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Prediction of Metal-Binding Site Residues Using Support Vector Machine

Student: Jau-Ji Lin Advisor: Jenn-Kang Hwang

Institute of Bioinformatics

National Chiao Tung University

ABSTRACT

Correct 1dentification and analysis of the metal-binding site provides useful
clues to the modeling and designing of the binding site in proteins for industrial
and therapeutic purposes. As the number of the biological data is rapidly
accumulated, the use of machine learfing approach to do the prediction becomes
more reliable now than ever. We have developed a method using support vector
machine (SVM) to predict the metal=binding site residues in proteins containing
metal ions. The information used to.encode the site residues includes sequence
profiles and structural features. The results show that the use of buffer zone can
effectively improve the true positive rate (TPR) of the prediction. On five-fold
cross-validation, we obtain an average prediction accuracy of 97.4% and 46.2%
TPR at a 5% false positive rate (FPR). The results indicate that the use of SVM
with suitable coding schemes is an effective way to predict the metal-binding

sites in proteins.
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1 INTRODUCTION

Biological processes in a living organism are carried out by various kinds of proteins inside
the cells. Each protein with its unique function serves the purpose of almost all the catalytic
processes and building blocks of cells. A protein molecule performs its function by its
three-dimensional (3D) structure as well as the interactions with other molecules. Therefore a
detailed analysis of the 3D structure of the protein around the functional region would
enhance us toward a better understanding of biological role of proteins.

Metal ions serve a variety of roles in proteins, including electron transfer, dioxygen binding,
acting as cofactors in catalytic processes, and increasing the structural stability of the proteins.
There is approximately one-fourth to one-third of known proteins containing or requiring
metal ions for their structure and function'. The metal-biding site is the area in proteins that
binds one or more metal ions. Different sites exhibit distinct characteristics, such as
coordination numbers, geometries, metal -preferences, and ligandsz. For instance, the
coordination number for calcium ion ranges from four to eight, as in Figure 1 to 5. The
complicated arrangement of metal-binding sites.'makes the analysis of such proteins a
non-trivial task. For industrial applications, research has been done on designing proteins with
engineered metal-binding sites to remove toxic metal ions from industrial waste sites’.
Well-designed molecules containing metal ions are also essential for metal-based drug design®.
A well understanding of properties of metal-binding sites is of great help for industrial and
therapeutic purposes.

As a result of genome sequencing and structural genomics initiatives, numbers of known
protein sequences and structures are rapidly increasing and accessible through the public
database on the internet. Given that many new protein structures have been solved, a major
challenge is to correctly annotate the functions of these proteins. The most common approach
to protein function annotation is to identify similar proteins of known function and transfer

that function to the new protein. This approach heavily relies on sequence or structural



similarities between proteins, but it fails when sequence identity is low or proper structural
template is unavailable’. Further more, it has been estimated that the number of unique fold
found in nature is limited and can be as low as 1000°. More than one function can be assign to
a fold such that transferring protein function becomes unreliable even when proteins with
similar structures have been found. Much effort has been done to seek the methods without
relying on sequence or structural alignment™’

Among these methods, the machine learning techniques try to find the similarity of the
generalized properties between the query protein and the proteins belong to each functional
class. It is fundamentally different to the alignment-based approaches’. There are various
kinds of machine learning techniques, including artificial neural networks, Bayesian
networks®, and support vector machines (SVM)’. The continuing expansion of the biological
database causes the machine learning approach become more effective and practical.

To effectively build the tools for structure-function analysis, three important issues must be
considered: the property-based- representation.. of macromolecular structure, the spatial
distribution of critical properties, and the significance measurement with respect to the control
group'’. Bagley and Altman (1995) build a system that is able to detect the features of calcium
binding site, cysteine bonding site, and serine protease active sites. For metal-binding site
prediction, the MetSite'' method can detect the binding site residues for protein models of
moderate quality.

First, for the property-based representation of protein structures, Bagley and Altman (1995)
use about 20 biophysical/biochemical properties, including atom-based properties, chemical
group-based properties, residue-based properties, secondary structure-based properties, and
other properties. Sodhi, et al. (2004) use the properties of amino acid residues, including
position specific score matrix (PSSM), secondary structures, solvent accessibility, and
distances between C atoms of site residues.

The second issue is to construct a spatial distribution of the properties. In the space of



protein molecule, the scale and the focus for handling the molecule need to be decided. For
the scale issue, one can use the scale down to atom-level resolution or use the residue-level
resolution. Bagley and Altman (1995) use a 3D grid to describe the space around the site, with
a cell containing no more than one atom. The properties of the atom are stored in the cell. For
calcium binding site, they focus on the calcium ion and use concentric shell to collect the
properties around the calcium ion. Instead, Sodhi, et al. (2004) use the residue-level resolution.
They first identify the site residues and then focus on each one of the site residues, retrieving
the properties of 9 nearest neighboring residues around this site residue.

The third issue is to estimate the significance of the site detected by the system. Bagley and
Altman (1995) compare the property distribution between sites and non-sites. The non-sites
are chosen as the control group. For calcium binding site, the choice of the control non-site
could be other cations or any other‘atoms. The two distributions are compared for statistical
significance. Sodhi, et al. (2004).use the artificial neural network to output the probability for
a residue to be the metal-binding site .residue.-The classifier is then evaluated by the total
prediction accuracy and the true positive rate (TPR) at a given false positive rate (FPR).

In this study, we present the first attempt of using SVM to predict the metal-binding site
residues. The metal ions considered include six ions: Fe3+, Cu2+, Mn2+, Mg2+, Ca2+, and Zn*".
The dataset is constructed from the Protein Data Bank (PDB)'?. We follow the method of
Sodhi, et al. (2004) to define the site residues but use different cut-off values to control the
number of non-site residues. The average prediction accuracy achieves 97.4%, and 46.2 TPR

at 5% FPR, a better result than Sodhi, et al. (2004).

