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人類乙醯膽鹼酯脢 (huAChE) 和Arthrobacter globiformis 組織胺氧化酵素 (AGHO) 
之 QSAR 模型研究 

 

學生：張立人                                     指導教授：楊進木 博士 

 

國立交通大學生物資訊學系﹙研究所﹚碩士班 

 

摘     要 

在新藥開發的過程中，電腦輔助藥物設計技術的應用，可以大幅度減少新藥開發過程

中所耗費的時間和與金錢，而分子嵌合(Molecular docking)和 QSAR 模型是電腦輔助藥物

設計的關鍵技術。在本研究中我們利用分子嵌合工具— GEMDOCK產生蛋白質-配體原子

交互作用描述表 (profiles)，並將交互作用描述表作為建立 QSAR 模型的敘述子

（descriptors），輔以演化式方法為基之 QSAR建模工具— GEMPLS與 GEMkNN篩選並建

立人類乙醯膽鹼酯脢 (huAChE) 和 Arthrobacter globiformis 組織胺氧化酵素 (AGHO)之

QSAR 模型。我們的 QSAR 建模方法主要是以蛋白質-配體的原子交互作用情況來描述蛋

白質活性區域與分子間的作用特徵。而後我們將會藉由 GEMPLS與 GEMkNN建立的初步

模型中，篩選一致性的敘述子群（consensus feature set）以及化合物結構差異部分(specific 

skeleton)產生敘述子群，建立並增進最終的 QSAR模型預測能力。目前我們的方法已驗證

於 huAChE之 QASR模型建立，其 leave-one-out交互驗證之 q2 達到 0.818、實驗值與預測

值之相關係數 r2 亦達 0.781。除此之外，本方法也實際應用在 AGHO之 QSAR模型建立。

此為目前首次應用在 AGHO之 QSAR模型，其實驗值與預測值之相關係數 r2高達 0.983。

藉由本研究發展的 AGHO之 QSAR模型，我們探討了 AGHO與一系列的受質及其衍生物

之結合親合力和疏水特性的關係，其中包括取代基的長度和環的大小對其催化能力之影

響。此外我們由 AGHO之 QSAR模型預測新的受質結構— benzylamine，並藉酵素催化實

驗證實預測結果之正確性。藉由成功的發展具有高度預測準度的 QSAR 模型與新受質發

現，說明了我們的 QSAR 模型之應用性，並證明本研究發展之 QSAR 建模方法是有用且

有效的工具。  
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ABSTRACT 
Molecular docking and quantitative structure activity relationships (QSAR) are the core 

technologies in computer-aided drug design. These technologies would help to save much time and cost 

to find out potential leads for the target protein in drug discovery. In this study, we introduced molecular 

docking tool, GEMDOCK to generate the atom-based protein-ligand interaction profile. We utilized the 

interaction profile to be descriptor and integrate with GEMPLS and GEMkNN for QSAR model of 

human acetylcholinesterase (huAChE) and Arthrobacter globiformis histamine oxidase (AGHO). Our 

method has adopted the atom-based interaction profile of protein-ligand complex to represent the 

molecular descriptor. The atom-based interaction profile would be used in GEMPLS and GEMkNN to 

construct the preliminary QSAR models. By collecting the selected feature of preliminary models, we 

generated the consensus feature set. Finally, the consensus feature set and ligand specific skeleton set 

were used to generate the final QSAR model and improve the prediction accuracy of model. We have 

verified our method for QSAR model of human acetylcholinesterase (huAChE). The model shows the 

leave-one-out cross validation of q2 is 0.818 and the correlation of r2 is 0.781 between the predicted and 

experimental values. After verifying the utility of our method on huAChE, we applied it to develop a 

novel QSAR model for Arthrobacter globiformis histamine oxidase (AGHO). This model is the first 

QSAR model for AGHO, and it shows a correlation of r2 is 0.983 between the predicted values and 

experimental values. This model has also been employed to a series of substrates and derivatives to probe 

the relationship between affinities of AGHO and hydrophobicities of ligands (including the length of 

substitution group and ring size). From QSAR models of AGHO, we discovered a novel substrate, which 

was called benzylamine and was evaluated by experiments. Experiments show that our QSAR model was 

capable of predicting with reasonable accuracy even that the activity of novel compounds not included in 

the original dataset. The successful development of highly predictive QSAR models implies that our 

method is a robust and useful tool for QSAR models. 
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Chapter 1 
 
Introduction 

1.1 Motivations and Purposes 

 
As the development in computer science, molecular biology and pharmaceutical chemistry, 

computer-aided drug design become more and more important in drug discovery. 

Computer-aided drug design is promising directions for shortening the time and reducing the 

cost for new drug discovery. Molecular docking and quantitative structure activity relationships 

(QSAR) are the important technologies in computer-aided drug design. However the two 

methods suffer several challenges: Molecular docking is powerful in characterizing 

protein-ligand binding but the scoring function of docking still obtains few or no relationship 

between predicted energy and truly biological activity (e.g., binding affinity or IC50). 3D 

QSAR analysis such as CoMFA and COMBINE also suffer some problems, such as 

superposition of steric structures or selection of molecular descriptors1-3. 

By applying the excellent performance of the molecular docking tool, GEMDOCK4-7, in 

protein-ligand docking, this thesis makes an attempt to combine the great achievements of 

GEMPLS8 and GEMkNN in optimization and statistic for QSAR modeling. In order to 

describe the characteristic of feature more specifically, we have focused the feature on the atom 

basis. In the process of QSAR model constructing, the generation of consensus feature set and 

ligand ignored common skeleton set have been evaluated the effect for QSAR modeling. 

To evaluate our method for QSAR model, we have verified the method for QSAR model 

of human acetylcholinesterase (huAChE). In addition, we have practically applied the method 

for the first QSAR model of Arthrobacter globiformis histamine oxidase (AGHO). 

 
1.2 Thesis overview 

 
We have integrated GEMDOCK with GEMPLS and GEMkNN for QSAR models. In 

chapter 2, we have prepared the huAChE compound set and AGHO compound set for 
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verification and application. In addition, we have prepared numbers of AGHO substrate 

derivatives derived from CHEMSK and CORINA3.09. The target proteins were modified from 

the template respectively. After preparing compound set and target protein, we integrated 

GEMDOCK with GEMPLS and GEMkNN for the QSAR models of huAChE and AGHO.  

In chapter 3, we have evaluated GEMDOCK performance and evaluated the structure of 

modeling protein. In order to verify the performance of GEMDOCK on acetylcholinesterase 

(AChE) and Cu2+ amine oxidases (CuAOs), we have applied GEMDOCK on the molecular 

simulation of Torpedocalifornica AChE (tcAChE) and Arthrobacter globiformis 

phenylethylamine oxidase (AGAO). To evaluate the adaptability of the modeling structure, 

GEMDOCK has been employed to simulate the protein-ligand complex of huAChE and 

AGHO. 

In chapter 4, we have verified our method for QSAR modeling of huAChE. In the process 

of QSAR modeling, the generations of the consensus feature set and the ligand ignored 

common skeleton set have been used to evaluated the effect for QSAR modeling. There are 

sixty-nine compounds with IC50 values in the huAChE compound set, and the compounds 

were divided into the training set (fifty-three compounds) and the testing set (sixteen 

compounds). The evaluated result of QSAR model shows that our method is useful in QSAR 

modeling. 

In chapter 5, we have practically applied our method on QSAR modeling of AGHO. In the 

process of QSAR modeling, the generations of the consensus feature set and the ligand ignored 

common skeleton set have been used to evaluated the effect for QSAR modeling too. There are 

twelve known substrates with Km in the AGHO compound set, and the twelve compounds 

have been employed in the training set. This is the first specific QSAR model for AGHO. And 

the evaluated result of the QSAR model shows the predictability.  

Chapter 6 presents some conclusions and future perspectives. Integrating GEMDOCK 

with GEMPLS and GEMkNN shows that it is adaptable to QSAR modeling. And the 

generation of consensus feature and ligand ignored common skeleton set effect the quality of 

QSAR modeling. And we could make our method an automatically predictive system in the 

future.  



 3

Chapter 2 
 
Methods and Materials 

2-1 Materials 

2-1-1 Compound Set of huAChE 
 
Acetylcholinesterase (AChE) is a protein that catalyzes the hydrolysis of acetylcholine 

(ACh) in cholinergic synapses (Acetylcholine + H2O → Choline + Acetate), and it has one of 

the fastest reaction rates of any of our enzymes10. In pharmacy industry, AChE is the target of 

nerve agents, insecticides and therapeutic drugs, in particular the generation of anti-Alzheimer 

drugs11. 

To evaluate the method we used, we got the human AChE (huAChE) compound set from 

reference12. There are sixty-nine compounds with IC50 values measured with huAChE assay in 

the set, and the compounds are divided into four groups mainly. Within the set, fifty-three 

compounds are selected for training set (Table 1) and sixteen compounds for testing set (Table 

2) to validate the result of our method. 

 

2-1-2 Compound Set of AGHO 
 
CuAOs (EC 1.4.3.6) are ubiquitous in the nature, and the enzymes have a variety of 

function in the metabolism of biogenic primary amines (RCH2NH2+H2O+O2 → RCHO + NH3 

+ H2O2)13. In prokaryotic organisms, these enzymes are utilized for growth on amine. In human, 

these enzymes have been found to be correlated with heart failure14 and chronic medical 

condition in diabetic patients15,16. 

