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偵測核糖核酸 H型偽結之研究

學生: 黃群翔 指導教授: 盧錦隆 教授

國立交通大學生物科技學系生物資訊所碩士班

摘 要

已知在所有種類的核糖核酸序列中幾乎皆可找到所謂的偽結, 在生物反應的過

程中, 這些偽結被認為扮演著重要功能性的角色。 除此之外, 目前大多數的核糖

核酸偽結皆屬於 H型。 因此, 偵測這些 H型的偽結將有助於我們瞭解核糖核酸

的結構及相關的功能。 然而, 現有的程式對於這種 H型偽結的偵測仍然是相當

費時, 甚至有些時候其偵測出來的偽結是不正確的。 因此, 發展一個有效率且

準確度高的工具來偵測 H 型的核糖核酸偽結是件值得研究的課題。 在本論文

中, 我們提出了一個啟發式的策略, 並且根據這個策略發展出一個全新的工具

HPknotter 來正確而且有效率地偵測核糖核酸序列中的 H型偽結。 除此之外, 我

們也利用一些已知具有 H 型偽結的核糖核酸序列來測試並證明 HPknotter 的

適用性及準確度。
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A Study of Detecting RNA H-type Pseudoknots

Student: Chun-Hsiang Huang Advisor: Prof. Chin Lung Lu

Institute of Bioinformatics

Department of Biological Science and Technology

Nation Chiao Tung University

ABSTRACT

RNA H-type pseudoknots are ubiquitous pseudoknots that are known to be found in

almost all classes of RNA sequences and thought to play a functionally important role

in variety of biological processes. Hence, detecting these RNA H-type pseudoknots will

enhance our understanding of RNA structures and their associated functions. However,

the currently existing programs for detecting such RNA H-type pseudoknots are still

time-consuming and sometimes even ineffective. Therefore, efficient and effective tools

for detecting the RNA H-type pseudoknots are needed. In this thesis, we propose

a heuristic approach to develop a novel tool, called HPknotter, for accurately and

efficiently detecting RNA H-type pseudoknots in a given RNA sequence. In addition,

we demonstrate the applicability and effectiveness of our HPknotter by testing it on

several RNA sequences with known H-type pseudoknots.
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Chapter 1

Introduction

RNA pseudoknots are found in almost all classes of naturally occurring RNA sequences

and play very important roles in variety of biological processes, such as RNA replica-

tion, transcription and translation [34, 16]. According to the positions of pseudoknots,

their associated functions are reflected because pseudoknots fold locally in RNAs [20].

For example, 5′-pseudoknots of mRNAs (message RNAs) are tend to be involved in

translation control and 3′-pseudoknots of them control the signals for replication. In

addition, RNA pseudoknots are well-known to be important roles for programmed

−1 and +1 ribosomal frameshift signals in overlapping ORFs (open reading frames)

[3, 14, 18]. Usually, functional RNA pseudoknots are also evolutionally conserved in

rRNAs (ribosomal RNAs), the catalytic core of group I introns and RNase P RNAs by

comparative analysis.

The majority of pseudoknots that have been described to date are of the so-called

H-type (or classical) pseudoknot in which (as illustrated in Figure 1.1) nucleotides

from a hairpin loop pair with a single-stranded region outside of the hairpin to form

a helical stem that is adjacent or almost adjacent to the hairpin stem [23, 24, 34, 25].

For instance, there are 246 different RNA pseudoknots in PseudoBase [39, 38] with 224

of them being H-type. Therefore, the detection of H-type pseudoknots could improve

our understanding of RNA structures and their associated functions. However, com-

putational methods of predicating RNA H-type pseudoknots are still time-consuming

and even ineffective. Hence, efficient and effective tools for detecting the RNA H-type

1



Figure 1.1: An H-type pseudoknot located within the BCV 3′ UTR.

pseudoknots are needed.

In the standard thermodynamic model, a pseudoknot-free RNA secondary structure

of minimum free energy (MFE) can be computed using dynamic programming in O(n3)

time [44, 43, 42, 12]. However, when (general) pseudoknots are allowed in the RNA

secondary structure, the computation becomes intractable since it has been shown to be

an NP-hard problem [17, 2]. Currently, several polynomial-time algorithms have been

proposed to find an MFE secondary structure with a restricted class of pseudoknots

[27, 2, 17, 9]. Rivas and Eddy [27] first proposed the dynamic programming algorithm

that could handle a large class of special pseudoknotted structures. However, the major

limitation of this algorithm is its high running time of O(n6) and space of O(n4), where

n is the length of RNA sequence. With other more restricted classes of pseudoknots,

Lyngsø and Pedersen [17] proposed an algorithm of O(n5) time and O(n3) space,

Akutsu [2] designed an algorithm of O(n4) time and O(n3) space, Dirks and Peirce

[9] described an algorithm of O(n5) time and O(n4) space, and Reeder and Giegerich

[28] gave an algorithm of O(n4) time and O(n2) space. All these algorithms above

are able to be used to predict an MFE secondary structure of an RNA sequence with

h-pseudoknots [6]. However, they are not yet practical for large-scale sequences due

to their high running time and/or space. In addition, our experimental results showed

that these algorithms may not be effective to detect an h-pseudoknot that is actually

present in the native structure of a long RNA sequence. On the other hand, our finding
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showed that when they were applied to the sequence fragment exactly harboring the

h-pseudoknot in a long RNA sequence, they gave a very high probability of successfully

folding this fragment into the h-pseudoknot structure.