2 METHOD
2.1 Datasets
We used the facility on the PDB website to retrieve all protein structures which contain the

specified metal ions. The procedure for pre-processing the data is summarized in Figure 6.



First, the chains with fewer than 50 residues'® were filtered out. Then we removed the chains
that were DNA or RNA. If chains contain only unknown residues, these chains were deleted.
In order to perform the cross validation according to super-families'', we removed the chains
that were not included in SCOP (version 1.67)'*. The chains that did not contain the metal
ions were also removed. The remaining chains are clustered at a sequence identity level of
25%'" using the program BLASTCLUST in the BLAST" package (version 2.2.10) from
NCBI. We choose the first one from each cluster to form our dataset.
2.2 Identifying site and non-site residues

The site residues are defined as those residues with their main-chain atoms within 7A of a
metal ion''. We use N, C% and C as the main-chain atoms. In order to identify these site
residues using the machine learning approach, 9 nearest residues were marked as the
neighbors for each site residue''. Then these 10 fesidues are encoded and treated as positive
input to the classifier.

Residues are defined as in the non-site regionif they are far away from the metal ions with
a predefined distance. If a protein chain-has more than one ion, the distances from the residue
to all the ions must fulfill this requirement at the same time. The distance used in this work
ranges from 7A to 35A. We define a buffer zone as a prohibitive region which is enclosed by
the site and the non-site region. Residues in the buffer zone are not put into the training set.
For each residue in the sequence that is neither located at the site region nor in the buffer zone,
nine nearest neighbors are also marked and encoded just like the site residues. The definition
of the site residues is illustrated in Figure 7. The definition of buffer zone and the non-site
residues is illustrated in Figure 8.
2.3 The encoding features

The information used to encode the site residues includes PSSM, secondary structure state,
solvent accessibility from DSSP'’, and inter-atomic distances between C? (C* for glycine)

atoms of the site residue neighbors'.



For each protein chain, the FASTA sequence used to generate the PSSM was constructed
from its DSSP file. Then we use this sequence to run PSI-BLAST'” for three iterations against
the non-redundant database and produce the PSSM. Thus, the PSSM produced will have the
same residue numbering as those from PDB and DSSP. There will be 20 scores for each
residue in the PSSM. We then extract the respective 20 scores for each one of the site residue
neighbors. The information of PSSM is illustrated in Figure 9.

We use three states to represent the secondary structures, i.e. Helix for H and G, Sheet for B
and E, and Coil for T, S, and 1. Hence, the secondary structure state for a residue will be
encoded as [1, 0, 0], [0, 1, O], and [0, O, 1] with respect to Helix, Sheet, and Coil. The
information of DSSP is illustrated in Figure 10.

Therefore for a site containing 10 residues we will get 10¥20 PSSM scores, 10*3 secondary
structure states, 10*1 solvent accessibility scores, and 10*(10-1)/2 distances, thus producing a
feature vector containing 285 features that can-be the-input to the classifier. The information
of distance matrix is illustrated in'Figure 11,

2.4 Learning by the Support Vector Machine
The support vector machine (SVM) is a powerful classification method that has become

18-21

popular in computational biology ~ . The original idea of SVM is to use a linear hyperplane

to separate training data in two classes: Given training vectors X;,i =1,...,I and a vector y

definedas y, =1 if X; isinoneclass,and y; =—1 if X; is in the other class. The support
vector technique tries to find the separating hyperplane W'x, +b =0, with the largest
distance between two classes measured along a line perpendicular to this hyperplane. This
requirement is equivalent to the minimization of %WTW with respect to W and b under
the constraint that y, (W' x, +b) > 1. However, in practice, these data to be classified may not

be linearly separable. To overcome this difficulty, SVM nonlinearly transforms the original

input space into a higher dimensional feature space by the so-called kernel functions



[¢1 (X), 9, (X),...] and tries to minimize
|
%WT w+CY & (1)
i=1
with respect to W, b, and &, under the constraint that y (W'@(x,)+b)>1-¢&, where

& 2 0. This procedure has the advantage of allowing training errors. When the training data
are mapped into a vector in a higher dimensional space, it is possible that data can be linearly
separated. It should be noted that in the training process only part of the training data are used
to construct the hyperplane, hence avoiding the overfitting problem. These data constructing
the classifier are called support vectors.

In this work, we use LIBSVM?™ to perform all the calculations. The version of LIBSVM is
2.8, and the kernel type is radial basis function (RBF). Before executing SVM, the datasets
are divided into five groups for fivefold cross<validation. The requirement of the grouping is
that the chains of the same SCOP super-family will not occur both in the training and testing
sets''. It is more rigorous than-random grouping, for it doesn’t learn the homologs of the
testing sets. We also do the cross-validation using random grouping for comparison.

One useful feature of LIBSVM is that it can output probability estimates using the —b
option. In order to evaluate our method and to compare the results with that by Sodhi, 2004,
we do all the training and testing tasks using this option to calculate the sensibility and
specificity. All the input data to the SVM are scaled by the svm-scale program included in
LIBSVM. The system flowchart is illustrated in Figure 12.

2.5 Performance measures
The performance is measured by Q, accuracy and True Positive Rate (TPR) at 5% False

Positive Rate (FPR)''. The Q, accuracy is given by

TP +TN

Q= 1p TN FP 4 FN

x 100% ()

where TP is the number of true positives, TN is the number of true negatives, FP is the

number of false positives, and FN is the number of false negatives. The TPR is given by



TP

TPR=——
TP+FN | (3)
and the FPR is given by
FPR=_ "
FP +TN | 4)

The calculation of TPR at 5% FPR is in the process of drawing the ROC* curve. For each
testing case, the SVM outputs the probabilities of the two class labels. Normally, the decision
threshold is 0.5, so the class with higher probability is the predicted result of the SVM.
Alternatively, we can test various threshold values to verify the sensitivity and specificity with
respect to each threshold value. In this work, the threshold ranges from 0.001 to 0.999,
increasing by 0.001 each time. If the probability of a testing case is larger than the threshold,
it is considered as “positive”; otherwise, it is considered as “negative”. Therefore each
threshold value will produce a group.of TPR"and FPR, which decides a point on the ROC

curve. Given an FPR value, we can get the respective TPR value.

