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ABSTRACT

A major benefit of ligand-based drug screening approaches is that they can perform
screening even though the drug targets whose three-dimensional structure is not known
enough to permit structure-based virtual screening. In this thesis, we have developed a
L igand-based Screening tool using Support Vector. M achines and data fusion method, termed
LigSeeSVM. We combine structure; descriptors (825 atom pair descriptors) and
physicochemical descriptors (Acceltys Cerius®six thermodynamic and 13 default descriptors)
to characterize compounds’ features. Next,'we used SVM to generate SVM-AP model based
on 825 AP descriptors and SVM-PC model based on 19 physicochemical descriptors. The
predicted scores of both SVM-AP and.SV¥M-PC models are normalized by transferring the
scores to Z-scores. We fused SVM-AP and SVM-PC predicted results using rank combination
to create LigSeeSVM predicted model, respectively. In this study, we used 10 thymindine
kinase substrates, 11 estrogen receptor antagonists, 10 estrogen receptor agonists, 100 GPCR
and GABA 4 ligands, combined with 990 randomly chosen compounds from the ACD or 7300
randomly chosen compounds from the CMC as screening sets. Using these screening sets to
verified the utility of LigSeeSVM on virtual screening. When the true hit rate was 100%, the
false positive rates were 0.3% for TK, 0.6% for ER antagonists, and 0% for ER agonists. The
ROC curves of GPCR and GABAA screening sets also shown that the performance of the
LigSeeSVM is better than other ligand-based virtual screening approaches on these data sets.
The results of the LigSeeSVM using 7300 CMC randomly chosen compounds as compound
database shown that the magjority of compounds with high Z-score also have structures similar
to the known ligands, some compounds with high Z-score but have different structures
compared with the known ligands, and these compounds have more possibility to become
novel, potential lead compounds. Our results suggest that LigSeeSVM is practicaly
applicable for ligand-based virtual screening and offers competitive performance to other
ligand-based virtual screening approaches on these data sets.
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Chapter 1

Introduction

1.1 Motivations and Purposes

The pharmaceutical industry is under ever-increasing pressure to increase its success
rate in bringing drugs to the market. It is estimated that on average it can take 14 years
to bring a compound from hit identification through to an approved drug [1], and the
costs associated with this process are enormous. In recent years, because the
development of computer hardware and software, computational screening of
compound databases has become increasingly popular in pharmaceutical research. It
will save much time and cost to find novel, potential inhibitors for diseases with aids of
computer. The computational -approaches used.for virtual screening can be classified
into two categories: structure-based” screening (often referred to as docking) and
screening using active compounds as templates (ligand-based virtual screening). For
ligand-based methods, the strategy is to use information provided by a compound or set
of compounds that are known to bind to the desired target and to use this to identify

other compounds in the corporate database or external databases with similar properties

[1].

Currently, the applications of structure-based virtual screening approaches relying
on a detailed three-dimensional model of the receptor binding pocket [2], but some
drug targets for small molecule therapeutics are proteins whose three-dimensional
structures are not known to permit structure-based virtual screening [3]. For example,
most membrane spanning G-protein-coupled receptors (GPCRS) or ion channels are 3D
structures unavailable. Besides, GPCRs or ion channels were the targets for nine of the
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top20 selling prescription drugs worldwide in the year 2000 [3, 4]. Therefore, we

followed an entirely ligand-based approach to GPCRs and GABA 4 receptors.

In the study of pharmacological properties of drugs and other chemical agents, a
variety of molecular descriptors have been developed and routinely used for describing
physicochemical and structural properties of chemical agents [5-9]. These descriptors
were initially developed for the construction of quantitative structure-activity
relationship (QSAR) and quantitative structure-property relationship (QSPR) of
structurally related compounds [5, 10]. There are many different approaches to
generate descriptors. These include both 2D and 3D methods. Most of the 2D methods
are based upon graph theoretic indices (structural indices). Although these structural
indices represent different aspects of molecular structures, their physicochemical
meaning is unclear. Besides,-2D.'methods: cannot distinguish stereoisomers [11]. A
major benefit of 2D methods is that'the former neither requires conformational search
nor structural alignment. Accordingly, 2D _methods are easily automated and adapted to
task of database searching, or virtual screening [12]. The major molecular descriptors
used in this work are derived from 2D molecular topology (825 different atom pair
descriptors) [11]; however, for the disadvantages of the 2D methods, we used
secondary kind of descriptors: Accelrys Cerius’ QSAR module 6 thermodynamic and

13 default descriptors [13].

Support vector machines (SVMs) have been applied to a wide rang of
pharmacological and biomedical problems including drug-likeness, drug blood-brain
barrier penetration prediction, drug-receptor binding, and drug metabolism [5, 14-18].
In this study, support vector machines (SVMs) were used for virtual screening because

they are known to be a powerful technique. The theory of SVMs has been extensively
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described in many literatures [5]. Thus only a brief description is given here. SVMs are
supervised learning algorithms proposed by Vapnick (1995). Data examples |abeled as
positive or negative are projected into high-dimensional feature space using a kernel,
and the hyper-plane in the feature space is optimized to maximize the margin between

the positive and negative examples [19].

The results of this study suggests that our approach, which combines SVMs and

virtual screening, can be explored as a general drug discovery tool and applied to a

large variety of available datasets of biologically active compounds.

1.2 Thesis Overview

We have used LibSVM 2.71 (htip:/mmw.csie.ntu.edu.tw/~cjlin/libsvm/), developed by

Lin et a. [20], on virtua database screening.-1n chapter 2, we used 10 thymidine kinase
substrates, 11 estrogen receptor antagenists, 10 estrogen agonist, 100 GPCR and GABAAa
ligands and combined with 990 randomly chosen compounds from ACD or 7300 randomly
chosen compounds from CMC to form fourteen screening sets. After preparing screening sets,
we extracted two kinds of features to describe physicochemical and structura properties of
compounds. Next, we used LibSVM 2.71 with different screening sets to evaluate the

performance on virtual screening.

In chapter 3, we evaluated the screening performance of LibSVM with screening sets (TK,
ER antagonists, ER agonists, GPCR, and GABA 4 ligands) combined with 990 ACD randomly
chosen compounds by the true hit, hit rate, goodness-of-hit (GH) and ROC curves. We used
three combinations of atom pair descriptors only, physicochemical descriptors only, and rank
combination to compare screening utilities with other ligand-based virtual screening approach.
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The results showed that the rank combination was the most reliable.