Based on these above observations, in this thesis we propose a heuristic approach to

design a novel tool, called HPknotter, by integrating the currently existing programs

for efficiently and accurately detecting the RNA H-type pseudoknots. The key idea

of our approach is as follows. For a given RNA sequence, RNAMotif is first used to

search all the subsequences (called hits) that meet the criteria dictating the structural

motifs. Second, a hit filter is designed to discard those sequences that are not possible

to fold into a stable pseudoknotted structure. Third, PKNOTS/NUPACK/pknotsRG

is used to determine if these hits indeed fold into a stable h-pseudoknot. Fourth, h-

pseudoknot filter is used to filter the hits that do not meet the criteria dictating the

structural motifs. Fifth, based on the concept of maximum weight independent set,

the mutually disjoint h-pseudoknots with minimum total free energy are computed.

Finally, the remaining hits capable of folding into stable h-pseudoknots to serve as the

final output of HPknotter. We will demonstrate the practicability and effectiveness of

HPknotter by testing it on several RNA sequences, most of which have been proven to

contain the H-type pseudoknotted structures in laboratory approaches.

In addition to the above thermodynamic approaches, several other approaches for

predicting RNA secondary structures with (H-type) pseudoknots have been proposed,

such as maximum weighted matching [8, 32, 15], quasi-Monte Carlo searches [1, 10],

genetic algorithms [37, 11, 31], stochastic context free grammar [4, 5], and others

[15, 33, 29]. Particularly, Shapiro and Wu [31] developed a parallel genetic algorithm

for detecting h-pseudoknots on a massively parallel supercomputer MasPar MP-2 with

16,384 processors. Recently, this parallel genetic algorithm has been adapted to MIMD

parallel machines [30], such as SGI ORIGIN 2000 with 64 processors and CRAY T3E

with 512 processors, which seem to be hardly accessible to the ordinary users.

The rest of the thesis is organized as follows. In Chapter 2, we give an introduction

to the RNA H-type pseudoknots as well as a database of collecting a lot of naturally

occurring RNA pseudoknots. In Chapter 3, we describe our heuristic approach and our

3



implemented program, called HPknotter, for efficiently and effectively detecting RNA

H-type pseudoknots. In Chapter 4, we demonstrate the applicability and effectiveness

of our HPknotter by testing it on several RNA sequences with known H-type pseudo-

knots. Finally, we make some conclusion as well as a couple of future works in Chapter

5.
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Chapter 2

Preliminaries

In this chapter, we first introduce the H-type pseudoknots (h-pseudoknots) and their

classifications. Then we introduce PseudoBase [39, 38], a database of maintaining the

naturally occurring RNA pseudoknots. Finally, we introduce the currently existing

programs of predicting RNA pseudoknots, including RNAMotif [19], PKNOTS [27],

NUPACK [9] and pknotsRG [28].

2.1 RNA H-type Pseudoknots

In principle, an H-type pseudoknot (called h-pseudoknot) may contain two stems (re-

gions A and C in Figure 2.1) and three loops (regions B, D and E in Figure 2.1), where

such stems and loops are usually represented in the 5′ → 3′ direction as S1 (Stem 1),

S2 (Stem 2) and L1 (Loop 1), L2 (Loop 2), L3 (Loop 3), respectively. However, L2 is

absent in most of pseudoknots due to the coaxial stacking of stems.

H-type pseudoknots have simple loops in which all nucleotides are unpaired and

complicated loops that contain substructures, such as several stems with their own

internal, hairpin and multi-branch loops. Both simple and complicated loops are re-

ferred to as pseudoknot loops. For simplicity, all the nucleotides in a pseudoknot loop

are counted and the number of them equals to the size of this loop, whether they are un-

paired or not. The pseudoknot stems adopted here are those that are “pseudoknotted”

with other stems. They may be interrupted by some bulge loops (or interior loops).

5



A (S1)

B (L1)

C (S2)

D (L2)

E (L3)

5′ 3′

Figure 2.1: Schematic representation of the H-type pseudoknot.

By convention, the unpaired nucleotides in these loops are, however, not counted for

determining the size of a pseudoknot stem.

For our purpose (introduced later), the h-pseudoknots are classified into four classes

as shown in Table 2.1 based on the sizes of their stems and loops, where the case of

size(S1) = size(S2) and size(L1) = size(L3) is allowed to belong to any of four classes.

2.2 PseudoBase

PseudoBase1 is a pseudoknot database maintained by the Leiden Institute of Chemistry

and the Institute of Theoretical Biology at the Leiden University. Currently, there are

246 different pseudoknots in PseudoBase, with 224 of them being H-type. Among these

224 h-pseudoknots, 123 (respectively, 30, 65 and 6) h-pseudoknots belong to class 1 (re-

spectively, 2, 3 and 4). To further understand the structure elements of h-pseudoknots,

1PseudoBase is at http://wwwbio.leidenuniv.nl/∼Batenburg/PKB.html.

Table 2.1: The conditions of four classes of h-pseudoknots.

Class Condition 1 Condition 2

1 size(S1) ≤ size(S2) size(L1) ≤ size(L3)

2 size(S1) ≤ size(S2) size(L1) ≥ size(L3)

3 size(S1) ≥ size(S2) size(L1) ≤ size(L3)

4 size(S1) ≥ size(S2) size(L1) ≥ size(L3)

6
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Table 2.2: The default values of pseudoknot stem- and loop- sizes of four classes pre-

defined h-pseudoknots descriptors.

