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中文摘要 

近年來隨著後基因體時代的來臨，生物資料庫中逐漸累積了許多待以分析的

蛋白質序列。於是，如何自動地來分析和註解蛋白質的功能，已經在生物研究上

扮演一個不可或缺的角色。在這當中，蛋白質細胞定位及核糖核酸結合點之相關

研究，對於功能分析、基因體標註和藥物標靶發現是非常重要的。然而，利用傳

統實驗方法來決定蛋白質細胞定位或結構非常昂貴又耗時，因此利用計算方法來

分析和預測蛋白質功能，已經在蛋白質研究上成為一個非常重要的課題。 

在蛋白質細胞定位預測中，我們發展出兩套不同的方法，PSL101和 PSLDoc。

PSL101 是根據細菌轉位路徑來擷取與細胞區室相關的生物特徵，再整合結構同

源方法和支持向量機模型，來預測蛋白質在細胞中座落的位置。PSLDoc 則是先

將蛋白質序列以間隙二肽的方法表示，結合位置加權矩陣的演化資訊後，利用機

率式潛在語意分析模型來找出序列特徵，最後以支持向量機預測序列在細胞中的

位置。我們提出的兩個方法中，在革蘭氏陰性菌的蛋白質細胞定位預測皆達到

93%的整體準確率；對於低同源性的資料集，準確率更是比目前最好的結果提升

7.4%。實驗結果證實，無論從轉位路徑擷取來的生物特徵，或是藉由文件分類技

巧發展出的特徵精簡，皆能顯著地提高預測準確率。此外，我們所提出的生物特

徵和間隙二肽標誌特徵，皆屬於可解釋的生物特徵，這些特徵可提供生物學家在

進一步的研究和實驗設計上做為參考。 

在核糖核酸結合點預測方面，我們提出 RNAProB這方法來預測蛋白質序列上

的核糖核酸結合點。我們針對傳統的位置加權矩陣提出一個新的平滑編碼設計，

並利用支持向量機來預測蛋白質序列上的核糖核酸結合點。我們提出的位置加權

矩陣之平滑編碼設計中，最大的特點在於考慮了蛋白質序列裡，每個氨基酸鄰近

殘基的交互作用和關聯性。實驗結果顯示平滑編碼設計能夠顯著地提高預測準確

率，尤其在敏感性的提升更為顯著。在目前較佳的預測方法中，我們所提出的方

法較其他方法在整體準確率、敏感性、特異性和馬修斯相關係數上，分別提高了

4.90%~6.83%，7.05%~26.90%，0.88%~5.33%和 0.10~0.23。實驗結果支持了我們

所提出的這個假設：平滑編碼設計考慮了鄰近氨基酸之間的關聯性，因此能更準

確地分辨出和核糖核酸有交互作用的殘基和沒有交互作用的殘基之間的歧異性。 

基於我們所提出方法所具有的普遍性，將可以廣泛地延伸應用在其他生物資

訊的研究上。此外，我們方法所預測的蛋白質細胞定位和核糖核酸結合點資訊，

能夠幫助生物學家推論蛋白質功能和發現合適的藥物標靶；因此，我們深信文中

所提出的高通量蛋白質體分析研究，將對科學發現有所貢獻。 
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Abstract 

Automated function annotation is a major goal of post-genomic era with tremendous 
amount of protein sequences in the databases. Prediction of subcellular localization or 
binding sites in proteins is crucial for function analysis, genome annotation, and drug 
discovery. Determination of localization or structure using experimental approaches is 
time-consuming; thus, computational approaches become highly desirable.  

We proposed two protein subcellular localization prediction methods, PSL101 
and PSLDoc. PSL101 combines a structural homology approach and a support vector 
machine model, in which compartment-specific biological features derived from bac-
terial translocation pathways are incorporated. PSLDoc uses a probabilistic latent se-
mantic analysis on gapped-dipeptides of various distances, where evolutionary infor-
mation from position specific scoring matrix (PSSM) is utilized. Our methods achieve 
93% in overall accuracy for Gram-negative bacteria, and compared favorably to the 
state-of-the-art results by 7.4% on a benchmark dataset having low homology to the 
training set. Experiment results demonstrate that both biological features derived from 
translocation pathways and feature reduction by document classification techniques 
can lead to a significant improvement in the prediction performance. Moreover, the 
proposed biological features and gapped-dipeptide signatures are interpretable and 
can be applied in advanced studies and experiment designs.  

For RNA-binding site prediction, we propose another method, RNAProB, which 
incorporates a new smoothed PSSM encoding scheme in a support vector machine 
model. The proposed smoothed PSSM encoding considers correlation and dependen-
cy from neighboring residues for each amino acid in a protein sequence. Experiment 
results show that smoothed PSSM encoding significantly enhances the prediction 
performance, especially for sensitivity. Our method performs better than the 
state-of-the-art systems by 4.90%~6.83%, 7.05%~26.90%, 0.88%~5.33%, and 
0.10~0.23 in terms of overall accuracy, sensitivity, specificity, and Matthew’s correla-
tion coefficient, respectively. This also supports our assumption that smoothed PSSM 
encoding can better resolve the ambiguity in discriminating between interacting and 
non-interacting residues by modeling the dependency from surrounding residues.  

Because of the generality of the proposed methods, they can be extended to other 
research topics in the future. Moreover, the information from predicted localization 
and structure of proteins can be used collectively to assist biologists in both inferring 
protein function and finding suitable drug targets. Therefore, we believe that our work 
can contribute to scientific discoveries on a high-throughput basis. 
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CHAPTER 1  

Computational Approaches for Protein Function 

Analysis 

1.1 Protein subcellular localization prediction 

1.1.1 Introduction 

The prediction of protein subcellular localization (PSL) focuses on determining local-

ization sites of unknown proteins in a cell. The study of PSL is important for eluci-

dating protein functions involved in various cellular processes. Despite recent techni-

cal advances, experimental determination of PSL remains time-consuming and la-

bor-intensive. In addition, researches in the post-genomic era have yielded a tremen-

dous amount of sequence data. Given the size and complexity of the data, many re-

searchers would prefer to use prediction systems to identify and screen possible can-

didates for further analyses. Hence, computational approaches have become increas-

ingly important. 

1.1.2 Previous work 

Extensive studies of PSL prediction have led to the development of several methods, 

which can be classified as follows. 

1. Amino acid composition-based methods These methods utilize machine learn-

ing techniques, including neural networks (Emanuelsson, et al., 2000) and sup-

port vector machines (SVM) (Hoglund, et al., 2006; Hua and Sun, 2001; Park 

and Kanehisa, 2003; Pierleoni, et al., 2006; Wang, et al., 2005; Yu, et al., 2006; 
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Yu, et al., 2004). This category includes methods like P-CLASSIFIER (Wang, et 

al., 2005) and CELLO (Yu, et al., 2006; Yu, et al., 2004), which utilize n-peptide 

composition-based SVM approaches.  

2. Methods that integrate various protein characteristics Several methods includ-

ing expert systems (Bannai, et al., 2002; Nakai and Kanehisa, 1991), k-nearest 

neighbor (Chou and Cai, 2005; Horton, et al., 2006), SVM (Bhasin, et al., 2005; 

Nair and Rost, 2005; Su, et al., 2006), support vector data description (Lee, et al., 

2006), and Bayesian networks (Gardy, et al., 2005; Gardy, et al., 2003; Lu, et al., 

2004; Scott, et al., 2005), integrate various biological features that influence lo-

calization. The features that characterize a protein can be extracted from bio-

logical literature, public databases, and related prediction systems. Both PSORTb 

(Gardy, et al., 2005; Gardy, et al., 2003) and PSLpred (Bhasin, et al., 2005) inte-

grate different analytical modules and demonstrate that the hybrid approaches 

perform better than each individual module.  

3. Sequence homology-based methods It has been suggested that PSL is an evolu-

tionary conserved trait (Gardy and Brinkman, 2006; Nair and Rost, 2002). Ef-

forts to address the relationship between evolutionary information and localiza-

tion identity have relied heavily on exploiting sequence similarity to infer PSL. 

Such methods include phylogenetic profiling (Marcotte, et al., 2000), domain 

projection (Mott, et al., 2002), and a sequence homology-based method (Yu, et 

al., 2006). Several other methods, such as PSORTb and PSLpred, also incorpo-

rate such sequence homology-based components in their analyses. 
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1.1.3 Challenges 

The prediction of PSL presents several challenges. First, the performance of amino 

acid composition-based and sequence homology-based methods might be signifi-

cantly degraded if homologous sequences are not detected. Second, the results of 

these two methods are generally difficult to interpret; therefore, it is difficult to de-

termine which biological features should be used to identify specific PSL and why 

they work well for prediction. If the features were biologically interpretable, the re-

sultant knowledge could help in designing artificial proteins with the desired proper-

ties. Meanwhile, methods that integrate various features could suffer from the prob-

lem of low coverage in high-throughput proteomic analyses due to the lack of infor-

mation to characterize unknown proteins. Finally, many PSL methods are imple-

mented on redundant training sets, which might lead to overestimation of the predic-

tive performance. Thus, the performance would be significantly lower if redundant 

sequences were meticulously removed. 

1.1.4 Our methods – PSL101 and PSLDoc 

In Chapter 2, we propose a hybrid method that combines a one-versus-one (1-v-1) 

SVM model referred to as PSL101 (Protein Subcellular Localization prediction by 

1-On-1 classifiers) and a structural homology approach called PSLsse (Protein Sub-

cellular Localization prediction by secondary structure element alignment) to predict 

the PSL for Gram-negative bacteria. PSL101 comprises a number of binary classifiers, 

where compartment-specific biological features derived from Gram-negative bacteria 

translocation pathways are incorporated. In PSLsse, we employ secondary structure 

alignment for structural similarity comparison and assign the known localization of 

the top-ranked protein as the predicted localization of a query protein. Experiment re-

sults show that PSL101 achieves high prediction accuracy, which demonstrates that 
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biological features derived from Gram-negative bacteria translocation pathways sig-

nificantly enhance the performance. Moreover, since the selected features are bio-

logically interpretable, they can be easily applied to advanced analyses and experi-

mental designs. Most notably, the overall accuracy of combining PSL101 and PSLsse 

is further improved to 93.7%, which is a 2.5% improvement over the second best 

method. Our analysis suggests that, in addition to sequence homology, structural ho-

mology can also be an effective indicator for inferring PSL. Lastly, since sequence 

redundancy in the training data often leads to overestimation of prediction accuracy, 

we present an evaluation using non-redundant data sets. It is also known that 

cross-validation may overestimate the predictive performance when parameters are 

optimized repeatedly on the same test data. Therefore, we adopt a three-way data split 

procedure for evaluating the non-redundant data sets. The results suggest that these 

techniques can prevent overestimation of the performance such that the general per-

formance of PSL prediction should be approximately 85%. In the assessment of the 

evaluation data sets, our hybrid method also provides accurate prediction, especially 

for those sequences of low homology to the training set. 

In addition, PSL prediction can be formulated as a document classification prob-

lem. The document classification problem is to assign an electronic document to one 

or more categories, based on its contents. A protein sequence can be considered as the 

content of a document, and localization sites are considered as categories. To predict 

the localization site(s) of a protein is equivalent to predicting the topic (e.g., sport, 

politics) of a document (e.g., a piece of news). Given a large number of documents, 

document classification is usually tackled by the following three steps. First, docu-

ments have to be transformed into feature vectors in which each distinct term corre-

sponds to a feature. The value of a feature in a vector represents the weight of a term 
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in a document. Another set of documents with known categories are used as training 

set. Second, because of high-dimensional feature spaces, feature reduction is neces-

sary before applying machine learning methods, to improve generalization accuracy 

(Valdes-Perez, et al., 2000) and to avoid overfitting (Namburu, et al., 2005; Val-

des-Perez, et al., 2000). Finally, these reduced feature vectors are used to perform the 

category assignment automatically. The first two steps could be considered as feature 

representation. In Chapter 3, we present another prediction method, PSLDoc (Protein 

Subcellular Localization prediction based on Document classification), which incor-

porates a probabilistic latent semantic analysis (PLSA) with a one-versus-rest (1-v-r) 

SVM model based on document classification techniques. The feature representation 

of PSLDoc includes the following tasks: (1) define the terms of a protein, (2) design a 

term weighting scheme, and (3) apply a feature reduction and extraction method. For 

a benchmark data set of Gram-negative bacteria, PSLDoc also performs better than 

the other approaches. Our method demonstrates that the specific feature representation 

for proteins can be successfully applied to PSL prediction. 

1.2 Prediction of RNA-binding sites in proteins 

1.2.1 Introduction 

RNA-protein interaction plays an important role in various biological processes, such 

as protein synthesis, gene expression, post-transcriptional regulation, and antiviral 

drug discovery. The prediction results of RNA-binding sites in proteins can provide 

biological insights for investigating RNA-protein interaction. For instance, ribosome 

is a protein synthesis complex consisting of ribosomal RNAs (rRNAs) and proteins. 

Sunita et al. (Sunita, et al., 2007) applied predicted RNA-binding sites to study the 

relationship between RNA methyltransferases RsmC and 16S rRNA. In addition, Be-
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chara et al. (Bechara, et al., 2007) incorporated predicted results from a RNA-binding 

site predictor to inspect the connection between fragile X mental retardation protein 

and G-quartet RNA structure. Moreover, some RNA viruses, such as human immu-

nodeficiency virus (HIV) and hepatitis C virus, have a RNA genome and replicate 

themselves by interacting with host proteins (McKnight and Heinz, 2003). Therefore, 

identification of the RNA interacting residues in proteins provides valuable informa-

tion for understanding the mechanisms of protein synthesis, gene regulation, and 

pathogen-host interaction. 

In recent years, rapid advances in genomic and proteomic studies have yielded a 

tremendous amount of DNA and protein sequences. We used the keyword 

“RNA-binding” to search against the National Center for Biotechnology Information 

(NCBI) protein sequence database on June 9, 2008, and obtained 196,686 protein se-

quences. However, when searching against Protein Data Bank (PDB) (Berman, et al., 

2002) for molecular / chain type containing protein and RNA, we only retrieved 684 

structures. In addition, experimental determination of RNA-protein interaction re-

mains time-consuming and labor-intensive. Therefore, computational approaches for 

predicting RNA-binding sites in proteins have become increasingly important to un-

derstand the mechanisms of RNA-protein interaction. 

1.2.2 Previous work 

Extensive studies of RNA-protein binding site prediction have lead to the develop-

ment of several methods, which can be classified as follows. 

1. Amino acid composition-based methods 

Jeong et al. (Jeong, et al., 2004) used an artificial neural network (ANN) to predict 

RNA-protein interacting residues based on amino acid compositions and predicted 
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secondary structure elements. It achieved Matthew’s correlation coefficient (MCC) of 

0.29 and overall accuracy of 77.50% along with specificity of 87.29% and sensitivity 

of 40.30%. Terribilini et al. (Terribilini, et al., 2006) presented RNABindR using a 

Naïve Bayes classifier on amino acid sequences to predict RNA binding sites in pro-

teins. RNABindR attained MCC, overall accuracy, specificity, and sensitivity of 0.35, 

84.80%, 93%, and 38%, respectively.  

2. Evolutionary information-based methods 

Jeong and Miyano (Jeong and Miyano, 2006) applied an ANN to predict the RNA in-

teracting residues based on evolutionary information from the position-specific scor-

ing matrix (PSSM), and achieved MCC, overall accuracy, specificity, and sensitivity 

of 0.39, 80.20%, 91.04%, and 43.40%, respectively. The MCC is further improved to 

0.41 by the incorporation of weighted profiles. Kumar et al. proposed a predictor, 

PPRint (Kumar, et al., 2008), using PSSM profiles in a support vector machine (SVM) 

model, and it achieved MCC, overall accuracy, specificity, and sensitivity of 0.45, 

81.16%, 89.55%, and 53.05%, respectively. 

3. Hybrid methods 

Wang and Brown (Wang and Brown, 2006) developed an SVM-based classifier, 

BindN, using features including relative solvent accessible surface area, hydrophobic-

ity index, side chain pKa value, molecular mass, and BLAST results. The overall ac-

curacy, specificity, and sensitivity of BindN are 74.25%, 75.70%, and 65.78%, re-

spectively. 

1.2.3 Challenges 

Although many methods have been proposed for RNA-binding site prediction, several 

challenges still remain. First, many of previous methods yield low sensitivities in 
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tradeoff for high specificities since some biological applications, such as identification 

of critical residues for site-specific mutagenesis, emphasize more on specificities 

rather than sensitivities (Kumar, et al., 2008; Terribilini, et al., 2006). These methods 

could suffer from low coverage of RNA-binding sites in high-throughput proteomic 

analyses. Second, the MCC values of existing methods remain in the range of 

0.27~0.45, which presents a great room for improvement in the complementary 

measure of prediction performance. Finally, the parameters, such as the size of the 

sliding window, in most methods are selected from testing results evaluated by n-fold 

cross-validation, which may lead to overestimation of the prediction performance. 

Thus, the performance would be much lower if a more rigorous procedure is applied 

for parameter selection and performance evaluation. 

1.2.4 Our method - RNAProB 

In Chapter 4, we propose a method, RNAProB (RNA-Protein Binding site prediction), 

for prediction of RNA-binding residues in proteins using SVM classifiers and a new 

smoothed PSSM encoding scheme. Besides incorporation of upstream and down-

stream residues in a standard PSSM generated by PSI-BLAST, smoothed PSSM en-

coding also considers, for each amino acid in a sequence, the dependency effect from 

its neighboring amino acids. Similar to the spatial domain method used in the research 

field of image processing (Gonzalez and Woods, 2002), smoothed PSSM encoding 

calculates the evolutionary information of a central position based on the sum of those 

from surrounding residues. Experiment results show that the prediction performance 

of smoothed PSSM encoding performs better than the state-of-the-art approaches on 

the benchmark data sets. Evaluated by five-fold cross-validation, RNAProB outper-

forms the other approaches by 0.10~0.23 in MCC, 4.90%~6.83% in overall accuracy, 

and 0.88%~5.33% in specificity. Most notably, our method significantly improves 



9 
 

sensitivity by 26.90%, 26.62%, and 7.05% for the RBP86, RBP109, and RBP107 data 

sets, respectively. To avoid data overfitting, we also incorporate a three-way data split 

procedure to evaluate the prediction performance of RNAProB. Our results show that 

our method not only achieves significant improvement on the performance, but also 

attains a high prediction accuracy evaluated by a three-way data split procedure. 

Moreover, our analysis indicates that smoothed PSSM could serve as a more dis-

criminative feature for distinguishing between interacting and non-interacting residues. 

We believe that the proposed encoding scheme could be applicable to other research 

fields, such as DNA-binding sites, protein-protein interaction, and prediction of 

post-translational modification sites. 
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CHAPTER 2  

Protein Subcellular Localization Prediction Based 

on Compartment-Specific Features Derived from 

Translocation Pathways 

2.1 Methods 

2.1.1 Gram-negative bacteria translocation pathways  

Proteins synthesized in the cytosol must be targeted and transported to their desig-

nated compartments in Gram-negative bacteria through one of the translocation path-

ways (Wickner and Schekman, 2005). Gram-negative bacteria have five major PSL 

sites: the cytoplasm (CP), inner membrane (IM), periplasm (PP), outer membrane 

(OM), and extracellular space (EC). Figure 2.1 shows some of the translocation path-

ways in Gram-negative bacteria. Translocations through the IM are targeted, both 

co-translationally and post-translationally, to the SecYEG translocase via the signal 

recognition particle (SRP)-dependent pathways and the SecB-dependent pathways, 

respectively. Alternatively, proteins localized to the PP can cross the IM by the twin 

arginine translocation pathway. PP proteins can be inserted or translocated across the 

OM through five secretory pathways, including Type I (Holland, et al., 2005) and 

Type II (Pugsley, 1993) export systems. Regardless of the mode of translocation, the 

process is largely substrate specific, and therefore requires one or more signals in or-

der to cross a membrane. For example, non-cytoplasmic proteins contain signal se-

quences that direct them to translocate through the IM. Furthermore, many proteins 
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localized to a compartment have characteristic structures and amino acid composi-

tions. Integral IM proteins contain mainly transmembrane α-helices, in which their 

cores are populated by hydrophobic residues. Therefore, we model the prediction sys-

tem according to the translocation pathways by identifying signals that influence the 

targeting and compartment-specific features that correlate with various localization 

sites. 

 

Figure 2.1: Diversity of Gram-negative bacteria translocation pathways. 1, 2, 3, 4, 5, 
and 6 represent translocation pathways from CP to IM, CP to PP, CP to EC, IM to PP, 
PP to OM, and PP to EC, respectively. SRP, signal recognition particle, SecB, ex-
port-specific cytoplasmic chaperone, SecA, preprotein translocase SecA subunit, Se-
cYEG, preprotein translocase complex, lep, leader peptidase, TAT, twin argine trans-
locase, Gsp complex, general secretion pathway complex, Omp85, outer membrane 
protein assembly factor, ABC transporter, ATP-binding cassette transporter, TolC, 
Type I secretion outer membrane protein. [Modified from Wickner and Schekman 
(2005) with their permission] 

 

 

1 

2 

3 

4 4 

5 

6 

1 



13 
 

2.1.2 System architecture of PSL101 

The system architecture of PSL101, shown in Figure 2.2, comprises ten binary 1-v-1 

SVM (Vapnik, 1995) classifiers for the prediction of five localization sites of 

Gram-negative bacteria. Each translocation step across compartments i and j is repre-

sented by a binary classifier Ci, j in which different biological features intrinsic to the 

proteins in compartments i and j are incorporated. All translocations in Figure 2.1, i.e., 

translocation pathways 1 to 6, can be modeled in this way by using six binary classi-

fiers. The remaining four classifiers, although not biologically occurring, are still con-

structed with compartment-specific features and combined with the above classifiers 

for an integrated prediction. For each query protein, a predicted class and its corre-

sponding probability are returned by each classifier. To determine the predicted local-

ization site of the protein, we combine the results of the ten binary classifiers based on 

majority vote. In the case of a tie, the localization site with the highest average prob-

ability is assigned as the final prediction result.  
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Figure 2.2: System architecture of PSL101. 