To probe into CuAOs, we have applied our method on Arthrobacter globiformis histamine 

oxidase (AGHO), it is one member of CuAOs family. The twelve compounds with Km values 

measured with AGHO assay (cooperation with Dr. Chiun-Jye Yuan) (Table 3) were selected for 

the training model. According to the known twelve substrates of AGHO, we have constructed 

the first QSAR model for AGHO and found out some significant residues in AGHO by our 

method. 
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In addition, in order to study the correlation between binding affinity and structural 

characteristic of ligand, we have set up a ligand set of AGHO derivatives (Table 4) (Table 5). 

The 3-D structures of the derivatives are prepared by CHEMSK and CORINA3.0. By this 

derivatives set, we would probe into the tendency of ligand affinity related to the 

hydrophobicity in AGHO.  

2-1-3 Preparation of huAChE structure 
 

In prior AChE inhibitor studies, many researches were base on using ligand-based design 

methods such as CoMFA17-21. In our study, in order to simulate the protein-ligand interactions by 

GEMDOCK, we have modified a proper structure of huAChE to be the target protein. And the 

docking simulation of protein-ligand complex would be considered for the QSAR model 

constructing. 

The AChE X-ray crystallized structures we used in the study were huAChE (PDB entry 

1B4122) and tcAChE (PDB entry 1EVE23). The crystallized structure of huAChE (1B41) has no 

ligand complex with the protein and the structure of tcAChE (1EVE) has one co-crystallized 

E2020 inhibitor complex with the protein. For the docking simulation, the docking target was 

the huAChE (1B41) structure but rely on the co-crystallized E2020 inhibitor binding 

conformation from the tcAChE (1EVE). To ascertain the binding conformation of the 

co-crystallized E2020 inhibitor relative to the huAChE structure, we have aligned the huAChE 

structure to the tcAChE structure by a maximal overlap of Cα atoms for the huAChE/tcAChE 

residues within the proteins. The sequence identity between the two proteins is 57% and the root 

mean square deviation (RMSD) between huAChE structure and tcAChE structure is 0.88 Å for 

the set of all Cα atoms in the whole protein, indicating the good overall alignment and 

substantial structural homology. Because the absence of a solid understanding of the roles of 

solvent molecules in the huAChE active site, we did not include all waters in considering. After 

ascertaining the binding conformation of E2020 inhibitor relative to the huAChE structure, the 

hydrogen atoms were added to the huAChE-E2020 complex via SYBYL7.0 modeling software 

package from Tripos, Inc., St. Louis, MO. The huAChE-E2020 complex was then energy 

optimized by Tripos force field, the termination gradient is 0.05 kcal/mol*Å via SYBYL7.0. The 

resulting structure of protein was extracted for the docking simulation. And the docking 

simulation of protein-ligand complex would be considered for the QSAR model constructing. 
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2-1-4 Preparation of AGHO structure 
 

In our study of CuAOs, we focused on the AGHO. There is no X-ray crystallized structure 

of AGHO so far. In order to simulate the protein-ligand interactions in the binding site of AGHO, 

we have constructed a homology modeling of AGHO. GEMDOCK has been employed to 

simulate the binding conformations between the model and substrates. And the docking 

simulation would be considered for the QSAR model constructing. 

Homology modeling was a predictive technique to generate 3D-structure of a protein from 

its amino acid sequence. The method was based on two major opinions (i) the structure of a 

protein was determined by its amino acid sequence and (ii) the similar sequences have 

practically identical structures. To generate a homology structure, we need the amino acid 

sequence of the target protein and the 3D structures of proteins with homologous amino acid 

sequence (template protein). And the confidence of the homology modeling is critically 

dependent on the selection of structural templates and the alignment of the amino acid sequence 

of the target protein and the templates. There are several programs for structure modeling, and in 

our study, we constructed the AGHO modeling by SWISSMODEL24. 

First we obtained the amino acid sequence of AGHO from the SwissProt/TrEMBL. 

Subsequently the amino acid sequence was be used to search for the template by BLAST25, and 

we selected the AGAO structure (PDB entry 1IU726) to be the template. The sequence identity 

between the AGHO and AGAO is 61%, suggesting the high structural homology. 

In the preparation for structure of template, we selected the structure of AGAO A chain 

(1IU7A) to be the template, and removed the Cu2+ ion and H2O molecules away. Furthermore 

there was a special cofactor, 2.4.5-trihydroxyphenylalanyl quinine (TPQ) in the protein, and it 

was generated from an intrinsic tyrosine in the amino acid sequence by a self-processing that 

required the Cu2+ ion and molecular oxygen27. We have modified the TPQ to tyrosine by 

removing the O atoms from the side-chain of TPQ. Subsequently, the homology modeling of 

AGHO was constructed according to the amino acid sequence of target protein and the structure 

of template by SWISSMODEL. 

The root mean square deviation (RMSD) between target protein structure and template 

structure is 0.15 Å for the set of all Cα atoms in the whole protein, indicating the good overall 

alignment and substantial structural homology. To ascertain the orientation of Cu2+ ion relative 

to the modeling structure, we have aligned the modeling structure to the AGAO (PDB entry 
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1IU7) structure by a maximal overlap of Cα atoms for the residues within the two proteins. To 

modify the tyrosine to TPQ, we modified the hydrogen atoms of the side-chain of tyrosine to 

oxygen in position 2, 4 and 5. Because the absence of a solid understanding of the roles of 

individual solvent molecules in the AGHO active site, we did not include all waters in 

considering. In order to mimic the structural character of AGHO, we aligned the modeling 

structure to the structure of AGAO A chain (1IU7A) and AGAO B chain (1IU7B) respectively, 

and then we adopted the relative coordinate after alignment of each monomer. 

After the modification, hydrogen atoms were added and the charge of Cu2+ was assigned to 

the structure via SYBYL7.0. The structure of model was then energy optimized by Tripos force 

field, the termination gradient is 0.05 kcal/mol*Å via SYBYL7.0. The resulting structure of 

protein was extracted for the docking simulation. 

 
2-2 Methods 

2-2-1 Method for QSAR model constructing 
 

In the study, we have integrated GEMDOCK with GEMPLS or GEMkNN for QSAR 

modeling. To find out the significant hot spots in the binding site, we have focused the feature 

on atom basis. In addition, we have adopted the concept of consensus feature set and ligand 

ignored common skeleton set to improve the stability and performance of our method. (Figure 

1) shows the main step of our method. The main steps involved in QSAR model building 

included the following:  

(a) Prepare an adaptable 3D structure of target protein.  

(b) Transform the 2D information of ligand into 3D structure by CORINA3.0.  

(c) Prediction of protein-ligand conformation. 

(d) According to the protein-ligand complex, we gererated protein-ligand interaction 

profile and adopted the interaction profile to be the molecular descriptor for QSAR 

model. 

(e) Feature selection and preliminary QSAR models generation by GEMPLS and 

GEMkNN. 

(f) According to the average q2 value of the leave-one-out cross validation correlation in 

training, selected the proper tool for QSAR modeling.  
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(g) Generation of consensus feature set by the selected tool. 

(h) Feature selection and QSAR model evolution by the selected tool. 

(f) Select the specific model. 

 

Superimposition of compound structures 
 
    In the process of QSAR model constructing, we employed GEMDOCK to predict the 

protein-ligand conformation and adopted the conformation to generate protein-ligand interaction 

profile for molecular descriptors. To derive the reasonable ligand binding conformation in the 

active site of protein, we have to superimpose structures of compound and select the one 

compound superimposition set to generate molecular descriptors. 

Figure 2 shows the step of compound structures superimposition. In the compound set, 

there are N kinds of compound, and each compound has been generated M conformations 

derived from GEMDOCK. In the N kinds of compound, we selected the one that is the most 

similar one to crystal structure to be the reference ligand. Each compound aligned its conserved 

region to the reference ligand and calculated the RMSD values. Hence there would be M sets of 

compound superimpositions (because there are M kinds of reference ligand conformation), and 

each set is made up of N kinds of compound. RM means the sum total of RMSD value between 

the conserved regions of the reference ligand and the other compounds in the compound 

superimposition set, M. Among R1、R2…..RM, we select the minimum one and adopt the ligand 

conformation in this compound superimposition set. 

 

Protein-Ligand interaction profile 
 

After prediction of protein-ligand conformation, we generated protein-ligand interaction 

profile for molecular descriptor. Figure 3 shows the protein-ligand interaction profile. According 

to predictive ligand binding conformation, we calculated the protein-ligand interaction. The 

interaction we considered included electrostatic (Eelec), van der Waals (Evdw) and hydrogen bond 

(Ehb) interactions. We have described the protein-ligand interaction on the atom basis and 

focused on active site of the target protein. In the interaction profile, we have taken down the 

interaction between the active site atom of protein and the ligand. On each atom, Eele, Evdw and 

Ehb would be calculated respectively.   
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In order to improve the performance of the method for QSAR model constructing, some 

methods have been introduced into the procedure of QSAR modeling. The methods include the 

following: 

(a) Generation of consensus feature set. In the process of model constructing, we have 

employed the collection of selected feature from GEMPLS or GEMkNN to generate the 

consensus feature set, and then features were selected again from the consensus feature set by 

GEMPLS or GEMkNN. And the result caused of this method will be compared. 