Class Stem 1 Stem 2 Loop 1 Loop 2 Loop 3

1 3 ∼ 7 4 ∼ 8 0 ∼ 5 0 ∼ 6 2 ∼ 30

2 3 ∼ 8 3 ∼ 11 1 ∼ 20 0 ∼ 2 0 ∼ 18

3 4 ∼ 15 3 ∼ 10 1 ∼ 11 0 ∼ 34 1 ∼ 20

4 3 ∼ 14 3 ∼ 7 5 ∼ 24 0 ∼ 2 0 ∼ 7

General 3 ∼ 12 3 ∼ 12 0 ∼ 15 0 ∼ 35 0 ∼ 15

we count the frequencies of stem- and loop- sizes of naturally occurring h-pseudoknot

recorded in PseudoBase. The stem- and loop-size distributions of S1, S2, L1, L2 and L3

are shown in Figure 2.2, where 4 (respectively, 1 and 3) pseudoknots with big loop-size

(≥ 100 bp) are omitted in the case of L1 (respectively, L2 and L3).

2.3 RNAMotif

RNAMotif2 is an RNA structural motif searching tool that is able to find the frag-

ments of a given RNA sequence which conform to a predefined descriptor of defining a

particular structural motif [19]. For example, Figure 2.3 presents a descriptor to allow

RNAMotif to identify the sequence fragments that are able to fold themselves into

h-pseudoknot depicted in Figure 2.1. To define the descriptor that fits as closely as

possible to the naturally occurring pseudoknots, we have further counted the frequen-

cies of the occurring stem sizes and loop sizes of all h-pseudoknots in each class that are

maintained in PseudoBase (as shown in Table 2.2). Figure 2.4 shows an example of a

descriptor of class 2 in which an interior loop or bulge loop is allowed in the pseudoknot

stems.

2RNAMotif whose current version is 3.0.4 is at http://www.scripps.edu/mb/case/.
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parms

wc += gu;

chk_both_strs = 0;

descr

h5(tag=’S1’, minlen=3, maxlen=8) # for 5’ side of stem 1

ss(tag=’L1’, minlen=1, maxlen=20) # for loop 1

h5(tag=’S2’, minlen=3, maxlen=11) # for 5’ side of stem 2

ss(tag=’L2’, minlen=0, maxlen=2) # for loop 2

h3(tag=’S1’ ) # for 3’ side of stem 1

ss(tag=’L3’, minlen=0, maxlen=18) # for loop 3

h3(tag=’S2’) # for 3’ side of stem 2

score

{

s1 = length(h5(tag=’S1’)); # for stem 1

s2 = length(h5(tag=’S2’)); # for stem 1

l1 = length(ss(tag=’L1’)); # for loop 1

l2 = length(ss(tag=’L2’)); # for loop 2

l3 = length(ss(tag=’L3’)); # for loop 3

if (s1 > 8) # violate the size of range of stem 1

REJECT;

if (s1 < 3)

REJECT;

if (s2 > 11) # violate the size of range of stem 2

REJECT;

if (s2 < 3)

REJECT;

if (s1 > s2) # violate the rule of class 2

REJECT;

if (l1 < l3)

REJECT;

}

Figure 2.3: An RNAMotif descriptor used to describe the pseudoknotted structure of

class 2 as depicted in Figure 2.1.
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parms

wc += gu;

chk_both_strs = 0;

descr

h5(tag=’S11’, minlen=1 , maxlen=7) # for 5’ side of stem 1

ss(tag=’LL1’, minlen=0, maxlen=1)

h5(tag=’S12’, minlen=1 , maxlen=7)

ss(tag=’L1’, minlen=1, maxlen=20) # for loop 1

h5(tag=’S21’, minlen=1 , maxlen=10) # for 5’ side of stem 2

ss(tag=’LL2’, minlen=0, maxlen=1)

h5(tag=’S22’, minlen=1 , maxlen=10)

ss(tag=’L2’, minlen=0, maxlen=2) # for loop 2

h3(tag=’S12’) # for 3’ side of stem 1

ss(tag=’LL3’, minlen=0, maxlen=1)

h3(tag=’S11’)

ss(tag=’L3’, minlen=1, maxlen=18) # for loop 3

h3(tag=’S22’) # for 3’ side of stem 2

ss(tag=’LL4’, minlen=0, maxlen=1)

h3(tag=’S21’)

score

{

s11 = length(h5(tag=’S11’)); # for stem 1

s12 = length(h5(tag=’S12’));

s21 = length(h5(tag=’S21’)); # for stem 2

s22 = length(h5(tag=’S22’));

l1 = length(ss(tag=’L1’)); # for loop 1

l2 = length(ss(tag=’L2’)); # for loop 2

l3 = length(ss(tag=’L3’)); # for loop 3

if ((s11 + s12) > 8) # violate the size of range of stem 1

REJECT;

if ((s21 + s22) > 3)

REJECT;

if ((s11 + s12) < 11) # violate the size of range of stem 2

REJECT;

if ((s21 + s22) < 3)

REJECT;

if ((s11 + s12) < (s21 + s22)) # violate the rule of class 2

REJECT;

if (l1 > l3)

REJECT;

}

Figure 2.4: An extension of RNAMotif descriptor in Figure 2.3 by allowing an interior

loop of size 2 or a bulge of size 1 to appear in stems 1 and 2.
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2.4 PKNOTS, NUPACK and pknotsRG

PKNOTS3, NUPACK4 and pknotsRG5 are the currently existing and most widely used

programs for the prediction of RNA secondary structures with pseudoknots. They

are implemented based on the Rivas & Eddy [27], Dirks & Peirce [9], and Reeder &

Gieger [28] algorithms, respectively. All these algorithms can be used to predict the

h-pseudoknots of an RNA sequence. However, as mentioned before, they are still not

practical particularly for large-scale RNA sequences, due to their high running time

and/or space. For example, PKNOTS and NUPACK can only deal with the RNA

sequences of length less than or equal to 220 and 180 bp, respectively, on IBM PC

with 3.06 GHz processor and 2 GB RAM under Linux system. Another weakness of

these programs is that they may not be effective for detection of real h-pseudoknots

in a long RNA sequence. It is worth mentioning that expect for pknotsRG, both

PKNOTS and NUPACK can be used to predict more general pseudoknots and the

class of pseudoknots predicted by NUPACK is more restricted than that by PKNOTS.

