國立交通大學

生物資訊研究所

碩士論文

研究生:施建華

指導教授:黃鎮剛 教授

中華民國九十四年七月

蛋白質主鏈結構預測

The Prediction of the Backbone Conformation from Protein

Sequences

研究生:施建華

指導教授:黃鎮剛

Student : Chien-Hua Shih

Advisor : Jenn-Kang Hwang

國立交通大學

生物資訊研究所

Submitted to Department of Computer and Information Science College of Electrical Engineering and Computer Science National Chiao Tung University in partial Fulfillment of the Requirements for the Degree of Master

in

Bioinformatics

July 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年七月

蛋白質主鏈結構預測

學生:施建華

指導教授:黃鎮剛

國立交通大學生物資訊研究所碩士班

摘 要

建立蛋白質在空間上的結構有助於瞭解蛋白質的功能與機制。現今可 藉由 X-ray 與 NMR 的方法來建構蛋白質的三級結構。但這些方法仍需耗費 金錢、人力與時間。目前在 PDB 資料庫中已有三萬多個蛋白質三級結構。 若可以利用此資料庫作為知識背景,利用機器學習的方法來預測未知結構 的蛋白質序列的結構與功能。這將使得我們可以更容易瞭解蛋白質的功能 與機制。

本研究是尋找適合描述蛋白質區域結構的定義,探討由序列預測主鏈 結構的可能性。我們採用了兩種不同的定義 Ramachandran Plot 及 Protein Blocks 來定義一個蛋白質殘基的區域結構。並以支持向量機來預測,得到 相當不錯的結果。

最後我們將研究蛋白質區域結構的保守性與區域結構熵的關係。發現 在經由不同的蛋白質區域結構定義所的到的結構熵有相當的一致性。

- i -

The Prediction of the Backbone Conformation from Protein Sequences

Student : Chien-Hua Shih

Advisor : Jenn-Kang Hwang

Institute of Bioinformatics

National Chiao Tung University

ABSTRACT

The knowledge of protein structure conformation is useful in understanding the functions and mechanism of proteins. Nowadays, we can use the X-ray or NMR technique to construct the 3-dimensional structure of proteins. But these methods cost lots of time and money. Fortunately, we now have an easier alternative to the knowledge of protein structures. That is, from the increasing amount of data in the protein structure database, such as PDB database. Up to the present, there are 30 thousand records stored in the PDB database. If we use the PDB database as our knowledge and use the machine learning technique to predict the 3-dimensional structure from the sequence of an unknown protein structure. That can let us easier understand the protein's function and mechanism.

This research is to find a suitable definition to describe protein backbone conformation, and to predict backbone conformation from sequence information. We adapt two different definitions of Ramachandran Plot and Protein Blocks. Our results by Support Vector Machines (SVM) get a relatively good performance.

Finally, we will study on the relationship between the conservation of protein backbone conformation and structural entropy. We've discovered that there is a consistency in structural entropy by different definitions of protein backbone conformation.

誌 謝

因為在論文完成之前已經說過要寫兩頁的的誌謝,所以由此開始。

當學生是最快樂了的,尤其是在我們指導老師黃鎮剛教授的實驗室下 當學生。不管是在實驗設備上或是研究環境都是一流的。因此非常感謝我 們指導老師黃教授給我們有這麼樣的環境以及獨立研究的自由,並適時的 給於鼓勵與啟發。兩年內從老師那學到的不是去完成指派的任務而是自己 去找出可以完成什麼任務。這些我相信是在做科學研究所應有的熱情與態 度。也特別感謝楊進木教授、盧錦隆教授以及黃憲達教授的教導,讓我有 更多專業上的技能得以應用在研究的主題上。

接下來我要感謝所有再實驗室一同研究的所有的夥伴。林勇欣學長在 幫我增長了不少生物養殖的知識,我不會忘記青蛙是會淹死的。我第一個 接觸的生物資訊程式就是詹鎮熊學長的,在這裡得到不少知識與想法。在 研究設施的維護方面特別感謝尤禎祥學長,游景盛學長以及黃存操同學, 有你們費心的維護我才得以順利完成此論文。也特別感謝羅淵仁學長與游 景盛學長時常爬山讓我得到不少登山常識,雖然我一次都沒去。還有養魚 的知識與情報的交換要感謝羅淵仁學長、陸志豪學長、林志鵬學長以及隔 壁楊老師實驗室的同學們,讓我在研究之餘還有其他的休閒活動。梁涵堃 學長提供了不少汽車資訊。劉力彰學長感謝你要介紹女生給我認識,雖然 在我寫這篇誌謝的時候我還沒認識到,不過白紙黑字你跑不掉了。在我剛

- iii -

到實驗室的時候陳志杰學長與王志淵學長給我不少的建議與協助,尤其在 我還沒有地方住的時候幫我安排地方居住在此特別感謝。在研究的過程中 黃少偉、黃存操、陳啟德、林肇基、徐蔚倫及陳孟琪同學們互相砥礪與研 究,讓我感到非常的快樂。並感謝黃少偉同學提供研究的數據資料,在此 特別感謝因為有你的幫助我才得以完成此論文。本論文的英文校正要感謝 尤禎祥學長、黃少偉、簡思樸與盧慧同學,有你們的幫助讓我的論文不會 出現一個句子兩個動詞以及一堆(and)的贅字,還有尤禎祥學長指導我投影 片的製作,讓我能夠在論文口試的過程順利報告。葉書瑋同學提供統計上 的建議以及張世瑜同學常常幫忙買飲料。以上皆使得研究生活變的更豐富 更快樂,在此感謝你們。

還有呢?要感謝所有的不是女朋友的人。這樣我就不用在寫上感謝你的 包容或是惹你我生氣的事。這是團員的福利。

當然還要感謝鼓勵我敢研究所的老師與同學,沒有你們的支持與協助我也不可能有機會寫這一頁誌謝。

最後要感謝我的父母,從高中以前我一直都是一個問題人物。總是要 上不上要下不下的狀況。感謝你們沒有放棄我一直提供資源給我我才有機 會完成今天這個學業。謹以此論文作為碩士生涯的總結,並獻給所有幫助 過我的人。

Contents

摘要	i
Abstract	ii
誌謝	iii
Contents	v
Figure Contents	vi
Introduction	1
Methods	2
Datasets	2
Definition of Backbone Torsional Angle Class	3
Definition of Protein Blocks Class	4
PSI-BLAST Profile	5
The Support Vector Machines (SVM)	5
SVM-Inputs	7
Performance Measure	8
Structure Entropy Calculation	8
Results and Discussion	9
Predict <i>Grid1</i> using <i>RS126</i> dataset	9
Comparing the results of RS126 and Sequence Unique Database using	9
Grid1 definition	
The results of <i>Grid2</i> definition	10
The results of Grid3 and Grid4 definition	10
Compare the test case in each datasets using <i>PBs</i> definition	10
Compare the result between de Brevern's and our method using PBs	11
definition	
Compare different window size in RS126 and Protein Blocks	11
Databanks using PBs definition	
Compare different dataset using <i>PBs</i> definition	11
The relation between structure conservation and structural entropy	12
Reference	13
Tables	16
Figures	24
Appendix	54

FIGUE CAPTIONS

Figure 1. The definition of PHI and PSI ($\phi - \psi$) angles in a amino acid residue i.

Figure 2. *Grid1* : The torsional angle was been classified according this $\varphi - \psi$ map. This map was divided into 36 classes, and each class has be assigned a letter code.

Figure 3. *Grid2* : The torsional angle was been classified according this $\varphi - \psi$ map. This map was divided into 8 classes, and each class has be assigned a letter code.

Figure 4. *Grid3* : The torsional angle was been classified according this $\varphi - \psi$ map. This map was divided into 5 classes, and each class has be assigned a letter code.

Figure 5. *Grid4* : The torsional angle was been classified according this $\varphi - \psi$ map. This map was divided into 5 classes, and each class has be assigned a letter code.

Figure 6. *Protein Blocks*. From left to right and top to bottom the 16 Protein Blocks (labeled from *a* to *p*). For each PB, the N-cap is on the left and the C-cap is on the right.

Figure 7. The flow chart of assignment PBs class.

Figure 8. Encoding and prediction flow chart.

Figure 9. Calculate the structural entropy using SVR output.

Figure 10. It shows that the accuracy of using *Sequence Unique Database* is better than using *RS126 database* with window size 9.

Figure 11. Compare the test case in each datasets using *PBs* definition.

Figure 12. Compare the result between de Brevern's and our using *PBs* definition, window size 9 and the same dataset.

Figure 13. Compare different window size in RS126 using PBs definition.

Figure 14. Compare different window size in Protein Blocks Databanks using PBs definition.

Figure 15. Compare different dataset using *PBs* definition.

Figure 16-30. Protein structural entropy from 15 proteins.(a) *PBs* structural entropy, (b) *Grid1* structural entropy, (c) *Grid2* structural entropy, Secondary structural entropy, and (e) Secondary structure assignment. X-axis is protein sequence and Y-axis is entropy value.

INTRODUCTION

The conformation and structure of the polypeptide backbone in a folded protein are influenced by local amino acid sequence.^{1,2} Since the first descriptions of protein structures by Pauling and Corey,³ the researches in this field have been studied into the two principal point of view, assignment and prediction. The secondary structure of a protein is a summary of the general conformation and hydrogen bonding pattern of the amino acid backbone.⁴ And the general definition of secondary structure is DSSP.⁵ Using this definition to predict secondary structure can be achieved with the success rate of 80%.⁶ But the description of the secondary structure of a protein is accurate enough to characterize the complete structure of proteins.⁷ For the reason given above, many researches focus on characterizing protein peptide conformations.⁸⁻¹⁰ Therefore, we now focus on the fundamental descriptors of a residue's conformation, i.e., the backbone torsional angles and protein blocks¹¹. In the protein, the backbone conformation of each residue can be specified by the ϕ , ψ angles (Figure 1) used in the Ramachandran Plot.^{12,13} Previous researchers have provide various classification schemes of the distribution of the backbone torsional angles. ^{3,14-19} We chose the definition of Ross as our classifying method for the Ramachandran Plot.¹⁶ Because it can assign secondary structure that using a simple algorithm. In the Yang and Baker's research^{18,19}, they got the similar results of prediction backbone torsional angles using Ramachandran Plot. But they only use three kinds of classes to define the conformation for one residue in a protein. In their results, it raise the question of that why a polypeptide is predicted into the wrong conformation in the hypothesis of conformation depend on the amino acid sequence. It is reasonable for the coil structure because the numbers of the coil conformation's types are more than the helix and β -strand conformation's types. But the uniform conformation of helix and β -strand are also predicted in wrong conformation. Other research also mentioned this problem and tried to explain the reason. Meiler and Baker used two kind folding pathways to explain that a certain

segment first might adopt a secondary structure preferred by the local sequence and later be transformed to another secondary structure because of non-local interactions with a segment distant along the sequence in the folding process.²⁰ Minor and Kim discovered that the same local 11-residue segment can adopt helix or β -strand structure²¹, and Sudarsanam found this kind of residue segment from the Protein Data Bank.²² In these problems, we need to use the local structure entropy to find what kind of amino acid sequence will not follow the rule of conformation depend on the amino acid sequence. The local structure entropy proved to be successful in discovering the relation between structural conservation and local structural stability that used directly statistics on the database or machine learning method.^{11,23} But those method are only use secondary structural to descript local structural conformation, and we have discussed earlier that the secondary structural is not enough to descript local structural conformation. And using the backbone torsional angles and protein blocks will be suitable and enough to descript the local backbone conformation in the protein. In this reason, we think our research can find the relation between sequence and the fields about folding process, disorder sequence and protein design. Manna Manna

METHODS

Datasets

We use three kinds of datasets in our experimentation. The characteristic of each dataset are above.

