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Abstract

In this study, we use support ‘vector-machine approach to predict f-turns in
protein. With only the information of protein sequence, we try to find useful feature
vectors based on amino acid, and import the information to SVM to predict which
residue would be in f-turn. We use 426 non-homologous proteins as dataset, and
7-folded cross validation to examine the prediction performance. In addition to
multiple sequence alignment and secondary structure information, we found that
relative solvent accessibility could also provide useful information in p-turn

prediction.

In this work, import multiple feature vectors of multiple sequence alignment
information (PSSM), secondary structure prediction, and relative solvent accessibility
prediction, the Qo could reach 79.6% and the MCC value is 0.48. Both these two

measure performance are better than other previous methods.
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1. Introduction

The knowledge of the secondary structure of a protein has great importance in
the study of the protein functionality. Currently, the main technique to determine
protein structure is X-ray crystallography, which is a slow, and often a difficult
process. On the other hand, the protein sequence data arising from sequencing
projects is growing rapidly. Thus, it is increasingly important to predict the structure
of proteins whose sequences are known. One significant step towards elucidating the

structure and function of a protein is the prediction of its secondary structure.

Protein secondary structure is characterized by regular elements such as a-helices
and p-sheets and non-repetitive motifs such as tight turns, bulges and random coil
structures. A tight turn in protein structure.issdefined as a site where a polypeptide
chain reverses its overall direction}i.e., leads'the chain to fold back on itself by nearly
180°, and the amino acid residues: directly involved in forming the turn are no more
than six. Depending on the number of'residues forming the turn, tight turns are further
classified as o, y, f, a, and z-turns [1]. Among the tight turns, S-turn is the most
predominant one. A S-turn involves four amino acid residues. The f-turns originally
recognized by Venkatachalam [2] are stabilized by a hydrogen bond between the
backbone CO(i7) and the backbone NH(i + 3). However, Lewis et al. [9] found that
25% of p-turns are “open,” i.e., have no intra-turn hydrogen bond at all as stipulated
by Venkatachalam [2]. Open turns do not lend themselves to classification by dihedral
angles. Therefore, the definition widely accepted for b-turns is: A f-turn comprises
four consecutive residues where the distance between C,(i) and C,(i + 3) is less than 7
A, and the tetrapeptide chain is not in a helical conformation. The distance between

the C, atoms in the first and last residues of a tetrapeptide, i.e., C,(i) and C,(i + 3), is a



key criterion common to all f-turns, further the backbone dihedral angles in the inner

residues i + 1 and i + 2 will define different types of S-turns.

On average, about 25% of all protein residues comprise f-turns [5]. As one of the
most common types of non-repetitive motifs in proteins, S-turns bear great
significance in protein structure and function. Both from structural and functional
point of view, S-turns play important biological roles as reflected from the following
points: First, f-turns are four-residue reversals in proteins so that they help in the
formation of higher-order structure [6]. A polypeptide chain cannot fold into a
globular fold without S-turns; Second, f-turns usually occur on the exposed surface of
a protein and are likely to be involved in molecular recognition processes and
interactions between receptors and substrates [1; 4], and provide very useful information
for designing template structures fof the desighof.new.molecules such as drugs, pesticides,
and antigens. Furthermore, being at solvent-exposed surfaces, the residues that form
f-turns tend to be hydrophilic “residues.; and- third, also play an important role in
protein folding and stability [6]. Further,'one major secondary structural feature of
many biologically active peptides is f-turn. f-Turn forms an integral component in the
fundamental building block for anti-parallel f-sheets, which plays a good candidate
for molecular recognition processes since being at solvent-exposed surfaces, and its
formation is an important stage during the process of protein folding [6]. Therefore, to
improve on the identification of structural motifs such as the building block for
anti-parallel S-sheets and fold recognition, an accurate method to identify the location
of f-turns in a protein sequence needs to be developed. Consequently, prediction of
f-turns would be small step toward the overall prediction of three-dimensional
structure of a protein from its amino acid sequence. It will also help in identification

of structural motifs such as f-hairpin. f-turns provide very useful information for



defining template structures for the design of new molecules such as drugs, pesticides,

and antigens.

