
國 立 交 通 大 學 
 

生物資訊所 
 

碩 士 論 文 
 
 
 
 

利用融合、分裂及區段互換探討基因重組之研究 

On the Study of Genome Rearrangements using 

Fusions, Fissions and Block-Interchanges 
 

 

 
 
 
 

研 究 生：王璻菁 

指導教授：盧錦隆  教授 

 

中 華 民 國 九 十 四 年 六 月 

 



利用融合、分裂及區段互換探討基因重組之研究 

On the study of Genome Rearrangements using Fusions, 

Fissions and Block-Interchanges 

 

研 究 生：王璻菁           Student：Tsui Ching Wang 

指導教授：盧錦隆 教授       Advisor：Prof. Chin Lung Lu 

 
 
 

國 立 交 通 大 學 

生 物 資 訊 所 

碩 士 論 文 

 
 
 

A Thesis Submitted to Institute of Bioinformatics 

College of Biological Science and Technology 

National Chiao Tung University in partial Fulfillment of the Requirements 

for the Degree of Master in 

Biological Science and Technology 

 
June 2005 

 
Hsinchu, Taiwan, Republic of China 

 
 

中華民國九十四年六月 



中文摘要

最近的研究顯示區段互換的基因體分析可用來衡量兩物種之間的演化距離。 所謂

的區段互換是一種新的全域型基因體重組, 它的作用是把染色體上兩段不相交且

任意長度的基因/標記區段做互換。 這方面的研究導致需要去解決一種叫做區段

互換排序的組合最佳化數學問題, 其目的是要去找出最少區段互換的次序把一條

染色體的基因/標記次序轉成另一條染色體的基因/標記次序。 之前, 我們的研究

團隊已設計出有效率的演算法可分別解決線性和環狀染色體之間的區段互換排序

問題。 在本論文中, 我們利用這些演算法實作出一個叫做ROBIN 的網站來分析兩

條染色體之間區段互換的基因/標記的次序重組。 使用者可輸入兩條或多條線性/環

狀且細菌大小的染色體, 輸入的染色體可為基因體的序列或是代表同源基因或相

同標記無正負號的整數序列。 為了測試 ROBIN 的實用性, 我們利用它來偵測三

種感染人類的弧菌病原體之間的演化距離關係。 結果, 我們的實驗跟先前其它研

究團隊利用比較基因體的方法所得到的結果一致, 這項研究成果顯示在弧菌物種

間的演化過程中, 區段互換的突變事件扮演著一個重要的角色。 然而, 對於含有

多條染色體的基因體而言, 它們之間的演化歷史必須還要考慮另外兩種染色體之

間的突變事件即融合及分裂。 所謂的融合事件是把兩條染色體融合成一條, 而分

裂事件是把一條染色體分裂成兩條。 在本論文中, 我們進一步的去研究含有區段

互換、 融合和分裂這三種突變事件的基因體重組問題, 最後提出一個時間複雜度

為O(n2) 的演算法, 其可有效的計算出兩組環狀且多染色體的基因體之間所需最

少上述三種突變次數, 其中n表示兩組基因體之間共有的基因/標記的個數。

i



Abstract

Analysis of genomes evolving block-interchanges has been studied recently for measur-

ing the evolutionary distance between two organisms, where the block-interchanges are

new kind of global rearrangement events that affect on a chromosome by swapping two

non-intersecting intervals of gene/landmark orders of any length. Such a study leads

to a combinatorial problem, called sorting by block-interchanges, which is to find to

a minimum of block-interchanges needed to transform one chromosome into another.

Lin et al. [Lin et al., 2005] have designed an efficient algorithm to solve the sorting by

block-interchange problem on both cases of linear and circular chromosomes. In this

thesis, we implement this algorithm into a web server, called ROBIN, for analyzing

rearrangements of gene/landmark orders between two linear/circular chromosomal

genomes via the block-interchange events. ROBIN takes two or more linear/circular

bacterial-size chromosomes as an input, which can be either genomic sequences or

unsigned integer sequences with each representing a homologous gene or identical

landmark on all input chromosomes. For testing the applicability of ROBIN, we

apply it to genomes of three human Vibrio pathogens for detecting the evolutionary

relationships. Consequently, our experimental results coincide with the previous ones

obtained by other communities using a comparative genomic approach, which implies

that the block-interchange events seem to play a significant role in the evolution of

Vibrio species. However, in the case of genomes consisting of multiple chromosomes,

the evolutionary history must also consider chromosomal fusions and fissions, where a

fusion event merges two chromosomes into one and a fission event splits a chromosome

into two. Hence, in the thesis, we further study the genome rearrangement problem

by fusions, fissions and block-interchanges between two circular multichromosomal

genomes. Consequently, we propose an O(n2) time algorithm to efficiently compute a

minimum series of fusions, fissions and block-interchanges required to transform one

genome into another, where n is the number of genes/landmarks shared by the two

genomes.

ii



誌 謝

首先, 我要感謝我的指導教授盧錦隆老師耐心的指導, 讓我在碩士兩年期間學到

許多做研究應有的態度跟方法; 再來要感謝父母的栽培與支持, 讓我得以無後顧

之憂認真的學習, 還有兄弟姊妹、 朋友和實驗室同學、 學弟妹的鼓勵, 讓我順利的

完成碩士的學業。

iii



Contents

Chinese Abstract i

Abstract ii

Acknowledgement iii

1 Introduction 1

2 Preliminaries 4

3 ROBIN: A Tool for Genome Rearrangements of Block-Interchanges 9

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 CPU Time Usage and Experimental Results . . . . . . . . . . . . . . . 13

3.3.1 CPU Time Usage . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Algorithm of Genome Rearrangements by Fusions, Fissions and

Block-Interchanges 18

5 Discussion and Conclusion 28

References 30

iv



List of Figures

2.1 The illustration of a permutation α = (1, 4, 2, 3)(5, 6) meaning that

α(1) = 4, α(2) = 3, α(3) = 1, α(4) = 2, α(5) = 7, α(7) = 6 and α(6) = 5. 5

3.1 The web interface of ROBIN. . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 The partial result of ROBIN. . . . . . . . . . . . . . . . . . . . . . . . 17

v



List of Tables

3.1 The running time of ROBIN for processing two landmark orders with

different size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 The running time of ROBIN for processing multiple landmark orders of

1,000 landmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 The running time of ROBIN for processing two sequences with different

length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 The running time of ROBIN for processing multiple sequences. . . . . 14

3.5 The sequence information of three pathogenic Vibrio Species, each with

two circular chromosomes. . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 The block-interchange distances among VV1, VP1, and VC1. . . . . . . 16

3.7 The block-interchange distances among among VV2, VP2, and VC2. . . 16

vi



Chapter 1

Introduction

With large amounts of various genomic (DNA,RNA and protein sequence)

becoming available, genome rearrangements have been studied and proved

to be a common model of molecular evolution in mitochondrial, chloro-

plast, viral, bacterial and mammalian genomes [Hannenhalli & Pevzner, 1999].

In such a study, various rearrangement events, such as reversals

(also known as inversions) [Bader et al., 2001, Bafna & Pevzner, 1996,

Berman & Hannenhalli, Berman et al., Caprara, 1997, Caprara, 1999, Christie, 1998,

Hannenhalli & Pevzner, 1999, Kaplan et al., 2000, Kececioglu & Sankoff, 1993],

transpositions [Bafna & Pevzner, 1998, Walter et al., 1998], block-

interchanges [Christie, 1996, Lin et al., 2005, Lu et al., 2005], translo-

cations [Hannenhalli, 1996, Kececioglu & Ravi, 1995], fusions, and fis-

sions [Hannenhalli & Pevzner, 1995, Meidanis & Dias, 2001], acting on genes within

or among chromosomes have been proposed to determine the evolutionary distance

between two related genomes by comparing the gene orders. Almost every genome

rearrangement study involves solving the combinatorial optimization problem of

finding a series of rearrangements required to transform one genome into another.

Recently, the genome rearrangement study of block-interchanges has increas-

ingly drawn a lot of attention, because block-interchanges may be considered as a

generalization of transpositions and currently their computational models measur-

ing the genetic distance are more tractable than those modeled by transpositions.

1



Christie [Christie, 1996] first introduced the block-interchange events, affecting on a

chromosome by swapping two non-intersecting intervals of genes of any length, and

proposed an O(n2) time algorithm using the breakpoint diagram approach for solving

the so-called block-interchange distance problem that is to find a minimum series of

block-interchanges for transforming one linear chromosome into another, where n is

the number of genes. Recently, Lin et al. [Lin et al., 2005] have designed a simpler

algorithm by making use of the permutation groups in Algebra for solving the block-

interchange problem on linear or circular chromosomes with time-complexity of O(δn),

where δ is the the minimum number of block-interchanges required for the transfor-

mation and can be calculated in O(n) time in advance. Moreover, they demonstrated

that the block-interchange events seem to play a significant role in the evolution of

bacterial (Vibrio) species.