3PKNOTS 1.04 is available at http://selab.wustl.edu/index.html.
4NUPACK 1.2 is available at http://www.acm.caltech.edu/ niles/software.html.
5pknotsRG 1.2 is available at http://bibiserv.techfak.uni-bielefeld.de/pknotsrg/.
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Chapter 3

Materials and Method

In this chapter, we present our heuristic approach and our implemented program, called

HPknotter, for efficiently and effectively detecting the h-pseudoknots of a given RNA

sequence. Our approach is to integrate four existing programs, such as RNAMotif,

PKNOTS, NUPACK and pknotsRG, as well as our designed and implemented programs

into a pipeline as shown in Figure 3.1. For a given RNA sequence, RNAMotif is first

used to search all the subsequences (called hits) that meet the criteria dictating the

structural motifs. Second, a hit filter is designed to discard those sequences that are

not possible to fold into a stable pseudoknot. Third, PKNOTS/NUPACK/pknotRG

is used to determine if these hits indeed fold into a stable h-pseudoknot. Fourth,

h-pseudoknot filter is designed to filter out the hits that do not meet the criteria

dictating the structural motifs specified in the descriptor. Fifth, based on the concept of

maximum weight independent set, the mutually disjoint h-pseudoknots with minimum

total free energy are computed. Finally, the remaining hits capable of folding into

stable h-pseudoknots are served as the final output of HPknotter.

3.1 Structural Motif Search by RNAMotif

In the first phase, our HPknotter runs RNAMotif on the input RNA sequence with a

user-specified descriptor for a class of h-pseudoknots, which produces a list of sequence

fragments, called hits, that match the user-specified descriptor. See Figure 2.3 for an

12



Input sequence data in FASTA format

Predicted h-pseudoknots

❶ RNAMotif

Options: Options:

• Class 1 descriptor

• Class 2 descriptor

• Class 3 descriptor

• Class 4 descriptor

• General descriptor

• PKNOTS

• NUPACK

• pknotsRG

❷ Hit Filter

❸ Pseudoknot Prediction

❹ h-Pseudoknot Filter

Hit sequences Filtered h-pseudoknots

❺ Min Weight Independent Set

Filtered hits

h-pseudoknot candidates

Figure 3.1: The flow diagram of HPknotter.

example of describing the h-pseudoknot of class 2. As mentioned before, RNAMotif is

an RNA structural motif search tool to find the fragments of a given RNA sequence

that conform to a predefined descriptor of defining a particular structural motif. To

define the descriptor of each class of h-pseudoknots that fits as closely as possible to

the naturally occurring pseudoknots, we further choose the size ranges that cover the

most parts of the stem- and loop-size distributions (as shown in Figure 2.2) to serve as

the default size ranges of the stems and loops in HPknotter (as shown in Table 2.2),

where these default size ranges can be modified by the users to meet their requirements

according to their biological knowledge about the tested data.

3.2 Hit Filter

The hit sequences contained in the output of the first stage then serve as input to

the next phase. Note that at this moment, each hit has the possibility of folding into

the pseudoknotted structure of the H-type as defined in the descriptor of RNAMotif

(herein, the h-pseudoknot of this kind is referred to as an RNAMotif h-pseudoknot

for convenience). However, whether or not this RNAMotif-pseudoknotted structure is

the native structure of the hit, i.e., the stable structure with minimum energy, is still
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unknown. The simplest verification way is to apply the currently existing prediction

program (like PKNOTS/NUPACK/PKNOTSRG) to each hit sequence and examine

whether it indeed folds into a stable h-pseudoknot conforming to the descriptor. How-

ever, such a verification for all hit sequences is impractical. The reason is that even

for a short RNA sequence, a great number of hit sequences are usually produced by

RNAMotif and hence the verification of each hit sequence using PKNOTS or NU-

PACK costs much time, which leads the overall process of verification above to being

badly time-consuming. Therefore, a more efficient verification is needed to improve

the overall performance, especially in speed. From the thermodynamic viewpoint, a

pseudoknotted structure of a hit sequence with very low energy (or the lowest energy)

is more likely to form in the native structure of the hit sequence. For a hit sequence,

on the other hand, if the energy of the pseudoknotted structure with possible stems in

their loops (defined by the descriptor) is much greater than that of its pseudoknot-free

secondary structure with minimum energy, then this hit sequence is unlikely to fold into

a native pseudoknot that conforms to the descriptor. And as a result, this hit sequence

can be discarded directly without any verification. Based on this observation, a hit fil-

ter is designed herein to filter out those hit sequences whose energies calculated based

on their RNAMotif-pseudoknotted structures with possible stems in their loops are

greater than the minimum energies of their pseudoknot-free secondary structures pre-

dicted by the pseudoknot-free secondary structure prediction programs. To make this

comparison, the energies of the above pseudoknotted and pseudoknot-free structures

are recalculated using the energy computation program provided by NUPACK such

that the computed energies are based on the same energy rules and thermodynamic

parameters. Note that when computing the energy of the pseudoknotted structure of

each hit sequence, we also count the possible energy contributed by the interaction

between the hit sequence and the flanking sequences. Currently, the cost of calculat-

ing a secondary structure without pseudoknots is much less than that of predicting a

secondary structure with pseudoknots. For example, PKNOTS and NUPACK both

cost O(n3) time for predicting the pseudoknot-free secondary structures of an RNA

sequence fragment of length n, while they as well as pknotsRG cost O(n6), O(n5) and
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O(n4) time, respectively, for the case with pseudoknots. With aid of the hit filter,

most hits are determined within O(n3) time, instead of O(n5), O(n6) or O(n4). In the

second phase, the HPknotter extracts the hit sequences from the output of the first

stage and passes them to the hit filter to check if they have the possibility of folding

into stable h-pseudoknots. We call as the filtered hits for those hit sequences passing

through the hit filter. According to our experiments (described later in next section),

the hit filter significantly speeds up the overall performance of verification because a

large number of hit sequences have been filtered out.