RS126 : A nonhomologous data set that includes 126 globular and 4 membrane protein chains with less than 25% pair wise similarity for length > 80 residues. There are 23,706 cases have complete ϕ and ψ values in this data set.²⁴

Sequence Unique Database : The data set is generated by the algorithm that is similar to the PDB select algorithm, but rather than focusing on maximizing the size of the subset. The algorithm focuses on getting representative structures of highest available quality. The dataset's pair wise sequence identity is less than 30%, and the resolution and R-factor criteria are 2.0 and 0.21. The total cases are 509,316, and the total chains are 2,295 in this data set. (version Nov/2004) (http://swift.cmbi.kun.nl/whatif/select/).

Protein Blocks Databanks : It is based on the PAPIA server, which allow to select protein with a maximum sequence identity and a RMSD value. The parameters are here : a. Sequence identity < 30 %, b. RMSD > 10 Å, c. Only X-ray structures, d. R-factor < 0.2 and e. resolution < 2.0 Å. Total has 675 protein chains corresponding to 146,253 amino acids. In order to use the five-fold cross-validation. In this dataset includes some redundant chains (ie. duplicate chains), and we filter out the redundant chains. Finally this dataset has 651 protein chains for our works.

(http://www.ebgm.jussieu.fr/~debrevern/DOWN/DB/papia databank 22082001.txt)

Definition of Backbone Torsional Angle Class

We use 36 classes to define different ϕ , ψ torsional angle pairs. And each class will be represented by a letter code (Figure 2), and we named this definition *Grid1*. Why we use this definition, because it can use three continuous letter codes to convert secondary structure for the central letter. The ϕ , ψ -values for each residues are mapped into the closest letter code. Assignment of residues to the secondary structure category is then straightforward. Progressing along sequence, conformation codes for each triple consecutive residues, $\langle i,i+1,i+2 \rangle$, are used to classify the central residue, i+1, into (a) helix if all three residues are in {O,P}, (b) β -strand if all three residues are in {A,F,G,L,M,R}, (c) β -turn if $\langle i,i+1 \rangle$ or $\langle i+1,i+2 \rangle$ match a combination in this set { OO, OP, OJ, PO, PP, PJ, JO, JP, JJ, Mo, Mp, Ro, Rp, Rj, oo, op, oj, pp, pj, jo, jp, jj, mO, mP, mJ, rO, rP, rJ}, (d) Pii-helix if the residues have not already been classified as above classes and in {M,R}, or (e) coil in all other cases.¹⁶ A class is assigned to each position along the sequence except for the one residue on each end of a sequence.

And we merge some classes into a new class (TABLE 1). This can make the different classes definition with *Grid1*. And *Grid2*, *Grid3* and *Grid4* (Figures 3-5) are used in our method.

Definition of Protein Blocks Class²⁵⁻²⁷

We use 16 kinds of *Protein Blocks (PBs)* (Figure 6), and each class will be assigned to one letter code $(a \sim p)$. The *PBs* classes are overlapping fragments, M = 5 residue in length, position *i* at the central of the fragment, encoded as sequence windows of 2(M-1) consecutive torsional angles $vector(\psi_{i=2}, \phi_{i-1}, \psi_{i-1}, \phi_i, \psi_i, \phi_{i+1}, \psi_{i+1}, \phi_{i+2})$. They were obtained by an unsupervised classifier similar to Kohonen maps ²⁸ and hidden Markov models ²⁹. *PBs m* and *d* correspond to the prototypes for the central α -helix and the central β -strand, respectively. *PBs a* through *c* represent β -strand N-caps and *e* and *f*, C-caps. *PBs g* through *j* are specific to coils, *k* and *l* to α -helix N-caps, and *n* through *p* to α -helix C-caps. Protein structures are encoded as sequences of $\phi - \psi$ torsional angles, and cut into consecutive overlapping fragments, each *M* amino acids in length. The fragment is defined by a vector of 2(M-1) torsional angular values. The fragment vector is compared with each *PBs* vector (Table 2) with the Root Mean Square Deviations on Angular(RMSDA) values measure.

$$RMSDA(V_1, V_2) = \sqrt{\frac{\sum_{i=1}^{i=M-1} \left[\psi_i(V_1) - \psi_i(V_2)\right]^2 + \left[\phi_{i+1}(V_1) - \phi_{i+1}(V_2)\right]^2}{2(M-1)}}$$
(1)

The lowest RMSDA value for 2(M-1) angles determines the PB assignment. A PB is assigned to each position along the sequence except for the two residues on each end of a sequence. (Figure 7)

PSI-BLAST Profile

The inputs of SVM are parsed from PSSM (Position-Specific Scoring Matrix). The PSSM is generated by Position-Specific Iterated BLAST (PSI-BLAST) program. This program is an iterative program to search a database for proteins and it can generate a profile contained probabilities of residues, taking into account the significance of each sequence and distant homologues.³⁰ The PSSM log-odd score profile was obtained after five iterations with E-value threshold 0.001 against the non-redundant protein database. This profile has M×20 elements, where M is the target sequence and each element represents the log-likelihood of the length of the particular residue substitution at the template (based on a weighted average of BLOSUM62 matrix scores for given alignment position).

The Support Vector Machines (SVM)

The SVM are a family of algorithms for classification problems. ³¹ It's successfully applied to secondary structure prediction.³², subcellular localization³³ prediction and other biological pattern classification problems. We use the publicly available LIBSVM ³⁴ package

in our experiments, and kernel type is radial basis function (RBF).(Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/)

The basic idea of SVM is the use of a linear separating hyperplane, which can maximize the distance between two classes. If the problem can't be linearly separated in the original input space, then SVM employs two techniques to deal with it. Firstly SVM uses a soft margin hyperplane, which adds a penalty function to allow training errors. Secondly SVM non-linearly transforms the original input space into a higher dimension feature space. Hence in this new feature space it is more possible to find a linear optimal separating hyperplane to classify the data. SVM training always seeks a global optimized solution and avoids over fitting, so it has ability to deal with a large number of features.

Given input vectors x_i , i = 1,...,l and a vector y defined as: $y_i = 1$ if x_i is in one class, and $y_i = -1$ if x_i is in the other class, SVM tried to find a separating hyperplane to separate these two classes of data. Here x_i can be a local sequence window centered on the interested residue. The variable y_i is used to denote the local conformation class of the residue, and the local conformation classes are defined at previous section. The support vector technique tries to find the separating hyperplanes $w^T x_i + b = 0$ with the largest distance between two classes, measured along a line perpendicular to this hyperplane. This requirement is equivalent to minimization of $\frac{1}{2}w^Tw$ with respect to w and b under the constraint that $y_i(w^T x_i + b = 0) \ge 1$. However, in practice, these data that is to be classified may not be linearly separable. To overcome this difficulty, SVN non-linearly transforms the original input space into higher dimensional feature space by $\Phi(x) = (\phi_i(x), \phi_2(x),...)$ and tries to minimize with respect to w, b and ξ , $\frac{1}{2}w^Tw + C\sum_{i=1}^{T}\xi_i$, where C > 0 is the penalty parameter, under the constraint that $y_i[w^T\Phi(x_i)+b] \ge 1-\xi_i$ where $\xi_i \ge 0$. This procedure has the advantage of allowing training errors. It should be noted that only some of

the x_i 's are used to construct w and b, and these data are called support vectors. $K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$ is called the kernel function, and we use the RBF kernel $(K(x_i, x_j) = \exp(-\gamma ||x_i - x_j||^2), \quad \gamma > 0)$ to calculate all inner product. All SVM calculations are performed using LIBSVM³⁴, a general library for support vector classification and regression.

In the SVM training procedure, we need use cross-validation to find the best parameter C and γ for RBF kernel. and the LIBSVM can use grid-search to find the best parameters. Using the wrong parameters will generate worst prediction result.

SVM-Inputs

Our SVM inputs utilize W×21-bits for each residue which is central in the W-length fragment, and each residue in this fragment will represented by 21 bits(1-bit indicates the null amino acid and the other 20-bits indicate the score for each amino acid from the PSI-BLAST profile). And the score are normalized to the range [0,1] by the following scaling function.³²

$$f(x) = \begin{cases} 0.0 & if \quad x \le -5\\ 0.5 + 0.1x & if \quad -5 < x \le 5\\ 1.0 & if \quad x > 5 \end{cases}$$
(2)

Each fragment will be represented by W×21-bits vector. W is the length of the sliding window size on the sequence. The window size W is chosen to be an odd numbers so that the target residue is always centered in the sliding window (Figure 8). In this work, we used 7, 9, 11 and 15 for the sliding window size. The SVM output is one classes for different definition *Grid1*, *Grid2*, *Grid3*, *Grid4* or *PBs*.

In our experiments, we use five-fold cross validation for the dataset, and the accuracy to judge our results.

$$Accuracy = \frac{the number of correct predictions}{total number cases}$$
(3)

Structure Entropy Calculation¹¹

The LIBSVM package has Support Vector Regression(SVR) model. Use this model can output the probability estimates for each classes using the –b option. And summing of each output probability is one.

When a protein sequence Γ of length *L* is denoted by $\Gamma = \delta_I \delta_2 \cdots \delta_L$, where δ_i is the amino acid at *i*-th position. And the SVR output for the δ_i can be represented by a vector P_i , that is,

$$P_i = (p_{i1}, p_{i2}, \dots, p_{iN}), \tag{4}$$

where the p_{ij} is the probability of the *j*-th class at δ_i . Using Shannon's information theory, ³⁵ we compute the conformational entropy of δ_i by

$$Entropy_{i} = -\sum_{j}^{N} p_{ij} \log_{b} p_{ij}, \qquad (5)$$

where the b is the number of the classes. (Figure 9)

RESULTS AND DISCUSSION

Predict Grid1 using RS126 dataset

We test different window sizes on *RS126* dataset. The results are consisting of each class for the *RS126* dataset when the window sizes are 7, 9, and 11, respectively. (Table 3) The accuracy of certain classes is 0%, and the test cases of those classes are under 100, implying that the classes they belong to are forbidden for this kind of torsional angle pairs of protein residues. The accuracy of the classes L and O are around 70% and 85%, respectively. And the total test cases of L and O classes are 4013 and 6853. It means classes L and O are more favorable for a residue in a protein sequence. In some classes P and R, they all have about two thousand test cases but their accuracy is only around 20% and 0%, respectively. We think this result can explain that the P class has more relationship with protein sequence than R class. In j, p and q classes, the number of test cases are around 300 but the accuracy are around 20%. It suggests some protein sequence fragments have a tendency to reside in these classes.

Comparison between RS126 and Sequence Unique Database using Grid1 definition

Comparing the results of *RS126* dataset (Table3) and *Sequence Unique Database* of window size 9 (Table 4) (Figure 10), *Sequence Unique Database* is better than *RS126* dataset in each class, especially in class R and j. For the case of R class, the difference has been explained in the previous section. Utilizing the *RS126* dataset, 0% of prediction accuracy is resulted from the small size of *RS126* dataset and hence insufficient Protein sequence information.

The total accuracy of Sequence Unique Database using Grid1 definition can reach

54.81%. Numbers of the test case in the *Sequence Unique Database* is 20 times larger than that of *RS126* dataset, and therefore the *Sequence Unique Database* is too time-consuming in the SVM training process. Furthermore, the *RS126* dataset is too small in size to represent the scale of *PDB database*. Thus, it is required to develop a new database suitable to describe the whole space of PDB database while the size for training in SVM.