3 RESULTS

3.1 Datasets

The data originally retrieved from PDB include more than seven thousand structures with
more than twenty thousand chains at the time of Nov 2004. After the pre-processing described
in the method section, we got 1063 chains distributed in 361 SCOP super-families. These
numbers do not agree with the sum of those from the six metal ions owing to some chains
may bind more than one kind of ions. The datasets are listed in Table 1. The all protein chains
used in this study are listed in Appendix.
3.2 The prediction performance

The overall prediction accuracy Q; achieves 97.4% and TPR is 46.2% at 5% FPR. In this
experiment, the non-site region is defined as the region outside the 21A radius from each

metal ion in the chain. The chains are grouped according to SCOP super-families such that the



chains in the testing sets will not be in the same super-family as those in the training sets.
Therefore the chains belong to the same super-family will be grouped together in the training
or testing sets. All the super-families are randomly divided into five groups for fivefold
cross-validation.
3.3 Comparison between different grouping methods

Besides the grouping with respect to super-families, we also do the grouping that randomly
divides all the chains. The cross-validation results, as expected, are somewhat better than that
of grouping by super-families due to some homologs in the testing sets have been trained
before the prediction. The comparison of the two grouping methods is listed in Table 2.
3.4 The two SVM training strategy

Despite the good prediction performance of SVM, it spends much time on parameters
selection. Instead of adjusting parameter, we can adjust the weights of the two classes. The
weight adjustment is based on the sizes of the.two, sets; we use the size of the smaller set as
the weight for the larger set and viee-versa. In contrast to parameter adjustment that the
number of times of the training processes depend on how many groups of parameters tried,
the training process for weight adjustment executes just once. The results are just a little
worse than the best ones done by parameter adjustment. All other calculations are done by
adjusting weights of the two classes. The results are listed in Table 3.
3.5 Effect of different radii for defining a non-site residue

By using 7A as the radius to define non-site residues, all residues in the sequence except
site residues are regarded as non-site residues. As a result, the amount of the generated input
data is large and may contain some ambiguous data coming from residues near the site region.
A buffer zone is defined to be a shell enclosed by two concentric circles centered at the metal
ion. The radius of the inner circle is 7A, and several different radii are tried for the outer circle.
The models are produced for each radius. The performance of different training models is

evaluated by its accuracy to predict the 7A testing set. Figure 13 and 14 show the accuracy



and the true positive rate versus different models. Figure 15 shows the ROC curves of
different classifiers for each metal ion. Table 4 lists the complete results for different models.
3.6 Comparison among different coding features

The features used to encode the residues include PSSM, secondary structures, solvent
accessibility, and distance matrix. The best results are given by combining all these features
into one feature vector. Different features have different discriminating abilities. We separate
the features and compare the prediction performance of each feature. We also compare the
results with those from sequence PSSM, which is generated from residues local in primary
sequence. The results are listed in Table 5. The ROC curves of each feature for six metal ions
are showed as Figure 16 to Figure 21.
3.7 Comparison with previous work

We use the same coding scheme as Sodhi’s; but we choose different radii for defining
non-site residues. Instead of using artificial neural network for training and testing, we use
SVM to perform the classification tasks: Our results from the 21A training model achieves a
97.4% overall prediction accuracy compared t0:94.5% and 46.2% TPR at 5% FPR compared

to 39.2%. The comparison is listed in Table 6.

4 DISCUSSIONS

In identifying functional relevance residues in proteins, previous studies''**'** have shown
that the machine learning approach is an effective way to discriminate the site residues from
non-site residues. The SVM method is used in this study to predict the metal-binding site
residues and gives consistent results. By comparing the performance of each coding feature, it
is obvious that the ability to identify the site residues with a high accuracy comes from the
sequence information as well as the structure information. The combination of structural and
sequence information improves the quality of prediction''”*. Using SVM, this work is

comparable with the recent work using artificial neural network'".



When doing n-fold cross validation, the dataset is divided into n subsets, and the evaluation
process repeats n times. Each time, one of the n subsets is taken as the test set, and the other
n-1 subsets are taken as one training set as a whole. The division of the dataset is usually by
random'®". In this study we divide the dataset according to the super-family of each instance
in the dataset. The reason for using this approach is that we can detect the site in proteins as if
they are in new super-families since the training and testing set do not have proteins in
common super-families''. We compared these two approaches for dividing the dataset. The
one with random division has the better results because of the knowledge of the homologs. In
practice, since we already have a library for all proteins with known structures, the homology
information can be utilized to improve the prediction accuracy; if it fails to have the homologs,
it is just the case to predict the proteins in new super-families. Therefore the performance
resulting from grouping by super-families can be'regarded as the worst case situation.