3.3 Pseudoknot Prediction

In the third phase, the filtered hits are further double-checked by the pseudoknotted

prediction program PKNOTS/NUPACK/pknotsRG to check whether or not they in-

deed fold into the stable pseudoknots. A filtered hit is then called as an h-pseudoknot

candidate if PKNOTS/NUPACK/pknotsRG is able to fold it into a stable pseudoknot.

3.4 h-Pseudoknot Filter

It is worth mentioning that each h-pseudoknot candidate generated in the third phase

may not be of h-pseudoknot, or may be an h-pseudoknot not capable of conforming

to the user-specified descriptor. The reason of the former case is that PKNOTS and

NUPACK can predict a more general class of pseudoknots that causes the former case.

As to the latter case, one reason is that one of its h-pseudoknot stems may contain a long

loop that violates the known biological knowledge. According to the h-pseudoknots

maintained in PseudoBase, most of them contain no loop in their pseudoknot stems.

Only few h-pseudoknots contain one loop in their pseudoknot stems and most of them

contain either an interior loop of size 2 or a bulge of size 1. Another possible reason

is that the candidate is indeed a stable h-pseudoknot, but it belongs to a different

class of h-pseudoknots. Based on these observations, in the fourth phase we further

design an h-pseudoknot filter to filter out those h-pseudoknot candidates that are not
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the desired h-pseudoknots or contain a long loop in their stems. We call as the filtered

h-pseudoknots for those remaining h-pseudoknot candidates passing through the h-

pseudoknot filter.

3.5 Minimum Weight Independent Set

In fact, several filtered h-pseudoknots may overlap among their ranges in the sequence,

which means that they cannot exist in the stable structure of a given RNA sequence

simultaneously. Among the filtered h-pseudoknots, hence, we further find the mutually

disjoint h-pseudoknots whose total free energy is minimum in the fifth phase. Actually,

this problem becomes a well-known combinatorial problem, called as the maximum

weight independent set problem on interval graphs, if the range of each filtered h-

pseudoknot is considered as an interval in the sequence associated with the magnitude

of its free energy as the weight. The maximum weight independent set problem on

interval graphs can be solved in linear time [13]. In HPknotter, we have implemented

this algorithm to compute the mutually disjoint h-pseudoknots with minimum total

free energy among the filtered h-pseudoknots and use them as the final output of

HPknotter.

16



Chapter 4

Results and Discussion

In this chapter, we introduce to our HPknotter web server and describe how to use

it with an example. Besides, we demonstrate the applicability and effectiveness of

our HPknotter by carrying out experiments on several RNA sequences with known

h-pseudoknots.

4.1 HPknotter Web Server

The HPknotter1 was implemented in Java, Perl and PHP. It is available for online

analysis and can be easily accessed via a simple web interface (see Figure 4.1). To run

HPknotter, the users first input their RNA sequence with FASTA format. Second, the

users select one of classes 1, 2, 3 and 4 (see Table 2.1 for their definitions) to which

the h-pseudoknots belong, if they have such a knowledge in advance; otherwise, they

just choose the general class. After the users have picked up the class, the default

size ranges of the structural motifs (such as stems and loops) for the selected class of

h-pseudoknots will be then shown and notably they are able to be further modified

manually. Third, the users need to select “NOT Allowed” (default) if an interior or

bulge loop is allowed in the pseudoknot stems; otherwise, select “Allowed”. Fourth,

the users can choose PKNOTS, NUPACK or pknotsRG as the kernel of our HPknotter

for predicting h-pseudoknots. Finally, the users click the submit button to start the

1HPknotter web server is at http://BioAlgorithm.life.nctu.edu.tw/HPKNOTTER/.
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Figure 4.1: The interface of HPknotter.
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Figure 4.2: An example of a detected h-pseudoknot by HPknotter.

execution of HPknotter.

Figure 4.2 shows an example of a detected h-pseudoknot in which the sequence

location, sequence length, sequence content, base pairings, minimum free energy (MFE)

of the detected h-pseudoknot in the given RNA sequence are listed. We offer two kinds

of the structural presentations, say bucket-view and span-view, for the detected h-

pseudoknot. In the bracket-view way, the base pairings of stems 1 and 2 are indicated

by “ ( ” and “ ) ” and “ [ ” and “ ] ”, respectively, and each unpaired base is indicated by

“ : ”. In the span-view, two stem-halves connected with a horizontal line are considered

as one stem.

