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ABSTRACT

Molecular docking and quantitative structure activity relationships (QSAR) are the core
technologies in computer-aided drug design. These technologies would help to save much time and cost
to find out potential leads for the target protein in drug discovery. In this study, we introduced molecular
docking tool, GEMDOCK to generate the atom-based protein-ligand interaction profile. We utilized the
interaction profile to be descriptor and integrate. with GEMPLS and GEMKNN for QSAR model of
human acetylcholinesterase (huAChE) and Arthrobacter .globiformis histamine oxidase (AGHO). Our
method has adopted the atom-based: interaction . profile of protein-ligand complex to represent the
molecular descriptor. The atom-based interaction profile would be used in GEMPLS and GEMKNN to
construct the preliminary QSAR models. By collecting the selected feature of preliminary models, we
generated the consensus feature set. Finally, the consensus feature set and ligand specific skeleton set
were used to generate the final QSAR model“and improve the prediction accuracy of model. We have
verified our method for QSAR model of human acetylcholinesterase (huAChE). The model shows the
leave-one-out cross validation of ¢” is 0.818 and the correlation of /* is 0.781 between the predicted and
experimental values. After verifying the utility of our method on huAChE, we applied it to develop a
novel QSAR model for Arthrobacter globiformis histamine oxidase (AGHO). This model is the first
QSAR model for AGHO, and it shows a correlation of 7° is 0.983 between the predicted values and
experimental values. This model has also been employed to a series of substrates and derivatives to probe
the relationship between affinities of AGHO and hydrophobicities of ligands (including the length of
substitution group and ring size). From QSAR models of AGHO, we discovered a novel substrate, which
was called benzylamine and was evaluated by experiments. Experiments show that our QSAR model was
capable of predicting with reasonable accuracy even that the activity of novel compounds not included in
the original dataset. The successful development of highly predictive QSAR models implies that our
method is a robust and useful tool for QSAR models.
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Chapter 1

Introduction

1.1 Motivations and Purposes

As the development in computer science, molecular biology and pharmaceutical chemistry,
computer-aided drug design become more and more important in drug discovery.
Computer-aided drug design is promising directions for shortening the time and reducing the
cost for new drug discovery. Molecular docking and quantitative structure activity relationships
(QSAR) are the important technologies in computer-aided drug design. However the two
methods suffer several challenges: Molecular docking is powerful in characterizing
protein-ligand binding but the scoring functions of docking still obtains few or no relationship
between predicted energy and truly biolegical activity (e.g., binding affinity or IC50). 3D
QSAR analysis such as CoMFA.and COMBINE -also suffer some problems, such as
superposition of steric structures ‘or selection‘of molecular descriptors'™.

By applying the excellent petformance of the-molecular docking tool, GEMDOCK*”, in
protein-ligand docking, this thesis makes an attempt to combine the great achievements of
GEMPLS® and GEMKNN in optimization and statistic for QSAR modeling. In order to
describe the characteristic of feature more specifically, we have focused the feature on the atom
basis. In the process of QSAR model constructing, the generation of consensus feature set and
ligand ignored common skeleton set have been evaluated the effect for QSAR modeling.

To evaluate our method for QSAR model, we have verified the method for QSAR model
of human acetylcholinesterase (huAChE). In addition, we have practically applied the method
for the first QSAR model of Arthrobacter globiformis histamine oxidase (AGHO).

1.2 Thesis overview

We have integrated GEMDOCK with GEMPLS and GEMKNN for QSAR models. In
chapter 2, we have prepared the huAChE compound set and AGHO compound set for
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verification and application. In addition, we have prepared numbers of AGHO substrate
derivatives derived from CHEMSK and CORINA3.0°. The target proteins were modified from
the template respectively. After preparing compound set and target protein, we integrated
GEMDOCK with GEMPLS and GEMKNN for the QSAR models of huAChE and AGHO.

In chapter 3, we have evaluated GEMDOCK performance and evaluated the structure of
modeling protein. In order to verify the performance of GEMDOCK on acetylcholinesterase
(AChE) and Cu*" amine oxidases (CuAOs), we have applied GEMDOCK on the molecular
simulation of Torpedocalifornica AChE (tcAChE) and Arthrobacter globiformis
phenylethylamine oxidase (AGAO). To evaluate the adaptability of the modeling structure,
GEMDOCK has been employed to simulate the protein-ligand complex of huAChE and
AGHO.

In chapter 4, we have verified our method for QSAR modeling of huAChE. In the process
of QSAR modeling, the generations of the consensus feature set and the ligand ignored
common skeleton set have been used to evaluated the effect for QSAR modeling. There are
sixty-nine compounds with IC50 values in the hUAChE compound set, and the compounds
were divided into the training=set (fifty-threes compounds) and the testing set (sixteen
compounds). The evaluated result of QSAR-model shows that our method is useful in QSAR
modeling.

In chapter 5, we have practically applied our method on QSAR modeling of AGHO. In the
process of QSAR modeling, the generations of the consensus feature set and the ligand ignored
common skeleton set have been used to evaluated the effect for QSAR modeling too. There are
twelve known substrates with Km in the AGHO compound set, and the twelve compounds
have been employed in the training set. This is the first specific QSAR model for AGHO. And
the evaluated result of the QSAR model shows the predictability.

Chapter 6 presents some conclusions and future perspectives. Integrating GEMDOCK
with GEMPLS and GEMKNN shows that it is adaptable to QSAR modeling. And the
generation of consensus feature and ligand ignored common skeleton set effect the quality of
QSAR modeling. And we could make our method an automatically predictive system in the

future.



Chapter 2

Methods and Materials

2-1 Materials

2-1-1 Compound Set of huAChE

Acetylcholinesterase (AChE) is a protein that catalyzes the hydrolysis of acetylcholine
(ACh) in cholinergic synapses (Acetylcholine + H;O — Choline + Acetate), and it has one of
the fastest reaction rates of any of our enzymes'’. In pharmacy industry, AChE is the target of
nerve agents, insecticides and therapeutic drugs, in particular the generation of anti-Alzheimer
drugs™.

To evaluate the method we useds'we got the’human AChE (huAChE) compound set from
reference'”. There are sixty-nine compouids with'IC50 values measured with huAChE assay in
the set, and the compounds are-divided into” four groups mainly. Within the set, fifty-three
compounds are selected for training sét (Table-1).and sixteen compounds for testing set (Table

2) to validate the result of our method.

2-1-2 Compound Set of AGHO

CuAOs (EC 1.4.3.6) are ubiquitous in the nature, and the enzymes have a variety of

function in the metabolism of biogenic primary amines (RCH,NH,+H,O+0, - RCHO + NHj3

+ H,0,)". In prokaryotic organisms, these enzymes are utilized for growth on amine. In human,
these enzymes have been found to be correlated with heart failure'* and chronic medical
condition in diabetic patients'*'®,

To probe into CuAOs, we have applied our method on Arthrobacter globiformis histamine
oxidase (AGHO), it is one member of CuAOs family. The twelve compounds with K, values
measured with AGHO assay (cooperation with Dr. Chiun-Jye Yuan) (Table 3) were selected for
the training model. According to the known twelve substrates of AGHO, we have constructed

the first QSAR model for AGHO and found out some significant residues in AGHO by our
method.



In addition, in order to study the correlation between binding affinity and structural
characteristic of ligand, we have set up a ligand set of AGHO derivatives (Table 4) (Table 5).
The 3-D structures of the derivatives are prepared by CHEMSK and CORINA3.0. By this
derivatives set, we would probe into the tendency of ligand affinity related to the

hydrophobicity in AGHO.

2-1-3 Preparation of huAChE structure

In prior AChE inhibitor studies, many researches were base on using ligand-based design
methods such as COMFA'"?!. In our study, in order to simulate the protein-ligand interactions by
GEMDOCK, we have modified a proper structure of huAChE to be the target protein. And the
docking simulation of protein-ligand complex would be considered for the QSAR model
constructing.

The AChE X-ray crystallized structures we used in the study were huAChE (PDB entry
1B417%) and tcAChE (PDB entry 1EVE>).. The crystallized structure of huAChE (1B41) has no
ligand complex with the protein and the structure of.tcAChE (1EVE) has one co-crystallized
E2020 inhibitor complex with the protein. Foi the docking simulation, the docking target was
the huAChE (1B41) structure “but rely <on the co=crystallized E2020 inhibitor binding
conformation from the tcAChE «(1EVE).“To“ascertain the binding conformation of the
co-crystallized E2020 inhibitor relative to thechuAChE structure, we have aligned the huAChE
structure to the tcAChE structure by a maximal overlap of C, atoms for the huAChE/tcAChE
residues within the proteins. The sequence identity between the two proteins is 57% and the root
mean square deviation (RMSD) between huAChE structure and tcAChE structure is 0.88 A for
the set of all C, atoms in the whole protein, indicating the good overall alignment and
substantial structural homology. Because the absence of a solid understanding of the roles of
solvent molecules in the huAChE active site, we did not include all waters in considering. After
ascertaining the binding conformation of E2020 inhibitor relative to the huAChE structure, the
hydrogen atoms were added to the huAChE-E2020 complex via SYBYL7.0 modeling software
package from Tripos, Inc., St. Louis, MO. The huAChE-E2020 complex was then energy
optimized by Tripos force field, the termination gradient is 0.05 kcal/mol*4 via SYBYL7.0. The
resulting structure of protein was extracted for the docking simulation. And the docking

simulation of protein-ligand complex would be considered for the QSAR model constructing.