(b) Definition of ligand specific skeleton. Sometimes, ligands in the compound set share 

high homology, and they contained the same common skeleton. The differences among ligands 

are in the region of substituent groups and the regions are believed to be distinguishable. In 

order to manifest the importance of the substituent group, we have ignored the influence from 

the common regions in feature selection. And the result caused of this method will be compared. 

Figure 4 shows the definition of common skeleton. 

 
 

Generation of Consensus Feature set 
 

In the process of QSAR modeling, we found it is not very good to the stability of model 

when GEMPLS or GEMkNN was directly employed to select feature from the molecular feature 

set. The molecular feature set may include too much feature, so it is difficult to select the 

significant feature strongly correlating with biological activity. In order to improve this situation, 

GEMPLS and GEMkNN was employed to carry out ten number of preliminary QSAR models 

respectively, and ten sets of feature were selected. In the collection of the selected feature, we 

noted down the number of time that each feature has been selected and then calculated the 

average (Avg) and the standard deviation (Std) of feature occurrence number. The last, we 

gathered the consensus feature according to the number of time that each feature has been 

selected by the following rule, and generated the consensus feature set. 

( )N Avg Std≥ −  
Where N is the number of time that a certain feature has been selected.  

Finally, GEMPLS or GEMkNN was employed to carry out feature selection from the 

consensus feature set.  
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Definition of Ligand Specific Skeleton 
 

Sometimes, the ligands of a certain protein share high homology in the compound set. This 

is that because the derivatives could form structural complementation with binding site of a 

protein, and they contained the same common skeleton. On the conformations of those 

derivatives, the main differences were focused on the region of substituent group and the regions 

are believed to be distinguishable for biological activity of those derivatives. However, those 

distinguishable regions accounted for few proportions to make influence power reduce inside 

the whole ligand. Hence, in order to manifest the importance of the distinguishable groups, we 

have ignored the influence from the common region and concentrated sight on the substituent 

group.  

 

2-2-2 Tool for QSAR model constructing 
 
GEMDOCK 

 

GEMDOCK is a useful tool for the molecular docking and structure-based virtual 

screening. The tool was developed by Jinn-Moon Yang, an associate professor of the Institute of 

Bioinformatics, National Chiao Tung University. 

GEMDOCK has been evaluated over 300 protein-ligand complexes and applied to identify 

new substrates or inhibitors for several practical applications, such as sulfotransferase28 and 

imidase. And the binding-site pharmacophore (hot spots) and ligand preferences are used to 

substantially enhance GEMDOCK for screening large databases on several target proteins, such 

as thymidine kinase (TK), estrogen receptor (ER), dihydrofolate reductase (DHFR) and the E 

protein of dengue virus. 

The scoring function of GEMDOCK has been developed as the scoring function for both 

molecular docking and the ranking of screened compounds for post-docking analysis. This 

function consists of a simple empirical binding score and a pharmacophore-based score to 

reduce the number of false positives. The energy function can be dissected into the following 

terms: 

ligprepharmabindtot EEEE ++=                             (1) 
where Ebind is the empirical binding energy, Epharma is the energy of binding site 
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pharmacophores (hot spots), and Eligpre is a penalty value if a ligand does not satisfy the ligand 

preferences. Epharma and Eligpre are especially useful in selecting active compounds from 

hundreds of thousands of non-active compounds by excluding ligands that violate the 

characteristics of known active ligands, thereby improving the number of true positives. The 

values of Epharma and Eligpre are determined according to the pharmacological consensus derived 

from known active compounds and the target protein. In contrast, the values of Epharma and Eligpre 

are set to zero if active compounds are not available. 

The empirical binding energy (Ebind) is given as 

penalintrainterbind EEEE ++=     (2) 
where Einter and Eintra are the intermolecular and intramolecular energy, respectively, and 

Epenal is a large penalty value if the ligand is out of range of the search box. For our present work, 

Epenal is set to 10,000. The intermolecular energy is defined as 

( )∑∑
= = 











+=

lig

i

pro

j ij

jiB
ijinter r

qq
rFE ij

1 1
24

0.332
                     (3) 

where 
ijB

ijr  is the distance between atoms i and j with interaction type Bij formed by 

pair-wise heavy atoms between ligands and proteins, Bij is either a hydrogen bond or a steric 

state, qi and qj are the formal charges and 332.0 is a factor that converts the electrostatic energy 

into kilocalories per mole. The terms lig and pro denote the number of heavy atoms in the ligand 

and receptor, respectively. ( )ijB
ijrF  is a simple atomic pair-wise potential function. In this 

atomic pair-wise model, the interactive types include only hydrogen bonding and steric 

potentials having the same function form but different parameters, V1, . . . , V6. The energy 

value of hydrogen bonding should be larger than that for steric potential. In this model, atoms 

are divided into four different atom types 9: donor, acceptor, both, and nonpolar. A hydrogen 

bond can be formed by the following pair-atom types: donor-acceptor (or acceptor-donor), 

donor-both (or both-donor), acceptor-both (or both-acceptor), and both-both. Other pair-atom 

combinations are used to form the steric state. We used the atom formal charge to calculate the 

electrostatic energy, which is set to 5 or -5, respectively, if the electrostatic energy is more than 5 

or less than -5. 

The intramolecular energy of a ligand is 

( ) ( )[ ]∑ ∑ ∑
= += =
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where ( )ijB
ijrF  is defined as Equation 3 except the value is set to 1000 when 

ijB
ijr  < 2.0 Å 

and dihed is the number of rotatable bonds of a ligand. We followed the work29 to set the values 

of A, m, and θ0. For the sp3-sp3 bond A, m, and θ0 are set to 3.0, 3, and π; for the sp3-sp2 bond 

and  A = 1.5, m = 6, and θ0 = 0. 

GEMDOCK evolves binding site pharmacological consensuses and ligand preferences 

from both known active ligands and the target protein to improve screening accuracy. We used 

the premise that previously acquired interactions (hot spots) between ligands and the target 

protein can be used to guide the selection of lead compounds for subsequent investigation and 

refinement. For each known active ligand, GEMDOCK first yielded ten docked ligand 

conformations by docking the ligand into the target protein, and only the ligand with the lowest 

docked conformation energy was retained for pharmacological consensus analysis. The 

protein-ligand interactions were extracted by overlapping these lowest-energy docked 

conformations, and the interactions were classified into three different types, including hydrogen 

bonding, hydrogen-charged interactions, and hydrophobic interactions. After all of the 

protein-ligand interactions were calculated, the atom interaction-profile weight of the target 

protein representing the pharmacological consensus of a particular interaction was given as 

N
f

Q
k
jk

j 3
=     (5) 

where fj
k is the number of an atom j (in protein) interacting with ligands with the interaction 

type k and N is the number of known active ligands. In our present work, an atom j was 

considered a hot-spot atom when k
jQ  was more than 0.5. 

The pharmacophore-based interaction energy (Epharma) between the ligand and the protein is 

calculated by summing the binding energies of all hot-spot atoms: 

( ) ( )∑∑
= =

=
lig

i
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j

B
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ijrFBCWE
1 1                       (6) 

where CW (Bij) is a pharmacological-weight function of a hot-spot atom j with interaction 

type Bij, ( )ijB
ijrF  is defined as Equation 3, lig is the number of the heavy atoms in a screened 

ligand, and hs is the number of hot-spot atoms in the protein. The CW(Bij) is given as 







=>+

≠≤
=

kBQQ

kB
BCW

ij
k
j

k
j

ij
k
j

ij  and 5.0 if          0.5)-(55.1

or  5.0Q if                              0.1
)(       (7) 

Qj
k is the atomic pharmacological-profile weight (Equation 5) and k is the interact type (e.g., 
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hydrogen bonding, hydrogen-charged interactions, or hydrophobic interactions) of the hot-spot 

atom j. 

 
GEMPLS (GEM-Partial Least Squares) 
 

GEMPLS is a hybrid approach that combines GA as a robust optimization technique with 

PLS as a powerful statistical technique for the variable selection and model evolution. GA 

operates on a population of potential solutions applying the principle of survival of the fittest to 

produce successively better approximations to optimum solution. PLS deals with strongly 

collinear input data and make no restriction on the number of variables used. In this thesis, the 

tool GEMPLS was developed by Cooperating with Prof. Kao Lab. 

In GEMPLS, the chromosomes consist of some randomly selected features and the latent 

variables (lv). The squared cross-validated correlation coefficient q2 in the PLS analysis is used 

as objective function to provide a measure of how the internal predictability with respect to the 

selected features of the chromosome. And GA will find the fittest features with the highest q2 in 

the PLS analysis.  

The main steps involved in GEMPLS included the following: (a) initiation and evaluation 

of the initial population, (b) selection of the reproductive population, (c) crossover and mutate 

the reproductive population, (d) evaluation of the child population, (e) reinsertion of the child 

population to form the population on the next generation. And the cycle of above four steps 

(from step (b) to (e)) is repeated until the number of generation reaches to the maximum number 

of generations.  