2.1.3 Feature extraction and representation of PSL101 

We consider the following biological features to distinguish between proteins trans-

located to different compartments, and construct our classification framework to 

mimic the translocation process of Gram-negative bacterial secretory pathways. Since 

some of these features may not be readily available, we utilize several web services to 

predict them. 
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General biological features 

1. Amino acid (AA) composition: Protein descriptors based on n-peptide composi-

tions or their variations have proved effective in PSL prediction (Yu, et al., 2004). 

If n = 1, then the n-peptide composition reduces to amino acid composition, 

which generates a 21 dimensional feature vector (i.e., 20 amino acid types plus a 

symbol ‘X’, for others) that represents the occurrence frequency of amino acids 

in a protein sequence. 

2. Di-peptide (DP) composition: Similar to (1), if n = 2, the di-peptide composition 

gives a fixed length of 21×21 di-peptides, which represent the occurrence fre-

quency of amino acid pairs in a protein sequence. 

3. Relative solvent accessibility (RSA): Proteins in different compartments have 

various buried and exposed residue compositions (Nair and Rost, 2003; Nair and 

Rost, 2003). For example, CP proteins have a balance of acidic and basic surface 

residues, while EC proteins have a slight excess of acidic surface residues 

(Andrade, et al., 1998). We use amino acid compositions of both buried and ex-

posed residues, with a cutoff of 25% (Cheng, et al., 2005), to represent the re-

sults derived by SABLE II (Adamczak, et al., 2005), a relative solvent accessi-

bility prediction method. 

4. Secondary structure elements encoding scheme 1 (SSE1): Transmembrane 

α-helices are frequently observed in IM proteins, while transmembrane β-barrels 

are primarily found in OM proteins (Pautsch and Schulz, 1998). Secondary 

structure elements (SSE) are crucial for detecting proteins localized in the IM 

and OM. We compute the amino acid compositions of three SSEs (Nair and Rost, 
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2003; Nair and Rost, 2005), α-helix, β-strand, and loop, based on the predictions 

of HYPROSP II (Lin, et al., 2005), a knowledge-based SSE prediction approach. 

5. Secondary structure elements encoding scheme 2 (SSE2): SSE1 alone cannot 

discriminate proteins that share similar SSE compositions and localize in differ-

ent compartments. For example, the SSE compositions of OM proteins might be 

similar to proteins localized in other compartments, but OM proteins are charac-

terized by β-strand repeats throughout the transmembrane domains. To further 

depict such properties in a protein, three descriptors, composition, transition, and 

distribution, are used to encode predictions of HYPROSP II. Composition de-

scribes the global composition of a given SSE type in a protein. Transition char-

acterizes the percentage frequency that amino acids of a particular SSE type are 

followed by a different type. Distribution measures the chain length within which 

the first, 25, 50, 75 and 100% of the amino acids of a particular SSE type are lo-

cated (Dubchak, et al., 1995). An example is shown in Figure 1.1S in Appendix 

1.1. 

Compartment-specific biological features 

1. Signal peptides (SIG): Signal peptides are N-terminal peptides, typically between 

15 and 40 amino acids long, which target proteins for translocation through the 

general secretory pathway (Emanuelsson, et al., 2000). The presence of a signal 

peptide suggests that the protein does not reside in the CP. We employ SignalP 

3.0 (Bendtsen, et al., 2004), a neural network- and hidden Markov model-based 

method, to predict the presence and location of signal peptide cleavage sites.  

2. Transmembrane α-helices (TMA): Integral IM proteins are characterized by 

α-helices, typically 20-25 amino acids in length, which traverse the IM. The 
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presence of one or more transmembrane α-helices implies that the protein is lo-

cated in the IM. We apply TMHMM 2.0 (Krogh, et al., 2001), a hidden Markov 

model-based method, to identify potential transmembrane α-helices. 

3. Twin-arginine translocase (TAT) motifs: The twin-arginine translocase system 

exports proteins from the CP to the PP. The proteins translocated by 

twin-arginine translocase bear a unique twin-arginine motif (Berks, 1996), the 

presence of which is a useful feature for distinguishing between PP and non-PP 

proteins. We use TatP 1.0 (Bendtsen, et al., 2005), a neural network-based 

method, to predict the presence of twin-arginine translocase motifs.  

4. Transmembrane β-barrels (TMB): A large number of proteins residing in the OM 

are characterized by β-barrel structures; thus, they could be candidate features for 

detecting OM proteins. We adopt TMB-Hunt (Garrow, et al., 2005), a method 

that uses a k-nearest neighbor algorithm, to distinguish between transmembrane 

β-barrels and non- transmembrane β-barrels.  

5. Non-classical protein secretion (SEC): For a long time, it was believed that an 

N-terminal signal peptide was absolutely necessary to export a protein to the ex-

tracellular space. However, recent studies have shown that several EC proteins 

can be secreted without a classical N-terminal signal peptide (Nickel, 2003). 

Identification of non-classical protein secretion could be a potential discriminator 

for CP and EC proteins. Predictions from SecretomeP 2.0 (Bendtsen, et al., 

2005), a non-classical protein secretion prediction method, are incorporated in 

our method.  

2.1.4 Sequence and structure conservation 

Because PSL tends to be evolutionary conserved, the known localization sites of ho-

mologous sequences could be useful indicators of the actual localization of an un-
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known protein. We apply both sequence and structural homology approaches to infer 

localization. For the sequence homology approach, we develop a prediction method, 

called PSLseq, which is based on pairwise sequence alignment of ClustalW (Thomp-

son, et al., 1994). In the structural homology approach, we employ secondary struc-

tural similarity comparison, referred to as PSLsse. Based on secondary structure ele-

ments predicted by HYPROSP II, we use SSEA (Fontana, et al., 2005) to perform 

pairwise secondary structure alignment. In the sequence and structural homology ap-

proaches, the known localization of the top-rank aligned protein is assigned to the 

query protein as its predicted localization. 

2.1.5 Data sets 

To assess our method, we utilize several data sets of Gram-negative bacteria proteins 

that have been used in previous works (Bhasin, et al., 2005; Gardy, et al., 2005; Gardy, 

et al., 2003; Wang, et al., 2005; Yu, et al., 2006; Yu, et al., 2004). Table 2.1 lists the 

number of proteins in different localization sites in the data sets, which are detailed in 

Table 1.1S of Appendix 1.2.  

1. Benchmark data sets: Derived from the first release of ePSORTdb (Rey, et al., 

2005), the first data set, referred to as PS1302, consists of proteins with experi-

mentally determined localizations. The second data set, PS1444, is an expanded 

version of PS1302. 

2. Non-redundant data sets: To assess the predictive performance of 

non-homologous proteins, we utilize CD-HIT (Li and Godzik, 2006), a redun-

dancy filtering program, to eliminate sequences that share greater or equal to 

30% sequence identity in the PS1302 and PS1444 data sets, which yields the 

NR755 and NR828 data sets, respectively. 
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Table 2.1: Number of proteins distributed in different localization sites in the data 
sets. 

 

3. Evaluation data sets: Recently, a new data set (Gardy and Brinkman, 2006) com-

prised of 299 proteins was created for comparison of different methods. We first 

apply ClustalW to divide the new set into two subsets according to the sequence 

identity of each protein pair between the 299 proteins and proteins in the known 

training sets (i.e., PS1302 and PS1444) with a cutoff of 30%. Then, redundant 

sequences are removed from each subset by CD-HIT with a 30% threshold; the 

resultant non-redundant data sets are called EV90_high (greater or equal to 30%) 

and EV153_low (less than 30%). The combination of both sets is referred to as 

the EV243_all data set. 

2.1.6 Performance assessment  

For comparison with other approaches, we follow the measures used in previous 

works (Bhasin, et al., 2005; Wang, et al., 2005; Yu, et al., 2006; Yu, et al., 2004). To 

assess the performance in each localization class, the accuracy and Matthew’s correla-

  

Localization 
 Benchmark  Non-redundant  Evaluation 

 PS1302 PS1444  NR755 NR828  EV90_h
igh 

EV153_
low 

EV243_
all 

  
Cytoplasm (CP)  0248 0278  206 229  28 096 124 

Inner membrane (IM)  0268 0309  182 205  26 026 052 

Periplasm (PP)  0244 0276  147 161  13 011 024 

Outer membrane 
(OM)  0352 0391  134 148  19 009 028 

Extracellular space 
(EC)  0190 0190  086 085  04 011 015 

  
Total  1302 1444  755 828  90 153 243 
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tion coefficient (MCC) (Matthews, 1975) are calculated by Equations (1.1) and (1.2), 

respectively. The overall accuracy is defined in Equation (1.3). 

( ) 100%i i iAcc TP N= ×  (1.1) 

( )( ) ( )( )
( )( )( )( )

i i i i
i

i i i i i i i i

TP TN FP FN
MCC

TP FN TP FP TN FP TN FN
−

=
+ + + +  (1.2) 

1 1
100%

l l

i i
i i

Acc TP N
= =

 = × 
 
∑ ∑  (1.3) 

where l = 5 is the total number of localization sites for Gram-negative bacteria, and 

TPi, TNi, FPi, FNi, and Ni are, respectively, the number of true positives, true nega-

tives, false positives, false negatives, and proteins in localization site i. MCC, which 

considers both under- and over-predictions, provides a complementary measure of the 

predictive performance, where MCC = 1 indicates a perfect prediction, MCC = 0 in-

dicates a completely random assignment, and MCC = -1 indicates a perfectly reverse 

correlation.  

2.1.7 Training and testing  

We apply the LIBSVM (Chang and Lin, 2001) software in our experiments. For all 

classifiers, we use the Radial Basis Function kernel, and tune the cost (c) and gamma 

(γ) parameters. The probability estimates in LIBSVM are used to determine the con-

fidence levels of the classifications (Wu, et al., 2004). The performance of PSL101 is 

assessed as follows.  

1. n-fold cross-validation: The data set is randomly partitioned into ten distinct 

non-overlapping sets of proteins (i.e., n = 10), nine of which are used to train the 

predictor. Then, the accuracy of the predictor is evaluated on the remaining set. 
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2. Three-way data split: To prevent data overfitting, a three-way data split proce-

dure (Ritchie, et al., 2003) is used to assess the performance of PSL101. The data 

set is randomly divided into three disjoint sets, i.e., a training set for classifier 

learning, a validation set for feature selection and parameter tuning, and a test set 

for performance evaluation. Here, we divide the data set into ten distinct sets: 

eight for training, one for validation, and one for testing. 
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2.2 Results and discussion 

2.2.1 Effect of biological features derived from Gram-negative bac-

teria translocation pathways 

Since it is impractical to try all possible feature combinations in different classifiers, 

heuristics guided by biological insights are used to determine a small subset of feature 

sets specific to each classifier. Starting with an empty subset, a sequential forward 

search algorithm (Tsai, et al., 2006) keeps adding the best feature sets that improve 

the accuracy. The process terminates when adding a feature set no longer makes any 

improvement. The performance of PSL101 evaluated by ten-fold cross-validation for 

the benchmark data sets is shown in the leftmost column of Table 2.2. PSL101 attains 

overall accuracy of 92.7% and 91.6% for the PS1302 and PS1444 data sets, respec-

tively. Most notably, CP and IM proteins attain accurate prediction performance in 

terms of both accuracy and MCC, which can be explained by the fact that proteins lo-

calized in CP and IM are characterized by several well-known biological features in 

our method. 
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Figure 2.3: Feature combinations derived from the PS1302 data set using 
cross-validation. Selected general and compartment-specific features are represented 
by filled circles and triangles, respectively. 

The features selected from PSL101 for the PS1302 data set using 

cross-validation are shown in Figure 2.3; the same set of features is used in the corre-

sponding training and testing scheme for the PS1444 data set. The experiment results 

demonstrate that our feature selection not only yields a significant improvement in the 

performance, but also correlates well with biological insights. For example, in Figure 

2.3, PSL101 selects signal peptides, transmembrane α-helices, and relevant solvent 

accessibility (i.e. SIG, TMA, and RSA) as the optimal features to distinguish CP and 

IM proteins. In addition, di-peptide composition, signal peptides, and transmembrane 

β-barrels (i.e. DP, SIG, and TMB) are used in the discrimination of CP and OM pro-

teins. The combination of general and compartment-specific features works well in 

differentiating between any two compartments in each classifier; accordingly, the 

overall accuracy of the combined predictions of each classifier is improved. The re 
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Figure 2.4: The distribution of the prediction accuracy as a function of secondary 
structure similarity. The blue line and the red line indicate the distribution of the pre-
diction accuracy as a function of secondary structure similarity for PSL101 and 
PSLsse using cross-validation for the PS1444 data set, respectively. 

sults support our assumption that compartment-specific biological features derived 

from Gram-negative bacteria translocation pathways can significantly enhance the 

performance of PSL prediction. Moreover, the selected features are biologically inter-

pretable and can be easily applied in further analyses. 

2.2.2 Effect of sequence and structure conservation  

We now explore the relationship between sequence and structural similarity and lo-

calization identity. Both sequence and structural homology approaches, referred to as 

PSLseq and PSLsse, are developed to infer localization based on sequence alignment 

using ClustalW and secondary structure alignment using SSEA, respectively. Figure 

2.4 shows that when the structural similarity is greater or equal to 80%, PSLsse per-

forms slightly better than PSL101; otherwise, PSL101 is significantly better. Thus, we 
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propose a hybrid approach that combines PSLsse and PSL101, called 

PSLsse+PSL101. For each query protein, if the top-rank aligned protein shares an 

80% or greater structural similarity with any of the proteins in the training set, the lo-

calization is predicted by PSLsse; otherwise, it is predicted by PSL101. In addition, 

we implement another hybrid approach, called PSLseq+PSL101, which uses a cutoff 

of 30% sequence identity [7] to combine PSLseq and PSL101. 

Table 2.2 compares the performance of different hybrid approaches using 

ten-fold cross-validation for the benchmark data sets. Compared with PSL101, the 

performance of the two hybrid approaches, PSLseq+PSL101 and PSLsse+PSL101, is 

significantly enhanced in terms of the overall accuracy, as well as the accuracy and 

MCC of most localization sites. Most notably, the accuracy of EC proteins in both 

data sets is improved by 1.6%~5.3%, which suggests that homology-based approaches 

can compensate for the performance of PSL101 and thereby enhance the prediction of 

EC proteins. Moreover, PSLsse+PSL101 achieves an overall accuracy of 93.7% and 

93.2% in the PS1302 and PS1444 data sets, respectively, which are 0.6%~0.8% im-

provements over PSLseq+PSL101. We show that homology approaches based on se-

quence and structure conservation work well in PSL prediction; in fact, structural 

homology could be effective for prediction in addition to sequence homology. Thus, it 

could also be a useful indicator for inferring PSL. 
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Table 2.2: Comparison of different hybrid approaches using cross-validation for the benchmark data sets.  
 
  

Localization 
 PS1302 
 PSL101  PSLseq+PSL101  PSLsse+PSL101 
 Acc (%) MCC  Acc (%) MCC  Acc (%) MCC 

  CP  97.2 (94.8) 0.91 (0.89)  96.4 (94.4) 0.90 (0.89)  95.6 (94.4) 0.90 (0.90) 
IM  94.4 (92.9) 0.95 (0.94)  93.3 (91.8) 0.95 (0.93)  93.3 (91.8) 0.94 (0.93) 
PP  87.7 (88.1) 0.86 (0.84)  88.9 (88.9) 0.86 (0.85)  91.4 (91.0) 0.88 (0.88) 
OM  94.3 (93.8) 0.94 (0.91)  95.5 (95.7) 0.96 (0.93)  96.3 (96.9) 0.96 (0.95) 
EC  87.9 (83.2) 0.87 (0.84)  89.5 (85.8) 0.89 (0.87)  90.0 (87.9) 0.89 (0.89) 
  Overall  92.7 (91.2) -  93.1 (91.9) -  93.7 (92.9) - 
  

Localization 
 PS1444 
 PSL101  PSLseq+PSL101  PSLsse+PSL101 
 Acc (%) MCC  Acc (%) MCC  Acc (%) MCC 

  CP  96.0 (94.2) 0.91 (0.90)  94.6 (92.8) 0.89 (0.88)  95.0 (93.5) 0.91 (0.90) 
IM  94.5 (92.6) 0.95 (0.94)  93.5 (91.6) 0.94 (0.93)  93.5 (91.6) 0.94 (0.93) 
PP  85.1 (88.0) 0.82 (0.83)  87.0 (88.4) 0.84 (0.83)  90.2 (91.7) 0.86 (0.87) 
OM  94.9 (93.9) 0.93 (0.91)  95.9 (95.7) 0.95 (0.93)  96.7 (96.4) 0.96 (0.95) 
EC  82.6 (83.2) 0.83 (0.85)  87.9 (86.3) 0.87 (0.88)  87.4 (87.9) 0.87 (0.89) 
  Overall  91.6 (91.1) -  92.4 (91.6) -  93.2 (92.8) - 
  § The performance of incorporating a three-way data split procedure is indicated in the parentheses. 
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Table 2.3: Performance comparison of different approaches using cross-validation for the benchmark data sets.  
 
  

Localization 

PS1302 

 HYBRID  CELLO  PSORTb v.1.1  PSLpred  P-CLASSIFIER 

 Acc (%) MCC  Acc (%) MCC  Acc (%) MCC  Acc (%) MCC  Acc (%) MCC 
  CP  95.6 0.90  90.7 0.85  69.4 0.79  90.7 0.86  94.6 0.85 

IM  93.3 0.94  88.4 0.92  78.7 0.85  86.8 0.88  87.1 0.92 
PP  91.4 0.88  86.9 0.80  57.6 0.69  90.3 0.90  85.9 0.81 
OM  96.3 0.96  94.6 0.90  90.3 0.93  95.2 0.95  93.6 0.90 
EC  90.0 0.89  78.9 0.82  70.0 0.79  90.6 0.84  86.0 0.89 

  Overall  93.7 -  88.9 -  74.8 -  91.2 -  89.8 - 
  

Localization 

PS1444 

 HYBRID  CELLO II  PSORTb v.2.0  PSLpred  P-CLASSIFIER 

 Acc (%) MCC  Acc (%) MCC  Acc (%) MCC  Acc (%) MCC  Acc (%) MCC 
  CP  95.0 0.91  95.3 0.89  70.1 0.77  - -  - - 

IM  93.5 0.94  90.0 0.91  92.6 0.92  - -  - - 
PP  90.2 0.86  87.7 0.82  69.2 0.78  - -  - - 
OM  96.7 0.96  92.8 0.90  94.9 0.95  - -  - - 
EC  87.4 0.87  79.5 0.82  78.9 0.86  - -  - - 

  Overall  93.2 -  90.0 -  82.6 -  - -  - - 
  § The best performance of overall and individual localization sites is underlined. 
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2.2.3 Performance comparison of n-fold cross validation and 

three-way data split  

The performance of the three-way data split experiments is shown in parentheses in 

Table 2.2. The features selected from PSL101 for the PS1302 data set using three-way 

data split are shown in Figure 1.2S in Appendix 1.3; the same set of features is used in 

the corresponding training and testing scheme for the PS1444 data set. The overall 

accuracy of PSL101, PSLseq+PSL101, and PSLsse+PSL101 drop 0.4%~1.5% for 

both the PS1302 and PS1444 data sets. Specifically, the accuracy and MCC of the 

same localization sites are consistent across the two different data sets. Moreover, the 

performance of the two data sets evaluated using a three-way data split is more con-

sistent than that assessed by ten-fold cross-validation. This suggests that a three-way 

data split procedure could avoid overestimation of the predictive performance; there-

fore, it should be considered in PSL prediction. 

2.2.4 Comparison with other approaches using the benchmark data 

sets  

Table 2.3 compares the performance of PSLsse+PSL101, referred to as HYBRID, 

with other prediction methods using cross-validation on the benchmark data sets. 

HYBRID attains the best overall accuracy of 93.7% and 93.2% for the PS1302 and 

PS1444 data sets, respectively. In both sets, HYBRID achieves improvements of 

2.5%~3.2% in overall accuracy compared to the second best approaches in each data 

set. With respect to accuracy and MCC, HYBRID performs better than the other ap-

proaches in most localization sites. HYBRID ranks the best in terms of accuracy for 

CP, IM, and OM proteins, in which more biological features are incorporated than the 
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other localization sites. The high predictive performance for CP, IM, and OM proteins 

demonstrates that biological features derived from Gram-negative bacteria transloca-

tion pathways are effective for PSL prediction. Most notably, it outperforms the sec-

ond best approaches for IM proteins by 4.9~14.6% and 0.9~3.5% in terms of accuracy 

for the PS1302 and PS1444 data sets, respectively. This is a particular strength of 

HYBRID because IM proteins constitute the key components of various cellular 

processes and serve as important targets for drug discovery [30]. In addition, it is in-

teresting to note that the accuracy of IM proteins is significantly improved from 

78.7% in PSORTb v.1.1 to 92.6% in PSORTb v.2.0, in which an expanded homology 

module is incorporated. This also lends support on our assumption that sequence and 

structural homology approaches could be effective indicators for inferring PSL.  

2.2.5 Comparison with other approaches using the evaluation data 

sets  

The evaluation data sets were submitted to the web servers of each prediction method. 