A number of f-turn prediction methods have been developed, they can be divided
into two categories: statistics-based and machine learning-based methods. The
majority of statistics-based methods empirically employed the ‘positional preference
approaches" [7; 8; 9; 10; 11]. In the Chou—Fasman method [8], a set of probabilities is
assigned to each residue and the conformational parameters and positional frequencies
are determined by calculating the relative frequency of each secondary structure. In
the 14 and 2-3 correlation model [11], the coupling effects between the first and
fourth residues and between the second and third residues are taken into account. In
the sequence coupled model developed by ,Chou [7] within the first-order Markov
chain framework, the sequence’ correlationeffect for an entire oligo-peptide is
considered. GORBTURN uses-the positional frequencies and equivalent parameters
[12] to remove the potential helix~and-strand forming residues from the S-turn
prediction [13]. As to machine learning-based methods, a neural network method,
BTPRED, was developed by Shepherd et al. [14] to predict the location and type of
[-turns in proteins. The prediction performance could not be objectively compared
because of the different dataset in these methods. Kaur and Raghava evaluated these
methods and found that BTPRED was most accurate among these fS-turn prediction

methods [15].

BetaTPred2, an improved neural network method was developed by Kaur and
Raghava [16]. In that method, they use multiple sequence alignment as input instead
of the single amino acid sequence, and a great improvement in prediction performance
has been achieved (Matthews correlation coefficient MCC = 0.43). k—nearest neighbor

method, which is combined with a filter that uses predicted protein secondary



structure information was developed by Kim [17].

The SVM is an extremely successful learning theory that usually outperforms
other machine learning technologies such as artificial neural networks (ANNs) and
nearest neighbor methods. In recent years, SVMs have performed well in diverse
applications of bioinformatics in several aspects including prediction of secondary
structure [18; 19], classification of protein quaternary structure [20], etc. In this work,
we attempt to predict f-turns in proteins using support vector machine (SVM) with
various information derive from protein sequence, comparing with some other S-turn
prediction methods that were recently evaluated by Kaur and Raghava [15], and with
the other f-turn prediction methods that using the same data set. In this study. we
employ a support vector machine (SVM), method to predict S-turns in proteins, and
attempt to seek helpful input feature vectors enly based on the information of protein

sequences.



2. Material and methods

2.1 The dataset

In this study, The dataset is comprised of 426 non-homologous protein chains
which were first described by Guruprasad and Rajkumar [21]. This same dataset was
selected by Kaur and Raghava [15] to evaluate the performance of six f-turn
prediction methods. In this dataset, any two protein chains have = 25% sequence
identity. The structure of these proteins is determined by X-ray crystallography at
better than 2.0 A resolution, and each protein chain contains at least one S-turn . The

program PROMOTIF [22] has been used to assign f-turns in proteins.

2.2 Cross validation method

A prediction method is often developed by cross-validation or jack-knife method
[23]. In a full jack-knife test of N proteins; one protein is removed from the set, the
training is done on the remaining N—1 proteins and the testing is done on the removed
protein. This process is repeated N times by removing each protein in turn. Because of
the size of the data set, the jack-knife method would be very time consuming, so a
more limited cross-validation has been used. In this study, a 7-fold cross-validation
technique is used where the data set is randomly divided into 7 subsets, each
containing equal number of proteins. The training set is consisted of 6 subsets, and
tested the prediction performance on the excluded set, the testing set. This has been
done seven times to test for each subset. The final prediction results have been

averaged over seven testing sets.



2.3 The support Vector Machine (SVM)

The SVM is a technique of machine learning based on statistical learning theory
[24]. SVM has recently be applied to solve the problems in Bioinformatics, such as
secondary structure prediction [18; 19], fold recognition, etc. A library for support
vector machines( LIBSVM )is used in this study [25], and which is an implementation
of SVM in C language for the problem of classification, and kernel type is radial basis

function.

The basic idea of SVM to pattern classification can be stated briefly as follow
two steps. First, map the input vectors into a feature space (often with a higher
dimension), either linearly or non-linearly, which is relevant with the selection of the
kernel function. Second, classifying' the data, by seeking an optimal separating
hyperplane which can maximize'the distance between two classes. (Figure 1) SVM
training always seeks a global gptimized.-solution and' avoids over-fitting, so it has the
ability to deal with a large number of features. A.€omplete description of the theory of

SVMs for pattern recognition has been done by Vapnik [26].