In chapter 4, we applied the LibSVM with screening sets (TK, ER antagonists, ER agonists,
GPCR, and GABAA, ligands) combined with 7300 CMC randomly chosen compounds. The
results showed that the mgjority of compounds with high Z-score have structures similar to
the known ligands. Some compounds with high Z-score but have different structures
compared with the known ligands, and these compounds have more possibility to become

novel, potential lead compounds.

Chapter 5 presented some conclusions and future perspectives. Our results suggest that
SVM is practically applicable for virtual screening and offer competitive performance to other
ligand-based virtual screening appreach. Combination has great improved the result of drug

screening approach and it could effectively reduce the-number of false positives.



Chapter 2

M ethods and M aterials

The SVM method was proposed by Vapnik [21, 22] on the basis of the Structural Risk
Minimization Principle [21, 23]. It was initially designed to solve pattern recognition
problems [21, 24], but it was later applied to function estimation problems [21, 25]. The
estimated function is a linear expansion in terms of functions defined on a certain subset of
the data (support vectors), and the final number of coefficients in such an expansion does not
depend on the dimensionality of the space of input variables. These two properties make SVM
an especially useful technique for dealing with very large data sets in a high-dimensiond
space [21].

In this study, we used LibSVM 2:71 (http://www.csi e.ntu.edu.tw/~cjlin/libsvm/) [20]. Data

examples labeled as positive or negative are projected into a high-dimensiona feature space
and the hyper-plane in the feature space is optimized to maximize the margin between the
positive and negative [19]. The general flowchart of the virtual screening using LibSVM is

shown in Figure 1.

2.1 Preparation of ACD Screening Databases

A. Thymidine kinase substrates and estrogen receptor antagonists and agonists

Two screening sets designed for virtual screening against TK and ERa antagonists were
proposed by Bissantz et a. [26] in 2000 and retested by Jain in 2003 [27]. A TK library
contained 10 known ligands of TK and 990 randomly chosen molecules from the ACD; an
ERa-antagonists library contained 11 known antagonists of ERa and 990 randomly chosen

molecules from the ACD. The two sats wee downloaded  from



http://jainlab.ucsf.edu/Downloads.html proposed by Jain and the files in the SYBYL mol2

format were converted to the MDL mol format with Corina 3.0 [28] for running Accelrys
Cerius” QSAR module [13]. Besides, the screening set for ERo. agonists included 10 known

agonists [29] and the same 990 molecules as the ERa-antagonists library.

B. GPCR and GABAA ligands

Serotonin, muscarinic, histamine, and GABA ligands (shown in Figure 2) [3] combined
with 40 randomly chosen molecules from the 990 ACD molecules that were used for SVM
training set. A and B are serotonin ligands [30-32]. C (tolterodine), D, and E are muscarinic
antagonists [33-35]. Molecules F—H (bromodiphenhydramine, pyrilamine, and azatadine) are
H1 receptor antagonists. Molecules | — K are. GABAA receptor agonists (diazepam,
alprazolam, and zopiclone).

To test the models that resulted from-these Input structures, GPCRDB (www.gpcr.org) [3,
36] was used to identify 85 GPCR ligands of widely varying chemical structure and 15
GABA agonists, of which nine were variations on the classic benzodiazepine scaffold and
six were of varying chemotypes . Table 1 lists the names and annotated target specificity for
all 100 molecules [3]. As a negative control for all cases, the 990 ACD randomly chosen

mol ecul es described above were used.

2.2 Preparation of CM C Screening Databases

The larger screening set was derived from the drug database, Comprehensive Medicinal
Chemistry (CMC). Using ISIS, the CMC were first filtered with molecular weights between
200 and 500 to yield about 7300 molecules and then removed small fragments and added
hydrogen atoms with Corina 3.0. The structure files of molecules were stored in the MDL mol
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format for running Accelrys Cerius® QSAR module and in the SYBYL mol2 format for
running AP generator.

A TK library contained 10 known TK substrates and 7300 molecules from the CMC; an
ERa-antagonists library contained 11 known antagonists of ERa and 7300 molecules from the
CMC; the screening set of ERa agonists contained 10 known agonists and 7300 molecules
from the CMC. Besides, the screening set of 85 GPCR and 15 GABA ligands also included

the same 7300 CMC molecules.

2.3 Feature Extraction

A. Atom pair descriptors

Atom pair descriptors (AP) were obtained with the AP generator program developed in our
laboratory using an approach propased by Carhart et a. [12, 37]. Figure 3 shows the
definition of atom pair descriptors.: The key components for defining a set of atom pair
descriptors include the definition of atom types and the topological distance bins. An atom
pair is a simple type of substructure defined in terms of the atom types and the shortest path
separation (or graph distance) between two atoms. The graph distance is defined as the
smallest number of atoms along the path connecting two atoms in a molecular structure. The

general form of an atom pair is as follows:

Atom type i --(distance)-- atom type |

where (distance) is the graph distance between atoms i and | in the case of a 2D atom pair

description. (The distance can also be defined as the physical distance between atomi andj in

the case of a3D atom pair description.)



In this study, SYBYL atom types (mol2 format) were utilized as the starting point. In
principle, all SYBYL atom types can be used in the generation of atom pair descriptors. In
order to reduce the number of atom pair descriptors and improve the accuracy, we have
clustered 23 atom types into 10 atom types (Table 2). The tota number of parwise
combinations of al 10 atom types is 55. Furthermore, 15 distance bins were defined in the
interval of graph distance rang from zero (i.e., zero atoms separating an atom pair) to 14. Thus,
atotal of 825 (55 x 15) atom pair descriptors were generated for each molecular structure

[11].
B. Accelrys Cerius” QSAR module default and ther modynamic descriptors

The physicochemical descriptors:6f a compoufd are generated by using Accelrys Cerius?
QSAR module. QSAR module provides a wide variety of descriptors, in this study, we used
two functional families of descriptors; six-descriptorsin the thermodynamic family (Table 3)
and 13 descriptors in the default family.(Table 4) [13]. Each descriptor is briefly described as

follows:

Sum of atomic polarizabilities (Apol): The sum of atomic polarizabilities (Apol)
descriptor computes the sum of the atomic polarizabilities. The polarizabilities are caculated

from the A coefficients used for molecular mechanics calcul ations:
P.= YA

For more information, see Marsali and Gasteiger (1980); Hopfinger (1973).