The predictive performance is shown in Table 2.4. CELLO II and P-CLASSIFIER 

achieve consistent overall accuracy in the range of 71.9%~77.8% for the EV90_high 

and EV153_low data sets. PSLpred attains overall accuracy of 72.5% and 88.9% for 

the EV153_low and EV90_high sets, respectively. PSORTb v.2.0 performs very well 

for the EV90_high set, but poorly for the EV153_low set. HYBRID yields the best 

predictions for lowly homologous sequences and ranks second best for highly ho-

mologous sequences. This demonstrates that when no homologous sequences are de-

tected, biological features derived from Gram-negative bacteria translocation path-

ways yields accurate prediction; on the other hand, the incorporation of structural 

homology approach further improves the predictive performance for highly homolo-
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gous sequences. When both data sets are evaluated on the EV243_all set, HYBRID 

achieves an overall accuracy of 84.0%, which is a 5.4% improvement over the second 

best method. This suggests that HYBRID could enhance the robustness of PSL pre-

diction, especially when highly homologous sequences are not detected.  

2.2.6 Performance of non-redundant data sets  

In both benchmark data sets, proteins sharing up to 30% sequence identity comprise 

approximately 42% of the sets. One drawback of a high level of redundancy in data 

sets is that it could lead to poor generalization for a predictor, since the predictor 

might fail to assign a correct PSL, especially when low homology is detected. For this 

reason, the construction of non-redundant data sets is necessary when evaluating the 

performance of PSL prediction. 

Here, we present performance assessments using non-redundant sequences from 

Gram-negative bacteria data sets. Using the same features derived from the PS1302 

set by cross-validation, we use HYBRID to train and evaluate the two non-redundant 

sets via ten-fold cross-validation. The performance is shown in Table 2.5. The overall 

accuracy declines markedly by approximately 8% using the non-redundant sets com-

pared with those using the redundant sets. The MCC for individual localization sites 

also drops by 0.04~0.26. These results indicate that the general performance of PSL 

prediction for Gram-negative bacteria is approximately 85% for non-redundant data 

sets. Methods that are less dependent on homology detection should be developed if 

highly homologous sequences are removed completely. 
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Table 2.4: Predictive performance of different prediction methods for the evaluation data sets.  

§ The best performance of overall and individual localization sites is underlined. HYBRID is trained on the PS1444 data set.

  
Localization 

EV153_low 
 HYBRID  CELLO II  PSORTb v.2.0  PSLpred  P-CLASSIFIER 
 Acc (%) MCC  Acc (%) MCC  Acc (%) MCC  Acc (%) MCC  Acc (%) MCC 

  CP  91.7 0.67  91.7 0.70  63.5 -0.61  89.6 0.59  91.7 0.66 
IM  65.4 0.73  46.2 0.64  46.2 -0.58  38.5 0.41  30.8 0.48 
PP  45.5 0.25  81.8 0.49  00.0 -0.03  54.5 0.34  81.8 0.49 
OM  44.4 0.58  33.3 0.34  22.2 -0.46  44.4 0.58  22.2 0.17 
EC  27.3 0.43  45.5 0.50  09.1 -0.29  45.5 0.54  27.3 0.33 
  Overall  76.5 -  76.5 -  49.7 -  72.5 -  71.9 - 
  

Localization 
EV90_high 

 HYBRID  CELLO II  PSORTb v.2.0  PSLpred  P-CLASSIFIER 
 Acc (%) MCC  Acc (%) MCC  Acc (%) MCC  Acc (%) MCC  Acc (%) MCC 

  CP  100.0 0.95  92.9 0.83  100.0 1.00  096.4 0.88  92.9 0.78 
IM  096.2 0.97  73.1 0.75  100.0 1.00  092.3 0.92  80.8 0.84 
PP  100.0 0.96  61.5 0.58  100.0 1.00  092.3 0.83  46.2 0.46 
OM  094.7 0.97  73.7 0.67  094.7 0.97  068.4 0.79  73.7 0.69 
EC  075.0 0.86  75.0 0.54  100.0 1.00  100.0 0.81  75.0 0.54 
      Overall  096.7 -  77.8 -  098.9 -  088.9 -  77.8 - 
  

Localization 
EV243_all 

 HYBRID  CELLO II  PSORTb v.2.0  PSLpred  P-CLASSIFIER 
 Acc (%) MCC  Acc (%) MCC  Acc (%) MCC  Acc (%) MCC  Acc (%) MCC 

  CP  93.5 0.80  91.9 0.77  71.8 0.73  91.1 0.72  91.9 0.73 
IM  80.8 0.85  59.6 0.70  73.1 0.80  65.4 0.68  55.8 0.67 
PP  75.0 0.56  70.8 0.51  54.2 0.66  75.0 0.57  62.5 0.45 
OM  78.6 0.85  60.7 0.58  71.4 0.83  60.7 0.73  57.1 0.53 
EC  40.0 0.57  53.3 0.50  33.3 0.57  60.0 0.62  40.0 0.39 
      Overall  84.0 -  77.0 -  67.9 -  78.6 -  74.1 - 
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Table 2.5: Performance of non-redundant data sets.  

  

Localization 
 NR755  NR828 

 Acc (%) MCC  Acc (%) MCC 

CP  95.6 0.86  97.8 0.87 

IM  88.5 0.88  88.8 0.90 

PP  81.0 0.76  80.7 0.76 

OM  85.1 0.84  83.8 0.82 

EC  64.0 0.65  57.6 0.61 
  Overall  85.6 -  85.6 - 
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2.3 Conclusion 

In this chapter, we have proposed a hybrid method for predicting PSL for 

Gram-negative bacteria based on a combination of a 1-v-1 SVM model using com-

partment-specific biological features and a structural homology approach using sec-

ondary structure alignment. Experiment results show that the SVM model achieves 

high prediction accuracy for both benchmark data sets, thus supporting the assump-

tion that biological features derived from Gram-negative bacteria translocation path-

ways could significantly improve the performance. The overall accuracy of combining 

the SVM model and the structural homology approach is further improved, which in-

dicates that structural homology, like sequence homology, could also be a useful in-

dicator for inferring PSL. A three-way data split procedure is incorporated to prevent 

overfitting of the parameters and features. In addition, non-redundant data sets have 

been used for the evaluation of Gram-negative bacteria. The results suggest that the 

performance could be overestimated if redundant sequences are considered. In the as-

sessment of the evaluation data sets, our hybrid method provides accurate predictions, 

especially when sequences of low sequence similarity to the training data are detected. 

The proposed method can be used in large-scale analyses of proteomes and is freely 

available for public use at [32].  

There are still some challenges to be addressed in PSL prediction. In our work, 

we only consider proteins with single localization sites. However, proteins with mul-

tiple localization sites are not a rarity, especially in higher order species [33,34]. In 

our future development, we will consider those proteins localized to multiple com-

partments. In addition, better accuracy and coverage are needed, particularly for sev-

eral poorly predicted localization sites. We will also extend our method to combine 
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more biological features, analyze multiple compartment proteins, and incorporate 

proteins of more species, including those of humans. 

 

 



35 
 

 

CHAPTER 3  

Protein Subcellular Localization Prediction Based 

on Gapped-dipeptide Signatures and Probabilistic 

Latent Semantic Analysis 

3.1 Methods 

3.1.1 A baseline system using TFIDF  
Before describing our PSL prediction method based on document classification, we 

introduce a baseline system for performance comparison that uses a traditional docu-

ment classification method. Salton’s vector space model (VSM) is one of the most 

widely used methods for ad-hoc retrieval (Manning and Schütze, 1999) in document 

classification. Each document is represented by a feature vector (vector, in short) 

composed of all terms in a collection of documents, where each entry (or feature) of 

the vector corresponds to a term and its value is given by the weight of the term in the 

document(Salton, et al., 1975). The similarity between two documents d and q, de-

noted by sim(d,q), can be defined as the cosine of the angle between their vectors, 

called cosine similarity, as shown below: 

( )
qd

qd
qdqdsim 


 ,
),(cos),( =∠=                      (3.1) 

where d


 denotes the vector for a document d. Given a collection of documents with 

known categories, we classify a document with unknown category (called query 

document) into the same category as the document whose cosine similarity with the 
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query document is the largest. We refer to this prediction method as the 1-nearest 

neighboring (1-NN) method based on cosine similarity. The advantage of the 1-NN 

method is that there is no training required as in normal machine learning approach. 

Weighting scheme, i.e., determining the weight of each entry in a vector, is cru-

cial in document classification. In this baseline system, we use term fre-

quency–inverse document frequency (TFIDF) as the weighting scheme. For a term ti 

in a document d, a simple term frequency (TF) is the number of occurrences of ti in 

the document, denoted as ni. However, to prevent a bias towards longer documents, 

term frequency tf(ti,d) is usually normalized as follows:  

,),(
∑

=

k
k

i
i n

ndttf                            (3.2) 

where the denominator is the number of occurrences of all terms. The term frequency 

tf(ti,d) gives a measure of the importance of the term ti in the document d. The higher 

the term frequency, the more likely the term is a good description of the content of the 

document. In contrast, inverse document frequency (IDF) of ti is a measure of the 

general importance of the term. A semantically important term will often occur sev-

eral times in a document if it occurs at all. However, semantically unimportant terms 

are spread out homogeneously over all documents. A frequently used IDF for ti, idf(ti) 

(Salton and Buckley, 1988), is defined as follows: 

 ,
)(

log)(
ii

i td
D

tidf
⊃

=                        (3.3) 

where |D| is the number of documents in the collection, and )( ii td ⊃  denotes the 

number of documents in which ti appears. In the TFIDF scheme, the weight of the 
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term ti in a document d, W(ti, d)1

3.1.2 Gapped-dipeptides as the terms of proteins 

, equals to tf(ti, d) multiplied by idf(ti) (Salton and 

Buckley, 1988). The values in a vector are normalized to (0~1] by dividing the 

maximum value in the vector. 

PSLDoc uses gapped-dipeptide (Liang, et al., 2005) as the terms of a protein and cal-

culates their weights according to position specific score matrix (PSSM) instead of the 

TFIDF used in the baseline system. PLSA is used for feature reduction to improve 

learning efficiency and accuracy. The reduced feature vectors are input to five 1-v-r 

SVM classifiers corresponding to five localization sites. The probability estimated by 

a classifier can be considered as the confidence level of a target protein belonging to 

the corresponding localization site. The final prediction is determined to be the local-

ization site whose corresponding classifier outputs the largest confidence score. 

When considering proteins as documents, many different types of terms have 

been proposed, including single amino acid (AA) (Cedano, et al., 1997; Chou and 

Elrod, 1999; Garg, et al., 2005; Hua and Sun, 2001; Nair and Rost, 2003; Park and 

Kanehisa, 2003; Reinhardt and Hubbard, 1998) as a uni-gram descriptor, and the gen-

eral n-peptide (Yu, et al., 2004), i.e., peptides of length n without gaps. In particular, 

for n = 2, dipeptide (Dip) is a neighboring bi-gram descriptor. However, AA and Dip, 

are not able to represent information between two gapped peptides. The use of 

n-peptide to capture long distance amino acid information will result in a 

high-dimensional vector space. For example, the feature number of a vector is 

3,200,000 (= 205), when n equals 5. Liang et al. (Liang, et al., 2005) proposed a 

method based on amino acid-coupling patterns to extract the information from a pro-

tein sequence, which works well on distinguishing thermophilic proteins. An amino 

                                                 
1 In this paper, we consider the weights of the terms in a document and the vector to be the same. 

Which is denoted by W(ti, d) or W(ti, d


) depending on the context. 
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acid-coupling pattern XdZ denotes the peptides of length d + 2 such that amino acids 

X and Z are separated by d amino acids, where d can be negative depending on 

whether the position of X closer to N-terminus or C-terminus.  

We adopt the same encoding scheme as in Liang et al. with non-negative d as the 

term of a protein sequence regardless of whether the pattern appear near the 

N-terminus or C-terminus. We call such amino acid-coupling pattern as gapped 

dipeptide. For example, the gapped dipeptides for d=0 are dipeptide without gaps 

(Dip’s). Given a positive integer l as the upper bound of gapped distance, each protein 

sequence is represented by a vector in the space of gapped dipeptides with each fea-

ture given by XdZ for 0≦d≦l. The length of vectors is the number of all possible 

combinations of gapped dipeptide, i.e., (l+1)x20x20. For example, given l = 10, a 

protein is represented as a feature vector of 4,400 (= 11x20x20) features.  

3.1.3 Term weighting - position specific score matrix information 

Motivation 

On the basis of the finding in a previous work that sequence identity and subcellular 

localizations of proteins have a strong correlation (Yu, et al., 2006), Yu et al. (Yu, et 

al., 2006) proposed a homology search method for PSL prediction, which predicted 

the localization of a query protein by the most similar protein among the aligned pro-

tein sequences with known localizations generated by the global alignment program 

ALIGN (Myers and Miller, 1988). The authors observed that, when the query protein 

and its most similar protein with known localization have sequence identity over 30%, 

the homology search method performed very well with 97.7% accuracy. But the pre-

diction performance dropped significantly when the sequence identity is under 20%. 

In this case, it would be difficult to predict the localization of a query protein based on 

the sequence identity or sequence information. To overcome this difficulty, we bor-
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row the idea from protein secondary structure prediction, in which homologous se-

quences are usually removed from the testing and training data set (Cuff and Barton, 

1999; Hua and Sun, 2001; Jones, 1999; Lin, et al., 2005; Rost and Sander, 1993; Wu, 

et al., 2004).  

Most of the prediction methods address the problem of weak homology by util-

izing sequence evolutionary information. One widely used representation of evolu-

tionary information if the PSSM generated by PSI-BLAST (Altschul, et al., 

1997),which has been used in PSIPRED (McGuffin, et al., 2000), a very popular sec-

ondary structure prediction method. PSI-BLAST finds remote homologues to a query 

protein from a chosen sequence database (e.g. NCBI nr database(Wheeler, et al., 2007) 

nr(Wheeler, et al., 2007)). Instead of TFIDF based on the sequence information, our 

weighting scheme is based on PSSM. 

Position specific score matrix 

The PSSM of a sequence S of length n is represented by an n × 20 matrix, in which 

the n rows correspond to the amino acid sequence of S and the columns correspond to 

the 20 distinct amino acids. Each row of a PSSM represents the log-likelihood of the 

residue substitutions at the corresponding positions in S (Altschul, et al., 1997).The 

PSSM elements are scaled to the required 0~1 range using the following logistic func-

tion (Jones, 1999): 

,
1

1)( xe
xf −+
=                             (3.4) 

where x is the original PSSM value. The higher the scaled value of the residue is, the 

higher the propensity of the residue is in this position. In PSLDoc, the PSI-BLAST’s 
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parameters were set to j = 5 (five iterations), e = 10-2 (E-value <0.01) and the se-

quence database is NCBI nr (which contains 3,747,820 sequences). 

TFPSSM weighting scheme 

We design a term weighting scheme based on PSSM, denoted by TFPSSM as follows. 

Given a protein sequence S of length n, any gapped dipeptide XdZ of S has PSSM en-

tries corresponding to gapped dipeptide S(i)dS(i+d+1) for 1 ≦ i ≦ n-(d+1), where 

S(i) denotes the ith amino acid of S. Take the sequence MPLDLYNTLT as an exam-

ple. Its PSSM (with original value without normalization) is shown in Figure 3.1. 

From the sequence information, M2D only occurs once. However, in view of PSSM, 

M2D may occur in the corresponding gapped dipeptides obtained from the sequence, 

i.e., M2D, P2L, L2Y, D2N, L2T, Y2L, N2T. We define the weight of XdZ in S as 

∑
+−≤≤

++×=
)1(1

),1(),(),(
dni

ZdifXifSXdZW              (3.5) 

where f(i,Y) denotes the normalized value of the PSSM entry at the ith row and the 

column corresponding to amino acid Y. In the above example, the weight of M2D 

based on PSSM is given by f(1,M) × f(4,D) + f(2,M) × f(5,D)+…+f(7,M) × f(10,D) 

= 0.99995 × 0.04743 + 0.11920 × 0.00247 +…+ 0.00669 × 0.26894. It is unnec-

essary to incorporate IDF based on PSSM because the term occurs in all documents 

based on PSSM. 

As mentioned before, each protein is represented by a vector, and each entry of 

the vector is given by TFPSSM of the corresponding gapped dipeptide. Note that the 

values in each feature vector are normalized between (0~1] by dividing the maximum 

value in the vector. 
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           A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V 

    1 M   -3 -3 -4 -5 -3 -3 -4 -5 -4  0  1 -3 10 -2 -5 -4 -3 -4 -3 -1 

    2 P    2 -3 -3 -1 -3 -1 -1 -1 -4 -2 -4 -2 -2 -5  4  2  4 -5 -4 -3 

    3 L   -4 -5 -6 -6 -4 -3 -5 -6 -5  3  5 -5  4  0 -5 -5 -3 -4 -3  2 

    4 D   -2  5 -1 -3 -4  2 -1 -4  2 -5 -3  5 -2 -2 -4 -2  0 -1  0 -3 

    5 L   -4 -5 -6 -6 -4 -5 -6 -6 -4  4  4 -5  0  1 -5 -5 -3 -4 -3  3 

    6 Y   -4 -3 -3 -5 -5 -3 -4 -5  4 -4 -3 -3 -2  4 -5 -3 -2  2  8 -4 

    7 N   -4 -3  8  4 -6 -3 -2 -3 -2 -6 -6 -3 -5 -6 -4 -1 -3 -7 -5 -6 

    8 T   -2 -3 -1 -3 -1 -3 -3 -4 -3 -4 -4 -1 -4 -4 -4  4  6 -5 -4 -2 

    9 L    0 -1 -5 -5 -4 -3 -4 -4 -3 -1  5 -3  3  0 -4 -3 -3 -3 -2 -1 

   10 T   -1 -3 -1 -1 -4 -2 -3 -2 -1 -4 -3 -1 -3 -4 -4  3  6 -5 -4 -3 

Figure 3.1: PSSM of the sequence MPLDLYNTL, where each entry is the original 
value without normalization. 

3.1.4 Feature reduction - probabilistic latent semantic analysis 

Motivation 

There are some limitations on the VSM for document classification. First, the vector 

space is high-dimensional (Namburu, et al., 2005). Training and testing have to deal 

with the curse of dimensionality. Second, document vectors are typically very sparse, 

i.e., most features of a vector are zero, which are susceptible to noise (Kumar, et al., 

2006), and cosine similarity could be inaccurate. Finally, the inner product defining 

document similarity can only match occurrences of the same terms. As a result, the 

vector representation does not capture semantic relations between terms. Furthermore, 

this representation, which considers a document as a bag of words, is unable to cap-

ture phrases and semantic/syntactic regularities. 
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Hence, dimension reduction (feature reduction) is proposed for dealing with 

above limitations. The goal of dimension reduction is to map similar terms to similar 

location in a low dimensional space called latent semantic space, which reflects se-

mantic associations. The usual dimension reduction is Latent Semantic Analysis (LSA) 

(or called Latent Semantic Indexing in some papers) which uses singular value de-

composition (SVD) to do data mapping (Deerwester, et al., 1990).The document 

similarity based on the inner product is computed in the latent semantic space. Ex-

perimentally, there are advantages of SVD over naive VSM. However, SVD still has 

the following disadvantages (Nair and Rost, 2003). First, the resulting dimensions 

might be difficult to interpret. For instance, the size of a vector is reduced from three 

to two by LSA as shown below: 

{(A0A), (A1A), (G0G)} --> {(1.3* A0A + 0.2 * G0G), (A1A)} 

The value of the first reduced feature equals 1.3 multiplied by the value of the origanl 

first feature plus 0.2 multiplied by the value of the original third feature. This leads to 

results which might be justifiable on the mathematical level, but have no interpretable 

meaning in the original application. Second, the probabilistic model of LSA does not 

match observed data (Hofmann, 2001). Third, the reconstruction may contain negative 

entries, which are inappropriate as a distance function for count vectors. 

Probabilistic latent semantic analysis 

Hofmann proposed probabilistic latent semantic analysis (PLSA) based on an aspect 

model for dealing with those disadvantages (Hofmann, 2001).The aspect model is a 

latent variable model for co-occurrence data (i.e., documents and terms) which asso-

ciates an unobserved class variable z∈Z={z1, …, zK}with each observation. The 

weight of the term w in a document d, W(w, d), is considered as a joint probability 

http://en.wikipedia.org/w/index.php?title=Probabilistic_model&action=edit�
http://en.wikipedia.org/wiki/Multinomial_distribution�
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P(w, d) between w and d, which is modeled through z, a latent variable which can be 

loosely thought of as a topic or a reduced feature. Thus, the joint probability P(w, d) 

based on PLSA model is 

).|()|()|(),|()(),( dzPzwPdwPdwPdPdwP
Zz
∑
∈

== 2

d


       (3.6) 

where P(w|z) denotes the topic-conditional probability of a term conditioned on the 

unobserved topic, and P(z|d) denotes a document-specific probability distribution over 

the latent variable space; that is, considering a vector  in latent variable space, 

P(z|d) denotes the weight of the latent variable z. Hence, a vector is mapped from term 

space to latent space and its size is reduced from |W| to |Z|. 

PLSA model fitting (training) 

A PLSA model is parameterized by P(w|z) and P(z|d) which are estimated by fitting 

P(w, d) to a training corpus D, i.e., W(w, d). The fitting process is obtained by maxi-

mizing the log-likelihood function L given below (Hofmann, 2001): 

  ),(log),( dwPdwWL
dw Dd
∑∑
∈ ∈

=               (3.7) 

The parameters of a PLSA model, P(w|z) and P(z|d), are estimated using the iterative 

Expectation-Maximization (EM) algorithm by maximizing the log-likelihood function 

L. P(w|z) and P(z|d) are initialized by random values in (0,1)-range. Then, the EM 

procedure iterates between the E-step and the M-step. In the E-step, the probability 

that a term w in a particular document d which is explained by the class corresponding 

to z, is estimated as 

                                                 
2It is assumed that the distribution of terms given a class is conditionally independent of the document, 
i.e., P(w|z,d) = P(w|z). 
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                            (3.8) 

( , , ) ( ) ( | ) ( | )P z w d P d P z d P w z= 3

      

(3.10) 

In the M-step, we calculate 

                  
(3.9) 

Using Equations (3.6), (3.8) and (3.9), we can get 
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          (3.11) 

where parameters P(w|z) and P(z|d) are re-estimated to maximize L. 

