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中 文 摘 要 

 

本研究是利用支持向量機器的方法來預測蛋白質中β-turn的位

置。在僅有蛋白質之胺基酸序列的情況下找尋有用的特徵向量，並將

這些資訊輸入支持向量機器中，以此方法來預測蛋白質中哪些殘基會

形成β-turn。本研究使用 426 條非同源蛋白質，做 7倍的交叉認證以

驗證預測的準確率。由結果發現除了前人研究提及的多重序列比對及

二級結構資訊外，殘基暴露於溶劑的程度亦可提供有用的資訊；而胺

基酸的體積及親水程度則對β-turn的預測無明顯助益。 

本研究整合了多重序列比對所產生的位置加權矩陣，二級結構預

測資訊，以及殘基暴露於溶劑之程度的預測等三種特徵向量，則總準

確率可達 79.6%，MCC值可達 0.48，皆高於其他β-turn預測方法。 
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Abstract 
 

 In this study, we use support vector machine approach to predict β-turns in 

protein. With only the information of protein sequence, we try to find useful feature 

vectors based on amino acid, and import the information to SVM to predict which 

residue would be in β-turn. We use 426 non-homologous proteins as dataset, and 

7-folded cross validation to examine the prediction performance. In addition to 

multiple sequence alignment and secondary structure information, we found that 

relative solvent accessibility could also provide useful information in β-turn 

prediction. 

    In this work, import multiple feature vectors of multiple sequence alignment 

information (PSSM), secondary structure prediction, and relative solvent accessibility 

prediction, the Qtotal could reach 79.6% and the MCC value is 0.48. Both these two 

measure performance are better than other previous methods. 
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1. Introduction 

The knowledge of the secondary structure of a protein has great importance in 

the study of the protein functionality. Currently, the main technique to determine 

protein structure is X-ray crystallography, which is a slow, and often a difficult 

process. On the other hand, the protein sequence data arising from sequencing 

projects is growing rapidly. Thus, it is increasingly important to predict the structure 

of proteins whose sequences are known. One significant step towards elucidating the 

structure and function of a protein is the prediction of its secondary structure. 

Protein secondary structure is characterized by regular elements such as α-helices 

and β-sheets and non-repetitive motifs such as tight turns, bulges and random coil 

structures. A tight turn in protein structure is defined as a site where a polypeptide 

chain reverses its overall direction, i.e., leads the chain to fold back on itself by nearly 

180°, and the amino acid residues directly involved in forming the turn are no more 

than six. Depending on the number of residues forming the turn, tight turns are further 

classified as δ, γ, β, α, and π-turns [1]. Among the tight turns, β-turn is the most 

predominant one. A β-turn involves four amino acid residues. The β-turns originally 

recognized by Venkatachalam [2] are stabilized by a hydrogen bond between the 

backbone CO(i) and the backbone NH(i + 3). However, Lewis et al. [9] found that 

25% of β-turns are “open,” i.e., have no intra-turn hydrogen bond at all as stipulated 

by Venkatachalam [2]. Open turns do not lend themselves to classification by dihedral 

angles. Therefore, the definition widely accepted for b-turns is: A β-turn comprises 

four consecutive residues where the distance between Cα(i) and Cα(i + 3) is less than 7 

Å, and the tetrapeptide chain is not in a helical conformation. The distance between 

the Cα atoms in the first and last residues of a tetrapeptide, i.e., Cα(i) and Cα(i + 3), is a 
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key criterion common to all β-turns, further the backbone dihedral angles in the inner 

residues i + 1 and i + 2 will define different types of β-turns. 

On average, about 25% of all protein residues comprise β-turns [5]. As one of the 

most common types of non-repetitive motifs in proteins, β-turns bear great 

significance in protein structure and function. Both from structural and functional 

point of view, β-turns play important biological roles as reflected from the following 

points: First, β-turns are four-residue reversals in proteins so that they help in the 

formation of higher-order structure [6]. A polypeptide chain cannot fold into a 

globular fold without β-turns; Second, β-turns usually occur on the exposed surface of 

a protein and are likely to be involved in molecular recognition processes and 

interactions between receptors and substrates [1; 4], and provide very useful information 

for designing template structures for the design of new molecules such as drugs, pesticides, 

and antigens. Furthermore, being at solvent-exposed surfaces, the residues that form 

β-turns tend to be hydrophilic residues.; and third, also play an important role in 

protein folding and stability [6]. Further, one major secondary structural feature of 

many biologically active peptides is β-turn. β-Turn forms an integral component in the 

fundamental building block for anti-parallel β-sheets, which plays a good candidate 

for molecular recognition processes since being at solvent-exposed surfaces, and its 

formation is an important stage during the process of protein folding [6]. Therefore, to 

improve on the identification of structural motifs such as the building block for 

anti-parallel β-sheets and fold recognition, an accurate method to identify the location 

of β-turns in a protein sequence needs to be developed. Consequently, prediction of 

β-turns would be small step toward the overall prediction of three-dimensional 

structure of a protein from its amino acid sequence. It will also help in identification 

of structural motifs such as β-hairpin. β-turns provide very useful information for 
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defining template structures for the design of new molecules such as drugs, pesticides, 

and antigens. 