The results of Grid2 definition

In *Grid2* definition, we merge *Grid1*'s 36 classes into eight classes. The total accuracy of *RS126* dataset (Table 5) and *Sequence Unique Database* (Table 6) of window size 9 are 54.7% and 64%, respectively. The prediction of *Grid2* is better than *Grid1* definition, and each class in *Grid2* is better than the merged class from *Grid1*. Only class E' of the *Grid2* definition is lower than it's mapping class O of the *Grid1* definition.

The results of Grid3 and Grid4 definition

The *Grid3* and *Grid4* definitions(Table 7-8) are similar to Yang's¹⁸, including the results. The progress in accuracy is contributed by merging the classes into a larger one. Although progressive in accuracy, these definitions may lead to the problem of unable to get the reasonable class consisting true relationship between sequence and local conformation.

Comparison the test case in each datasets using PBs definition

The occurrence frequency of test cases in this definition is quite consistent within each dataset. (Figure 11) This suggests *PBs* definition is a comprehensive and relatively stable descriptor that the occurrence frequency would almost make no difference between each

dataset.

Comparison the result between de Brevern's²⁷ and our method using *PBs* definition

Our result is predicted by SVM and using the same dataset and window size with de Brevern's method. It suggests that using SVM and PSSM profile as input can get a better accuracy than de Brevern's method (Figure 12). But in the classes g, h, i and j, it is lower than de Brevern's method. The reason of this result may be because of the limit of SVM. The occurrence frequency of test cases in class g, h, i, and j are under 3%. If the SVM input of one class cannot be distinguished from others, the accuracy would drop to a low level. This may somehow conclude that the class g, h, i, and j have weak relationship between the local conformation and the sequence information.

Comparison different window size in RS126 and Protein Blocks Databanks using PBs definition

The comparison result shows consistency between window size 9 and 15. This also reveals that enough sequence information is obtained to predict PBs when window size is set to 9. (Figure 13-14)

Comparison different dataset using PBs definition

We compared the accuracy of *RS126*, *Sequence Unique Database* and *Protein Blocks Databanks* using window size 9. The result is in Figure 15, and it shows the large dataset can get better accuracy than smaller one. The number of test case in *Sequence Unique Database* is 5 times bigger than *Protein Blocks Databanks*, while the number of test case in *Sequence* *Unique Database* is 6 times bigger than *RS126*. This is certainly because the larger dataset covers almost the entire sequence space than the smaller dataset.

The relation between structure conservation and structural entropy

We compare 4 kinds of structural entropy calculated from different local structural definitions: (a) *PBs*, (b) *Grid1*, (c) *Grid2*, and (d) SSE. There are fifteen results shown in Figure 15-30. In our result, the structural entropy definition from *PBs*, *Grid1* and *Grid2* are very consistent. Because the definition of PBs and Grid2 are correlated with Grid1, this result seems quite reliable. In these figures (e) labeling the secondary structure by different colors: red for helix, blue for β strand and green for coil. In Huang's research, the Secondary Structural Entropy (*SSE*) has the relationship with structure conservation. And the lower entropy can map to the conservation region using *SSE*. We discovered that the inconsistent regions are almost coil regions. This suggests *SSE* is relatively insensitive due to its insufficient description power to coil conformations, which only containing three kinds of local conformation, helix, β strand, and coil from secondary structure. Using our definitions can make the structural entropy more sensitive in coil conformation, so it can improve *SSE*'s method.

REFERENCES

- 1. Anfinsen CB. Principles that govern the folding of protein chains. Science 1973;181(96):223-230.
- 2. Baldwin RL, Rose GD. Is protein folding hierarchic? I. Local structure and peptide folding. Trends Biochem Sci 1999;24(1):26-33.
- 3. Pauling L, Corey RB. Atomic coordinates and structure factors for two helical configurations of polypeptide chains. Proc Natl Acad Sci U S A 1951;37(5):235-240.
- 4. Frishman D, Argos P. Knowledge-based protein secondary structure assignment. Proteins 1995;23(4):566-579.
- 5. Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983;22(12):2577-2637.
- 6. Pollastri G, Przybylski D, Rost B, Baldi P. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 2002;47(2):228-235.
- 7. Camproux AC, Gautier R, Tuffery P. A hidden markov model derived structural alphabet for proteins. J Mol Biol 2004;339(3):591-605.
- 8. Estrada E. A protein folding degree measure and its dependence on crystal packing, protein size, secondary structure, and domain structural class. J Chem Inf Comput Sci 2004;44(4):1238-1250.
- 9. Sims GE, Choi IG, Kim SH. Protein conformational space in higher order phi-Psi maps. Proc Natl Acad Sci U S A 2005;102(3):618-621.
- 10. Solis AD, Rackovsky S. Optimally informative backbone structural propensities in proteins. Proteins 2002;48(3):463-486.
- 11. Huang SW, Hwang JK. Computation of conformational entropy from protein sequences using the machine-learning method--application to the study of the relationship between structural conservation and local structural stability. Proteins 2005;59(4):802-809.
- 12. Ramachandran GN, Ramakrishnan C, Sasisekharan V. Stereochemistry of polypeptide chain configurations. J Mol Biol 1963;7:95-99.
- 13. Ramachandran GN, Sasisekharan V. Conformation of polypeptides and proteins. Adv Protein Chem 1968;23:283-438.
- 14. Deane CM, Blundell TL. CODA: a combined algorithm for predicting the structurally variable regions of protein models. Protein Sci 2001;10(3):599-612.
- 15. Kang HS, Kurochkina NA, Lee B. Estimation and use of protein backbone angle probabilities. J Mol Biol 1993;229(2):448-460.
- 16. Gong H, Isom DG, Srinivasan R, Rose GD. Local secondary structure content

predicts folding rates for simple, two-state proteins. J Mol Biol 2003;327(5):1149-1154.

- 17. Deane CM, Blundell TL. A novel exhaustive search algorithm for predicting the conformation of polypeptide segments in proteins. Proteins 2000;40(1):135-144.
- 18. Kuang R, Leslie CS, Yang AS. Protein backbone angle prediction with machine learning approaches. Bioinformatics 2004;20(10):1612-1621.
- 19. Bystroff C, Thorsson V, Baker D. HMMSTR: a hidden Markov model for local sequence-structure correlations in proteins. J Mol Biol 2000;301(1):173-190.
- 20. Meiler J, Baker D. Coupled prediction of protein secondary and tertiary structure. Proc Natl Acad Sci U S A 2003;100(21):12105-12110.
- 21. Minor DL, Jr., Kim PS. Context-dependent secondary structure formation of a designed protein sequence. Nature 1996;380(6576):730-734.
- 22. Sudarsanam S. Structural diversity of sequentially identical subsequences of proteins: identical octapeptides can have different conformations. Proteins 1998;30(3):228-231.
- 23. Chan CH, Liang HK, Hsiao NW, Ko MT, Lyu PC, Hwang JK. Relationship between local structural entropy and protein thermostabilty. Proteins 2004;57(4):684-691.
- 24. Rost B, Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 1993;232(2):584-599.
- 25. de Brevern AG, Etchebest C, Hazout S. Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Proteins 2000;41(3):271-287.
- 26. de Brevern AG, Valadie H, Hazout S, Etchebest C. Extension of a local backbone description using a structural alphabet: a new approach to the sequence-structure relationship. Protein Sci 2002;11(12):2871-2886.
- 27. Etchebest C, Benros C, Hazout S, de Brevern AG. A structural alphabet for local protein structures: improved prediction methods. Proteins 2005;59(4):810-827.
- 28. Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern 1982;43:59-69.
- 29. Rabiner LR. A tutorial on Hidden Markov Models and selected applications in speech recognition. Proc IEEE 1989;77:257-285.
- 30. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25(17):3389-3402.
- 31. Vapnik V. The Nature of statistical learning theory. New York; 1995.
- 32. Kim H, Park H. Protein secondary structure prediction based on an improved support vector machines approach. Protein Eng 2003;16(8):553-560.
- 33. Yu CS, Lin CJ, Hwang JK. Predicting subcellular localization of proteins for

Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 2004;13(5):1402-1406.

- 34. Hsu CW, Chung CC, Lin CJ. A Practical Guide to Support Vector Classification. Taipei.
- 35. Shannon CE. A mathematical theory of communication. The Bell System Technical Journal 1948;27:379-423, 623-656.

	Grid2		Grid3		Grid4
Туре	Types merge from	Туре	Types merge from	Туре	Types merge
	Grid1		Grid1		from Grid1
A'	A, F	A"	A, F, G, L	A'''	A, F, G, L, M, R
B'	G, L				
C'	M, R	В"	M, R		
D'	J, P	C"	J, P, O	B""	J, P, O
E'	Ο				
F'	m, g, r				
G'	j, o , p	D"	j, o, p	C""	j, o, p
H'	B, C, D ,E ,H, I,	E"	B, C, D ,E ,H, I,	D'''	B, C, D ,E ,H, I,
	K, N, Q , h, i, k, l,		K, N, Q , g, h, i,		K, N, Q , g, h, i,
	n, q		k, l, m, n, q, r		k, l, m, n, q, r
non-class	S, T, U, V ,W, X	non-class	S, T, U, V ,W, X	non-class	S, T, U, V ,W, X
		JULLUL .	Mulles .		

TABLESTABLE 1. Grid2, Grid3, Grid4 Definition

PB type	ψ_{i-2}	ϕ_{i-1}	ψ_{i-1}	ϕ_{i}	ψ_i	ϕ_{i+1}	ψ_{i+1}	ϕ_{i+2}
а	41.14	75.53	13.92	-99.8	131.88	-96.27	122.08	-99.68
b	108.24	-90.12	119.54	-92.21	-18.06	-128.93	147.04	-99.9
c	-11.61	-105.66	94.81	-106.09	133.56	-106.93	135.97	-100.63
d	141.98	-112.79	132.2	-114.79	140.11	-111.05	139.54	-103.16
e	133.25	-112.37	137.64	-108.13	133	-87.3	120.54	77.4
f	116.4	-105.53	129.32	-96.68	140.72	-74.19	-26.65	-94.51
g	0.4	-81.83	4.91	-100.59	85.5	-71.65	130.78	84.98
h	119.14	-102.58	130.83	-67.91	121.55	76.25	-2.95	-90.88
i	130.68	-56.92	119.26	77.85	10.42	-99.43	141.4	-98.01
j	114.32	-121.47	118.14	82.88	-150.05	-83.81	23.35	-85.82
k	117.16	-95.41	140.4	-59.35	-29.23	-72.39	-25.08	-76.16
1	139.2	-55.96	-32.7	-68.51	-26.09	-74.44	-22.6	-71.74
m	-39.62	-64.73	-39.52	-65.54	-38.88	-66.89	-37.76	-70.19
n	-35.34	-65.03	-38.12	-66.34	-29.51	-89.1	-2.91	77.9
0	-45.29	-67.44	-27.72	в-87.27	5.13	77.49	30.71	-93.23
р	-27.09	-86.14	0.3	59.85	21.51	-96.3	132.67	-92.91

Table 2. The angles on the central residue *i* for the 5-residues *Protein Blocks*.