PLSA model testing 

After training, the estimated P(w|z) parameters are used to estimate P(z|q) for new 

(test) documents q through a folding-in process (Hofmann, 2001). In the folding-in 

process, EM procedure runs in a similar manner to the training step. The E-step is 

identical but the M-step keeps all the P(w|z) constant and only re-calculates P(z|q). 

Usually, a very small number of iterations of the EM algorithm are sufficient for 

folding-in process. 

Feature reduction by PLSA 

                                                 
3 This equation is derived from according to the Figure 1(a) of Hofmann39. 
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We apply PLSA not only for feature reduction but also for gapped-dipeptide semantic 

relation extraction. Vectors are mapped from the gapped-dipeptide space to the latent 

semantic space. This will lead to improvement in learning performance and efficiency. 

Though it is not easy to determine an appropriate reduced feature size of PLSA, it can 

be approximated by the reduced feature size of LSA. To determine the reduced fea-

ture size of LSA, we calculate singular values of LSA and sort them in decreasing or-

der. Then, the reduced feature size of LSA equals to n if the n-th largest singular value 

is close to zero. 

3.1.5 System architecture of PSLDoc 
Prediction of PSL can be treated as a multiclass classification problem. For multiclass 

classification, the 1-v-r SVM model has demonstrated a good classification perform-

ance (Garg, et al., 2005). For each class i, we construct a 1-v-r (Ci versus non-Ci) bi-

nary classifier. PSLDoc consists of five 1-v-r SVM classifiers corresponding to five 

localization sites in Gram-negative bacteria. Input features for all binary classifiers are 

the same. The SVM program LIBSVM (Chang and Lin, 2001) is used in PSLDoc, 

and it can generate probability estimates that are used for determining the confidence 

levels of classifications (Wu, et al., 2004). For all classifiers, we use the Radial Basis 

Function kernel, and tune the cost (c) and gamma (γ) parameters optimized by 10-fold 

cross-validation on the training data set.  

Given a protein, PSLDoc performs the following steps: 

1. Use PSI-BLAST to generate PSSM of the protein. 

2. Generate the feature vector of the protein, where each feature is defined as 

TFPSSM corresponding to a gapped dipeptide. 

3. Perform PLSA to generate a reduced feature vector, which will be the input to 

each 1-v-r classifier. 
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4. Run five 1-v-r SVM classifiers. 

In the training stage of PSLDoc, to train PLSA model with some topic size and 

the SVM classifiers, proteins with known localizations are used to estimate P(w|z) and 

P(z|d), and reduced vectors are used to determine the c andγ parameters of the RBF 

kernel of each classifier. In the testing stage of PSLDoc, Step 3 of PSLDoc performs 

PLSA folding-in process on trained P(w|z). Step 4 of PSLDoc is performed on the 

trained SVM classifiers. The localization site of the protein is predicted as the class 

with the highest probability (probi: the confidence of the query protein predicted as 

class i; 0≦probi≦1) generated from the five 1-v-r classifiers. The system architecture 

of PSLDoc is shown in Figure 3.2. 
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MPLDLYNTLT…

SVMCP SVMIM SVMPP SVMEC

Predicted Localization Site

SVMOM

{0.012103, 0.014095, 0.015480, 0.018894,…,0.003121}

           A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V
    1 M   -3 -3 -4 -5 -3 -3 -4 -5 -4  0  1 -3 10 -2 -5 -4 -3 -4 -3 -1
    2 P    2 -3 -3 -1 -3 -1 -1 -1 -4 -2 -4 -2 -2 -5  4  2  4 -5 -4 -3
    3 L   -4 -5 -6 -6 -4 -3 -5 -6 -5  3  5 -5  4  0 -5 -5 -3 -4 -3  2
    4 D   -2  5 -1 -3 -4  2 -1 -4  2 -5 -3  5 -2 -2 -4 -2  0 -1  0 -3
    5 L   -4 -5 -6 -6 -4 -5 -6 -6 -4  4  4 -5  0  1 -5 -5 -3 -4 -3  3
    6 Y   -4 -3 -3 -5 -5 -3 -4 -5  4 -4 -3 -3 -2  4 -5 -3 -2  2  8 -4
    7 N   -4 -3  8  4 -6 -3 -2 -3 -2 -6 -6 -3 -5 -6 -4 -1 -3 -7 -5 -6
    8 T   -2 -3 -1 -3 -1 -3 -3 -4 -3 -4 -4 -1 -4 -4 -4  4  6 -5 -4 -2
    9 L    0 -1 -5 -5 -4 -3 -4 -4 -3 -1  5 -3  3  0 -4 -3 -3 -3 -2 -1
   10 T   -1 -3 -1 -1 -4 -2 -3 -2 -1 -4 -3 -1 -3 -4 -4  3  6 -5 -4 -3

     A0A,       A1A,        A2A,         A3A,         A4A,          A5A,   …,    Y5Y 
{0.81396, 0.78755, 0.788206, 0.799535, 0.784058, 0.742093,…,0.437457}

Gapped-Dipeptides Representation

PSI-BLAST

PLSA Reduction

Highest Probability

 

Figure 3.2: System architecture of PSLDoc based on 1-v-r SVM models using 
reduced/transformed feature vectors. 
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Table 3.1: Number of proteins in different localization sites. 

 

Localization sites No. 

  Cytoplasmic (CP) 278 
Inner membrane (IM) 309 
Periplasmic (PP) 276 
Outer membrane (OM) 391 
Extracellular (EC) 190 
  All sites 1,444 

 
 
3.1.6 Data sets 
To evaluate the performance of PSLDoc, we utilize a benchmark data set of proteins 

from Gram-negative bacteria with single localization that have been used in previous 

works (Gardy, et al., 2005; Yu, et al., 2004). It consists of 1444 proteins with experi-

mentally determined localizations, referred to as PS1444 (Rey, et al., 2005). Table 3.1 

lists the distribution of localization sites of the data set.   

To analyze the performance of PSLDoc under the effect of sequence homology 

information, we further classify each protein in PS1444 into two data sets, the high- or 

low-homology data sets based on whether or not the protein’s highest sequence iden-

tity of all-against-all alignment by ClustalW is greater than an identity threshold of 

30%. The high-homology data set, referred to as PSHigh783, consists of 783 proteins 

and the low-homology set, referred to as PSLow661, consists of 661 proteins. The 

three data sets are available at 

http://bio-cluster.iis.sinica.edu.tw/~bioapp/PSLDoc/DataSet.htm. 

3.1.7 Evaluation measures 
To evaluate the performance of our method, we follow the same measures used in 

previous works (Gardy, et al., 2003; Nakai and Kanehisa, 1991; Wang, et al., 2005; 

Yu, et al., 2004) for comparison with other approaches. These measures include ac-

http://bio-cluster.iis.sinica.edu.tw/~bioapp/PSLDoc/DataSet.htm�
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curacy (Acc), precision, recall, Matthew’s correlation coefficient (MCC) (Matthews, 

1975) for five localization sites, and the overall accuracy defined in Eq. (3.12), (3.13), 

(3.14), (3.15) and (3.16) below: 

i i iAcc TP N=                                  (3.12) 

)/( iiii FPTPTPPrecision +=                     (3.13) 

 )/( iiii FNTPTPRecall +=                    (3.14) 

( )( ) ( )( )
( )( )( )( )

i i i i
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i i i i i i i i
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where l = 5 is the number of localization sites, and TPi, TNi, FPi, FNi ,and Ni are the 

number of true positives, true negatives, false positives, false negatives, and proteins 

in localization site i, respectively. MCC considers both under- and over-predictions, 

and takes range from –1 to 1, where MCC = 1 indicates a perfect prediction; MCC = 0 

indicates a completely random assignment; and MCC = -1 indicates a perfectly re-

verse correlation. The Acci is the same as Recalli because Ni equals to the sum of TPi 

and FNi. We will use Acci or Recalli interchangeably in the experiments depending on 

which method is compared. 

3.1.8 Five simple PSL prediction methods  
To evaluate the benefit of each step in our document classification method, we pro-

pose two simple prediction methods: 1NN_TFIDF and 1NN_TFPSSM, which consist 

of different parts of PSLDoc. To further analyze the effect of the PSSM information 

generated from databases of different sizes, we propose two methods based on 

PSI-BLAST: 1NN_PSI-BLASTps and 1NN_PSI-BLASTnr. In addition, we also con-
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struct a homology search method, 1NN_ClustalW, which is similar to Yu et. al.’s (Yu, 

et al., 2004) for comparison with PSLDoc. 

1NN_TFIDF 

1NN_TFIDF solely incorporates protein encoding scheme, the gapped-dipeptides of 

PSLDoc. The remaining steps are the same as the baseline system. That is, terms are 

weighted according to the TFIDF weighting scheme, and a query protein is predicted 

by 1-NN method based on cosine similarity. 

1NN_TFPSSM 

1NN_TFPSSM incorporates two parts of PSLDoc, the gapped-dipeptide encoding 

scheme and the TFPSSM weighting scheme. It predicts a query protein using 1-NN 

method based on cosine similarity. 

1NN_PSI-BLASTps 

1NN_PSI-BLASTps performs two PSI-BLAST searches, one of which for gener-

ating a PSSM and the other for searching the most similar protein using the PSSM 

generated in the previous step. First, for each query protein, PSI-BLAST search is 

performed against the training data and its parameters are the same as those in 

PSLDoc. Then, 1NN_PSI-BLASTps performs a one-run PSI-BLAST search (i.e., j = 

1)4 against the training data using the obtained PSSM5

                                                 
4 The parameters of e-vlaue are ignored because we want to find the most similar protein instead of 
constructing a PSSM. 
5 Please refer to the last example on blastpgp’s document for how to save a PSSM and perform 
PSI-BLAST search from the PSSM (http://biowulf.nih.gov/apps/blast/doc/blastpgp.html). 

. Finally, the localization site 

of the protein with the highest e-value is assigned as the predicted localization for the 

query protein. In a five-fold cross-validation, the PSSM information used in 
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1NN_PSI-BLASTps is generated from a small database which consists of approxi-

mately 1,155 (=1,444×4/5) sequences from PS1444. 

1NN_PSI-BLASTnr 

Although 1NN_PSI-BLASTps utilizes the PSSM information, the source data-

base used is not as large as that of 1NN_TFIDF and PSLDoc. For fair comparison 

with 1NN_TFIDF and PSLDoc, we construct 1NN_PSI-BLASTnr which uses PSSM 

generated from the NCBI nr database. The only difference between 

1NN_PSI-BLASTnr and 1NN_PSI-BLASTps is the size of the databases searched in 

the first step, and the remaining steps are all the same, including the generation of 

PSSM, followed by performing a second PSI-BLAST search, and lastly, the predic-

tion of the localization site of the query protein. 

1NN_ClustalW 

1NN_ClustalW differs from Yu et al.’s method (Yu, et al., 2004) only in the pairwise 

sequence alignment algorithm used, i.e., ClustalW in the former and ALIGN in the 

latter. For a query protein, we calculate its pairwise sequence identities with the re-

maining proteins by performing 1-against-others pairwise sequence alignment. Then, 

the localization site of the query protein is predicted by the 1-NN method based on 

pairwise sequence identity, that is, its localization site is assigned as that of the protein 

whose pairwise sequence identity is highest. 

3.1.9 Experiment design 
We conduct the following experiments to evaluate the benefit of each step in our 

document classification model where the gapped distance upper bound, l, ranges from 

3 to 15. We follow the same validation procedures for the performance measurement 
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as those of the other approaches (Gardy, et al., 2005; Yu, et al., 2006). All experi-

ments are carried out in five-fold cross-validation, that is, the data is equally divided 

into five parts. In each run, four folds are used for training and the remaining fold is 

used for testing. All reported results are average over the five folds. We have con-

ducted the following six experiments: 

Experiment 1: Comparison between 1NN_TFIDF and 1NN_TFPSSM on the 

PS1444, PSHigh783, and PSLow661 data sets 

The purpose of this experiment is to evaluate the benefit of using the TFPSSM 

weighting scheme because the simple 1NN prediction method can reflect the relation 

between performance and weighting schemes avoiding the effect of the prediction al-

gorithm. The distribution of benefit among 1444 protein sequences is further analyzed 

by comparing their performance on PSHigh783 and PSLow661. 

Experiment 2: Comparison among 1NN_TFPSSM, 1NN_ClustalW, 

1NN_PSI-BLASTps, and 1NN_PSI-BLASTnr on the PSHigh783 and 

PSLow661 data sets 

To compare the effect of utilizing PSSM, we compare the performance of 

1NN_TFPSSM, 1NN_ClustalW, 1NN_PSI-BLASTps, and 1NN_PSI-BLASTnr. 

1NN_ClustalW is based on a pairwise sequence alignment in which no PSSM infor-

mation is incorporated. We further analyze the relationship between the effect of 

PSSM and the size of databases used in the construction of PSSM. Compared with 

1NN_PSI-BLASTps, both 1NN_TFPSSM and 1NN_PSI-BLASTnr incorporate a lar-

ger database for PSSM construction. Finally, the comparison between 1NN_TFPSSM 
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and 1NN_PSI-BLASTnr serves to highlight the benefit of gapped-dipeptide encoding 

scheme. 

Experiment 3: Comparison between PSLDoc and PSLDoc-PLSA on the 

PS1444 data set  

PSLDoc-PLSA represents PSLDoc without PLSA, which simply applies SVM on the 

original feature vectors. The overall accuracies of PSLDoc and PSLDoc-PLSA are 

compared in order to evaluate the benefit of PLSA feature reduction for SVM learn-

ing. 

Experiment 4: Comparison among PSLDoc, 1NN_TFPSSM, and 

1NN_ClustalW on the PSHigh783 and PSLow661 data sets  

Using the PSHigh783 data set, we can verify whether PSLDoc can replace 

1NN_ClustalW. Using PSLow661, we can investigate whether PSLDoc can improve 

1NN_TFPSSM by applying PLSA and SVM classification. Hence, we could deter-

mine whether PSLDoc is suitable for both high- and low-homology data sets. 

Experiment 5: Comparison among PSLDoc, HYBRID, and PSORTb v.2.0 on the 

PS1444 data set 

We compare the performance of PSLDoc, HYBRID, and PSORTb v.2.0. Besides, we 

also assess the performance of PSLDoc using a three-way data split procedure 

(Ritchie, et al., 2003) which is usually used in machine learning to prevent overesti-

mation of the performance. The data set is randomly divided into three disjoint sets, 

that is, a training set for classifier learning, a validation set for feature selection and 

parameter tuning, and a test set for performance evaluation. Hence, for each run in the 
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original five-fold cross-validation, we divide the training data set into four distinct 

sets: three for training, one for validation. Then, we select the gapped distance upper 

bound and PLSA reduced feature size based on validation set instead of test set. Then 

PSLDoc performance is evaluated under the selected parameters in the original 

five-fold cross-validation. 

Experiment 6: PSLDoc under Prediction Threshold versus PSORTb v.2.0 on the 

PS1444 data set 

The precision and recall of PSLDoc is evaluated under different prediction thresholds 

to compare with PSORTb v.2.0. 
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3.2 Results 

3.2.1 Experimental results 

Experiment 1: The benefit of using the TFPSSM weighting scheme 

The overall accuracy of 1NN_TFIDF and 1NN_TFPSSM for each gapped distance 

are shown in Figure 3.3. The highest overall accuracy of 1NN_TFPSSM is 89.47% 

when l equals 4, 5, and 13 and it is considerably higher than the best 1NN_TFIDF 

score 74.38% when l equals to 4. Therefore, adopting the TFPSSM weighting scheme 

significantly improves the performance of 1NN_TFIDF. 

The performance of 1NN_TFIDF and 1NN_TFPSSM in the high- and 

low-homology data sets is shown in Table 3.2. 1NN_TFPSSM dramatically improves 

the performance of 1NN_TFIDF by about 26% in overall accuracy on PSLow661. 

Hence, incorporation of PSSM in the weighting scheme is useful for improving per-

formance due to insufficient sequence information in the low-homology data set. 
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Figure 3.3: Overall accuracy of 1NN_TFIDF and 1NN_TFPSSM with respect to 
gapped distances on the PS1444 data set. 
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Table 3.2: The comparison of 1NN_TFIDF and 1NN_TFPSSM on the PSHigh783 
and PSLow661 data sets. 

 PSHigh783  PSLow661 

 1NN_TFPSSM 1NN_TFIDF  1NN_TFPSSM 1NN_TFIDF 

Loc. Sites Acc.(%) MCC Acc. (%) MCC  Acc. (%) MCC Acc(%). MCC 

CP 94.20 0.96 71.01 0.74  83.25 0.77 41.15 0.36 

IM 99.31 0.99 98.62 0.89  82.93 0.82 84.15 0.48 

PP 95.86 0.94 86.21 0.89  74.05 0.63 38.17 0.46 

OM 99.66 0.99 95.88 0.95  85 0.82 66.00 0.48 

EC 96.99 0.96 92.48 0.91  57.89 0.51 28.07 0.26 

Overall 97.96 - 91.83 -  79.43 - 53.86 - 

Experiment 2: The effect of incorporating PSSM information and 

gapped-dipeptide encoding scheme 

Table 3.3 shows the performance of 1NN_TFPSSM, 1NN_ClustalW, 

1NN_PSI-BLASTps, and 1NN_PSI-BLASTnr on the PSHigh783 and PSLow661 data 

sets. The overall accuracy on the PSHigh783 data set is very similar for all methods. 

However, for the PSLow661 data set, 1NN_ClustalW, 1NN_PSI-BLASTps, and 

1NN_PSI-BLASTnr attain 42.97%, 57.94% and 66.57%, respectively, in overall ac-

curacy. This result reveals that better performance can be achieved when a larger da-

tabase is used in constructing PSSM. This also lends support to our assumption that 

incorporating more information into PSSM is more effective for the prediction of 

proteins with low sequence identity to the training set. Most notably, 1NN_TFPSSM 

outperforms 1NN_PSI-BLASTnr by 12.86% in overall accuracy. This suggests that 

the incorporation of PSSM based on gapped-dipeptide encoding scheme significantly 

improves the predictive performance, especially for proteins of low sequence identity. 
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Table 3.3: Comparison of 1NN_TFPSSM, 1NN_ClustalW, 1NN_PSI-BLASTps and 
1NN_PSI-BLASTnr for the PSHigh783 and PSLow661 data sets 

 
PSHigh783 

Loc. 
Sites 

1NN_TFPSSM 1NN_ClustalW 1NN_PSI-BLASTps 1NN_PSI-BLASTnr 
Acc.(%) MCC Acc.(%) MCC Acc.(%) MCC Acc.(%) MCC 

CP 94.20 0.96 89.86  0.90  88.41  0.92  86.96  0.90  
IM 99.31 0.99 98.62  0.97  99.31  0.98  99.31  0.98  
PP 95.86 0.94 93.79  0.93  93.79  0.93  92.41  0.91  
OM 99.66 0.99 99.66  0.99  99.66  0.99  99.66  0.99  
EC 96.99 0.96 98.50  0.98  98.50  0.98  98.50  0.98  
Overall 97.96 - 97.32  - 97.32  - 96.93  - 

PSLow661 
Loc. 
Sites 

1NN_TFPSSM 1NN_ClustalW 1NN_PSI-BLASTps 1NN_PSI-BLASTnr 
Acc.(%) MCC Acc.(%) MCC Acc.(%) MCC Acc.(%) MCC 

CP 83.25 0.77 39.23 0.23 36.84  0.40  55.50  0.53  
IM 82.93 0.82 46.95 0.33 68.29  0.57  75.00  0.66  
PP 74.05 0.63 41.98 0.44 59.54  0.51  64.12  0.54  
OM 85.00 0.82 45.00 0.47 87.00  0.57  87.00  0.66  
EC 57.89 0.51 43.86 0.10 50.88  0.37  52.63  0.45  
Overall 79.43 - 42.97 - 57.94  - 66.57  - 
 

Experiment 2: The benefit of PLSA feature reduction 

Determine the reduced size of PLSA 

The size of PLSA is determined by LSA singular values. Figure 3.4 show the singular 

values in decreasing order on different gapped distances upper bound data sets. 

The 40-th largest singular value is close to zero in Figure 3.4, but in the inset the 

160-th largest singular value is close to zero. Hence, the reduced feature size of PLSA 

is set to 40, 80 and 160. However, we do not test larger PLSA reduced size or 

one-by-one PLSA reduced size in consideration of the training efficiency and avoid-

ance of data overfitting. 
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Figure 3.4: Singular values in decreasing order of each gapped distance. The inset 
shows singular values without 1-th largest one for detailed representation. 

 For one PLSA reduced size, the training and testing procedures of PSLDoc take 

1.5 hours and about 2~3 minutes for all gapped distances, respectively. However, 

PSLDoc-PLSA takes about 180 and 1.4 hours in training and testing, respectively. Fig-

ure 3.5 shows the performance of PSLDoc-PLSA and PSLDoc, where PSLDoc_Fx de-

notes PSLDoc with PLSA reduced size x. 