A number of β-turn prediction methods have been developed, they can be divided 

into two categories: statistics-based and machine learning-based methods. The 

majority of statistics-based methods empirically employed the ‘positional preference 

approaches" [7; 8; 9; 10; 11]. In the Chou–Fasman method [8], a set of probabilities is 

assigned to each residue and the conformational parameters and positional frequencies 

are determined by calculating the relative frequency of each secondary structure. In 

the 1–4 and 2–3 correlation model [11], the coupling effects between the first and 

fourth residues and between the second and third residues are taken into account. In 

the sequence coupled model developed by Chou [7] within the first-order Markov 

chain framework, the sequence correlation effect for an entire oligo-peptide is 

considered. GORBTURN uses the positional frequencies and equivalent parameters 

[12] to remove the potential helix and strand forming residues from the β-turn 

prediction [13]. As to machine learning-based methods, a neural network method, 

BTPRED, was developed by Shepherd et al. [14] to predict the location and type of 

β-turns in proteins. The prediction performance could not be objectively compared 

because of the different dataset in these methods. Kaur and Raghava evaluated these 

methods and found that BTPRED was most accurate among these β-turn prediction 

methods [15].  

BetaTPred2, an improved neural network method was developed by Kaur and 

Raghava [16]. In that method, they use multiple sequence alignment as input instead 

of the single amino acid sequence, and a great improvement in prediction performance 

has been achieved (Matthews correlation coefficient MCC = 0.43). k–nearest neighbor 

method, which is combined with a filter that uses predicted protein secondary 
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structure information was developed by Kim [17]. 

The SVM is an extremely successful learning theory that usually outperforms 

other machine learning technologies such as artificial neural networks (ANNs) and 

nearest neighbor methods. In recent years, SVMs have performed well in diverse 

applications of bioinformatics in several aspects including prediction of secondary 

structure [18; 19], classification of protein quaternary structure [20], etc. In this work, 

we attempt to predict β-turns in proteins using support vector machine (SVM) with 

various information derive from protein sequence, comparing with some other β-turn 

prediction methods that were recently evaluated by Kaur and Raghava [15], and with 

the other β-turn prediction methods that using the same data set. In this study. we 

employ a support vector machine (SVM) method to predict β-turns in proteins, and 

attempt to seek helpful input feature vectors only based on the information of protein 

sequences. 

 

 4



2. Material and methods 

2.1 The dataset 

    In this study, The dataset is comprised of 426 non-homologous protein chains 

which were first described by Guruprasad and Rajkumar [21]. This same dataset was 

selected by Kaur and Raghava [15] to evaluate the performance of six β-turn 

prediction methods. In this dataset, any two protein chains have ≦ 25% sequence 

identity. The structure of these proteins is determined by X-ray crystallography at 

better than 2.0 Å resolution, and each protein chain contains at least one β-turn . The 

program PROMOTIF [22] has been used to assign β-turns in proteins.  

 

2.2 Cross validation method 

    A prediction method is often developed by cross-validation or jack-knife method 

[23]. In a full jack-knife test of N proteins, one protein is removed from the set, the 

training is done on the remaining N−1 proteins and the testing is done on the removed 

protein. This process is repeated N times by removing each protein in turn. Because of 

the size of the data set, the jack-knife method would be very time consuming, so a 

more limited cross-validation has been used. In this study, a 7-fold cross-validation 

technique is used where the data set is randomly divided into 7 subsets, each 

containing equal number of proteins. The training set is consisted of 6 subsets, and 

tested the prediction performance on the excluded set, the testing set. This has been 

done seven times to test for each subset. The final prediction results have been 

averaged over seven testing sets. 
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2.3 The support Vector Machine (SVM) 

    The SVM is a technique of machine learning based on statistical learning theory 

[24]. SVM has recently be applied to solve the problems in Bioinformatics, such as 

secondary structure prediction [18; 19], fold recognition, etc. A library for support 

vector machines（LIBSVM）is used in this study [25], and which is an implementation 

of SVM in C language for the problem of classification, and kernel type is radial basis 

function. 

    The basic idea of SVM to pattern classification can be stated briefly as follow 

two steps. First, map the input vectors into a feature space (often with a higher 

dimension), either linearly or non-linearly, which is relevant with the selection of the 

kernel function. Second, classifying the data by seeking an optimal separating 

hyperplane which can maximize the distance between two classes.（Figure 1） SVM 

training always seeks a global optimized solution and avoids over-fitting, so it has the 

ability to deal with a large number of features. A complete description of the theory of 

SVMs for pattern recognition has been done by Vapnik [26]. 

    Two parameters were adjusted for optimal performance. In this work, we 

employed the radial basis function kernel as the kernel function. (Eq. 1) The first 

parameters to be determined are γ and the regularization parameter C. In the present 

case, we set γ=0.0625, C=2.  