Туре	Number	Occurrence	Correctly predicted				
	of cases	frequency	ratio(%)				
		ratio (%)	W	indow Siz	ze		
			7	9	11		
А	604	2.55	6.95	1.82	5.13		
В	34	0.14	0	0	0		
С	32	0.13	0	0	0		
D	42	0.18	0	0	0		
Е	56	0.24	0	0	0		
F	298	1.26	0	0	0		
G	1791	7.56	13.18	5.63	10.22		
Н	88	0.37	0	0	0		
Ι	367	1.55	1.63	0	1.36		
J	1303	5.50	16.42	10.05	15.73		
Κ	435	1.83	4.14	0.46	2.76		
L	4013	16.93	67.73	74.13	69.05		
Μ	991	4.18	12.11	3.63	9.38		
Ν	50	0.21	0	0	0		
0	6853	28.91	83.07	86.3	84.15		
Р	2546 🔬	10.74	22.31	19.56	22.94		
Q	231	0.97	0.87	0.87	1.73		
R	2236	9.43	30.81	28.18	28.53		
S	11	0.05	0	0	0		
Т	13	0.05	0	0	0		
U	77 🏹	0.32	0	0	0		
V	15 🏹	0.06	0	0	0		
W	28	0.12	0	0	0		
Х	33	0.14	0	0	0		
g	119	0.50	8.4	2.52	6.72		
h	57	0.24	0	0	0		
i	31	0.13	0	0	0		
j	249	1.05	24.9	12.85	21.69		
k	35	0.15	5.71	0	0		
1	26	0.11	0	0	0		
m	110	0.46	8.18	0	4.55		
n	45	0.19	0	0	0		
0	336	1.42	10.71	5.36	11.01		
р	391	1.65	25.32	22.25	27.37		
q	52	0.22	3.85	0	1.92		
r	108	0.46	1.85	0	1.85		
Total	23706		44.41	43.57	44.32		

TABLE 3. Prediction Results for RS126 using Grid1 Definition

Туре	Number	Occurrence	Correctly predicted ratio
	of cases	frequency	(%)
		ratio (%)	Window Size
		-	9
А	13258	2.60	19.44
В	305	0.06	6.56
С	141	0.03	0.71
D	183	0.04	1.64
Е	571	0.11	2.28
F	5218	1.02	3.53
G	34613	6.80	18.51
Н	966	0.19	4.87
Ι	5716	1.12	6.74
J	32101	6.30	31.80
Κ	7209	1.42	12.00
L	85634	16.81	75.02
М	22077	4.33	17.48
Ν	157	0.03	0
0	157494 🛓	30.92	87.26
Р	54652 🍰	10.73	33.70
Q	3311	0.65	7.52
R	53418	10.49	45.6
S	15 🗐	0.00396	0
Т	24 🍕	0.00	0
U	80	0.02	0
V	7	0.00	0
W	59	0.01	0
Х	74	0.01	0
g	2200	0.43	17.72
h	517	0.10	12.38
i	137	0.03	0
j	4413	0.87	20.82
k	276	0.05	0
1	298	0.06	6.38
m	1977	0.39	12.49
n	185	0.04	5.95
0	8514	1.67	27.58
р	11041	2.17	49.75
q	397	0.08	6.30
r	2078	0.41	18.77
Total	509316		54.81

TABLE 4. Prediction Results for Sequence Unique database usingGrid1 Definition

Туре	Number of cases	Occurrence frequency ratio (%)	Correctly predicted ratio (%) Window Size 9
A'	936	3.89	0.53
B'	5971	24.84	76.99
C'	3332	13.86	32.89
D'	3922	16.32	39.09
E'	6915	28.77	78.50
F'	347	1.44	3.17
G'	995	4.14	45.63
H'	1620	6.74	1.42
Total	24038		54.69

TABLE 5. Prediction Results for RS126 using Grid2 Definition

Туре	Number of cases	Occurrence frequency ratio (%)	Correctly predicted ratio (%) Window Size 9
A'	18487	3.63	14.70
В'	120320	23.62	76.22
C'	75550	14.83	48.85
D'	86787	17.04	53.20
E'	157554	30.93	82.86
F'	6260	1.23	27.84
G'	23982	4.71	58.37
H'	20379	4.00	10.41
Total	509319		63.99

TABLE 6. Prediction Results for Sequence Unique database usingGrid2 Definition

Туре	Number of cases	Occurrence frequency ratio (%)	Correctly predicted ratio (%) Window Size 9
A''	6907	28.73	72.88
В''	3332	13.86	24.58
С"	10837	45.08	87.59
D''	995	4.14	33.57
Е"	1967	8.18	4.52
Total	24038		65.60

TABLE 7. Prediction Results for RS126 using Grid3 Definition

Туре	Number of cases	Occurrence frequency ratio (%)	Correctly predicted ratio (%) Window Size 9
A'''	10239	42.60	83.86
B'''	10837	45.08	80.86
C'''	995	4.14	31.46
D'''	1967	8.18	1.12
Total	24038		73.57

TABLE 8. Prediction Results for RS126 using Grid4 Definition

Figures

180							
100	A	G	М	S	m	g	A
120	F	L	R	x	n	h	F
60	E	K	Q	W	o	i	Е
ψ ٥	D	J	Ρ	v	р	j	D
-60	с	I	0	υ	q	k	с
-120	в	Н	N	Т	r	1	в
-180	A	G	М	s	m	g	A
-1	80	-120	-60	ο φ	60	120	180

Figure 2. *Grid1* : The torsional angle was been classified according this $\varphi - \psi$ map. This map was divided into 36 classes, and each class has be assigned a letter code.¹⁶

Figure 3. *Grid2* : The torsional angle was been classified according this $\varphi - \psi$ map. This map was divided into 8 classes, and each class has be assigned a letter code.

Figure 4. *Grid3* : The torsional angle was been classified according this $\varphi - \psi$ map. This map was divided into 5 classes, and each class has be assigned a letter code.

Figure 5. *Grid4* : The torsional angle was been classified according this $\varphi - \psi$ map. This map was divided into 5 classes, and each class has be assigned a letter code.

Figure 6. *Protein Blocks*. From left to right and top to bottom the 16 Protein Blocks (labeled from *a* to *p*). For each PB, the N-cap is on the left and the C-cap is on the right.

			Slic	ling Wi	ndow										
Protein seq	luence] ø	N V q	D 5 <i>\V</i>	с ø Ψ	Q <i>φ</i>	Ψ φ) Ψ φ	G 5 <i>ψ</i>	н ф <i>Ф</i>	Ι φψ	ц Ф	ψφ	к - <i>ψ</i>	
PB Vector	PB type	ψ_{i-2}	ϕ_{i-1}	ψ_{i-1}	ϕ_{i}	ψ_i	ϕ_{i+1}	ψ_{i+1}	ϕ_{i+2}			ļ			
V_a	а	41.14	75.53	13.92	-99.8	131.88	-96.27	122.08	-99.68	1	RMSDA(Va,Vseq)	= 3.28		
V_b	b	108.24	-90.12	119.54	-92.21	-18.06	-128.93	147.04	-99.9		RMSDA(Vb,Vseq)	= 0.94		
V_c	с	-11.61	-105.66	94.81	-106.09	133.56	-106.93	135.97	-100.63		RMSDA(V_c, V_{seq})	= 1.52		
V_d	d	141.98	-112.79	132.2	-114.79	140.11	-111.05	139.54	-103.16		RMSDA($V_d, V_{seq})$	= 10.12		
V_e	e	133.25	-112.37	137.64	-108.13	133	-87.3	120.54	77.4		RMSDA(V_{e}, V_{seq})	= 0.78		
V_{f}	f	116.4	-105.53	129.32	-96.68	140.72	-74.19	-26.65	-94.51		RMSDA($V_{\rm f}, V_{\rm seq}$)	= 11.71		
V_g	g	0.4	-81.83	4.91	-100.59	85.5	-71.65	130.78	84.98		RMSDA(V_{g}, V_{seq}	= 1.48		
V_h	h	119.14	-102.58	130.83	-67.91	121.55	76.25	-2.95	-90.88		RMSDA(V_{h}, V_{seq}	= 5.4		
Vi	1	130.68	-56.92	119.26	77.85	10.42	-99.43	141.4	-98.01		RMSDA($\mathbf{V}_{i}, \mathbf{V}_{seq}$	= 13.0		
V _j	J	114.32	-121.4/	118.14	82.88	-150.05	-83.81	23.35	-85.82			$\mathbf{V}_{j}, \mathbf{V}_{seq}$	- 0.55 - 14.11		
V _k	ĸ	11/.10	-95.41	140.4	-59.55	-29.23	-12.39	-25.08	-/0.10			V k, V seq	- 20.1		
\mathbf{V}_1	I	139.2	-55.96	-32.7	-68.51	-26.09	-74.44	-22.6	-/1./4		KMSDA($\mathbf{v}_{1}, \mathbf{v}_{seq}$	- 20.1		
Vm	m	-39.62	-64.73	-39.52	-65.54	-38.88	-66.89	-37.76	-70.19		RMSDA(V_{m}, V_{seq}	= 7.84		
Vn	n	-35.34	-65.03	-38.12	-66.34	-29.51	-89.1	-2.91	77.9		RMSDA(V_n, V_{seq}	= 5.16		
Vo	0	-45.29	-67.44	-27.72	-87.27	5.13	77.49	30.71	-93.23	1	KMSDA(V_{o}, V_{seq}	= 4.51		
Vp	р	-27.09	-86.14	0.3	59.85	21.51	-96.3	132.67	-92.91		KMSDA($\mathbf{v}_{p}, \mathbf{v}_{seq}$)	- 3.23		

The lowest RMSDA value is $RMSDA(V_b, V_{seq})$.

↓

Assign the residue E into PBs class b.

Figure 8. Encoding and prediction flow chart.

Figure 9. Calculate the structural entropy using SVR output.

Figure 10. It shows that the accuracy of using *Sequence Unique Database* is better than using *RS126 database* with window size 9.

1A2P_C

Figure 16.

Figure 17.

1HFX

Figure 18.

1HML

Figure 19.

5PTI

Figure 20.

1HEL

Figure 21

1MBO

Figure 22

1STN

Figure 23

1F21_A

Figure 25.

2LZM

Figure 26.

Figure 27.

1PGA

Figure 28.

Figure 29.

Figure 30.