Dipole moment (Dipole): The dipole moment descriptor is a 3D electronic descriptor that

indicates the strength and orientation behavior of a molecule in an electrostatic field. Both the



magnitude and the components (X, Y, Z) of the dipole moment are calculated. It is estimated
by utilizing partial atomic charges and atomic coordinates. Partial atomic charges are
computed using the charge setup option in the QSAR control panel offering CHARMmM
charging rules, Gasteiger, CNDO2, and Del Re methods. The descriptor uses Debyes units.
Dipole properties have been correlated to longrange ligand-receptor recognition and

subsequent binding.

Radius of gyration (RadOfGyration): The radius of gyration is calculated using the

following equation:

. J(Z R, )]

where N is the number of atoms and X, y, z are the-atomic coordinates relative to the center of

mass.

Molecular surface area (Area):: The molecular surface area descriptor is a 3D spatial
descriptor that describes the van der Waals area of a molecule. The molecular surface area
determines the extent to which a molecule exposes itself to the external environment. This

descriptor is related to binding, transport, and solubility.

Molecular weight (MW): Molecular weight.

Molecular Volume (Vm): A 3D spatial descriptor that defines the molecular volume inside
the contact surface. The molecular volume is calculated as a function of conformation.

Molecular volume is related to binding and transport.

Density (Density): A 3D spatial descriptor that is defined as the ratio of molecular weight

9



to molecular volume. It has the units of g ml™. The density reflects the types of atoms and
how tightly they are packed in a molecule. Density can be related to transport and melt

behavior.

Principal moment of inertia (PM1): Calculates the principal moments of inertia about the
principal axes of a molecule according to the following rules:
€ The moments of inertia are computed for a series of straight lines through the center of

mass. The moments of inertia are given by:
| = z m di2

€ Distances are established along each line proportional to the reciprocal of the square root
of | on either side of the center of mass. The locus of these distances forms an €llipsoidal
surface. The principa moments are associated with the principal axes of the ellipsoid.

€ If al three moments are equal, the molectle is considered to be a symmetrical top. If no
moments are equal, the mol ecul eis.considered to be an unsymmetrical top.

For more information about this descriptor, see'Hill (1960).

Number of rotatable bonds (Rotlbonds): Counts the number of bonds in the current
molecule having rotations that are considered to be meaningful for molecular mechanics. All
terminal H atoms are ignored (for example, methyl groups are not considered rotatable).

Hbond acceptor: Number of hydrogen-bond acceptors.

Hbond donor: Number of hydrogen-bond donors.

Energy: The energy of the selected compound.

10



Chiral centers: Number of chira center (R or S) in amolecule.

AlogP and molar refractivity (MolRef): LogP (the octanol/water partition coefficient)
and molar refractivity are molecular descriptors that can be used to relate chemica structure
to observed chemical behavior. LogP is related to the hydrophobic character of the molecule.
The molecular refractivity index of a substituent is a combined measure of its size and
polarizability.

The QSAR descriptor ALogP and molar refractivity are calculated using the method
described by Ghose & Crippen (1989). In this atom-based approach, each atom of the
molecule is assigned to a particular class, with additive contributions to the total value of logP
and molar refractivity.

For more information, see Leffler and Grunwald'(1963).

AlogP98: The AlogP98 descriptor. is-an. implementation of the atom-type-based AlogP

method using the latest published set.of parameters (Ghose et al. 1998).

Desolvation free energy for water (Fuoo) and octanol (Fox): Fot @and Fyxo are
physiochemical properties associated with LFE models of a molecule. These properties have
proven useful as molecular descriptors in structure-activity analyses. All LFE computations
are based solely on the connectivity of the atoms in a molecule. LFE computations are not
conformationally dependent.

Foct IS the 1-octanol desolvation free energy and F,o is the aqueous desolvation free energy
derived from a hydration shell model developed by Hopfinger, where Fo: and Fy20 arein kcal
mol ™.

For more information, see Hopfinger (1973; 1980) Pearlman (1980).
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Heat of formation (Hf): The enthalpy for forming a molecule from its constituent atoms, a
measure of the relative thermal stability of a molecule. This descriptor is calculated using the
MNDO semi-empirical molecular orbital method of Dewar. MNDO is the most rigorous
quantum-chemical technique available in QSAR+ and has a wide range of applicability in
conformational analysis, intermolecular modeling, and chemical reaction modeling. The atom
limit of MNDO is 300 atoms or 300 atomic orbitals (whichever is less) per molecule. The
atomstreated by MNDO are: H, B, C, N, O, F, Al, Si, P, S, and Cl.

For more information, see Dewar amd Thiele (1977a; 1977b).

2.4 Build LigSeeSVM prediction Model

A. Dividedata set into training set:and testing set

To choose the known ligands-used.as the positive examples of the SVM training set, we

calculated the molecular similarity. ‘Euclidean distance was used as the measure of similarity

in the multidimensional descriptor space. The latter distance dj; between any two compoundsii

and j in N-dimensional descriptor space was calculated as

where Xin and Xjn are the values of nth descriptor for compoundsi and j, respectively, and the
summation is over all descriptors [38]. Based on UPGMA agorithm [39], we created arooted
tree of the known ligands. Compounds with the maximum distance (least similarity) were
chosen as the positive examples of the SVM training set combined with randomly chosen
molecules from 990 ACD molecules or 7300 CM C molecules as the negative examples. In the
SVM training set, the ratio of the number of negative and positive data is about 20. For
example, in the ACD screening set, the SVM training set consisted of two or three known
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ligands as positive examples and 40 randomly chosen compounds from 990 ACD screening
set as negative examples. The remained known ligands and 950 ACD molecules made up the
SVM testing set. In the CMC screening set, we chose half of the known ligands as positive
examples and 200 randomly chosen compounds from 7300 CMC screening set as negative
examples to make up the SVM training set, and the SVM testing set was composed of the

remained half known ligands and 7100 CMC molecules.

B. Add -b and —wi parameters

When training a SYM model, add —b parameter allows LibSVM to train a model for
probability estimates. Next, we transfer the probability score to Z-score and sort according to
Z-score. Besides, as we described earlier, in the SVYM training set, the ratio of negative and
positive data is about 20. In other words, our data'is unbalanced, so we add —wi parameter to

give the penalty for class “-1” is2, larger than class ©1”.

C. Rank combination

In this study, we combined the results of SYM-AP and SVM-PC using a “rank data fusion”

method in which a new rank is generated by sorting the average rank of SVM-AP and

SVM-PC. Application of this hybrid method to each test set to improve the performance of

both SVM-AP and SVM-PC predicted models.