In order to improve the performance of GEMPLS for QSAR model building, a number of 

refinements have been introduced into GEMPLS. The refinements include the following:  

(a) An extra bit lv, representing the number of latent variables, is appended to the original 

chromosome of GA and expected to efficiently solve the problem of the optimum number of 

latent variables though evolutionary process  

(b) Adopt Mahalanobis distance to discriminate significant features. Mahalanobis distance 

is a very useful way of determining the deviation of a sample from the mean of the distribution 

in multivariable calculus. Therefore, the Mahalanobis distance is adopted to identify significant 

features from all of those. M is the Mahalanobis distance from the feature vector v (column 

vector of data matrix here) to the mean vector µ, where Σ is the covariance matrix of the 

features. 
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(c) Cooperate with biased mutation to lead the evolution. We have recommended that 

uniform mutation is cooperated with biased mutation to lead the evolution of GA toward 

significant feature set and to reduce the interference of noise features. 

( )min max min 1
s i

i
s

N pP P P P
N

 −
= + − × − 

 

 

Pi is the probability of setting feature bit i to 1, pi is the position of feature i in the 

descending order of Mahalanobis distance of all features, Pmin and Pmax are the minimum and 

maximum values of Pi, and Ns is the number of significant features. Pi is derived from pi only 

when pi is ahead of Ns, otherwise Pi is set to Pmin. In other words, the significant feature i with 

higher Mahalanobis distance will obtain the higher Pi. In this study, the corresponding 

parameters are defined as: Pmax = 0.8, Pmin = 0.2. 

The predictability of QSAR model was assessed by the conventional correlation coefficient 

(r2), the cross-validated correlation coefficient (q2), the cross-validated SDEP (SDEPcv), and 

external SDEP (SDEPex): 

  

( )
( )
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,2
21 i pred i

i

y y
q
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∑ −
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∑ −
 

( )2
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SDEP

N
∑ −
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where yi is the observed biological activity of compound i, ypred, i is the predicted biological 

activity of compound i in the validation set, y  is the average biological activities of the data 

set, and N is the total number of compounds. 

After deciding the optimum number of latent variables, the corresponding highest q2, 

lowest SDEP, together with the conventional squared correlation coefficient r2 can be used to 

assess the predictability of QSAR model, i.e. the model with more remarkable predictability can 

provide the higher r2, q2 and the lower SDEP between the observed and predicted biological 

activities. 
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2-2-3 GEMkNN (GEM- k-Nearest-Neighbor) 
 

GEMkNN is a hybrid approach that combines GA as a robust optimization tool with kNN 

as a pattern recognition method to evaluate the discriminative ability of the subset. GA operates 

on a population of potential solutions applying the principle of survival of the fittest to produce 

successively better approximations to optimum solution. kNN is a conceptually simple, 

nonlinear approach to pattern recognition problems. In this thesis, the tool GEMkNN was 

developed by In this thesis, the tool GEMPLS was developed by Cooperating with Prof. Kao 

Lab. 

In GEMkNN, the chromosomes consist of some randomly selected features and the number 

of selected similar molecules (k). The similarities between compounds are evaluated by 

Euclidean distance. The squared cross-validated correlation coefficient q2 in the kNN analysis is 

used as objective function to provide a measure of how the internal predictability with respect to 

the selected features of the chromosome. And GA will find the fittest features with the highest q2 

in the kNN analysis. 

The main steps involved in GEMkNN included the following: (a) initiation and evaluation 

of the initial population, (b) selection of the reproductive population, (c) crossover and mutate 

the reproductive population, (d) evaluation of the child population, (e) reinsertion of the child 

population to form the population on the next generation. And the cycle of above four steps 

(from step (b) to (e)) is repeated until the number of generation reaches to the maximum number 

of generations. 

In order to improve the performance of GEMkNN for QSAR model building, a number of 

refinements have been introduced into GEMkNN. The refinements include the following: 

 (a) Adopt Mahalanobis distance to discriminate significant features. Mahalanobis distance 

is a very useful way of determining the deviation of a sample from the mean of the distribution 

in multivariable calculus. Therefore, the Mahalanobis distance is adopted to identify significant 

features from all of those. 

( ) ( )2 1M ν µ ν µ−′= − ∑ −  
 

M is the Mahalanobis distance from the feature vector v (column vector of data matrix here) 

to the mean vector µ, where Σ is the covariance matrix of the features. 

(b) Cooperate with biased mutation to lead the evolution. We have recommended that 
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uniform mutation is cooperated with biased mutation to lead the evolution of GA toward 

significant feature set and to reduce the interference of noise features. 

( )min max min 1
s i

i
s

N pP P P P
N

 −
= + − × − 

 

 

Pi is the probability of setting feature bit i to 1, pi is the position of feature i in the 

descending order of Mahalanobis distance of all features, Pmin and Pmax are the minimum and 

maximum values of Pi, and Ns is the number of significant features. Pi is derived from pi only 

when pi is ahead of Ns, otherwise Pi is set to Pmin. In other words, the significant feature i with 

higher Mahalanobis distance will obtain the higher Pi. In this study, the corresponding 

parameters are defined as: Pmax = 0.8, Pmin = 0.2. 

The predictability of QSAR model was assessed by the conventional cross-validated 

correlation coefficient (q2), the cross-validated SDEP (SDEPcv), and external SDEP (SDEPex): 
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where yi is the observed biological activity of compound i, ypred, i is the predicted biological 

activity of compound i in the validation set, y  is the average biological activities of the data 

set, and N is the total number of compounds. 

After deciding the optimum number of latent variables, the corresponding highest q2, 

lowest SDEP can be used to assess the predictability of QSAR model, i.e. the model with more 

remarkable predictability can provide the higher q2 and the lower SDEP between the observed 

and predicted biological activities. 
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Chapter 3 
 
Evaluation of GEMDOCK and Modeling Protein Structures 

 
3-1 Evaluation GEMDOCK on AChE and CuAOs 

 

In order to evaluation GEMDOCK on AChEs and CuAOs, we have docked the ligands into 

their target proteins respectively. We based the results on root mean square deviation (RMSD) 

error in ligand heavy atoms between the docked conformation and the crystal structure or the 

physical meaning of binding conformation to verify the GEMDOCK performance on the two 

kinds of protein. 

 

3-1-1 Evaluation GEMDOCK on AChE 
 

To evaluate the performance of docking tool on AChE, we have docked one known E2020 

inhibitor back into its reference protein, 1EVE. The structure, 1EVE, is the structure of tcAChE. 

According to the protein-ligand complex, the ligand forms stable stack force with W84, W279 

and F330, and the nearest distance between the atom N of ligand and the water is 2.90 Å. 

During the molecular docking, because there is no known ligand so far, we set the CW (Bij) 

(in equation 6) 3.0 for side-chain atoms of F330, 4.0 for side-chain atoms of W84 and 5.0 for 

side-chain atoms of W279 to simulate the binding state. The active site for the tcAChE docking 

calculations is the region within a radius of 8 Å relative to E2020. And the RMSD values 

between the docked conformation and the crystal structure is 1.73 Å. The docked ligand forms 

stable stack force with W84, W279 and F330, and the nearest distance between the atom N of 

ligand and the water is 3.69 Å. 

 

3-1-2 Evaluation GEMDOCK on CuAOs 
 

To evaluate the performance of GEMDOCK on CuAOs, we have docked one known 

substrate, phenylethylamine, into the active site of AGAO and the PDB entry of the protein is 
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1IU7. There is no x-ray crystal structure of AGAO complex with ligand so far, according to the 

pathway for catalytic cycle of CuAOs (Figure 5), the TPQ-O5 of the enzyme reacts with primary 

amines and releases the product aldehyde, ammonia ions and hydrogen peroxide. And the 

conserved Asp will be a general base to abstract the proton from the substrate in the reductive 

half-reaction.  

Because the crystal structure has no ligand complex with the protein, we defined that the 

binding site is the collection of amino acids enclosed within a radius of 8 Å relative to the 

cofactor, 2.4.5-trihydroxyphenylalanyl quinine (TPQ382). Figure 6 shows the binding 

conformation of docked ligand at the active site of AGAO. By the docking simulation, the 

function group –NH2 of the ligand forms hydrogen bond with the cofactor TPQ382-O5, 

D298-OD2 (general base) and I379-O, and the aromatic ring of the ligand stays in the 

hydrophobic pocket. 

 
3-2 Evaluation Modeling Protein Structures  

 
In order to verify the modeling structure, we inspected the modeling structure by structural 

alignments to relative proteins and docked several known ligands (substrates or inhibitors) into 

the binding site of the modeling structure by GEMDOCK respectively. Before this, we have 

evaluated GEMDOCK on two kinds of protein: tcAChE and AGHO. And we based the results 

on the physical meaning of binding conformation to verify the model. 

 

3-2-1 Evaluation Modeling Structure of huAChE 
 

To evaluate the model of huAChE, we inspected the difference among the model and X-ray 

crystal structure of huAChE (PDB entry 1B41) and tcAChE (PDB entry 1EVE). The root mean 

square deviation (RMSD) between model and 1B41 is 0.24 Å for the set of all Cα atoms in the 

whole protein, and 0.89 Å between homology structure and 1EVE.  