Two parameters were adjusted for optimal performance. In this work, we
employed the radial basis function kernel as the kernel function. (Eq. 1) The first
parameters to be determined are y and the regularization parameter C. In the present

case, we set y=0.0625, C=2.

K(X;,X;) =exp(-y(X; - X,)?) (1)



2.4 The input feature vectors

Several different input feature vectors for the support vector machine( SVM ) are
considered. We use the classical local coding scheme of the protein sequences with a
sliding window. In this study, the window size was set as 9. The “null” residue was

added in order to allow a window to extend over the N- and the C-terminus.

2.4.1 Sequence input vector

The amino acid type of each residue is encoded into a 20-dimension vector
consist of 19 “0” and single “1”, e.g. glycine is represented as
(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), alanine is represented as
(0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0), etc: The “null” residue is represented by a

20-dimension vector of all-zero.

2.4.2 Multiple sequence alignment (PSSM) input vector

With multiple sequence alignments, we use PSI-BLAST to detect distant
homologues of a query sequence and generate position-specific scoring matrix
(PSSM). The matrix has 21 x M elements, where M is the length of the target
sequence, and each element represented the likelihood of that particular residue
substitution at that position [27]. These profiles were scaled to 0-1 range using the

standard logistic function:

1

fx)= 1+ exp(-x)

2)

The “null” residue is represented by a 20-dimension vector of all-zero.



A figure introduce the procedure of processing PSSM input vector was shown in

Figure 2.

2.4.3 Secondary structure (SS) input vector

The secondary structure of each proteins in the dataset was predicted by
PSIPRED [28]. The PSIPRED prediction could output the probabilities of three states
secondary structure (helix, strand, coil). Because of the value was in the range from
0-1, the three probabilities of each residue could directly be used as 3-dimension

vector. The “null” residue is represented by a 3-dimension vector of all-zero.

A figure introduce the procedure of processing secondary structure input vector

was shown in Figure 3.

2.4.4 Relative solvent accessibility«(RSA) input-vector

Amino acid solvent accessibility is the degree to which a residue in a protein is
accessible to a solvent molecule. Relative solvent accessibility was calculated by
dividing the DSSP-defined solvent accessibility by the accessibility for a Gly-X-Gly
tripeptide given by the method of Rose and Dworkin [29]. In this study, we use Jnet
[30] to predict relative solvent accessibility of each residue based on a two
state-model (exposed/buried) in three categories: 25%, 5%, and 0% accessible. Each
residue was represented as 3-dimension vector (RSA-3) composed of zero and one,
“one” means the residue was predicted as exposed at each accessible class, and “zero”

means buried. The “null” residue is represented by a 3-dimension vector of all-zero.

Furthermore, we use another relative solvent accessibility prediction method



developed by our lab members [36], which could predict two-state RSA in ten
categories: 0-10%, 10-20%, ..., 90-100%. With this RSA prediction scheme, the
predicted probabilities of the ten classes were available, and they were directly be
used as 10-dimension vector (RSA-10). The “null” residue is represented by a

10-dimension vector of all-zero.

A figure introduce the procedure of processing RSA-10 input vector was shown

in Figure 4.

2.4.5 Chou-Fasman conformational parameter input vector

The Chou-Fasman algorithm for the prediction of protein secondary structure [31]
is one of the most widely used predictive schemes. The Chou-Fasman method of
secondary structure prediction depends on assigning a set of prediction values to a
residue and then applying a simple. algorithm to.the conformational parameters and

positional frequencies (Table 1.).

The Chou-Fasman algorithm 18“'simple in principle. The conformational
parameters for each amino acid were calculated by considering the relative frequency
of a given amino acid within a protein, its occurrence in a given type of secondary
structure, and the fraction of residues occurring in that type of structure. These
parameters are measures of a given amino acid's preference to be found in helix, sheet
or coil. Using these conformational parameters, one finds nucleation sites within the
sequence and extends them until a stretch of amino acids is encountered that is not
disposed to occur in that type of structure or until a stretch is encountered that has a
greater disposition for another type of structure. At that point, the structure is
terminated. This process is repeated throughout the sequence until the entire sequence

is predicted.



In order to scale the conformational parameters to 0-1, each value of parameter
was simply divided by 200. Each amino acid was represented as 3-dimension vector
of its scaled conformational parameters. The “null” residue is represented by a

3-dimension vector of all-zero.