13



Chapter 3

Evaluation LigSeeSVM on ACD Database

We have made seven screening sets against different target proteins, thymidine kinase (TK),
estrogen receptor with antagonists (ER-antagonists), estrogen receptor with agonists
(ER-agonists), serotonin receptor, muscarinic receptor, histamine receptor, and GABAA
receptor. Each screening set includes several known active ligands and 990 ACD randomly
selected compounds. Five common metrics were used to evauate the screening quality,
including the true hit (the percentage of active ligands retrieved from the database), hit rate
(the percentage of active ligands in the hit list), goodness-of-hit (GH), ROC curves, and false

positive rate.

3.1 ThymidineKinase

A. Preparation of screening data set

To evauate the virtua screening utility of SVM, we used the thymidine kinase benchmark

from Bissantz et al. [26]. It consisted of 10 known ligands (Figure 4) and 990 compounds

ACD screening set mentioned above. We chose two known ligands (1kim.THM and

2ki5.AC2) based on the UPGMA rooted tree (Figure 5A) as positive examples of SVM

training set and 40 randomly chosen compounds from 990 ACD screening set as negative

examples. The SVM testing set including 8 remained known ligands and 950 ACD molecules.

B. Virtual screening of TK substrates

14



Table 5 shows the result of the remaining 8 TK known ligands in SVM testing set using
different descriptors. The results of different descriptors are also shown in Figure 5.

Some common factors were used to evaluate the screening quality, including coverage (the
percentage of active ligands retrieved from the database), yield (the percentage of active
ligands in the hit list), false-positive (FP) rate, enrichment, and goodness-of-hit (GH). The
coverage (true positive rate) is defined as Ah/A (%),An/Th (%) is the yield (hit rate), and the
FP rate is defined as (Th— Ah)/(T— A) (%). The enrichment is defined as (Ah/Th)/(A/T). Ah
is the number of active ligands among the Th highest ranking compounds, which is called the
hit list, A is the total number of active ligands in the database, and T is the total number of

compounds in the database. The GH score is defined as [40]

GH :(Ah(3A+Th)j/(l_ T, —Ahj

4T, A T-A

In the case of TK A and T are 10-.and. 1000, respectively.

The main objective of this study wasto evaluate the behavior of different predicted models
in virtual screening. Figure 6 shows the results of SYM-AP, SVM-PC, and LigSeeSVM. We
tested SVM with different descriptors to evaluate the performance and the search behavior.
The screening quality generally improved in the case of LigSeeSVM. As shown in Figure 6A,
the hit rates for different predicted models are 50% (SVM-AP), 40% (SVM-PC), and 72.7%
(LigSeeSVM) when the TP rate is 100%. In the case of LigSeeSVM and the TP rate is 100%,

the GH scoreis 0.79 (Figure 6B) and the FPrate is 0.3% (Table 6).

Table 6 shows the comparative false positive rates on the same target protein and screening
database at true positive rates 80% and 100% (Surflex [3]). For the true positive rate of 100%,
the FP rate for LigSeeSVM is 0.3%. Besides, the FP rates for Surflex is 0.7%, SVM-AP is

0.8%, and SVM-PC is 1.3%. The performance of LigSeeSVM is better than Surflex.
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3.2 Estrogen Receptor

A. Preparation of screening data set

We have applied SVM to virtual screening against ER o with a testing sets composed of
11 known antagonists of ER« (Figure 7), 10 known agonists of ER « (Figure 8) [29] and
990 randomly selected compounds from ACD (Available Chemicals Directory). As we
described earlier, based on the UPGMA rooted tree (Figure 5B, Figure 5C), we chose two
known ER o antagonists (EST02 and EST11) as positive examples of the SVM training set
and 40 randomly chosen molecules from 990 ACD screening set, and the SVM testing set was
composed of the remained 9 known antagonists and 950 ACD compounds. In the ER «
agonists case, we chose three known'ER o agonists (ESA0L, ESA04, and ESAQ9) as positive
examples of the SVM training- set' and 40 randomly chosen molecules from 990 ACD
screening set, and the SVM testing set-including remained 7 known agonists and 950 ACD

molecules.

B. Virtual screening of ER ¢ antagonists and agonists

Table 7 shows the result of the ERa antagonists and Table 9 shows the result of ER
agonists in SVM testing set using different predicted models. The results of different
predicted models are also shown in Figure 9(ER ¢ antagonists). and Figure 10(ER «
agonists). As shown in Figure 9A, the hit rates of ER« antagonists for different predicted
models are 23% (SVM-AP), 17.3% (SVM-PC), and 69.2% (LigSeeSVM) when the TP rateis
100%. In the case of LigSeeSVM and the TP rate is 100%, the GH score is 0.77 (Figure 9B)
and the FP rate is 0.6% (Table 8). Table 8 shows the comparative false positive rates on the
same target protein and screening database at true positive rates 80% and 100%. For the true
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positive rate of 100%, the FP rate for LigSeeSVM is 0.6%. Besides, the FP rates for Surflex is
13.4%, SVM-AP is 3.2%, and SVM-PC is 4.5%. The performance of LigSeeSVM is much
better than Surflex. For the ER« agonists case, as shown in Figure 10, the hit rates for
different predicted models are 15.9% (SVM-AP), 28% (SVM-PC), and 100% (LigSeeSVM)
when the TP rate is 100%. Table 10, 11 shows top ranked 10 compound structures in the case

of ERa agonists.

3.3 GPCR and GABA Receptor

A. Preparation of screening data set

To compare with Surflex-Sim [3]; we used the same molecules (Figure 2) which described
in the paper as positive examples.of SVM training set and combined with 40 randomly chosen
compounds from 990 ACD screening, et as negative examples of training set. A and B are
serotonin ligands. C (tolterodine), ‘D;-and E are ‘muscarinic antagonists. Molecules F—H
(bromodiphenhydramine, pyrilamine, and azatadine) are H1 receptor antagonists. Molecules |
— K are GABAA receptor agonists (diazepam, aprazolam, and zopiclone). The same
molecules (Table 1) which described in the paper [3] aso used to test the SYM models. The
serotonin SVM testing set including 29 known serotonin ligands and 950 ACD molecules.
The muscarinic SVM testing set was composed of 43 known muscarinic ligands (Table 1) and
950 ACD molecules. Again, the histamine SVM testing set consisted of 49 known histamine
ligands (Table 1) and 950 ACD molecules. The GABA SVM testing set including 15 known

GABA ligands (Table 1) and 950 ACD molecules.