4.2 Tested RNA Sequences

We compared our HPknotter program with three well-developed programs PKNOTS,

NUPACK and pknotsRG by carrying out experiments on a number of RNA sequences

with known h-pseudoknots. Unless otherwise specified, all programs were run with

default parameters on IBM PC with 3.06 GHz processor and 2 GB RAM under Linux

system. The tested sequences were taken from the 5S rRNA of Escherichia coli (5S-

rRNA) [7], the RNA sequence inhibiting human immunodeficiency virus type 1 (HIV-

1-RT) reverse transcriptase [36], the 3′ UTR of tobacco mosaic virus (TMV-3′) [40], the

turnip yellow mosaic virus (TYMV-3′) sequence [26], the 5′ UTR of human parechovirus

(HPeV1-5′) [22], the bacteriophage T2 and T4 gene 32 mRNA sequences (T2 and T4)

19



Table 4.1: The sequence and h-pseudoknot information of the tested sequences, where

the accession number of HIV-1-RT is not available and TMV-3′-down contains two

h-pseudoknots with one in class 2 and the other in class 3.

RNA Sequence Accession No. Length (bp) H-Pseudoknots No. Class

5S-rRNA V00336 120 0 -

HIV-1-RT N/A 35 1 1

TMV-3′-up AJ011933 84 3 1

T2 X12460 946 1 1

T4 J02513 1340 1 1

TYMV-3′ X16378 86 1 2

BCV-3′ AF220295 345 1 2

MHV-3′ AF201929 315 1 2

SARS-TW1-3′ AY291451 341 1 2

TMV-3′-down AJ011933 105 2 2, 3

HPeV1-5′ L02971 45 1 3

[21], and the 3′ UTRs of several coronaviruses (BCV-3′, MHV-3′ and SARS-TW1-3′)

including severe acute respiratory syndrome virus (SARS) [41, 35] (see Table 4.1 for the

information of the tested sequences and their h-pseudoknot numbers). All sequences

above, except 5S-rRNA, are known to contain at least one h-pseudoknot as reported

in the literature.

4.3 Experimental Results and Discussions

A summary of the overall sensitivity and specificity for all experiments, which were

run using the general class of the descriptor without an interior or bulge loop in the

pseudoknot stems, is shown in Tables 4.2, in which we let Sbp (Sensitivity) = 100×TP

TP+FN
, Pbp

(Specificity) = 100×TP
TP+FP

and Π=(number of correctly predicted h-pseudoknots)/(number

of predicted h-pseudoknots) (i.e., the fraction of the correctly predicted h-pseudoknots),

where TP = true positive (i.e., the number of the correctly predicted base-pairs in the

predicted h-pseudoknots), FN = false negative (i.e., the number of the base-pairs in
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the published h-pseudoknots that were not predicted) and FP = false positive (i.e., the

number of the incorrectly predicted base-pairs in the predicted h-pseudoknots).

In this set of experiments, PKNOTS and NUPACK were not able to deal with

the cases of T2, T4, BCV-3′, MHV-3′ and SARS-TW1-3′, due to running out of

memory. For the other sequences, PKNOTS and NUPACK exhibited almost the

same prediction results in which the h-pseudoknot of HIV-1-RT was identified, but

the h-pseudoknots of TMV-3′-up, TYMV-3′ and HPeV1-5′ were missed2. (Note that

PKNOTS could predict two real h-pseudoknots of TMV-3′-down, if the version of

PKNOTS was 1.04, instead of 1.01.) Notably, most of the above results were improved

when we conducted all the experiments using pknotsRG. However, the h-pseudoknots

of T4, SARS-TW1-3′ and TMV-3′-down were still missed by pknotsRG. The inabil-

ity of detecting the real h-pseudoknots described above evidences the fact that for

the long RNA sequence, the MFE model might miss the h-pseudoknots that are ac-

tually present in the native structure. In our experiments (as shown in Table 4.2),

however, this situation was significantly improved by our HPknotter because most

of the real h-pseudoknots of TMV-3′-up, T4, TYMV-3′, SARS-TW1-3′ and TMV-3′-

down were detected with high sensitivity and specificity. The key point lies in the

fact that our HPknotter first uses RNAMotif to search for all fragments of the given

RNA sequence that have the possibility of folding an h-pseudoknot and then applies

PKNOTS/NUPACK/pknotsRG to these fragments for determining if their MFE struc-

tures are indeed h-pseudoknots. In this situation, without effect on the nucleotides

outside the fragments, PKNOTS/NUPACK/pknotsRG seems to give a higher proba-

bility of successfully recognizing the pseudoknotted structures of fragments. In our

experiments (as shown in Table 4.2), however, this situation was significantly im-

proved by our HPknotter because most of the real h-pseudoknots of TMV-3′-up and

TYMV-3′ were detected with high sensitivity and specificity. The key point lies in the

fact that our HPknotter first uses RNAmotif to search for all fragments of the given

RNA sequence that have the possibility of folding an h-pseudoknot and then applies

2Actually, PKNOTS and NUPACK both predicted an h-pseudoknot for HPeV1-5′, but with zero

sensitivity and specificity due to incorrect basepairings.
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Table 4.2: Summary of prediction results on several RNA sequences, where all experiments are run using the general class of the

descriptor and the version of PKNOTS is 1.01.