The site or non-site residues atre defined as within'or without a certain distance to the metal
ion. The value of this distance has a direct.impact on-the amount of site or non-site residues.
The site residues in this study are defined to be-within the sphere of radius 7A centered at the
metal ion. We try several different cut-off values to define the non-site residues and find that
not only the training time but also the TPR improves as the radius increases. By using a small
radius, more residues close to the binding site (but still outside the 7A radius) are taken as
non-site residues. These residues resemble the real site residues in position and nature. This
may cause the SVM difficult to distinguish the site residues from non-site residues. Choosing
the limited number of non-site residues as the control group'® may prevent the classifier from
over-fitting and improve the sensitivity to detect site residues. The results showed in Table 5
confirmed this point. The best prediction results do not occur at the training model produced
by 7A cut-off value for non-site residues nor at that by 35A. The 35A radius is so large an
area such that few non-site residues can be included in the training set, resulting in the

scarcity of training data.
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From the results we notice that the prediction accuracy and TPR of calcium ion is much
lower compared to other metal ions. This trend is consistent with the results by Sodhi, et al.
(2004). The ionic radius of calcium is 0.95A, 0.46A for manganese, 0.645A for iron, 0.65A
for magnesium, 0.73A for copper, and 0.75A for zinc™?’. As a result, the ion-oxygen bond
length is longer for calcium ion than the other ions listed here®®. They also show that calcium
ions have a strong binding affinity to oxygen atoms, resulting in the constrained choice of
ligands. Due to the same decision radius of 7A for all metal ions, the longer ion-oxygen bond
length of calcium ion may prevent the ligands from been included in the site residues. This
situation may lead to the lower prediction accuracy and also the longer training time.

As a conclusion, it has been shown that the coding scheme that combines sequence profile
and structural features is capable of represent the characteristics of particular site patterns.
Protein structures can be viewed as.résidue interaction graphs (RIGs)>, a simplified model to
represent the complex protein 3D._structures.- This' model is used to identify active sites,
ligand-binding and evolutionary-conserved residues. -Bagley and Altman (1995) use a fixed
number of concentric shells to collect the featutes stored in the vicinity of the calcium ion.
This raises a possibility to encode the spatial distribution of properties of residues in the shells
centered at particular residue. This new direction may lead to more efficient calculations and

more accurate predictions.
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TABLES
Table 1. The statistics of the datasets used in this work

No. PDB No. SCOP No. metal
Ion

chains"  super-families ions
Zn*" 372 202 613
Ca*" 273 144 576
Mg® 261 129 357
Mn** 110 66 173
Cu* 47 28 74
Fe' 51 25 66

*These data are collected at the time of Nov 2004.
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Table 2. Comparison of the two grouping methods: by randomness and by

super-families

lon By randomness By super-families
Q: accuracy (%) TPR (%) Q2 accuracy (%) TPR® (%)

Zn** 94.8 79.4 93.8 73.8
Ca** 89.8 55.0 86.3 34.1
Mg* 95.3 50.0 94.7 41.3
Mn** 94.5 71.6 93.2 61.5
Cu* 95.6 84.4 91.5 62.6
Fe’* 93.7 86.1 85.9 54.0
Average 94.0 71.1 90.9 54.6

The cutoff radius for non-site residues is 35A.
“This is the true positive rate (TPR) at 5% false positive rate (FPR).
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Table 3. Comparison of the two training options of SVM: weight and parameter

adjustment
lon Parameter adjustment Weight adjustment
Q; accuracy (%) TPR (%) Q; accuracy (%) TPR (%)

Zn*" 94.6 79.0 93.8 73.8
Ca*" 87.4 41.0 86.3 34.1
Mg* 95.0 48.9 94.7 41.3
Mn*" 93.5 65.3 93.2 61.5
Cu* 91.9 66.4 91.5 62.6
Fe’* 86.8 56.5 85.9 54.0
Average 91.5 59.5 90.9 54.6

The cutoff radius for non-site residues is 35A.
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Table 4. Comparison among different buffer sizes

Buffer Q; accuracy (%) TPR (%) / 5% FPR

Size (A) zn Ca Mg Mn Cu Fe Avg Zn Ca Mg Mn Cu Fe Avg
35 940 92.7 98.1 949 929 81.0 923 67.3 28.7 36.1 559 35.6 41.4 442
28 964 95.6 98.4 96.8 954 92.8 959 67.7 304 363 553 363 45.1 452
21 97.1 96.2 98.6 979 97.5 96.8 97.4 66.6 30.2 352 558 40.1 49.4 46.2
14 973 964 98.6 98.3 98.0 98.0 97.8 66.9 29.5 335 558 374 51.1 45.7
7 97.5 96.5 98.7 98.4 98.2 98.5 98.0 64.0 29.1 30.7 52.4 353 49.4 435

The testing set is of 7A buffer size. The training sets are of different buffer sizes ranging from

7A to 35A.

17



Table 5. Comparison among different coding features

Q; accuracy (%) TPR (%) / 5% FPR

Feature®
Zn Ca Mg Mn Cu Fe Avg Zn Ca Mg Mn Cu Fe Avg

ACDE 97.1 96.2 986 979 975 968 974 66.6 30.2 352 558 40.1 494 46.2
CDE 969 96.8 98.7 985 982 984 979 192 7.1 109 106 63 147 11.5
A 968 96.7 98.6 979 975 96.6 974 64.0 264 31.7 52.5 39.1 50.6 44.1
B 96.8 96.6 98.6 97.9 97.8 97.2 97.5 588 27.1 32.0 483 33.9 40.7 40.1
C 969 96.8 98.7 98.5 983 985 98.0 57 75 63 55 48 30 55

*A: Site PSSM, B: Sequence PSSM, C: Secondary Structure, D: Solvent Accessibility, E:

Distance Matrix
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Table 6. Comparison with Sodhi’s results

lon Sodhi JJLin®
Q; accuracy (%) TPR (%) Q; accuracy (%) TPR (%)

Zn*" 94.6 47.8 97.1 66.6
Ca*" 93.9 30.4 96.2 30.2
Mg* 94.2 324 98.6 35.2
Mn*" 94.7 38.8 97.9 55.8
Cu* 94.9 36.2 97.5 40.1
Fe’* 94.9 48.8 96.8 494
Average 94.5 39.1 97.4 46.2

*The cutoff radius for non-site residues is 21A.
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FIGURE CAPTIONS

Figure 1. PDBid 1A8A, with coordination number 4. The sphere in magenta is the calcium
ion, and the sphere in red is the oxygen atom. The smaller figure at upper-left corner is the
full-view of the protein, and the larger figure is the magnified view of one of the
metal-binding site.