B. Virtual screening of GPCR and GABAA
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Figure 11A shows the ROC curve of muscarinic using SVM, and Figure 11B shows the
ROC curve of muscarinic using Surflex-Sim. For the muscarinic case, the FP rate of
LigSeeSVM is 0.21 when the TP rate is 1. Figure 12A shows the ROC curve of histamine
using SVM, and Figure 12B shows the ROC curve of histamine using Surflex-Sim. For the
histamine case, the FP rate of LigSeeSVM is 0.14 when the TP rate is 1. Figure 13A shows
the ROC curve of GABAA using SVM, and Figure 13B shows the ROC curve of GABAA
using Surflex-Sim. For the GABA, case, the FP rate of LigSeeSVM is 0.02 when the TP rate
is 1. Figure 14A shows the ROC curve of serotonin using SVM, and Figure 14B shows the
ROC curve of serotonin using Surflex-Sim. For the serotonin case, which was built on just
two ligands of vastly different structure than the test ligands, the FP rate of LigSeeSVM is

0.29 higher than other three cases when the TPrateis 1.

18



Chapter 4

Evaluation LibSVM on CMC Database

We have made seven screening sets against different target proteins, thymidine kinase (TK),
estrogen receptor with antagonists (ER-antagonists), estrogen receptor with agonists
(ER-agonists), serotonin receptor, muscarinic receptor, histamine receptor, and GABAA
receptor. Each screening set includes the same known active ligands as we described earlier

and 7300 compounds from CMC.

4.1 ThymidineKinase

A. Preparation of screening data set

To evauate the virtual screening utility- of 'SVM, we used the thymidine kinase
benchmark from Bissantz et a.. It consisted of 10" known ligands and 990 compounds ACD
screening set mentioned above. We used the same 10 known ligands but the 7300 compounds
from CMC displaced the 990 ACD compounds. Based on the UPGMA rooted tree (Figure
5A), we chose 5 known ligands (1kim.THM, 1e2m.HPT, 2ki5.AC2, 1ki2.GA2, 1ki3.PE2) as
positive examples of SVM training set and 200 randomly chosen compounds from 7300 CMC
compounds as negative examples. The SVM testing set including 5 remained known ligands

and 7100 CMC molecules.

B. Virtual screening of TK substrates

Table 12 shows that the remaining 5 known ligands in which they ranked in a screen

including 7100 randomly chosen compounds from CMC. The ranks of the 5 known ligands
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were: 1, 2, 3, 4, 5. Table 13 shows the top ranked 10 compounds’ structures in the case of

LigSeeSVM.

4.2 Estrogen Receptor

A. Preparation of screening data set

We have applied SVM to virtual screening against ER ¢ with a testing sets composed of
11 known antagonists of ERa, 10 known agonists of ER ¢ and 7300 randomly selected
compounds from CMC. Based on the UPGMA rooted tree (Figure 5B, Figure 5C), we chose 5
known ligands (ESTO01, EST02, EST03, EST08, EST09 for ER antagonists, and ESAOQL,
ESAO03, ESA04, ESA08, ESAQ9 for ER agonists) as positive examples of SVM training set
and 200 randomly chosen compounds from 7300 CME compounds as negative examples. The

SVM testing set including 5 remained:known ligands and 7200 CM C molecules.

B. Virtual screening of ER ¢ antagonists and agonists

Table 14 shows that the remaining 6 known ER o antagonists in which they ranked in a
screen including 7100 randomly chosen compounds from CMC. The ranks of the 6 known
antagonists were: 1, 2, 3, 4, 5, 7. Table 15 shows the top ranked 10 compounds’ structures in
the case of LigSeeSVM. Table 16 shows that the remaining 5 known ER ¢ agonists in which
they ranked in a screen including 7100 randomly chosen compounds from CMC. The ranks of
the 5 known agonists were: 1, 2, 3, 4, 5. Table 17 shows the top ranked 10 compounds’

structures in the case of LigSeeSVM.
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4.3 GPCR and GABAA Receptor

A. Preparation of screening data set

Based on the screening utility of SVM described above, we applied SVM to virtual
screening for GPCR and GABA with a screening set including 100 known ligands (Table 1)
and 7300 molecules from the CMC. According to the UPGMA rooted tree, we chose half
known ligands as positive examples of SVM training set and 200 randomly chosen
compounds from 7300 CMC compounds as negative examples. The SVM testing set

including remained known ligands and 7100 CM C molecules.

B. Virtual screening of GPCR and:GABA ligands

For the serotonin case, Table 18 shewsthat the top ranked 10 compounds structures of the
LigSeeSVM in a screen including 7100.randomly chosen compounds from the CMC. For the
muscarinic case, Table 19 shows that the top ranked 10 compounds structures of the
LigSeeSVM in a screen including 7100 randomly chosen compounds from the CMC. Again,
for the histamine case, Table 20 shows that the top 10 ranked compounds structures of the
LigSeeSVM in a screen including 7100 randomly chosen compounds from the CMC. For the
GABA case, Table 21 shows that the top ranked 10 compounds structures of the LigSeeSVM

in a screen including 7100 randomly chosen compounds from the CMC.

21



Chapter 5

Conclusions

5.1 Summary

In summary, the results presented here suggests that the SVM approach is well suited to the
drug screening problem and yields a prediction accuracy superior to the earlier study derived
from Surflex-Sim. The majority compounds with high Z-score have structures similar to the
known ligands. Some compounds with high Z-score have different structures compared with
the known ligands, and these compounds have more possibility to become the novel, potential
lead compounds. Moreover, our study also shows that the strategy of rank combination have

great improved the results of drug sereening.

5.2 Major Contributions and Future Perspectives

To apply LibSVM to virtual screening, a suitable compound descriptor is essential. The
major molecule descriptors used in this work are derived from 2D molecular topology
(825 different atom pair descriptors). The major disadvantages of 2D ligand-based drug
screening are 2D methods cannot describe compound physicochemical properties and
distinguish stereoisomers. By integrating a number of Accelrys Cerius® QSAR module
default and thermodynamic descriptors, we improved the disadvantages of 2D ligand-based
drug screening. The virtual screening utility of SVM has been evaluated by 14 screening sets
including TK substrates, ER antagonists, ER agonists, GABAA ligands, three kinds of GPCR
ligands combined with ACD or CMC databases. The screening performance of SVM is

superior to the other public ligand-based approach.
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Earlier in this lab, we have applied GEMDOCK to virtual screening for the envelope
protein of dengue virus to screen potential inhibitors from the CMC. The nine candidates we
recommended have been tested by biological experiments (cooperation with Dr. Yun-Lian
Yang) and we found that MCMC00007079 could suppress the activity of dengue virus with
concentrations of 1 mM and 10 mM. Using this compound as a training model of SVM to
screen other potential inhibitors from the chemical database will be a good start to refine them

by lead optimization.