In this thesis, we first implement a tool, called ROBIN, based on the algorithm

designed by Lin et al. [Lin et al., 2005] for analyzing rearrangements of gene orders

between two linear/circular chromosomal genomes via the block-interchange events.

We also integrate an existing program Mauve into our ROBIN so that not only gene-

order data but also sequence data are allowed to be the input of ROBIN system. If

the input is sequence data, ROBIN can automatically search for the identical homolo-

gous/conserved regions shared by all the input sequences. To test the applicability of

ROBIN, we apply ROBIN to genomes of three human Vibrio pathogens for detecting

the evolutionary relationships. Consequently, our experimental results coincide with

the previous ones obtained by other community using a comparative genomic approach,

which implies that the block-interchange events seem to play a significant role in the

evolution of Vibrio species.

Notice that the current block-interchanges studies consider only genomes with ex-

actly one chromosome (i.e., unichromosomal genomes) for determining their evolution-

ary differences. However, for organisms with different numbers of chromosomes, the

evolutionary history must also consider chromosome fusions and fissions, where a fu-

sion event merges two chromosomes into one and a fission event splits a chromosome

into two. Hence, it is worthwhile to study the rearrangements of two multichromo-

2



somal genomes only based on fusions, fissions and block-interchanges. In this thesis,

we consider such a genome rearrangement problem by designing an efficient algorithm

for computing a minimum series of fusions, fissions and block-interchanges that are re-

quired to transform one multichromosomal genome into another, when both have the

same set of genes without repeats. Consequently, we propose an O(n2) time algorithm

to efficiently compute a minimum series of fusions, fissions and block-interchanges re-

quired to transform one genome into another, where n is the number of genes shared

by the two genomes.

3



Chapter 2

Preliminaries

In group theory, a permutation is defined to be a one-to-one mapping from a set

E = {1, 2, . . . , n} into itself, where n is some positive integer. For example, we

may define a permutation α of the set {1, 2, 3, 4, 5, 6} by specifying α(1) = 4, α(2) =

3, α(3) = 1, α(4) = 2, α(5) = 7, α(7) = 6 and α(6) = 5. The above mapping can

be expressed using a cycle notation as illustrated in Figure 2.1 and simply denoted

by α = (1, 4, 2, 3)(5, 7, 6). A cycle of length k, say (a1, a2, . . . , ak), is simply called

k-cycle and can be rewritten as (ai, ai+1, . . . , ak, a1, . . . , ai−1), where 2 ≤ i < k, or

(ak, a1, a2, . . . , ak−1). Any two cycles are said to be disjoint if they have no element in

common. For any permutation, it can be written in a unique way as the product of

disjoint cycles, which is called the cycle decomposition of this permutation, if we ignore

the order of the cycles in the product [Fraleigh, 1999]. Usually, the cycle of length one

of a permutation α is not explicitly written and its element, say x, is said to be fixed

by α since α(x) = x. Especially, the permutation whose elements are all fixed is called

an identity permutation and is denoted by 1 (i.e., 1 = (1)(2) · · · (n)).

Given two permutations α and β of E, the composition of α and β, denoted by αβ,

is defined to be a permutation of E with αβ(x) = α(β(x)) for all x ∈ E. If α and β

are disjoint cycles, then we have αβ = βα. The inverse of a permutation α is defined

to be a permutation, denoted by α−1, such that αα−1 = α−1α = 1. If a permutation

is expressed by the product of disjoint cycles, then its inverse can be obtained by just

reversing the order of the elements in each cycle. Clearly, α−1 = α if α is a 2-cycle.

4



Figure 2.1: The illustration of a permutation α = (1, 4, 2, 3)(5, 6) meaning that α(1) =
4, α(2) = 3, α(3) = 1, α(4) = 2, α(5) = 7, α(7) = 6 and α(6) = 5.

Meidanis and Dias [Meidanis & Dias, 2000, Meidanis & Dias, 2001] first noticed

that each cycle of a permutation may represent a circular chromosome of a genome

with each element of the cycle corresponding to a gene and the order of the cycle

corresponding to the gene order of the chromosome. Moreover, they observed that

the global evolutionary events like fusions and fissions (respectively, transpositions),

correspond to the composition of a 2-cycle (respectively, 3-cycles) and the permutation

corresponding to a genome. For instance, given a permutation α whose cycle decom-

position is c1c2 · · · cr. If ρ = (x, y) is a 2-cycle and x and y are in the same cycle of

α, say cp = (a1 ≡ x, a2, . . . , ai ≡ y, ai+1, . . . , aj) where 1 ≤ p ≤ r, then in the com-

position ρα, this cycle cp is broken into two disjoint cycles (x ≡ a1, a2, . . . , ai−1) and

(y ≡ ai, ai+1, . . . , aj), i.e., ρ is a fusion event affecting on α (and is called as a split

operation of α). If ρ = (x, y) is a 2-cycle and x and y are in the different cycles of α,

say cp = (a1 ≡ x, a2, . . . , ai) and cq = (b1 ≡ y, b2, . . . , bj) where 1 ≤ p, q ≤ r, then in the

composition ρα, cp and cq are joined into a cycle (x ≡ a1, a2, . . . , ai, y ≡ b1, b2, . . . , bj),

i.e., ρ is a fission event affecting on α (and is called as a join operation of α). If

ρ = (x, y, z) is a 3-cycle and x, y and z are in the same cycle of α, say cp = (a1 ≡

x, a2, . . . , ai, b1 ≡ y, b2, . . . , bj , c1 ≡ z, c2, . . . , ck) where 1 ≤ p ≤ r, then in the compo-

sition ρα, this cycle cp becomes (x ≡ a1, a2, . . . , ai, z ≡ c1, c2, . . . , ck, y ≡ b1, b2, . . . , bj),

i.e., ρ is a transposition event affecting on α. It is worth noting that the same results

of the above three cases are valid for αρ. Recently, Lin et al. [Lin et al., 2005] further

observed that a block-interchange event affecting on α corresponds to the composition

of two cycles, say ρ1 and ρ2, and α under the condition that ρ1 is a split operation of

α and ρ2 is a join operation of ρ1α. More clearly, let cp = (a1, a2, . . . , ah) be a cycle of

5



α, ρ1 = (a1, aj) and ρ2 = (ai, ak), where 1 < j ≤ h, 1 ≤ i ≤ j− 1 and j ≤ k ≤ h. Then

ρ2ρ1α is the resulting permutation by exchanging the blocks [ai, aj−1] and [ak, ah] of cp.

It is well known that every permutation can be written as a product of 2-cycle. For

example, (1, 2, 3, 4) = (1, 4)(1, 3)(1, 2). Actually, there are many ways of expressing

a permutation α as a product of 2-cycles [Fraleigh, 1999]. Given a permutation α,

let f(α) denote the number of the disjoint cycles in the cycle decomposition of α.

Notice that f(α) counts also the non-expressed cycles of length one. For example,

if α = (1, 5)(2, 4) is a permutation of E = {1, 2, . . . , 5}, then f(α) = 3, instead of

f(α) = 2, since α = (1, 5)(2, 4)(3).

Lemma 1 Let α be an arbitrary permutation of E = {1, 2, . . . , n}. If α can be ex-

pressed as a product of k 2-cycles, then k ≥ n− f(α).

Proof. Let α = c1c2 . . . ck with each ci being 2-cycle, where 1 ≤ i ≤ k. Next, we prove

this lemma by induction on k. Let k = 0. Then we have α = 1 and hence f(α) = n

and k = n − f(α) = 0. Suppose that k − 1 ≥ n − f(α′), where α′ = c1c2, . . . , ck−1.

Since α = α′ck and ck is a 2-cycle, ck operates on α′ either by joining two cycles

of α′ into one cycle (i.e., f(α) = f(α′) − 1) or by splitting one cycle of α′ into two

cycles (i.e., f(α) = f(α′) + 1). As a result, we have f(α) ≥ f(α′) − 1 and hence,

k = (k − 1) + 1 ≥ n− f(α′) + 1 = n− (f(α′) − 1) ≥ n− f(α). �

As mentioned previously, each genome with n genes can be expressed by a permuta-

tion of E = {1, 2, . . . , n}. Given two genomes G1 and G2 over the same gene set E, the

genome rearrangement distance from G1 and G2, denoted by d(G1, G2), is defined to

be the minimum number of events needed to transform G1 into G2, where the allowed

events are fusions, fissions and block-interchanges.

Lemma 2 Given two genomes G1 and G2 over the same gene set E, d(G1, G2) =

d(G2, G1).