2-1-4 Preparation of AGHO structure

In our study of CuAOs, we focused on the AGHO. There is no X-ray crystallized structure
of AGHO so far. In order to simulate the protein-ligand interactions in the binding site of AGHO,
we have constructed a homology modeling of AGHO. GEMDOCK has been employed to
simulate the binding conformations between the model and substrates. And the docking
simulation would be considered for the QSAR model constructing.

Homology modeling was a predictive technique to generate 3D-structure of a protein from
its amino acid sequence. The method was based on two major opinions (i) the structure of a
protein was determined by its amino acid sequence and (ii) the similar sequences have
practically identical structures. To generate a homology structure, we need the amino acid
sequence of the target protein and the 3D structures of proteins with homologous amino acid
sequence (template protein). And the confidence of the homology modeling is critically
dependent on the selection of structural templates and the alignment of the amino acid sequence
of the target protein and the templates: There are several programs for structure modeling, and in
our study, we constructed the AGHO mbodeling by SWISSMODEL*

First we obtained the amino acid sequence of AGHO from the SwissProt/TrEMBL.
Subsequently the amino acid sequence was'beused to search for the template by BLAST*, and
we selected the AGAO structure (PDB entry 11U7°% to be the template. The sequence identity
between the AGHO and AGAO is 61%, suggesting the high structural homology.

In the preparation for structure of template, we selected the structure of AGAO A chain
(1IU7A) to be the template, and removed the Cu*" ion and H20 molecules away. Furthermore
there was a special cofactor, 2.4.5-trihydroxyphenylalanyl quinine (TPQ) in the protein, and it
was generated from an intrinsic tyrosine in the amino acid sequence by a self-processing that
required the Cu®" ion and molecular oxygen”’. We have modified the TPQ to tyrosine by
removing the O atoms from the side-chain of TPQ. Subsequently, the homology modeling of
AGHO was constructed according to the amino acid sequence of target protein and the structure
of template by SWISSMODEL.

The root mean square deviation (RMSD) between target protein structure and template
structure is 0.15 A for the set of all C, atoms in the whole protein, indicating the good overall
alignment and substantial structural homology. To ascertain the orientation of Cu®" ion relative

to the modeling structure, we have aligned the modeling structure to the AGAO (PDB entry



11U7) structure by a maximal overlap of C, atoms for the residues within the two proteins. To
modify the tyrosine to TPQ, we modified the hydrogen atoms of the side-chain of tyrosine to
oxygen in position 2, 4 and 5. Because the absence of a solid understanding of the roles of
individual solvent molecules in the AGHO active site, we did not include all waters in
considering. In order to mimic the structural character of AGHO, we aligned the modeling
structure to the structure of AGAO A chain (1IU7A) and AGAO B chain (1IU7B) respectively,
and then we adopted the relative coordinate after alignment of each monomer.

After the modification, hydrogen atoms were added and the charge of Cu®" was assigned to
the structure via SYBYL7.0. The structure of model was then energy optimized by Tripos force
field, the termination gradient is 0.05 kcal/mol*4 via SYBYL7.0. The resulting structure of

protein was extracted for the docking simulation.

2-2 Methods

2-2-1 Method for QSAR model construeting

In the study, we have integrated GEMDOCK with GEMPLS or GEMKNN for QSAR
modeling. To find out the significant hot spots in the-binding site, we have focused the feature
on atom basis. In addition, we have adopted the concept of consensus feature set and ligand
ignored common skeleton set to improve the stability and performance of our method. (Figure
1) shows the main step of our method. The main steps involved in QSAR model building
included the following:

(a) Prepare an adaptable 3D structure of target protein.

(b) Transform the 2D information of ligand into 3D structure by CORINA3.0.

(c) Prediction of protein-ligand conformation.

(d) According to the protein-ligand complex, we gererated protein-ligand interaction
profile and adopted the interaction profile to be the molecular descriptor for QSAR
model.

(e) Feature selection and preliminary QSAR models generation by GEMPLS and
GEMKNN.

(f) According to the average ¢° value of the leave-one-out cross validation correlation in

training, selected the proper tool for QSAR modeling.
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(g) Generation of consensus feature set by the selected tool.
(h) Feature selection and QSAR model evolution by the selected tool.
(f) Select the specific model.

Superimposition of compound structures

In the process of QSAR model constructing, we employed GEMDOCK to predict the
protein-ligand conformation and adopted the conformation to generate protein-ligand interaction
profile for molecular descriptors. To derive the reasonable ligand binding conformation in the
active site of protein, we have to superimpose structures of compound and select the one
compound superimposition set to generate molecular descriptors.

Figure 2 shows the step of compound structures superimposition. In the compound set,
there are N kinds of compound, and each compound has been generated M conformations
derived from GEMDOCK. In the N kinds of compound, we selected the one that is the most
similar one to crystal structure to be the reference ligand. Each compound aligned its conserved
region to the reference ligand and calculatedithe RMSD values. Hence there would be M sets of
compound superimpositions (because-there are M kinds; of reference ligand conformation), and
each set is made up of N kinds of'compound. Rysmeans the sum total of RMSD value between
the conserved regions of the reference ligand and the other compounds in the compound

superimposition set, M. Among R; R,...c Ry we select the minimum one and adopt the ligand

conformation in this compound superimposition set.

Protein-Ligand interaction profile

After prediction of protein-ligand conformation, we generated protein-ligand interaction
profile for molecular descriptor. Figure 3 shows the protein-ligand interaction profile. According
to predictive ligand binding conformation, we calculated the protein-ligand interaction. The
interaction we considered included electrostatic (E,..), van der Waals (E,4,) and hydrogen bond
(En) interactions. We have described the protein-ligand interaction on the atom basis and
focused on active site of the target protein. In the interaction profile, we have taken down the
interaction between the active site atom of protein and the ligand. On each atom, E, E,q and

Enpwould be calculated respectively.



In order to improve the performance of the method for QSAR model constructing, some
methods have been introduced into the procedure of QSAR modeling. The methods include the
following:

(a) Generation of consensus feature set. In the process of model constructing, we have
employed the collection of selected feature from GEMPLS or GEMKNN to generate the
consensus feature set, and then features were selected again from the consensus feature set by
GEMPLS or GEMKNN. And the result caused of this method will be compared.

(b) Definition of ligand specific skeleton. Sometimes, ligands in the compound set share
high homology, and they contained the same common skeleton. The differences among ligands
are in the region of substituent groups and the regions are believed to be distinguishable. In
order to manifest the importance of the substituent group, we have ignored the influence from
the common regions in feature selection. And the result caused of this method will be compared.

Figure 4 shows the definition of common skeleton.

Gener ation of Consensus Feature set

In the process of QSAR modeling, we found. it is-not very good to the stability of model
when GEMPLS or GEMKNN was directly employed to select feature from the molecular feature
set. The molecular feature set may include”too much feature, so it is difficult to select the
significant feature strongly correlating with biological activity. In order to improve this situation,
GEMPLS and GEMKNN was employed to carry out ten number of preliminary QSAR models
respectively, and ten sets of feature were selected. In the collection of the selected feature, we
noted down the number of time that each feature has been selected and then calculated the
average (Avg) and the standard deviation (Std) of feature occurrence number. The last, we
gathered the consensus feature according to the number of time that each feature has been
selected by the following rule, and generated the consensus feature set.

N2> (Avg — Std )
Where N is the number of time that a certain feature has been selected.
Finally, GEMPLS or GEMKNN was employed to carry out feature selection from the

consensus feature set.



Definition of Ligand Specific Skeleton

Sometimes, the ligands of a certain protein share high homology in the compound set. This
is that because the derivatives could form structural complementation with binding site of a
protein, and they contained the same common skeleton. On the conformations of those
derivatives, the main differences were focused on the region of substituent group and the regions
are believed to be distinguishable for biological activity of those derivatives. However, those
distinguishable regions accounted for few proportions to make influence power reduce inside
the whole ligand. Hence, in order to manifest the importance of the distinguishable groups, we

have ignored the influence from the common region and concentrated sight on the substituent

group.

2-2-2 Tool for QSAR model constructing

GEMDOCK

GEMDOCK is a useful toolifor the miolecular docking and structure-based virtual
screening. The tool was developed by Jinn-Moon Yang,-an associate professor of the Institute of
Bioinformatics, National Chiao Tung University.