 

))X-(Xexp(-)X,K(X 2
jiji γ=                      (1) 
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2.4 The input feature vectors 

    Several different input feature vectors for the support vector machine（SVM） are 

considered. We use the classical local coding scheme of the protein sequences with a 

sliding window. In this study, the window size was set as 9. The “null” residue was 

added in order to allow a window to extend over the N- and the C-terminus. 

 

2.4.1 Sequence input vector 

    The amino acid type of each residue is encoded into a 20-dimension vector 

consist of 19 “0” and single “1”, e.g. glycine is represented as 

(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), alanine is represented as 

(0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), etc. The “null” residue is represented by a 

20-dimension vector of all-zero. 

 

2.4.2 Multiple sequence alignment (PSSM) input vector 

    With multiple sequence alignments, we use PSI-BLAST to detect distant 

homologues of a query sequence and generate position-specific scoring matrix 

(PSSM). The matrix has 21 × M elements, where M is the length of the target 

sequence, and each element represented the likelihood of that particular residue 

substitution at that position [27]. These profiles were scaled to 0-1 range using the 

standard logistic function:  

exp(-x)1
1  f(x)

+
=                            (2) 

The “null” residue is represented by a 20-dimension vector of all-zero. 
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    A figure introduce the procedure of processing PSSM input vector was shown in 

Figure 2. 

 

2.4.3 Secondary structure (SS) input vector 

    The secondary structure of each proteins in the dataset was predicted by 

PSIPRED [28]. The PSIPRED prediction could output the probabilities of three states 

secondary structure (helix, strand, coil). Because of the value was in the range from 

0-1, the three probabilities of each residue could directly be used as 3-dimension 

vector. The “null” residue is represented by a 3-dimension vector of all-zero. 

    A figure introduce the procedure of processing secondary structure input vector 

was shown in Figure 3. 

 

2.4.4 Relative solvent accessibility (RSA) input vector 

    Amino acid solvent accessibility is the degree to which a residue in a protein is 

accessible to a solvent molecule. Relative solvent accessibility was calculated by 

dividing the DSSP-defined solvent accessibility by the accessibility for a Gly-X-Gly 

tripeptide given by the method of Rose and Dworkin [29]. In this study, we use Jnet 

[30] to predict relative solvent accessibility of each residue based on a two 

state-model (exposed/buried) in three categories: 25%, 5%, and 0% accessible. Each 

residue was represented as 3-dimension vector (RSA-3) composed of zero and one, 

“one” means the residue was predicted as exposed at each accessible class, and “zero” 

means buried. The “null” residue is represented by a 3-dimension vector of all-zero. 

    Furthermore, we use another relative solvent accessibility prediction method 
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developed by our lab members [36], which could predict two-state RSA in ten 

categories: 0-10%, 10-20%, …, 90-100%. With this RSA prediction scheme, the 

predicted probabilities of the ten classes were available, and they were directly be 

used as 10-dimension vector (RSA-10). The “null” residue is represented by a 

10-dimension vector of all-zero. 

    A figure introduce the procedure of processing RSA-10 input vector was shown 

in Figure 4. 

2.4.5 Chou-Fasman conformational parameter input vector 

    The Chou-Fasman algorithm for the prediction of protein secondary structure [31] 

is one of the most widely used predictive schemes. The Chou-Fasman method of 

secondary structure prediction depends on assigning a set of prediction values to a 

residue and then applying a simple algorithm to the conformational parameters and 

positional frequencies (Table 1.).  

    The Chou-Fasman algorithm is simple in principle. The conformational 

parameters for each amino acid were calculated by considering the relative frequency 

of a given amino acid within a protein, its occurrence in a given type of secondary 

structure, and the fraction of residues occurring in that type of structure. These 

parameters are measures of a given amino acid's preference to be found in helix, sheet 

or coil. Using these conformational parameters, one finds nucleation sites within the 

sequence and extends them until a stretch of amino acids is encountered that is not 

disposed to occur in that type of structure or until a stretch is encountered that has a 

greater disposition for another type of structure. At that point, the structure is 

terminated. This process is repeated throughout the sequence until the entire sequence 

is predicted. 
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    In order to scale the conformational parameters to 0-1, each value of parameter 

was simply divided by 200. Each amino acid was represented as 3-dimension vector 

of its scaled conformational parameters. The “null” residue is represented by a 

3-dimension vector of all-zero. 

 

2.4.6 Amino acid solvent exposed area (SEA) input vector 

    Table 2. implies solvent accessibility information derived from Bordo and Argos 

[32]. The data for this table was calculated from data taken from 55 proteins in the 

Brookhaven data base, coming from 9 molecular families: globi ns, immunoglobins, 

cytochromes c, serine proteases, subtilisins, calcium binding proteins, acid proteases, 

toxins and virus capsid proteins. Red entries are found on the surface of a proteins on 

> 70% of occurrences and blue entries are found inside of a protein of < 20% of 

occurrences. The only clear trend in this table is that some residues, such as R and K, 

locate themselves so that they have access to the solvent. The hydrophobic residues, 

such as L and F, show no clear trend: they are found near the solvent as often as they 

are found buried. Each amino acid was represented as 3-dimension vector and the 

“null” residue is represented by a 3-dimension vector of all-zero. 