HPknotter

PKNOTS NUPACK pknotsRG PKNOTS-kernel NUPACK-kernel pknotsRG-kernel

Experiment Sbp Pbp Π Sbp Pbp Π Sbp Pbp Π Sbp Pbp Π Sbp Pbp Π Sbp Pbp Π

1. 5S-rRNA – – 0/0 – – 0/1 – – 0/0 – – 0/1 – – 0/1 – – 0/2

2. HIV-1-RT 100 100 1/1 100 100 1/1 100 100 1/1 100 100 1/1 100 100 1/1 100 100 1/1

3. TMV-3′-up 0 0 0/0 0 0 0/0 71.4 62.5 3/3 100 77.8 2/2 100 77.8 3/3 71.4 62.5 3/3

77.8 87.5 0 0 88.9 100 77.8 87.5

88.9 100 66.7 66.7 88.9 100 88.9 100

4. T2 – – –/– – – –/– 100 100 1/1 100 100 1/4 100 100 1/10 100 100 1/16

5. T4 – – –/– – – –/– 0 0 0/1 100 100 1/3 100 100 1/17 100 100 1/17

6. TYMV-3′ 0 0 0/0 0 0 0/1 100 80 1/2 100 80 1/1 62.5 55.6 1/2 100 80 1/2

7. BCV-3′ – – –/– – – –/– 100 100 1/1 100 100 1/1 94.4 100 1/3 100 100 1/3

8. MHV-3′ – – –/– – – –/– 100 100 1/3 100 100 1/3 100 100 1/5 100 100 1/6

9. SARS-TW1-3′ – – –/– – – –/– 0 0 0/0 93.8 100 1/2 93.8 100 1/3 100 100 1/5

10. TMV-3′-down 0 0 0/0 60.9 42.4 1/1 0 0 0/0 100 100 2/2 100 100 2/2 100 100 2/2

91.3 91.3 95.7 100 100 95.7

11. HPeV1-5′ 0 0 1/1 0 0 1/1 54.5 54.5 1/1 100 100 1/1 100 100 1/1 100 100 1/1

It should be noted that PKNOTS of version 1.04 can successfully predict two h-pseudoknots of TMV-3′-down. The reason that HPknotter

with PKNOTS-kernel missed the second h-pseudoknot of TMV-3′-up is that PKNOTS is not able to fold its corresponding sequence

into a pseudoknot.
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PKNOTS/NUPACK/pknotsRG to these fragments for determining if their MFE struc-

tures are indeed h-pseudoknots. In this situation, without effect on the nucleotides out-

side the fragments, PKNOTS/NUPACK/pknotsRG seems to give a higher probability

of successfully recognizing the pseudoknotted structures of fragments. This approach,

of course, inevitably increases the number of incorrectly predicted h-pseudoknots, be-

cause it ignores the global effect of all input nucleotides by considering just the local

fragments of the input RNA sequence. In fact, our experiments showed that the num-

ber of the incorrectly predicted h-pseudoknots was reasonable because among all these

predicted h-pseudoknots, HPknotter at the last stage applies the concept of maximum

weight independent set to compute the mutually disjoint h-pseudoknots with minimum

total free energy.

Generally speaking, as shown in Table 4.2, our HPknotter greatly improves sensitiv-

ity, specificity and the fraction Π of correctly predicted h-pseudoknots when compared

with original PKNOTS, NUPACK and pknotsRG. It should be noted that the num-

bers of incorrectly predicted h-pseudoknots in the cases with PKNOTS-kernel are not

greater than those in the cases with NUPACK-kernel and pknotsRG-kernel, which

seems to imply that PKNOTS itself is more accurate than NUPACK and pknotsRG,

even though PKNOTS is more time-consuming than NUPACK and pknotsRG from

the computational point of view.

It is worth mentioning that as shown in Table 4.3, the overall prediction accuracy

will be further improved if we rerun all tested RNA sequences above, except 5S-rRNA

containing no h-pseudoknot, by choosing the specific class to which the predicted h-

pseudoknots belong, instead of using the general class of descriptor. Particularly, the

Π values (as shown in Table 4.3) and the performance of running time (as shown in

Table 4.4) were greatly improved. These experiments indicate that our HPknotter can

be served as an effective tool for validating if the tested RNA sequences have the same

kind of h-pseudoknots as other closely related RNA sequences whose h-pseudoknots are

already known in advance. For instance, SARS, BCV and MHV are all coronaviruses,

and the h-pseudoknots of BCV-3′ and MHV-3′, both of which belong to class 2 of

h-pseudoknots, are already known and have been proven by previous experiments [41].
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Table 4.3: Summary of prediction results on several RNA sequences, where experiments 1–4, 5–9 and 10–11 are run using the descriptors

of classes 1, 2 and 3, respectively. Notice that TMV-3′-down contains two h-pseudoknots with one in class 2 (that was tested in

experiment 9) and the other in class 3 (that was tested in experiment 10).

HPknotter

PKNOTS NUPACK pknotsRG PKNOTS-kernel NUPACK-kernel pknotsRG-kernel

Experiment Sbp Pbp Π Sbp Pbp Π Sbp Pbp Π Sbp Pbp Π Sbp Pbp Π Sbp Pbp Π

1. HIV-1-RT 100 100 1/1 100 100 1/1 100 100 1/1 100 100 1/1 100 100 1/1 100 100 1/1

2. TMV-3′-up 0 0 0/0 0 0 0/0 71.4 62.5 3/3 100 87.5 2/2 0 0 2/2 0 0 2/2

77.8 87.5 0 0 88.9 100 77.8 87.5

88.9 100 66.7 66.7 88.9 100 88.9 100

3. T2 – – –/– – – –/– 100 100 1/1 100 100 1/3 100 100 1/6 100 100 1/14

4. T4 – – –/– – – –/– 0 0 0/1 100 100 1/3 100 100 1/11 100 100 1/11

5. TYMV-3′ 0 0 0/0 0 0 0/1 100 80 1/2 100 80 1/1 62.5 62.5 1/1 100 80 1/1

6. BCV-3′ – – –/– – – –/– 100 100 1/1 100 100 1/1 94.4 100 1/2 100 100 1/1

7. MHV-3′ – – –/– – – –/– 100 100 1/3 100 100 1/1 100 100 1/3 100 100 1/4

8. SARS-TW1-3′ – – –/– – – –/– 0 0 0/0 93.8 100 1/1 93.8 100 1/3 100 100 1/3

9. TMV-3′-down 0 0 0/0 0 0 0/0 0 0 0/0 100 100 1/1 100 100 1/3 100 100 1/1

10. TMV-3′-down 0 0 0/0 60.9 42.4 1/1 0 0 0/0 91.3 91.3 1/1 95.7 100 1/1 100 95.7 1/1

11. HPeV1-5′ 0 0 1/1 0 0 1/1 54.5 54.5 1/1 100 100 1/1 100 100 1/1 100 100 1/1

The first h-pseudoknot of TMV-3′-up was missed by HPknotter with NUPACK-kernel and pknotsRG-kernel because it was filtered out