GEMDOCK has been evaluated over 300 protein-ligand complexes and applied to identify
new substrates or inhibitors for several practical applications, such as sulfotransferase™ and
imidase. And the binding-site pharmacophore (hot spots) and ligand preferences are used to
substantially enhance GEMDOCK for screening large databases on several target proteins, such
as thymidine kinase (TK), estrogen receptor (ER), dihydrofolate reductase (DHFR) and the E
protein of dengue virus.

The scoring function of GEMDOCK has been developed as the scoring function for both
molecular docking and the ranking of screened compounds for post-docking analysis. This
function consists of a simple empirical binding score and a pharmacophore-based score to
reduce the number of false positives. The energy function can be dissected into the following
terms:

Etot :Ebind +E +E

pharma

ligpre (1)
where Ejpnq is the empirical binding energy, E,uuma i1s the energy of binding site



pharmacophores (hot spots), and Ejg,. 1s a penalty value if a ligand does not satisfy the ligand
preferences. Eppuma and Ejg,re are especially useful in selecting active compounds from
hundreds of thousands of non-active compounds by excluding ligands that violate the
characteristics of known active ligands, thereby improving the number of true positives. The
values of Epjqma and Ejgpre are determined according to the pharmacological consensus derived
from known active compounds and the target protein. In contrast, the values of Epjama and Ejigpre
are set to zero if active compounds are not available.
The empirical binding energy (Eping) 1S given as
Eyy = Eer + Eippy T E penal (2)

where Ej.r and Ej,,, are the intermolecular and intramolecular energy, respectively, and

Epenar 1s a large penalty value if the ligand is out of range of the search box. For our present work,

Epenar 1s set to 10,000. The intermolecular energy is defined as

1i; ro
B = S| F(" )+ 332.0 2%
=1y i 3)

By

where 7 is the distance between atoms’i and j with interaction type Bj; formed by
pair-wise heavy atoms between ligands and proteins, Bj; is either a hydrogen bond or a steric
state, ¢; and g; are the formal charges and-332.0 1s a factor that converts the electrostatic energy

into kilocalories per mole. The terms./ig and pro denote the number of heavy atoms in the ligand

and receptor, respectively. F(r‘f”) is a simple atomic pair-wise potential function. In this
atomic pair-wise model, the interactive types include only hydrogen bonding and steric
potentials having the same function form but different parameters, VI, . . . , V6. The energy
value of hydrogen bonding should be larger than that for steric potential. In this model, atoms
are divided into four different atom types 9: donor, acceptor, both, and nonpolar. A hydrogen
bond can be formed by the following pair-atom types: donor-acceptor (or acceptor-donor),
donor-both (or both-donor), acceptor-both (or both-acceptor), and both-both. Other pair-atom
combinations are used to form the steric state. We used the atom formal charge to calculate the
electrostatic energy, which is set to 5 or -5, respectively, if the electrostatic energy is more than 5
or less than -5.

The intramolecular energy of a ligand is

lig lig 3 qq ) dihed
E, = Z AZQ F(r,,- y )+ 3320 1|+ ;A[l —cos(m6, - 6,)] (4)
i=1 j=i+ ij =
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where F(r"f ! ) is defined as Equation 3 except the value is set to 1000 when i <20A
and dihed is the number of rotatable bonds of a ligand. We followed the work™ to set the values
of A, m, and 6. For the sp3-sp3 bond A4, m, and 6, are set to 3.0, 3, and =; for the sp3-sp2 bond
and A=15,m=6,and 6,=0.

GEMDOCK evolves binding site pharmacological consensuses and ligand preferences
from both known active ligands and the target protein to improve screening accuracy. We used
the premise that previously acquired interactions (hot spots) between ligands and the target
protein can be used to guide the selection of lead compounds for subsequent investigation and
refinement. For each known active ligand, GEMDOCK first yielded ten docked ligand
conformations by docking the ligand into the target protein, and only the ligand with the lowest
docked conformation energy was retained for pharmacological consensus analysis. The
protein-ligand interactions were extracted by overlapping these lowest-energy docked
conformations, and the interactions were classified into three different types, including hydrogen
bonding, hydrogen-charged interactions;?iand » hydrophobic interactions. After all of the
protein-ligand interactions were calculateds;the-atom interaction-profile weight of the target

protein representing the pharmacological consensus of a-particular interaction was given as

k
s )
9 3N
where ﬁk is the number of an atom j (in protein) interacting with ligands with the interaction

type k and N is the number of known active ligands. In our present work, an atom j was
considered a hot-spot atom when Q_f was more than 0.5.

The pharmacophore-based interaction energy (E,ama) between the ligand and the protein is
calculated by summing the binding energies of all hot-spot atoms:
lig hs
B;
Epharma = Z Z CW(BII )F(r;J )

i=1 j=I (6)
where CW (Bj) is a pharmacological-weight function of a hot-spot atom ;j with interaction

type By, F (qu“ ) is defined as Equation 3, /ig is the number of the heavy atoms in a screened
ligand, and 4s is the number of hot-spot atoms in the protein. The CW(Bj) is given as

1.0 if Q' <050rB; #k
L5+5(Q} -0.5) if 0 >0.5and B, =k
ij is the atomic pharmacological-profile weight (Equation 5) and £ is the interact type (e.g.,

CW(By) = { (7
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hydrogen bonding, hydrogen-charged interactions, or hydrophobic interactions) of the hot-spot

atom .

GEMPLS (GEM-Partial Least Squares)

GEMPLS is a hybrid approach that combines GA as a robust optimization technique with
PLS as a powerful statistical technique for the variable selection and model evolution. GA
operates on a population of potential solutions applying the principle of survival of the fittest to
produce successively better approximations to optimum solution. PLS deals with strongly
collinear input data and make no restriction on the number of variables used. In this thesis, the
tool GEMPLS was developed by Cooperating with Prof. Kao Lab.

In GEMPLS, the chromosomes consist of some randomly selected features and the latent
variables (/v). The squared cross-validated correlation coefficient ¢° in the PLS analysis is used
as objective function to provide a measure of how the internal predictability with respect to the
selected features of the chromosome. And GA'will, find the fittest features with the highest ¢* in
the PLS analysis.

The main steps involved in GEMPLS included the: following: (a) initiation and evaluation
of the initial population, (b) selection of the‘reproductive population, (c) crossover and mutate
the reproductive population, (d) evaluation of the child population, (e) reinsertion of the child
population to form the population on the mext generation. And the cycle of above four steps
(from step (b) to (e)) is repeated until the number of generation reaches to the maximum number
of generations.

In order to improve the performance of GEMPLS for QSAR model building, a number of
refinements have been introduced into GEMPLS. The refinements include the following:

(a) An extra bit /v, representing the number of latent variables, is appended to the original
chromosome of GA and expected to efficiently solve the problem of the optimum number of
latent variables though evolutionary process

(b) Adopt Mahalanobis distance to discriminate significant features. Mahalanobis distance
is a very useful way of determining the deviation of a sample from the mean of the distribution
in multivariable calculus. Therefore, the Mahalanobis distance is adopted to identify significant
features from all of those. M is the Mahalanobis distance from the feature vector v (column
vector of data matrix here) to the mean vector x4, where X is the covariance matrix of the
features.

12



(c) Cooperate with biased mutation to lead the evolution. We have recommended that
uniform mutation is cooperated with biased mutation to lead the evolution of GA toward

significant feature set and to reduce the interference of noise features.

Pi :Pmin +(Pmax _Pmin)x{uj
N, -1

P; is the probability of setting feature bit i to 1, pi is the position of feature i in the
descending order of Mahalanobis distance of all features, P, and P, are the minimum and
maximum values of P;, and Ns is the number of significant features. Pi is derived from pi only
when pi is ahead of Ns, otherwise P; is set to Pmin. In other words, the significant feature i with
higher Mahalanobis distance will obtain the higher Pi. In this study, the corresponding
parameters are defined as: Py = 0.8, Ppin = 0.2.

The predictability of QSAR model was assessed by the conventional correlation coefficient
(+%), the cross-validated correlation coefficient (qz), the cross-validated SDEP (SDEP.,), and
external SDEP (SDEP,,):

> Z(yi _ypred,i)2

gr=1= -
z(yi_y)z
(3~ Ppas)
SDEP:\/ yi ypred,i
N

where y; is the observed biological activity of compound i, y,4, i is the predicted biological

activity of compound i in the validation set, Y s the average biological activities of the data
set, and N is the total number of compounds.

After deciding the optimum number of latent variables, the corresponding highest ¢7,
lowest SDEP, together with the conventional squared correlation coefficient 7 can be used to
assess the predictability of QSAR model, i.e. the model with more remarkable predictability can
provide the higher , ¢° and the lower SDEP between the observed and predicted biological

activities.
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2-2-3 GEMKNN (GEM- k-Nearest-Neighbor)

GEMKNN is a hybrid approach that combines GA as a robust optimization tool with kNN
as a pattern recognition method to evaluate the discriminative ability of the subset. GA operates
on a population of potential solutions applying the principle of survival of the fittest to produce
successively better approximations to optimum solution. kNN is a conceptually simple,
nonlinear approach to pattern recognition problems. In this thesis, the tool GEMKNN was
developed by In this thesis, the tool GEMPLS was developed by Cooperating with Prof. Kao
Lab.