Figure 2. PDBid 1G4Y, with coordination number 5.

Figure 3. PDBid 1176, with coordination number 6.

Figure 4. PDBid 1GClI, with coordination number 7.

Figure 5. PDBid 1ARU, with coordination number 8.

Figure 6. The data pre-processing procedure. We obtain the original sequences from PDB.
The chain that is DNA or RNA is filtered out. The length of the chain must be at least 50
residues. The chain must contain, at'least one metal ion. The information of SCOP
super-families, DSSP secondary structure, and solvent accessibility is retrieved and processed.
The DSSP sequence is used tg gencrate the PSSM' of the sequence. Finally the dataset
contains 1063 protein chains.

Figure 7. Definition of the site residues. Residues are the site residues if their main chain
atoms (N, C*% C) lie within the 7A radius sphere centered at the metal ion. The figure shows
the Benzoylformate Decarboxylase structure with PDBid 1BFD.

Figure 8. Definition of buffer zone and the non-site residues. The buffer zone is located
between the inner and outer sphere. The radius of the inner sphere is 7A, and the radius of the
outer sphere ranges from 7A to 35A. The non-site region is located outside the outer sphere.
Residues located at the non-site region are the non-site residues. The figure shows the
Benzoylformate Decarboxylase structure with PDBid 1BFD.

Figure 9. Coding information of PSSM. The 20 scores of the next residue are appended to the
rear of the scores of the present residue.

Figure 10. Coding information of DSSP. The 40 scores of the DSSP are appended to the rear
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of the PSSM scores.

Figure 11. Coding information of distance matrix of C? atoms of residue neighbors. The 45
distances are appended to the rear of the DSSP scores.

Figure 12. System flowchart

Figure 13. Comparison of the accuracy among different buffer sizes. The 7A testing set is
predicted by all the training models of different radii.

Figure 14. Comparison of the true positive rate (TPR) among different buffer sizes.

Figure 15. ROC curves of different classifiers. The results are from buffer size of 21A.
Figure 16. ROC curves of each feature. A: Site PSSM, B: Sequence PSSM, C: Secondary
structure, D: Solvent accessibility, E: Distance matrix. (a) Fe’* ion. (b) Cu®" ion. (¢) Mn*" ion.

(d) Mg2+ ion. (e) Ca*" ion. (f) Zn*" ion.
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Figure 9
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Figure 10
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Figure 11

Distance matrix of C* atoms

236G 19F 256 271 17S 16F 21K 31E 26T
20D  4.692 5.131 5.397 5.416 5.691 5.743 6.288 6.403 6.806

23 G 9.599 5.532 9.512 7.258 9.342 7.031 9.127 8.386
19 F 9.824 4.559 T7.418 6.090 7.315 5.662 9.515
25G 7.815 9.153 7.907 10.673 10.212 4.656
27 1 10.125 7.459 8.684 5.156 5.665
17 S 5.333 9.062 10.924 12.066
16 F 11.222 10.690 9.782
21 K 4.848 10.825
31 E 8.423
26T

Total: 10 * 9 /2 = 45 (distances)
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Figure 12
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Figure 13
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Figure 14
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Figure 15
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Figure 16
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Figure 17
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Figure 18
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Mg
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Ca

Figure 20
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Figure 21
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APPENDIX
Appendix 1. Protein chains containing Fe’" ions

Fe

1EO02:B 1COJ:A INF6:F 1SUV:E 1B13:A 1RSV:B 1BOL:A 10HV:A 1KBP:A
1GUP:A 1QGH:A 2PAH:A 1DO6:A 1NDO:A 10QU:C 1DLM:A 10Q4:A 1MMO:D
INX4:B 1INMO:A 1B71:A 109R:A 1HU9:A 1D9Y:A 1UN7:A 1Q0C:A 1EIQ:A
1BKO: 1RCW:B 1GV8:A 1K6W:A 1PHZ:A 1M63:A 102D:B 1QHW:A 1GY9:A
ILTV:A 1RXG:_ 2AHJ:C 1J3Q:A 1LM4:A 1DYT:A 1FRF:L 1GP5:A 1LNB:E
1GVG:A 1XSM:_ 1J2C:A 1LM6:A 1FHA:_1DFX:_
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Appendix 2. Protein chains containing Cu®" ions

Cu

1EQW:B 1CC3:A 1ET7:A 1BAW:A 10AC:B 1M56:A 1H11:B 1AvV4: 1BQK:
1ID2:A 1M56:B 1IBY:A 1A2V:A 1A0Z:A 1HCY:_ 1A65:A 1GY2:A 1THO:
10DB:A 10V8:A 1IN9E:A INOL: 1FSR:A 1GMW:A 1N68:A 1LNL:A 10PM:A
1LCF:_ 1GOF:_ 1GWO:A 20XI:A 1BUG:A 1A8V:B 1JER: 1KCW:_ 1GSK:A
71CJ-A 1ARM: 1KYR:A 1AND: 1I1AA: 1QDO:A 1AQP: 10T4:A 1UKU:A

10Q6:A

1FVS:A
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Appendix 3. Protein chains containing Mn>" ions

