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摘    要 

 

在工業及醫療應用上，能夠正確地辨別和分析蛋白質中的金屬鍵結區域

（metal-binding site），將有助於鍵結區的模型建構和設計。近年來由於實驗

技術的進展，生物相關方面的資料庫規模也快速成長，這使得利用機器學

習（machine learning）來做預測的方法變得比以往更加實用及可靠。在本

篇論文中，我們發展了一個利用支持向量機器（Support Vector Machine, 

SVM）的方法，在含有金屬離子的蛋白質中，預測金屬鍵結區域。我們同

時利用了一維的胺基酸序列和三維的結構資訊來對一條蛋白質鏈作編碼。

實驗結果發現，使用緩衝區（buffer zone）來區別鍵結和非鍵結區域的殘基，

可有效地提高預測準確度。經過五重交互驗證的結果，預測平均正確率可

達到 97.4%，在偽陽性比例（false positive rate）5%的情況下，真陽性比例（true 

positive rate）可達到 46.2%。這個結果顯示，SVM 的使用並配合適當的編

碼資訊，能夠有效地預測蛋白質中金屬鍵結區域。 
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ABSTRACT 

 

Correct identification and analysis of the metal-binding site provides useful 

clues to the modeling and designing of the binding site in proteins for industrial 

and therapeutic purposes. As the number of the biological data is rapidly 

accumulated, the use of machine learning approach to do the prediction becomes 

more reliable now than ever. We have developed a method using support vector 

machine (SVM) to predict the metal-binding site residues in proteins containing 

metal ions. The information used to encode the site residues includes sequence 

profiles and structural features. The results show that the use of buffer zone can 

effectively improve the true positive rate (TPR) of the prediction. On five-fold 

cross-validation, we obtain an average prediction accuracy of 97.4% and 46.2% 

TPR at a 5% false positive rate (FPR). The results indicate that the use of SVM 

with suitable coding schemes is an effective way to predict the metal-binding 

sites in proteins. 
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1 INTRODUCTION 

Biological processes in a living organism are carried out by various kinds of proteins inside 

the cells. Each protein with its unique function serves the purpose of almost all the catalytic 

processes and building blocks of cells. A protein molecule performs its function by its 

three-dimensional (3D) structure as well as the interactions with other molecules. Therefore a 

detailed analysis of the 3D structure of the protein around the functional region would 

enhance us toward a better understanding of biological role of proteins. 

Metal ions serve a variety of roles in proteins, including electron transfer, dioxygen binding, 

acting as cofactors in catalytic processes, and increasing the structural stability of the proteins. 

There is approximately one-fourth to one-third of known proteins containing or requiring 

metal ions for their structure and function1. The metal-biding site is the area in proteins that 

binds one or more metal ions. Different sites exhibit distinct characteristics, such as 

coordination numbers, geometries, metal preferences, and ligands2. For instance, the 

coordination number for calcium ion ranges from four to eight, as in Figure 1 to 5. The 

complicated arrangement of metal-binding sites makes the analysis of such proteins a 

non-trivial task. For industrial applications, research has been done on designing proteins with 

engineered metal-binding sites to remove toxic metal ions from industrial waste sites3. 

Well-designed molecules containing metal ions are also essential for metal-based drug design4. 

A well understanding of properties of metal-binding sites is of great help for industrial and 

therapeutic purposes. 

As a result of genome sequencing and structural genomics initiatives, numbers of known 

protein sequences and structures are rapidly increasing and accessible through the public 

database on the internet. Given that many new protein structures have been solved, a major 

challenge is to correctly annotate the functions of these proteins. The most common approach 

to protein function annotation is to identify similar proteins of known function and transfer 

that function to the new protein. This approach heavily relies on sequence or structural 
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similarities between proteins, but it fails when sequence identity is low or proper structural 

template is unavailable5. Further more, it has been estimated that the number of unique fold 

found in nature is limited and can be as low as 10006. More than one function can be assign to 

a fold such that transferring protein function becomes unreliable even when proteins with 

similar structures have been found. Much effort has been done to seek the methods without 

relying on sequence or structural alignment5,7. 

Among these methods, the machine learning techniques try to find the similarity of the 

generalized properties between the query protein and the proteins belong to each functional 

class. It is fundamentally different to the alignment-based approaches7. There are various 

kinds of machine learning techniques, including artificial neural networks, Bayesian 

networks8, and support vector machines (SVM)9. The continuing expansion of the biological 

database causes the machine learning approach become more effective and practical. 

To effectively build the tools for structure-function analysis, three important issues must be 

considered: the property-based representation of macromolecular structure, the spatial 

distribution of critical properties, and the significance measurement with respect to the control 

group10. Bagley and Altman (1995) build a system that is able to detect the features of calcium 

binding site, cysteine bonding site, and serine protease active sites. For metal-binding site 

prediction, the MetSite11 method can detect the binding site residues for protein models of 

moderate quality.  

First, for the property-based representation of protein structures, Bagley and Altman (1995) 

use about 20 biophysical/biochemical properties, including atom-based properties, chemical 

group-based properties, residue-based properties, secondary structure-based properties, and 

other properties. Sodhi, et al. (2004) use the properties of amino acid residues, including 

position specific score matrix (PSSM), secondary structures, solvent accessibility, and 

distances between Cβ atoms of site residues.  

The second issue is to construct a spatial distribution of the properties. In the space of 
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protein molecule, the scale and the focus for handling the molecule need to be decided. For 

the scale issue, one can use the scale down to atom-level resolution or use the residue-level 

resolution. Bagley and Altman (1995) use a 3D grid to describe the space around the site, with 

a cell containing no more than one atom. The properties of the atom are stored in the cell. For 

calcium binding site, they focus on the calcium ion and use concentric shell to collect the 

properties around the calcium ion. Instead, Sodhi, et al. (2004) use the residue-level resolution. 

They first identify the site residues and then focus on each one of the site residues, retrieving 

the properties of 9 nearest neighboring residues around this site residue. 