In GEMKNN, the chromosomes consist of some randomly selected features and the number
of selected similar molecules (k). The similarities between compounds are evaluated by
Euclidean distance. The squared cross-validated correlation coefficient ¢° in the kNN analysis is
used as objective function to provide a measure of how the internal predictability with respect to
the selected features of the chromosome. And GA will find the fittest features with the highest ¢°
in the kNN analysis.

The main steps involved in GEMkNN included the following: (a) initiation and evaluation
of the initial population, (b) selection of the reproductive population, (c) crossover and mutate
the reproductive population, (d) evaluation of the child population, (e) reinsertion of the child
population to form the population on the next generation. And the cycle of above four steps
(from step (b) to (e)) is repeated until the number of generation reaches to the maximum number
of generations.

In order to improve the performance of GEMKNN for QSAR model building, a number of
refinements have been introduced into GEMKNN. The refinements include the following:

(a) Adopt Mahalanobis distance to discriminate significant features. Mahalanobis distance
is a very useful way of determining the deviation of a sample from the mean of the distribution
in multivariable calculus. Therefore, the Mahalanobis distance is adopted to identify significant

features from all of those.

M2 =(v—p) 2 (v—p)

M is the Mahalanobis distance from the feature vector v (column vector of data matrix here)
to the mean vector u, where X is the covariance matrix of the features.

(b) Cooperate with biased mutation to lead the evolution. We have recommended that
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uniform mutation is cooperated with biased mutation to lead the evolution of GA toward

significant feature set and to reduce the interference of noise features.

B :Rnin +(Pmax _Pmin)x(u]
N -1

P; is the probability of setting feature bit i to 1, pi is the position of feature i in the
descending order of Mahalanobis distance of all features, P, and P, are the minimum and
maximum values of Pi, and Ns is the number of significant features. P; is derived from p; only
when p; is ahead of N, otherwise P; is set to Py;,. In other words, the significant feature i with
higher Mahalanobis distance will obtain the higher P, In this study, the corresponding
parameters are defined as: Py = 0.8, Ppin = 0.2.

The predictability of QSAR model was assessed by the conventional cross-validated

correlation coefficient (¢°), the cross-validated SDEP (SDEP..,), and external SDEP (SDEP.,y):

Z(yi TV pred.i )2

2
q-21z
Z(yi_y)z
(0 Vi)
SDEP:\/ yi ypred,i
N

where y; is the observed biological activity of compound i, y,q, i is the predicted biological

activity of compound i in the validation set, Y is the average biological activities of the data
set, and N is the total number of compounds.

After deciding the optimum number of latent variables, the corresponding highest ¢°,
lowest SDEP can be used to assess the predictability of QSAR model, i.e. the model with more
remarkable predictability can provide the higher ¢° and the lower SDEP between the observed

and predicted biological activities.
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Chapter 3

Evaluation of GEMDOCK and Modeling Protein Structures

3-1 Evaluation GEMDOCK on AChE and CuAOs

In order to evaluation GEMDOCK on AChEs and CuAOs, we have docked the ligands into
their target proteins respectively. We based the results on root mean square deviation (RMSD)
error in ligand heavy atoms between the docked conformation and the crystal structure or the
physical meaning of binding conformation to verify the GEMDOCK performance on the two

kinds of protein.

3-1-1 Evaluation GEMDOCK on AChE

To evaluate the performance’of docking tool on AChE, we have docked one known E2020
inhibitor back into its reference protein,. LEVE. The structure, 1EVE, is the structure of tcAChE.
According to the protein-ligand complexs the ligand forms stable stack force with W84, W279
and F330, and the nearest distance between the atom N of ligand and the water is 2.90 A.

During the molecular docking, because there is no known ligand so far, we set the CW (Bj)
(in equation 6) 3.0 for side-chain atoms of F330, 4.0 for side-chain atoms of W84 and 5.0 for
side-chain atoms of W279 to simulate the binding state. The active site for the tcAChE docking
calculations is the region within a radius of 8 A relative to E2020. And the RMSD values
between the docked conformation and the crystal structure is 1.73 A. The docked ligand forms
stable stack force with W84, W279 and F330, and the nearest distance between the atom N of
ligand and the water is 3.69 A.

3-1-2 Evaluation GEMDOCK on CuAQOs

To evaluate the performance of GEMDOCK on CuAOs, we have docked one known
substrate, phenylethylamine, into the active site of AGAO and the PDB entry of the protein is
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1TU7. There is no x-ray crystal structure of AGAO complex with ligand so far, according to the
pathway for catalytic cycle of CuAOs (Figure 5), the TPQ-O5 of the enzyme reacts with primary
amines and releases the product aldehyde, ammonia ions and hydrogen peroxide. And the
conserved Asp will be a general base to abstract the proton from the substrate in the reductive
half-reaction.

Because the crystal structure has no ligand complex with the protein, we defined that the
binding site is the collection of amino acids enclosed within a radius of 8 A relative to the
cofactor, 2.4.5-trihydroxyphenylalanyl quinine (TPQ382). Figure 6 shows the binding
conformation of docked ligand at the active site of AGAO. By the docking simulation, the
function group —NH, of the ligand forms hydrogen bond with the cofactor TPQ382-0O5,
D298-OD2 (general base) and 1379-O, and the aromatic ring of the ligand stays in the
hydrophobic pocket.

3-2 Evaluation Modeling Protein Structures

In order to verify the modelifig structure, we inspected the modeling structure by structural
alignments to relative proteins and docked several known ligands (substrates or inhibitors) into
the binding site of the modeling structure by GEMDOCK respectively. Before this, we have
evaluated GEMDOCK on two kinds of protein: tcAChE and AGHO. And we based the results

on the physical meaning of binding conformation to verify the model.

3-2-1 Evaluation Modeling Structure of huAChE

To evaluate the model of huAChE, we inspected the difference among the model and X-ray
crystal structure of huAChE (PDB entry 1B41) and tcAChE (PDB entry 1EVE). The root mean
square deviation (RMSD) between model and 1B41 is 0.24 A for the set of all C, atoms in the
whole protein, and 0.89 A between homology structure and 1EVE.

In the active site, the main difference among the three structures is the side-chain
conformation of Y337 (residue number of 1B41, relatively to F330 in 1EVE) (Figure 7). In
previous study, it has been found that F330 in tcAChE can adopt a wide range of conformations
in the complex structure and may play a role as gate'***°. It is natural to expect similar

behavior of Y337 in the huAChE compared with the analogous F330 in tcAChE.
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The tcAChE crystal structure (IEVE) has an inhibitor (E2020) complex with the protein, so
the F330 was in the opened form to stabilize the protein-ligand complex. The huAChE crystal
structure (1B41) did not have an inhibitor in the active site, thus did not reflect such a
conformation shift in the Y337 such as F330 in the tcAChE (1EVE). During the modeling,
because we have utilized the ligand binding information from a tcAChE (1EVE) to structure
modeling, the Y337 is in the opened form in the model.

We have docked one known inhibitor, E2020, into the binding site of the modeling
structure. Because there is no X-ray structure of protein-ligand complex, we defined that the
binding site is the collection of amino acids enclosed within a radius of 8 A relative to the
E2020. Docking calculations were carried out with the GEMDOCK program. In order to
simulate the protein-ligand complex, we set the CW (B;;) (in equation 6 ) was 3.0 for side-chain
atoms of Y337, 4.0 for side-chain atoms of W86 and 5.0 for side-chain atoms of W286 just like
the parameters in tcAChE. After considering the interaction preference, the inhibitors form
stable stack force with W86 and W286. Figure 8 is the docking poses of the inhibitor, E2020, in
the active site of the modeling structute. The interdetion preference would be considered when

we simulated the binding poses of other compounds.

3-2-2 Evaluation M odeling Str uctureof AGHO

To evaluate the homology structure’ of '"AGHO, we inspected the difference between the
homology structure and X-ray crystal structure of AGAO (PDB entry 11U7). Figure 9A shows
the whole structural alignments between the homology structure and 1IU7. The root mean
square deviation (RMSD) between homology structure and 11U7 is 0.24 A for the set of all C,
atoms in the whole protein.