Proof. Let σ = 〈σ1, σ2, . . . , σδ〉 be an optimal series of events required to transform G1

into G2. Clearly, σ′ = 〈σδ, σδ−1, . . . , σ1〉 is an optimal series of events for transforming

G2 into G1 by reversing the role of every event σi, where 1 ≤ i ≤ δ, such that σi is a

fission (respectively, fusion) in σ′ if σi is a fusion (respectively, fission) in σ. �

6



Lemma 3 Given two genomes G1 and G2 over the same gene set E, there is an optimal

series of events required to transform G1 into G2 such that every fission occurs after

every fusion and block-interchange.

Proof. Let σ = 〈σ1, σ2, . . . , σδ〉 be an optimal series of events needed to transform G1

into G2. Of course, if every fission occurs after every fusion and block-interchange

in σ, then the proof is done. Now, suppose that not every fission occurs after every

fusion or block-interchange in σ. Then let i be the largest index in σ such that σi is

a fission preceding σi+1 that is a fusion or block-interchange. As discussed below, we

can obtain a new optimal series σ′ = 〈σ1, . . . , σi−1, σ
′
i, σ

′
i+1, σi+2, . . . , σδ〉 to transform

G1 into G2 such that σ′
i is a fusion or block-interchange and σ′

i+1 is a fission. Suppose

that σi splits a chromosome A into A1 and A2. If σi+1 is a fusion, then we assume that

it joins two chromosomes B1 and B2 into B; otherwise, if σi+1 is a block-interchange,

then assume that it affects B1 such that B1 becomes B through a block-interchange.

Clearly, if neither B1 nor B2 is created by σi, then the desired series σ′ is obtained by

swapping σi and σi+1 in σ (i.e., σ′
i = σi+1 and σ′

i+1 = σi). If both B1 and B2 are created

by σi, then by removing σi and σi+1 from σ, we obtain a new optimal series of events

transforming G1 into G2 with the smaller number of events than δ, a contradiction.

Hence, we assume that only one of B1 and B2 is created by σi and without loss of

generality, let B1 = A1. Now, consider the following two cases.

Case 1: σi+1 is a fusion. (Suppose the considered chromosomes are circular.) Then

the net rearrangement caused by σi and σi+1 is to transform A and B2 into A2 and B.

Actually, this rearrangement can also be done by first joining A and B2 via σi+1 and

then splitting it into A2 and B via σi. Then σ′ is obtained by just swapping σi and

σi+1 in σ.

Case 2: σi+1 is a block-interchange. Clearly, the net rearrangement caused by σi

and σi+1 is to transform A into B and A2, which is equivalent to the rearrangement by

first applying σi+1 to A and then further splitting it into B and A2 via σi. Then σ′ is

obtained by swapping σi and σi+1 in σ.

According to the discussion above, we can always obtain σ′ by simply swapping σi

and σi+1 in σ. Repeating this way on the resulting σ′, we can finally obtain an optimal

7



series of events that are required to transform G1 into G2 such that all fissions come

after all fusions and block-interchanges. �

Lemma 4 Given two genomes G1 and G2 over the same gene set E, there is an optimal

series of events required to transform G1 into G2 such that all fusions come before all

block-interchanges which come before all fissions.

Proof. Let σ = 〈σ1, σ2, . . . , σδ〉 be an optimal series of events required to transform

G1 into G2. If there are no fusions or block-interchanges, then the proof is completed.

If not, according to Lemma 3, we may assume that all fusions and block-interchanges

occur before all fissions. Let i be the index of the last non-fission in σ and also

let G′ be the resulting genome after all σ1, σ2, . . . , σi have affected G1. Since σ is

optimal, it is not hard to see that σ′ = 〈σ1, σ2, . . . , σi〉 is an optimal series of fusions

and block-interchanges needed to transform G1 into G′. As discussion in the proof of

Lemma 2, σ′′ = 〈σi, σi−1, . . . , σ1〉 is an optimal series of fissions and block-interchanges

for transforming G′ into G1 and by Lemma 3, all these i fissions and block-interchanges

in σ′′ can be rearranged such that all block-interchanges occur before all fissions. In

other words, the i fusions and block-interchanges in σ′ can be rearranged such that all

fusions occur before all block-interchanges. Consequently, there is an optimal series

of events needed to transform G1 into G2 such that all fusions come before all block-

interchanges which come before all fissions. �

8



Chapter 3

ROBIN: A Tool for Genome

Rearrangements of

Block-Interchanges

In this chapter, we implement the algorithm designed by Lin et al. [Lin et al., 2005] into

a web server, called ROBIN, for analyzing genome rearrangement of block-interchanges

between two chromosomal genomes. It takes two or more linear/circular chromosomes

as its input, and computes the number of minimum block-interchange rearrangements

between any two input chromosomes for transforming one chromosome into another

and also determines an optimal scenario taking this number of rearrangements. The

input can be either bacterial-size sequence data or landmark-order data. If the input is

sequence data, ROBIN will automatically search for the identical landmarks that are

the homologous/conserved regions shared by all the input sequences.

3.1 Introduction

With the increasing number of sequenced genomes, the study of genome rearrange-

ment, which measures the evolutionary difference between two organisms by conduct-

ing a large-scale comparisons of their genomic data, has received a lot of attention

in computational biology and bioinformatics. One of the most promising ways to

9



do this research is to compare the orders of the identical landmarks in two different

genomes, where the identical landmarks can be the homologous/conserved regions (in-

cluding genes) shared by the sequences. The genomes considered are usually denoted

by a set of ordered (signed or unsigned) integers with each integer representing an

identical landmark in the genomes and its sign (+ or −) indicating the transcrip-

tional orientation. Given a set of ordered landmarks from each genome, many existing

tools [Tesler, 2002, Pevzner & Tesler, 2003, Darling et al., 2004b] have focused on in-

ferring an optimal series of reversal events that transform one genome organization

into another, where the reversal events act on the genome by inverting a contigu-

ous interval of landmarks into the reverse order and also inverting the orientation

of each landmark. Other rearrangements like transpositions [Bafna & Pevzner, 1998,

Walter et al., 1998], translocations [Hannenhalli, 1996, Kececioglu & Ravi, 1995], fis-

sions, fusions [Hannenhalli & Pevzner, 1995, Meidanis & Dias, 2001] and block-

interchanges [Christie, 1996, Lin et al., 2005] have been proposed to determine the

evolutionary distance between two related genomes. Christie [Christie, 1996] first in-

troduced the block-interchange events, a new kind of global rearrangements affecting

on a genome by swapping two non-intersecting intervals of landmarks of any length,

and proposed an O(n2) time algorithm for solving the so-called block-interchange dis-

tance problem that is to find a minimum series of block-interchanges for transforming

one linear genome into another, where n is the number of landmarks. In fact, the

block-interchanges can be considered as a generalization of the transpositions because

the intervals of landmarks swapped by a block-interchange event are not necessar-

ily adjacent. Recently, Lin et al. [Lin et al., 2005] have designed a simpler algorithm

for solving the block-interchange problem on linear or circular genomes with time-

complexity of O(δn), where δ is the minimum number of block-interchanges required

for the transformation and can be calculated in O(n) time in advance. They also

demonstrated that the block-interchange events seem to play a significant role in the

evolution of bacterial (vibrio) species. Actually, the proof in the paper of Lin et al.

[Lin et al., 2005] for showing their circular algorithm being able to apply to linear chro-

mosomes can be easily extended to prove that the block-interchange problem on circular

10



genomes is equivalent to that on linear genomes. Here, we adopt their algorithms to

implement the kernel of ROBIN (a short for Rearrangement Of Block-INterchanges)

program for analyzing rearrangements of landmark orders between two linear/circular

chromosomal genomes via the block-interchange events. In addition, by integrating

Mauve [Darling et al., 2004a] into our ROBIN system, not only landmark-order data

but also sequence data are allowed to be the input of ROBIN system. If the input is

sequence data, ROBIN can automatically search for the identical landmarks that are

the homologous/conserved regions shared by all the input sequences.

3.2 Method

For the landmarks used in the analyses of rearrangement among genomes, we consid-

ered the exact matches such as the maximal unique matches (MUMs) as in MUMmer

[Delcher et al., 1999, Delcher et al., 2002], the approximate matches without gaps such

as the yielding fragments as in DIALIGN [Morgenstern et al., 1998, Morgenstern, 1999]

and LAGAN [Brudno et al., 2003], the approximate matches with gaps such as the hit

fragments as in BLASTZ [Schwartz et al., 2003] or the regions of local collinearity such

as the locally collinear blocks (LCBs) as in Mauve [Darling et al., 2004a]. Conceptu-

ally, an LCB can be considered as a collinear (consistent) set of the multi-MUMs,

where multi-MUMs are exactly matching subsequences shared by all the considered

genomes that occur only once in each of genomes and that are bounded on either side

by mismatched nucleotides. Here, we adopt the LCBs for representing the landmarks

in genomes. The main reason is that each LCB may correspond to a homologous region

of sequence shared by all genomes and does not contain any genome rearrangements.