The use of descriptors unrelated to a particular type of properties or biological activity
likely generates noise in a statistical learning system, which may affect the prediction
accuracy of that system. Thus, the issue of feature selection in the SVM framework has
received attention in the recent years. In the future, feature selection approach will be the
point to be developed to avoid-a high variance for-unseen molecules (overfitting) and to

improve the prediction accuracy of SVM.
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Table 1. 100 positive compounds of GPCR and GABA studied in thisthesis, with annotation
of known targets[3].

GPCR GABA,
Molecule name Serotoninreceptor  Muscarinic receptor  Histaminereceptor  GABA 4 receptor
ligand ligand ligand ligand
abecarnil X
alosetron X
alpidem X
amitriptyline X X X
amoxapine X X
astemizole X
atropine X
bcce? X
benztropine X X
bethanechol X
bromolysergide X
brompheniramine X X
bupropion X
carbachol X
carbinoxamine X
cetirizine X
chlorpheniramine X X
chlorpromazine X X X
clemastine X
clobazam X
clomipramine X X
clozapine X X X
cocaine X
cyproheptadine X X
darifenacin X
desipramine X X
dicyclomine X
dolasetron X
dotarizine X
doxepin X X
estazolam X
fluphenazine X X
flutoprazepam X
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granisteron
halazepam

hal operidol
hydroxyzine
iloperidone
imipramine
itasetron
ketanserin
levocabastine
lidocaine
loratadine
loxapine
maprotiline
meclizine
mesoridazine
metergoline
methotrimeprazine
methscopolamine
methysergide
metitepine
mianserin
midazolam
molindone
nefazodone
nortriptyline
olanzapine
ondansetron
oxetorone
oxybutynin
perospirone
perphenazine
phenindamine
phenoxybenzamine
pilocarpine
pimozide
pindolol
pizotyline

prazepam
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prochlorperazine X
procyclidine X
promethazine X
protriptyline X
guazepam

ramosteron X

risperidone X

ritanserin X

sertindole X X
suriclone

telenzipine X
terfenadine

tetrazepam

thiethylperazine

thioridazine X
thiothixene X
tiotropium X
trazodone

triazolam

trifluoperazine X
triflupromazine X
trimipramine X

tripelennamine

triprolidine

tropisetron X
zaleplon

Ziprasidone X
zolpidem

zotepine X

®Note: beee Is Ethyl /3 -Carboline-3-carboxylate
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Table 2. Ten atom types used for atom pair descriptors [11].

Atomtype  Description Atom type mol 2 format
1 Ca aromatic carbons Car
2 Cna nonaromatic carbons C3,C2 C.1, andC.cat
3 Na aromatic nitrogen N.ar
4 N.na nonaromatic nitrogen N.3, N.2, N.1, N.am, N.4,
and N.pl
5 03 oxygen atomsin the sp3 hybridization state 0.3
6 0.2 oxygen atomsin the sp2 hybridization state 0.2
7 S all sulfur atoms S.3,S.2,S.0, and S.O2
8 P3 phosphorus atoms PR3
9 X halogen atoms F, Cl, Br,and |
10 other atoms The other atom types

m
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Table 3. Six thermodynamic descriptors available in Accelrys Cerius® QSAR+ module [13]

Symbol Description

AlogP Log of the partition coefficient

AlogP9o8 Log of the partition coefficient, atom-type value
Fh20 Desolvation free energy for water

Foct Desolvation free energy for octanol

Hf Heat of formation

Mol Ref Molar refractivity
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Table 4. 13 default descriptors available in Accelrys Cerius® QSAR+ module [13]

Symbol Description

Apol Sum of atomic polarizabilities

Dipole-mag The strength and orientation behavior of amolecular in an
electrostatic field

RadOfGyration The radius of gyration

Area Molecular surface area

MW Molecular weight

Vm Molecular volumn

Density Density

PMI-mag Principal moments of inertia

Rotlbonds Number of rotatable

Hbond acceptor Number of hydrogen-bond acceptors

Hbond donor Number of hydrogen-bond donors

Energy The energy of the compound

Chira centers Number of chiral center (R or S) in amolecule
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Table 5. Accuracies of three kinds SVM models for 8 TK test substrates.

thymidine kinase substrate

SVM-AP SVM-PC LigSeeSVM
name Z-score rank Z-score rank score® rank”
1le2k 8.10 3 7.04 9 6 2
1le2m 6.51 11 5.39 17 14 7
le2n 3.89 16 471 20 18 11
1le2p 6.23 13 7.88 4 8.5 5
1ki2 8.72 1 7.92 2 15 1
1ki3 7.62 9 7.88 5 7 4
1ki6 6.16 14 6.44 11 125 6
1ki7 8.04 4 7.43 8 6 3

®the average rank of SVM-AP and SVM-PC
® sort according to the average rank of SYM-AP and SVM-PC
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Table 6. Comparison our three SVM models with Surflex-Sim on false positive rates for

thymidine kinase substrates and ACD database at true positive rates 80% and 100%.

false positives from random ligands, %

thymidine kinase substrate

TP, % Surflex-Sim? SVM-AP SVM-PC LigSeeSVM®
80 0.3 0.7 05 0.0
100 0.7 0.8 13 0.3

% results directly summarized from [3]

® sort according to the average rank of SVM-AP and SVM-PC
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Table 7. Accuracies of three kinds SVM models for 9 ER test antagonists.

estrogen receptor antagonist

SVM-AP SVM-PC LigSeeSVM
name Z-score rank Z-score rank score® rank”
ESTO1 541 14 414 17 155 7
ESTO3 2.06 39 5.74 3 21 11
EST04 5.72 7 2.58 39 23 12
EST05 5.67 9 5.77 2 55 3
ESTO06 5.72 4 5.25 6 5 1
ESTO7 5.72 5 5.49 5 5 2
ESTO08 5.56 13 1.90 52 325 15
EST09 4.36 21 5.83 1 11 5
EST10 5.67 10 411 18 14 6