In the active site, the residues in the two proteins are identical, besides D326 and V398 in
AGHO. D326 in AGHO is relative to Y307 in AGAO, and V398 is relative to 1379 in AGAO.
Figure 9B shows the structural difference between the two proteins. The OS5 of important
cofactor 2.4.5-trihydroxyphenylalanyl quinine (TPQ) (TPQ401 in AGHO, TPQ382 in AGAO)
slight shift 0.58 A between homology structure and AGAO structure (11U7). The ODI1 of
general base Asp (D317 in AGHO, D298 in AGAO)*' slight shift 0.2 A between homology
structure and AGAO structure (11U7). And the Tyr (Y296 in AGAO, Y315 in AGHO) that play a
role as gate’, are in the opened form in both protein structure. In the AGAO structure (11U7),

the distance between TPQ382-04 and Y284 is 2.51 A, and the distance between TPQ401-O5
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and Y303 in the AGHO structure is 2.55 A.

We have docked the twelve known substrates of AGHO to the active site of homology
structure (Figure 10). Because there is no X-ray structure of AGHO so far, we defined that the
binding site is the collection of amino acids enclosed within a radius of 8 A relative to the
TPQ401. Docking calculations were carried out with the GEMDOCK program. In order to
simulate the protein-ligand complex, we set the CW (Bj) (in equation 6) was 2.3 for OS5 of
TPQ401. After considering the interaction preference, the function groups —NH; of the
substrates form hydrogen bonds with the cofactor TPQ401-O5, D317-OD1 (general base), and
the —NH on the ring of tryptamine and histamine form hydrogen bonds with P156-O. The
aromatic rings of the substrates stay in the hydrophobic pocket. The interaction preference
would be considered when we simulated the binding poses of other compounds.

By the docking simulation of other compounds from the derivatives set we have setup, we
identified a new inhibitor, spermine (Figure 11A). According to the docking conformation in the
binding site of the homology structure (Figure 11B), the long flexible spermine passes through
the channel and forms hydrogen bonds with TPQ401-O5, D317-OD1, Y321-OH and P156-O.
The binding conformation of spermine not .only. forms hydrogen bonds with TPQ401-OS5,
D317-OD1 and P156-O that was-similar to the substrates, but also forms hydrogen bonds with
Y321-OH.

By the comparison of protein-ligand interaction between spermine and known substrates in
the AGHO binding site, it was natural to expect that spermine could bind stably in the binding
site of AGHO protein because it could form more interactions with the protein. And the

inhibitive effect of spermine has been verified by experiment.
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Chapter 4

Method Evaluation on huAChE

We have evaluated the method of QSAR model constructing on a public compound set,
human acetylcholinesterase (huAChE) compound set from reference. The compound set
includes sixty-nine compounds with IC50 values and those ligands belong to four kinds of
derivative. Within the set, fifty-three compounds are selected for training set (Table 1) and
sixteen compounds for testing set (Table 2). The IC50 values of the ligand rang from 0.48 nM to
19580 nM in the training set and 0.33nM to 30000nM in the testing set.

4-1 Validation of Conditions and Methods

The common metrics were used to evaluate the QSAR model quality, including the ¢°
(cross-validated correlation coeffiéient) in training ‘and '+ (correlation coefficient) in testing. In
order to validate the performancg and stability of the method for QSAR model building, we
have built ten models under each kind.of condition and then evaluated the mean and standard
deviation values of the ¢° and /.

To select the proper tool for huAChE QSAR model building, GEMPLS and GEMkKNN both
have been employed to construct the QSAR model. In addition, we have made some tests,
including the condition that generating ligand ignored common skeleton set and generating
consensus feature set. And we would compare the results in each condition.

Table 6 shows the performance of GEMPLS and GEMKNN relative to the raw ligand
feature set and the ligand ignored common skeleton set. GEMPLS and GEMKNN have been
employed in the raw feature sets and the feature set that ignored ligand common skeleton. In the
raw feature set, the result of cross-validated correlation coefficient in GEMKNN is a little better
than GEMPLS. In ligand ignored common skeleton set, the ¢° value of GEMKNN is much better
than GEMPLS. The ¢° value of GEMPLS would become worse if the ligand common skeleton
have been ignored. This phenomenon is different in GEMkKNN, and the evaluated performance
would be better when ligand common skeleton have been ignored.

In the raw feature set of huAChE, the result of cross-validated correlation coefficient in
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GEMKNN is better than GEMPLS. Thus GEMKNN has been employed in the QSAR model
constructing for huAChE. Table 7 shows the relationship between the result of GEMKNN and
generation of consensus feature set. No matter the common skeleton have been ignored or not,
the generation of consensus feature set in the process of QSAR model building would improve
obviously the quality of the QSAR model. And the result of cross-validated correlation
coefficient in GEMKNN would become better if the ligand common skeleton have been ignored
no matter the consensus feature set have been generated or not.

Table 8 shows the comparison of our method with the method in the reference. In the
literature, the docking tool GOLD have been employed in molecular simulation, the feature
basis have been focus on residue-based, the leave-one-out cross validation correlation of ¢° is
0.72 and the #° between the predicted values and the experimental values is 0.69. The docking
tool, GEMDOCK, have been employed to simulate the protein-ligand complex, we have focused
the molecular feature set on the atom basis, the average ¢’ values of leave-one-out cross
validation is 0.81 and the average correlation of 7 = 0.72 between the predicted values and the
experimental values. Our QSAR model has been built via GEMKNN over interaction profile
within compound in the training set. And the-model has been built via PLS regression in the

literature.

4-2 QSAR Model for huAChE

To construct an effective QSAR model for huAChE, we have adopted models by the
following step:

(a) Predicted the molecular geometry in the binding site of the target protein by

GEMEDOCK.

(b) According to the protein-ligand complex, we used the interaction profile to be

molecular feature set on atom basis.

(c) Generation of ligand ignored common skeleton set.

(d) Feature selection and model evolution by GEMKNN.

(e) Generation of consensus feature set

(f) Feature selection and model evolution by GEMKNN

(g) Select the specific model.
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With such a procedure, the average ¢° values of leave-one-out cross validation is 0.817 and
the average correlation of #° = 0.723 between the predicted values and the experimental values.
In order to construct a specific QSAR model, we have adopted the one that the ¢° value is most
close to the average ¢° value in 10 times when training. This is because we hope to select a
steady model and to avoid over-fitting in QSAR model building. At last we adopted the model
with a leave-one-out cross validation of ¢° = 0.818 and a correlation of 7* = 0.781 between the
predictive values and experimental values. Figure 12A and Figure 12B show the correlation
between the experimental values and the predicted values from the QSAR modeling.

Table 9 shows the selected feature and their physical meaning. Several residues have been
found very important in previous study. Residue Y72 could form a wall to stabilize ligand and
W86 forms m-m interaction with choline. N87 and Y337 contribute the electrostatic force in the
active site. Residues Y124 and F338 provide hydrophobic contacts with ligand. S203 and H447
are significant in huAChE; they are catalytic triad in the enzyme. In previous study, residue
H287 has been found that could affect the binding affinity of AChE inhibitors and W286 might
play the same role as H287. Residue<Y341 forms the local pocket in the active site. This result
reveals that most of the feature we have selected have already been verified their physical

meanings and to help confirm the sensibility of our model.
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Chapter 5

Practical Application

In this study, our method has been employed to practically apply on AGHO model building.
There are twelve known substrates (cooperation with Dr. Chiun-Jye Yuan) with K,, values in the
compound set. Table 3 shows the structures of the known substrates in the compound set. The
Km values of the ligand rang from 0.0025 mM to 0.1221 mM in the set. To construct the QSAR

model for AGHO, twelve known substrates have been employed in the training set.

5-1 Validation of Conditions and Methods

In order to validate the performance and stability of the method for QSAR model building,
we have built ten models under eachkind of condition and then evaluated the mean and standard
deviation values of the ¢°. To sélect the -proper.tool for huAChE QSAR model building,
GEMPLS and GEMKNN both have been employed fo construct the QSAR model. And we have
done some test and attempted to find out the influence in the conditions, including the condition
that generating ligand ignored common skeleton set‘and generating consensus feature set by the
same token.

Table 10 shows the performance of GEMPLS and GEMKNN relative to the raw ligand
feature set and the ligand ignored common skeleton feature set. GEMPLS and GEMKNN have
been employed in the raw feature sets and the ligand ignored common skeleton set. In the raw
feature set, the performance of GEMPLS is better than GEMKNN. In ligand ignored common
skeleton set, the performance of GEMPLS is much better than GEMKNN. No matter which tool
have been employed, the evaluated performance would become worse if the ligand common
skeleton have been ignored.

In the raw feature set of AGHO, the result of cross-validated correlation coefficient in
GEMPLS is better than GEMKNN. Thus GEMPLS has been employed in the QSAR model
constructing for AGHO. Table 11 shows the relationship between the performance of GEMPLS
and generation of consensus feature set. GEMPLS has been employed in the raw feature set and

the ligand ignored common skeleton set. The performance of GEMPLS would be worse if the
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ligand common skeleton have been ignored. No matter the common skeleton have been ignored
or not, the generation of consensus feature set in the process of QSAR model building would

improve obviously the quality of the QSAR model.