2.4.6 Amino acid solvent exposed area (SEA) input vector

Table 2. implies solvent accessibility information derived from Bordo and Argos
[32]. The data for this table was calculated from data taken from 55 proteins in the
Brookhaven data base, coming from 9 molecular families: globi ns, immunoglobins,
cytochromes c, serine proteases, subtilisins, calcium binding proteins, acid proteases,
toxins and virus capsid proteins. Reéd entries are found on the surface of a proteins on
> 70% of occurrences and blue entries are found mside of a protein of < 20% of
occurrences. The only clear trend in this-table-is that'some residues, such as R and K,
locate themselves so that they have aceess to-the solvent. The hydrophobic residues,
such as L and F, show no clear trend: they are found near the solvent as often as they
are found buried. Each amino acid was represented as 3-dimension vector and the

“null” residue is represented by a 3-dimension vector of all-zero.

2.4.7 Amino acid volume input vector

We use the amino acid volume calculated by Zamyatnin [33] as one kind of input
vectors. As shown in Table 3., each amino acid was represented by its volume as
one-dimension vector, and the “null” residue is represented by an one-dimension

vector of zero.

10



2.4.8 Amino acid hydropathy input vector

Hydropathy index listed a scale combining hydrophobicity and hydorphilicity of
R groups; it can be used to measure the tendency of an amino acid to seek an aqueous
environment (- values) or a hydrophobic environment (+ values) [34]. As shown in
Table 4., and the value was scaled to 0-1 by equation (2). Each amino acid was
represented by its hydropathy as one-dimension vector. and the “null” residue is

represented by an one-dimension vector of zero.

2.5 Adjusting the threshold of the output of LIBSVM

The SVM tool we used in this study,(l.LIBSVM) could estimates the probability
of each predicted class as setting.parameter bas 1.1In f-turn prediction, there are only
two classes labels: turn and mnon-turn. If“the probability of residues which was
predicted as f-turn is more thari-0.5;-the eutput label would be S-turn, otherwise the
predicted output label would be non-tarn. But it seems that the threshold 0.5 is to high
to get good sensitivity, so we try to lower the threshold to seek better prediction

performance.

2.6 Filtering

The prediction is performed for each residue separately, since f-turns are
typically multiple turns of at least four residues long, we added a simple filtering step
which is similar to the “state-flipping” rule used in Shepherd et al. [14]. A set of five

rules have been used in the following order:

11



1.  Flip isolated nonturn predictions to turn (i.e., t-t — ttt).

2. Flip isolated pairs of nonturn predictions to turn (i.e., t--t —_ tttt).

3. Flip isolated turn predictions to nonturn (i.e., -t- — ---).

4. For isolated pairs of turn predictions, flip the adjacent nonturn predictions to turn

(i.e., -tt- — tttt).

5. For isolated triplet of turn predictions, flip the adjacent nonturn predictions to

turn (i.e., -ttt- —  ttttt).

2.7 Performance measures

Several parameters were ‘widely used to measure the performance of f-turn
prediction methods as described by Shepherd et+al. [14], which are based on the

following scalar quantities:

p, the number of correctly classified f-turn residues

n, the number of correctly classified non-f-turn residues

o0, the number non-b-turn residues incorrectly classified as f-turn (over-predictions)

u, the number b-turn residues incorrectly classified as non-f-turn (under-predictions)

t , the total number of residues.

12



The parameters were described below.

1. Qtotal (or prediction accuracy), the percentage of correctly classified residues. It
is the most common measure of a method’s overall performance; however, Qtotal
can be misleading as f-turn residues occur much less frequently than non-g-turn
residues in proteins (25 versus 75%). Therefore, one could easily achieve Qtotal =

75% merely by predicting all residues to be non-f-turn.

Qtoaal :NTHXIOO (3)

2. Qpredicted is the percentage of f-turn prediction that are correct, which penalizes

over-predictions.

Qpredicted = ) E S x100 4)

3. Qobserved is the percentage of observed f-turns that are correctly predicted,

which penalizes under-predictions.