In addition, Darling et al. [Darling et al., 2004a] have implemented a package called

Mauve that contains a program which is able to efficiently identify all the LCBs shared

by all the large-scale genomes being studied. Usually, each identified LCB is associated

with a weight that can serve as a measure of confidence that it is a true homologous re-

gion rather than a random match, where the weight of an LCB is defined as the sum of

the lengths of multi-MUMs in this LCB. By selecting a high minimum weight, the user

11



Figure 3.1: The web interface of ROBIN.

can identify the larger LCBs that are truly involved in genome rearrangement, whereas

by selecting a low minimum weight, the user can trade some specificity for sensitivity

to identify the smaller LCBs that are possibly involved in genome rearrangement. For

the detailed algorithm of computing LCBs, we refer the reader to the paper by Darling

et al. [Darling et al., 2004a, Darling et al., 2004b].

The kernel algorithms of ROBIN are written in C++ and the web interface is

written in PHP. It can be easily accessed via a simple web interface (see Figure 3.1).

The input of ROBIN can be two or more linear/circular chromosomes with bacterial

size that can be either genomic sequences or unsigned integer sequences with each

integer representing an identical landmark on all input chromosomes. If the input

is genomic sequences, our ROBIN will automatically identify all the LCBs (i.e., ho-

mologous/conserved regions) that meet the user-specified minimum weight, where the

minimum LCB weight is a user-definable parameter and our ROBIN chooses its default

to be 3 times the minimum multi-MUM length. The output of ROBIN is the block-

interchange distance between any two input chromosomes and its optimal scenario of

block-interchange rearrangements for transforming one chromosome into another.

ROBIN is freely accessed at http://genome.life.nctu.edu.tw/ROBIN.

12



Table 3.1: The running time of ROBIN for processing two landmark orders with dif-
ferent size.

Number of Landmarks CPU Time Usage
100 < 1 sec
1000 55 sec
2000 3.7 min
3000 9 min
4000 28 min

Table 3.2: The running time of ROBIN for processing multiple landmark orders of
1,000 landmarks.

Number of Landmark Orders CPU Time Usage
2 51 sec
3 144 sec
4 289 sec
5 472 sec

3.3 CPU Time Usage and Experimental Results

3.3.1 CPU Time Usage

Currently, the ROBIN system is installed on IBM PC with 1.26 GHz processor and 512

MB RAM under Linux system. On such hard environment, our ROBIN can deal with

only about 4,800 landmarks if the input is landmark-order data. The running time

of ROBIN for dealing with two landmark orders is shown in Table 3.1 and Table 3.2

where Table 3.1 shows the running time of ROBIN for processing two landmark orders

when the number of landmarks is increased, and the table 3.2 shows the running time

of ROBIN for processing multiple landmark orders with 1,000 landmarks when the

number of landmark orders is increased.

If the input is sequence data, the limitation of our ROBIN greatly depends on

the length scale and number of input sequences, because it needs additional time for

computing all the LCBs shared by all input sequences. Currently, it can handle the

sequences with total length of up to 35 Mbp. The following tables list the running

time of ROBIN for processing two sequences when the average length of sequences is

increased, where Table 3.3 shows the running time of ROBIN for processing sequence

13



Table 3.3: The running time of ROBIN for processing two sequences with different
length.

Average Sequence Length(Mbp) CPU Time Usage
1.9 15 min
3.4 18 min
5 46 min
8 56 min

Table 3.4: The running time of ROBIN for processing multiple sequences.

Number of Sequences CPU Time Usage
2 24 min
3 53 min
4 81 min
5 157 min
6 240 min
7 290 min

data of length ranging from 4.6 Mbp to 5.5 Mbp when the number of sequences is

increased, and Table 3.4 shows the running time of ROBIN for processing sequence

data of length ranging from 4.6 Mbp to 5.5 Mbp when the number of sequences is

increased.

3.3.2 Experimental Results

To test our ROBIN system, we rerun the experiments conducted by Lin et

al. [Lin et al., 2005], for detecting the evolutionary relationships among three human

Vibrio pathogens, including V. vulnificus, V. parahaemolyticus and V. cholerae(see

the Table 3.5 for their sequence information). It is reported that V. vulnificus is an

etiologic agent for severe human infection acquired through wounds or contaminated

seafood and shares morphological and biochemical characteristics with other human

vibrio pathogens, including V. cholerae and V. parahaemolyticus [Chen et al., 2003].

The genomes of these three vibrio species consist of two circular chromosomes, and their

genomic sequences have been uncovered recently. As more and more sequence informa-

tion of Vibrio species becomes available, a comparative genomics approach is needed

14



Table 3.5: The sequence information of three pathogenic Vibrio Species, each with two
circular chromosomes.

Accession NO Species Chromosome Size (Mbp)
NC 005139 V. vulnificus YJ016 1 (VV1) 3.4
NC 005140 V. vulnificus YJ016 2 (VV2) 1.9
NC 004603 V. parahaemolyticus RIMD 2210633 1 (VP1) 3.3
NC 004605 V. parahaemolyticus RIMD 2210633 2 (VP2) 1.9
NC 002505 V. cholerae El Tor N16961 1 (VC1) 3.0
NC 002506 V. cholerae El Tor N16961 2 (VC2) 1.0

to uncover the critical events leading to the functional uniqueness of Vibrio species.

To address the issue of how vibrio species evolved, Chen et al. [Chen et al., 2003]

conducted a chromosome-by-chromosome analysis of the V. vulnificus YJ016 sequence

along with the V. cholerae El Tor N16961 sequence and the V. parahaemolyticus RIMD

2210633 sequence to compare relative positions of conserved genes and to investigate

the movement of genetic materials within and between the two chromosomes in the

vibrio species. Their comparative analysis revealed that V. vulnificus showed a higher

degree of conservation in gene organization in the two chromosomes relative to V.

parahaemolyticus than to V. cholerae, which implies that V. vulnificus is closer to

V. parahaemolyticus than to V. cholerae from the evolutionary viewpoint. Chen et

al. [Chen et al., 2003] also conducted an analysis by comparing the number, distri-

bution, and position of gene family members in the V. vulnificus and V. cholerae

genomes. The results indicated that it appears that duplication and transposition

events occurred more frequently in the V. vulnificus genome. Since the transposition

is a special case of block-interchange, it seems to be reasonable to postulate that the

rearrangement of block-interchange may play another significant role in the evolution

of Vibrio genomes. To justify this viewpoint, we conducted an experiment on these

three human Vibrio pathogens to see if their evolutionary relationships determined only

based on their block-interchange distances with each other agree with those obtained

by Chen et al. [Chen et al., 2003].

In the previous experiments as we have done in [Lin et al., 2005], we used the com-

mon MUMs, which were computed in advance with another tool of finding consensuses

15



Table 3.6: The block-interchange distances among VV1, VP1, and VC1.

VC1 VP1 VV1
VC1 - 37 38
VP1 37 - 17
VV1 38 17 -

Table 3.7: The block-interchange distances among among VV2, VP2, and VC2.

VC2 VP2 VV2
VC2 - 8 9
VP2 8 - 5
VV2 9 5 -

or signatures, among these three vibrio genomes to represent the identical landmarks.

However, in the experiments we have done here, we used the LCBs as the landmarks

that were automatically computed by our ROBIN system with default parameters from

three input Vibrio genomic sequences.

Totally, ROBIN identified 95 (respectively, 20) common LCBs for VV1, VP1, and

VC1 (respectively, VV2, VP2, and VC2). The computed block-interchange distance

matrices are shown in Tabler̃eftab:5 and Tabler̃eftab:6 . Table 3.7 As shown in the ta-

ble above, the block-interchange distance between V. vulnificus and V. parahaemolyti-

cus is smaller than that between V. vulnificus and V. cholerae and that between V.

parahaemolyticus and V. choleraein both circular chromosomes. These experimental

results indeed coincide with those obtained by Lin et al. [Lin et al., 2005] and by Chen

et al. [Chen et al., 2003].

16



Figure 3.2: The partial result of ROBIN.