The third issue is to estimate the significance of the site detected by the system. Bagley and 

Altman (1995) compare the property distribution between sites and non-sites. The non-sites 

are chosen as the control group. For calcium binding site, the choice of the control non-site 

could be other cations or any other atoms. The two distributions are compared for statistical 

significance. Sodhi, et al. (2004) use the artificial neural network to output the probability for 

a residue to be the metal-binding site residue. The classifier is then evaluated by the total 

prediction accuracy and the true positive rate (TPR) at a given false positive rate (FPR). 

In this study, we present the first attempt of using SVM to predict the metal-binding site 

residues. The metal ions considered include six ions: Fe3+, Cu2+, Mn2+, Mg2+, Ca2+, and Zn2+. 

The dataset is constructed from the Protein Data Bank (PDB)12. We follow the method of 

Sodhi, et al. (2004) to define the site residues but use different cut-off values to control the 

number of non-site residues. The average prediction accuracy achieves 97.4%, and 46.2 TPR 

at 5% FPR, a better result than Sodhi, et al. (2004). 

 

2 METHOD 

2.1 Datasets 

We used the facility on the PDB website to retrieve all protein structures which contain the 

specified metal ions. The procedure for pre-processing the data is summarized in Figure 6. 

 3  



 

First, the chains with fewer than 50 residues13 were filtered out. Then we removed the chains 

that were DNA or RNA. If chains contain only unknown residues, these chains were deleted. 

In order to perform the cross validation according to super-families11, we removed the chains 

that were not included in SCOP (version 1.67)14. The chains that did not contain the metal 

ions were also removed. The remaining chains are clustered at a sequence identity level of 

25%11 using the program BLASTCLUST in the BLAST15 package (version 2.2.10) from 

NCBI. We choose the first one from each cluster to form our dataset. 

2.2 Identifying site and non-site residues 

The site residues are defined as those residues with their main-chain atoms within 7Å of a 

metal ion11. We use N, Cα, and C as the main-chain atoms. In order to identify these site 

residues using the machine learning approach, 9 nearest residues were marked as the 

neighbors for each site residue11. Then these 10 residues are encoded and treated as positive 

input to the classifier. 

Residues are defined as in the non-site region if they are far away from the metal ions with 

a predefined distance. If a protein chain has more than one ion, the distances from the residue 

to all the ions must fulfill this requirement at the same time. The distance used in this work 

ranges from 7Å to 35Å. We define a buffer zone as a prohibitive region which is enclosed by 

the site and the non-site region. Residues in the buffer zone are not put into the training set. 

For each residue in the sequence that is neither located at the site region nor in the buffer zone, 

nine nearest neighbors are also marked and encoded just like the site residues. The definition 

of the site residues is illustrated in Figure 7. The definition of buffer zone and the non-site 

residues is illustrated in Figure 8. 

2.3 The encoding features 

The information used to encode the site residues includes PSSM, secondary structure state, 

solvent accessibility from DSSP16, and inter-atomic distances between Cβ (Cα for glycine) 

atoms of the site residue neighbors11. 
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For each protein chain, the FASTA sequence used to generate the PSSM was constructed 

from its DSSP file. Then we use this sequence to run PSI-BLAST17 for three iterations against 

the non-redundant database and produce the PSSM. Thus, the PSSM produced will have the 

same residue numbering as those from PDB and DSSP. There will be 20 scores for each 

residue in the PSSM. We then extract the respective 20 scores for each one of the site residue 

neighbors. The information of PSSM is illustrated in Figure 9. 

We use three states to represent the secondary structures, i.e. Helix for H and G, Sheet for B 

and E, and Coil for T, S, and I. Hence, the secondary structure state for a residue will be 

encoded as [1, 0, 0], [0, 1, 0], and [0, 0, 1] with respect to Helix, Sheet, and Coil. The 

information of DSSP is illustrated in Figure 10. 

Therefore for a site containing 10 residues we will get 10*20 PSSM scores, 10*3 secondary 

structure states, 10*1 solvent accessibility scores, and 10*(10-1)/2 distances, thus producing a 

feature vector containing 285 features that can be the input to the classifier. The information 

of distance matrix is illustrated in Figure 11. 

2.4 Learning by the Support Vector Machine 

The support vector machine (SVM) is a powerful classification method that has become 

popular in computational biology18-21. The original idea of SVM is to use a linear hyperplane 

to separate training data in two classes: Given training vectors lixi ,...,1, =  and a vector  

defined as  if  is in one class, and 

y

1=iy ix 1−=iy  if  is in the other class. The support 

vector technique tries to find the separating hyperplane , with the largest 

distance between two classes measured along a line perpendicular to this hyperplane. This 

requirement is equivalent to the minimization of 

ix

0=+ bxw i
T

wwT

2
1  with respect to  and b  under 

the constraint that . However, in practice, these data to be classified may not 

be linearly separable. To overcome this difficulty, SVM nonlinearly transforms the original 

input space into a higher dimensional feature space by the so-called kernel functions 

w

1)( ≥+ bxwy i
T

i
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with respect to , , and w b ξ , under the constraint that , where ii
T

i bxwy ξφ −≥+ 1))((

0≥iξ . This procedure has the advantage of allowing training errors. When the training data 

are mapped into a vector in a higher dimensional space, it is possible that data can be linearly 

separated. It should be noted that in the training process only part of the training data are used 

to construct the hyperplane, hence avoiding the overfitting problem. These data constructing 

the classifier are called support vectors. 

In this work, we use LIBSVM22 to perform all the calculations. The version of LIBSVM is 

2.8, and the kernel type is radial basis function (RBF). Before executing SVM, the datasets 

are divided into five groups for fivefold cross-validation. The requirement of the grouping is 

that the chains of the same SCOP super-family will not occur both in the training and testing 

sets11. It is more rigorous than random grouping, for it doesn’t learn the homologs of the 

testing sets. We also do the cross-validation using random grouping for comparison. 

One useful feature of LIBSVM is that it can output probability estimates using the –b 

option. In order to evaluate our method and to compare the results with that by Sodhi, 2004, 

we do all the training and testing tasks using this option to calculate the sensibility and 

specificity. All the input data to the SVM are scaled by the svm-scale program included in 

LIBSVM. The system flowchart is illustrated in Figure 12. 