Qobserved = ; E . x100 (5)

13



4. MCC (Matthew’s Correlation Coefficient), a single measure of performance that

takes into account for both over- and under-predictions.

pn-ou

MCC =
(P +0)(p +u)(n +0)(n +u)

(6)

14



3. Results

SVM is used predict the f-turns in the proteins, and it needs to import useful
information. The information, which represents f-turn, is taken from a protein

sequence; it can be coded through several ways and is called a feature vector.

3.1 Prediction accuracies of using single feature vector

Nine feature vector was used individually to predict f-turns in protein, and the
prediction performance was listed in Table 5. As shown in Table 5., comparing the
prediction performance of each input feature vector, the multiple sequence alignment
feature vector which encoded PSSM"as impout, information could achieve the best
result with MCC value of 0.46 and the total ‘accuracy (Qut) of 76.4. Secondary
structure feature vector could also get a-good prediction performance with MCC of
0.42 and Qo of 72.9. Both RSA-3 and RSA-10-in Table 5. mean relative solvent
accessibility feature vector: RSA-3 indicates utilizing three classes of solvent
accessibility prediction from Jnet; and RSA-10 denotes employing another ten-classes
relative solvent accessibility prediction approach. RSA-10 shown better prediction
effect than RSA-3 in all respects: Qoral raise from 69.4% to 72.9%, Qpredicted Taise from
41.7% to 46.5%, Qabserved raise from 62.3% to 69.8%, and MCC raise from 0.30 to
0.39. The predict performance of importing Chou-Fasman conformational parameter
and sequence are similar. With Chou-Fasman conformational parameter feature vector,
Qiotal, Qpredicteds Qobserved, and MCC are 72.7%, 44.9%, 48.1%, and 0.28 respectively.
As to the performance of using sequence as input feature vector, Qiotal,
Qpredicted Qobserved, and MCC are 71.9%, 44.2%, 54.4%, and 0.30 respectively. With the

solvent exposed area (SEA) feature vector, it could get a good sensitivity yielded

15



Qobserved Of 72.8%, which is nearly the same as the Qopserved Value of multiple sequence
alignment feature vector; but the correct prediction rate is much lower with the
Qpredicted Value of 26.6%; hence the MCC value and Qo are only 0.07 and 44.1%
respectively. The prediction performance of SEA feature vector, volume feature
vector, and hydorpathy feature vector is much lower than other feature vectors with

MCC value of 0.07, 0.06, and 0.12 respectively.

3.2 Assembling feature vectors

In this study, we employ two strategies to assemble the information of each
single feature vectors. One is encoding multiple feature vectors in a SVM training and
testing data file; another approachis gathering the probability of being f-turn from
each prediction output of single wvector, and-use, the probabilities as import of the

second layer SVM prediction.

3.2.1 Prediction accuracies of using Multiple feature vectors

As shown if Table 5., multiple sequence alignment feature vector could receive
better prediction performance than other feature vectors, thus we take it as leading
role, and try to join other feature vectors as import. Because of the worse prediction
performance of SEA feature vector, volume feature vector, and hydorpathy feature
vector, these feature vectors were not be considered in this coding scheme. The results

of multiple feature vectors were listed in Table 6.

In this method, all the multiple feature vectors listed in Table 6. could slightly

raise Qutal, but not every combination is fessible to improve MCC. With slightly arise

16



Qpredicted but lower Qgbserved » MCC value of PSSM+SEA-3, PSSM+SEA-10, and
PSSM+C-F are the same or worse than MCC of PSSM. As to compare the prediction
performance of importing two feature vectors, PSSM+SS, to single vector of PSSM,
Qiotar 18 Taise from 76.4% to 78.2%, Qpredicted 18 raise from 51.4% to 54.3%, and MCC
value is raise from 0.46 to 0.48, but Qopserved 18 slightly lower from 72.8% to 71.9%.
The performance of importing three feature vectors, PSSM+SS+SEA-3, is also better
than single vector of PSSM, Qo 1s raise from 76.4% to 79.6%, and MCC value is

raise from 0.46 to 0.48.

3.2.2 Prediction accuracies of performing Double-layer SVM

As listed in Table 5., multiple sequence alignment feature vector, secondary
structure feature vector, and ten-classes relative solyvent accessibility feature vector
receive better prediction performanceé of MEC-value than other single feature vectors.
The probabilities of forming A-turn-generated ‘from SVM by these three feature
vectors are gathered, and use as import information of the second layer SVM. The

results were listed in Table 7.