17



Chapter 4

Algorithm of Genome

Rearrangements by Fusions,

Fissions and Block-Interchanges

Let α and I be two given multichromosomal genomes over the same gene set E =

{1, 2, . . . , n}. Here, we assume that the genes in I are sorted in a way that gene

i + 1 is on the right of gene i if gene i + 1 is not an ending gene on the left of a

chromosome; otherwise, gene i is an ending gene on the right of another chromosome,

where 1 ≤ i ≤ n − 1. For example, I = (1, 2)(3, 4, 5)(6, 7, 8, 9). In this case, the

computation of d(α, I) and its corresponding optimal scenario can be considered as a

problem of sorting α using the minimum fusions, fissions and block-interchanges. Recall

that any series of fusions, fissions and block-interchanges for transforming α into I can

be expressed by a product of 2-cycles, say cλcλ−1 . . . c1, such that cλcλ−1 . . . c1α = I and

hence cλcλ−1 . . . c1 = Iα−1. This property implies that Iα−1 contains all information

that can be utilized to derive c1, c2, . . . , cλ for transforming α into I. Based on this

observation and Lemma 4, we design below an efficient algorithm for computing d(α, I)

and its optimal scenario of rearrangement events.

Given a multichromosomal genome α, we denote by χ(α) the number of chro-

mosomes in α. For any two multichromosomal genomes α = α1α2 . . . αχ(α) and

I = I1I2 . . . Iχ(I) over the gene set E = {1, 2, . . . , n}, an undirected graph G(α, I) =

18



(Vα,VI , E) is constructed from α and I as follows.

• Vα = {α1, α2, αχ(α)}.

• VI = {I1, I2, Iχ(I)}.

• E = {(αi, Ij)|1 ≤ i ≤ χ(α), 1 ≤ j ≤ χ(I), and αi and Ij have at least a common

gene }.

It is not hard to see that G(α, I) is a bipartite graph since Vα and VI are independent

sets (i.e., no edge between any two vertices in Vα or VI) in G(α, I). If there are two

genes in a chromosome Ik of I that appear in two different chromosomes αi and αj

of α, then both αi and αj belong to the same connected component in G(α, I) since

(αi, Ik) ∈ E and (αj , Ik) ∈ E , where the connected component is defined to be a max-

imal subgraph of G(α, I) such that there exists a path between any pair of vertices

in this subgraph. Let comp(G) = {P1, P2, . . . , Pω} denote the collection of all con-

nected components in G(α, I). For each Pi ∈ comp(G), let genome(Pi, α) (respectively,

genome(Pi, I)) denote the set of chromosomes whose corresponding vertices are in Vα

(respectively, VI) and let gene(Pi, α) (respectively, gene(Pi, I)) denote the union of the

genes in all the chromosomes of genome(Pi, α) (respectively, genome(Pi, I)). Note that

gene(Pi, α) = gene(Pi, I). By Lemma 4, there is always an optimal series of events, say

σ, required to transform α into I in which all fusions precede all block-interchanges that

further precede all fissions. Let nfu, nbi and nfi denote the numbers of fusions, block-

interchanges and fissions in σ, respectively. Notice that the chromosomes considered

here are disjoint (i.e., without gene duplication). Hence, for any two chromosomes αi

and αj whose corresponding vertices are in the same connected component of G(α, I),

there must exist a fusion in σ that joins αi and αj into one chromosome. In addition,

we have nfu =
∑

1≤i≤ω(|genome(Pi, α)| − 1), since all needed fusions come together

in the beginning of σ. After these nfu fusions, the resulting α, denoted by α′, has ω

chromosomes, say C1, C2, . . . , Cω, with each Ci consisting of the genes in gene(Pi, α).

Due to being intra-chromosomal events, the next nbi block-interchanges come before

all fissions to mutate α′ without changing the gene content of any chromosome in α′.

As a result, nfi =
∑

1≤i≤ω(|genome(Pi, I)| − 1), since gene(Pi, α) = gene(Pi, I) for each

19



1 ≤ i ≤ ω and the chromosomes in I are disjoint. Hence, we have the following lemma

immediately.

Lemma 5 Given two multichromosomal genomes α and I over the same gene set E,

let {P1, P2, . . . , Pω} be the collection of all connected components in the induced bipartite

graph G(α, I). Then there is an optimal series of events for transforming α into I in

which the number of fusions is nfu =
∑

1≤i≤ω(|genome(Pi, α)| − 1) and the number of

fissions is nfi =
∑

1≤i≤ω(|genome(Pi, I)| − 1).

Actually, in the discussion above, we can derive σ′ from σ by rearranging the events

in σ in a way that all the events, which mutate the chromosomes originated from some

initial chromosomes in α, come together in σ′ such that all fusions precede all block-

interchanges which precede all fissions. That is, we can solve the genome rearrangement

problem considered here by independently conquering the same problem on the smaller

instance whose induced bipartite graph is a connected component of G(α, I). In the

following, we assume that the induced G(α, I) of a given instance α and I has exactly

one connected component for simplifying the discussion of our algorithm. By Lemma 5,

we have the following corollary immediately.

Corollary 1 Given an instance α and I with G(α, I) being connected, there is an

optimal series of events for transforming α into I with nfu = χ(α) − 1 and nfi =

χ(I) − 1.

According to the assumption (i.e., G(α, I) is connected) and discussion above, there

exists an optimal series σ = 〈σ1, σ2, . . . , σδ〉 of events which begins with nfu = χ(α)−1

fusions for joining all chromosomes of α into a single chromosome α′, and then follows

nbi block-interchanges for mutating α′ into I ′, and finally ends with nfi = χ(I) − 1

fissions for splitting I ′ into I. Moreover, σ can be expressed as a product of 2-cycles, say

cλcλ−1 . . . c1, such that Iα−1 = cλcλ−1 . . . c1. By Lemma 1, λ ≥ n− f(Iα−1). Actually,

we can show later that λ indeed equals to n− f(Iα−1). By Corollary 1 as well as the

fact that a block-interchange can be expressed by two consecutive 2-cycles, we have

nbi =
n−f(Iα−1)−nfu−nfi

2
and as a result, δ =

n−f(Iα−1)+nfu+nfi

2
.

20



Next, we shall find nfu 2-cycles from Iα−1 such that these 2-cycles can be served

as the nfu fusions to join all chromosomes of α into a single chromosome, if α has

multiple chromosomes (i.e., χ(α) > 1). Given any cycle β, we use x ∈ β to denote that

x is a number in β. For any two x ∈ β and y ∈ β, they are said to be adjacent in β if

β(x) = y or β(y) = x.

Lemma 6 Let α and I be two permutations with G(α, I) being connected, and let αi

and αj be any two initial cycles in α. Then there must exist a cycle β in Iα−1 that

contains two numbers x and y such that x is in αi and y is in αj.

Proof. Since the induced bipartite graph G(α, I) contains exactly one connected com-

ponent, αi and αj contain numbers u and v, respectively, such that both u and v are

in a cycle Ik of I. Then we claim that there is a cycle β in Iα−1 that contains two

numbers x and y such that x ∈ αi and y ∈ αj . Suppose that there is no cycle in Iα−1

that contains x and y such that x ∈ αi and y ∈ αj . Then for any cycle γ in Iα−1,

all numbers in γ are contained in some cycle of α. It implies that u and v are in the

different cycles in Iα−1 (otherwise, they will be in the same cycle in α, contradicting

to u ∈ αi and v ∈ αj). Let u be in the cycle γ1 = (u ≡ a1, a2, . . . , ap) of Iα−1 and

v be in another cycle γ2 = (v ≡ b1, b2, . . . , bq) of Iα−1 such that Iα−1(ap) = u and

Iα−1(bq) = v. As discussed above, all numbers in γ1 (respectively, γ2) are contained in

αi (respectively, αj). Then we have u, ap ∈ αi and v, bq ∈ αj, and hence bq /∈ αi and

ap /∈ αj . Recall that u and v both are in Ik. If αi does not contain any number in γ2,

then it is impossible that u and v both are in Ik, since in this case, only those numbers

that are also in αi have the opportunity of being in the cycle of I in which u is. Let αi

contains br ∈ γ2. Then αi also has to contain all numbers in γ2. As a result, bq ∈ αi,

a contradiction. Hence, there exists a cycle β in Iα−1 that contains x and y such that

x ∈ αi and y ∈ αj. �

The following lemma can be easily verified.

Lemma 7 (a1, a2, . . . , ai, . . . , aj) = (a1, a2, . . . , ai)(ai+1, . . . , aj)(ai, aj), where 1 ≤ i <

j.

21



According to Lemma 6, for any two cycles αi and αj of α, we can find two numbers

x and y in a cycle β of Iα−1 such that x ∈ αi and y ∈ αi. Let β = (b1, b2, . . . , bj), where

j ≥ 2. Then we consider the following two cases. Case 1: x and y are adjacent in β. For

simplicity, let x = bj−1 and y = bj . Then by Lemma 7, β = (b1, b2, . . . , bj−1)(bj)(x, y).

Case 2: x and y are not adjacent in β. Without loss of generality, let x = bi and y = bj ,

where 1 ≤ i < bj−1. Then β = (b1, b2, . . . , bi)(bi+1, . . . , bj)(x, y) according to Lemma 7.