In the active site, the main difference among the three structures is the side-chain 

conformation of Y337 (residue number of 1B41, relatively to F330 in 1EVE) (Figure 7). In 

previous study, it has been found that F330 in tcAChE can adopt a wide range of conformations 

in the complex structure and may play a role as gate19,23,30. It is natural to expect similar 

behavior of Y337 in the huAChE compared with the analogous F330 in tcAChE.  
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The tcAChE crystal structure (1EVE) has an inhibitor (E2020) complex with the protein, so 

the F330 was in the opened form to stabilize the protein-ligand complex. The huAChE crystal 

structure (1B41) did not have an inhibitor in the active site, thus did not reflect such a 

conformation shift in the Y337 such as F330 in the tcAChE (1EVE). During the modeling, 

because we have utilized the ligand binding information from a tcAChE (1EVE) to structure 

modeling, the Y337 is in the opened form in the model. 

We have docked one known inhibitor, E2020, into the binding site of the modeling 

structure. Because there is no X-ray structure of protein-ligand complex, we defined that the 

binding site is the collection of amino acids enclosed within a radius of 8 Å relative to the 

E2020. Docking calculations were carried out with the GEMDOCK program. In order to 

simulate the protein-ligand complex, we set the CW (Bij) (in equation 6 ) was 3.0 for side-chain 

atoms of Y337, 4.0 for side-chain atoms of W86 and 5.0 for side-chain atoms of W286 just like 

the parameters in tcAChE. After considering the interaction preference, the inhibitors form 

stable stack force with W86 and W286. Figure 8 is the docking poses of the inhibitor, E2020, in 

the active site of the modeling structure. The interaction preference would be considered when 

we simulated the binding poses of other compounds. 

 

3-2-2 Evaluation Modeling Structure of AGHO 
 

To evaluate the homology structure of AGHO, we inspected the difference between the 

homology structure and X-ray crystal structure of AGAO (PDB entry 1IU7). Figure 9A shows 

the whole structural alignments between the homology structure and 1IU7. The root mean 

square deviation (RMSD) between homology structure and 1IU7 is 0.24 Å for the set of all Cα 

atoms in the whole protein.  

In the active site, the residues in the two proteins are identical, besides D326 and V398 in 

AGHO. D326 in AGHO is relative to Y307 in AGAO, and V398 is relative to I379 in AGAO. 

Figure 9B shows the structural difference between the two proteins. The O5 of important 

cofactor 2.4.5-trihydroxyphenylalanyl quinine (TPQ) (TPQ401 in AGHO, TPQ382 in AGAO) 

slight shift 0.58 Å between homology structure and AGAO structure (1IU7). The OD1 of 

general base Asp (D317 in AGHO, D298 in AGAO)31 slight shift 0.2 Å between homology 

structure and AGAO structure (1IU7). And the Tyr (Y296 in AGAO, Y315 in AGHO) that play a 

role as gate32, are in the opened form in both protein structure. In the AGAO structure (1IU7), 

the distance between TPQ382-O4 and Y284 is 2.51 Å, and the distance between TPQ401-O5 
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and Y303 in the AGHO structure is 2.55 Å. 

We have docked the twelve known substrates of AGHO to the active site of homology 

structure (Figure 10). Because there is no X-ray structure of AGHO so far, we defined that the 

binding site is the collection of amino acids enclosed within a radius of 8 Å relative to the 

TPQ401. Docking calculations were carried out with the GEMDOCK program. In order to 

simulate the protein-ligand complex, we set the CW (Bij) (in equation 6) was 2.3 for O5 of 

TPQ401. After considering the interaction preference, the function groups –NH2 of the 

substrates form hydrogen bonds with the cofactor TPQ401-O5, D317-OD1 (general base), and 

the –NH on the ring of tryptamine and histamine form hydrogen bonds with P156-O. The 

aromatic rings of the substrates stay in the hydrophobic pocket. The interaction preference 

would be considered when we simulated the binding poses of other compounds.  

By the docking simulation of other compounds from the derivatives set we have setup, we 

identified a new inhibitor, spermine (Figure 11A). According to the docking conformation in the 

binding site of the homology structure (Figure 11B), the long flexible spermine passes through 

the channel and forms hydrogen bonds with TPQ401-O5, D317-OD1, Y321-OH and P156-O. 

The binding conformation of spermine not only forms hydrogen bonds with TPQ401-O5, 

D317-OD1 and P156-O that was similar to the substrates, but also forms hydrogen bonds with 

Y321-OH.  

By the comparison of protein-ligand interaction between spermine and known substrates in 

the AGHO binding site, it was natural to expect that spermine could bind stably in the binding 

site of AGHO protein because it could form more interactions with the protein. And the 

inhibitive effect of spermine has been verified by experiment.  
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Chapter 4 
 
Method Evaluation on huAChE 

We have evaluated the method of QSAR model constructing on a public compound set, 

human acetylcholinesterase (huAChE) compound set from reference. The compound set 

includes sixty-nine compounds with IC50 values and those ligands belong to four kinds of 

derivative. Within the set, fifty-three compounds are selected for training set (Table 1) and 

sixteen compounds for testing set (Table 2). The IC50 values of the ligand rang from 0.48 nM to 

19580 nM in the training set and 0.33nM to 30000nM in the testing set. 

  
4-1 Validation of Conditions and Methods 

 
The common metrics were used to evaluate the QSAR model quality, including the q2 

(cross-validated correlation coefficient) in training and r2 (correlation coefficient) in testing. In 

order to validate the performance and stability of the method for QSAR model building, we 

have built ten models under each kind of condition and then evaluated the mean and standard 

deviation values of the q2 and r2. 

To select the proper tool for huAChE QSAR model building, GEMPLS and GEMkNN both 

have been employed to construct the QSAR model. In addition, we have made some tests, 

including the condition that generating ligand ignored common skeleton set and generating 

consensus feature set. And we would compare the results in each condition.  

Table 6 shows the performance of GEMPLS and GEMkNN relative to the raw ligand 

feature set and the ligand ignored common skeleton set. GEMPLS and GEMkNN have been 

employed in the raw feature sets and the feature set that ignored ligand common skeleton. In the 

raw feature set, the result of cross-validated correlation coefficient in GEMkNN is a little better 

than GEMPLS. In ligand ignored common skeleton set, the q2 value of GEMkNN is much better 

than GEMPLS. The q2 value of GEMPLS would become worse if the ligand common skeleton 

have been ignored. This phenomenon is different in GEMkNN, and the evaluated performance 

would be better when ligand common skeleton have been ignored.  

In the raw feature set of huAChE, the result of cross-validated correlation coefficient in 
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GEMkNN is better than GEMPLS. Thus GEMkNN has been employed in the QSAR model 

constructing for huAChE. Table 7 shows the relationship between the result of GEMkNN and 

generation of consensus feature set. No matter the common skeleton have been ignored or not, 

the generation of consensus feature set in the process of QSAR model building would improve 

obviously the quality of the QSAR model. And the result of cross-validated correlation 

coefficient in GEMkNN would become better if the ligand common skeleton have been ignored 

no matter the consensus feature set have been generated or not. 

Table 8 shows the comparison of our method with the method in the reference. In the 

literature, the docking tool GOLD have been employed in molecular simulation, the feature 

basis have been focus on residue-based, the leave-one-out cross validation correlation of q2 is 

0.72 and the r2 between the predicted values and the experimental values is 0.69. The docking 

tool, GEMDOCK, have been employed to simulate the protein-ligand complex, we have focused 

the molecular feature set on the atom basis, the average q2 values of leave-one-out cross 

validation is 0.81 and the average correlation of r2 = 0.72 between the predicted values and the 

experimental values. Our QSAR model has been built via GEMkNN over interaction profile 

within compound in the training set. And the model has been built via PLS regression in the 

literature.  

 

4-2 QSAR Model for huAChE 

 
To construct an effective QSAR model for huAChE, we have adopted models by the 

following step:  

(a) Predicted the molecular geometry in the binding site of the target protein by 

GEMEDOCK. 

(b) According to the protein-ligand complex, we used the interaction profile to be 

molecular feature set on atom basis. 

(c) Generation of ligand ignored common skeleton set. 

(d) Feature selection and model evolution by GEMkNN. 

(e) Generation of consensus feature set 

(f) Feature selection and model evolution by GEMkNN 

(g) Select the specific model. 
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With such a procedure, the average q2 values of leave-one-out cross validation is 0.817 and 

the average correlation of r2 = 0.723 between the predicted values and the experimental values. 

In order to construct a specific QSAR model, we have adopted the one that the q2 value is most 

close to the average q2 value in 10 times when training. This is because we hope to select a 

steady model and to avoid over-fitting in QSAR model building. At last we adopted the model 

with a leave-one-out cross validation of q2 = 0.818 and a correlation of r2 = 0.781 between the 

predictive values and experimental values. Figure 12A and Figure 12B show the correlation 

between the experimental values and the predicted values from the QSAR modeling. 

Table 9 shows the selected feature and their physical meaning. Several residues have been 

found very important in previous study. Residue Y72 could form a wall to stabilize ligand and 

W86 forms π-π interaction with choline. N87 and Y337 contribute the electrostatic force in the 

active site. Residues Y124 and F338 provide hydrophobic contacts with ligand. S203 and H447 

are significant in huAChE; they are catalytic triad in the enzyme. In previous study, residue 

H287 has been found that could affect the binding affinity of AChE inhibitors and W286 might 

play the same role as H287. Residue Y341 forms the local pocket in the active site. This result 

reveals that most of the feature we have selected have already been verified their physical 

meanings and to help confirm the sensibility of our model.  
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Chapter 5 
 
Practical Application 

In this study, our method has been employed to practically apply on AGHO model building. 