Comparing the performance of double-layer SVM with only use single vector,
PSSM, double-layer SVM of PSSM+SS could raise Qiotal from 76.4% to 78.3%, and
MCC value from 0.46 to 0.47. Besides Qopserved Slightly raise from 72.8% to 74.6%,
double-layer SVM of PSSM+RSA-10 and single feature vector of PSSM almost get
the same result with other performance measures. Comparing the result between SS
and double-layer SVM of SS+RSA-10, after including RSA information, Qo raise
from 72.9% to 75.7%, Qpredicted Tis€ from 46.8% to 50.3%, Qobserved decrease 76.5% to

68.4%, and the two MCC value are identical, 0.42. The predict performance between

17



double-layer SVM of PSSM+SS and PSSM+SS+RSA-10 are similar, and both are
better than only import PSSM single vector. The achievements of PSSM+SS+RSA-10

are 78.7%, 55.4%, 67.8%, 0.47 in Qotal, Qpredicteds Qobserveds and MCC, respectively.

18



4. Discussion

It has been shown that, as using sequence or PSI-BLAST generated
position-specific scoring matrix (PSSM) to predict f-turn in proteins, including
secondary structure information would improve the prediction performance [14; 15].
As shown in Table 8., in this study, even only use secondary structure information
generated by PSIPRED, the prediction performance MCC could achieve 0.42, which
is only lower than MCC of BetaTPred2 (0.43) [16] and SVM(2005)(0.45) [35] (both
are machine learning methods with PSSM and secondary structure information as

import information), but higher than any other previous methods.

In this study, we found that relative solvent accessibility could provide useful
information in f-turn predictionthat has never.been mentioned before. As only
employing relative solvent aecessibility as import information, the prediction
performance of MCC could achieve 0.39;-which is;equal to MCC value of BTPRED.
Although this MCC value is worse'than.three prediction methods, it is better than any
other statistical base methods (Table 8..) As to the result of importing multiple feature
vectors to SVM (Table. 6), comparing the performance between PSSM+SS+RSA-3
and PSSM+SS, while including RSA information, even though Qgbserved decreased, but

the increment of Qpredicied cause the raise of Qotar.

As shown in Table 5., comparing the result of two relative solvent accessibility
coding scheme, the ten-classes method got better results in every performance
measure than the three-classes one. Because f-turns tend to occur at solvent-exposed
surface[4], it could be conjectured that the more classes in RSA prediction, the more
information to represent the expose extent of a residue, and which could provide more

helpful information for f-turn prediction.
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Both PSIPRED predicted secondary structure and the Chou-Fasmsn
conformational parameters could provide secondary structure information, but
comparing with the result of these two feature vectors as listed in Table 5., the
prediction performance of using Chou-Fasman parameters is worse than using
PSIPRED predicted secondary structure. Maybe it is because the Chou-Fasmsn
conformational parameters were calculated from specific protein set [8], it could only
provide a general view of secondary structure information to each amino acid; but
PSIPRED could give more limited secondary structure information in the light of
specific residue. This idea could also be illustrated in comparing the result of relative
solvent accessibility (RSA) with solvent exposed area (REA)(Table 8.). The solvent
accessibility information used in this study was derived from Bordo and Argos [32].
The data was calculated from datastaken from 55 proteins in the Brookhaven data base.
In Table 2., the only clear trend.is that' some residues, such as R and K, locate
themselves so that they have aceess to.the.selvent. The so-called hydrophobic residues,
such as L and F, show no clear trend: they are found near the solvent as often as they
are found buried. It also could provide a general view of the solvent exposure
tendency of 20 amino acids only, but not in accordance with each residue in proteins.

Thus tool-predicted RSA could provide more helpful information than SEA.

Several coding scheme in this study could get better prediction performance
than any other previous method. The best performance of this study is import multiple
feature vectors including multiple sequence alignment feature vector, secondary
structure feature vector, and relative solvent accessibility feature vector (three classes).
This approach yields superior results compared with existing method on the same
dataset (Table 8.). Comparing the four performance measures with SVM(2005), only

Qobserved has almost the same value, other measures receive better result in this study:
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Qutotals Qpredicteds Qobserved, and MCC are 79.6%, 57.4%, 66.1%, and 0.48 respectively in

this work; and 77.3%, 53.1%, 67.0%, and 0.45 respectively in SVM(2005).