2.5 Performance measures 

The performance is measured by Q2 accuracy and True Positive Rate (TPR) at 5% False 

Positive Rate (FPR)11. The Q2 accuracy is given by 

 %1002 ×
+++

+
=

FNFPTNTP
TNTPQ  (2) 

where TP is the number of true positives, TN is the number of true negatives, FP is the 

number of false positives, and FN is the number of false negatives. The TPR is given by 
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 FNTP
TPTPR
+

=
, (3) 

and the FPR is given by 

 TNFP
FPFPR
+

=
. (4) 

The calculation of TPR at 5% FPR is in the process of drawing the ROC23 curve. For each 

testing case, the SVM outputs the probabilities of the two class labels. Normally, the decision 

threshold is 0.5, so the class with higher probability is the predicted result of the SVM. 

Alternatively, we can test various threshold values to verify the sensitivity and specificity with 

respect to each threshold value. In this work, the threshold ranges from 0.001 to 0.999, 

increasing by 0.001 each time. If the probability of a testing case is larger than the threshold, 

it is considered as “positive”; otherwise, it is considered as “negative”. Therefore each 

threshold value will produce a group of TPR and FPR, which decides a point on the ROC 

curve. Given an FPR value, we can get the respective TPR value. 

 

3 RESULTS 

3.1 Datasets 

The data originally retrieved from PDB include more than seven thousand structures with 

more than twenty thousand chains at the time of Nov 2004. After the pre-processing described 

in the method section, we got 1063 chains distributed in 361 SCOP super-families. These 

numbers do not agree with the sum of those from the six metal ions owing to some chains 

may bind more than one kind of ions. The datasets are listed in Table 1. The all protein chains 

used in this study are listed in Appendix. 

3.2 The prediction performance 

The overall prediction accuracy Q2 achieves 97.4% and TPR is 46.2% at 5% FPR. In this 

experiment, the non-site region is defined as the region outside the 21Å radius from each 

metal ion in the chain. The chains are grouped according to SCOP super-families such that the 
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chains in the testing sets will not be in the same super-family as those in the training sets. 

Therefore the chains belong to the same super-family will be grouped together in the training 

or testing sets. All the super-families are randomly divided into five groups for fivefold 

cross-validation. 

3.3 Comparison between different grouping methods 

Besides the grouping with respect to super-families, we also do the grouping that randomly 

divides all the chains. The cross-validation results, as expected, are somewhat better than that 

of grouping by super-families due to some homologs in the testing sets have been trained 

before the prediction. The comparison of the two grouping methods is listed in Table 2. 

3.4 The two SVM training strategy 

Despite the good prediction performance of SVM, it spends much time on parameters 

selection. Instead of adjusting parameter, we can adjust the weights of the two classes. The 

weight adjustment is based on the sizes of the two sets; we use the size of the smaller set as 

the weight for the larger set and vice versa. In contrast to parameter adjustment that the 

number of times of the training processes depend on how many groups of parameters tried, 

the training process for weight adjustment executes just once. The results are just a little 

worse than the best ones done by parameter adjustment. All other calculations are done by 

adjusting weights of the two classes. The results are listed in Table 3. 

3.5 Effect of different radii for defining a non-site residue 

By using 7Å as the radius to define non-site residues, all residues in the sequence except 

site residues are regarded as non-site residues. As a result, the amount of the generated input 

data is large and may contain some ambiguous data coming from residues near the site region. 

A buffer zone is defined to be a shell enclosed by two concentric circles centered at the metal 

ion. The radius of the inner circle is 7Å, and several different radii are tried for the outer circle. 

The models are produced for each radius. The performance of different training models is 

evaluated by its accuracy to predict the 7Å testing set. Figure 13 and 14 show the accuracy 
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and the true positive rate versus different models. Figure 15 shows the ROC curves of 

different classifiers for each metal ion. Table 4 lists the complete results for different models. 

3.6 Comparison among different coding features 

The features used to encode the residues include PSSM, secondary structures, solvent 

accessibility, and distance matrix. The best results are given by combining all these features 

into one feature vector. Different features have different discriminating abilities. We separate 

the features and compare the prediction performance of each feature. We also compare the 

results with those from sequence PSSM, which is generated from residues local in primary 

sequence. The results are listed in Table 5. The ROC curves of each feature for six metal ions 

are showed as Figure 16 to Figure 21. 

3.7 Comparison with previous work 

We use the same coding scheme as Sodhi’s, but we choose different radii for defining 

non-site residues. Instead of using artificial neural network for training and testing, we use 

SVM to perform the classification tasks. Our results from the 21Å training model achieves a 

97.4% overall prediction accuracy compared to 94.5% and 46.2% TPR at 5% FPR compared 

to 39.2%. The comparison is listed in Table 6. 

 

4 DISCUSSIONS 

In identifying functional relevance residues in proteins, previous studies11,21,24 have shown 

that the machine learning approach is an effective way to discriminate the site residues from 

non-site residues. The SVM method is used in this study to predict the metal-binding site 

residues and gives consistent results. By comparing the performance of each coding feature, it 

is obvious that the ability to identify the site residues with a high accuracy comes from the 

sequence information as well as the structure information. The combination of structural and 

sequence information improves the quality of prediction11,24. Using SVM, this work is 

comparable with the recent work using artificial neural network11. 
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When doing n-fold cross validation, the dataset is divided into n subsets, and the evaluation 

process repeats n times. Each time, one of the n subsets is taken as the test set, and the other 

n-1 subsets are taken as one training set as a whole. The division of the dataset is usually by 

random18,19. In this study we divide the dataset according to the super-family of each instance 

in the dataset. The reason for using this approach is that we can detect the site in proteins as if 

they are in new super-families since the training and testing set do not have proteins in 

common super-families11. We compared these two approaches for dividing the dataset. The 

one with random division has the better results because of the knowledge of the homologs. In 

practice, since we already have a library for all proteins with known structures, the homology 

information can be utilized to improve the prediction accuracy; if it fails to have the homologs, 

it is just the case to predict the proteins in new super-families. Therefore the performance 

resulting from grouping by super-families can be regarded as the worst case situation. 

The site or non-site residues are defined as within or without a certain distance to the metal 

ion. The value of this distance has a direct impact on the amount of site or non-site residues. 