The highest overall accuracy among all gapped distances of PSLDoc_F40, 

PSLDoc_F80, and PSLDoc_F160 is 92.31%, 93.01%, and 92.52%, respectively, 

which is 0.83%, 1.52%, and 1.04% better than that of PSLDoc-PLSA. Using PLSA not 

only improves learning efficiency but also performance. In the following experiments, 

PSLDoc takes the gapped distance 13 and PLSA at reduced size 80. 
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Figure 3.5: Overall accuracy of PSLDoc_F40, PSLDoc_F80, PSLDoc_F160 and 
PSLDoc-PLSA with respect to gapped distance on the PS1444 dataset. 

Experiment 4: The benefit of SVM and PLSA feature reduction 

Table 3.4 shows the performance of PSLDoc, 1NN_TFPSSM and 1NN_ClustalW on 

PSHigh783 and PSLow661. The overall accuracy of 1NN_ClustalW on PSHigh783 

(97.32%) is very similar to that of Yu et. al.’s (97.7%). 1NN_TFPSSM and PSLDoc 

perform better than 1NN_ClustalW on PSHigh783. On the other hand, PSLDoc im-

proves 1NN_TFPSSM on PSLow661 by 7.41% due to the non-linear SVM classifica-

tion and PLSA feature reduction and extraction. This shows that PSLDoc is suitable 

for both the high- and low-homology data sets. 

Table 3.4: Comparison of PSLDoc, 1NN_TFPSSM, and 1NN_ClustalW for the 
PSHigh783 and PSLow661 data sets. 

 PSHigh783  PSLow661 
 PSLDoc 1NN_TFPSSM 1NN_ClustalW  PSLDoc 1NN_TFPSSM 1NN_ClustalW 

Loc. Acc.(%) MCC Acc.(%) MCC Acc.(%) MCC  Acc.(%) MCC Acc.(%) MCC Acc.(%) MCC 
CP 95.65 0.96 94.2 0.96 91.3 0.89  94.74 0.88 83.25 0.77 39.23 0.23 
IM 99.31 0.99 99.31 0.99 97.93 0.97  87.80 0.88 82.93 0.82 46.95 0.33 
PP 95.17 0.94 95.86 0.94 93.1 0.93  82.44 0.78 74.05 0.63 41.98 0.44 
OM 99.66 0.99 99.66 0.99 99.66 0.99  84.00 0.84 85.00 0.82 45.00 0.47 
EC 98.5 0.98 96.99 0.96 99.25 0.99  70.18 0.65 57.89 0.51 43.86 0.10 

Overall 98.21 - 97.96 - 97.32 -  86.84 - 79.43 - 42.97 - 
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Table 3.5: Comparison of PSLDoc, HYBRID and PSORTb v.2.0 on the PS1444 data 
sets. The PSLDoc performance of incorporating a three-way data split procedure is 
indicated in the parentheses. 

 PSLDoc  HYBRID  PSORTb v.2.0 

Loc. Sites Acc. MCC  Acc. MCC  Acc. MCC 
CP 94.96(94.24) 0.91(0.91)  95.00 0.89  70.10 0.77 

IM 93.20(93.53) 0.94(0.94)  90.60 0.92  92.60 0.92 

PP 89.13(89.13) 0.87(0.85)  88.80 0.84  69.20 0.78 

OM 95.65(95.14) 0.95(0.94)  95.10 0.93  94.90 0.95 

EC 90.00(87.37) 0.87(0.86)  85.30 0.87  78.90 0.86 

Overall 93.01(92.45) -  91.60 -  82.60 - 

Experiment 5: Comparison of PSLDoc, HYBRID and PSORTb v.2.0 

Table 3.5 shows the performance of PSLDoc, HYBRID, and PSORTb v2.0 on 

PS1444. PSLDoc achieves the best performance 93.01%, better than HYBIRD 91.6% 

and PSORTb 82.6%. 

Experiment 6: PSLDoc under different prediction thresholds versus PSORTb v.2.0 

on the PS1444 data set  

Prediction confidence 

The probability estimated by LIBSVM is used for determining the confidence levels 

of classifications. The class with the largest probability is chosen as the final predicted 

class. The confidence of the final predicted class, prediction confidence (Jones, 1999), 

could be regarded as the value of the largest probability minus the second largest 

probability. Figure 3.6 shows the relationship between accuracy and prediction confi-

dence. For proteins with prediction confidence in the range [0.9-1], the prediction ac-

curacy is near 100% (99.12%). 
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Figure 3.6: Overall accuracy of PSLDoc with respect to prediction confidence. [x,y) 
represents the prediction confidence is more than x but under y. 

Prediction threshold 

Gardy et al. suggested that when a prediction system is unable to generate a confident 

prediction, the program had better report a result of “Unknown” because biologists 

usually prefer correct prediction (high precision) to prediction coverage (recall) 

(Gardy, et al., 2005). To provide more precise prediction results, we determine a pre-

diction threshold to filter out prediction results with low confidence. That is, the SVM 

classifier predicts results only when the prediction confidence is above the threshold, 

otherwise the SVM classifier will output “Unknown” (Gardy, et al., 2005; Gardy, et 

al., 2003). Recall and precision for each prediction threshold are shown in Figure 3.7. 
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Figure 3.7: Overall accuracy of PSLDoc with respect to prediction confidence. The 
value above the point denotes the corresponding prediction threshold. 

Table 3.6 shows the performance of PSLDoc under different prediction thresh-

olds. Setting the prediction threshold to 0.7, PSLDoc achieves slightly better recall 

than PSORTb v.2.0 (83.66% versus 82.6%), whereas the precision of PSLDoc is bet-

ter than PSORTb v.2.0 (97.89% versus 95.8%). Besides, when the prediction thresh-

old is set to 0.3, PSLDoc achieves comparable precision to PSORTb v.2.0 (95.77% vs. 

95.8%), and PSLDoc’s recall is much better than that of PSORTb v.2.0 (89.27% vs. 

82.6%). 

Table 3.6. Comparison of PSLDoc under the prediction threshold 0.7, PSLDoc under 
the prediction threshold 0.3 and PSORTbv.2.0 

Loc.  PSLDoc_PreThr=0.7  PSLDoc_PreThr=0.3  PSORTb v.2.0 
TP FP FN Pre. Rec.  TP FP FN Pre. Rec.  TP FP FN Pre. Rec. 

CP 216 6 62 97.30 77.70  243 13 35 94.92 87.41  195 15 83 92.86 70.14 
IM 273 3 36 98.91 88.35  285 6 24 97.94 92.23  286 14 23 95.33 92.56 
PP 202 8 74 96.19 73.19  226 17 50 93.00 81.88  191 9 85 95.50 69.20 
OM 366 2 25 99.46 93.61  372 6 19 98.41 95.14  371 10 20 97.38 94.88 
EC 151 7 39 95.57 79.47  163 15 27 91.57 85.79  150 4 40 97.40 78.95 
Total 1208 26 236 97.89 83.66  1289 57 155 95.77 89.27  1193 52 251 95.82 82.62 
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3.3 Discussion 

In PLSA, we associate proteins and gapped-dipeptides with topics. Through analyzing 

the trained PLSA model with P(w|z) and P(z|d) for gapped-dipeptide w, topic z and 

protein d, gapped-dipeptide signatures in proteins with different localization sites are 

discovered for the PS1444 data set. Some of these signatures have been reported in 

the literature as motifs critical for stability or localization. We also discuss the prob-

lem of polysemy and solve it through the PLSA model. 

3.3.1 Gapped-dipeptide signatures for Gram-negative bacteria lo-
calization sites 

In Figure 3.8, we show the distribution of topic versus protein as visualized by P(z|d) 

for topic z∈Z and protein d∈D. In the figure, the size of topic (|Z|) is set to 80 ac-

cording to the conclusion from Experiment 2. 

To find site-topic preference, we then cluster proteins according to their localiza-

tion sites for examining preferred topics for each localization site. The site-topic pref-

erence of the topic z for a localization site l is calculated by averaging P(z|d), where d 

(a protein) belongs to l class (i.e., d has localization site l.) The site-topic preference 

over topics per localization site is shown in Figure 3.9. We can observe from the fig-

ure that topics can be divided into five groups such that each group “prefers” a spe-

cific localization site. 

We say a topic z prefers a localization size l, if the corresponding site-topic pref-

erence is the largest of all localization sites. For some topics preferring PP and EC 

classes, the difference of the site-topic preference between their own preferring site 

and other sites are not obvious in Figure 3.9. This also reflects the relative poor per-

formance of PSLDoc in PP and EC classes.  
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Figure 3.8: Distribution of topic versus protein plotted as an image with its color-
mapd, where the topics are sorted such that topics "preferring" (to be explained in the 
third paragraph) the same localization site are grouped together. 

 

Figure 3.9: Distribution of site-topic preference versus localization site. The 80 topics 
are divided into five groups of 17, 13, 18, 20 and 12 topics that prefer CP, IM, PP, 
OM and EC, respectively. 
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Figure 3.10: Distribution of topic versus gapped-dipeptide. 

The distribution of topic versus gapped-dipeptide is visualized by P(w|z) for 

gapped-dipeptide w∈W and topic z∈Z as shown in Figure 3.10. In the figure, the size 

of gapped-dipeptides (|W|) is set to 5,600 (=14×20×20) following the conclusion of 

Experiment 2. 

To list gapped-dipeptides of interest, we select ten preferred topics for each lo-

calization site according to site-preference confidence, which is defined as the largest 

site-topic preference minus the second largest site-topic preference. For each topic, 

five most frequent gapped-dipeptides are selected. We list the gapped-dipeptides sig-

natures of ten preferred topics corresponding to each of the localization sites in Table 

3.7. 
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Table 3.7: Gapped-dipeptide signatures for each Gram-negative bacteria localization 
site. 

Site Gapped-dipeptide signatures 

CP 

E0E, K1I, K5V, K1V, D0E; L1H, L5H, L3H, H4L, H0L; A12C, A9C, A13C, A5C, A7C; 
R3R, R6R, R2R, R0R, R9R; A6A, A13A, A7A, A10A, A11A; I0E, R6I, I3R, I3K, R6V; 
H3H, H1H, H7H, H13H, H10H; H1M, H2M, H11M, M0H, H0M; A4E, E1E, A2E, V4E, A9E; 
E4E, K6E, E6E, E3E, E0E   

IM 

I2I, I3I, I0I, L0I, I0F; L7L, L4L, L10L, L3L, L6L; M3M, M2M, M0M, M8M, M6M; 
V2I, V2V, V3I, V3V, I0V; T2F, T6F, F3F, T4F, T8F; A1A, A7L, A4A, A1C, A11L; 
W3W, W0W, W2W, W6W, W4W; Y12L, Y1L, Y11L, L0Y, L1L; M2T, M3T, M10T, M4T, M0L; 
F10P, F8P, F12P, F3P, F13P   

PP 

A1A, A2A, A0A, A3A, M4A; M0H, W1Q, W1H, W1K, W5Q; P1E, P0E, E0P, P0K, E1P; 
D0D, Q0D, D3D, D3Q, D11D; W0E, E4W, W11E, E0W, W13E; K3K, K0K, K2K, K1K, K7K; 
A3A, A7A, A1P, A6R, A10R; P3N, N4P, N3P, N5P, N0P; H6G, G3M, H7D, G11H, H11G; 
A10A, A11A, A6A, A12A, A3A   

OM 

T1R, R3T, R1T, T5R, P0P; R0F, R4F, Y13R, R6F, R2F; N4N, N0N, N10N, N7N, F1N; 
Q6Q, Q1Q, Q3Q, Q13Q, Q4Q; S0F, A3F, F0S, R9F, F7F; G0G, A0G, A1G, G1A, G3A; 
N1Q, N1N, Q1Q, N12N, Q11V; W2N, N2W, N0W, D2W, N13W; Q5R, R1Q, Q1R, Q3R, R2Q; 
Y1Y, Y0Y, Y5Y, Y4Y, Y12Y   

EC 

S6S, S2S, T11T, S13S, T6S; G8G, G0G, G7G, G9G, G6G; T1T, T3T, T5T, T9T, T10T; 
N10N, N9N, N13N, N11N, N12N; N1N, N3N, N4N, N11N, N1T; I5Y, Y12S, Y3S, Y9S, Y6I; 
Q2N, N1Q, Q1Q, N3Q, Q7Q; K1S, S6S, S5S, S11M, S0S; S3G, G3G, G4S, G3S, G2G; 
N0N, N12V, N4V, V12N, N9V   

 

3.3.2 Gapped-dipeptide signatures for Gram-negative bacteria lo-

calization sites 

Interestingly, some of the signatures in Table 3.7 found by PSLDoc have been re-

ported in the literature as motifs critical for stability or localization. One example is 

observed in the integral membrane (IM) proteins, in which helix-helix interactions are 

stabilized by aromatic residues(Sal-Man, et al., 2007). Specifically, the aromatic motif 

(WXXW or W2W) is involved in the dimerization of transmembrane (TM) domains 

by π-π interactions(Sal-Man, et al., 2007). Remarkably, one preferred topic predicted 

for the IM class includes this motif (W2W) among other signatures of aromatic resi-

dues. Another example is found in the outer membrane (OM) class, where the 

C-terminal signature sequence is recognized by the assembly factor, OMP85, regulat-
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ing the insertion and integration of OM proteins in the outer membrane of 

gram-negative bacteria(Robert, et al., 2006). The C-terminal signature sequence con-

tains a Phe (F) at the C-terminal position, preceded by a strong preference for a basic 

amino acid (K, R)(Robert, et al., 2006). One of the preferred topics indeed contains 

this motif (R0F.) 

The above findings demonstrate the sensitivity of PSLDoc for capturing 

gapped-dipeptide signatures relevant to localization sites. Thus, the predicted signa-

tures can provide important clues for further studies of uncharacterized sequence mo-

tifs related to protein localization. 

3.3.3 Comparison of gapped-dipeptide signature encoding and 

amino acid composition 

Figure 3.11 shows the amino acid compositions of single residues and 

gapped-dipeptide signatures for each localization site, respectively. It is observed that 

the distributions of 20 amino acids calculated from single residues and 

gapped-dipeptide signatures are quite different. The distribution from single residues 

[Fig. 11(A)] has no clear separation for some amino acids but the distribution from 

gapped-dipeptide signatures [Fig. 11(B)] has a clear separation among five classes. 
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Figure 3.11: The amino acid compositions of single residues (A) and selected 
gapped-dipeptide signatures (B) in different localization sites. 

From Fig. 11(A) and (B), it is observed that for some amino acids, general amino 

acid composition bias have an effect on the gapped-dipeptide signatures (e.g., CP: E; 

IM: I, L; PP: P, K; OM: Y; EC: G, N). That is, amino acids having high composition 

in a localization site tend to also have high composition in gapped dipeptide signa-

tures of the localization site. For example, there are relatively high proportions for Ile 

and Leu in both single residue and gapped-dipeptide signature compositions in IM 

proteins. However, many amino acids have high compositions in at least two localiza-

tion sites. Therefore, it is difficult to predict localization site based on single residue 
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compositions. From the amino acid composition of gapped-dipeptide signatures, we 

observe a clear separation among different localizations for several amino acids, 

which are indistinguishable at the single residue level (i.e., A, M, V, Q, S, H, W). 

Specifically, Met, Val, and Trp have similar proportions across all five localizations in 

single residue composition. The small differences in single amino acid composition 

for these residues are amplified by examining the gapped-dipeptide signature compo-

sitions and thus, they can be used for predicting localization site in a discriminative 

manner. We further analyze the correlation between single amino acid and 

gapped-dipeptide signature compositions by the Pearson correlation coefficient whose 

definition for a series of n measurements of variables X and Y is as follows: 

( ) ( )2 22 2

i i i i
xy

i i i i

n x y x y
r

n x x n y y

−
=

− −

∑ ∑ ∑
∑ ∑ ∑ ∑

                (3.17) 

The Pearson correlation coefficient (r) between the two compositions (single residues 

vs. gapped dipeptide signatures) for CP, IM, PP, OM, EC and all localization sites are 

0.29, 0.50, 0.41, 0.07, 0.50 and 0.36, respectively. The correlation for all localization 

sites is medium (in range 0.30 to 0.49)(Cohen, 1988). 

In summary, the gapped-dipeptide signatures predicted by PSLDoc can (1) suc-

cessfully capture the compositional bias inherent at the single residue level; and (2) 

better resolve ambiguity in discriminating amino acid compositions for each localiza-

tion site. 
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3.3.4 The physicochemical preference of gapped-dipeptide signa-

tures 

To further analyze the physicochemical preference of gapped-dipeptide signatures, 

each amino acid is classified into one of the four groups: non-polar (AIGLMV), polar 

(CNPQST), charged (DEHKR), and aromatic (FYW). Figure 3.12 shows the grouped 

amino acid compositions of single residues and gapped-dipeptide signatures for each 

localization class. The grouped amino acid composition of single residues for each 

localization site has very similar preferences, but different preferences are observed 

for gapped-dipeptide signature composition. For example, in Fig. 12(A), IM, PP, OM, 

and EC have similar distribution, but in Fig. 12(B), each localization has distinct dis-

tribution of grouped amino acid composition. This also lends support to the second 

point in the previous section, that gapped-dipeptide signature can better resolve am-

biguity in discriminating amino acid compositions for each localization. Furthermore, 

our analysis shows that the amino acid compositions of predicted gapped-dipeptide 

signatures exhibit some over-represented patterns for a particular compartment. 

Gapped-dipeptide signatures predicted for CP, IM, and EC classes have distinct 

preferences for different groups of amino acids, possibly reflecting the phys-

ico-chemical constraints imposed by the environment of a subcellular compartment. 

In particular, the signatures predicted for IM has a high percentage of non-polar 

amino acids (60%) and no charged (0%) amino acids. This can be explained in terms 

of the physico-chemical properties of the lipid bilayer, in which non-polar amino ac-

ids are favored in the transmembrane domains of IM proteins(Ulmschneider, et al., 

2005). In contrast, charged amino acids are disfavored due to the penalty incurred in 

energy terms during the assembly of IM proteins(Hessa, et al., 2005). CP and EC 

classes are found to contain a high percentage  
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Figure 3.12: The amino acid compositions of single residues (A) and predicted 
gapped-dipeptide signatures (B) for each protein class distinguished by the localiza-
tion site. Localization sites: CP, IM, PP, OM, and EC. Amino acid groups: N 
(non-polar: AIGLMV), P (polar: CNPQST), C (charged: DEHKR), and A (aromatic: 
FYW) 
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of charged and polar amino acids, respectively. The role of charged amino acids in the 

cytoplasm is probably related to pH homeostasis in which they act as buffers, whereas 

secreted proteins in the EC classes may require more polar amino acids for promoting 

interactions in the solvent environment(Booth, 1985). 

Although gapped-dipeptide signatures are found, PSLDoc performs training and 

testing procedures solely based on the topics of the PLSA model. In addition, Hof-

mann(Hofmann, 2001) also noted that PLSA can capture the semantic meaning of 

words, in our case, the gapped-dipeptides. This part will be discussed in the following 

section. 

3.3.5 Capability to solve the polysemy of Gapped-dipeptides 

In document classification, a word with two different meanings is called polyseme 

(e.g., ‘bank’ means (i) an organization that provides various financial services or (ii) 

the side of a river). Hofmann mentioned PLSA could deal with polysemy and gave an 

example about the word “segment” ((i) an image region or (ii) a phonetic seg-

ment)(Hofmann, 1999; Hofmann, 2001). Such a word w would have a high probabil-

ity in two different topics. The hidden topic variable, P(w|z), associated with each 

word occurrence in a particular document is used to determine which particular topic 

w is assigned to, depending on the context of the document. Sivic et al.(Sivic, et al., 

2005) applied PLSA to images and discussed the polysemy on images. We discuss the 

polysemy effect on gapped-dipeptides.  
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Table 3.8: “A6A” is among the top five frequent dipeptides of Topic 73 and Topic 6, 
where gapped-dipeptides are arranged to the decreasing order of P(w|z). 

 
Topic 73 Topic 6 

A6A 
A13A 
A7A 
A10A 
A11A 

A10A 
A11A 
A6A 
A12A 
A3A 

A gapped-dipeptide may prefer two localization sites, e.g., “A6A” prefer CP and 

PP in Table 3.7. It is sometimes difficult to determine the localization site of a protein 

based on the weight of a polysemous gapped-dipeptide. PLSA can be used to remedy 

the polysemy effect of a gapped-dipeptide by associating the gapped-dipeptide with 

different topics. For example, “A6A” is among the top five frequent dipeptides of 

Topic 73 in CP and Topic 6 in PP that their probabilities P(w|z) are sorted in a de-

creasing order as shown in Table 3.8. 

For example, two proteins from PS1444 data set, chemotaxis protein cheZ and 

Endoglucanase B6

                                                 
6 chemotaxis protein cheZ and Endoglucanase B are 44-th and 680-th proteins in PS1444, respectively. 
We use d44 and d680 to denote them for ease. 

, contain subsequences of the polysemous gapped-dipeptide “A6A.” 

They are in different classes, CP class and PP class, respectively, and some of their 

relevant information is listed in Table 3.9. Using the original vector space, the two 

proteins have P{w = “A6A”, d44} = 0.7001 and P{w = “A6A”, d680} = 0.651, which 

differ slightly, and thus it is difficult to distinguish them. However, using the posterior 

probabilities of Topic 73 and Topic 6, given the different occurrences of “A6A” based 

on the PLSA reduced vector space can distinguish the two proteins and determine 

their classes. That is, since (P{z73| w = “A6A”, d44}, P{z6| w = “A6A”, d44}) = (0.0794, 

0.0) and (P{z73| w = “A6A”, d680}, P{z6| w = “A6A”, d680}) = (0.0, 0.0596) and Topics 

73 and 6 are associated with different classes, the proteins d44 and d680 can be distin-
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guished to be in CP and PP classes. This example demonstrates PLSA’s capability to 

remedy the polysemy effect of gapped-dipeptides. 