 

2.4.7 Amino acid volume input vector 

    We use the amino acid volume calculated by Zamyatnin [33] as one kind of input 

vectors. As shown in Table 3., each amino acid was represented by its volume as 

one-dimension vector, and the “null” residue is represented by an one-dimension 

vector of zero. 
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2.4.8 Amino acid hydropathy input vector 

    Hydropathy index listed a scale combining hydrophobicity and hydorphilicity of 

R groups; it can be used to measure the tendency of an amino acid to seek an aqueous 

environment (- values) or a hydrophobic environment (+ values) [34]. As shown in 

Table 4., and the value was scaled to 0-1 by equation (2). Each amino acid was 

represented by its hydropathy as one-dimension vector. and the “null” residue is 

represented by an one-dimension vector of zero. 

 

2.5 Adjusting the threshold of the output of LIBSVM 

    The SVM tool we used in this study (LIBSVM) could estimates the probability 

of each predicted class as setting parameter b as 1. In β-turn prediction, there are only 

two classes labels: turn and non-turn. If the probability of residues which was 

predicted as β-turn is more than 0.5, the output label would be β-turn, otherwise the 

predicted output label would be non-turn. But it seems that the threshold 0.5 is to high 

to get good sensitivity, so we try to lower the threshold to seek better prediction 

performance.  

 

2.6 Filtering 

    The prediction is performed for each residue separately, since β-turns are 

typically multiple turns of at least four residues long, we added a simple filtering step 

which is similar to the “state-flipping” rule used in Shepherd et al. [14]. A set of five 

rules have been used in the following order: 
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1. Flip isolated nonturn predictions to turn (i.e., t-t → ttt). 

2. Flip isolated pairs of nonturn predictions to turn (i.e., t--t → tttt). 

3. Flip isolated turn predictions to nonturn (i.e., -t- → ---). 

4. For isolated pairs of turn predictions, flip the adjacent nonturn predictions to turn 

(i.e., -tt- → tttt). 

5. For isolated triplet of turn predictions, flip the adjacent nonturn predictions to 

turn (i.e., -ttt- → ttttt). 

 

 

2.7 Performance measures 

    Several parameters were widely used to measure the performance of β-turn 

prediction methods as described by Shepherd et al. [14], which are based on the 

following scalar quantities: 

p, the number of correctly classified β-turn residues 

n, the number of correctly classified non-β-turn residues 

o, the number non-b-turn residues incorrectly classified as β-turn (over-predictions) 

u, the number b-turn residues incorrectly classified as non-β-turn (under-predictions) 

t , the total number of residues. 
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The parameters were described below. 

1. Qtotal (or prediction accuracy), the percentage of correctly classified residues. It 

is the most common measure of a method’s overall performance; however, Qtotal 

can be misleading as β-turn residues occur much less frequently than non-β-turn 

residues in proteins (25 versus 75%). Therefore, one could easily achieve Qtotal = 

75% merely by predicting all residues to be non-β-turn. 

 

100
t

npQtoaal ×
+

=                           (3) 

 

2. Qpredicted is the percentage of β-turn prediction that are correct, which penalizes 

over-predictions. 

 

100
op

pQpredicted ×
+

=                        (4) 

 

3. Qobserved is the percentage of observed β-turns that are correctly predicted, 

which penalizes under-predictions. 

 

100
up

pQobserved ×
+

=                        (5) 

 

 

 13



4. MCC (Matthew’s Correlation Coefficient), a single measure of performance that 

takes into account for both over- and under-predictions. 

 

u)o)(nu)(no)(p(p
ou-pnMCC

++++
=                  (6) 
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3. Results 

    SVM is used predict the β-turns in the proteins, and it needs to import useful 

information. The information, which represents β-turn, is taken from a protein 

sequence; it can be coded through several ways and is called a feature vector. 

 

3.1 Prediction accuracies of using single feature vector 

    Nine feature vector was used individually to predict β-turns in protein, and the 

prediction performance was listed in Table 5. As shown in Table 5., comparing the 

prediction performance of each input feature vector, the multiple sequence alignment 

feature vector which encoded PSSM as import information could achieve the best 

result with MCC value of 0.46 and the total accuracy (Qtotal) of 76.4. Secondary 

structure feature vector could also get a good prediction performance with MCC of 

0.42 and Qtotal of 72.9. Both RSA-3 and RSA-10 in Table 5. mean relative solvent 

accessibility feature vector: RSA-3 indicates utilizing three classes of solvent 

accessibility prediction from Jnet; and RSA-10 denotes employing another ten-classes 

relative solvent accessibility prediction approach. RSA-10 shown better prediction 

effect than RSA-3 in all respects: Qtotal raise from 69.4% to 72.9%, Qpredicted raise from 

41.7% to 46.5%, Qabserved raise from 62.3% to 69.8%, and MCC raise from 0.30 to 

0.39. The predict performance of importing Chou-Fasman conformational parameter 

and sequence are similar. With Chou-Fasman conformational parameter feature vector, 

Qtotal, Qpredicted, Qobserved, and MCC are 72.7%, 44.9%, 48.1%, and 0.28 respectively. 