There are twelve known substrates (cooperation with Dr. Chiun-Jye Yuan) with Km values in the 

compound set. Table 3 shows the structures of the known substrates in the compound set. The 

Km values of the ligand rang from 0.0025 mM to 0.1221 mM in the set. To construct the QSAR 

model for AGHO, twelve known substrates have been employed in the training set. 

 
5-1 Validation of Conditions and Methods 

 
In order to validate the performance and stability of the method for QSAR model building, 

we have built ten models under each kind of condition and then evaluated the mean and standard 

deviation values of the q2. To select the proper tool for huAChE QSAR model building, 

GEMPLS and GEMkNN both have been employed to construct the QSAR model. And we have 

done some test and attempted to find out the influence in the conditions, including the condition 

that generating ligand ignored common skeleton set and generating consensus feature set by the 

same token.   

Table 10 shows the performance of GEMPLS and GEMkNN relative to the raw ligand 

feature set and the ligand ignored common skeleton feature set. GEMPLS and GEMkNN have 

been employed in the raw feature sets and the ligand ignored common skeleton set. In the raw 

feature set, the performance of GEMPLS is better than GEMkNN. In ligand ignored common 

skeleton set, the performance of GEMPLS is much better than GEMkNN. No matter which tool 

have been employed, the evaluated performance would become worse if the ligand common 

skeleton have been ignored.   

In the raw feature set of AGHO, the result of cross-validated correlation coefficient in 

GEMPLS is better than GEMkNN. Thus GEMPLS has been employed in the QSAR model 

constructing for AGHO. Table 11 shows the relationship between the performance of GEMPLS 

and generation of consensus feature set. GEMPLS has been employed in the raw feature set and 

the ligand ignored common skeleton set. The performance of GEMPLS would be worse if the 
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ligand common skeleton have been ignored. No matter the common skeleton have been ignored 

or not, the generation of consensus feature set in the process of QSAR model building would 

improve obviously the quality of the QSAR model.  

 
5-2 QSAR Model for AGHO 

 

To construct an effective QSAR model for AGHO, we have adopted models by the 

following step:  

(a) Predicted the molecular geometry in the binding site of the target protein by 

GEMEDOCK. 

(b) According to the protein-ligand complex, we used the interaction profile to be 

molecular features set on atom basis. 

(c) Feature selection and model evolution by GEMPLS. 

(e) Generation of consensus feature set 

(f) Feature selection and model evolution by GEMPLS 

(g) Select the specific model. 

With such a procedure, the average q2 values of leave-one-out cross validation is 0.977 and 

standard deviation of the q2 values is 0.001. Such a result means that our method is an effective 

and stable method for QSAR model building. In order to construct a specific QSAR model, we 

have adopted the one that the q2 value is most close to the average q2 value in 10 times when 

training. This is because we hope to select a steady model and to avoid over-fitting in QSAR 

model building. At last we adopted the model with a leave-one-out cross validation of q2 = 0.979. 

Figure 13 shows the correlation between predicted values and experimental values. 

Table 12 shows the selected feature and their physical meaning. In previous research, some 

functions of residues in AGAO have been studied33. The sequence identity between the AGHO 

and AGAO is 61%, suggesting the high structural homology. The selected residues of AGHO 

QSAR modeling are almost conserved in the two proteins, indicting the similar physical 

function in the active site, so we could understand the AGHO residue functions through the 

understanding in AGAO. Residue A155 is related to F105 in AGAO, P156 is related to P136 in 

AGAO, Y315 is related to Y296 in AGAO, Y321 is related to Y302 in AGAO and F426 is 

related to F407 in AGAO. 
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Figure 14 shows the multiple sequence alignments of CuAOs on the spots of the selected 

feature. The amine oxidases belong to bacteria, plants and animals. In previous study, it has been 

found that although those kinds of enzyme exhibit common mechanistic features, the substrate 

specificities of them appear to be different. For instance, the amine oxidases from bacteria show 

a preference for aromatic amines but the ones from animal do not show this preference. 

We have observed some interesting appearance in the selected feature. It is entirely 

conserved in all kinds of CuAOs on the positions of D317and N400. The positions of V398, 

Y321 and Y315 are not entirely conserved in all CuAOs, but the residues on the positions show 

a similar chemical and physical quality. On the positions of residues P156 and A155, it shows 

different residue quality in bacteria, plants and animals indicating the residues are significant to 

the ligand preference.  

 

5-3 Prediction on Derivatives 

 

According to the ligand set of AGHO, it seems that the ligand affinity of AGHO related to 

the hydrophobicity of ligand. To probe into the relationship between ligand affinity and ligand 

characteristic, we have predicted a serial potential affinity of derivatives by the QSAR model we 

have built.  

Table 4 and Table 5 show the set of the AGHO derivatives. Here we have focused on the 

length of side-chain and the size of aromatic ring related to the ligand affinity. Table 4 shows the 

structures of derivatives and the predicted values. There are six kinds of group in the ligand set. 

In each kind of ligands, the number of carbon in side-chain rise from one to four. Figure 15 

shows the relationship between predicted values and side-chain length. Generally speaking, the 

predicted values increase with the increase of side-chain length. This tendency is similar to the 

phenomenon among phenylethylamine, phenylpropylamine and phenylbutylamine. Figure 16 

shows the relationship between predicted values and size of aromatic ring. It shows that the 

predicted values increase with the increase of ring size obviously. 

In the process of prediction, we have predicted the affinity of benzylamine successfully. 

The predicted value from QSAR model is 1.077. After experimenting, the measured value of 

benzylamine is 1.261. Figure 17 shows the relationship between predicted values and 

experimental values. Although the predicted value is not identical with experimental value, the 
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tendency between predicted values and experimental values is similar. The results of the 

prediction show that the predicted values increase with the increase of side-chain length and size 

of ring. It suggested that hydrophobicity is one of the essential factors that determined the 

affinity of AGHO to its substrates. In the application on AGHO QSAR modeling, our method 

has been employed to build a specific QSAR model for AGHO. This model shows evaluation 

with a leave-one-out cross validation of q2 = 0.979. Besides good behavior in the evaluation, our 

method also represents the stability in QSAR model building. It shows the average q2 = 0.977 

and the standard deviation of the q2 values is 0.001. In the biological field, the selected features 

derived from our method are meaningful. Most of them have been verified in previous research. 
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Chapter 6 
 
Conclusions 

6-1 Summary 

 
In summary, we introduced GEMDOCK to generate the atom-based protein-ligand 

interactions as descriptions, which are used by GEMPLS and GEMkNN to construct the QSAR 

models. The method has been verified on huAChE QSAR modeling and applied on AGHO for 

the first novel QSAR model. And the comprehensive effect shows the good performance for 

QSAR modeling of huAChE and AGHO. In the process of QSAR model constructing, the 

generation of consensus feature set and ligand specific skeleton set improve the quality and 

stability of QSAR model. The verification and application show our method is adaptable to 

QSAR model constructing. 

 
6-2 Future Works 

 

We would apply our method for more compound set to verify that it is robust and adaptable 

to QSAR model constructing. In addition, we would make the method an automatically 

predictive system for drug discovery in the future.
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Table 1. Compounds Structures in huAChE Training Set12 

 
 

Y N
R3

R2
R1

X N

 

R1 R2 R3 -X- -Y- 
Ligand 

ID 
IC50(nM) pIC50

-H -H -H -(CH2)2- -O- 1 55 7.26
-CH3 -H -H -(CH2)2- -O- 2 7.8 8.11
-CH3 -OCH3 -H -(CH2)2- -O- 3 5.8 8.24

-OCH3 -H -H -(CH2)2- -O- 4 7.2 8.14
-H -H -OCH3 -(CH2)2- -O- 5 7.1 8.15
-H -NH-CO-CH3 -H -(CH2)2- -O- 6 2.8 8.55
-H -NH-SO2-Ф -H -(CH2)2- -O- 7 14 7.85
-H -4-morpholino -H -(CH2)2- -O- 8 0.8 9.10
-H -NH2 -H -(CH2)2- -O- 9 20 7.70
-H -Br -H -(CH2)2- -O- 10 50 7.30
-H -CN -H -(CH2)2- -O- 11 101 7.00
-H -CO-NH2 -H -(CH2)2- -O- 12 8.8 8.06
-H -H -H -(CH2)3- -O- 13 900 6.05
-H -H -H -O-CH2- -O- 14 2600 5.59
-H -H -H -NH-CH2- -O- 15 320 6.49
-H -H -H -(CH2)2- -S- 16 99 7.00
-H -H -H -(CH2)2- -CH=CH- 17 220 6.66
-H -H -H -(CH2)2- -NH- 18 120 6.92
-CH2-CH2-CO-NH- -H -(CH2)2- -O- 19 0.57 9.24

-NH-CO-CH2- -H -(CH2)2- -O- 20 0.95 9.02
-N(CH3)-CO-CH2- -H -(CH2)2- -O- 21 0.48 9.32
-H -NH-CO-CH2- -(CH2)2- -O- 22 3.6 8.44

O

O
O

N
+

 

23 250 6.60
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Table 1. Continued 

Y N
+

S

O

O

W
X R

z

 