 

Table 3.9: Examples of two proteins in PS1444 having the gapped-dipeptide “A6A”. 

Protein Name P{wj= “A6A”, di } (P{z73|di, wj = “A6A”}, 
P{z6| di, wj = “A6A”}) “A6A” Localization  

Site 

116294 0.7001 (0.0794, 0.0) AIAEAAEA(40*) 
ASQPHQDA(75) CP 

121816 0.651 (0.0, 0.0596) 
APGDPGSA(362) 
AQWGVSNA(409) 
AQYGGFLA(420) 

PP 

*The number in brackets denotes the starting position of the gapped-dipeptide “A6A.” 
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3.4 Conclusion 

In this chapter, we present a new PSL prediction method, PSLDoc, based on 

gapped-dipeptides and PLSA and demonstrate that it is suitable for proteins of a wide 

range of sequence homologies. PSLDoc extracts features from gapped-dipeptides of 

various distances, where evolutionary information from the PSSM is utilized to de-

termine the weighting of each gapped-dipeptides such that its performance is compa-

rable to the homology search method in the high-homology data set. These features 

are further reduced by PLSA and incorporated as input vectors for SVM classifiers. 

PSLDoc performs very well in low-homology data set with overall accuracy of 

86.84%. It can also achieve very high precision by using a flexible prediction thresh-

old. Experiments show PSLDoc performs better than some of the current methods in 

overall accuracy by 1.51%. Because of the generality of this method, it can be ex-

tended to other species or multiple localization sites in the future. Through analyzing 

the amino acid composition of gapped-dipeptide signatures, there is a relationship 

between the amino acid group and localization sites. For future work, we will incor-

porate the amino acid groups with gapped-dipeptides to design a new representation 

of terms for predicting protein subcellular localization. 
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CHAPTER 4  

Prediction of RNA-binding Sites in Proteins 

4.1 Methods 

In this chapter, we propose a method, RNAProB, which incorporates a new smoothed 

position-specific scoring matrix (PSSM) encoding scheme with a support vector ma-

chine model to predict RNA-binding sites in proteins. Besides the incorporation of 

evolutionary information from standard PSSM profiles, the proposed smoothed PSSM 

encoding scheme also considers the correlation and dependency from the neighboring 

residues for each amino acid in a protein. 

4.1.1 Data sets 
In this study, we apply three data sets used in previous studies to compare the per-

formance of our method and other systems. Table 4.1 shows a summary of these data 

sets, which are detailed as follows and available in the supplementary material [see 

Appendix 2.1, 2.2, and 2.3]. 

1. RBP86 

The RBP86 data set consists of 86 protein chains extracted from RNA-protein com-

plexes with X-ray crystallography resolution better than 3Å in PDB. Sequence redun-

dancy in the data set is removed so that no protein pair has a sequence identity greater 

than 70%. In the RNA-protein complexes, a residue is regarded as interacting with 

RNA if the distance between an RNA molecule and the residue in the protein is less 

than 6Å. The resultant data set contains 4,568 RNA interacting residues and 15,503 

non-interacting residues. The RBP86 data set has been used in Terribilini et al. (Ter-
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ribilini, et al., 2006) and Kumar et al. (Kumar, et al., 2008). In Kumar et al., it is also 

referred to as the “main” data set. 

2. RBP109 

The RBP109 data set contains 109 protein sequences obtained from 56 RNA-protein 

complexes with X-ray crystallography resolution better than 3.5Å in PDB. For any 

two protein chains, the sequence identity is no more than 30%. The numbers of inter-

acting and non-interacting residues are 3,581 and 21,526, respectively. The RBP109 

data set is downloaded from RNABindR web server 

(http://bindr.gdcb.iastate.edu/RNABindR/) (Terribilini, et al., 2007). In Terribilini et 

al. (Terribilini, et al., 2006), it is named as the “RB109” data set. 

3. RBP107 

Derived from 61 RNA-protein complexes in PDB, the RBP107 data set is comprised 

of 107 protein chains with X-ray crystallography resolution better than 3.5Å and se-

quence identity no more than 25%. Based on a cutoff distance of 3.5Å, the RBP107 

data set contains 2,555 interacting residues and 19,496 non-interacting ones. Wang 

and Brown (Wang and Brown, 2006) applied this data set to construct and evaluated 

their approach. In Kumar et al. (Kumar, et al., 2008), it is named as the “alternate” set. 

Table 4.1: Summary of three benchmark data sets. 
 

Data set RBP86 RBP109 RBP107 

Number of protein chains 86 109 107 
X-ray crystallography resolution >3Å >3.5Å >3.5Å 

Sequence identity ≤70% ≤30% ≤25% 

Number of interacting residues 4,568 3,581 2,555 

Number of non-interacting residues 15,503 21,526 19,496 

Non-interacting/interacting residues 3.39 6.01 7.63 

Total number of residues 20,071 25,107 22,051 
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4.1.2 Support vector machines (SVM) 
SVM is a machine learning approach proposed by Vapnik (Vapnik, 1995) based on 

structural risk minimization principle of statistics learning theory. It can be used to 

deal with classification or regression. Distinguishing RNA binding residues form 

non-binding residues in a protein could be regarded as a binary classification problem. 

For a set of given input data vectors xi ( , i = 1, 2, …, n) with labels yi 

(yi , i = 1, 2, …, n; where “+1” represents a positive instance and “-1” de-

notes a negative instance), the mission in the training procedure is to optimize the 

following equation that maps input vectors into a higher dimensional feature space 

(i.e., Hilbert space), and seeks a separation hyperplane with a maximum margin to 

divide positive instances from negative ones. The calculation of SVM is defined in 

Equation (4.1). 

  (4.1) 

subject to  

where  is a weight vector, b is a bias (constant), and  is a mapping func-

tion. For more flexible classification, SVM allows instance i positions at the wrong 

side of hyperplane with slack variable  and cost parameter C. In SVM, a kernel 

function K(xi,xj), such as linear, polynomial, radial basis function (RBF), and sigmoid 

function, is used to present  where xi and xj are two data vectors. In this 

study, we use RBF as the kernel function in the SVM. The formulation of RBF is de-

fined in Equation (4.2), where γ is a training parameter. 

  (4.2) 
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Developed by Lin et al. (Lin and Chang, 2001), LIBSVM is a powerful and 

well-known SVM package used by many researchers. We apply LIBSVM to imple-

ment our classifiers for prediction of RNA-binding sites in proteins. 

4.1.3 Feature extraction and representation 
Evolutionary information has been shown to be effective for RNA-binding site pre-

diction (Kumar, et al., 2008). For this reason, we use PSI-BLAST (Altschul, et al., 

1997) to search against NCBI non-redundant (nr) database and generate a PSSM 

based on BLOSUM62 substitution matrix (Henikoff and Henikoff, 1992) for each 

protein with e-value as 0.001 and iteration number as 3. A PSSM is comprised of L 

vectors (L denotes the length of the protein), in which contain the log-likelihoods for 

different amino acids in a position. Next, we illustrate two different encoding schemes 

to represent the PSSM. 

1. Standard PSSM encoding scheme 

Standard PSSM has been used for RNA-binding site prediction by Kumar et al. 

(Kumar, et al., 2008). For a PSSM profile, the feature representation of a residue αi at 

position i in a protein sequence is presented by an evolutionary information vector Vi 

comprised of log-likelihoods for 20 different amino acids. Considering the surround-

ing residues of αi, we apply a sliding window of size w to incorporate the evolutionary 

information from upstream and downstream neighbors. The feature vector of a residue 

αi is represented by (Vi-(w-1)/2, …, Vi, …,Vi+(w-1)/2). For the N-terminal and C-terminal 

of a protein, (w-1)/2 ZERO vectors, consisting of 20 zero elements, are appended to 

the hand or tail of a PSSM profile. The feature values in each vector are normalized to 

a range between -1 and 1. In our study, we apply different sliding window sizes from 

3 to 41 with a step as 2 (i.e., w = 3, 5, …, 41). Figure 4.1 (A) shows an example of 
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(A) 

 

(B) 

 

Figure 4.1: Examples of (A) standard PSSM and (B) smoothed PSSM generated by PSI-BLAST (e-value = 0.001, iteration number = 3). 
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standard PSSM of a protein with e-value as 0.001 and iteration number as 3 in 

PSI-BLAST. 

2. Smoothed PSSM encoding scheme 

In addition to the consideration of neighbors of a residue αi, we propose a new encod-

ing scheme to incorporate the dependency of surrounding residues. In a standard 

PSSM profile, the log-likelihood at each position is calculated based on an assumption 

that each position is independent from the others. However, Terribilini et al. (Terribi-

lini, et al., 2006) observed that RNA binding residues tend to occur in clusters. Their 

analysis revealed that 95% of interacting residues in the RBP109 data set have at least 

one additional interacting residue among the four amino acids on either side, and 49% 

of those have at least four. Inspired by the consideration of adjacent pixels used in the 

spatial domain method from the research field of image processing (Gonzalez and 

Woods, 2002), we present a new encoding scheme to model the dependency or corre-

lation among surrounding neighbors of a central residue. Similar to the feature repre-

sentation in standard PSSM encoding, we use a sliding window of size w to incorpo-

rate the evolutionary information from upstream and downstream residues. In the 

construction of a smoothed PSSM, each row vector of a residue αi is represented and 

smoothed by the summation of ws surrounding row vectors (Vsmoothed_i = Vi-(ws-1)/2 

+ … + Vi + … + Vi+(ws-1)/2 ). For the N-terminal and C-terminal of a protein, (w-1)/2 

ZERO vectors, are appended to the hand or tail of a smoothed PSSM profile. Using 

the smoothed PSSM encoding scheme, the feature vector of a residue αi is represented 

by (Vsmoothed_i-(w-1)/2, …, Vsmoothed_i, …, Vsmoothed_i+(w-1)/2). The feature values in each 

vector are normalized to a range between -1 and 1. Here, we apply different smooth-

ing window sizes from 3 to 11 with a step as 2 (i.e., ws = 3, 5, …, 11). Figure 4.1 (B) 

illustrates an example of a smoothed PSSM profile. At position 9, the corresponding 
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value of amino acid ‘A’ represented by a smoothed PSSM encoding is the sum of 

[(-2)+(-2)+ (-3)+5+(-2)+3+0]. 

4.1.4 Window size selection and parameter optimization 
In order to optimize the performance of RNAProB, we have to determine the best 

combination of several parameters, including the sliding window size w, cost parame-

ter C and kernel parameter γ in the SVM classifier, the smoothing window size ws, 

and the weight parameters w1 and w-1 in SVM. Table 4.2 shows the workflow of win-

dow size selection and parameter optimization. In our study, the best parameters are 

optimized with respect to overall accuracy. First, we test the performance of different 

sliding window sizes w from 3, 5, 7, …, 41 in standard PSSM encoding scheme using 

default C and γ parameters in SVM, and initial weight parameter w1 as 1 and w-1 as 

the ratio of the number of non-interacting residues to that of interacting residues in a 

data set. As shown in Table 4.1, the ratios of the numbers of non-interacting residues 

to those of interacting residues in the RBP86, RBP109, and RBP107 data sets are 

1:3.39, 1:6.01, and 1:7.63, respectively. Second, based on the optimized sliding win-

dow size w selected from the first step, the best combination of cost parameter C and 

kernel parameter γ is determined with initial weight parameters. The log2C and log2γ 

ranged from -3 to 12 and -3 to -15, respectively. Third, the prediction performance of 

different smoothing window sizes ws ranged from 3 to 11 with a step 2 is evaluated 

using initial weight parameters and previously selected parameters (i.e., w, C, and γ). 

Fourth, due to data set imbalance, the weight parameters w1 and w-1 are tuned with 

optimized w, C, γ, and ws. After these steps, the optimal parameters, including sliding 

window size w, cost parameter C, kernel parameter γ, smoothing window size ws, and 

weight parameters w1 and w-1, are determined.
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Table 4.2: The workflow of window size selection and parameter optimization. 

 

 Sliding window size (w) C and γ Smoothing window size (ws) Weight parameter (w1 and w-1) 

Step 1 3≤ w ≤41 (step = 2) Default - Default ratio 

Step 2 Optimized w from step 1 
-3 ≤ log2C ≤ 12 (step = 1) 

- Default ratio 
-3 ≤ log2γ ≤ -15 (step = -1) 

Step 3 Optimized w from step 1 Optimized C and γ from step 2 3 ≤ ws ≤ 11 (step = 2) Default ratio 

Step 4 Optimized w from step 1 Optimized C and γ from step 2 Optimized ws from step 3 1 ≤ w1 ≤ 8# (step = 1), w-1 = 1 

Final Optimized w from step 1 Optimized C and γ from step 2 Optimized ws from step 3 Optimized w1 and w-1 from step4 

 
# In the RBP107 data set, we test w1 ranged from 1 to 10 (step = 1). 
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4.1.5 System architecture of RNAProB 
The system architecture of RNAProB is shown in Figure 4.2. Given a protein se-

quence, RNAProB performs the following steps: 

1. Apply PSI-BLAST to generate a standard PSSM of the protein. 

2. Generate a smoothed PSSM of the protein using an optimized smoothing win-

dow size. 

3. Construct a feature vector for each residue in the protein sequence by an opti-

mized sliding window size, and normalize all feature values in the vector into a 

range of -1 and 1. 

4. Use a trained SVM classifier with optimized parameters (C, γ, w1, w-1) to predict 

the interacting and non-interacting residues in the protein. 

After the above steps, RNAProB outputs the corresponding interacting or 

non-interacting state of each residue in the protein. 

4.1.6 Training and testing 
The performance of RNAProB is assessed by n-fold cross-validation and three-way 

data split. To compare with other approaches, we use five-fold cross-validation to 

evaluate the performance of RNAProB. However, to prevent data-overfitting, a 

three-way data split procedure is applied to assess our predictor. The performance of 

RNAProB is evaluated as follows. 

1. n-fold cross-validation: A data set is randomly divided into five distinct 

non-overlapping sets of positive and negative instances (i.e., n = 5), four of 

which are used to train the predictor and the accuracy of the predictor is eva-

luated on the remaining set. This procedure is repeated five times. 
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Figure 4.2: System architecture of RNAProB. 

VNPKAYPLADAHLTK... VNPKAYPLADAHLTK... 

Generate standard PSSM of the protein by PSI-BLAST 

Encode smoothed PSSM by a smoothing window 

Construct feature vectors by a sliding window 
Normalize all feature values in a range between -1 and 1 

SVM 

VNPKAYPLADAHLTK... 
------------++-... 

+: Interacting residues 
-: Non-interacting residues 
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2. Three-way data split: To avoid overfitting, we use a more stringent three-way 

data split procedure (Ritchie, et al., 2003; Su, et al., 2007) to evaluate the per-

formance of RNAProB. A data set is randomly partitioned into three 

non-overlapping sets: a training set for classifier learning, a validation set for pa-

rameter selection, and a test set for performance evaluation. In this paper, we di-

vide a data set into five distinct sets, three for training, one for validation, and 

one for testing. The procedure is also iterated 5 times. 

4.1.7 Performance evaluation measures 
For comparison with other approaches, we follow the measures used in previous work 

(Kumar, et al., 2008; Wang and Brown, 2006; Wang and Brown, 2006), including 

specificity (Spec.), sensitivity (Sens.), MCC (Matthews, 1975), and overall accuracy 

(Acc). Specificity and sensitivity measure how well the binary classifier recognizes 

negative and positive cases, respectively. A specificity of 100% and a sensitivity of 

100% imply that the classifier identifies all non-interacting residues as non-interacting 

and all interacting residues as interacting, correspondingly. When a predictor’s speci-

ficity increases, its sensitivity often decreases. On the other hand, MCC, which con-

siders both under- and over-predictions, gives a complementary measure of the pre-

diction performance, where MCC = 1 denotes a perfect prediction, MCC = 0 indicates 

a completely random assignment, and MCC = -1 means a perfectly reverse correlation. 

Moreover, overall accuracy presents how well the classifier distinguishes true posi-

tives and true negatives, and 100% overall accuracy denotes a perfect prediction. The 

definitions of specificity, sensitivity, MCC, and overall accuracy are defined in Equa-

tions (4.3), (4.4), (4.5), and (4.6), respectively. In the equations, TP, TN, FP, and FN 

denote the numbers of true positives, true negatives, false positives, and false nega-

tives, correspondingly. 
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  (4.3) 

  (4.4) 

  (4.5) 

  (4.6) 

In addition to the above measures, we also use the receiver operating characteris-

tic (ROC) curve (Swets, 1988) and area under the ROC curve (AUC) (Bradley, 1997) 

to evaluate the performance of standard and smoothed PSSM encoding schemes. In an 

ROC curve plot, the X-axis represents false positive rate (i.e., 1-specificity) and 

Y-axis denotes true positive rate (i.e., sensitivity). We incorporate different thresholds 

in the SVM classifier to plot the true positive rates against false positive rates in an 

ROC curve. Moreover, AUC calculates the area under an ROC curve and the maxi-

mum value of AUC is 1, which denotes a perfect prediction. A random guess results 

in an AUC value close to 0.5.  

To determine the thresholds in the SVM classifiers, we follow the criteria used in 

the previous work. We notice that the thresholds in other approaches are optimized 

with respect to different measures. For example, Kumar et al. (Kumar, et al., 2008) 

and Jeong and Miyano (Jeong and Miyano, 2006) both optimized their results in the 

RBP86 data set based on MCC. In addition, Terribilini et al. (Terribilini, et al., 2006) 

also selected the thresholds with the best MCC for the RBP109 data set. On the other 

hand, Wang and Brown (Wang and Brown, 2006) determined the best thresholds in 

the RBP107 data set based on the average of specificity and sensitivity. Therefore, the 

thresholds in RNAProB are optimized with respect to MCC for RBP86 and RBP109 

data sets, while the threshold is determined by the average of sensitivity and specific-

ity for the RBP107 data set. 
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4.2 Results 

4.2.1 Effect of smoothed PSSM encoding scheme 

Here we compare the performance of smoothed PSSM and standard PSSM encoding 

scheme in terms of MCC, overall accuracy, ROC curve, and AUC for the benchmark 

data sets. Table 4.3 shows the performance comparison of standard PSSM and 

smoothed PSSM using five-fold cross-validation and three-way data split. Evaluated 

by five-fold cross-validation, smoothed PSSM encoding scheme attains overall accu-

racy of 87.99%, 89.70%, and 80.44% compared to 83.39%, 87.38%, and 77.80% by 

standard PSSM encoding for the RBP86, RBP109, and RBP107 data sets, respectively. 

Moreover, smoothed PSSM encoding scheme achieves improvements of 0.06~0.178 

in MCC compared to standard PSSM. Similarly, assessed by three-way data split, 

smoothed PSSM encoding also performs better than standard PSSM in terms of both 

overall accuracy and MCC in the three data sets.  

 

Table 4.3: Performance comparison of standard PSSM and smoothed PSSM. 

 

Data set 

 Smoothed PSSM  Standard PSSM 

 Acc (%) MCC  Acc (%) MCC 

RBP86  87.99 (87.65) 0.68 (0.67)  83.39 (83.35) 0.502 (0.496) 

RBP109  89.70 (89.36) 0.58 (0.56)  87.38 (86.95) 0.45 (0.43) 

RBP107  80.44 (79.84) 0.42 (0.40)  77.80 (77.55) 0.36 (0.35) 
 

§ The performance of incorporating a three-way data split procedure is shown in the 
parentheses. 
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(A) 

 

(B) 

 

(C) 

 
Figure 4.3: ROC curves and AUC of the (A) RBP86, (B) RBP109, and (C) RBP107 data sets. 
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Figure 4.3 (A), (B), and (C) illustrate the ROC curves and AUC of smoothed 

PSSM and standard PSSM encoding schemes for the three benchmark data sets. The 

solid blue line and dotted red line represent the ROC curves plotted according to the 

performance of smoothed PSSM and standard PSSM encoding schemes, respectively. 

When smoothed PSSM encoding scheme is used to represent the proteins, AUC 

achieve 0.929, 0.902, and 0.860 on the RBP86, RBP109, and RBP107 data sets, re-

spectively; on the other hand, standard PSSM only attains AUC of 0.835, 0.824, and 

0.817 

Experiment results demonstrate that our proposed smoothed PSSM encoding 

scheme not only achieves good prediction performance, but also yields a significant 

improvement over standard PSSM encoding. Smoothed PSSM encoding scheme out-

performs standard PSSM by 2.32%~4.60% in overall accuracy and 0.06~0.178 in 

MCC. The consideration of dependency among neighboring residues works well in 

distinguishing interacting residues from non-interacting ones; accordingly, the predic-

tion performance of smoothed PSSM encoding scheme is substantially improved. 

This supports our assumption that the incorporation of the correlation between sur-

rounding residues in PSSM profiles can significantly enhance the performance of 

RNA-binding site prediction. 

4.2.2 RNAProB prediction performance on the benchmark data sets 

For each data set, we used five-fold cross-validation and three-way data split to 

evaluate the prediction performance, which is detailed below and summarized in Ta-

ble 4.4. 

 

 



92 
 

Table 4.4: Performance of five-fold cross-validation and three-way data split for the 
benchmark data sets. 

Data set Measurements Spec. (%) Sens. (%) Acc (%) MCC Threshold 

RBP86 5-fold CV 90.36 79.95 87.99 0.68 0.36 

 3-way data split 90.01 79.64 87.65 0.67 0.36 

RBP109 5-fold CV 93.88 64.62 89.70 0.58 0.35 

 3-way data split 94.14 60.63 89.36 0.56 0.35 

RBP107 5-fold CV 80.87 77.14 80.44 0.42 0.11 

 3-way data split 80.65 73.62 79.84 0.40 0.12 

 

1. Performance comparison with other approaches on the RBP86 data set 

The window sizes, including the sliding window size w and smoothing window size 

ws, and other parameters in RNAProB are selected with respect to overall accuracy. 