Mn

1BJQ:B 1AZD:A 1HQF:A 1KFL:A 1GV3:A 1F3W:A 1F1H:A 1DID:A 1HHS:A
1BFR:A 1GQ2:A 1ZQL:A 1G80:A 1FSA:A 1M6V:A 1E6A:A 1HX3:B 1FQW:A
IN51:A 1CHR:A 100R:B 1K20:A 1IMHP:B 1INHX:A 1HO5:A 1J2T:A 1FUI:A
1FIM:-A 1INIH:A 1ITW:A 1QMG:A 1098:A 1A0OD:A 1DE6:A 1JPR:B 1KGP:A
1IMC:B 1GOI:A 1RF7:_ 1GX1:A 1C39:A 1JFZ:B 10N2:A 1MOD:A 1UW8:A
1GQ6:B 1NOM:_ 1G5B:B 1150:A 1L5G:A 1JON:A 1KSI:A 1LV5:A 1L5G:B
1GX6:A 1FAO:B IN1P:A 1KHW:B 1ECC:A 1MM8:A 1ELS: 1LWD:A 10LX:A
1ICNZ:A 1CDK:A 1117:A 110B:A 1KGZ:B 1IPS:A 106K:A 1CPO:_1I1G1:A
10F2:A 1UT5:B 1QH3:A 1KWS:A 1M4Z:B 1MQW:A 1J53:A 1GN8:A 1A5V:
1VJ2:A 1INRO:A 1EF2:A 1HK8:A 1AQ2: 1F5A:A 3UAG:A 1IR6:A 1A6Q:
IMNP:  1FOA:A 1LNC:E 1A76:_1RZD: 1LL2:A 1H7Q:A 1K23:D 1DAH:
1ZIP:_ 1FI12:A 1INO:_ 1JAI:_ INCY:_ 1NZ5:A 1G15:A 1JLK:A 1J25:A
2PAL:  1IGV:A

45



Appendix 4. Protein chains containing Mg”" ions

Mg

1BGL:A 1ANO:A 1DIE:A 1BWV:A 1NOH:A 1BR1:A 1MAB:A 1EW2:A 1MFR:A
1A49:A 1EBG:A 10HH:D 1EYI:A 1AGR:A 1HUR:A 1IN1Z:A 11V2:A 1NUE:A
1EC9:D 1M34:E 1BYU:B 1CGO:A 1ATR: _1ZPD:A 1F0J:A 1CJB:C 1E2F:A
1FRF:L 1AF6:A 1G69:B 10FH:G 1EFT: 1F4V:A 10CC:A 1F8I:A 1M3U:A
1P8F:A 1MXA:  1G3U:A 1JGT:B 1ECB:C 13PK:A 1G0J:A 1GZG:A 1JQV:A
1QMZ:A 1J7L:A 1HBM:C 1F5S:A 1PT6:B AINFS:B 1HIO:P 1AON:A 1BOP:A
1110:B 1MX0:C IMIV:A INMP:A 2AKY: 1QEZ:A 1DY3:A 1F7D:A 11Q8:A
1HBN:A 1BWF:0 1AUK: 1GKI:B 1DTN:  1GQC:A IN8W:A 10HF:C 1IN5Y:A
1K3C:A 1YVE:1 1INJ1:A 1HBN:B 1KCZ:A 1EYZ:A 1BXZ:A 1UR2:A 1ESN:A
1H7U:A 1RK2:B 1M1B:A 1E0J:B 10ES:A 1GS5:A 1FEZ:A 1DXE:A 1DEK:A
1QLO:A 1IW7:A INR9:A 1BJY:B 10EO:A 1KO5:A 1GRV:B 1B8C:A 1GUS:A
11TZ:A 1EQR:A 1H7A:A 1GPM:C 1EHI:A 1K9Y:A 1UBW: 1GXB:D 1JX4:A
1PFK:A 110V:_ 1FYD:A 1H65:A 1H1D:A 1L4Y:A 1HTW:A 1Q9S:A 11W7:D
1HQM:D 1IW7:C 1GL9:B 1G8X:A 1L8A:A 1FW6:A 1H16:A 1GQI:A 1NUG:B
3PMG:A 1UN9:A 1AMU:A 1SH3:B 1MOW:A 1GQY:B 1EWK:B 1BIF:_ 1HYO:B
1JBV:A 10D5:A 1FNN:A 1J58:A 1J1C:B 10C7:A IN6M:A INI4:A 1JIMS:A
1GOL:_ 11XY:B 1IW7:F AINE9:A 8ICI:A 1GKZ:A 1E19:A 10BG:A 1H3I:A
AMC3:A IMUM:A 2PRN:_ 1VFN:i 1F1Z:A. 1G6H:A 1J9J:A 1IRU:G 1INUI:A
1H7Q:A 1GKB:A 1A82: 1LVH:A . IN9K:A 2UUT:A 11PP:A 1H56:A 1L5Y:B
1KQM:B 1L00O:A 1KTG:A 1CGMC:A INLQ:zA 1UN6:C 113Q:A 1KC7:A 1D5A:A
IN52:A 1GM5:A 1FNM:A 1F5N:A INQE:A 1H1L:B 1KA2:A 1BPM: _ 1H1L:A
106T:A 1IMXG:A 2UAG:A 1TAQF:E-1Q0SO-A 1INP:_ 1HMV:B 111R:A 1E4G:T
10LU:A 1BGO:  1QLG:A 1EZW=A"1L3R-E 1GS6:X 1H3J:A 1B62:A 1LP4:A
1L8Q:A 1FHV:A 10DS:A 1A77::.1GSAz " 1JP4:A INQ6:A 1J1U:A 11ZC:A
1H74:B 1CSN:_ ATFR:  1144:A 13WY:B 11AH:B 1JHZ:A 1K77:A 106Y:A
1HW6:A 1EYE:A 1LDF:A AINXQ:A 1HK7:A AINSF: 1DQN:A 1QRO:A 1KYR:A
1IRU:1 1IRU:1 10PR:_ INOW:A 10UO:A 1IRU:X 1KHZ:B 1MH9:A 1INRJ:B
1H6P:A 1ETU:  1IWL:A 1INQZ:A 1QF8:A AINZI:A 1KWO:C 1R67:A 11DO:A
1VSD:_ 1GMI:A 1F7R:A 1CS3:A 1HXI:A 1HZ1:A 1IW7:0 11G5:A 1MOG:A
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Appendix 5. Protein chains containing Ca>" ions