-W- -X- -Y-Z- R 
Ligand 

ID 
IC50 
(nM) 

pIC50

-(CO)- -CH2-CH2- -CH-CH2- -CH2-Φ 24 8 8.10
-(CO)- -CH2-C(OH)- -CH-CH2- -CH2-Φ 25 43 7.37
-(CO)- -CH2C(OH)CH2CH2- -CH-CH2- -CH2-Φ 26 380 6.42
-(CO)- -CH2CH2CH2CH2- -CH-CH2- -CH2-Φ 27 110 6.96
-(CO)- -CH2C(OCH3)- -CH-CH2- -CH2-Φ 28 120 6.92
-(CO)- -CH- -C-CH2- -CH2-Φ 29 520 6.28

-C(OH)- - -CH-CH2- -CH2-Φ 30 19580 4.71
- -CH- -C-CH2- -CH2-Φ 31 2670 5.57

-(CO)- -CH2-CH2- -CH-CH2- -(CH2)2OCH3 32 53 7.28

-(CO)- -CH2-CH2- -CH-CH2- O
NO2

 
33 32 7.49

-(CO)- -CH2-CH2- -CH-CH2-
O  

34 28 7.55

-(CO)- -CH2-CH2- -CH-CH2- O

O

 
35 79 7.10

-(CO)- -CH2-CH2- -CH-CH2- -CH2CH2-O-Φ 36 390 6.41
-(CO)- -CH2-CH2- -CH-CH2- -CH2-CN 37 1000 6.00

S

O

O

O

N
+

R1
 

-R1 
Ligand 

ID 
IC50(nM) pIC50

-CH3 38 900 6.05

-CH2CH3 39 280 6.55
-CH2CH=CH2 40 540 6.27

 41 110 6.96

 42 40 7.40
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Table 1. Continued 

-R1 
Ligand 

ID 
IC50(nM) pIC50

-CH2CH2-O-CH2CH3 43 7 8.15

F

 
44 2.6 8.59

O

O

 
45 1000 6.00

S

 
46 6 8.22

O
NO2

 
47 4.5 8.35

N
+

R1

O

 

-R1 
Ligand 

ID 
IC50(nM) pIC50

O

O

 
48 100 7.00

O

O

 
49 41.5 7.38

O  
50 139 6.86

O  
51 50 7.30

N

O

O
 

52 120 6.92

N N
 

53 22 7.66
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Table 2. Compounds Structures in huAChE Testing Set12 

Y N
R3

R2
R1

X N

 

R1 R2 R3 -X- -Y- 
Ligand 

ID 
IC50(nM) pIC50

-H -OCH3 -H -(CH2)2- -O- 54 8.3 8.08 
-H -NH-CO-Φ -H -(CH2)2- -O- 55 9.4 8.03 
-H -OH -H -(CH2)2- -O- 56 26 7.59 
-H -H -H -(CH)2- -O- 57 210 6.68 
-H -H -H -NH-(CH2)2- -O- 58 810 6.09 
-H -H -H -(CH2)2- -N=CH2 59 340 6.47 

-CH2CONH- -H -(CH2)2- -O- 60 0.33 9.48 

Y N
+

S

O

O

W
X R

z

 

-W- -X- -Y-Z- R 
Ligand 

ID 
IC50(nM) pIC50

-(CO)- -CH2C(OH)- -CH-CH2- -CH2-Φ 61 190 6.72 
-(CO)- -CH2- -C(OH)-CH2- -CH2-Φ 62 90 7.05 
-(CO)- -CH2- -C=CH- -CH2-Φ 63 750 6.12 

- -CH2- -CH-CH2- -CH2-Φ 64 30000 4.52 
-(CO)- -CH2CH2- -CH-CH2- -CH2COOCH3 65 54 7.27 

S

O

O

O

N
+

R1
 

-R1 
Ligand 

ID 
IC50(nM) pIC50

-(CH2)2CH3 66 2570 5.59 
-(CH2)2OCH3 67 30 7.52 

-CH2-Φ 68 4.6 8.34 

O

O N
+

O

 

69 240 6.62 
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Table 3. Compound Structures in the AGHO Training Set 

Ligand Structure Km
a kcat

b Log(1/Km) 

Phenylethylamine 

CH2CH2NH2

0.0168 18.62±1.03 1.775 

Tryptamine 
N

CH2CH2NH2

 
0.0036 3.92±0.16 2.444 

Phenylpropylamine 

CH2CH2CH2NH2

0.0088 4.98±0.49 2.058 

Phenylbutylamine 
CH2CH2CH2CH2NH2

0.0025 3.8±0.24 2.602 

Histamine 
N

N
CH2CH2NH2

0.0936 15.27±0.45 1.029 

3-Methoxy- 

phenylethylamine 

CH2CH2NH2

OMe

0.0160 16.67±0.99     1.797 

4-Methoxy- 

phenylethylamine 

CH2CH2NH2

OMe

0.0167 17.60±2.20     1.777 

Octopamine 

OH

OH
NH2

 

0.1221 3.95±0.06     0.913 

2,3-Dihydroxy- 

phenylethylamine 

CH2CH2NH2

OH

OH

0.0186 10.08±0.51     1.730 

2,4-Dihydroxy- 

phenylethylamine 

CH2CH2NH2

OH

OH

 
0.0202 10.66±0.29     1.730 

Dopamine 

CH2CH2NH2

OH
OH

 

0.0329 13.89±0.39    1.483 

Tyramine 

CH2CH2NH2

OH  

0.0172 13.29±0.60    1.765 

a Values for apparent Km are expressed in mM. 
b Values for apparent kcat are expressed in sec-1. 
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Table 4. Structures of AGHO Substrates Derived with Different Lengths of Side 
Chains 

Structure Ligand  R Predicted 
log(1/Km) a 

- -CH2NH2 2.19 
Tryptamine -C2H4NH2 2.37 
- -C3H6NH2 2.81 

 

- -C4H8NH2 2.32 
- -CH2NH2 1.08 

Phenylethylamine -C2H4NH2 1.69 
- -C3H6NH2 2.10 

 

- -C4H8NH2 2.58 
- -CH2NH2 1.32 

2,3-Dihydroxy-phenylethylamine -C2H4NH2 1.75 
- -C3H6NH2 2.04 

 

- -C4H8NH2 2.08 
- -CH2NH2 1.32 

2,4-Dihydroxy-phenylethylamine -C2H4NH2 1.64 
- -C3H6NH2 1.82 

 

- -C4H8NH2 2.37 
- -CH2NH2 1.29 

Dopamine -C2H4NH2 1.55 
- -C3H6NH2 1.87 

 

- -C4H8NH2 2.02 
- -CH2NH2 1.17 

Tyramine -C2H4NH2 1.76 
- -C3H6NH2 2.00 

 

- -C4H8NH2 1.99 
 

a The predicted log(1/Km) values from the final model. 

R

N

R

R
OH

OH

R
OH

OH

R

OH
OH

R

OH
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Table 5. Structures of AGHO Substrates Derived with Different Ring Sizes 

Structure 
    

Ligand  - Tryptamine Phenylethylamine Histamine 

Predicted log(1/Km) 
a 2.90 2.37 1.69 1.03 

a The predicted log(1/Km) values from the final model. 

N

N
CH2CH2NH2

N

C2H4NH2

N

CH2CH2NH2 CH2CH2CH2NH2



 37

Table 6. Performance of GEMPLS and GEMkNN Relative to Different 
Protein-Ligand Interactions Profiles on huAChE set 

a The interaction profile between protein and whole atoms of ligand. 
b The interaction profile between protein and the specific skeleton of ligand. 
c The number of feature in origin molecular feature set. 
d The average q2 values in 10 times in training set.  

e The average r2 values in 10 times in testing set. 
f The standard deviation of q2 values in 10 times in training set. 
g The standard deviation of r2 values in 10 times in testing set. 

Whole Interaction 
Profile a 

Specific Interaction 
Profile 

b 
 

GEMPLS GEMkNN GEMPLS GEMkNN

No. of features 
(atoms) c 

223 223 217 217 

Average of q2 d 0.627 0.657 -2.607 0.737 

Average of r2 e 0.402 0.123 0.466 0.724 

Standard 
derivation of q2 f

0.015 0.018 0.093 0.018 

Standard 
derivation of r2 g

0.125 0.095 0.050 0.119 

No. of selected 
features (atoms)

36.2 36.1 33.8 34.7 
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Table 7. Performance of GEMPLS with Different Descriptions (features) on 
huAChE set 

Interaction Profile a Consensus Feature 
Profile b 

 

Whole c Specific d Whole Specific  
No. of features 

(atoms) 
223 217 156 92 

Average of q2 0.657 0.737 0.704 0.817 

Average of r2 0.123 0.724 0.063 0.723 

Standard 
derivation of q2 

0.018 0.018 0.009 0.006 

Standard 
derivation of r2 

0.095 0.119 0.050 0.056 

No. of selected 
features (atoms)

36.1 34.7 29.8 23.5 

a The interaction between protein and whole atoms of ligand. 
b The feature set that consensus from the feature of preliminary models.  
c The interaction profile between protein and whole atoms of ligand. 
d The interaction profile between protein and the specific skeleton of ligand. 
 



 39

Table 8. Comparison our Method with the Method by Jianxin et. al12. 
 