As to the performance of using sequence as input feature vector, Qtotal, 

Qpredicted,Qobserved, and MCC are 71.9%, 44.2%, 54.4%, and 0.30 respectively. With the 

solvent exposed area (SEA) feature vector, it could get a good sensitivity yielded 
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Qobserved of 72.8%, which is nearly the same as the Qobserved value of multiple sequence 

alignment feature vector; but the correct prediction rate is much lower with the 

Qpredicted value of 26.6%; hence the MCC value and Qtotal are only 0.07 and 44.1% 

respectively. The prediction performance of SEA feature vector, volume feature 

vector, and hydorpathy feature vector is much lower than other feature vectors with 

MCC value of 0.07, 0.06, and 0.12 respectively. 

 

3.2 Assembling feature vectors 

    In this study, we employ two strategies to assemble the information of each 

single feature vectors. One is encoding multiple feature vectors in a SVM training and 

testing data file; another approach is gathering the probability of being β-turn from 

each prediction output of single vector, and use the probabilities as import of the 

second layer SVM prediction. 

 

3.2.1 Prediction accuracies of using Multiple feature vectors 

    As shown if Table 5., multiple sequence alignment feature vector could receive 

better prediction performance than other feature vectors, thus we take it as leading 

role, and try to join other feature vectors as import. Because of the worse prediction 

performance of SEA feature vector, volume feature vector, and hydorpathy feature 

vector, these feature vectors were not be considered in this coding scheme. The results 

of multiple feature vectors were listed in Table 6. 

    In this method, all the multiple feature vectors listed in Table 6. could slightly 

raise Qtotal, but not every combination is fessible to improve MCC. With slightly arise 
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Qpredicted but lower Qobserved , MCC value of PSSM+SEA-3, PSSM+SEA-10, and 

PSSM+C-F are the same or worse than MCC of PSSM. As to compare the prediction 

performance of importing two feature vectors, PSSM+SS, to single vector of PSSM, 

Qtotal is raise from 76.4% to 78.2%, Qpredicted is raise from 51.4% to 54.3%, and MCC 

value is raise from 0.46 to 0.48, but Qobserved is slightly lower from 72.8% to 71.9%.  

The performance of importing three feature vectors, PSSM+SS+SEA-3, is also better 

than single vector of PSSM, Qtotal is raise from 76.4% to 79.6%, and MCC value is 

raise from 0.46 to 0.48. 

 

3.2.2 Prediction accuracies of performing Double-layer SVM 

    As listed in Table 5., multiple sequence alignment feature vector, secondary 

structure feature vector, and ten-classes relative solvent accessibility feature vector 

receive better prediction performance of MCC value than other single feature vectors. 

The probabilities of forming β-turn generated from SVM by these three feature 

vectors are gathered, and use as import information of the second layer SVM. The 

results were listed in Table 7. 

    Comparing the performance of double-layer SVM with only use single vector, 

PSSM, double-layer SVM of PSSM+SS could raise Qtotal from 76.4% to 78.3%, and 

MCC value from 0.46 to 0.47. Besides Qobserved slightly raise from 72.8% to 74.6%, 

double-layer SVM of PSSM+RSA-10 and single feature vector of PSSM almost get 

the same result with other performance measures. Comparing the result between SS 

and double-layer SVM of SS+RSA-10, after including RSA information, Qtotal raise 

from 72.9% to 75.7%, Qpredicted rise from 46.8% to 50.3%, Qobserved decrease 76.5% to 

68.4%, and the two MCC value are identical, 0.42. The predict performance between 
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double-layer SVM of PSSM+SS and PSSM+SS+RSA-10 are similar, and both are 

better than only import PSSM single vector. The achievements of PSSM+SS+RSA-10 

are 78.7%, 55.4%, 67.8%, 0.47 in Qtotal, Qpredicted, Qobserved, and MCC, respectively. 
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4. Discussion 

    It has been shown that, as using sequence or PSI-BLAST generated 

position-specific scoring matrix (PSSM) to predict β-turn in proteins, including 

secondary structure information would improve the prediction performance [14; 15]. 

As shown in Table 8., in this study, even only use secondary structure information 

generated by PSIPRED, the prediction performance MCC could achieve 0.42, which 

is only lower than MCC of BetaTPred2 (0.43) [16] and SVM(2005)(0.45) [35] (both 

are machine learning methods with PSSM and secondary structure information as 

import information), but higher than any other previous methods. 