Appendix Appendix 1. *RS126* Dataset

11							
256b_A	5er2_E	lovo_A	1BKS_A	6cts_	2ltn_A	4ts1_A	4cpa_I
9api_B	1G6N_A	2mhu_	lacx_	1DUR_A	2pcy_	lprc_H	6dfr_
7cat_A	3hmg_A	2rsp_A	1bds_	2gls_A	1rhd_	2alp_	lfxi_A
бсра_	llap_	ltgs_I	1CDH_	2i1b_	4sgb_I	4bp2_	1hip_
3ebx_	2or1_L	2wrp_R	lcse_I	1LMB_3	ltnf_A	4cms_	9ins_B
2FOX_	1r09_2	6acn_	lfdl_H	9pap_	lprc_C	leca_	lmcp_L
6hir_	7rsa_	1bbp_A	1gd1_0	lrbp_	2AK3_A	1IQZ_A	2phh_
1158_	2tgp_I	2ccy_A	5hvp_A	3SDH_A	3blm_	4gr1_	4rhv_4
2mev_4	9wga_A	1crn_	21hb_	2tmv_P	3cln_	1i18_A	2sod_B
1pyp_	8abp_	lfc2_C	lpaz_	4xia_A	5cyt_R	5lyz_	lubq_
3rnt_	1CY0_	1A45_	1ppt_	3ait_	1FND_	3pgm_	lprc_M
2stv_	1cc5_	2hmz_A	1s01_	1bmv_2	lgp1_A	4rhv_3	
2utg_A	4cpv_	1GDJ_	6tmn_E	3cla_	7icd_	2sns_	
2aat_	letu_	2pab_A	1BKS_B	2cyp_	2ltn_B	2tsc_A	
lazu_	2gbp_	1mrt_	8adh_	lfkf_	4pfk_	lprc_L	
lcbh_	3hmg_B	4rxn_	1bmv_1	2gn5_	4rhv_1	9api_A	
бсрр_	5ldh_	3tim_A	lcdt_A	3icb_	lsh1_	2cab_	

пррепа	IX 2 . 1 100	ein Dioem	5 Duidoui			iunuuni ei	iums		
1531	19gsA_	1a12A_	1a1x	la2pA_	la2zA_	la3aA_	1a3h	1a44	la4iB_
la4uA_	1a6q	1a6q1	1a76	1a7uA_	1a8e	1a8h	1a81	1a8p	laew
1af7	lafwB_	lagjA_	1ah7	lahc	1ai3	lai9A_	1aj8A_	lajz	lako
lamm	lamp	laocA_	laop	1aop3	1аруА_	1аруВ_	laq0A_	laqb	larb
laru	latlA_	1110	laxn	layoA_	layx	1az9	lazo	lazo1	1b00A_
1b1cA_	1b2pA_	1b3mA_	1b4kA_	1b5eA_	1b5qB_	1b71A_	1b8aA_	1b8pA_	1b94A_
1b9hA_	1bbpA_	1bd8	1bea	1bf2	1bf6B_	1bfd	1bg6	1bg61	lbgf
1bgvA_	1bhe	1bhtA_	1bj7	1bjwA_	1bkpB_	1bkzA_	1bn8A_	1bolA_	1bqk
1bs1B_	1bsmA_	1btl	1btn	1bu7A_	1buoA_	1bxaA_	1byfB_	1byqA_	1bz0A_
1bzyA_	1c02A_	lclfA_	lc1kA_	1c2pA_	1c3jA_	1c3jA_1	1c3jA_2	1c3kA_	lc3qA_
1c44A_	lc8kA_	1c8uA_	1ca1	lcczA_	lcelA_	lcem	lceqA_	lceqA_1	lcewI_
lcfb	1chd	lchmA_	lcjcA_	lckeA_	lckeA_1	lcmbA_	lcnzA_	lcozA_	lcp2A_
lcpn	lcq3A_	lcqxA_	lcrzA_	lcs6A_	lcss	1cv8	lcvl	1cvl1	lcvrA_
1cy9A_	1cy9A_1	lcy9A_2	lczlA_	lczfA_	lcznA_	lcztA_	1d0bA_	1d0qA_	1104
1d2mA_	1d2mA_1	1d2mA_2	1d2oA_	1d2tA_	1d2tA_1	1d2vA_	ld2vC_	ld3sA_	1d40A_
1d60A_	ld8wA_	ld9cA_	1dbfA_	1dbxA_1	ldciA_	1dd3A_	1dd9A_	1dd9A_1	1dd9A_2
1ddt	1ddt1	lddvA_	1dfx	1dg3A_	1dg3A_1	1dg3A_3	1dg3A_4	ldgwA_	ldgyA_
ldgyA_1	1dhn	ldixA_	1dj0A_	1dk0A_	ldk8A_	ldlwA_	ldmgA_	ldmgA_1	ldmhA_
1dmr	ldoi	ldorA_	1dowA_	ldozA <u>1</u> 89	1dp4A_	ldqeA_	ldqgA_	ldqiA_	ldqtA_
ldqzA_	lds0A_	ldsbA_	1dtoA_	ldtoA_1	ldts	ldugA_	ldupA_	ldusA_	lduwA_
ldxeA_	ldxy	ldysA_	ldytA_	ldz3A_	ldzfA_	le0cA_	1e15A_	1e19A_	1e29A_
le2hB_	le2hB_1	le2hB_2	1e2hB_3	1e2uA_	1e3aA_	1e3uB_	le4fT_	le4fT_1	le5mA_
le6oL_	1e6qM_	1e6uA_	1270	1e87A_	lecsA_	ledg	ledqA_	ledt	lee8A_
leehA_	leehA_1	leejA_	lef8C_	lef8C_1	leg9A_	leg9B_	leguA_	leif	leif_1
leimA_	1ej2A_	lejbA_	lejdA_	lejjA_	lek0A_	lekgA_	lel4A_	lel6A_	lemvB_
1e06B_	1e09A_	1eo9B_	leokA_	lep0A_	1еq6А_	lerzA_	lesfA_	lesfA_1	lesgB_
lesl	leswA_	leu3A_	leu8A_	leuaA_	leuhA_	leur	levxA_	lew0A_	lew4A_
lew6A_	1ex2A_	lextA_	ley0A_	leyhA_	leyqA_	leyvB_	lez3A_	1f00I_	1f08A_
lf0kA_	lf0xA_	1f0xA_1	1f2dA_	lf2tB_	lf2uA_	1f32A_	1£39A_	lf3uA_	lf3uF_2
lf5mB_	lf5vA_	lf5wA_	lf6kA_	lf7sA_	lf8aB_	1f8aB_1	lf8mA_	lf9zA_	lfc3A_
lfc9A_	1fd7D_	lff9A_	1ff9A_1	lfgyA_	1fi2A_	1fit	1fj2A_	lfjhA_	lfjhA_1
lfkmA_	1f12A_	lflmA_	lflp	lfm0E_	lfm0E_1	lfmtA_	lfmtA_1	lfn9A_	lfnc
lfnnA_	lfnnA_1	lfplD_	lfplD_1	lfp2A_	lfp3A_	lfs7A_	1ft5A_	lftrA_	lfua
lfupA_	lfus	lfvaB_	lfvuB_	lfvuB_1	lfx7B_	1fx7B_1	lfxlA_	lfyeA_	lfyeA_1
lfzqA_	lg0sB_	1g12A_	1g13A_	lg1bA_	lglkA_	1g291_	1g3qA_	1g57B_1	lg5tA_
2227	lg6sA_	1g72A_	1g73A_	1g73D_	lg8iA_	1g8iA_1	1g81A_	lgakA_	lgceA_

Appendix 2. Protein Blocks Databanks filter out the redundant chains

lgceA_1	1gcuA_	lgcyA_	lgcyA_1	1gd0A_	1gd10_	lgefA_	lgeqB_	lgeqB_1	lgg6B_
lggxA_	lgia	lgnd	lgof	lgp1A_	lgpeA_	lgpr	lgsh	lgsh1	lgsh_2
lh2rL_	lh2rS_	lhcl	lhcl1	lhcz	1hd5A_	1hd5A_1	1hd7A_	1hd7A_2	1he7A_
lhf8A_	lhfc	1hhsA_	lholB_	lholB_1	1hruA_	lhsbA_	1htrB_	lhxqA_	lhxqA_1
li0dA_	liOrB_	lilqB_	lilqB_1	lilqB_2	1i39A_	li6pA_	li9yA_	1i9yA_1	1i9yA_2
liab	liakA_	liakB_	liazA_	1149	licjA_	lido	lie8A_	lie8A_1	ligs
lihgA_	lio7A_	1jbc	ljfrA_	1jkmB_	lkdj	1koe	lkpf	11am	llenC_
11ib	11ki	11ml	11ml1	11m12	1ltm	11tm1	1ltsA_	1mba	1mgtA_
1mkaA_	1mla	1mml	1227	1mugA_	1muyA_	lnah	lnar	lnbaA_	lnbcA_
lnfn	lnfn1	lnkr	lnlr	lnox	lnpk	lnseA_	lnsf	lnsj	lnsyA_
1nwpA_	lnzyA_	lobwA_	loen	loen1	loen2	lonrA_	lpamA_	lpbn	1pbv
1pbwA_	1pdo	1phm	1phm1	1phnA_	1php	lpmi	lpnkB_	lpoa	1ppn
1pprM_	1prn	1puc	1pud	lqadA_	lqadA_1	lqazA_	lqb0A_	lqb8A_	lqbiB_
lqbiB_1	lqbiB_2	lqcxA_	2326	lqd9A_	lqdeA_	lqdeA_1	lqe3A_	lqe3A_1	lqe3A_2
lqftA_	1qg8A_	1qg8A_1	lqgiA_	lqh4A_	lqh5A_	lqhqA_	lqhvA_	lqi7A_	lqj5A_
1qj5A_1	lqjdA_	lqk8A_	lqksA_	lqnrA_	lqnxA_	lqqjA_	lqsaA_	lqstA_	lqtoA_
lqtsA_	lqu1F_	lregX_	1rhs	1rl6A_	lrmg	lrom	lrpjA_	lrro	lsacA_
lseiA_	lsftA_	lskf	1sll	1smlA_S	lsra	lsrvA_	lstmA_	lsur	lsvb
lsvy	ltca	1tf4A_	ltfe	lthfD_	lthm	lthv	ltib	ltkiA_	1t12A_
ltolA_	ltolA_1	ltpfA_	ltrkA_	lttqB ₁ B	ltyu	ltyu_1	1tyu2	luch	luch_1
ludh	luok	1up1	luroA_	lvcaA_	lvfrA_	lvid	lvjs	lvjs1	lvls
lvpnB_	lvsd	lvsrA_	lwab	1wdcC_	1041	lwgtA_	lwhi	1xer	lxgsA_
1xib	1xnb	1xsoA_	lxwl	lyacA_	lyge	lzin	lzpdA_	256bA_	2abh
2abk	2baa	2bbkH_	2bbkL_	2bc2A_	2bc2A_1	2cba	2cpl	2ctb	2cuaA_1
2e2c	2end	2fcbA_	2gdm	2hft1	2hft2	2hmzA_1	2hrvA_	2hvm	2i1b
2lisA_	2mcm	2mnr	2nacA_	2pgd	2pia	2pii	2plc	2por	2pth
2rn2	2rspA_	2rspA_1	2scpA_	2sil	2spcA_	2tgi	2tlxA_	2tnfA_	2vhbA_
2vhbA_1	3chy	3cyr	3daaA_	3dni	3dni_1	3grs	3hsc	31zm	3mbp
3pah	3pte	3sdhA_	3stdA_	3thiA_	3vub	3wrp	4fgf	4pgaA_	5nll
7nn9									

