility using support vector machines*. Proteins, 2002. **48**(3): p. 566-70.
- 13. Kim, H. and H. Park, *Prediction of protein relative solvent accessibility with support vector machines and long-range interaction 3D local descriptor*. Proteins, 2004. 54(3): p. 557-62.
- 14. Sim, J., S.Y. Kim, and J. Lee, *Prediction of protein solvent accessibility using fuzzy k-nearest neighbor method.* Bioinformatics, 2005. **21**(12): p. 2844-9.
- Kabsch, W. and C. Sander, *Dictionary of protein secondary structure: pattern* recognition of hydrogen-bonded and geometrical features. Biopolymers, 1983. 22(12): p. 2577-637.
- 16. Altschul, S.F., et al., *Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.* Nucleic Acids Res, 1997. **25**(17): p. 3389-402.
- 17. Jones, D.T., Protein secondary structure prediction based on position-specific scoring

matrices. J Mol Biol, 1999. 292(2): p. 195-202.

- 18. Boser, B.E., Guyon, I.M. and Vapnik, V.N., *A training algorithm for optimal margin classifiers*. ACM Press, 1992: p. 144-152.
- Hua, S. and Z. Sun, A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J Mol Biol, 2001. 308(2): p. 397-407.
- 20. Ding, C.H. and I. Dubchak, *Multi-class protein fold recognition using support vector machines and neural networks*. Bioinformatics, 2001. **17**(4): p. 349-58.
- 21. Furey, T.S., et al., *Support vector machine classification and validation of cancer tissue samples using microarray expression data*. Bioinformatics, 2000. **16**(10): p. 906-14.
- 22. C.C. Chang, C.J.L., *Training nu-Support Vector Classifiers: Theory and Algorithms*. Neural Computation, 2001. **13**(**9**): p. 2119-2147.
- 23. Gianese, G., F. Bossa, and S. Pascarella, *Improvement in prediction of solvent accessibility by probability profiles*. Protein Eng, 2003. **16**(12): p. 987-92.
- 24. Ahmad, S., M.M. Gromiha, and A. Sarai, *Real value prediction of solvent accessibility from amino acid sequence*. Proteins, 2003. **50**(4): p. 629-35.
- 25. Yuan, Z. and B. Huang, *Prediction of protein accessible surface areas by support vector regression*. Proteins, 2004. **57**(3): p. 558-64.