In other words, we can derive a 2-cycle (x, y) from β such that it is able to join αi

and αj into one cycle. After (x, y) operates on αi and αj, the number of the cycles

(including 1-cycles) in the resulting Iα−1 increases by one. Repeatedly based on the

discussion above, we can derive consecutive nfu 2-cycles from Iα−1, say φ1, φ2, . . . , φnfu
,

that can join χ(α) cycles in α into a single cycle, where nfu = χ(α) − 1. In other

words, φ1, φ2, . . . , φnfu
are nfu fusions that are able to transform genome α with χ(α)

chromosomes into a genome, denoted by α′, with a single chromosome. In this case, we

have α′ = φnfu
φnfu−1 . . . φ1α, Iα′−1 = Iα−1φ1φ2 . . . φnfu

, and f(Iα′−1) = f(Iα−1)+nfu.

Hence, we have the following claim immediately.

Claim 1 α′ = φnfu
φnfu−1 . . . φ1α, Iα′−1 = Iα−1φ1φ2 . . . φnfu

, and f(Iα′−1) =

f(Iα−1) + nfu, where nfu = χ(α) − 1.

Now, suppose that χ(I) > 1. Then it is clear that the induced G(I, α′) is a connected

bipartite graph. As the similar discussion before, we can derive consecutive nfi 2-cycles

from α′I−1, say ψ1, ψ2, . . . , ψnfi
, such that they serve as the fusions to transform I with

χ(I) chromosomes into a genome, denoted by I ′, with only one chromosome, where

nfi = χ(I) − 1 and α′I−1 is the inverse of Iα′−1 (i.e., α′I−1 = (Iα′−1)−1). In addition,

we have I ′ = ψnfi
ψnfi−1 . . . ψ1I (hence ψ1ψ2 . . . ψnfi

I ′ = I), α′I ′−1 = α′I−1ψ1ψ2 . . . ψnfi

and f(α′I ′−1) = f(α′I−1) + nfi. Conversely, it means that ψnfi
, ψnfi−1, ψ1 can be

used to split I ′ with one chromosome into I with nfi chromosomes. Since α′I−1 is

the inverse of Iα′−1, it can be easily obtained from Iα′−1 by just reversing the order

of the numbers in each cycle of Iα′−1, and hence f(α′I−1) = f(Iα′−1), which leads to

f(α′I ′−1) = f(Iα′−1)+nfi. As a result, we have f(I ′α′−1) = f(α′I−1) = f(Iα′−1)+nfi,

since I ′α′−1 = (α′I−1)−1. In summary, the following claim is immediate.

22



Claim 2 ψ1ψ2 . . . ψnfi
I ′ = I, α′I ′−1 = α′I−1ψ1ψ2 . . . ψnfi

and f(I ′α′−1) = f(Iα′−1) +

nfi, where nfi = χ(I) − 1.

Notice that both α′ and I ′ now are a genome with exactly one chromosome.

Then based on the algorithm proposed by Lin et al. [Lin et al., 2005], we can

find nbi = n−f(I′α′−1)
2

block-interchanges from I ′α′−1 to transform α′ into I ′. Cer-

tainly, these nbi block-interchanges can be further expressed by a product of 2nbi

2-cycles, say τ 1
1 , τ

2
1 , τ

1
2 , τ

2
2 , . . . , τ

1
nbi
, τ 2

nbi
, such that every two consecutive 2-cycles act

as a block-interchange in the process of transforming α′ into I ′ and I ′α′−1 =

τ 2
nbi
τ 1
nbi
τ 2
nbi−1τ

1
nbi−1 . . . τ

2
1 τ

2
1 . Hence, we have the following claim immediately.

Claim 3 I ′ = τ 2
nbi
τ 1
nbi
τ 2
nbi−1τ

1
nbi−1 . . . τ

2
1 τ

1
1α

′.

Let ρ = ψ1ψ2 . . . ψnfi
τ 2
nbi
τ 1
nbi
. . . τ2

1 τ
1
1φnfu

φnfu−1 . . . φ1. Then the result of ρα = I

(hence ρ = Iα−1) can be easily verified by Claims 1, 2 and 3 as follows.

ρα = ψ1ψ2 . . . ψnfi
τ 2
nbi
τ 1
nbi
. . . τ2

1 τ
1
1φnfu

φnfu−1 . . . φ1α

= ψ1ψ2 . . . ψnfi
τ 2
nbi
τ 1
nbi
. . . τ2

1 τ
1
1α

′ (by Claim 1)

= ψ1ψ2 . . . ψnfi
I ′ (by Claim 3)

= I (by Claim 2)

In other words, ρ is a feasible series of rearrangement events that can transform α

into I, and can be expressed by a product of (nfu + (n − f(I ′α′−1)) + nfi) 2-cycles.

More clearly, ρ first uses φ1, φ2, . . . , φnfu
(acting as nfu fusions) to transform α into α′,

then uses τ 1
1 , τ

2
1 , . . . , τ

1
nbi
, τ 2

nbi
(acting as nbi block-interchanges) to transform α′ into I ′,

and finally uses ψnfi
, ψnfi−1, . . . , ψ1 (acting as nfi fissions) to transform I ′ into I. By

Claims 1 and 2, we can show that nfu +(n− f(I ′α′−1))+nfi = n− f(Iα−1) as follows.

nfu + (n− f(I ′α′−1)) + nfi

= nfu + (n− f(Iα′−1) − nfi) + nfi (by Claim 2)

= nfu + (n− f(Iα−1) − nfu − nfi) + nfi (by Claim 1)

= n− f(Iα−1)

23



According to Lemma 1, n − f(Iα−1) is the minimum number such that Iα−1 can be

expressed as a product of n − f(Iα−1) 2-cycles. By Corollary 1, we can conclude

that ρ is an optimal series of events that can transform α into I with nfu fusions,

n−f(Iα−1)−nfu−nfi

2
block-interchanges and nfi fissions, where nfu = χ(α) − 1 and nfi =

χ(I) − 1. Hence, the following lemma is immediate.

Lemma 8 Let α and I be two multichromosomal genomes with G(α, I) being con-

nected. Then there is an optimal series of events needed to transform α into I such

that all nfu fusions come before all
n−f(Iα−1)−nfu−nfi

2
block-interchanges that come before

all nfi fissions, where nfu = χ(α) − 1 and nfi = χ(I) − 1.

Let us take α = (1, 2, 10)(11, 8, 9, 3, 6)(7, 4, 5, 12) and I =

(1, 2, 3)(4, 5)(6, 7, 8)(9, 10, 11, 12) for an example. It is not hard to see that

G(α, I) is a connected bipartite graph with χ(α) = 3 and χ(I) = 4, and

Iα−1 = (1, 11, 7, 9, 6)(3, 10)(4, 8, 12) and hence f(Iα′) = 5, since two 1-cycles (i.e., (2)

and (5)) are not explicitly shown. First, we are going to find (nfu = χ(α) − 1 = 2)

2-cycles φ1 and φ2 from Iα−1 to transform α with three cycles into α′ with exactly

one cycle. Since Iα−1 = (1, 11, 7, 9, 6)(4, 12)(4, 8)(3, 10), we let φ1 = (3, 10) and

φ2 = (4, 8) and hence by Claim 1, α′ = φ2φ1α = (4, 5, 12, 7, 8, 9, 10, 1, 2, 3, 6, 11)

and Iα′−1 = Iα−1φ1φ2 = (1, 11, 7, 9, 6)(4, 12). Next, we need to find

(nfi = χ(I) − 1 = 3) 2-cycles ψ1, ψ2 and ψ3 from α′I−1, which is equal to

(Iα′−1)−1 = (6, 9, 7, 11, 1)(12, 4) = (1, 7, 11)(1, 9)(1, 6)(12, 4), to transform I into I ′

with only one cycle. By letting ψ1 = (12, 4), ψ2 = (1, 6) and ψ3 = (1, 9), we have

I ′ = ψ3ψ2ψ1I = (1, 2, 3, 6, 7, 8, 9, 10, 11, 4, 5, 12) and α′I ′−1 = α′I−1ψ1ψ2ψ3 = (1, 7, 11)

according to Claim 2. Finally, we will find (n−f(Iα−1)−nfu−nfi = 12−5−2−3 = 2)

2-cycles τ 1
1 and τ 2

1 from I ′α′−1 that act as a block-interchange to transform α′ into

I ′, where I ′α′−1 = (α′I ′−1)−1 = (11, 7, 1) = (11, 1)(11, 7). By letting τ 1
1 = (11, 7)

and τ 2
1 = (11, 1), we have τ 2

1 τ
1
1α

′ = (11, 1)(11, 7)(4, 5, 12, 7, 8, 9, 10, 1, 2, 3, 6, 11) =

(11, 4, 5, 12, 1, 2, 3, 6, 7, 8, 9, 10), which indeed equals to I ′. Consequently, we can find

an optimal series of events ρ = ψ1ψ2ψ3τ
2
1 τ

1
1φ2φ1 that can transform α into I (i.e.,

ρα = I).