The site residues in this study are defined to be within the sphere of radius 7Å centered at the 

metal ion. We try several different cut-off values to define the non-site residues and find that 

not only the training time but also the TPR improves as the radius increases. By using a small 

radius, more residues close to the binding site (but still outside the 7Å radius) are taken as 

non-site residues. These residues resemble the real site residues in position and nature. This 

may cause the SVM difficult to distinguish the site residues from non-site residues. Choosing 

the limited number of non-site residues as the control group10 may prevent the classifier from 

over-fitting and improve the sensitivity to detect site residues. The results showed in Table 5 

confirmed this point. The best prediction results do not occur at the training model produced 

by 7Å cut-off value for non-site residues nor at that by 35Å. The 35Å radius is so large an 

area such that few non-site residues can be included in the training set, resulting in the 

scarcity of training data. 
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From the results we notice that the prediction accuracy and TPR of calcium ion is much 

lower compared to other metal ions. This trend is consistent with the results by Sodhi, et al. 

(2004). The ionic radius of calcium is 0.95Å, 0.46Å for manganese, 0.645Å for iron, 0.65Å 

for magnesium, 0.73Å for copper, and 0.75Å for zinc25-27. As a result, the ion-oxygen bond 

length is longer for calcium ion than the other ions listed here28. They also show that calcium 

ions have a strong binding affinity to oxygen atoms, resulting in the constrained choice of 

ligands. Due to the same decision radius of 7Å for all metal ions, the longer ion-oxygen bond 

length of calcium ion may prevent the ligands from been included in the site residues. This 

situation may lead to the lower prediction accuracy and also the longer training time. 

As a conclusion, it has been shown that the coding scheme that combines sequence profile 

and structural features is capable of represent the characteristics of particular site patterns. 

Protein structures can be viewed as residue interaction graphs (RIGs)29, a simplified model to 

represent the complex protein 3D structures. This model is used to identify active sites, 

ligand-binding and evolutionary conserved residues. Bagley and Altman (1995) use a fixed 

number of concentric shells to collect the features stored in the vicinity of the calcium ion. 

This raises a possibility to encode the spatial distribution of properties of residues in the shells 

centered at particular residue. This new direction may lead to more efficient calculations and 

more accurate predictions. 
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TABLES 
Table 1. The statistics of the datasets used in this work 

Ion No. PDB 
chainsa

No. SCOP 
super-families

No. metal 
ions 

Zn2+ 372 202 613 
Ca2+ 273 144 576 
Mg2+ 261 129 357 
Mn2+ 110 66 173 
Cu2+ 47 28 74 
Fe3+ 51 25 66 
aThese data are collected at the time of Nov 2004. 
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Table 2. Comparison of the two grouping methods: by randomness and by 
super-families 

By randomness By super-families 
Ion 

Q2 accuracy (%) TPR (%) Q2 accuracy (%) TPRa (%) 
Zn2+ 94.8 79.4 93.8 73.8 
Ca2+ 89.8 55.0 86.3 34.1 
Mg2+ 95.3 50.0 94.7 41.3 
Mn2+ 94.5 71.6 93.2 61.5 
Cu2+ 95.6 84.4 91.5 62.6 
Fe3+ 93.7 86.1 85.9 54.0 
Average 94.0 71.1 90.9 54.6 
The cutoff radius for non-site residues is 35Å. 
aThis is the true positive rate (TPR) at 5% false positive rate (FPR). 
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Table 3. Comparison of the two training options of SVM: weight and parameter 
adjustment 

Parameter adjustment Weight adjustment 
Ion 

Q2 accuracy (%) TPR (%) Q2 accuracy (%) TPR (%) 
Zn2+ 94.6 79.0 93.8 73.8 
Ca2+ 87.4 41.0 86.3 34.1 
Mg2+ 95.0 48.9 94.7 41.3 
Mn2+ 93.5 65.3 93.2 61.5 
Cu2+ 91.9 66.4 91.5 62.6 
Fe3+ 86.8 56.5 85.9 54.0 
Average 91.5 59.5 90.9 54.6 
The cutoff radius for non-site residues is 35Å. 
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Table 4. Comparison among different buffer sizes 
Q2 accuracy (%) TPR (%) / 5% FPR Buffer 

Size (Å) Zn Ca Mg Mn Cu Fe Avg Zn Ca Mg Mn Cu Fe Avg
35 94.0 92.7 98.1 94.9 92.9 81.0 92.3 67.3 28.7 36.1 55.9 35.6 41.4 44.2
28 96.4 95.6 98.4 96.8 95.4 92.8 95.9 67.7 30.4 36.3 55.3 36.3 45.1 45.2
21 97.1 96.2 98.6 97.9 97.5 96.8 97.4 66.6 30.2 35.2 55.8 40.1 49.4 46.2
14 97.3 96.4 98.6 98.3 98.0 98.0 97.8 66.9 29.5 33.5 55.8 37.4 51.1 45.7
7 97.5 96.5 98.7 98.4 98.2 98.5 98.0 64.0 29.1 30.7 52.4 35.3 49.4 43.5

The testing set is of 7Å buffer size. The training sets are of different buffer sizes ranging from 
7Å to 35Å. 
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Table 5. Comparison among different coding features 
Q2 accuracy (%) TPR (%) / 5% FPR 

Featurea

Zn Ca Mg Mn Cu Fe Avg Zn Ca Mg Mn Cu Fe Avg
ACDE 97.1 96.2 98.6 97.9 97.5 96.8 97.4 66.6 30.2 35.2 55.8 40.1 49.4 46.2
CDE 96.9 96.8 98.7 98.5 98.2 98.4 97.9 19.2 7.1 10.9 10.6 6.3 14.7 11.5

A 96.8 96.7 98.6 97.9 97.5 96.6 97.4 64.0 26.4 31.7 52.5 39.1 50.6 44.1
B 96.8 96.6 98.6 97.9 97.8 97.2 97.5 58.8 27.1 32.0 48.3 33.9 40.7 40.1
C 96.9 96.8 98.7 98.5 98.3 98.5 98.0 5.7 7.5 6.3 5.5 4.8 3.0 5.5

aA: Site PSSM, B: Sequence PSSM, C: Secondary Structure, D: Solvent Accessibility, E: 
Distance Matrix 
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Table 6. Comparison with Sodhi’s results 
Sodhi JJLina