Ca

1BJQ:B 1CVW:H 1BM6: 1AZD:A 1AYP:A 10MR:A 1FJT:A 1A4G:A 1BGP:
1CDG:_ 1EA7:A 1HTN:_  1B2Y:A 1QLS:A 3LHM: 1IN73:C 1B90:A 1B09:A
1BU4: 1EGI:B 1PVA:A 1DR1: 1AXN: 1MN1: 10AC:B 1STA: 1JKU:A
1AYO:A 1AKL: 1GA1:A 2MSB:B 1HQD:A 1Q5C:C 1LW5:D 11ZJ:A 1M34:A
1PK8:A 1ALV:A 1UMN:G 1COF:S 1LRW:A 1FWX:A 1DJW:B 10AH:B 1L9M:B
1E3X:A 1JDA:_ 1A0S:P 1J6Z:A 1088:A 1LVU:D 1DTH:A 5STD:A 1HL5:C
1UYY:-A 1TNQ:_ 1HPO:B 2MAS:A 1LNQ:A 1FZD:A 1HCU:B 1E8U:B 1LHN:A
1BOP:A 1F9D:A 1HM8:A 1C9U:B 1HPL:A 2CEL:A 10LP:A 1E5N:A 1GOH:A
1CB8:A 1LPM:_ 1EAK:A 1GTT:A 1CVM:A 1EB7:A 1GCA:_1E5J:A 1G42:A
1F20:A 1FF5:A 1BYH:_ 119B:A 1H6X:A 108P:A 1L7L:A 1GZT:A 1FI5:A
IMPX:A 1B4N:A 1UP8:A 1M56:A 1E77:A 1R64:A 2TAA:A 106V:A 1KTW:A
1LWH:-A 1HYO:B 1JI3:A 1IMNZ:A 1H1V:G 1ZQC:A 1KXR:B 2CBL:A 1FID: _
1BMO:A 1QUO:C 10H4:A 1BYF:A 1HT9:A 1F4N:A 1BG3:A 1UVN:A 1K1X:A
1DE4:C 1GXD:A 1G21:B 1JIN:A 1N48:A 1DOK:A 1TAD:C 1EGZ:A 1INZY:A
1182:A 1J83:A 1AG9:A 2FHA: 1UZJ:A 1DSY:A 2PSR:_ 1CO7:A 1LMJ:A
1HOH:A 1JOM:A 1KBO:A 1M9I:A 1CJY:A 1INBW:A 1H3G:A 1INQH:A 1KFQ:A
IN7U-A 1HDH:A IN2L:A 1MI0:B,,11A7:A 1DYK:A 10C6:A 1G9U:A 1FMJ:A
1DCT:A 1IME:A 1UOC:A 1H6G:A 1L6R:A. 1CPM:_ 10UP:A 1INNL:B 10TN:A
1RTG: 4SBV:A 1H1A:A 1K40:A . 1PRR: "1JTG:B 1E7D:A 1NZI:B 1NBC:A
1GN1:F 1INL2:A 1EXZ:A 1C7K:A IRLW: - 11T4:A INQD:B 1MJ2:B 1FZP:B
1HDF:-A 1K9U:A 1GUN:A 1SU4:A 1JV2:A 1KIT:_1BF2:_ 1ACC:_ 1N7D:A
INOL: 1C8D:A 1CLC: 19Vv2:B-1BED:- 1C71:A 1FSU:_ 1MU5:A 5ENL:
1CVR:A 1LWS:A 1BAG: 1IKA>I #1H30-A IJHN:A 1QH4:D INGI:_ 1FBL:
10KG:A 1KA1l:A 1JX6:A 1GXR:IA .1E54:A 1V0O4:A 2APR:_ 10BR:_ 1GXO:A
1RDR: 1E1A:A 1GQ3:C 1BOB:_ 2POR: 1EZM:_1INRW:A 1URX:A 1JTD:A
1B2L:A 107L:D 1ZQV:_1J1T:A 1SLM: 1DAF:_ 4SBV:C 1PEX:_ 1QV1:A
2SAS:  IM1U:A 2STV:_ 1JE5:B 1HQV:A 1XYN:_ 1INYA:A 1B2V:A 1V67:A
1B1C:A 1LFO:A 1K12:A 1ESL: 1GUI:A 1JBO:L 1SRA: 1K5W:A 1VSI:
1TN3:  1POC:_ 1J24:A 1GR3:A 1PK6:B 1AYO:B 5CHY:_ 1J5U:A 1DFX:
1F7L-A 2MCM:_ 11U9:A 1WAD: 1SVY: 106S:B 2PLT:_ 1H4B:A 1HJ7:A
IN7S:C 1GUA:B 10HZ:B
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Appendix 6. Protein chains containing Zn*" ions