In this study, we found that relative solvent accessibility could provide useful 

information in β-turn prediction that has never been mentioned before. As only 

employing relative solvent accessibility as import information, the prediction 

performance of MCC could achieve 0.39, which is equal to MCC value of BTPRED. 

Although this MCC value is worse than three prediction methods, it is better than any 

other statistical base methods (Table 8..) As to the result of importing multiple feature 

vectors to SVM (Table. 6), comparing the performance between PSSM+SS+RSA-3 

and PSSM+SS, while including RSA information, even though Qobserved decreased, but 

the increment of Qpredicted cause the raise of Qtotal. 

As shown in Table 5., comparing the result of two relative solvent accessibility 

coding scheme, the ten-classes method got better results in every performance 

measure than the three-classes one. Because β-turns tend to occur at solvent-exposed 

surface[4], it could be conjectured that the more classes in RSA prediction, the more 

information to represent the expose extent of a residue, and which could provide more 

helpful information for β-turn prediction. 
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    Both PSIPRED predicted secondary structure and the Chou-Fasmsn 

conformational parameters could provide secondary structure information, but 

comparing with the result of these two feature vectors as listed in Table 5., the 

prediction performance of using Chou-Fasman parameters is worse than using 

PSIPRED predicted secondary structure. Maybe it is because the Chou-Fasmsn 

conformational parameters were calculated from specific protein set [8], it could only 

provide a general view of secondary structure information to each amino acid; but 

PSIPRED could give more limited secondary structure information in the light of 

specific residue. This idea could also be illustrated in comparing the result of relative 

solvent accessibility (RSA) with solvent exposed area (REA)(Table 8.). The solvent 

accessibility information used in this study was derived from Bordo and Argos [32]. 

The data was calculated from data taken from 55 proteins in the Brookhaven data base. 

In Table 2., the only clear trend is that some residues, such as R and K, locate 

themselves so that they have access to the solvent. The so-called hydrophobic residues, 

such as L and F, show no clear trend: they are found near the solvent as often as they 

are found buried. It also could provide a general view of the solvent exposure 

tendency of 20 amino acids only, but not in accordance with each residue in proteins. 

Thus tool-predicted RSA could provide more helpful information than SEA. 

        Several coding scheme in this study could get better prediction performance 

than any other previous method. The best performance of this study is import multiple 

feature vectors including multiple sequence alignment feature vector, secondary 

structure feature vector, and relative solvent accessibility feature vector (three classes). 

This approach yields superior results compared with existing method on the same 

dataset (Table 8.). Comparing the four performance measures with SVM(2005), only 

Qobserved has almost the same value, other measures receive better result in this study: 
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Qtotal, Qpredicted, Qobserved, and MCC are 79.6%, 57.4%, 66.1%, and 0.48 respectively in 

this work; and 77.3%, 53.1%, 67.0%, and 0.45 respectively in SVM(2005). 

    In conclusion, the β-turn prediction method described here yields predictions that 

are significantly more accurate than previous methods. Not only multiple sequence 

alignment and secondary structure information are important, relative solvent 

accessibility could also assist the prediction of β-turns. 
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Table 1. Chou-Fasman conformational parameters 
Amidio acid P(a) P(b) P(turn) 
Alanine 142 83 66 
Arginine 98 93 95 
Aspartic acid 101 54 146 
Asparagine 67 89 156 
Cysteine 70 119 119 
Glumatic acid 151 37 74 
Glutamine 111 110 98 
Glycine 57 75 156 
Histidine 100 87 95 
Isoleucine 108 160 47 
Leucine 121 130 59 
Lysine 114 74 101 
Methionine 145 105 60 
Phenylalanine 113 138 60 
Proline 57 55 152 
Serine 77 75 143 
Threonine 83 119 96 
Tryptophan 108 137 96 
Tyrosine 69 147 114 
Valine 106 170 50 
 
P(a), P(b) and P(turn) are conformational parameters of helix, β-sheet and β-turns. 
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Table 2. Solvent exposed area (SEA) of amino acids 

Amino acid SEA > 30 Å2 SEA < 10 Å2 30 > SEA > 10 Å2

Serine 0.7 0.2 0.1 
Threonine 0.71 0.16 0.13 
Alanine 0.48 0.35 0.17 
Glycine 0.51 0.36 0.13 
Proline 0.78 0.13 0.09 
Cysteine 0.32 0.54 0.14 
Aspartic acid 0.81 0.09 0.1 
Glumatic acid 0.93 0.04 0.03 
Glutamine 0.81 0.1 0.09 
Asparagine 0.82 0.1 0.08 
Leucine 0.41 0.49 0.1 
Isoleucine 0.39 0.47 0.14 
Valine 0.4 0.5 0.1 
Methionine 0.44 0.2 0.36 
Phenylalanine 0.42 0.42 0.16 
Tyrosine 0.67 0.2 0.13 
Tryptophan 0.49 0.44 0.07 
Lysine 0.93 0.02 0.05 
Arginine 0.84 0.05 0.11 
Histidine 0.66 0.19 0.15 
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Table 3. volume and hydropathy index of amino acids 