24



Based on the idea above, we design Algorithm Sorting-by-ffbi (meaning sorting by

fusions, fissions and block-interchanges) to compute the genome rearrangement distance

d(α, I) between two given multichromosomal genomes α and I and also generate an

optimal scenario of the required rearrangement events. The purpose of step 2.3.3 is

to find two numbers x and y that are both in some cycle of β = Iiαi
−1, but are in

different cycles in αi. By Lemma 6, such x and y exist only if G(αi, Ii) is connected.

Actually, they can be found using the following simple approach. For simplicity, let

βk = (b1k, b
2
k, . . . , b

lk
k ) be a cycle in β that contains two numbers x and y such that they

are in different cycles in αi. Then we only need to check if b1k and bjk, where 2 ≤ j ≤ lk,

are in different cycles in αi or not. If so, we let x = b1k and y = bjk. The reason is as

follows. Suppose that both b1k and bjk for all 2 ≤ j ≤ lk are in the same cycle in αi.

Then all numbers b1k, b
2
k, . . . , b

li
k in βk are in the same cycle in αi, which contradicts to

the assumption that there are x and y in βk that are in different cycles in αi.

Algorithm Sorting-by-ffbi

Input: Two multichromosomal genomes α and I.
Output: d(α, I) and a minimum series σ of operations required to transform α into I.
1: Find all connected components P1, P2, . . . , Pω in graph G(α, I);

Let ni = |gene(Pi, α)| for each 1 ≤ i ≤ ω;
2: for each Pi, 1 ≤ i ≤ ω, do

/* Let αi (resp. Ii) be the collection of chromosomes in α (resp. I) whose
corresponding vertices are in Pi. */

2.1: Compute Iiαi
−1 and let β = Iiαi

−1;

2.2: nfu = χ(αi) − 1, nfi = χ(Ii) − 1, nbi =
ni−f(β)−nfu−nfi

2
and δi = nfu + nbi + nfi;

2.3: if χ(αi) > 1 then /* To compute φ1, φ2, . . . , φnfu
*/

2.3.1: for each cycle of αi do

Create a set to contain all the numbers in this cycle;
endfor

2.3.2: k = 1 and h = 2;
2.3.3: for j = 1 to nfu do

/* Assume β = β1β2 . . . βp and βk = (b1k, b
2
k, . . . , b

lk
k ) with each lk ≥ 2 */

S = find-set(b1k);
while (S = find-set(bhk)) do

if h < lk then h = h + 1; else k = k + 1, h = 2 and S = find-set(b1k);
endwhile

x = b1k and y = bhk ;
φj = (x, y) and union(x, y);

endfor

2.3.4: α′
i = φnfu

φnfu−1 . . . φ1αi and β = βφ1φ2 . . . φnfu
; /* Currently, β is Iα′

i
−1 */

endif

25



2.4: if χ(Ii) > 1 then /* To compute ψ1, ψ2, . . . , ψnfi
*/

2.4.1: β = β−1; /* New β becomes α′
iI

−1 */
2.4.2: for each cycle of Ii do

Create a set to contain all the numbers in this cycle;
endfor

2.4.3: k = 1 and h = 2;
2.4.4: for j = 1 to nfi do

/* Assume β = β1β2 . . . βq and βk = (b1k, b
2
k, . . . , b

lk
k ) with each lk ≥ 2 */

S = find-set(b1k);
while (S = find-set(bhk)) do

if h < lk then h = h + 1; else k = k + 1, h = 2 and S = find-set(b1k);
endwhile

x = b1k and y = bhk ;
ψj = (x, y) and union(x, y);

endfor

2.4.5: I ′i = ψnfi
ψnfi−1 . . . ψ1Ii and β = βψ1ψ2 . . . ψnfi

; /* Currently, β is α′
iI

′
i
−1 */

endif

2.5: /* To compute τ 1
1 , τ

2
i , . . . , τ

1
nbi
, τ 2

nbi
*/

2.5.1: β = β−1; /* New β becomes Ii
′α′

i
−1 */

2.5.2: nbi = ni−f(β)
2

;
2.5.3: for j = 1 to nbi do

Arbitrarily choose two adjacent elements x and y in β;
/* Let α′ = (a1, a2, . . . , ani

). */
Circularly shift (a1, a2, . . . , ani

) such that a1 = x and assume y = ak;
τ 1
j = (x, y);

for h = 1 to ni do

index(ah) = h;
end for

Find two adjacent elements u and v in β(x, y) such that
index(u) ≤ k − 1 and index(v) ≥ k;
τ 2
j = (u, v);
α′ = τ 2

j τ
1
j α

′ and β = βτ 1
j τ

2
j ;

endfor

3: Let σi = ψ1 . . . ψnfi
τ 2
nbi
τ 1
nbi
. . . τ2

1 τ
1
1φnfu

. . . φ1;
4: Output d(α, I) =

∑ω

i=1 δi and σ = σ1σ2 . . . σω;

Theorem 1 Given two circular multichromosomal genomes α and I over the same

gene set E = {1, 2, . . . , n}, the problem of computing the genome rearrangement dis-

tance between α and I using fusions, fissions and block-interchanges and an optimal

series of such operations can be solved in O(n2) time.

Proof. As discussed previously, Algorithm Sorting-by-ffbi transforms α into I using a

minimum of fusion/fission/block-interchange operations. Below, we analyze its time-

complexity. Notice that given an undirected graph H with p vertices and q edges, the

26



connected components in H can be found in O(p + q) time using depth-first search

or breadth-first search. Hence, step 1 can be done in O(n2) time for computing the

connected components in the induced bipartite graph G(α, I), since in the worst case,

the number of edges in G is χ(α) × χ(I), and χ(α) = O(n) and χ(I) = O(n). In step

2, there are ω outer iterations, each with computing the a minimum series of events

needed to transform αi into Ii, where 1 ≤ i ≤ ω. Clearly, steps 2.1 costs O(ni) time

for computing Iiα
−1
i and step 2.2 takes only a constant time. The cost of step 2.3

is dominated by that of step 2.3.3. There are nfu inner iterations in step 2.3, each

with the purpose of finding two numbers x and y that are both in the same cycle

in β, but in the different cycles in αi. In the worst case, step 2.3 needs ni find-set

operations and nfu union operations to finish its overall process. Note that step 2.3.1

can be implemented by initially creating a set for each number in gene(Pi, α) and then

performing ni −χ(αi) union operations to generate χ(αi) sets with each corresponding

to a cycle in αi, where χ(αi) = nfu + 1. Hence, the total number of union operations

is ni − 1 in step 2.3. Actually, these find-set and union operations can be implemented

in O(ni) time using the so-called static disjoint set union and find algorithm proposed

by Gabow and Tarjan [Gabow & Tarjan, 1985]. In other words, step 2.3 costs only

O(ni) time. Similarly, it can be verified that the cost of step 2.4 is O(ni) time. As to

step 2.5, it is adopted from the paper of Lin et al. [Lin et al., 2005] and takes O(nbini)

time, where nbi =
ni−f(Ii

′α′

i
−1)

2
= O(ni). As a result, the cost of step 2 is O(ζn), where

ζ is the maximum nbi among all iterations in step 2 and ζ < n. Clearly, steps 3 and 4

cost a constant time. Therefore, the total time-complexity of Algorithm Sorting-by-ffbi

is O(n2) time. �

27



Chapter 5

Discussion and Conclusion

In this thesis, we studied the block-interchange distance problem form the algebraic

view and developed a web server called ROBIN, which automatically search for the

identical homologous/conserved regions shared by all the input sequences. For test-

ing the applicability of ROBIN, we apply ROBIN to genomes of three human Vibrio

pathogens for detecting the evolutionary relationships. Consequently, our experimental

results coincide with the previous ones obtained by other community using a compar-

ative genomic approach, which implies that the block-interchange events seem to play

a significant role in the evolution of Vibrio species. We also studied the genome re-

arrangement problem for two circular multichromosomal genomes by simultaneously

considering fusion, fission and block-interchange events. We showed that there is an

optimal series of events required to transform one genome into another such that all

fusions come before all block-interchanges which come before all fissions. Based on this

property as well as the concept of permutation groups in algebra, we designed an O(n2)

time algorithm for efficiently computing the minimum number of fusions, fissions and

block-interchanges needed to transform one circular multichromosomal genome into

another and also generating an optimal scenario of the required rearrangement events.