/n

1E3E:A 1EQW:B 1ZNC:A 1BM6:_1EW2:A 1FJT:A 1EZZ:B 1LBC:B 1A8T:A
1F57:A 1K1D:A 1Q2R:A 1IN4P:B 1F0J:A 1A6Y:B 1GT7:A 1JDI:A 1STE:
1JD5:A 1GYT:A INVB:B 1H7R:A 1Q3K:A 1H4S:A 1HR6:D 1KOG:A 1INNJ:A
1TSR:A 1FBX:A 11S8:A 1G2D:C 1DWV:A 1KZO:B 1INLX:A 10CC:F 1CAl:
1AKL: 1KBP:A 1DE5:A 1GUP:A 1F30:A 1ADD:_ 1HZY:A 1DTH:A 1PWU:A
1R3N:A 1ZQT:A 1I1X1:A 1E4AM:M 1M2G:A 2NLL:B 1EPW:A 1J36:A 1I1Q8:A
1CNQ:A 1BH5:B 1LR5:A 1HZ5:A 1150:A 113Q:C 1ENR:_1FSJ:B 113Q:1
1130Q:J 1SFO:B 1JQG:A 1UMY:D 1ANV: 1J8F:A 11A9:B 1SML:A 1NJG:A
1B71:A 1DY1:A 1G5C:A 1E67:A 2HAP:C 1PFV:A 1EAK:A 10DZ:A 1FN9:A
1DOS:A 1AMP:_ 1F20:A 1HI9:A 1QRL:A 1G12:A 1F35:A 3LVE:_1Q08:A
IM2V:B 1HBM:D 2USH:B 1KAH:B 1EI6:A 1CG2:A 1LI7:A 1ITQ:A 1JQ5:A
7MDH:B 1L9H:A 1Q74:A 1QH3:A 1BKC:E 1AH7:_10QR2:A 1EKJ:G 1K6Y:B
1A74:A 1FIM:A 1E7D:A 1GX1:A 1I1EO:A 1RB7:A 1JOE:A 1B6Z:A 1ETE:A
1JTK:-A 1A2P:A 10I10:A 1L3E:B 1AJY:A 4GAT:A 1A71:_ 1A1T:A 1WJB:A
13ZQ:A 1IM20:A 1EKM:A 1GXD:A 1GW6:A 1H7A:-A 4ENL:_1MXD:A 1UWY:A
1C3R:A 1JR3:A 1ET8:A 1UDT:A 1ALN:_ 1TON:_ 1YEI:L 1ZIN:_ 1BIO:_
1160:B 1LHN:A 1EH6:A 1BYF:A .1FWQ:A 1BAW:A 1JCC:C 1HQM:D 1HWW:A
1GAX:A 1H3N:A 1KFI:A 117W:C 1IRX:B: 1UQW:-A 1DDZ:A 1K2Y:X 1I1A7:A
1F83:A 1KOL:A 1IXLL:A 1J13:A 1P9W:A IM63:A 1IN25:A 1V33:A 1J79:A
1PV9:A 1JR3:E 1IBQ:A 1JAZ:A 1GUD:A INVT:A 1FXU:A 1TOA:A 1GVF:B
1UT8:B 1MVH:A 1DK4:A IML9:A INUI:-A 1JW9:B 1LOY:A 1IM65:A 1H1Z:A
119R:H 1EU3:A 1L70:B 2AHJ:C-IM55:A 1LQW:A 1TF6:D 1L10:C 1H10:A
1Q0F8:A 1BWN:A 1BT7:_ 1VSH>I +"1EBO-A IMBX:A 2HRV:A 1E31:B 10DG:A
1C7K:-A 2CUA:B 1J0C:A 1IM3V:IA .1DVF:D 2A0B:_ 1130:E 1INN7:A 3CAO:A
1DOQ:A 1NO5:B 1IMWQ:A 1IMR1:C 2PSR:_ 10QJ:A 11QB:A 1LDJ:B 1LLM:C
1UN6:C 1LOI:-A 1127:A 1TBN:_ 2GAT:A 1HYI:A 2DRP:D 1MM2:A 1YUI:A
1FAQ:  1IMFT:A 1PTQ:_ 1TAQ:_ 10A0:C 1DMT:A 111I1:P 1KWG:A 1KLN:A
1CLC: _ 1FSS:A 1A8H: 10AH:A 1IM7J:A 1LFW:A 1QE3:A 1LML:_ 1DQ3:A
1PMI:_ 1CVR:A 1EUC:B 1HP7:A 1FBL:_ 1INL5:A 1HKK:A 1K9Z:A 1ZAP:
INKX:A 1JKO:A 1H2M:A 1GRO:A 1D8D:A 10BR:_ 1CKO:_ 1QHW:A 1EZM:
1C8M:1 2EBN:_ 116N:A 1GL4:A 1INZJ:A 1AKO:_ 1VK6:A 1CI3:M 1HW7:A
1A0OL: 1A8L: 1SLM:_ 1KYS:A 1GPC:_1DVP:A 1KEA:A 1LBU: 1PEG:B
1FD9:A 1JR9:A 1AST:_1GEN:_ 10CY:A 4TSS:_ 1B8T:A 1FI0:A 1J3G:A
INKU:A 10EK:A 1UVQ:B 1IM5:A 1JWQ:A 1EB6:A 1IWL:A 10HT:A 1DKH:A
258L:A 1FUK:A 1G73:B 10DH:A 1VHH: 1R4V:A 1F3Z: 4KMB:1 1LBA:
1UVO:A 1MZB:A 1CPR:_ 1Q9U:B 1LRO:A 1HML:_11JL:A 1E87:A 1G3F:A
1IRMD: 1UBD:C 1A6F:_ 1AAO:_ 1XPA:_ 1MAM:A 1IM7:A 1M2A:A 1XER:
1G73:D 1QBH:A 1ZFP:E 1JM7:B 113J:A 1CY5:A 1EYF:A 1CIT:A 1HFE:S
1F81:A 1CTL:_ 1R79:A 1EXK:A 1E4U:A 1IML:_ 1BTO:A 1MWZ:A 1DX8:A
1G47:A 1RGO:A 1A7W:_ 1CHC:_ 1UW1:A 1G25:A 1LV3:A 4AMT2:_ 1H7V:A
2ADR:  1E53:A 1DL6:A 1UN6:D 1BBO: 1BOR:_ 1EF4:A 11YM:A 1IRN:
1JID:A 1LPV:A 1F62:A
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