amino acids volume 

G 60.1 

A 88.6 

V 140 

L 166.7 

I 166.7 

M 162.9 

F 189.9 

Y 193.6 

W 227.8 

S 89 

P 112.7 

T 116.1 

C 108.5 

N 114.1 

Q 143.8 

K 168.6 

H 153.2 

R 173.4 

D 111.1 

E 138.4 
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Table 4. hydropathy index of amino acids 

amino acids Hydropathy index 

G -0.4 

A 1.8 

V 4.2 

L 3.8 

I 4.5 

M 1.9 

F 2.8 

Y -1.3 

W -0.9 

S -0.8 

P 1.6 

T -0.7 

C 2.5 

N -3.5 

Q -3.5 

K -3.9 

H -3.2 

R -4.5 

D -3.5 

E -3.5 
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Table 5. The prediction performance based on single feature vector 

Coding scheme Qtotal (%) Qpredicted (%) Qobserved (%) MCC 

Sequence 71.9  44.2  54.4  0.30  

PSSM 76.4  51.4  72.8  0.46  

SS 72.9  46.8  76.5  0.42  

RSA-3 69.4  41.7  62.3  0.30  

RSA-10 72.9  46.5  69.8  0.39  

C-F parameter 72.7  44.9  48.1  0.28  

SEA 44.1  26.6  72.8  0.07  

Volume 67.3  29.4  23.6  0.06  

Hydropathy 59.0  30.5  52.5  0.12  
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Table 6. The prediction performance based on multiple feature vector 

Coding scheme Qtotal (%) Qpredicted (%) Qobserved (%) MCC 

PSSM 76.4  51.4  72.8  0.46  

PSSM+SS 78.2  54.3  71.9  0.48  

PSSM+RSA-3 77.5  53.1  70.4  0.46  

PSSM+RSA-10 77.8  53.9  67.6  0.45  

PSSM+C-F 77.9  54.0  66.9  0.45  

PSSM+SS+RSA-3 79.6  57.4  66.1  0.48  
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Table 7. The prediction performance based on multiple feature vector 

Coding scheme Qtotal (%) Qpredicted (%) Qobserved (%) MCC 

PSSM 76.4  51.4  72.8  0.46  

SS 72.9  46.8  76.5  0.42  

RSA-10 72.9  46.5  69.8  0.39  

PSSM+SS 78.3  54.6  69.4  0.47  

PSSM+RSA-10 76.4  51.3  74.6  0.46  

SS+RSA-10 75.7  50.3  68.4  0.42  

PSSM+SS+RSA-10 78.7  55.4  67.8  0.47  
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Table 8. Comparing the prediction performance with previous methods 

Method Qtotal (%) Qpredicted (%) Qobserved (%) MCC 
Chou-Fasmana 75.3 49.6 47.5 0.32 
Thornton'sa 75.2 49.3 44.9 0.31 
GORBTURNa 75.4 49.6 37.7 0.28 
1-4 & 2-3 correlation modela 74.8 48.0 39.8 0.28 
Sequence coupled modela 75.4 49.6 40.0 0.28 
BTPREDa 75.3 49.7 63.4 0.39 
Nearest-neighbor 75.0 46.5 66.7 0.40  
BetaTPred2 75.5 49.8 72.3 0.43 
SVM (2005) 77.3 53.1 67.0 0.45  
PSSM 76.4  51.4  72.8  0.46  
SS 72.9  46.8  76.5  0.42  
RSA-10 72.9  46.5  69.8  0.39  
PSSM+SS 78.2  54.3  71.9  0.48  
PSSM+SS+RSA-3 79.6  57.4  66.1  0.48  
a Evaluated with the same dataset by Kaur and Raghava[14] 
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Figure 1. Optimal separating hyperplane(OSH) of SVM 
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Figure 2. The procedure of processing PSSM input vector 
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Figure 3. The procedure of processing secondary structure input vector 
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Figure 4. The procedure of processing RSA-10 input vector 
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Figure 5. Simple flow chart of prediction β-turns using SVM in this study 
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Appendix 1. Types of β-turns 

 

 

 

* Chou, K. C. (2000). Prediction of tight turns and their types in proteins. Anal 

Biochem. 286, 1-16. 