Our method Jianxin et. al.  

Docking Tool GEMDOCK GOLD 

Basis Atom Base Residue Base 

q2 a 0.81(mean) 0.72 

r2 b 0.72(mean) 0.63 

a The mean q2 value of 10 independent QSAR models in the training set. 
b The mean r2 value of 10 independent QSAR models in the testing set. 
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Table 9. Selected Residues in the huAChE QSAR Model 

 

Residue 
No. Atom Type Description12 

TYR72 CD1 Forms a wall to stabilize ligand ring 

TRP86 CH2 Forming π-π interaction with choline 

ASN87 CA 
Electrostatic contributors in the gorge 

area 

TYR119 CA - 

GLY120 N - 

TYR124 CE1、CE2 Provide hydrophobic contacts 

GLY126 CA - 

SER203 CB Catalytic triad 

TRP286 CG、NE1、CZ3 
Probably helpful in enhancing the 

activity of ligand with polar groups 

SER293 O - 

ARG296 N、CA、C - 

TYR337 C、O、CD2、CE1 
Electrostatic contributors in the gorge 

area 

PHE338 C Provide hydrophobic contacts 

TYR341 CB The residue in the local pocket 

HIS447 CD2 Catalytic triad 

GLY448 O - 
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Table 10. Performance of GEMPLS and GEMkNN Relative to Different 
Protein-Ligand Interactions Profiles on AGHO set 

Whole Interaction 
Profile a 

Specific Interaction 
Profile 

b 

 

GEMPLS GEMkNN GEMPLS GEMkNN 

No. of features 
(atoms) 

131 131 94 94 

Average of q2 0.975 0.817 0.890 0.377 

Standard 
derivation of q2 

0.001 0.008 0.069 0.031 

No. of selected 
features (atoms)

11 16.5 13 33.5 

a The interaction profile between protein and whole atoms of ligand. 
b The interaction profile between protein and the specific skeleton of ligand. 
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Table 11. Performance of GEMPLS with Different Descriptions (features) on 
AGHO set 

Interaction Profile a Consensus Feature 
Profile b 

 

Whole c Specific d  Whole Specific  

No. of features 
(atoms) 

131 94 34 52 

Average of q2 0.975 0.890 0.977 0.954 

Standard 
derivation of 

q2 
0.001 0.069 0.001 0.007 

No. of selected 
features 
(atoms) 

11 13 12.9 12.8 

a The interaction between protein and whole atoms of ligand. 
b The feature set that consensus from the feature of preliminary models.  
c The interaction profile between protein and whole atoms of ligand. 
d The interaction profile between protein and the specific skeleton of ligand. 
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Table 12. Selected Residues of the AGHO QSAR Model 

 

 
 
 

Selected 
Residues Atom Type Description33 

PHE125 CD2 - 

ALA155 O The residue in the hydrophobic pocket 

PRO156 N The residue in the hydrophobic pocket 

TYR315 OH The residue in the hydrophobic pocket 

ASP317 OD1 The general base in the active site 

TYR321 CE1、CZ The residue in the hydrophobic pocket 

VAL398 C、CB - 

ASN400 CA、CG、OD1 The conserved residue in CuAOs 

PHE426 CD2、CE2 The residue in the hydrophobic pocket 
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QSAR model

ProteinLigand set

GEMDOCK

Prediction
of

Protein-Ligand 
Conformation

Protein-Ligand 

Interaction Profile

GEMPLS GEMkNN

Preliminary 
QSAR models

Consensus Feature Set

GEMPLS GEMkNN

 

Figure 1. The main steps of QSAR model building, including GEMDOCK for the 

simulation of protein-ligand complex and generation of protein-ligand interaction 

profile, GEMPLS and GEMkNN for feature selection and model building. In the 

procedure of modeling, a consensus feature set is generated. 
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Select a set of compound superimposition

1

2

N

…
.

Compounds

Min(R1,R2,…,RM)

N

The compound is the most similar one to crystal structure

(1,17 ,…, 12)
(2,7, … , 17)

(M,7, … , 3 )

M

R1=Σ RMSD
R2=Σ RMSD

RM=Σ RMSD

M conformations

M conformations

M conformations

 

Figure 2. The step of compound structures superimposition. In the compound set, 

there are N kinds of compound, and each compound has been generated M 

conformations derived from GEMDOCK. In the N kinds of compound, we selected 

the one that is the most similar one to crystal structure to be the reference ligand. 

Each compound aligned its conserved region to the reference ligand and calculated 

the RMSD values. Hence there would be M sets of compound superimpositions 

(because there are M kinds of reference ligand conformation), and each set is made 

up of N kinds of compound. RM means the sum total of RMSD value between the 

conserved regions of the reference ligand and the other compounds in the compound 

superimposition set, M. Among R1、R2…..RM, we select the minimum one and adopt 

the ligand conformation in this compound superimposition set. 
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Atom3

Atom1
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Atom4

Atom2

The electrostatic interaction between Atom1
and the ligand  

Figure 3. The protein-ligand interaction profile. According to predictive ligand 

binding conformation, we calculated the protein-ligand interaction and generated the 

interaction profile. The interaction we considered includes electrostatic (Eelec), van der 

Waals (Evdw) and hydrogen bond (Ehb) interactions. We have described the 

protein-ligand interaction on the atom basis and focused on active site of the target 

protein. In the interaction profile, we have taken down the interaction between the 

active site atom of protein and the ligand. On each atom, Eele, Evdw and Ehb would be 

calculated respectively.  
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Figure 4. The definition of ligand common skeleton. In this kind of compound, they 

share high structural homology without substituents groups. The label parts of the 

compound are defined as the common skeleton.  
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Figure 5. Proposed mechanism of turnover for amine oxidases27. 
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Figure 6. The docked pose of phenylethylamine (known substrate) in the active site 

of AGAO (PDB entry 1IU7). The important residues of AGAO in the active site are 

identified and marked. The dash lines indicate hydrogen bonds. 
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W286
Y124 W86

Y337

Main difference among the structures

Figure 7. The structural alignment of 1B41 (yellow), 1EVE (pink) and modeled 

structure (green). The main difference among the three structures is the side-chain 

conformation of Y337 (residue number of 1B41, relatively to F330 in 1EVE). In the 

structure of 1EVE, the F330 was in the opened form to stabilize the protein-ligand 

complex. The structure of 1B41 did not reflect such a conformation shift in the Y337 

such as F330 in the tcAChE (1EVE). The conformation of Y337 is in the opened form 

such as F330 in 1EVE in the modeling structure. 
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Figure 8. The docked poses of the inhibitor, E2020, at the active site of the modeled 

structure. E2020 forms stable stack force with W86 and W286. The residue number 

showed here is derived from the modeling structure. 
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Figure 9. The structural alignment of homology model (green) and the template, 

AGAO (1IU7) (yellow). (A) The whole structural alignments between the homology 

model and 1IU7, and the RMSD between the two aligned structures is 0.24 Å for the 

set of all Cα atoms in the whole protein. (B) The structural alignment in the active site. 

TPQ401 in AGHO (TPQ382 in AGAO) slight shift 0.58 Å between homology 

structure and AGAO structure (1IU7). The OD1 of general base Asp (D317 in AGHO, 

D298 in AGAO) slight shift 0.2 Å between homology structure and AGAO structure 

(1IU7). And the Tyr (Y296 in AGAO, Y315 in AGHO) is in the opened form in both 

protein structures. In the AGAO structure (1IU7), the distance between TPQ382-O4 

and Y284 is 2.51 Å, and the distance between TPQ401-O5 and Y303 in the AGHO 

structure is 2.55 Å. The residue number showed here is derived from the homology 

structure. The residue number showed in figure is derived from the sequence of 

AGHO homology model. 
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TPQ401-O5
D317-OD1

P156-O

 

Figure 10. The docked poses of twelve known substrates at the active site of the 

modeled AGHO structure. The function group –NH2 of the substrates form hydrogen 

bonds with the cofactor TPQ401-O5, D317-OD1 (general base), and the –NH on the 

ring of tryptamine and histamine form hydrogen bonds with P156-O. The dash lines 

indicate the hydrogen bonds. The residue number showed here is derived from the 

sequence of AGHO homology model. 
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Figure 11. (A) The experimental verified inhibitor, spermine. (B) The predicted pose 

of spermine at the active site of AGHO. The dash lines indicate hydrogen bonds. The 

residue number showed here is derived from the sequence of AGHO homology 

model. 
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Figure 12. The correlation between the experimental values and predicted value of 

huAChE QSAR model. (A) The predicted performance of the QSAR model generated 

by our method. (B) The predicted performance of the QSAR model from reference. 
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Figure 13. The correlation between the experimental values and the predicted values 

of the AGHO QSAR model. 
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Figure 14. The multiple sequence alignments of CuAOs on the spots of the selected 

residues in AGHO QSAR model. The residue number showed in figure is derived 

from the sequence of AGHO homology model. 
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Figure 15. The relationships between the length of substitution group, -CH2- and the 

predicted affinity of AGHO QSAR model. 
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Figure 16. The relationship between the ring size and the predicted affinity of AGHO 

QSAR model. 
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Figure 17. The relationship between experimental values and predicted affinity of 

AGHO QSAR model. By the QSAR model for AGHO, we discovered a substrate, 

benzylamine, and evaluated by experiment.
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