®the average rank of SVM-AP and SVM-PC
® sort according to the average rank of SYM-AP and SVM-PC
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Table 8. Comparison our three SVM models with Surflex-Sim on false positive rates for

estrogen receptor antagonists and ACD database at true positive rates 80% and 100%.

false positives from random ligands, %

estrogen receptor antagonist

TP, % Surflex-Sim? SVM-AP SVM-PC LigSeeSVM®
80 0.0 0.7 12 04
100 134 3.2 45 0.6

% results directly summarized from [3]

® sort according to the average rank of SVM-AP and SVM-PC
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Table 9. Accuracies of three kinds SVM models for 7 ER test agonists.

estrogen receptor agonist

SVM-AP SVM-PC LigSeeSVM
name Z-score rank Z-score rank score® rank”
ESA02 8.12 2 13.71 3 25 1
ESA03 1.40 44 8.66 5 24.5 7
ESA05 9.18 1 0.28 25 13 5
ESA06 8.67 4 13.88 1 25 2
ESAO7 8.04 6 13.86 2 4 3
ESA08 1.46 38 8.37 6 22 6
ESA10 6.30 7 13.70 4 55 4

®the average rank of SVM-AP and SVM-PC
® sort according to the average rank of SYM-AP and SVM-PC



Table 10. Top ranked 10 compounds of our three SVM models on screening ER agonists from
the ACD chemical database.

SVM-AP SVM-PC LigSeeSVM
ID Structure ID Structure ID Structure
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Table 11. Theremaining 5 TK known ligands in which they ranked in a screen including

7100 randomly chosen compounds from CMC.

thymidine kinase substrate

SVM-AP SVM-PC LigSeeSVM
name Z-score rank Z-score rank score® rank”
1e2n 15.24 1 27.91 2 15 1
1e2p 14.59 3 30.89 1 2 2
1ki6 14.79 2 18.46 4 3 3
1e2k 11.80 6 27.61 3 4.5 4
1ki7 14.55 4 17.39 6 5 5

®the average rank of SVM-AP and SVM-PC
® sort according to the average rank of SYM-AP and SVM-PC
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Table 12. Top ranked 10 compounds of the LigSeeSVM on screening TK ligands from the
CMC chemical database.

Rank ID Structure Z-score?

1 1e2n_hmitt J 21.57
0)\N : °

2 1e2p_dhbt 7 2274
OJ\N ‘

3 1ki6_ahiu i 16.63

4 1e2k_mct i 19.70

5 1ki7_idu S 15.97
»\JT

6 MCMC00005826 e 8.58
A )

7 MCMC00004760 oy 7.00

8 MCMC00000973 oH f/NYNHZM 6.82
Xy

9 MCMC00004622 T 6.57

0:< JN CH

10 MCMC00007639 E@i - 5.39
HOY N ]
pee

?the average Z-score of SVM-AP and SVM-PC
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Table 13. The remaining 6 ER known antagonists in which they ranked in a screen including

7100 randomly chosen compounds from CMC.

estrogen receptor antagonist

SVM-AP SVM-PC LigSeeSVM
name Z-score rank Z-score rank score® rank”
EST04 10.47 1 17.92 4 75 5
ESTO05 10.83 7 19.12 2 4.5 3
ESTO06 11.33 1 18.88 3 2 2
ESTO7 11.03 5 17.88 5 5 4
EST10 11.19 2 19.30 1 15 1
ESTI1 11.00 6 11.01 15 10.5 7

®the average rank of SVM-AP and SVM-PC
® sort according to the average rank of SYM-AP and SVM-PC
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Table 14. Top ranked 10 compounds of the LigSeeSVM on screening ER antagonists from the
CMC chemical database.

Rank ID Structure Z-score?
1 EST10 o o 15.25
0
A
\‘Nf ’
2 ESTO06 el 15.10
L0 o
Y
O
3 ESTO05 RSO o 14.97
O o
¢
O
4 ESTO7 o0 14.45
L
L
h)
@
O O
O”j
6 MCMCO0006676 | 11" - 11.21
ohe
7 EST11 Y. 11.01
8 MCMC00007662 & O N 12.62
ﬁ'@
o~
9 MCMC00004449 o0 ”‘Q 11.66
1 MCM 1 - 12.94
0 CMC0000538 =, MD 9

?the average Z-score of SVM-AP and SVM-PC
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Table 15. The remaining 5 ER known agonists in which they ranked in a screen including

7100 randomly chosen compounds from CMC.

estrogen receptor agonist
SVM-AP SVM-PC LigSeeSVM
name Z-score rank Z-score rank score® rank”
ESAQ02 23.14 3 17.93 1 2 1
ESA05 23.37 2 16.81 5 35 2
ESA06 22.69 4 17.43 3 35 3
ESA10 22.66 5 17.68 2 35 4
ESA07 2221 6 17.23 4 5 5

®the average rank of SVM-AP and SVM-PC
® sort according to the average rank of SYM-AP and SVM-PC
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Table 16. Top ranked 10 compounds of the LigSeeSVM on screening ER agonists from the
CMC chemical database.

Rank ID Structure Z-score?
1 ESA02 . 20.53
99
O
2 ESA05 0 20.09
3 ESA06 O ° 20.06
4 ESA10 O ° 20.17
5 ESA07 ' ° 19.72
6 MCMC00010094 |. 7.18
<zm
7 MCM C00007029 sp /70 5.35
)
QT
8 MCM C00006241 o 4.70
O
el
e
9 MCM C00006985 [ 4.23
08
10 MCM C00006197 “ 6.12
HOs 7 ‘ O o
)

?the average Z-score of SVM-AP and SVM-PC




Table 17. Top ranked 10 compounds of the LigSeeSVM on screening serotonin receptor

ligands from the CM C chemical database.

Rank ID Structure Z-score®
1 chlorpromazine - 6.05
2 MCMC00005489 | - 5.97
9
<) By
3 tropisetron 5.80
4 MCMC00003399 C 5.75
cl Q ] O
5 MCMC00000657 | 1 5.80
‘ cl
6 MCMC00002871 O 5.66
NS
7 MCMC00002701 ( 5.60
A
8 MCMC00009837 S 5.53
&
a Q i O
9 MCMC00000030 | " 5.66
) ¥
10 MCMC00005368 . dQC@ 5.53
)
©

?the average Z-score of SVM-AP and SVM-PC
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Table 18. Top ranked 10 compounds of the LigSeeSVM on screening muscarinic receptor
ligands from the CM C chemical database.