(55) Hutchinson, E. G., and Thornton, J. M. (1994) A revised set of potentials for 
β-turn formation in proteins. Protein Sci. 3, 2207– 2216. 
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Appendix 1. (Continued) 
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* Chou, K. C. (2000). Prediction of tight turns and their types in proteins. Anal 

Biochem. 286, 1-16.
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Appendix 2. Protein chains (426) from Protein Data Bank used for β-turns analysis 

              
119l 153l 1a1iA 1a1x 1a28B 1a2pA 1a2yA 
1a2zA 1a34A 1a62 1a68 1a6q 1a7tA 1a8e 
1a8i 1a9s 1aac 1aba 1ad2 1adoA 1af7 
1afwA 1agjA 1agqD 1ah7 1aho 1aj2 1ajj 
1ajsA 1ak0 1ak1 1ako 1akz 1al3 1alo 
1alu 1alvA 1aly 1amm 1amp 1amuA 1amx 
1anf 1aocA 1aohA 1aol 1aop 1aoqA 1aozA 
1apyB 1aq0A 1aq6A 1aqb 1aqzB 1arb 1arv 
1at0 1atlA 1atzB 1avmA 1awd 1awsA 1axn 
1ayl 1azo 1ba1 1bbpA 1bdmB 1bdo 1bebA 
1benB 1bfd 1bfg 1bftA 1bgc 1bgp 1bkf 
1bkrA 1brt 1btkB 1btn 1bv1 1byb 1c52 
1cbn 1cem 1ceo 1cewI 1cex 1cfb 1chd 
1chmA 1ckaA 1clc 1cnv 1cpcB 1cpo 1cseE 
1cseI 1csh 1csn 1ctj 1cydA 1dad 1dkzA 
1dokA 1dorA 1dosA 1dun 1dupA 1dxy 1eca 
1ecl 1ecpA 1ede 1edg 1edmB 1edt 1erv 
1ezm 1fdr 1fds 1fit 1fleI 1fmtB 1fna 
1fua 1furA 1fus 1fvkA 1fwcA 1g3p 1gai 
1garA 1gd1O 1gdoA 1gifA 1gky 1gnd 1gotB 
1gotG 1gsa 1guqA 1gvp 1ha1 1havA 1hcrA 
1hfc 1hgxA 1hoe 1hsbA 1htrP 1hxn 1iakA 
1idaA 1idk 1ido 1ifc 1igd 1iibA 1iso 
1isuA 1ixh 1jdw 1jer 1jetA 1jfrA 1jpc 
1kid 1knb 1kpf 1kptA 1kuh 1kveA 1kveB 
1kvu 1kwaB 1lam 1latB 1lbu 1lcl 1lis 
1lit 1lki 1lkkA 1lmb3 1lml 1lt5D 1ltsA 
1lucB 1mai 1mbd 1mkaA 1mldA 1mml 1molA 
1mpgA 1mrj 1mrp 1msc 1msi 1msk 1mtyB 
1mtyD 1mtyG 1mucA 1mugA 1mwe 1mzm 1nar 
1nbaB 1nbcA 1nciB 1neu 1nfn 1nif 1nls 
1nox 1np1A 1npk 1nulB 1nwpA 1nxb 1ois 
1onc 1onrA 1opd 1opy 1orc 1ospO 1ovaA 
1oyc 1pcfA 1pda 1pdo 1pgs 1phe 1phnA 
1php 1pii 1plc 1pmi 1pne 1pnkB 1poa 
1poc 1pot 1ppn 1ppt 1prxB 1ptq 1pty 
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1pud 1qba 1qnf 1r69 1ra9 1rcf 1rec 
1regY 1reqD 1rgeA 1rhs 1rie 1rmg 1rro 
1rss 1rsy 1rvaA 1ryp1 1ryp2 1rypF 1rypI 
1rypJ 1sbp 1sfp 1sftB 1sgpI 1skz 1sltA 
1sluA 1smd 1spuA 1sra 1stmA 1svb 1svpA 
1tadC 1tca 1tfe 1thv 1thx 1tib 1tif 
1tml 1trkA 1tsp 1tvxA 1tys 1uae 1ubi 
1uch 1unkA 1urnA 1uxy 1v39 1vcaA 1vcc 
1vhh 1vid 1vif 1vin 1vjs 1vls 1vpsA 
1vsd 1vwlB 1wab 1wba 1wdcA 1wer 1whi 
1who 1whtB 1wpoB 1xgsA 1xikA 1xjo 1xnb 
1xsoA 1xyzA 1yaiC 1yasA 1ycc 1yer 1ytbA 
1yveI 1zin 256bA 2a0b 2abk 2acy 2arcA 
2ayh 2baa 2bbkH 2bbkL 2bopA 2cba 2ccyA 
2chsA 2ctc 2cyp 2dri 2end 2eng 2erl 
2fdn 2fha 2fivA 2gdm 2hbg 2hft 2hmzA 
2hpdA 2hts 2i1b 2ilk 2kinA 2kinB 2lbd 
2mcm 2msbB 2nacA 2pgd 2phy 2pia 2pii 
2plc 2por 2pspA 2pth 2rn2 2rspB 2sak 
2scpA 2sicI 2sil 2sn3 2sns 2tgi 2tysA 
2vhbB 2wea 3b5c 3chy 3cla 3cox 3cyr 
3daaA 3grs 3lzt 3nul 3pcgM 3pte 3sdhA 
3seb 3tss 3vub 4bcl 4mt2 4pgaA 4xis 
5csmA 5hpgA 5icb 5p21 5pti 5ptp 6cel 
6gsvA 7ahlA 7rsa 8abp 8rucI 8rxnA   
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