In conclusion, the f-turn prediction method described here yields predictions that
are significantly more accurate than previous methods. Not only multiple sequence
alignment and secondary structure information are important, relative solvent

accessibility could also assist the prediction of S-turns.
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Table 1. Chou-Fasman conformational parameters

Amidio acid P(a) P(b) P(turn)
Alanine 142 83 66
Arginine 98 93 95
Aspartic acid 101 54 146
Asparagine 67 89 156
Cysteine 70 119 119
Glumatic acid 151 37 74
Glutamine 111 110 98
Glycine 57 75 156
Histidine 100 87 95
Isoleucine 108 160 47
Leucine 121 130 59
Lysine 114 74 101
Methionine 145 105 60
Phenylalanine 113 138 60
Proline 57 55 152
Serine 77 75 143
Threonine 83 119 96
Tryptophan 108 e 96
Tyrosine 69 147 114
Valine 106 170 50

P(a), P(b) and P(turn) are conformational parameters of helix, f-sheet and f-turns.
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Table 2. Solvent exposed area (SEA) of amino acids

Amino acid SEA >30 A’ SEA <10 A® 30 >SEA > 10 A?
Serine 0.7 0.2 0.1
Threonine 0.71 0.16 0.13
Alanine 0.48 0.35 0.17
Glycine 0.51 0.36 0.13
Proline 0.78 0.13 0.09
Cysteine 0.32 0.54 0.14
Aspartic acid 0.81 0.09 0.1
Glumatic acid 0.93 0.04 0.03
Glutamine 0.81 0.1 0.09
Asparagine 0.82 0.1 0.08
Leucine 0.41 0.49 0.1
Isoleucine 0.39 0.47 0.14
Valine 0.4 0.5 0.1
Methionine 0.44 0.2 0.36
Phenylalanine 0.42 0.42 0.16
Tyrosine 0.67 0.2 0.13
Tryptophan 0.49 0.44 0.07
Lysine 0.93 0.02 0.05
Arginine 0.84 0.05 0.11
Histidine 0.66 0.19 0.15

26



Table 3. volume and hydropathy index of amino acids

amino acids volume

60.1
88.6
140
166.7
166.7
162.9
189.9
193.6
227.8
89
112.7
116.1
108.5
114.1
143.3
16816
153.2
1734
11T.1
1384

Mmoo ™D RO Z0O3"n=2<m1Z 0 < > Q

27



Table 4. hydropathy index of amino acids

amino acids Hydropathy index

0.4
1.8
4.2
3.8
4.5
1.9
2.8
-1.3
-0.9
-0.8
1.6
-0.7
2.5
-3.5

MO ™o ROZAOHTYw < mME — = <> Q
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Table 5. The prediction performance based on single feature vector

Coding scheme Quotal (%0)  Qpredicted (%0)  Qobserved (%0) MCC
Sequence 71.9 44.2 54.4 0.30
PSSM 76.4 51.4 72.8 0.46
SS 72.9 46.8 76.5 0.42
RSA-3 69.4 41.7 62.3 0.30
RSA-10 72.9 46.5 69.8 0.39
C-F parameter 72.7 44.9 48.1 0.28
SEA 44.1 26.6 72.8 0.07
Volume 67.3 294 23.6 0.06

Hydropathy 59.0 30.5 52.5 0.12
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Table 6. The prediction performance based on multiple feature vector

Coding scheme Quotal (%) Qpredicted (%0) Qobserved (%0) MCC
PSSM 76.4 514 72.8 0.46
PSSM+SS 78.2 543 71.9 0.48
PSSM+RSA-3 77.5 53.1 70.4 0.46
PSSM+RSA-10 77.8 53.9 67.6 0.45
PSSM+C-F 77.9 54.0 66.9 0.45
PSSM+SS+RSA-3 79.6 57.4 66.1 0.48
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Table 7. The prediction performance based on multiple feature vector

Coding scheme Quotal (%) Qpredicted (Y0)  Qobserved (%0) MCC
PSSM 76.4 51.4 72.8 0.46
SS 72.9 46.8 76.5 0.42
RSA-10 72.9 46.5 69.8 0.39
PSSM+SS 78.3 54.6 69.4 0.47
PSSM+RSA-10 76.4 51.3 74.6 0.46
SS+RSA-10 75.7 50.3 68.4 0.42
PSSM+SS+RSA-10 78.7 55.4 67.8 0.47
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Table 8. Comparing the prediction performance with previous methods