Continued

rippena	mersey		que D'aia	Juse					
la2p_A	1m5s_A	2abk_	1m3u_A	3c2c_	11y2_A	2sli_	1m7y_A	2fcr_	1m3s_A
la2z_A	lm6k_A	2acy_	1m48_A	3ebx_	11z1_A	2spc_A	1mb3_A	2hbg_	lm4v_A
la4m_A	lmc2_A	2ahj_A	lm4l_A	3fap_B	lm0k_A	2tgi_	1mhn_A	2hmz_A	1m55_A
1a58_	lme4_A	2ahj_B	lm6y_A	5pal_	lmln_B	3csu_C	lmix_A	2lis_A	1m65_A
1a73_A	1mhw_A	2ayh_	lm7s_A	5tmp_A	1m22_A	3ezm_A	lmju_H	2nlr_A	1m6j_A
1a8b_	1mi3_A	2cbp_	1mai_	7aat_A	1m2g_A	3psg_	1mlw_A	2oat_A	lm6s_A
1a8e_	lmjf_A	2cy3_	lmfg_A	9wga_A	1m33_A	3sdh_A	1mml_	2psp_A	1m7j_A
1a8q_	1mkz_A	2eng_	1mgr_A	lali_A	lm4i_A	3vub_	1mmq_	2pvi_A	lm8z_A
labe_	1ml4_A	2fcb_A	lmid_A	la3a_A	lm8a_A	4ubp_A	lmol_A	2sga_	1mba_
lagi_	1mla_	2ilk_	1mj4_A	1a6m_	1mdc_	5hpg_A	1mo9_A	2wea_	1md6_A
lail_	1mng_A	2ltn_B	1mj5_A	1a88_A	1mhw_C	5nll_	1moq_	3cla_	1mdx_A
laj8_A	1mog_A	2mcm_	lmqk_H	1a81_	1mpg_A	7atj_A	1mqq_A	3dfr_	1mg4_A
laky_	1mol_A	2mhr_	lmqk_L	1a8u_A	1mqi_A	8tln_E	1mro_B	3grs_	1mgt_A
1al3_	1mpx_A	2pii_	lmr3_F	lajj_	1mr8_A	9rnt_	lmro_C	3lzm_	lmju_L
laoe_A	1mr7_A	2pvb_A	1mrj_	lamf	1mtp_A	la4i_A	1muc_A	3nul_	1mn8_A
laoz_A	1mtz_A	2rn2_	1mro_A	lamk_	1mtp_B	laap_A	1mwq_A	3pcc_A	1mrg_
latg_	1muw_A	2sn3_	1msk_	latl_A	1mug_A	1ah7_	1mxg_A	3std_A	1n40_A
layf_A	1myt_	2trx_A	1mv8_A	latz_A	lmve_A	laoh_A	lmzn_A	4fgf_	1n57_A
1b0u_A	lnlj_A	2wrp_R	1mvo_A	laxn_18	1mxr_A	larb_	ln0q_A	4ubp_B	ln7s_A
1b4p_A	ln4w_A	3cox_	1mwp_A	1b1c_A	1my5_A	larv_	1n13_B	4ubp_C	1n83_A
1b65_A	ln7s_B	3lzt_	1mwv_A	1b25_A	1my6_A	lavb_A	lnlt_A	7ahl_A	lna3_A
1b67_A	ln7s_C	3mbp_	1mxi_A	1b3a_A	lmz4_A	layx_	1n67_A	7fd1_A	lnaq_A
1b8o_A	ln9b_A	3seb_	1n31_A	1b5f_B	ln0w_B	lazq_A	ln71_A	1a12_A	lnc5_A
1b8p_A	lnar_	4pga_A	1n45_A	1b6t_A	1n13_A	1b0b_	ln7f_A	1a7s_	lne2_B
1bbz_A	lnc7_A	5cyt_R	ln6a_A	1b8d_A	lnlf_A	1b0n_A	1n93_X	laac_	lnf9_A
1bfd_	lncx_	5tim_A	ln7h_A	1b9o_A	lnlj_B	1b4k_A	lna5_A	lag9_A	lnki_A
1bi5_A	1nd1_A	7a3h_A	ln7s_D	1bgp_	ln2a_A	1b5q_A	1nb9_A	lagj_A	1no5_A
1bio_	lne7_A	1531_	1n82_A	1bkj_A	1n62_A	1bb1_A	1nbc_A	laho_	lnps_A
1bm8_	lnep_A	1a34_A	ln8v_A	1bkr_A	1n62_C	1bbh_A	1nh2_D	lajs_A	lnqj_A
1bqb_A	lnhk_L	1a44_	1n97_A	1bqc_A	1n8n_A	1bdo_	1nk0_A	lake_A	1nqu_A
lbrf_A	lnkg_A	la8s_	lne9_A	1bs0_A	lnh2_B	1bea_	lnls_	lalv_A	lnrw_A
1bte_A	lnkx_A	lado_A	lnfp_	lbsm_A	lnkr_	lbeb_A	lnof_A	laun_	lns5_A
1bud_A	lnln_A	laew_	lng2_A	1bxy_A	lnoa_	1bf6_A	lnox_	lauo_A	lnsc_A
1byi_	lnme_A	lafw_A	1nh0_A	1c02_A	lnpk_	1bg6_	lnq7_A	lava_C	lntn_
1bz4_A	lnme_B	lagq_A	lnh2_C	lclk_A	lnq6_A	1bhp_	lnty_A	lawd_	1nuu_A
lc0p_A	lnng_A	1ak0_	1nh8_A	1c2a_A	lnrj_A	1bj7_	lnvm_B	lay7_B	lnxm_A

Appendix 3. Sequence Unique Database

Continu	ied								
lcld_A	1nnh_A	lako_	lnhc_A	lc5y_B	lnuy_A	1bkp_A	lnwp_A	layl_	lny1_A
lclf_A	lnns_A	layo_A	lnlf_A	lc7k_A	lnvm_A	lbsg_	lnww_A	1b16_A	1013_A
lc5e_A	lnnx_A	1b5e_A	lnm8_A	lcgh_A	lnwz_A	1bu8_A	lnxq_A	1b2p_A	loly_A
lcb8_A	lnp7_A	1b5f_A	lnn6_A	lchd_	lnxc_A	1c26_A	lnyk_A	1b8a_A	106a_A
lccr_	lnpi_A	1b6a_	lnog_A	lcjw_A	lolz_A	1c3c_A	lnyt_A	1b8j_A	106i_A
lcka_A	lnpy_A	1b93_A	lnqc_A	lcmb_A	104r_A	1c52_	1008_A	1bd8_	1o7e_A
lclc_	1nr0_A	1b94_A	lnvr_A	lcns_A	104v_A	lcbs_	100e_A	lbgv_A	107i_A
lcsh_	lnr4_A	lbgf_	lnwa_A	1co6_A	104w_A	lcc3_A	102d_A	1bhe_	1081_A
lctj_	lnrg_A	lblx_A	lnyc_A	lcp2_A	1054_A	1cc8_A	103u_A	1bkz_A	108v_A
lcuk_	lntf_A	1bn7_A	lnzj_A	lcqx_A	1058_A	1cd0_A	104s_A	1bmd_A	lobb_A
lcv8_	lnth_A	lc3p_A	1002_A	lcru_A	105u_A	lcg5_A	104t_A	1bn8_A	lock_A
lcvl_	1nu2_A	1c44_A	100x_A	lctf_	107q_A	lci9_A	104y_A	1bqk_	loel_A
lczn_A	1nu5_A	1c75_A	100y_A	ld3h_A	1082_A	lcjc_A	1060_A	1bue_A	loej_A
1d2i_A	lnul_A	lc7n_A	lolx_A	ld4a_A	loaq_H	lcnv_	106v_B	1bx4_A	lof8_A
1d7d_A	lnxj_A	lccz_A	105k_A	ld4x_G	loaq_L	lcnz_A	107j_A	1bx7_	loko_A
1d7o_A	lnxp_A	lcex_	106s_B	1d5n_A	lob3_A	lcs1_A	1091_A	1bxv_A	lolr_A
ldcl_A	lnxu_A	lci3_M	107n_B	1db1_A	lobd_A	lcse_I	loaa_	1byb_	lon3_A
ldci_A	lnzy_A	lcoj_A	lobf_0	1dbx_A	locy_A	1cy5_A	loaf_A	lc5c_L	lonw_A
1dde_A	100i_A	lcot_	loc2_A	ldf4_A	lod3_A	lcyo_	loao_C	1c9o_A	loot_A
ldgw_Y	1026_A	lcqy_A	locb_A	ldf7_A	lod6_A	1d2n_A	lodm_A	lccw_A	10s8_A
1d12_A	1050_A	lcuo_A	loi6_A	ldfu_P	lodk_A	ld4t_A	lofz_A	lccw_B	lova_A
ldnu_C	1069_A	lczf_A	lok7_A	ldin_	lodo_A	1d8w_A	10i2_A	lcel_A	loxs_C
ldos_A	107n_A	1d0d_A	lokh_A	ldj0_A	lofl_A	ldbf_A	lojh_A	lcg5_B	1p2f_A
ldow_B	1097_C	1d0q_A	loll_A	1d15_A	lofw_A	ldeu_A	lojx_A	lcke_A	1p5d_X
ldry_A	1097_D	1d3v_A	lols_B	ldlf_H	loh4_A	ldgw_A	lolm_A	1c11_A	1p5f_A
ldug_A	1098_A	1d4o_A	lonj_A	ldlw_A	lohl_A	1dhn_	lonr_A	lcpo_	1pby_B
ldus_A	109r_A	1d7u_A	looe_A	ldly_A	lok0_A	ldjt_A	1002_A	lcpq_	lphp_
ldwk_A	10a3_A	ldfx_	loqc_A	ldoi_	loki_A	ldpj_A	lorr_A	lctq_A	lpjx_A
1e58_A	loai_A	ldgf_A	los6_A	ldqs_A	lonc_	ldqz_A	losy_A	lcxy_A	lpk6_C
le5p_A	loap_A	1dk0_A	louw_A	ldsz_A	lone_A	lduv_G	lotf_A	lcyd_A	lpko_A
1e85_A	lob8_A	1dnu_A	loyg_A	ldtd_B	lonh_A	ldw0_A	lou8_A	lcyj_	lplc_
lea7_A	logd_A	ldow_A	1p0z_A	ldys_A	looy_A	ldxe_A	low4_A	lczp_A	1puc_
leex_B	logq_A	ldoz_A	lplh_A	1e29_A	loqf_A	ldxj_A	lowl_A	lczt_A	1pvm_A
leex_G	lojq_A	ldqi_A	lplm_A	le5k_A	loqj_A	ldxy_	1p0b_A	ldgw_X	1pyo_A
legw_A	loks_A	1e19_A	lplx_A	1e6i_A	loqv_A	ldz4_A	1p7g_A	1dk8_A	1руо_В
leif_	1010_A	1e43_A	1p5v_B	le6y_C	loru_A	le0c_A	1p90_A	ldlf_L	1q08_A
lejb_A	looh_A	1ебу_В	1p77_A	le8a_A	lox0_A	le4m_M	1pa2_A	ldmg_A	lq7e_A