Ion 
Q2 accuracy (%) TPR (%) Q2 accuracy (%) TPR (%) 

Zn2+ 94.6 47.8 97.1 66.6 
Ca2+ 93.9 30.4 96.2 30.2 
Mg2+ 94.2 32.4 98.6 35.2 
Mn2+ 94.7 38.8 97.9 55.8 
Cu2+ 94.9 36.2 97.5 40.1 
Fe3+ 94.9 48.8 96.8 49.4 
Average 94.5 39.1 97.4 46.2 
aThe cutoff radius for non-site residues is 21Å. 
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FIGURE CAPTIONS 

Figure 1. PDBid 1A8A, with coordination number 4. The sphere in magenta is the calcium 

ion, and the sphere in red is the oxygen atom. The smaller figure at upper-left corner is the 

full-view of the protein, and the larger figure is the magnified view of one of the 

metal-binding site. 

Figure 2. PDBid 1G4Y, with coordination number 5. 

Figure 3. PDBid 1I76, with coordination number 6. 

Figure 4. PDBid 1GCI, with coordination number 7. 

Figure 5. PDBid 1ARU, with coordination number 8. 

Figure 6. The data pre-processing procedure. We obtain the original sequences from PDB. 

The chain that is DNA or RNA is filtered out. The length of the chain must be at least 50 

residues. The chain must contain at least one metal ion. The information of SCOP 

super-families, DSSP secondary structure, and solvent accessibility is retrieved and processed. 

The DSSP sequence is used to generate the PSSM of the sequence. Finally the dataset 

contains 1063 protein chains. 

Figure 7. Definition of the site residues. Residues are the site residues if their main chain 

atoms (N, Cα, C) lie within the 7Å radius sphere centered at the metal ion. The figure shows 

the Benzoylformate Decarboxylase structure with PDBid 1BFD. 

Figure 8. Definition of buffer zone and the non-site residues. The buffer zone is located 

between the inner and outer sphere. The radius of the inner sphere is 7Å, and the radius of the 

outer sphere ranges from 7Å to 35Å. The non-site region is located outside the outer sphere. 

Residues located at the non-site region are the non-site residues. The figure shows the 

Benzoylformate Decarboxylase structure with PDBid 1BFD. 

Figure 9. Coding information of PSSM. The 20 scores of the next residue are appended to the 

rear of the scores of the present residue. 

Figure 10. Coding information of DSSP. The 40 scores of the DSSP are appended to the rear 
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of the PSSM scores. 

Figure 11. Coding information of distance matrix of Cβ atoms of residue neighbors. The 45 

distances are appended to the rear of the DSSP scores. 

Figure 12. System flowchart 

Figure 13. Comparison of the accuracy among different buffer sizes. The 7Å testing set is 

predicted by all the training models of different radii. 

Figure 14. Comparison of the true positive rate (TPR) among different buffer sizes.  

Figure 15. ROC curves of different classifiers. The results are from buffer size of 21Å. 

Figure 16. ROC curves of each feature. A: Site PSSM, B: Sequence PSSM, C: Secondary 

structure, D: Solvent accessibility, E: Distance matrix. (a) Fe3+ ion. (b) Cu2+ ion. (c) Mn2+ ion. 

(d) Mg2+ ion. (e) Ca2+ ion. (f) Zn2+ ion. 
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Figure 9 
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Figure 10 
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Figure 11 

 
        23 G   19 F   25 G   27 I   17 S   16 F   21 K   31 E   26 T 

20 D   4.692  5.131  5.397  5.416  5.691  5.743  6.288  6.403  6.806 

23 G          9.599  5.532  9.512  7.258  9.342  7.031  9.127  8.386 
19 F                 9.824  4.559  7.418  6.090  7.315  5.662  9.515 

25 G                        7.815  9.153  7.907 10.673 10.212  4.656 

27 I                              10.125  7.459  8.684  5.156  5.665 
17 S                                      5.333  9.062 10.924 12.066 

16 F                                            11.222 10.690  9.782 

21 K                                                    4.848 10.825 
31 E                                                           8.423 

26 T                                                                 

Distance matrix of Cβ atoms 

Total: 10 * 9 / 2 = 45 (distances) 
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Figure 12 
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Figure 13 
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Figure 15 
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Figure 16 
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Figure 17 
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Figure 18 
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Figure 19 
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Figure 20 
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Figure 21 
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APPENDIX 
Appendix 1. Protein chains containing Fe3+ ions 
 

Fe 

1EO2:B 1COJ:A 1NF6:F 1SUV:E 1B13:A 1RSV:B 1B0L:A 1OHV:A 1KBP:A
1GUP:A 1QGH:A 2PAH:A 1DO6:A 1NDO:A 1OQU:C 1DLM:A 1OQ4:A 1MMO:D
1NX4:B 1NMO:A 1B71:A 1O9R:A 1HU9:A 1D9Y:A 1UN7:A 1Q0C:A 1EIQ:A
1BK0:_ 1RCW:B 1GV8:A 1K6W:A 1PHZ:A 1M63:A 1O2D:B 1QHW:A 1GY9:A
1LTV:A 1RXG:_ 2AHJ:C 1J3Q:A 1LM4:A 1DYT:A 1FRF:L 1GP5:A 1LNB:E
1GVG:A 1XSM:_ 1J2C:A 1LM6:A 1FHA:_ 1DFX:_                      
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Appendix 2. Protein chains containing 

u 

Cu2+ ions 
 

C

1EQW:B 1CC3:A 1ET7:A 1BAW:A 1OAC:B 1M56:A 1H1I:B 1AV4:_ 1BQK:_
1ID2:A 1M56:B 1IBY:A 1A2V:A 1AOZ:A 1HCY:_ 1A65:A 1GY2:A 1THO:_
1ODB:A 1OV8:A 1N9E:A 1NOL:_ 1FSR:A 1GMW:A 1N68:A 1LNL:A 1OPM:A
1LCF:_ 1GOF:_ 1GW0:A 2OXI:A 1BUG:A 1A8V:B 1JER:_ 1KCW:_ 1GSK:A
7ICJ:A 1ARM:_ 1KYR:A 1AND:_ 1IAA:_ 1QD0:A 1AQP:_ 1OT4:A 1UKU:A
1OQ6:A 1FVS:A 
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Appendix 3. Protein chains containing Mn2+ ions 
 