In addition, we have implemented this algorithm as a web server (This web server is

freely available at http://genome.life.nctu.edu.tw/FFBI ). With these two tools, biol-

ogists can conduct the analysis of genome rearrangements either intra-chromosomal by

block-interchanges or inter-chromosomal by fusions, fissions and block-interchanges to

28



their biological data of interest.

29



References

[Bader et al., 2001] Bader, D. A., Yan, M. & Moret, B. M. W. (2001) A linear-time

algorithm for computing inversion distance between signed permutations with an

experimental study. Journal of Computational Biology, 8, 483–491.

[Bafna & Pevzner, 1996] Bafna, V. & Pevzner, P. A. (1996) Genome rearrangements

and sorting by reversals. SIAM Journal on Computing, 25, 272–289.

[Bafna & Pevzner, 1998] Bafna, V. & Pevzner, P. A. (1998) Sorting by transpositions.

SIAM Journal on Discrete Mathematics, 11, 221–240.

[Berman & Hannenhalli] Berman, P. & Hannenhalli, S. (1996) Fast sorting by reversal.

In Proceedings of the 7th Annual Symposium on Combinatorial Pattern Matching

(CPM1996), (Hirschberg, D. S. & Myers, E., eds), vol. 1075, of Lecture Notes in

Computer Science pp. 168–185 Springer-Verlag.

In Proceedings of the 7th Annual Symposium on Combinatorial Pattern Matching

(CPM1996), (Hirschberg, D. S. & Myers, E., eds), vol. 1075, of Lecture Notes in

Computer Science pp. 168–185 Springer-Verlag.

[Berman et al.] Berman, P., Hannenhalli, S. & Karpinski, M. (2002) 1.375-

approximation algorithm for sorting by reversals. In Proceedings of the 10th Annual

European Symposium on Algorithms (ESA2002), (Mohring, R. H. & Raman, R.,

eds), vol. 2461, of Lecture Notes in Computer Science pp. 200–210 Springer-Verlag.

[Brudno et al., 2003] Brudno, M., Do, C. B., Cooper, G. M., Kim, M. F., Davydov, E.,

Green, E. D., Sidow, A. & Batzoglou, S. (2003) LAGAN and Multi-LAGAN: efficient

30



tools for large-scale multiple alignment of genomic DNA. Genome Research, 13,

721–731.

[Caprara, 1997] Caprara, A. (1997) Sorting by reversal is difficult. In Proceedings of

the 1th Annual International Conference on Research in Computational Molecular

Biology (RECOMB1997) pp. 75–83 ACM Press.

[Caprara, 1999] Caprara, A. (1999) Sorting permutations by reversals and eulerian

cycle decompositions. SIAM Journal on Discrete Mathematics, 12, 91–110.

[Chen et al., 2003] Chen, C. Y., Wu, K. M., Chang, Y. C. & Chang, C. H. (2003)

Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome

Research, 13, 2577–2587.

[Christie, 1996] Christie, D. A. (1996) Sorting by block-interchanges. Information

Processing Letters, 60, 165–169.

[Christie, 1998] Christie, D. A. (1998) A 3/2-approximation algorithm for sorting by

reversals. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA1998) pp. 244–252 ACM/SIAM.

[Darling et al., 2004a] Darling, A. C. E., Mau, B., Blattner, F. R. & Perna, N. T.

(2004a) Mauve: multiple alignment of conserved genomic sequence with rearrange-

ments. Genome Research, 14, 1394–1403.

[Darling et al., 2004b] Darling, A. E., Mau, B., Blattner, F. R. & Perna, N. T. (2004b)

GRIL: genome rearrangement and inversion locator. Bioinformatics, 20, 122–124.

[Delcher et al., 1999] Delcher, A. L., Kasif, S., Fleischmann, R. D., Peterson, J., White,

O. & Salzberg, S. L. (1999) Alignment of whole genomes. Nucleic Acids Research,

27, 2369–2376.

[Delcher et al., 2002] Delcher, A. L., Phillippy, A., Carlton, J. & Salzberg, S. L. (2002)

Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids

Research, 30, 2478–2483.

31



[Fraleigh, 1999] Fraleigh, J. B. (1999) A First Course in Abstruct Algebra. 6th edition,,

Addison-Wesley.

[Gabow & Tarjan, 1985] Gabow, H. N. & Tarjan, R. E. (1985) A linear-time algorithm

for a special case of disjoint set union. Journal of Computer and System Sciences,

30, 209–221.

[Hannenhalli, 1996] Hannenhalli, S. (1996) Polynomial algorithm for computing

translocation distance between genomes. Discrete Applied Mathematics, 71, 137–

151.

[Hannenhalli & Pevzner, 1995] Hannenhalli, S. & Pevzner, P. A. (1995) Transforming

men into mice (polynomial algorithm for genomic distance problem). In Proceedings

of the 36th IEEE Symposium on Foundations of Computer Science (FOCS1995) pp.

581–592 IEEE Computer Society.

[Hannenhalli & Pevzner, 1999] Hannenhalli, S. & Pevzner, P. A. (1999) Transform-

ing cabbage into turnip: polynomial algorithm for sorting signed permutations by

reversals. Journal of the ACM, 46, 1–27.

[Kaplan et al., 2000] Kaplan, H., Shamir, R. & Tarjan, R. E. (2000) Faster and simpler

algorithm for sorting signed permutations by reversals. SIAM Journal on Computing,

29, 880–892.

[Kececioglu & Ravi, 1995] Kececioglu, J. D. & Ravi, R. (1995) Of mice and men: algo-

rithms for evolutionary distances between genomes with translocation. In Proceedings

of the 6th ACM-SIAM Symposium on Discrete Algorithms (SODA1995) pp. 604–613

ACM/SIAM, San Francisco.

[Kececioglu & Sankoff, 1993] Kececioglu, J. D. & Sankoff, D. (1993) Exact and approx-

imation algorithms for the inversion distance between two permutations. In Proceed-

ings of the 4th Annual Symposium on Combinatorial Pattern Matching (CPM1993),

(Apostolico, A., Crochemore, M., Galil, Z. & Manber, U., eds), vol. 684, of Lecture

Notes on Computer Science pp. 87–105 Springer-Verlag.

32



[Lin et al., 2005] Lin, Y. C., Lu, C. L., Chang, H.-Y. & Tang, C. Y. (2005) An efficient

algorithm for sorting by block-interchanges and its application to the evolution of

vibrio species. Journal of Computational Biology, 12, 102–112.

[Lu et al., 2005] Lu, C. L., Wang, T. C., Lin, Y. C., & Tang, C. Y. ROBIN: a tool for

genome rearrangement of block-interchanges. Bioinformatics, In press.

[Meidanis & Dias, 2000] Meidanis, J. & Dias, Z. (2000) An alternative algebraic for-

malism for genome rearrangements. In Comparative Genomics: Empirical and Ana-

lytical Approaches to Gene Order Dynamics, Map Alignment and Evolution of Gene

Families, (Sankoff, D. & Nadeau, J. H., eds), pp. 213–223 Kluwer Academic Pub-

lisher.

[Meidanis & Dias, 2001] Meidanis, J. & Dias, Z. (2001) Genome rearrangements dis-

tance by fusion, fission, and transposition is easy. In Proceedings of the 8th Inter-

national Symposium on String Processing and Information Retrieval (SPIRE2001),

(Navarro, G., ed.), pp. 250–253 IEEE Computer Society.

[Morgenstern, 1999] Morgenstern, B. (1999) DIALIGN 2: improvement of the segment-

to-segment approach to multiple sequence alignment. Bioinformatics, 15, 211–218.

[Morgenstern et al., 1998] Morgenstern, B., Frech, K., Dress, A. & Werner, T. (1998)

DIALIGN: finding local similarities by multiple sequence alignment. Bioinformatics,

14, 290–294.

[Pevzner & Tesler, 2003] Pevzner, P. & Tesler, G. (2003) Genome rearrangements in

mammalian evolution: lessons from human and mouse genomes. Genome Research,

13, 37–45.

[Schwartz et al., 2003] Schwartz, S., Kent, W. J., Smit, A., Zhang, Z., Baertsch, R.,

Hardison, R. C., Haussler, D. & Miller, W. (2003) Human-mouse alignments with

BLASTZ. Genome Research, 13, 103–107.

[Tesler, 2002] Tesler, G. (2002) GRIMM: genome rearrangements web server. Bioin-

formatics, 18, 492–493.

33



[Walter et al., 1998] Walter, M. E. M. T., Dias, Z. & Meidanis, J. (1998) Reversal and

transposition distance of linear chromosomes. In Proceedings of String Processing

and Information Retrieval (SPIRE1998) pp. 96–102 IEEE Computer Society.

34


	封面.pdf
	fin.pdf