- 58 -

lenf_A	lopb_A	lea5_A	1p7w_A	leax_A	lozn_A	le5m_A	1pbe_	ldpt_A	1q9u_A
lep0_A	loq1_A	lec7_A	1p9h_A	lecd_	1p3c_A	leaj_A	1pby_C	1dqp_A	lqah_A
lepf_A	loth_A	ledq_A	1pby_A	1ed5_A	lp4c_A	leaz_A	lpk6_A	ldsz_B	lqaz_A
lesg_A	loxf_A	lek0_A	lpel_A	lede_	1p5z_B	leb6_A	1pl8_A	1dun_	lqd9_A
let1_A	loyj_A	lekg_A	lpe9_A	ledm_B	1p9g_A	ledg_	lpmh_X	ldxg_A	lqgi_A
leuv_A	loz2_A	len2_A	1pm4_A	ledt_	1pa7_A	lei5_A	1pmi_	ldyr_	lqgj_A
lex2_A	1oz9_A	leur_	1poa_	leex_A	1paz_	1ej0_A	1pmy_	ldzp_A	lqgw_C
lf0x_A	1p3d_A	leuv_B	1ppo_	lef8_A	lpbj_A	1ej8_A	1pn0_A	1e42_A	lqmg_A
1f20_A	1p60_A	lew0_A	1pq4_A	legu_A	lpee_A	leok_A	lpt6_A	le6b_A	lqnn_A
lf4g_A	1p99_A	lew2_A	lptf_	lejd_A	lpfb_A	lerz_A	lpzg_A	le6w_A	lqpc_A
1f5j_A	1pb7_A	lew4_A	1pv5_A	lek6_A	lpfv_A	lesw_A	1q16_B	le9g_A	lqqf_A
lf5v_A	lpcf_A	lex7_A	1pwa_A	lelj_A	lpgs_	levy_A	lq1c_A	lea2_A	1qqp_2
1f60_A	1pdo_	lexm_A	lpym_A	lelr_A	lpkh_A	lexr_A	1q33_A	lecs_A	1qqp_3
1f60_B	1pgv_A	lext_A	1pz4_A	1elt_	lppf_E	leye_A	1q52_A	lejx_A	lqre_A
1f74_A	1pk6_B	lfle_A	lpzs_A	lelw_A	1pq7_A	leyv_A	lq6h_A	lejx_B	lqsa_A
lfe0_A	1pot_	lflg_A	lq2w_A	1epx_A	lprn_	lflu_A	1q8r_A	lel1_A	lqtn_B
lff3_A	1psr_A	1f46_A	1q7t_A	leq9_A	1puo_A	lf2t_A	1q9b_A	lept_A	lqtw_A
lfhv_A	1pu6_A	lf8e_A	1q92_A	1erm_A S	1pva_A	1f41_A	lq9r_B	leqc_A	lqu9_A
lfi2_A	1pwb_A	lfg7_A	lqad_A	1eu3_A	lpyf_A	lfc9_A	lqav_A	lesf_A	lqv1_A
lfjj_A	1pwg_A	lfjs_A	1qb7_A	1eu8_A	lpyq_A	lfec_A	lqcz_A	leug_A	lqve_A
1fl2_A	1px0_A	lfjs_L	lqd1_A	1eua_A	1pz3_A	lfeh_A	1qh4_A	leuw_A	lqwg_A
lflt_V	lpxf_A	lfkn_A	lqft_A	leuj_A	lq0e_A	1ff4_A	lqhf_A	lezw_A	lqwy_A
lfm0_D	lpyl_A	lflj_A	lqgd_A	lew6_A	lq0g_A	1fh9_A	lqho_A	lf2t_B	lqz9_A
lfm4_A	lq0q_A	lfm0_E	lqgw_B	leyh_A	lq0r_A	1fit_	lqhv_A	lf3z_	lqzn_A
lfmc_A	1q35_A	lfn9_A	lqj5_A	lf0l_B	1q0u_A	lfiu_A	lqjd_A	lf7d_A	lr2d_A
lfnc_	lq3f_A	lfo8_A	lqj8_A	1f94_A	1q16_C	lfjh_A	1q13_A	lf8m_A	1r89_A
lfnl_A	1q40_C	lfsf_A	lqlw_A	lf9m_A	lqla_A	lfkm_A	lqnr_A	lf9y_A	1rb9_
lfr3_A	lq4r_A	lfsg_A	1qq5_A	lfa8_A	1qбо_А	lfrd_	lqop_A	lfas_	lrcf_
lft5_A	lq4u_A	lftr_A	lqqp_1	lfcq_A	lq7r_A	lfrr_A	1qq9_A	lfj2_A	1rdg_
lfus_	1q5y_A	lfvk_A	lqv9_A	lfcy_A	1q8u_A	lg0c_A	lqsg_A	lfle_I	1rm8_A
lfux_A	lq5z_A	lfxl_A	lqwd_A	lfd3_A	lqb5_D	lgls_A	lqwl_A	lfon_A	lrqb_A
lfvg_A	lq7f_A	lfxo_A	1qy5_A	lfe6_A	lqfl_A	1g2o_A	lqwr_A	lfqt_A	1rro_
lfvu_A	lq8b_A	lfye_A	lqy6_A	lfk5_A	lqgw_A	1g3k_A	lr0m_A	lfvu_B	1rv9_A
lfx2_A	lq8d_A	lfz1_A	1r03_A	lfkj_	lqh5_A	1g3m_A	lrlq_A	lfzy_A	lry6_A
lfz1_E	lq8f_A	lfz1_C	1r0t_B	lflm_A	lqhd_A	1g4i_A	1r26_A	lg0s_A	lryq_A
lg1b_A	lqav_B	lg2q_A	1r0u_A	lflt_X	lqip_A	1g5a_A	lr2q_A	lglt_A	ls5e_B
1g2a_A	lqb0_A	lg2r_A	1r12_A	lfny_A	lqj4_A	1g6u_A	lr2r_A	lg3p_	ls5u_A

Continued

Continua									
lg2b_A	lqcx_A	1g68_A	lr3q_A	lfs7_A	lqkr_A	1g72_B	lr4p_A	lg6s_A	1s69_A
1g57_A	lqf8_A	lg7f_A	lr4p_B	lfsj_B	lqnt_A	1g8q_A	lr4v_A	1g87_A	lsbx_A
1g60_A	lqfm_A	lga6_A	1r55_A	lfua_	lqnx_A	1gca_	1r7a_A	lg8s_A	lsgv_A
1g61_A	lqhq_A	1gd1_0	1r51_A	lfxd_	1qo2_A	lgco_A	1r8o_A	1g9o_A	lslt_A
1g72_A	lqk8_A	lggx_A	1r66_A	1g5t_A	lqoz_A	1gg6_C	1ra9_	lgar_A	lsnc_
1g8k_B	lqks_A	lghe_A	1r75_A	1g66_A	1qqp_4	1gl2_C	lrcy_	1gde_A	lspg_B
lg9z_A	1q10_A	lgk9_A	1r7o_A	1g8a_A	lqw2_A	1gmx_A	1rh4_	lgeg_A	lsqe_A
lgai_	lqmv_A	lgkk_A	1r88_A	1g9g_A	lqwz_A	1gnd_	1rj9_A	1gg6_B	lsqs_A
lgci_	lqop_B	lgkp_A	lr8o_B	1gad_0	lqxy_A	1gnu_A	lrqj_A	lgk6_A	lsrv_A
lgcq_A	lqtn_A	1g12_D	1r91_A	1g12_A	lqzm_A	1gp0_A	lrsy_	1gk7_A	lss4_A
lgcq_C	lque_	lglq_A	lrec_	lgl2_B	lr0k_A	lgpe_A	lru4_A	lgk9_B	lsvi_A
1gd0_A	lqwk_A	1gp6_A	lrfs_	lgmy_A	lr2m_A	1gu2_A	1rvk_A	lgny_A	lsxr_A
lgdv_A	lqwo_A	lgqi_A	lrj1_A	lgnl_A	lr4u_A	lgvj_A	1rw7_A	lgpq_A	lt0a_A
lghx_L	lqy1_A	lgqz_A	lrkq_A	1gq6_A	lr5r_A	lgvz_A	1rwi_A	1gqa_A	lt2d_A
1gk8_A	lqz5_A	lgs5_A	1rku_A	1gq8_A	1r6j_A	lgxy_A	1rwj_A	1gqn_A	lt3q_A
lgk8_I	lr0r_I	lgsi_A	1rli_A	lgul_A	lr6x_A	lgz2_A	lrxq_A	lgt1_A	1t92_A
lgpr_	lr4x_A	lgsk_A	1rop_A	1guu_A	1r85_A	1gz7_A	1ry9_A	lgtk_A	lta3_B
1gqv_A	lr8h_A	1gt9_1	lrqw_A	1gvk_B \$	1r9c_A	1h03_P	ls0p_A	1gu7_A	ltc5_A
1gud_A	lrdo_1	lgtf_A	1rrm_A	1gwe_A	lrcq_A	1h0b_A	lsff_A	lgve_A	ltgx_A
lgut_A	lrds_	lgui_A	1rwr_A	1gxm_A	lrew_A	1h1a_A	lsfp_	lgvf_A	ltif_
lgv5_A	lreg_X	lgv9_A	lrxj_A	1gyu_A	lrg8_A	lhly_A	lsgw_A	1gx5_A	ltjy_A
lgvn_A	lrew_C	lgwm_A	1ryh_A	lgyx_A	lrgx_A	lh2c_A	lsh8_A	lgzc_A	ltlu_A
lgvn_B	lrhc_A	lgyg_A	ls3e_A	lgz8_A	lroc_A	1h46_X	lsj1_A	lh0h_L	ltmy_
lgvp_	lrhs_	lgzt_A	1s9u_A	1h12_A	lrqp_A	1h6t_A	lsjd_A	1h2b_A	ltqj_A
lgvt_A	lrie_	1h05_A	lsf9_A	1h32_A	lrtq_A	1h72_C	lsml_A	lh4x_A	ltu6_A
lgwi_A	lrjd_A	lhln_A	lsfs_A	lh4g_A	lrw1_A	1hc9_A	lsnr_A	lh8d_H	ltw9_A
lgx1_A	lrk4_A	1h32_B	lsfx_A	lh4r_A	1rwy_A	1hdi_A	lsr7_A	lh9m_A	1u00_A
lgxu_A	1r19_A	1hd2_A	lsjw_A	1h5q_A	lrxy_A	1hdo_A	lsu7_A	lhcz_	1u11_A
lgyo_A	1rlh_A	1hdh_A	lsk4_A	lh6f_A	lsld_A	lhfc_	lswx_A	lhfx_	lu4g_A
1h75_A	lrq2_A	lhfe_L	1s15_A	1h6h_A	lslp_A	lhfe_S	lsy7_A	1hh5_A	1u69_A
1h8p_A	1rtu_	lhj8_A	lspg_A	1h61_A	ls4k_A	1hg8_A	lt0b_A	1hkk_A	lual_A
1heu_A	1rx0_A	lhlq_A	lsq2_N	1h7e_A	1s5a_A	lhgx_A	1t3i_A	1hpg_A	lub3_A
1hk0_X	1rya_A	1hm9_A	lssx_A	1h7m_A	1s8i_A	1hh8_A	1t56_A	lhqs_A	lubk_S
lhnj_A	1rz3_A	1hmt_	lsvy_	1h97_A	1s8n_A	1hle_A	1t50_A	lhtw_A	lucd_A
lhoz_A	lrzf_L	lhq1_A	lszn_A	1h98_A	1s95_A	1hpi_	1t61_C	1hx0_A	lucs_A
lhs6_A	1s68_A	lhsl_A	1t06_A	1hcb_	ls9r_A	1hpm_	1t64_A	1hye_A	lud9_A
1ht6_A	ls7z_A	1htr_B	ltlv_A	1hdk_A	lsbp_	1htr_P	lt6c_A	li0d_A	ludc_