Mn 

1BJQ:B 1AZD:A 1HQF:A 1KFL:A 1GV3:A 1F3W:A 1F1H:A 1DID:A 1HHS:A
1BFR:A 1GQ2:A 1ZQL:A 1G8O:A 1FSA:A 1M6V:A 1E6A:A 1HX3:B 1FQW:A
1N51:A 1CHR:A 1O0R:B 1K20:A 1MHP:B 1NHX:A 1HO5:A 1J2T:A 1FUI:A
1FJM:A 1N1H:A 1ITW:A 1QMG:A 1O98:A 1A0D:A 1DE6:A 1JPR:B 1KGP:A
1IMC:B 1G0I:A 1RF7:_ 1GX1:A 1C39:A 1JFZ:B 1ON2:A 1M0D:A 1UW8:A
1GQ6:B 1NOM:_ 1G5B:B 1I50:A 1L5G:A 1JQN:A 1KSI:A 1LV5:A 1L5G:B
GX6:A 1FA0:B 1N1P:A 1KHW:B 1ECC:A 1MM8:A 1ELS:_ 1LWD:A 1OLX:A
1CNZ:A 1CDK:A 1II7:A 1I0B:A 1KGZ:B 1IPS:A 1O6K:A 1CPO:_ 1IG1:A
1OF2:A 1UT5:B 1QH3:A 1KWS:A 1M4Z:B 1MQW:A 1J53:A 1GN8:A 1A5V:_
1VJ2:A 1NR0:A 1EF2:A 1HK8:A 1AQ2:_ 1F5A:A 3UAG:A 1IR6:A 1A6Q:_
1MNP:_ 1FOA:A 1LNC:E 1A76:_ 1RZD:_ 1LL2:A 1H7Q:A 1K23:D 1DAH:_
1ZIP:_ 1FI2:A 1INO:_ 1JAI:_ 1NCY:_ 1NZ5:A 1G15:A 1JLK:A 1J25:A
2PAL:_ 1IGV:A 

1
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Appendix 4. Protein chains containing Mg2+ ions 
 

Mg 

1BGL:A 1AN0:A 1DIE:A 1BWV:A 1N0H:A 1BR1:A 1MAB:A 1EW2:A 1MFR:A
1A49:A 1EBG:A 1OHH:D 1EYI:A 1AGR:A 1HUR:A 1N1Z:A 1IV2:A 1NUE:A
1EC9:D 1M34:E 1BYU:B 1CG0:A 1ATR:_ 1ZPD:A 1F0J:A 1CJB:C 1E2F:A
1FRF:L 1AF6:A 1G69:B 1OFH:G 1EFT:_ 1F4V:A 1OCC:A 1F8I:A 1M3U:A
1P8F:A 1MXA:_ 1G3U:A 1JGT:B 1ECB:C 13PK:A 1GOJ:A 1GZG:A 1JQV:A
1QMZ:A 1J7L:A 1HBM:C 1F5S:A 1PT6:B 1NFS:B 1HI0:P 1AON:A 1B0P:A
1II0:B 1MX0:C 1MIV:A 1NMP:A 2AKY:_ 1QEZ:A 1DY3:A 1F7D:A 1IQ8:A
1HBN:A 1BWF:O 1AUK:_ 1GKI:B 1DTN:_ 1GQC:A 1N8W:A 1OHF:C 1N5Y:A
1K3C:A 1YVE:I 1NJ1:A 1HBN:B 1KCZ:A 1EYZ:A 1BXZ:A 1UR2:A 1ESN:A
1H7U:A 1RK2:B 1M1B:A 1E0J:B 1OES:A 1GS5:A 1FEZ:A 1DXE:A 1DEK:A
1QL0:A 1IW7:A 1NR9:A 1BJY:B 1OE0:A 1KO5:A 1GRV:B 1B8C:A 1GUS:A
1ITZ:A 1EQR:A 1H7A:A 1GPM:C 1EHI:A 1K9Y:A 1UBW:_ 1GXB:D 1JX4:A
1PFK:A 1IOV:_ 1FYD:A 1H65:A 1H1D:A 1L4Y:A 1HTW:A 1Q9S:A 1IW7:D
HQM:D 1IW7:C 1GL9:B 1G8X:A 1L8A:A 1FW6:A 1H16:A 1GQI:A 1NUG:B
3PMG:A 1UN9:A 1AMU:A 1SH3:B 1M0W:A 1GQY:B 1EWK:B 1BIF:_ 1HYO:B
1JBV:A 1OD5:A 1FNN:A 1J58:A 1J1C:B 1OC7:A 1N6M:A 1NI4:A 1JMS:A
1GOL:_ 1IXY:B 1IW7:F 1NE9:A 8ICI:A 1GKZ:A 1E19:A 1OBG:A 1H3I:A
1MC3:A 1MUM:A 2PRN:_ 1VFN:_ 1F1Z:A 1G6H:A 1J9J:A 1IRU:G 1NUI:A
1H7Q:A 1GKB:A 1A82:_ 1LVH:A 1N9K:A 1UUT:A 1IPP:A 1H56:A 1L5Y:B
1KQM:B 1L0O:A 1KTG:A 1CMC:A 1NLQ:A 1UN6:C 1I3Q:A 1KC7:A 1D5A:A
1N52:A 1GM5:A 1FNM:A 1F5N:A 1NQE:A 1H1L:B 1KA2:A 1BPM:_ 1H1L:A
1O6T:A 1MXG:A 2UAG:A 1AQF:E 1QS0:A 1INP:_ 1HMV:B 1IIR:A 1E4G:T
1OLU:A 1BG0:_ 1QLG:A 1EZW:A 1L3R:E 1GS6:X 1H3J:A 1B62:A 1LP4:A
1L8Q:A 1FHV:A 1ODS:A 1A77:_ 1GSA:_ 1JP4:A 1NQ6:A 1J1U:A 1IZC:A
1H74:B 1CSN:_ 1TFR:_ 1I44:A 1JWY:B 1IAH:B 1JHZ:A 1K77:A 1O6Y:A
1HW6:A 1EYE:A 1LDF:A 1NXQ:A 1HK7:A 1NSF:_ 1DQN:A 1QR0:A 1KYR:A
1IRU:I 1IRU:1 1OPR:_ 1N0W:A 1OUO:A 1IRU:X 1KHZ:B 1MH9:A 1NRJ:B
1H6P:A 1ETU:_ 1IWL:A 1NQZ:A 1QF8:A 1NZI:A 1KWO:C 1R67:A 1ID0:A
1VSD:_ 1GMI:A 1F7R:A 1CS3:A 1HXI:A 1HZ1:A 1IW7:O 1IG5:A 1MOG:A
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Appendix 5. Protein chains containing Ca2+ ions 
 