First, Figure 4.4 (A) shows the overall accuracy of applying different sliding window 

sizes on the RBP86 data set. The overall accuracy evaluated by both five-fold 

cross-validation and three-way data split grows rapidly before it reaches 77%. How-

ever, a slow growth in the overall accuracy is observed as the size of sliding window 

is greater than 25. Thus, the sliding window size w is set as 25 for the RBP86 data set. 

Next the prediction performance of different smoothing window sizes based on pre-

viously determined sliding window size (i.e. w = 25) is illustrated in Figure 4.4 (B) 

and (C). In Figure 4.4 (B), although there is a very slow growth in the overall accu-

racy, we observe that MCC is improved from 0.50 to 0.67 when the size of smoothing 

window is increased from 1 to 7. Nevertheless, the performance improvement in MCC 

(i.e. improvement < 0.01) is not significant as the size of smoothing window is greater 

than 7. Similar trends in MCC and overall accuracy are observed in Figure 4.4 (C).  



93 
 

(A) 

 
(B) 

 
(C) 

 
Figure 4.4: (A) Accuracy with respect to different sliding window sizes using five-fold 
cross-validation and three-way data split for the RBP86 data set, respectively. (B) The performance of 
the RBP86 data set with different smoothing window sizes by five-fold cross-validation. (C) The per-
formance of the RBP86 data set with different smoothing window sizes by three-way data split. 
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Therefore, we use 7 as the smoothing window size ws in our method. As shown in 

Table 4.4, the performance of RNAProB evaluated by five-fold cross-validation 

achieves MCC, overall accuracy, specificity, and sensitivity of 0.68, 87.99%, 90.36%, 

and 79.95%, (with sliding window size w = 25, smoothing window size ws = 7, cost 

parameter C = 4, kernel function parameter γ = 0.015625, weight parameter w1 = 4, 

w-1 = 1, and threshold value = 0.36), respectively. Besides, using a more rigorous 

three-way data split procedure, our method also attains MCC, overall accuracy, speci-

ficity, and sensitivity of 0.67, 87.65%, 90.01%, and 79.64%, (with w = 25, ws = 7, C 

= 1, γ = 0.03125, w1 = 4, w-1 = 1, and threshold value = 0.36), correspondingly. The 

experiment results of window size selection and parameter optimization on the RBP86 

data set are shown in the supplementary material [see Appendix 2.4]. 

The performance comparison with two other approaches developed on the same 

data set is shown in Table 4.5. Jeong and Miyano (Jeong and Miyano, 2006) used an 

ANN to incorporate evolutionary information and obtained MCC, overall accuracy, 

specificity, and sensitivity of 0.39, 80.20%, 91.04%, and 43.40%, respectively. The 

MCC of their proposed method was further improved to 0.41 based on a weighted 

profile approach. In addition, Kumar et al. developed PPRint (Kumar, et al., 2008), 

which incorporated PSSM profiles in an SVM model, and attained MCC, overall ac-

curacy, specificity, and sensitivity of 0.45, 81.16%, 89.55%, and 53.05%, respectively. 

Compared to these approaches, our method not only achieves high overall accuracy 

but also significantly improves the sensitivity by 26.90%~36.55% using five-fold 

cross-validation. Moreover, RNAProB achieves 0.68 in MCC, compared to 0.45 by 

PPRint and 0.41 by Jeong and Miyano. 
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Table 4.5: Performance comparison of different approaches using five-fold 
cross-validation for the benchmark data sets. 

 

Data set Method Spec. (%) Sens. (%) Acc (%) MCC Threshold 

RBP86 Jeong 2006 91.04 43.4 80.2 0.39 (0.41)* -- 

 PPRint 89.55 53.05 81.16 0.45 -- 

 RNAProB § 90.36 79.95 87.99 0.68 0.36 

 RNAProB # 90.01 79.64 87.65 0.67 0.36 

       
RBP109 RNABindR 93.00 38.00 84.80 0.35 -- 

 RNAProB § 93.88 64.62 89.70 0.58 0.35 

 RNAProB # 94.14 60.63 89.36 0.56 0.35 

RBP107 BindN-PCP& 69.84 66.28 69.32 0.27 -- 

 BindN-ALL& 75.70 65.78 74.25 -- -- 

 PPRint 75.54 70.09 75.43 0.32 -- 

 RNAProB § 80.87 77.14 80.44 0.42 0.11 

 RNAProB # 80.65 73.62 79.84 0.40 0.12 

 
§ presents the performance by five-fold cross-validation. 
# denotes the performance by a three-way data split procedure. 
* indicates the performance of weighted profiles by Jeong and Miyano (Jeong and 
Miyano, 2006). 
& BindN-PCP represents the results based only on physicochemical properties, while 

BindN-ALL shows the performance using physicochemical properties, relative sol-
vent accessible surface area, and BLAST results. 
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2. Performance comparison with RNABindR on the RBP109 data set 

Figure 4.5 illustrates the experiment results of different sliding and smoothing win-

dow sizes on the RBP109 data set. Similar to the RBP86 data set, the RBP109 data set 

exhibits a slow growth in the prediction performance when sliding window size w is 

greater than 25 or smoothing window size ws is larger than 7. Thus, we also select w 

as 25 and ws as 7 for this data set. Table 4.4 shows that RNAProB attains 0.58, 

89.70%, 93.88%, and 64.62% in MCC, overall accuracy, specificity, and sensitivity 

using five-fold cross-validation (with w = 25, ws = 7, C = 4, γ = 0.015625, w1 = 4, w-1 

= 1, and threshold value = 0.35), respectively. Besides, evaluated by three-way data 

split, our method obtains MCC, overall accuracy, specificity, and sensitivity of 0.56, 

89.36%, 94.14%, and 60.63% (with w = 25, ws = 7, C = 8, γ = 0.015625, w1 = 4, w-1 = 

1, and threshold value = 0.35), respectively. The prediction performance of different 

window sizes and parameters on the RBP109 data set is detailed in the supplementary 

material [see Appendix 2.5]. 

Table 4.5 illustrates the performance comparison with RNABindR (Terribilini, et 

al., 2006; Terribilini, et al., 2007), a Naïve Bayes based method developed on the 

same data set. Using five-fold cross-validation, RNAProB achieves 0.58, 89.70%, 

93.88%, and 64.62% in MCC, overall accuracy, specificity, and sensitivity, respec-

tively, compared favourably to 0.35, 84.80%, 93.00%, and 38.00% by RNABindR. 

Particularly, our method significantly outperforms RNABindR by 26.62% in terms of 

sensitivity. 
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(A) 

 
(B) 

 
(C) 

 
Figure 4.5: (A) Accuracy with respect to different sliding window sizes using five-fold 
cross-validation and three-way data split for the RBP109 data set, respectively. (B) The performance of 
the RBP109 data set with different smoothing window sizes by five-fold cross-validation. (C) The per-
formance of the RBP109 data set with different smoothing window sizes by three-way data split. 
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3. Performance comparison with other approaches on the RBP107 data set 

The prediction performance of different sliding and smoothing window sizes on the 

RBP107 data set is demonstrated in Figure 4.6. Similar to the RBP86 data set, we ob-

serve that the overall accuracy converges as sliding window size is greater than 25 on 

the RBP107 data set in Figure 4.6 (B). Moreover, the MCC shows a slight peak when 

the smoothing window size reaches 7 in Figure 4.6 (C). Thus RNAProB also selects w 

as 25 and ws as 7 for this data set. As illustrated in Table 4.4, our method reaches 0.42, 

80.44%, 80.87%, and 77.14% in MCC, overall accuracy, specificity, and sensitivity by 

five-fold cross-validation (with w = 25, ws = 7, C = 4, γ = 0.015625, w1 = 4, w-1 =1, 

and threshold value = 0.11), respectively. In addition, RNAProB also attains MCC, 

overall accuracy, specificity, and sensitivity of 0.40, 79.84%, 80.65%, and 73.62% by 

three-way data split (with w = 25, ws = 7, C = 8, γ = 0.015625, w1 = 4, w-1 = 1, and 

threshold value = 0.12), correspondingly. The detailed experiment results on the 

RBP109 data set are summarized in the supplementary material [see Appendix 2.6]. 

 Table 4.5 compares the performance of RNAProB with other approaches on the 

RBP107 data set. Based on physicochemical properties, BindN (i.e. referred to as 

BindN-PCP in Table 4.5) attains MCC, overall accuracy, specificity, and sensitivity of 

0.27, 69.32%, 69.84%, and 66.28%, respectively (Wang and Brown, 2006). Incorpo-

rated with more biological features, BindN (i.e. denoted as BindN-ALL in Table 4.5) 

further improves specificity and accuracy by 5.86% and 4.93% with a slight decrease 

in sensitivity (Wang and Brown, 2006). PPRint improves sensitivity to 70.09% with 

the other measures performed comparable to those of BindN-ALL. Our method sig-

nificantly outperforms the-state-of-the-art approaches by 0.10, 5.10%, 5.33%, and 

7.05% in MCC, overall accuracy, specificity, and sensitivity, respectively. This dem-
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onstrates that RNAProB not only achieves accurate performance, but also substan-

tially improves sensitivity in the prediction of RNA-binding sites. 
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(A) 

 
(B) 

 
(C) 

 
Figure 4.6: (A) Accuracy with respect to different sliding window sizes using five-fold 
cross-validation and three-way data split for the RBP107 data set, respectively. (B) The performance of 
the RBP107 data set with different smoothing window sizes by five-fold cross-validation. (C) The per-
formance of the RBP107 data set with different smoothing window sizes by three-way data split. 
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4.3 Discussion 

4.3.1 Physicochemical preferences of interacting and non-interacting 

residues 

In this section, we examine the physicochemical properties of RNA interacting and 

non-interacting residues. Figure 4.7 (A), (B), and (C) show the amino acid composi-

tions of interacting and non-interacting residues in the RBP86, RBP109, and RBP107 

data sets, respectively. It is observed that interacting and non-interacting residues 

show preferences for different amino acids. RNA interacting residues tend to have 

high compositions for Arginine (R), Asparagine (N), Glutamine (Q), Glycine (G), 

Histidine (H), and Lysine (K). For example, there are relatively high proportions for 

Arginine (R) and Lysine (K), which may interact with negatively charged RNA with 

their positive side chains. In addition, the smallest amino acid, Glycine (G), also has a 

high composition in interacting residues because it rotates easily and provides flexi-

bility to interact with RNA molecules. Moreover, positively charged Histidine (H) can 

have an aromatic interaction with RNA molecules due to its specific pKa value and 

imidazole ring. On the other hand, non-interacting residues show slight preferences 

for Alanine (A), Aspartic acid (D), Glutamic acid (E), Isoleucine (I), Leucine (L), 

Phenylalanine (F), and Valine (V). Cysteine (C), Aspartic acid (D), and Glutamic acid 

(E) are favoured by non-interacting residues because of their negatively charged side 

chains. In addition, although Kumar et al. (Kumar, et al., 2008) reported that Aspartic 

acid (D) showed no preference for interacting or non-interacting residues in their main 

data set (i.e., the RBP86 data set in our study), we observed that the Aspartic acid (D)  
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(A) The RBP86 data set 

 
(B) The RBP86 data set 

 
(C) The RBP107 data set 

 
Figure 4.7: Amino acid compositions of interacting and non-interacting residues in 
the benchmark data sets. 
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composition of non-interacting residues is significantly higher than that of interacting 

residues in both of the RBP109 and RBP107 data sets. Our analysis indicates that the 

finding from Kumar et al. could be a bias from the data set. 

To further analyze the physicochemical properties of the RNA interacting and 

non-interacting residues, each amino acid is classified into one of the four groups: 

acidic (DE), basic (HKR), polar (CGNQSTY), and non-polar (AFILMPVW) (Yu, et 

al., 2006). Figure 4.8 shows the grouped amino acid compositions of interacting and 

non-interacting residues for the benchmark data sets. It is observed among the three 

data sets that basic and polar amino acids tend to interact with RNA, and acidic and 

non-polar amino acids are not favoured by RNA molecules. Particularly, our analysis 

shows that the compositions of basic amino acids exhibit significantly 

over-represented patterns for interacting residues.  

Furthermore, we inspect the amino acid compositions of proteins that interact 

with different RNA molecules. The proteins in the RBP109 data set are divided into 

four categories according to the definition in Terribilini et al (Terribilini, et al., 2006). 

Figure 4.9 (A), (B), (C), and (D) show the amino acid compositions of (A) rRNA, (B) 

mRNA, snRNA, dsRNA, and siRNA, (C) tRNA, and (D) viralRNA, respectively. It is 

observed that viralRNA group shows a different amino acid composition compared to 

the other groups. Proteins that interact with viralRNA evolve fast and induce confor-

mational changes in the active sites. Thus, these proteins exhibit a specific mechanism 

to interact with viralRNA. 
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(A) The RBP86 data set 

 
(B) The RBP109 data set 

 
(C) The RBP107 data set 

 
Figure 4.8: Grouped amino acid compositions of interacting and non-interacting 
residues in the benchmark data sets.
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(A) The rRNA group (55 protein chains with 2,392 
interacting and 5,302 non-interacting residues). 
 

 

(B) The mRNA, snRNA, dsRNA, and siRNA group 
(23 protein chains with 394 interacting and 
3,320 non-interacting residues). 

 
(C) The tRNA group (19 protein chains with 646 

interacting and 9,095 non-interacting residues). 

 

(D) The viralRNA group (12 protein chains with 149 
interacting and 3,809 non-interacting residues). 

 
 

Figure 4.9: Amino acid compositions of interacting and non-interacting residues in four different RNA groups of the RBP109 data set. 
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4.3.2 Comparison of smoothed PSSM and standard PSSM 

Here we examine the correlation between interacting and non-interacting residues for 

both smoothed PSSM and standard PSSM encoding schemes. We incorporate Pearson 

correlation coefficient (PCC) (Chang, et al., 2008) to measure the correlation between 

the evolutionary information of interacting and non-interacting for an amino acid. For 

each amino acid a, we use two vectors, X and Y, to present the sum of PSSM evolu-

tionary information vectors for interacting and non-interacting amino acid a, respec-

tively. The Pearson correlation coefficient for a series of n measurements for variables 

X and Y is defined in Equation (4.7). 

 (4.7) 

Figure 4.10 shows the Pearson correlation coefficient between interacting and 

non-interacting evolutionary information vectors based on different PSSM encoding 

schemes in the benchmark data sets. It is observed that the correlation coefficients 

calculated from smoothed PSSM encoding scheme are lower than those from standard 

PSSM, especially for Cysteine (C) and Tryptophan (W). In Figure 4.10 (A), smoothed 

PSSM encoding attains lower correlation coefficients not only in interacting residues, 

such as Arginine (R), Asparagine (N), Glutamine (Q), Glycine (G), Histidine (H), and 

Lysine (K), but also in non-interacting residues, including Alanine (A), Aspartic acid 

(D), Glutamic acid (E), Isoleucine (I), Leucine (L), Phenylalanine (F), and Valine (V). 

Similarly, Figure 4.10 (B) and (C) also show lower correlation coefficients between 

interacting and non-interacting residues based on smoothed PSSM encoding. Fur-

thermore, it is observed that the correlation coefficients calculated with smoothing 

window size ws = 7 are usually lower than those generated by other smoothing win-

dow sizes. If an encoding scheme leads to a lower Pearson correlation coefficient, it 
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indicates that the encoding scheme can better resolve ambiguity in discriminating in-

teracting residues from non-interacting ones. Our analysis lends support to our as-

sumption that smoothed PSSM encoding scheme can improve the recognition RNA 

interacting and non-interacting sites by modelling the dependency from surrounding 

residues. 
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(A) The RBP86 data set 

 

(B) The RBP109 data set 

 
(C) The RBP107 data set 

 

 

 

Figure 4.10: Pearson correlation coefficient between interacting and non-interacting 
evolutionary vectors generated by different PSSM encoding schemes in the bench-
mark data sets. 
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4.4 Conclusion 

In this chapter, we present RNAProB, which combines a new smoothed PSSM en-

coding scheme with a SVM model for prediction of RNA-binding sites in proteins. In 

a standard PSSM profile, evolutionary information is calculated based on an assump-

tion that each position is independent of others. However, the correlation or depend-

ency from surrounding residues is incorporated in the proposed smoothed PSSM en-

coding. Experiment results show that the prediction performance of smoothed PSSM 

encoding performs better than the state-of-the-art approaches on the benchmark data 

sets. Evaluated by five-fold cross-validation, RNAProB outperforms the other ap-

proaches by 0.10~0.23 in MCC, 4.90%~6.83% in overall accuracy, and 0.88%~5.33% 

in specificity. Most notably, our method significantly improves sensitivity by 26.90%, 

26.62%, and 7.05% for the RBP86, RBP109, and RBP107 data sets, respectively. 

Performance improvement in RNAProB not only demonstrates that smoothed PSSM 

can better resolve the ambiguity in discriminating RNA interacting and 

non-interacting residues, but also supports our assumption that consideration of cor-

relation between neighboring residues can significantly enhance prediction accuracy. 

To prevent data overfitting, a rigorous three-way data split procedure is incorporated 

to evaluate our prediction performance. The proposed method can be used in other 

research topics, such as DNA-binding site prediction, protein-protein interaction, and 

prediction of post-translational modification sites. 
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Appendix 1.1 

The Second Encoding Scheme for Secondary Struc-

ture Elements 

To depict secondary structure elements (SSE), i.e., α-helix (H), β-strand (E), and loop 

(L), in a protein, three descriptors, composition (C), transition (T), and distribution 

(D), are used to encode predictions from HYPROSP II using Equations (1), (2), and 

(3), respectively [1].  

{ }( ) 100%,  100%,  H,E,Li i ii
C n N C i= × = ∈∑          (1) 

( ) { }1 100%,  , H,E,L ,  i j i jT t N i j i j↔ ↔ = − × ∈ ≠          (2) 

( ) { } { }% % 100%,  H,E,L ,  1, 25,50,75,100p p
i iD d N i p= × ∈ = ,      (3) 

where Ci represents the composition of SSE type i; ni is the number of SSE type i in a 

protein; N is the total number of amino acid residues in a protein; Ti↔j measures the 

transition between SSE type i and j; ti↔j is the number of transitions between SSE type 

i and j; %p
iD  gives the distribution of p% located SSE type i; and %p

id  is the posi-

tion of p% located SSE type i in a protein. 

For illustration purposes, a hypothetical SSE sequence is shown in Figure 1.1S. The 

sequence includes 12 α-helix residues (nH = 12) and 8 β-strand residues (nE = 8). The 

percent compositions are calculated as follows: nH / (nH + nE + nL) × 100% = 60.0% 

for H, nE / (nH + nE + nL) × 100% = 40.0% for E, and nL / (nH + nE + nL) × 100% = 

0.0% for L. These three numbers represent the first descriptor, C. The second de-

scriptor, T, characterizes the percent frequency that amino acids of a particular sec-
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ondary structure element type are followed by a different type.  In this case, there are 

4 transitions of H to E or E to H, TH↔E is represented by (4 / 19) × 100.0% = 21.1%. 

TH↔L and TE↔L are equal to 0.0%, respectively. The third descriptor, D, measures the 

chain length within which the first, 25%, 50%, 75%, and 100% of the amino acids of 

a particular secondary structure element type are located. In Figure 2.1S, the first per-

cent residue of α-helices coincides with the beginning of the chain, so the 1%
HD  de-

scriptor equals 0.0%. Twenty-five percent of α-helix residues are contained within the 

first 3 residues of the protein chain, so the second number equals (3 / 20) × 100.0% = 

15.0%. Fifty percent of α-helix residues are within the first 11 residues of the chain; 

thus, the third number is (11 / 20) × 100.0% = 55.0%. The fourth and fifth numbers of 

the distribution descriptor are 70.0% and 100.0%, respectively. Similarly, analogous 

numbers for β-strand and loop residues are calculated. 

 

Figure 1.1S: A hypothetical SSE sequence that illustrates the derivation of the SSE2 
feature vector for a protein. 
 

SSE sequence  H H H H E E E E E H H H H H E E E H H H 

SSE index  1    5     10     15     20 

Index for H  1 2 3 4      5 6 7 8 9    10 11 12 

Index for E      1 2 3 4 5      6 7 8    

H ↔ E transitions                      
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Appendix 1.2 

Data Sets 

1. We provide the data sets for protein subcellular localization prediction used in 

the training and testing of the proposed method. Table 1.1S lists the links to 

download the benchmark data sets, the non-redundant data set, and the evalua-

tion data sets described in the main paper. 

 

 

Table 1.1S: The benchmark, non-redundant, and evaluation data sets used in PSL101. 
 