Method Quotat (%) Qpredicted (%0)  Qobserved (Y%0)  MCC
Chou-Fasman® 75.3 49.6 47.5 0.32
Thornton's” 75.2 49.3 44.9 0.31
GORBTURN* 75.4 49.6 37.7 0.28
1-4 & 2-3 correlation model® 74.8 48.0 39.8 0.28
Sequence coupled model” 75.4 49.6 40.0 0.28
BTPRED? 75.3 49.7 63.4 0.39
Nearest-neighbor 75.0 46.5 66.7 0.40
BetaTPred2 75.5 49.8 72.3 0.43
SVM (2005) 77.3 53.1 67.0 0.45
PSSM 76.4 51.4 72.8 0.46
SS 72.9 46.8 76.5 0.42
RSA-10 72.9 46.5 69.8 0.39
PSSM+SS 78.2 54.3 71.9 0.48
PSSM+SS+RSA-3 79.6 57.4 66.1 0.48

* Evaluated with the same dataset by Kaur and Raghava[14]
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Figure 1. Optimal separating hyperplane(OSH) of.SVM
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Figure 3. The procedure of processing secondary: structure input vector
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Transform to input feature vectors

A 4

SVM classifier
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Adjust the threshold of output probability

A 4

Filtering

A 4

Final result

Figure 5. Simple flow chart of prediction S-turns using SVM in this study
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Appendix 1. Types of S-turns
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* Chou, K. C. (2000). Prediction of tight turns and their types in proteins. Anal

Biochem. 286, 1-16.

(55) Hutchinson, E. G., and Thornton, J. M. (1994) A revised set of potentials for

[S-turn formation in proteins. Protein Sci. 3, 2207— 2216.
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Appendix 1. (Continued)

(2) Type I
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(4) Type I

40



(7) Type Via2

Mt
(9) Type VIII

* Chou, K. C. (2000). Prediction of tight turns and their types in proteins. Anal

Biochem. 286, 1-16.
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Appendix 2. Protein chains (426) from Protein Data Bank used for S-turns analysis
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Ivsd
Iwho
I1xsoA
lyvel
2ayh
2chsA
2fdn
2hpdA
2mcm
2plc
2scpA
2vhbB
3daaA
3seb
ScsmA
6gsvA

Igba
IreqD
Irsy
Isbp
Ismd
Itca
1trkA
lunkA
Ivid
1vwIB
IwhtB
IxyzA
1zin
2baa
2ctc
2tha
2hts
2msbB
2por
2sicl
2wea
3grs
3tss
ShpgA
7ahlA

Ignf
IrgeA
IrvaA
Isfp
IspuA
Itfe
Itsp
lurnA
Ivif
Iwab
IwpoB
lyaiC
256bA
2bbkH
2cyp
2fivA
2ilb
2nacA
2pspA
2sil
3b5c
3zt
3vub
Sicb

Trsa

1r69
Irhs
Irypl
1sftB
Isra
Ithv
ItvxA
luxy
Ivin
Iwba
IxgsA
lyasA
2a0b
2bbkL
2dri
2gdm
2ilk
2pgd
2pth
2sn3
3chy
3nul
4bcl
5p21
8abp

1ra9
Irie
Iryp2
Isgpl
IstmA
Ithx
Itys
1v39
lvjs
IwdcA
IxikA
lycc
2abk
2bopA
2end
2hbg
2kinA
2phy
22
2sns
3cla
3pcgM
4mt2
Spti
8rucl

Irct
Irmg
IrypF
Iskz
Isvb
Itib
luae
IvcaA
1vls
Iwer
Ixjo
lyer
2acy
2cba
2eng
2hft
2kinB
2pia
2rspB
2tgi
3cox
3pte
4pgaA

Sptp
8rxnA

Irec
Irro
Irypl
IsltA
IsvpA
1tif
lubi
Ivee
IvpsA
Iwhi
Ixnb
1ytbA
2arcA
2ccyA
2erl
2hmzA
21bd
2pii
2sak
2tysA
3cyr
3sdhA
4xis
6¢cel
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