5-2 QSAR Model for AGHO

To construct an effective QSAR model for AGHO, we have adopted models by the
following step:

(a) Predicted the molecular geometry in the binding site of the target protein by

GEMEDOCK.

(b) According to the protein-ligand complex, we used the interaction profile to be

molecular features set on atom basis.

(c) Feature selection and model evolution by GEMPLS.

(e) Generation of consensus featute set

(f) Feature selection and model evolution by GEMPLS

(g) Select the specific model:

With such a procedure, the average g vatues-of leave-one-out cross validation is 0.977 and
standard deviation of the ¢” values i$:0:001. Such-a result means that our method is an effective
and stable method for QSAR model building. In order to construct a specific QSAR model, we
have adopted the one that the ¢° value is most close to the average ¢° value in 10 times when
training. This is because we hope to select a steady model and to avoid over-fitting in QSAR
model building. At last we adopted the model with a leave-one-out cross validation of ¢° = 0.979.
Figure 13 shows the correlation between predicted values and experimental values.

Table 12 shows the selected feature and their physical meaning. In previous research, some
functions of residues in AGAO have been studied®. The sequence identity between the AGHO
and AGAO is 61%, suggesting the high structural homology. The selected residues of AGHO
QSAR modeling are almost conserved in the two proteins, indicting the similar physical
function in the active site, so we could understand the AGHO residue functions through the
understanding in AGAO. Residue A155 is related to F105 in AGAO, P156 is related to P136 in
AGAO, Y315 is related to Y296 in AGAO, Y321 is related to Y302 in AGAO and F426 is
related to F407 in AGAO.
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Figure 14 shows the multiple sequence alignments of CuAOs on the spots of the selected
feature. The amine oxidases belong to bacteria, plants and animals. In previous study, it has been
found that although those kinds of enzyme exhibit common mechanistic features, the substrate
specificities of them appear to be different. For instance, the amine oxidases from bacteria show
a preference for aromatic amines but the ones from animal do not show this preference.

We have observed some interesting appearance in the selected feature. It is entirely
conserved in all kinds of CuAOs on the positions of D317and N400. The positions of V398,
Y321 and Y315 are not entirely conserved in all CuAOs, but the residues on the positions show
a similar chemical and physical quality. On the positions of residues P156 and A155, it shows
different residue quality in bacteria, plants and animals indicating the residues are significant to

the ligand preference.

5-3 Prediction on Derivatives

According to the ligand set of AGHO, it seems. that the ligand affinity of AGHO related to
the hydrophobicity of ligand. To probe into the relationship between ligand affinity and ligand
characteristic, we have predicted a serial potential-affinity of derivatives by the QSAR model we
have built.

Table 4 and Table 5 show the set of the AGHO derivatives. Here we have focused on the
length of side-chain and the size of aromatic ring related to the ligand affinity. Table 4 shows the
structures of derivatives and the predicted values. There are six kinds of group in the ligand set.
In each kind of ligands, the number of carbon in side-chain rise from one to four. Figure 15
shows the relationship between predicted values and side-chain length. Generally speaking, the
predicted values increase with the increase of side-chain length. This tendency is similar to the
phenomenon among phenylethylamine, phenylpropylamine and phenylbutylamine. Figure 16
shows the relationship between predicted values and size of aromatic ring. It shows that the
predicted values increase with the increase of ring size obviously.

In the process of prediction, we have predicted the affinity of benzylamine successfully.
The predicted value from QSAR model is 1.077. After experimenting, the measured value of
benzylamine is 1.261. Figure 17 shows the relationship between predicted values and

experimental values. Although the predicted value is not identical with experimental value, the
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tendency between predicted values and experimental values is similar. The results of the
prediction show that the predicted values increase with the increase of side-chain length and size
of ring. It suggested that hydrophobicity is one of the essential factors that determined the
affinity of AGHO to its substrates. In the application on AGHO QSAR modeling, our method
has been employed to build a specific QSAR model for AGHO. This model shows evaluation
with a leave-one-out cross validation of ¢° = 0.979. Besides good behavior in the evaluation, our
method also represents the stability in QSAR model building. It shows the average ¢° = 0.977
and the standard deviation of the ¢° values is 0.001. In the biological field, the selected features

derived from our method are meaningful. Most of them have been verified in previous research.
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Chapter 6

Conclusions

6-1 Summary

In summary, we introduced GEMDOCK to generate the atom-based protein-ligand
interactions as descriptions, which are used by GEMPLS and GEMKNN to construct the QSAR
models. The method has been verified on huAChE QSAR modeling and applied on AGHO for
the first novel QSAR model. And the comprehensive effect shows the good performance for
QSAR modeling of huAChE and AGHO. In the process of QSAR model constructing, the
generation of consensus feature set and ligand specific skeleton set improve the quality and
stability of QSAR model. The verification and: application show our method is adaptable to
QSAR model constructing.

6-2 Future Works

We would apply our method for more compound set to verify that it is robust and adaptable
to QSAR model constructing. In addition, we would make the method an automatically

predictive system for drug discovery in the future.

27



Table 1. Compounds Sructuresin huAChE Training Set*

R1

Ligand
R1 R2 R3 -X- -Y- o 1C50(nM) | pl Cso
-H -H ‘H | «(CHy),- -O- 1 55 7.26
-CH; -H ‘H | -(CHy)- -O- 2 7.8 8.11
-CH; -OCHj3 -H -(CHy),- -O- 3 5.8 8.24
-OCHj3 -H -H -(CHy),- -O- 4 7.2 8.14
-H -H -OCHs | -(CHy),- -O- 5 7.1 8.15
-H | -NH-CO-CH; | -H | -(CHy)- -O- 6 2.8 8.55
-H -NH-SO2-® | -H | -(CHp)- -O- 7 14 7.85
-H -4-morpholino -H -(CHgp)z- -O- 8 0.8 9.10
-H -NH, H 4" ~(CHa),- -0- 9 20 7.70
-H -Br -H -(CH2);- -O- 10 50 7.30
-H -CN -H -(CH,)2- -0- 11 101 7.00
-H -CO-NH, ‘H% | 4CHs)s= -O- 12 8.8 8.06
H H H |/ +(CH,);- -O- 13 900 6.05
-H -H -H -O-CH;- -O- 14 2600 5.59
-H -H -H -NH-CH;- -O- 15 320 6.49
-H -H -H -(CHy),- -S- 16 99 7.00
-H -H -H -(CHy),- | -CH=CH- 17 220 6.66
-H -H ‘H | -(CHy)- NH- 18 120 6.92
-CH,-CH,-CO-NH- -H -(CH),- -O- 19 0.57 9.24
-NH-CO-CH,- ‘H | -(CH)- -O- 20 0.95 9.02
-N(CH3)-CO-CH,- ‘H | -(CHys- -O- 21 0.48 9.32
-H -NH-CO-CH,- -(CHy)»- -O- 22 3.6 8.44
0 .
- NL@ 23 250 6.60
o)
o)
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Table 1. Continued

@) z
~ \
N-Wo YN .
~o S /
Ligand IC50
-W- -X- -Y-Z- R plCso
ID (nM)
-(CO)- -CH,-CH,- -CH-CH,- | -CH2- 24 8 8.10
-(CO)- -CH2-C(OH)- -CH-CH,- | -CH2- 25 43 7.37
-(CO)- | -CH,C(OH)CH,CH,- | -CH-CH,- | -CHp-® 26 380 6.42
«(CO)- | -CH,CH,CH,CH,- |-CH-CH,-| -CHy-® 27 110 6.96
-(CO)- -CH,C(OCH3)- | -CH-CH,-|  -CHy-® 28 120 6.92
-(CO)- -CH- -C-CH,- -CH,-® 29 520 6.28
-C(OH)- - -CH-CH,- |  -CH,-® 30 19580 | 4.71
- -CH- -C-CH,- -CH,-® 31 2670 5.57
-(CO)- -CH,-CH,- -CH-CH,- | (CH,),0OCH; | 32 53 7.28
-(CO)- -CH,-CH,- <CH-CH),- v@?" 33 32 7.49
-(CO)- -CH,-CH,- -CH-CH,- v@ 34 28 7.55
(0]
(CO)- _CH,-CH»- “CH-CH- \)(O% 35 79 7.10
-(CO)- -CH,-CH,- -CH-CH,- | -CH,CH,-0-® | 36 390 6.41
-(CO)- -CH,-CH,- -CH-CH,- | -CH»-CN 37 1000 6.00
— 0 o)
\ AN
—0 S | R
_N—R1
Ligand
-R1 D | 1C50(M) | plCeo
-CH; 38 900 6.05
-CH,CH; 39 280 6.55
-CH,CH=CH, 40 540 6.27
A 41 110 | 6.96
AT 42 40 7.40
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Table 1. Continued

Ligand
-R1 o | C80(M) | pICso
-CH,CH,-O-CH,CHj 43 7 8.15
F
\/@ 44 2.6 8.59
v©)L° 45 1000 | 6.00
VCS 46 6 8.22
VQNOZ 47 45 8.35
@]
. &
R1 N. |
Ligand
-R1 o | C80(M) | pICso
o
[ U 48 100 | 7.00
O
O
4 49 415 | 738
O
CU 50 139 | 6.86
o
- 51 50 | 730
o}
—0
A\
\m 52 120 | 692
© \
W 53 22 7.66
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Table 2.