due to the incorrect class.
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It is reasonable to expect that SARS-TW1-3′ may contain an h-pseudoknot of class 2.

Therefore, we can apply our HPknotter to SARS-TW1-3′ by specifying the descriptor

to be class 2 so that we are able to quickly obtain the same result as the general

descriptor.

4.4 CPU Time Usage

In fact, our HPknotter is not CPU intensive at all because based on our experiments, a

great number of the hit sequences produced by RNAMotif were filtered out by the hit

filter. Take the experiments with SARS-TW1-3′ in Table 4.2 for an example. In the

first phase, RNAMotif in total found 2,132 hits that conform to the descriptor of general

class. If we directly apply PKNOTS to all of these unfiltered hits to check if they fold

into a stable h-pseudoknot, then the program will require about 51 hours to finish the

job. However, after running the hit filter, only 43 different hit sequences were remained,

which then cost the following PKNOTS only about 5.2 minutes to determine if they

are stable pseudoknots. As a result, the third phase of running pseudoknot prediction

with PKNOTS left us with only 11 pseudoknot candidates that could fold into stable

pseudoknots. Next, only 7 candidates were remained after running the h-pseudoknot

filter in the fourth phase. In fact, some of these filtered h-pseudoknots may have an

overlap among their ranges in the sequence, which suggests that they can not exist

simultaneously in a stable pseudoknotted structure in SARS-TW1-3′. Finally, only 2

h-pseudoknots with minimum free energy were selected in the phase of computing the

maximum weight independent set. Table 4.4 lists the CPU usage time for PKNOTS,

NUPACK, pknotsRG and our HPknotter, where all tests were run on IBM PC with

3.06 GHz processor and 2 GB RAM under Linux system.
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Table 4.4: CPU usage time for PKNOTS, NUPACK, pknotsRG and HPknotter, where in our testing computer environment, PKNOTS

and NUPACK cannot deal with the sequences of length greater than 220 bp and 180 bp, respectively, due to running out of the memory.

HPknotter (General Class) HPknotter (Specific Class)

Length (bp) PKNOTS NUPACK pknotsRG PKNOTS-kernel NUPACK-kernel pknotsRG-kernel PKNOTS-kernel NUPACK-kernel pknotsRG-kernel

84 7.3 min 13.1 sec 0.05 sec 31 sec 27 sec 26 sec 9 sec 7 sec 6 sec

105 35 min 44.7 sec 0.1 sec 2.2 min 35 sec 29 sec 38 sec 10 sec 8 sec

200 72 hr – 0.8 sec 5.2 min 1.8 min 1.5 min 1.6 min 33 sec 30 sec

341 – – 7.4 sec 7.1 min 2.4 min 2.3 min 2.2 min 46 sec 45 sec

946 – – 10.1 min 13.8 min 7.5 min 6.9 min 4.1 min 2.2 min 2.1 min

1340 – – 43.5 min 35.3 min 11.6 min 10.9 min 11.6 min 3.1 min 2.5 min
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Chapter 5

Conclusion and Future Works

In this thesis, we designed a heuristic approach for efficiently and accurately detecting

RNA h-pseudoknots, the ubiquitous pseudoknots in the naturally occurring RNAs.

The currently existing thermodynamic-based programs, like PKNOTS, NUPACK and

pknotsRG, are useful for finding stable h-pseudoknots. However, most of them are very

time- and memory-consuming, which limits them to predict short sequences of a couple

of hundred bases long. Another main weakness of these programs is that they may

not be effective to detect the actually existing h-pseudoknots that are contained in a

long RNA sequence, as evidenced by our experiments. Based on our heuristic approach

mentioned in this thesis, we implemented a novel program, called HPknotter, capable

of efficiently and accurately detecting the h-pseudoknots of a given RNA sequence by

incorporating four existing programs RNAMotif, PKNOTS, NUPACK and pknotsRG.

In summary, we demonstrated the practicability and effectiveness of our developed

HPknotter by testing it on several RNA sequences, most of which have been proven to

contain the h-pseudoknotted structures. By several experiments, our HPknotter has

shown to be practical for the detection of h-pseudoknots in RNA sequences because it

is not computationally expensive and has much better sensitivity and specificity than

PKNOTS, NUPACK and pknotsRG.

In the following, we describe a couple of interesting problems for future researches.

First, how to reduce the number of the sequence fragments hit by RNAMotif by con-

sidering the GC ratio of the pseudoknot stems, the conserved sequence patterns in
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the structural motifs of the h-pseudoknots, etc., or even by designing a new and more

efficient algorithm for identifying the sequence fragments. Second, how to develop a

more efficient program for detecting the h-pseudoknots of RNA sequences so that it

can replace the kernel programs used by our HPknotter, such as PKNOTS, NUPACK

and pknotsRG. Finally, how to extend our heuristic approach to detecting more general

classes of pseudoknots for a given RNA sequence.
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