Ca 

1BJQ:B 1CVW:H 1BM6:_ 1AZD:A 1AYP:A 1OMR:A 1FJT:A 1A4G:A 1BGP:_
1CDG:_ 1EA7:A 1HTN:_ 1B2Y:A 1QLS:A 3LHM:_ 1N73:C 1B90:A 1B09:A
1BU4:_ 1EGI:B 1PVA:A 1DR1:_ 1AXN:_ 1MN1:_ 1OAC:B 1STA:_ 1JKU:A
1AY0:A 1AKL:_ 1GA1:A 2MSB:B 1HQD:A 1Q5C:C 1LW5:D 1IZJ:A 1M34:A
1PK8:A 1ALV:A 1UMN:G 1C0F:S 1LRW:A 1FWX:A 1DJW:B 1OAH:B 1L9M:B
1E3X:A 1JDA:_ 1A0S:P 1J6Z:A 1O88:A 1LVU:D 1DTH:A 5STD:A 1HL5:C
1UYY:A 1TNQ:_ 1HP0:B 2MAS:A 1LNQ:A 1FZD:A 1HCU:B 1E8U:B 1LHN:A
1B0P:A 1F9D:A 1HM8:A 1C9U:B 1HPL:A 2CEL:A 1OLP:A 1E5N:A 1G0H:A
1CB8:A 1LPM:_ 1EAK:A 1GTT:A 1CVM:A 1EB7:A 1GCA:_ 1E5J:A 1G42:A
1F2O:A 1FF5:A 1BYH:_ 1I9B:A 1H6X:A 1O8P:A 1L7L:A 1GZT:A 1FI5:A
1MPX:A 1B4N:A 1UP8:A 1M56:A 1E77:A 1R64:A 2TAA:A 1O6V:A 1KTW:A
1LWH:A 1HYO:B 1JI3:A 1MNZ:A 1H1V:G 1ZQC:A 1KXR:B 2CBL:A 1FID:_
1BMO:A 1QU0:C 1OH4:A 1BYF:A 1HT9:A 1F4N:A 1BG3:A 1UVN:A 1K1X:A
1DE4:C 1GXD:A 1G21:B 1J1N:A 1N48:A 1D0K:A 1TAD:C 1EGZ:A 1NZY:A
1I82:A 1J83:A 1AG9:A 2FHA:_ 1UZJ:A 1DSY:A 2PSR:_ 1C07:A 1LMJ:A
1H0H:A 1J0M:A 1KB0:A 1M9I:A 1CJY:A 1NBW:A 1H3G:A 1NQH:A 1KFQ:A
1N7U:A 1HDH:A 1N2L:A 1MIO:B 1IA7:A 1DYK:A 1OC6:A 1G9U:A 1FMJ:A
1DCT:A 1IME:A 1UOC:A 1H6G:A 1L6R:A 1CPM:_ 1OUP:A 1NNL:B 1OTN:A
1RTG:_ 4SBV:A 1H1A:A 1I40:A 1PRR:_ 1JTG:B 1E7D:A 1NZI:B 1NBC:A
1GN1:F 1NL2:A 1EXZ:A 1C7K:A 1RLW:_ 1IT4:A 1NQD:B 1MJ2:B 1FZP:B
1HDF:A 1K9U:A 1GUN:A 1SU4:A 1JV2:A 1KIT:_ 1BF2:_ 1ACC:_ 1N7D:A
1NOL:_ 1C8D:A 1CLC:_ 1JV2:B 1BFD:_ 1C7I:A 1FSU:_ 1MU5:A 5ENL:_
1CVR:A 1LWS:A 1BAG:_ 1IKA:_ 1H30:A 1JHN:A 1QH4:D 1NGI:_ 1FBL:_
1OKG:A 1KA1:A 1JX6:A 1GXR:A 1E54:A 1V04:A 2APR:_ 1OBR:_ 1GXO:A
1RDR:_ 1E1A:A 1GQ3:C 1BOB:_ 2POR:_ 1EZM:_ 1NRW:A 1URX:A 1JTD:A
1B2L:A 1O7L:D 1ZQV:_ 1J1T:A 1SLM:_ 1DAF:_ 4SBV:C 1PEX:_ 1QV1:A
2SAS:_ 1M1U:A 2STV:_ 1JE5:B 1HQV:A 1XYN:_ 1NYA:A 1B2V:A 1V67:A
1B1C:A 1LF0:A 1K12:A 1ESL:_ 1GUI:A 1JB0:L 1SRA:_ 1K5W:A 1VSI:_
1TN3:_ 1POC:_ 1J24:A 1GR3:A 1PK6:B 1AYO:B 5CHY:_ 1J5U:A 1DFX:_
1F7L:A 2MCM:_ 1IU9:A 1WAD:_ 1SVY:_ 1O6S:B 2PLT:_ 1H4B:A 1HJ7:A
1N7S:C 1GUA:B 1OHZ:B 
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Appendix 6. Protein chains containing Zn2+ ions 
 