Compounds Sructuresin huAChE Testing Set*

o L3O
R2
R1

Ligand
R1 R2 R3 -X- -Y- D 1C50(nM) | plCso
-H -OCH; -H -(CHy),- -O- 54 8.3 8.08
-H -NH-CO-¢ -H -(CHy),- -O- 55 9.4 8.03
-H -OH -H -(CHy),- -O- 56 26 7.59
-H -H -H -(CH),- -O- 57 210 6.68
-H -H -H -NH-(CH2),- | -O- 58 810 6.09
-H -H -H «(CHy)- | -N=CH,| 59 340 6.47
-CH,CONH- -H -(CHy)»- -O- 60 0.33 9.48
~ O \ /Z \ .~
\X/Y\_/N\R
~ o S
Ligand
-W- -X- -Y-Z- R D 1C50(nM) | plCso
(CO)- | -CH,C(OH)- | -CH-CHj- -CH2-® 61 190 6.72
-(CO)- -CH»- -C(OH)-CH>- -CH2-9 62 90 7.05
-(CO)- -CH,- -C=CH- -CH2-¢ 63 750 6.12
- -CH,- -CH-CH- -CH2-¢ 64 30000 4.52
-(CO)- | -CH,CH,- -CH-CH,- -CH,COOCHj 65 54 7.27
-0 0
3 S
—O0 S .
_N—R1
Ligand
-R1 D IC50(nM) | plCso
-(CH,),CHj 66 2570 5.59
-(CH,),OCHj3 67 30 7.52
-CH2-9 68 4.6 8.34
(0]
O
{ 69 240 6.62




Table 3. Compound Sructuresin the AGHO Training Set

Ligand Sructure Kmn? Keat® L og(1/Kum)
CH,CH,NH,
Phenylethylamine 0.0168 18.62+1.03 1.775
CH,CH,NH,
Tryptamine N 0.0036 3.92+0.16 2.444
N
CH,CH,CH,NH,
Phenylpropylamine @ 0.0088 4.98+0.49 2.058
CH,CH,CH,CH,NH,
Phenylbutylamine @ 0.0025 3.840.24 2.602
CH,CH,NH,
Histamine 2 \ 0.0936 15.27+0.45 1.029
N
CH,CH,NH,
3-Methoxy-
0.0160 16.67+0.99 1.797
phenylethylamine oMe
CH,CH,NH,
4-Methoxy- :
0.0167  17.60£2.20 1.777
phenylethylamine
OMe
NH,
OH
Octopamine 0.1221 3.9510.06 0.913
OH
> 3-Difvd CH,CH,NH,
,3-Dihydroxy-
R o 0.0186 10.08£0.51 1730
phenylethylamine on
CH,CH,NH,
2,4-Dihydroxy- OH
0.0202 10.6620.29 1.730
phenylethylamine
OH
CH,CH,NH,
Dopamine @ 0.0329 13.89£0.39 1.483
OH
OH
CH,CH,NH,
Tyramine <> 0.0172 13.29+0.60 1.765

OH

* Values for apparent K, are expressed in mM.

® Values for apparent k., are expressed in sec’l.
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Table 4. Structures of AGHO Substrates Derived with Different Lengths of Side
Chains

Structure Ligand R Predlcteda
log(VKnm)
- -CH,NH, 2.19
@['\% Tryptamine -C,H,NH, 2.37
- -C;HgNH, 2.81
. - -C,HgNH, 232
R - -CH,;NH, 1.08
Phenylethylamine -C,H,NH, 1.69
- -C3H¢NH, 2.10
- -C4HgNH, 2.58
o - -CH,NH, 1.32
OH 2,3-Dihydroxy-phenylethylamine -C,H,NH, 1.75
©: - -C3H¢NH, 2.04
OH - -C4HgNH, 2.08
R - -CH,NH, 1.32
or 2,4-Dihydroxy-phenylethylamines. -C3H,NH, 1.64
- “C3H¢NH, 1.82
o ! S _QiHNH, 2.37
R ¢ -CH,NH, 1.29
Dopamine -C,H,NH, 1.55
oH - -C3H¢NH, 1.87
OH - -C4HgNH, 2.02
R - -CH,;NH, 1.17
© Tyramine -C,H,NH, 1.76
- -C3H¢NH, 2.00
OH - -C4HgNH, 1.99

* The predicted log(1/Km) values from the final model.
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Table 5. Structures of AGHO Substrates Derived with Different Ring Sizes

C,H,NH, CH,CH,NH, CH,CH,CH,NH, CH,CH,NH,
Structure @[N\$ @ z‘g
N
Ligand - Tryptamine Phenylethylamine Histamine
Predicted log(1/Ky,) 2 2.90 2.37 1.69 1.03

* The predicted log(1/Ky,) values from the final model.
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Table 6. Performance of GEMPL S and GEMkNN Relative to Different
Protein-Ligand Interactions Profileson huAChE set

Whole Interaction Specific I nteraction
Profile? Profile®

GEMPLS GEMKNN GEMPLS GEMKNN

No. of features

(atoms) © 223 223 217 217
Average of *¢ 0.627 0.657 -2.607 0.737
Average of r2® 0.402 0.123 0.466 0.724

Sandard

derivation of G2" 0.015 0.018 0.093 0.018

Sandard

derivation of 12 0.125 0.095 0.050 0.119
No. of selected 36.2 36.1 33.8 34.7
features (atoms) ' ' ' '

* The interaction profile between protein and-whole-atoms of ligand.

® The interaction profile betweefi protein and'the specific skeleton of ligand.
¢ The number of feature in origin molecular feature set.

4 The average ¢° values in 10 times in fraining/set.

® The average »° values in 10 times in'testing set;

"The standard deviation of ¢° values in 10 times in training set.

¢ The standard deviation of  values in 10 times in testing set.
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Table 7. Performance of GEM PL Swith Different Descriptions (features) on
huAChE set

: . Consensus Feature
Interaction Profile? b
Profile
Whole¢  Specific® Whole Specific
No. of features 3 17 156 9
(atoms)
Aver age of of 0.657 0.737 0.704 0.817
Aver age of r? 0.123 0.724 0.063 0.723
Sandard
. 5 0.018 0.018 0.009 0.006
derivation of g
Sandard
. ) 0.095 0.119 0.050 0.056
derivation of r
No. of selected 36.1 34.7 29.8 23.5
features (atoms)

* The interaction between protein and whole atoms of ligand.
® The feature set that consensus from the feature of preliminary models.
¢ The interaction profile between protein and whole atoms of ligand.

4 The interaction profile between proteinand the specific skeleton of ligand.
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Table 8. Comparison our Method with the Method by Jianxin et. al*%.

Our method Jianxin et. al.
Docking Tool GEMDOCK GOLD
Basis Atom Base Residue Base
o2 0.81(mean) 0.72
r2b 0.72(mean) 0.63

“ The mean ¢° value of 10 independent QSAR models in the training set.

® The mean 7 value of 10 independent QSAR models in the testing set.
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Table 9. Selected Residuesin the huAChE QSAR Modél

Residue _
No Atom Type Description®
TYR72 CDl1 Forms a wall to stabilize ligand ring
TRP86 CH2 Forming m-w interaction with choline
Electrostatic contributors in the gorge
ASNR87 CA
area
TYR119 CA -
GLY120 N -
TYRI124 CEl CE2 Provide hydrophobic contacts
GLY126 CA -
SER203 CB Catalytic triad
TRPISG CG NEI C73 ‘Pr‘obabl}'/ helpful‘ in enhancing the
activity of ligand with polar groups
SER293 O -
ARG296 N CA C -
TYR337 C O CD2 CEl Electrostatic contributors in the gorge
area
PHE338 C Provide hydrophobic contacts
TYR341 CB The residue in the local pocket
HIS447 CD2 Catalytic triad
GLY448 O -
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Table 10. Performance of GEMPL S and GEMKNN Relative to Different
Protein-Ligand Interactions Profileson AGHO set

Whole Interaction Specific Interaction
Profile? Profile®

GEMPLS GEMKNN GEMPLS GEMKNN

No. of features

131 131 94 94
(atoms)
Aver age of of 0.975 0.817 0.890 0.377
Sandard
R 2 0.001 0.008 0.069 0.031
derivation of g
No. of selected
11 16.5 13 33.5
features (atoms)

* The interaction profile between protein and whole atoms of ligand.