Continued

Continu	ied								
1hx6_A	lsdi_A	lhvy_A	1t46_A	lhfu_A	lshk_A	lhxh_A	lt6g_C	liln_A	ludz_A
lhyo_A	lsds_A	1hw1_A	lt4b_A	1hj9_A	lsii_A	1hy7_A	lt8h_A	li2s_A	lugp_A
lhz4_A	lsdw_A	1hxn_	1t5b_A	lhjx_A	lsmo_A	1i24_A	1ta3_A	li3c_A	lukf_A
1i07_A	lsen_A	lhxp_A	1t82_A	lhpl_A	lsox_A	li2t_A	ltcl_A	1i40_A	lukz_
1i19_A	lsft_A	1hyp_	lt8k_A	lhw6_A	lst9_A	li4u_A	lte2_A	li8a_A	lumk_A
1i61_A	lshu_X	lhzt_A	lt9h_A	lhxi_A	lsu2_A	li6n_A	ltgs_I	1i8o_A	luoy_A
1i71_A	lsix_A	liOr_A	ltbb_A	lilj_A	lsvb_	1i76_A	lthf_D	li9g_A	lupi_A
1i7q_A	lsjv_A	li2m_A	1thm_	lilw_A	lsyy_A	liae_	ltiq_A	liaz_A	lusp_A
liej_A	lsmb_A	lid0_A	ltib_	li2k_A	1t07_A	liat_A	ltks_A	lidr_A	luuf_A
likq_A	1smx_A	lida_A	ltjo_A	li7b_B	lt0t_V	licx_A	lto4_A	lijv_A	1uv7_A
liq6_A	lsnb_	lie0_A	ltoa_A	li7q_B	1t15_A	ligq_A	ltr0_A	lim5_A	luvq_A
liro_	lsr8_A	lifc_	ltul_A	li9s_A	lt2a_A	likt_A	ltua_A	lioo_A	luw4_A
lis3_A	lt0h_A	lig5_A	ltu9_A	liby_A	lt3q_C	liom_A	ltzb_A	liqq_A	1v02_A
lisp_A	ltlj_A	lihg_A	ltuw_A	licr_A	lt9m_A	lird_A	ltzv_A	liqz_A	lv7z_A
liue_A	1t61_A	lihr_A	ltzp_A	lihb_A	ltbf_A	lisu_A	ltzy_C	lis9_A	lv9f_A
liwd_A	1t6t_1	linl_A	1u02_A	liit_A	ltd4_A	liua_A	1u14_A	liu8_A	lvca_A
liy8_A	lt7r_A	list_A	lu0k_A	lijq_A	ltdz_A	liuz_	1u60_A	liuq_A	lvdw_A
liyn_A	lt8t_A	liye_A	lu9c_A	lio0_A	lten_	lix1_A	luai_A	lixk_A	lvfa_B
1j0o_A	ltad_A	liyh_A	lu9d_A	lirl_S	1tfe_	lix2_A	lueh_A	liys_A	lvg8_A
1jlu_A	ltca_	ljlq_A	luar_A	lird_B	lthg	lixl_A	lufb_A	1j09_A	lvh5_A
1j31_A	lton_	1j3v_A	luas_A	lisc_A	lthx_	1j05_A	lufo_A	ljly_A	lvhf_A
1j34_A	ltqg_A	1j58_A	lufy_A	litw_A	ltk4_A	1j05_B	lugp_B	1j21_A	lvhu_A
1j8b_A	ltqh_A	1j5w_A	lug6_A	litx_A	ltml_	1jln_A	lui0_A	ljay_A	lvi6_A
1j8u_A	ltvd_A	1j7g_A	luhe_A	liv8_A	ltp6_A	1j27_A	lujn_A	1jd0_A	1vi9_A
1j91_A	ltx4_B	1jd1_A	lumd_B	liw0_A	lts9_A	1j30_A	lukk_A	1jdh_B	lvia_A
1ja9_A	ltzy_B	ljev_A	lumg_A	1j0h_A	ltuh_A	1j34_B	luku_A	1jfb_A	lvio_A
1jb9_A	ltzy_D	ljjf_A	lumn_A	1j3a_A	ltwd_A	1j34_C	lukv_G	ljiw_I	lvje_A
ljer_	lulw_A	ljjt_A	lumz_A	1j54_A	ltx2_A	1j3w_A	lukv_Y	1jln_A	lvk1_A
ljgl_A	lu6d_X	ljkm_A	lunn_C	1j71_A	ltx4_A	1j48_A	lulr_A	1jlt_A	lvkb_A
1jh6_A	1u7i_A	1jm0_A	lurd_A	1j79_A	ltzy_A	1j60_A	lumv_X	1jo0_A	lvla_A
ljif_A	lua4_A	ljmx_G	lus5_A	1j97_A	lu7p_A	1j7x_A	lunq_A	ljpz_A	lvlj_A
ljkv_A	luay_A	ljov_A	lusg_A	1j9b_A	luc7_A	1j83_A	luqr_A	ljtv_A	lvps_A
ljmx_A	lubi_	ljqe_A	luv0_A	ljak_A	lucr_A	1j8q_A	luqx_A	1juh_A	lvsd_
1jni_A	lubk_L	1jr8_A	luvq_B	1jb3_A	luek_A	1jae_	lurr_A	ljwq_A	lvsr_A
1jp4_A	lugx_A	1ju3_A	luxz_A	ljbo_B	luj2_A	1jat_A	luw1_A	1jy3_N	1w2p_A
1jr2_A	luha_A	1jue_A	luy4_A	ljbw_A	luow_A	1jat_B	luwv_A	1k12_A	1w2w_B
1jug_	luj6_A	1jw9_B	1v01_A	ljfu_A	lupg_A	1jbe_A	luww_A	1k27_A	1w3i_A

Continu	ed								
1jy3_0	lukj_A	ljy3_P	lv1h_A	ljfx_A	lupq_A	1jbm_A	luyl_A	1k2x_A	1w3o_A
ljyh_A	lumd_A	lk1b_A	lv3e_A	1jhd_A	lusc_A	1jbo_A	luyp_A	1k3i_A	lwfa_A
1k5c_A	lunk_A	1k20_A	lv6h_A	ljig_A	luti_A	1jdl_A	luzi_A	1k3y_A	lwkr_A
1k5n_B	lup9_A	1k3x_A	lv6s_A	ljix_A	luu3_A	1jdw_	lv5v_A	lk4m_A	1wmu_A
1k6d_A	lus0_A	1k4n_A	1v84_A	1jk7_A	luux_A	1jfl_A	lv8f_A	1k55_A	lwtl_A
1k77_A	lusl_A	1k5n_A	lva4_A	ljke_A	luw4_B	ljfr_A	lv9m_A	lkdi_	lxcl_A
1k9u_A	lutx_A	1k6u_A	lvap_A	1jlj_A	lv4v_A	1ji1_A	lvc4_A	lkex_A	lxfo_A
lkap_P	luuj_A	1k6w_A	lvcl_A	1jlt_B	1v58_A	1ji7_A	lvfr_A	lkf3_A	lxfp_A
1k19_A	luuq_A	1k6x_A	lvhe_A	ljmx_B	lv8a_A	1jks_A	lvfs_A	lkfw_A	1xm8_A
lklu_B	luwc_A	lkal_A	lvhn_A	1jnr_A	lvd5_A	1jm1_A	lvhh_	lkgd_A	1xnb_
lklx_A	luwu_B	1kao_	lvhw_A	1j08_A	lvgg_A	1jnd_A	lvim_A	1kgn_A	1xuu_A
lkol_A	luxx_X	lkcq_A	lvjo_A	1jr0_D	lvie_	ljnr_B	lvju_A	1kko_A	lyai_A
1kpf_	luzb_A	1kdk_A	lvk4_A	ljsf_	lvjf_A	ljps_T	lvjw_	1kl1_A	lyal_
1kpt_A	1v2d_A	lkew_A	lvk5_A	1ju2_A	lvk2_A	1jvb_A	lvkf_A	lkli_H	lyna_
1kq3_A	lv3w_A	lkgs_A	lvk8_A	ljvl_A	lvki_A	1jzt_A	lvkn_A	lklu_A	2a0b_
1kq6_A	lv4x_A	lkjq_A	lvke_A	1jvw_A	lvl4_A	1k07_A	lvll_A	1kmv_A	2abh_
lkqw_A	lv4x_B	lkli_L	lvkh_A	1jyr_A	lvlp_A	lkle_A	lvlr_B	1ko3_A	2arc_A
1ks8_A	lv7r_A	1knm_A	lvkm_A	1k2x_B	1vma_A	1k38_A	lvlt_A	1koe_	2bbk_H
1ktg_A	1v93_A	1kok_A	1v15_A	1k4i_A	lvmb_A	1k7c_A	lvp8_A	1kp6_A	2end_
1kth_A	lv9y_A	1kqp_A	1v17_A	1k75_A	lvmf_A	1k7h_A	lvyb_A	lkqf_B	2fbj_H
1kve_A	lviy_A	1kw3_B	lvly_A	1k7j_A	lvmh_A	1k8u_A	lvyi_A	1kr7_A	2fdn_
1kve_B	lviz_A	lkwg_A	lvm0_A	1k94_A	lvmj_A	lkcz_A	lvyr_A	1krn_	2hlc_A
1kxv_C	lvjl_A	lkyf_A	lvme_A	1khc_A	lvp6_A	1kdg_A	1w53_A	1kt7_A	2igd_
1ky2_A	lvjp_A	lkzf_A	lvmg_A	1khq_A	1w15_A	1kg2_A	lwab_	1kv0_A	2mbr_
111d_A	lvkk_A	1kzq_A	lvns_	1kmz_A	1w2w_A	1khi_A	lwhi_	1kwm_A	2nll_B
116x_A	lvkp_A	113k_A	lvp2_A	1kng_A	lw8m_A	1kqr_A	1wmz_A	113p_A	2por_
119x_A	lvlc_A	116p_A	lvyf_A	1kop_A	1wd3_A	116x_B	lwri_A	116w_A	2pth_
1lid_	1vp4_A	119f_A	1wdn_A	lkqf_C	1wp5_A	1191_A	1x82_A	117a_A	2sic_I
11j5_A	lvpd_A	llam_	1wmd_A	1kso_A	lwr8_A	1lit_	1x8q_A	llau_E	3cao_A
11kp_A	1w0h_A	11b6_A	lwoq_A	lkug_A	lx7v_A	11k3_L	lxal_A	11d8_B	3daa_A
llm6_A	1w0n_A	11bu_	1xau_A	lkv7_A	1xi3_A	11k5_A	lxff_A	lle6_A	3hts_B
llni_A	1w2f_A	11d8_A	lxc2_A	1kv9_A	lxsz_A	11kf_A	1xhd_A	llg7_A	Зрсс_М
llop_A	1w2i_A	lldt_L	1xdz_A	112i_A	lycc_	llm5_A	1xmt_A	11kk_A	3rp2_A
llqv_A	1w2y_A	11f2_A	lxfj_A	1150_A	lygh_A	1106_A	lxsv_A	llm4_A	3tgl_
llqy_A	1wad_	1lfa_A	lxfk_A	116r_A	lytb_A	llq9_A	lxyp_A	llm8_C	3ukd_
1lr0_A	1wba_	11j8_A	lxyz_A	116s_A	2bc2_A	llqt_B	lyac_A	11mb_3	451c_
llri_A	1who_	11k9_A	256b_A	11c5_A	2bop_A	llqv_C	lzin_	11o7_A	4fiv_

- 62 -

Continued											
11st_	lwkq_A	11kd_A	2aza_A	llfw_A	2ccy_A	lls6_A	1zpd_A	11p8_A	6rxn_		
1lua_A	lwlg_A	1112_A	2bbk_L	1lk2_B	2cxb_A	lls9_A	2act_	llqa_A	7taa_		
1lug_A	1wms_A	111p_	2gep_	111n_A	2gdm_	lltm_	2ae2_A	llr7_A	7tim_A		
11wb_A	1wmu_B	llm8_V	2ltn_A	llm8_B	2hvm_	llvw_A	2ak3_A	llsh_B	830c_A		
1m07_A	1x60_A	11mq_	2sil_	11mi_A	2mnr_	llyx_A	2apr_	llts_C			
lm0s_A	1xg5_A	1ltz_A	2tnf_A	lloq_A	2msb_A	llzj_A	2cmd_	lluc_A			
1mlf_A	lxgs_A	lluc_B	2tps_A	lls1_A	2plt_	1m5w_A	2cpg_A	11v7_A			
1mlq_A	lxso_A	1m0w_A	2utg_A	llu4_A	2rhe_	1m70_A	2dri_	1m2r_A			
1m2a_A	lznb_A	lmln_A	2vhb_A	11wd_A	2rmc_A	lm7g_A	2erl_	1m2x_A			