Zn 

1E3E:A 1EQW:B 1ZNC:A 1BM6:_ 1EW2:A 1FJT:A 1EZZ:B 1LBC:B 1A8T:A
1F57:A 1K1D:A 1Q2R:A 1N4P:B 1F0J:A 1A6Y:B 1GT7:A 1JDI:A 1STE:_
1JD5:A 1GYT:A 1NVB:B 1H7R:A 1Q3K:A 1H4S:A 1HR6:D 1KOG:A 1NNJ:A
1TSR:A 1FBX:A 1IS8:A 1G2D:C 1DWV:A 1KZO:B 1NLX:A 1OCC:F 1CA1:_
1AKL:_ 1KBP:A 1DE5:A 1GUP:A 1F30:A 1ADD:_ 1HZY:A 1DTH:A 1PWU:A
1R3N:A 1ZQT:A 1IX1:A 1E4M:M 1M2G:A 2NLL:B 1EPW:A 1J36:A 1IQ8:A
1CNQ:A 1BH5:B 1LR5:A 1HZ5:A 1I50:A 1I3Q:C 1ENR:_ 1FSJ:B 1I3Q:I
1I3Q:J 1SFO:B 1JQG:A 1UMY:D 1ANV:_ 1J8F:A 1IA9:B 1SML:A 1NJG:A
1B71:A 1DY1:A 1G5C:A 1E67:A 2HAP:C 1PFV:A 1EAK:A 1ODZ:A 1FN9:A
1DOS:A 1AMP:_ 1F2O:A 1HI9:A 1QRL:A 1G12:A 1F35:A 3LVE:_ 1Q08:A
1M2V:B 1HBM:D 2USH:B 1KAH:B 1EI6:A 1CG2:A 1LI7:A 1ITQ:A 1JQ5:A
7MDH:B 1L9H:A 1Q74:A 1QH3:A 1BKC:E 1AH7:_ 1QR2:A 1EKJ:G 1K6Y:B
1A74:A 1F1M:A 1E7D:A 1GX1:A 1IE0:A 1RB7:A 1JOE:A 1B6Z:A 1ETE:A
1JTK:A 1A2P:A 1OI0:A 1L3E:B 1AJY:A 4GAT:A 1A7I:_ 1A1T:A 1WJB:A
1JZQ:A 1M2O:A 1EKM:A 1GXD:A 1GW6:A 1H7A:A 4ENL:_ 1MXD:A 1UWY:A
1C3R:A 1JR3:A 1ET8:A 1UDT:A 1ALN:_ 1TON:_ 1YEI:L 1ZIN:_ 1BI0:_
1I6O:B 1LHN:A 1EH6:A 1BYF:A 1FWQ:A 1BAW:A 1JCC:C 1HQM:D 1HWW:A
1GAX:A 1H3N:A 1KFI:A 1I7W:C 1IRX:B 1UQW:A 1DDZ:A 1K2Y:X 1IA7:A
1F83:A 1KOL:A 1XLL:A 1JI3:A 1P9W:A 1M63:A 1N25:A 1V33:A 1J79:A
1PV9:A 1JR3:E 1IBQ:A 1JAZ:A 1GUD:A 1NVT:A 1FXU:A 1TOA:A 1GVF:B
1UT8:B 1MVH:A 1DK4:A 1ML9:A 1NUI:A 1JW9:B 1L0Y:A 1M65:A 1H1Z:A
1I9R:H 1EU3:A 1L7O:B 2AHJ:C 1M55:A 1LQW:A 1TF6:D 1L1O:C 1H1O:A
1QF8:A 1BWN:A 1BT7:_ 1VSH:_ 1EB0:A 1MBX:A 2HRV:A 1E31:B 1ODG:A
1C7K:A 2CUA:B 1JOC:A 1M3V:A 1DVF:D 2A0B:_ 1I3O:E 1NN7:A 3CAO:A
1D0Q:A 1NO5:B 1MWQ:A 1MR1:C 2PSR:_ 1OQJ:A 1IQB:A 1LDJ:B 1LLM:C
1UN6:C 1L0I:A 1I27:A 1TBN:_ 2GAT:A 1HYI:A 2DRP:D 1MM2:A 1YUI:A
1FAQ:_ 1MFT:A 1PTQ:_ 1TAQ:_ 1OAO:C 1DMT:A 1I1I:P 1KWG:A 1KLN:A
1CLC:_ 1FSS:A 1A8H:_ 1OAH:A 1M7J:A 1LFW:A 1QE3:A 1LML:_ 1DQ3:A
1PMI:_ 1CVR:A 1EUC:B 1HP7:A 1FBL:_ 1NL5:A 1HKK:A 1K9Z:A 1ZAP:_
1NKX:A 1JK0:A 1H2M:A 1GR0:A 1D8D:A 1OBR:_ 1CKO:_ 1QHW:A 1EZM:_
1C8M:1 2EBN:_ 1I6N:A 1GL4:A 1NZJ:A 1AK0:_ 1VK6:A 1CI3:M 1HW7:A
AOL:_ 1A8L:_ 1SLM:_ 1KYS:A 1GPC:_ 1DVP:A 1KEA:A 1LBU:_ 1PEG:B
1FD9:A 1JR9:A 1AST:_ 1GEN:_ 1OCY:A 4TSS:_ 1B8T:A 1FIO:A 1J3G:A
1NKU:A 1OEK:A 1UVQ:B 1IM5:A 1JWQ:A 1EB6:A 1IWL:A 1OHT:A 1DKH:A
258L:A 1FUK:A 1G73:B 1ODH:A 1VHH:_ 1R4V:A 1F3Z:_ 4KMB:1 1LBA:_
1UV0:A 1MZB:A 1CPR:_ 1Q9U:B 1LR0:A 1HML:_ 1IJL:A 1E87:A 1G3F:A
1RMD:_ 1UBD:C 1A6F:_ 1AA0:_ 1XPA:_ 1M4M:A 1JM7:A 1M2A:A 1XER:_
1G73:D 1QBH:A 1ZFP:E 1JM7:B 1I3J:A 1CY5:A 1EYF:A 1CIT:A 1HFE:S
1F81:A 1CTL:_ 1R79:A 1EXK:A 1E4U:A 1IML:_ 1BT0:A 1MWZ:A 1DX8:A
1G47:A 1RGO:A 1A7W:_ 1CHC:_ 1UW1:A 1G25:A 1LV3:A 4MT2:_ 1H7V:A
2ADR:_ 1E53:A 1DL6:A 1UN6:D 1BBO:_ 1BOR:_ 1EF4:A 1IYM:A 1IRN:_
1JJD:A 1LPV:A 1F62:A 

1
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