Rank ID Structure Z-scorée®
1 trifluoperazine {:}\_\ 7.73
i%ase
2 triflupromazine ~ 7.00
3 prochlorperazine TN 7.33
| NW\
heBe

4 MCMC00004614 i e F 6.49
O K

5 MCMC00003532 "N 5.64
O

6 chlorpromazine (9 6.59

7 MCMC00001866 H*C/EH]]\ 5.25
SOsL

8 MCMC00004241 512
X, @

9 MCMC00000861 - 4.96
oot

10 MCMC00004142 | I e 5.97

O

&

?the average Z-score of SVM-AP and SVM-PC
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Table 19. Top ranked 10 compounds of the LigSeeSVM on screening histamine receptor

ligands from the CM C chemical database.

Rank ID Structure Z-score®
1 MCMC00002400 O ) 5.38
HG Y/ O
2 MCMCO00005251 | - N 5.56
s
/\OJ\;0
3 imipramine e 5.22
4 loxapine 0. 5.19
-y
50
5 amitriptyline 5.32
H
H EUE‘ 3"
6 cyproheptadine 5.17
7 desipramine oo 5.02
X
8 nortriptyline i 5.29
TN
9 MCMC00002252 S 4.77
O
10 MCMC00007349 Qg ﬁij& 5.42
{8%9

?the average Z-score of SVM-AP and SVM-PC




Table 20. Top ranked 10 compounds of the LigSeeSVM on screening GABA 4 receptor
ligands from the CM C chemical database.

Rank ID Structure Z-score?
1 MCMCO00005351 . /@N/“/ 22.97
° N/ TCH,

S
2 MCM C00006054 DY 19.88
d H3(3/0 H(:C>/CH°
3 triazolam ~C! 10.98
H3G { \if
’.N Y
A cl
4 MCMC00003492 N<”\7A§1 O 16.41
5 MCMC00002542 o 9.71
6 MCMCO00003781 SﬁA\N 17.32
7 MCMC00003527 NQ‘\?‘AQ O 16.59
8 midazolam ol 6.77
H 8
ftm%
CING :
9 MCMC00004114 OV\N O 6.39
U
10 MCMC00003490 Ni“\yA\N “ 7.86
H3C>/N O
W,

cl

?the average Z-score of SVM-AP and SVM-PC
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Figure 1. Overview of our method for Iigand-b&d cofnpound screening.
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Figure 2. The positive compounds in training sets of GPCR and GABAA. A and B are
serotonin ligands. C (tolterodine), D, and E are muscarinic antagonists. Molecules F—H
(bromodiphenhydramine, pyrilamine, and azatadine) are H1 receptor antagonists. Molecules |

—K are GABAa receptor agonists (diazepam, alprazolam, and zopiclone).
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Figure 4. 10 thymidine kinase inhibitorswererstudied for ligand-based screening. These two
ligands in the box are the positive ¢ases in the training set and the other eight compounds are
used for test. The abbreviations are as follows. 1kim.THM, deoxythymidine; 1ki7.ID2,
5-iododeoxyuriding; 1e2m.HPT, 6-(3-hydrody-propyl-thymine); 1ki6.AHU, 5-iodoracil
anhydrohexitol nucleoside; 1e2k.TMC, (North)-methanocarbathymidine; 1e2n.RCA,
(6-[ 6-hydroxymethy-5-methy-2,4-dioxo-hexa-hydro-pyrimidin-5-yl-methyl ]-5-methyl-1H-
pyrimidine-2,4-dione; 1e2p.CCV, 6-(3-hydroxy-2-hydroxymethyl propyl)-5-methyl-1H-
pyrimidine-2,4-dione; 2ki5.AC2, acyclovir; 1ki2.GA2, ganciclovir; 1ki3.PE2, penciclovir.
The ranks of the eight test compounds in the LigSeeSVM predicted model were 1, 2, 3, 4, 5, 6,
7,11.
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Figure5. (A) The UPGMA rooted tree of 10 TK inhibitors. (B) The UPGMA rooted tree of
11 ER antagonists. (C) The UPGMA rooted tree of 10 ER agonists.
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Figure 6. The (A) true hits and (B) GH scores of our three SVM models (SVM-AP, SVM-PC,
and LigSeeSVM) in screening a TK set with eight positive substrates and 950 negative
compounds.

51



O.
O Used for M odel [ >
= N
O H EST11

(0]
j EST02
o

O L
O O O o o O

8 ESTOL ESTO3 IO ESTO4 ESTO05 EST06

ON

d:ﬁ;

ESTO07 EST08 o\ EST09 EST10

<o
F
F
FOF

Figure 7. 11 estrogen receptor antagonistswere studied for ligand-based screening. These two
ligands in the box are the positive'cases in the training set and the other nine compounds are
used for test. The ranks of the nine compounds in the LigSeeSVM predicted model were 1, 2,

3,506,711, 12, 15.
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Figure 8. 10 estrogen receptor agonistswerestudied for ligand-based screening. These three
ligands in the box are the positive cases in the training set and the other seven compounds
are used for test. The ranks of the seven compounds in the LigSeeSVM predicted model

werel, 2, 3,4,5,6, 7.
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Figure 9. The (A) true hits and (B) GH scores of our three SVM models (SVM-AP, SVM-PC,
and LigSeeSVM) in screening an ER set with nine positive antagonists and 950 negative
compounds.
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Figure 10. The (A) true hits and (B) GH scores of our three SVM models (SVM-APR,
SVM-PC, and LigSeeSVM) in screening an ER set with seven positive agonists and 950
negative compounds.
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Figure 11. (A) ROC curve of our three SYM models for 43 muscarinic receptor ligands. (B)
ROC curve of Surflex-Sim and Tanimoto [3] methods for 43 muscarinic receptor ligands. The
LigSeeSVM model performs better than Surflex-Sim.
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Figure 12. (A) ROC curve of our three SVM models for 47 histamine receptor ligands. (B)

ROC curve of Surflex-Sim and Tanimoto [3] methods for 47 histamine receptor ligands. The

LigSeeSVM model performs better than Surflex-Sim.
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Figure 13. (A) ROC curve of our three SVM models for 15 GABA, receptor ligands. (B)
ROC curve of Surflex-Sim and Tanimoto [3] methods for 15 GABA receptor ligands. The

LigSeeSVM model performs significantly better than Surflex-Sim.
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Figure 14. (A) ROC curve of our three SYM models for 29 serotonin receptor ligands. (B)
ROC curve of Surflex-Sim and Tanimoto [3] methods for 29 serotonin receptor ligands.
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