® The interaction profile between protein and the specific skeleton of ligand.
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Table 11. Performance of GEM PL Swith Different Descriptions (features) on

AGHO set
: : Consensus Feature
Interaction Profile? b
Profile
Whole® Specific ¢ Whole Specific
No. of features 131 o4 34 5
(atoms)
Aver age of of 0.975 0.890 0.977 0.954
Sandard
derivation of 0.001 0.069 0.001 0.007
2
q
No. of selected
features 11 13 12.9 12.8
(atoms)

* The interaction between protein and whole atoms of ligand.
® The feature set that consensus fromi the feature 6f preliminary models.
¢ The interaction profile between:protein and whole atoms of ligand.

4 The interaction profile between protein and the specific skeleton of ligand.
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Table 12. Selected Residues of the AGHO QSAR Model

;’; e:j;tue; Atom Type Description®

PHE125 CD2 -

ALAL3S 0 The residue in the hydrophobic pocket
PRO156 N The residue in the hydrophobic pocket
TYR315 OH The residue in the hydrophobic pocket
ASP317 OD1 The general base in the active site
TYR321 CEl CZ The residue in the hydrophobic pocket
VAL 398 C CB -

ASN400 CA CG ODI The conserved residue in CuAOs
PHE426 CD2 CE2 The residue in the hydrophobic pocket
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. Protei
I rotein GEMPLS GEMKNN

| | I
GEMDOCK 1

Preliminary
Prediction QSAR models
of
Protein-Ligand
Conformation Consensus Feature Set

Protein-Ligand
GEMPLS GEMKNN
| ]

Interaction Profile

QSAR model

Figure 1. The main steps of QSAR model buildihg, including GEMDOCK for the

simulation of protein-ligand complex and‘:'g'enerati(‘?n of protein-ligand interaction

profile, GEMPLS and GEMKNN for feature selection and model building. In the

procedure of modeling, a consensus feature set is generated.
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Compounds
] | _—" The compound is the most similar one to crystal structure

1 M|[Eonformations

N
4 th
3 (1,17,...,12) R;== RMSD
2 M ¢onformations [~ (2,7, ... ,17) R,=Z RMSD
Min(R,R,,...,Ry,)

=) v >

M7,...,3) Ry=Z RMSD

’ Select a set of compound superimposition
M £onformations

Figure 2. The step of compound structures superimposition. In the compound set,
there are N kinds of compound, tand.eachcompound has been generated M
conformations derived from GEMDOEK. In.the*N kinds of compound, we selected
the one that is the most similar one to crystal structure to be the reference ligand.
Each compound aligned its conserved region to the reference ligand and calculated
the RMSD values. Hence there would be M sets of compound superimpositions
(because there are M kinds of reference ligand conformation), and each set is made
up of N kinds of compound. Ry means the sum total of RMSD value between the
conserved regions of the reference ligand and the other compounds in the compound
superimposition set, M. Among R; R,.... Ry we select the minimum one and adopt

the ligand conformation in this compound superimposition set.
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Ligo2

LigN

Xy X5 X3 X4 Xn1  Xp
Atom, . | Atom,, | Atom, , | Atom,, | ...... Atom,,, | Atom,
H90 5 0504 ) 0.4612  -0.709 0 0103 0.2507

\

The electrostatic interaction between Atom,

and the ligand

Figure 3. The protein-ligand interaction profile. According to predictive ligand
binding conformation, we calculated the protein-ligand interaction and generated the
interaction profile. The interaction we'considered includes electrostatic (E,.), van der
Waals (Eysy) and hydrogen bond (Ej) | mteractions. We have described the
protein-ligand interaction on the atom basis and focused on active site of the target
protein. In the interaction profilé; we have taken*down the interaction between the

active site atom of protein and the ligand. On each atom, E., E,4 and Ep, would be

calculated respectively.
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Y’“{ N\Q
X

R3
R2
R1
Specific Skeleton \@/@
W
R2 . Conserved region

Figure 4. The definition of ligand cefimon skeleton. In this kind of compound, they
share high structural homology*without substituents groups. The label parts of the

compound are defined as the common skeleton.
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Figure 5. Proposed mechanism of turnover for amine oxidases”’.
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D298 ODJ**

Y284

Figure 6. The docked pose of yle o mown substrate) in the active site
of AGAO (PDB entry 11U7). ) ) m es of AGAO in the active site are

identified and marked. The dash lines indicate hydrogen bonds.
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Y124 WS6
W286

Main difference among the structures

Figure 7. The structural alignﬁ;ént of i§41~"(yellé)yv), 1EVE (pink) and modeled
structure (green). The main différen@g ‘among the tf;ree structures is the side-chain
conformation of Y337 (residue nﬁmbc;,r of 1‘]341;‘r"e‘latively to F330 in 1EVE). In the
structure of 1EVE, the F330 was in the opened form to stabilize the protein-ligand
complex. The structure of 1B41 did not reflect such a conformation shift in the Y337

such as F330 in the tcAChE (1EVE). The conformation of Y337 is in the opened form

such as F330 in 1EVE in the modeling structure.
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Y124

W286

Y337
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Figure 9. The structural aligm;rlie.:nt ofi Il-ﬂl)n'mlogy -Ilnodel (green) and the template,
AGAO (11U7) (yellow). (A) The thlﬁmetufal alilgnments between the homology
model and 11U7, and the RMSD .Béiwéen the _th'gligned structures is 0.24 A for the
set of all C, atoms in the whole protein. (B) The structural alignment in the active site.
TPQ401 in AGHO (TPQ382 in AGAO) slight shift 0.58 A between homology
structure and AGAO structure (11U7). The OD1 of general base Asp (D317 in AGHO,
D298 in AGAO) slight shift 0.2 A between homology structure and AGAO structure
(11U7). And the Tyr (Y296 in AGAO, Y315 in AGHO) is in the opened form in both
protein structures. In the AGAO structure (11U7), the distance between TPQ382-O4
and Y284 is 2.51 A, and the distance between TPQ401-O5 and Y303 in the AGHO
structure is 2.55 A. The residue number showed here is derived from the homology

structure. The residue number showed in figure is derived from the sequence of

AGHO homology model.
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317-0D1 “a, 7 l

ﬁ” TPQ401-05
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I
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i

-

—

¥
P156-0 \

o

I

Figure 10. The docked poses -of twelve known suhstrates at the active site of the
modeled AGHO structure. The function group —NHp “of the substrates form hydrogen
bonds with the cofactor TPQ401405, D3 17-OD1 (general base), and the -NH on the
ring of tryptamine and histamine form hydrogen bonds with P156-O. The dash lines
indicate the hydrogen bonds. The residue number showed here is derived from the

sequence of AGHO homology model.
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o &7 3
— 4, .
o
2,
0
4 5 6 7 8 9 10
(B) PIC@er
1or RR = 0.609¢17
(@} 8 . ’0 ¢
Lﬁ 6* ¢ :"0
O
— L 2
o 4T
27
0
4 5 6 7 8 9 10
Pl C5,Q4

Figure 12. The correlation between the experimental values and predicted value of
huAChE QSAR model. (A) The predicted performance of the QSAR model generated

by our method. (B) The predicted performance of the QSAR model from reference.
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Figure 13. The correlation between the experimental values and the predicted values

of the AGHO QSAR model.
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Fezidus number 125 155 158 315 317 321 398 400 4:zZ6

AGHO F 1 F T D ¥ 7 1] F
w AGPEC F L P T D ¥ I M F
g AGHOL F E F i D T v M ]
— AGHOZ F E F i D ¥ 7 1] ]
@ ASHAC ] E P i D G L M M
Q HPAO L D P AL D ¥ i N N

ECLO F T F T D ¥ 7 1] 1

KLHO F T F T D T v M L
Y
) LSAO E 5 D v M E
= PSA0 E ] 5 D F v M E
wn

BCAO-lung T ] G T D F L M ]
> BCAO-liver T ] G T D F n M ]
- hVAP-1 T ] G T D F L M ]
§' VA1 T 5 G T D F L N 5
D hESAC F ] B T D F v M M
7y hiSAC T ] G T D W v M H

riASAO 7 5 G T ] W 7 M H

Figure 14. The multiple sequence.alignments of CuAOs on the spots of the selected
residues in AGHO QSAR model. The iesidue,number showed in figure is derived

from the sequence of AGHO homology-model:
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Figure 15. The relationships between the length of substitution group, -CH,- and the

predicted affinity of AGHO QSAR model.
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Figure 16. The relationship between the ring size and the predicted affinity of AGHO

QSAR model.
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CH,NH, C,H,NH, C,HNH, C,HNH,

Log(Kn™D) exp 1.261 1.775 2.058 2.602

Log(Kn™) pred 1.077 1.692 2.099 2,578
P 3 Benzylamine .
. 2.5
— 2 . "
g 1.5
o 1r Experimental Values
0.5 Predicted Values

0 : : ‘
0 1 2 3 4 5

Number ,of - CH

Figure 17. The relationship between experimental values and predicted affinity of

AGHO QSAR model. By the QSAR-model.for AGHO, we discovered a substrate,

benzylamine, and evaluated by experiment.
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