  
Data Set Number of  

Proteins Link 

  PS1302 1302 http://bio-cluster.iis.sinica.edu.tw/~bioapp/PSL101/dataset/PS1302.fasta 

PS1444 1444 http://bio-cluster.iis.sinica.edu.tw/~bioapp/PSL101/dataset/PS1444.fasta 
  NR755 0755 http://bio-cluster.iis.sinica.edu.tw/~bioapp/PSL101/dataset/NR755.fasta 

NR828 0828 http://bio-cluster.iis.sinica.edu.tw/~bioapp/PSL101/dataset/NR828.fasta 
  EV90_high 0090 http://bio-cluster.iis.sinica.edu.tw/~bioapp/PSL101/dataset/EV90_high.fasta 

EV153_low 0153 http://bio-cluster.iis.sinica.edu.tw/~bioapp/PSL101/dataset/EV153_low.fasta 

EV243_all 0243 http://bio-cluster.iis.sinica.edu.tw/~bioapp/PSL101/dataset/EV243_all.fasta 
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Appendix 1.3 

Selected Feature Combinations 

The features selected from PSL101 for the PS1302 data set using a three-way data 

split procedure are shown in Figure 1.2S. The selected features correspond well to 

those discussed in the main paper. In Figure 1.2S, PSL101 also selects SIG, TMA, 

and RSA as the optimal features to distinguish cytoplasmic and inner membrane pro-

teins. In addition, RSA, TMA, and SEC are used in the discrimination of proteins lo-

calized in the inner membrane and extracellular space. The results indicate that the 

selected features are highly correlated with the biological insights derived from 

Gram-negative bacteria translocation pathways. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2S. Feature combinations derived from the PS1302 data set using a 
three-way data split procedure. Selected general and compartment-specific features 
are represented by filled circles and triangles, respectively. 
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Appendix 2.1 

The RBP86 Data Set 

2BBV_C 1F7U_A 1I6U_A 1JJ2_O 1JJ2_S 
1A9N_D 1F7Y_A 1IVS_B 1JJ2_P 1JJ2_U 
1ASZ_B 1F8V_A 1JBR_A 1JJ2_Q 1JJ2_W 
1AV6_A 1FEU_D 1JID_A 1JJ2_R 1JJ2_Y 
1B23_P 1FJG_B 1JJ2_1 1JJ2_T 1K8W_A 
1B7F_B 1FJG_D 1JJ2_2 1JJ2_V 1KQ2_M 
1C0A_A 1FJG_L 1JJ2_A 1JJ2_X 1M5O_F 
1C9S_L 1FJG_M 1JJ2_B 1JJ2_Z 1M8Y_B 
1CVJ_H 1FJG_S 1JJ2_C 1KNZ_A 1MMS_A 
1DDL_C 1FJG_T 1JJ2_D 1LNG_A 1N35_A 
1DFU_P 1G1X_F 1JJ2_E 1M8V_M 1NB7_B 
1DI2_B 1G1X_G 1JJ2_H 1MJI_A 1QTQ_A 
1DRZ_A 1G1X_H 1JJ2_I 1MZP_A 1SER_B 
1DUL_A 1G2E_A 1JJ2_J 1N78_B 2A8V_B 
1E6T_C 1H38_D 1JJ2_K 1QF6_A 1JJ2_S 
1E7K_B 1H3E_A 1JJ2_L 1QU2_A 1JJ2_U 
1EC6_A 1H4S_B 1JJ2_M 1URN_C 1JJ2_W 
1EFW_B 1HQ1_A 1JJ2_N 2FMT_B 1JJ2_Y 
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Appendix 2.2 

The RBP109 Data Set 

1A34_A 1FJG_D 1H3E_A 1JJ2_O 1N78_A 
1A9N_A 1FJG_E 1HR0_W 1JJ2_P 1NB7_A 
1ASY_A 1FJG_G 1I6U_A 1JJ2_Q 1OOA_A 
1AV6_A 1FJG_I 1J1U_A 1JJ2_R 1PGL_2 
1B23_P 1FJG_J 1J2B_A 1JJ2_S 1Q2R_A 

1COA_A 1FJG_K 1JBR_A 1JJ2_T 1QF6_A 
1DDL_A 1FJG_L 1JID_A 1JJ2_U 1QTQ_A 
1DFU_P 1FJG_M 1JJ2_1 1JJ2_V 1R3E_A 
1DI2_A 1FJG_N 1JJ2_2 1JJ2_W 1RC7_A 
1E6T_A 1FJG_P 1JJ2_A 1JJ2_X 1RMV_A 
1E7K_A 1FJG_Q 1JJ2_B 1JJ2_Y 1RPU_A 
1E8O_A 1FJG_S 1JJ2_C 1JJ2_Z 1S03_G 
1E8O_B 1FJG_T 1JJ2_D 1K8W_A 1SER_A 
1EC6_A 1FJG_V 1JJ2_E 1KNZ_A 1SI3_A 
1EIY_A 1FXL_A 1JJ2_F 1KQ2_A 1UN6_B 
1EIY_B 1G1X_A 1JJ2_G 1LAJ_A 1URN_A 
1F7U_A 1G1X_B 1JJ2_H 1LNG_A 1UVJ_A 
1F8V_A 1G1X_C 1JJ2_I 1M8V_A 2A8V_A 
1FEU_A 1G1X_G 1JJ2_J 1MFQ_C 2BBV_C 
1FFY_A 1GAX_A 1JJ2_K 1MMS_A 2BBV_F 
1FJG_B 1GTF_Q 1JJ2_L 1MZP_A 2FMT_A 
1FJG_C 1H2C_A 1JJ2_M 1N35_A 1N78_A 
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Appendix 2.3 

The RBP107 Data Set 

1A1V_A 1GAX_A 1JJ2_O 1RMV_A 1XMQ_M 
1A34_A 1H38_A 1JJ2_P 1RPU_A 1XMQ_N 
1A9N_A 1HC8_A 1JJ2_Q 1S72_H 1XMQ_P 
1APG_A 1HQ1_A 1JJ2_R 1SER_B 1XMQ_Q 
1AQ3_A 1I6U_A 1JJ2_S 1SI2_A 1XMQ_R 
1ASY_A 1JBR_A 1JJ2_T 1TTT_A 1XMQ_S 
1BMV_2 1JID_A 1JJ2_U 1U0B_B 1XMQ_T 
1C0A_A 1JJ2_Y 1JJ2_V 1URN_A 1XMQ_V 
1C9S_A 1JJ2_z 1JJ2_W 1UVJ_A 1XOK_C 
1CVJ_A 1JJ2_A 1JJ2_X 1WMQ_A 1XOK_D 
1CWP_A 1JJ2_1 1JJ2_G 1WNE_A 1YTU_A 
1DDL_A 1JJ2_B 1K8W_A 1XMQ_B 1YVP_A 
1DFU_P 1JJ2_2 1KNZ_A 1XMQ_C 1ZE2_A 
1DI2_A 1JJ2_C 1KOG_A 1XMQ_D 1ZE2_B 
1E7K_A 1JJ2_D 1L9A_A 1XMQ_E 1ZJW_A 
1E8O_A 1JJ2_E 1M8Y_A 1XMQ_F 2A8V_A 
1E8O_B 1JJ2_I 1MFQ_C 1XMQ_G 2BBV_F 
1EC6_A 1JJ2_J 1MZP_A 1XMQ_H 2BH2_A 
1F8V_A 1JJ2_K 1OOA_A 1XMQ_I 1XMQ_M 
1FFY_A 1JJ2_L 1P6V_A 1XMQ_J  
1FKA_O 1JJ2_M 1Q2R_A 1XMQ_K  
1G59_A 1JJ2_N 1QF6_A 1XMQ_L  
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Appendix 2.4 

Experiment results of the RBP86 

 
Table A 1: The detail performance of RBP86 with (A) different sliding window size 
under five-fold cross-validation (w1 = 3.39, w-1 = 1, other parameters: default value) 
and (B) different sliding window size under three-way data split (w1 = 3.39, w-1 = 1, 
other parameters: default value). 

(A) Five-fold cross-validation 

Window Size Spec. Sens. MCC Acc 
3 73.38% 66.16% 0.35  71.74% 
5 75.60% 66.94% 0.38  73.63% 
7 76.81% 67.62% 0.40  74.72% 
9 77.30% 69.33% 0.41  75.49% 
11 77.92% 68.96% 0.42  75.88% 
13 78.06% 69.00% 0.42  76.00% 
15 78.71% 69.33% 0.43  76.58% 
17 78.77% 69.48% 0.43  76.65% 
19 78.87% 69.40% 0.43  76.71% 
21 78.75% 69.46% 0.43  76.64% 
23 78.93% 69.94% 0.44  76.88% 
25 79.22% 69.75% 0.44  77.06% 
27 79.24% 69.88% 0.44  77.11% 
29 79.38% 69.66% 0.44  77.17% 
31 79.26% 69.70% 0.44  77.08% 
33 79.36% 69.77% 0.44  77.18% 
35 79.41% 69.86% 0.44  77.24% 
37 79.77% 69.55% 0.45  77.45% 
39 79.50% 69.81% 0.44  77.30% 
41 79.66% 70.05% 0.45  77.47% 
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(B) Three-way data split 

Window Size Spec. Sens. MCC Acc 
3 73.59% 66.20% 0.35  71.91% 
5 75.59% 66.24% 0.37  73.46% 
7 76.77% 66.81% 0.39  74.50% 
9 76.93% 68.08% 0.40  74.91% 
11 77.70% 68.13% 0.41  75.52% 
13 78.17% 68.35% 0.42  75.93% 
15 78.44% 68.43% 0.42  76.16% 
17 78.60% 68.59% 0.42  76.32% 
19 78.77% 68.65% 0.43  76.46% 
21 78.85% 69.24% 0.43  76.66% 
23 79.20% 68.78% 0.43  76.83% 
25 79.38% 69.35% 0.44  77.10% 
27 79.47% 69.40% 0.44  77.18% 
29 79.45% 69.26% 0.44  77.13% 
31 79.41% 69.70% 0.44  77.20% 
33 79.40% 69.33% 0.44  77.11% 
35 79.58% 69.13% 0.44  77.21% 
37 79.82% 69.00% 0.44  77.36% 
39 79.67% 69.33% 0.44  77.32% 
41 79.78% 69.37% 0.44  77.42% 
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(A) Five-fold cross-validation. 

 
 
 
(B) Three-way data split. 

 
Figure A 1: The performance with different combination of C and γ in the RBP86 da-
ta set under (A) five-fold cross-validation and (B) three-way data split. 
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Table A 2. The detail performance of the RBP86 with (A) different smoothing win-
dow size under five-fold cross-validation (w = 25, log C = 2, log γ = -6, w1 = 3.39, 
w-1 = 1, other parameters: default value) and (B) different smoothing window size 
under three-way data split (w = 25, log C = 0, log γ = -5, w1 = 3.39, w-1 = 1, other 
parameters: default value). 

(A) Five-fold cross-validation. 

Smoothing Window 
Size 

Spec. Sens. MCC Acc 

1 94.37% 48.18% 0.50  83.86% 
3 92.95% 69.64% 0.64  87.64% 
5 91.67% 76.58% 0.67  88.23% 
7 90.12% 80.36% 0.67  87.90% 
9 89.28% 82.82% 0.68  87.81% 
11 88.34% 84.37% 0.68  87.44% 

 

(B) Three-way data split. 

Smoothing Window 
Size 

Spec. Sens. MCC Acc 

1 96.40% 38.68% 0.46  83.26% 
3 92.14% 66.53% 0.60  86.31% 
5 90.72% 76.95% 0.66  87.58% 
7 89.65% 80.34% 0.67  87.53% 
9 88.62% 82.84% 0.67  87.31% 
11 88.04% 83.87% 0.67  87.09% 

 
 



137 
 

Table A 3. The detail performance of the RBP86 with (A) different weight parameter 
w1 under five-fold cross-validation (w = 25, log C = 2, log γ = -6, ws = 7, w-1 = 1, 
other parameters: default value) and (B) different weight parameter w1 under 
three-way data split (w = 25, log C = 0, log γ = -5, ws = 7, w-1 = 1, other parameters: 
default value). 

(A) Five-fold cross-validation. 

W1 Spec. Sens. MCC Acc 
1 96.01% 62.26% 0.65  88.33% 
2 92.33% 75.28% 0.67  88.45% 
3 90.60% 79.73% 0.68  88.13% 
4 89.80% 81.37% 0.68  87.88% 
5 89.42% 81.74% 0.67  87.67% 
6 89.23% 82.05% 0.67  87.60% 
7 89.12% 82.20% 0.67  87.55% 
8 89.04% 82.18% 0.67  87.48% 

 
(B) Three-way data split. 

W1 Spec. Sens. MCC Acc 
1 96.79% 56.41% 0.62  87.60% 
2 92.17% 73.53% 0.66  87.93% 
3 90.18% 78.94% 0.66  87.62% 
4 89.07% 81.68% 0.67  87.38% 
5 88.56% 82.44% 0.67  87.17% 
6 88.22% 82.73% 0.66  86.97% 
7 88.08% 82.86% 0.66  86.89% 
8 88.02% 82.97% 0.66  86.87% 
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Table A 4. The RBP86 data set experiment results with –b option in SVM for (A) 
smoothed PSSM by five-fold cross-validation, (B) standard PSSM by five-fold 
cross-validation, (C) smoothed PSSM by three-way data split, and (D) standard PSSM 
by three-way data split. 

(A) The experiment result of smoothed PSSM with –b option in SVM by five-fold 
cross-validation. 

Threshold Spec. Sens. MCC Threshold Spec. Sens. MCC 
0 0.00% 100.00% 0.00 0.51 93.83% 71.21% 0.67 

0.01 13.08% 99.54% 0.17 0.52 93.96% 70.71% 0.67 
0.02 27.49% 99.01% 0.27 0.53 94.18% 70.07% 0.67 
0.03 39.48% 98.16% 0.34 0.54 94.43% 69.29% 0.67 
0.04 48.89% 97.31% 0.40 0.55 94.61% 68.78% 0.67 
0.05 56.51% 96.67% 0.45 0.56 94.74% 68.13% 0.66 
0.06 62.70% 96.06% 0.49 0.57 94.90% 67.21% 0.66 
0.07 67.71% 95.10% 0.53 0.58 95.08% 66.35% 0.66 
0.08 70.92% 94.53% 0.55 0.59 95.23% 65.41% 0.65 
0.09 73.43% 93.76% 0.57 0.6 95.35% 64.89% 0.65 

0.1 75.29% 93.15% 0.59 0.61 95.58% 64.14% 0.65 
0.11 77.03% 92.64% 0.60 0.62 95.79% 63.35% 0.65 
0.12 78.46% 92.05% 0.61 0.63 95.94% 62.70% 0.65 
0.13 79.69% 91.46% 0.62 0.64 96.10% 61.93% 0.65 
0.14 80.71% 90.98% 0.63 0.65 96.32% 60.68% 0.64 
0.15 81.67% 90.56% 0.64 0.66 96.52% 59.63% 0.64 
0.16 82.48% 90.06% 0.64 0.67 96.72% 58.67% 0.64 
0.17 83.23% 89.45% 0.65 0.68 96.88% 57.42% 0.63 
0.18 83.76% 88.88% 0.65 0.69 97.06% 56.44% 0.63 
0.19 84.33% 88.53% 0.65 0.7 97.17% 55.36% 0.62 

0.2 84.87% 88.03% 0.66 0.71 97.37% 54.07% 0.62 
0.21 85.42% 87.52% 0.66 0.72 97.53% 52.74% 0.61 
0.22 85.89% 87.00% 0.66 0.73 97.67% 51.29% 0.60 
0.23 86.34% 86.67% 0.67 0.74 97.79% 50.00% 0.59 
0.24 86.73% 86.25% 0.67 0.75 97.96% 48.71% 0.59 
0.25 87.14% 85.73% 0.67 0.76 98.06% 46.61% 0.57 
0.26 87.48% 85.22% 0.67 0.77 98.20% 44.51% 0.56 
0.27 87.86% 84.63% 0.67 0.78 98.37% 42.78% 0.55 
0.28 88.20% 84.15% 0.67 0.79 98.52% 41.20% 0.54 
0.29 88.50% 83.65% 0.67 0.8 98.61% 39.01% 0.53 

0.3 88.76% 83.17% 0.67 0.81 98.75% 37.41% 0.52 
0.31 89.06% 82.71% 0.68 0.82 98.87% 35.49% 0.50 
0.32 89.37% 82.14% 0.68 0.83 98.95% 33.69% 0.49 
0.33 89.54% 81.87% 0.68 0.84 99.03% 31.94% 0.48 
0.34 89.77% 81.33% 0.68 0.85 99.18% 29.62% 0.46 
0.35 90.06% 80.71% 0.68 0.86 99.34% 27.50% 0.45 
0.36 90.36% 79.95% 0.68 0.87 99.44% 25.15% 0.43 
0.37 90.66% 79.18% 0.67 0.88 99.55% 23.05% 0.41 
0.38 90.94% 78.57% 0.67 0.89 99.63% 21.04% 0.39 
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0.39 91.20% 77.87% 0.67 0.9 99.71% 18.76% 0.37 
0.4 91.47% 77.32% 0.67 0.91 99.77% 16.62% 0.35 

0.41 91.78% 76.86% 0.68 0.92 99.81% 14.45% 0.33 
0.42 91.99% 76.29% 0.67 0.93 99.86% 12.52% 0.31 
0.43 92.22% 75.83% 0.68 0.94 99.90% 10.66% 0.28 
0.44 92.40% 75.15% 0.67 0.95 99.94% 8.91% 0.26 
0.45 92.67% 74.54% 0.67 0.96 99.95% 7.25% 0.23 
0.46 92.85% 73.99% 0.67 0.97 99.97% 5.58% 0.21 
0.47 92.99% 73.42% 0.67 0.98 99.98% 3.96% 0.17 
0.48 93.21% 72.77% 0.67 0.99 99.99% 1.88% 0.12 
0.49 93.38% 72.22% 0.67 1 100.00% 0.00% 0.00 

0.5 93.70% 71.41% 0.67     
 
(B) The experiment result of standard PSSM with –b option in SVM by five-fold 

cross-validation. 

Threshold Spec. Sens. MCC Threshold Spec. Sens. MCC 
0 0.00% 100.00% 0.00 0.51 95.84% 43.91% 0.49 

0.01 0.73% 100.00% 0.04 0.52 96.08% 43.06% 0.49 
0.02 4.15% 99.65% 0.09 0.53 96.37% 42.16% 0.49 
0.03 8.98% 99.08% 0.13 0.54 96.54% 40.94% 0.48 
0.04 14.75% 98.29% 0.17 0.55 96.74% 40.11% 0.48 
0.05 20.42% 97.31% 0.20 0.56 96.90% 39.43% 0.48 
0.06 26.66% 95.93% 0.23 0.57 97.07% 38.59% 0.48 
0.07 33.99% 94.48% 0.27 0.58 97.19% 37.63% 0.47 
0.08 39.66% 92.93% 0.29 0.59 97.36% 36.91% 0.47 
0.09 44.46% 91.51% 0.31 0.6 97.48% 36.21% 0.47 

0.1 49.17% 90.30% 0.34 0.61 97.64% 35.25% 0.46 
0.11 53.23% 88.68% 0.35 0.62 97.83% 34.30% 0.46 
0.12 56.49% 87.22% 0.37 0.63 97.94% 33.60% 0.46 
0.13 59.52% 86.08% 0.38 0.64 98.08% 32.82% 0.45 
0.14 62.39% 84.41% 0.39 0.65 98.26% 31.59% 0.45 
0.15 64.93% 83.10% 0.40 0.66 98.34% 30.91% 0.44 
0.16 67.26% 81.66% 0.41 0.67 98.42% 30.06% 0.44 
0.17 69.34% 80.43% 0.42 0.68 98.51% 29.07% 0.43 
0.18 71.17% 78.59% 0.43 0.69 98.58% 28.04% 0.42 
0.19 73.13% 77.30% 0.43 0.7 98.65% 27.04% 0.42 

0.2 75.02% 76.03% 0.44 0.71 98.71% 26.36% 0.41 
0.21 76.55% 74.58% 0.45 0.72 98.79% 25.48% 0.41 
0.22 77.71% 73.47% 0.45 0.73 98.86% 24.54% 0.40 
0.23 79.02% 72.29% 0.46 0.74 98.94% 23.82% 0.39 
0.24 80.35% 71.28% 0.47 0.75 99.05% 23.14% 0.39 
0.25 81.46% 70.16% 0.47 0.76 99.09% 22.53% 0.39 
0.26 82.46% 69.11% 0.48 0.77 99.13% 21.63% 0.38 
0.27 83.42% 67.78% 0.48 0.78 99.19% 20.86% 0.37 
0.28 84.42% 66.97% 0.48 0.79 99.23% 20.14% 0.37 
0.29 85.33% 65.78% 0.49 0.8 99.27% 19.40% 0.36 
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0.3 86.04% 64.65% 0.49 0.81 99.32% 18.43% 0.35 
0.31 86.89% 63.42% 0.49 0.82 99.37% 17.64% 0.34 
0.32 87.61% 62.26% 0.49 0.83 99.40% 16.97% 0.34 
0.33 88.05% 61.62% 0.49 0.84 99.48% 16.00% 0.33 
0.34 88.76% 60.55% 0.50 0.85 99.55% 15.11% 0.32 
0.35 89.44% 59.52% 0.50 0.86 99.60% 14.19% 0.31 
0.36 90.03% 58.38% 0.50 0.87 99.64% 13.05% 0.30 
0.37 90.55% 57.27% 0.50 0.88 99.65% 12.13% 0.29 
0.38 91.10% 56.30% 0.50 0.89 99.70% 10.75% 0.27 
0.39 91.66% 55.34% 0.50 0.9 99.74% 9.52% 0.26 

0.4 92.10% 54.33% 0.50 0.91 99.79% 8.12% 0.24 
0.41 92.59% 53.06% 0.50 0.92 99.84% 7.05% 0.22 
0.42 92.92% 52.21% 0.50 0.93 99.86% 6.22% 0.21 
0.43 93.27% 51.34% 0.50 0.94 99.94% 5.30% 0.20 
0.44 93.65% 50.35% 0.50 0.95 99.95% 4.29% 0.18 
0.45 94.11% 49.43% 0.50 0.96 99.97% 3.46% 0.16 
0.46 94.53% 48.27% 0.50 0.97 99.99% 2.50% 0.14 
0.47 94.83% 47.48% 0.50 0.98 100.00% 1.44% 0.11 
0.48 95.08% 46.56% 0.50 0.99 100.00% 0.46% 0.06 
0.49 95.35% 45.84% 0.50 1 100.00% 0.00% 0.00 

0.5 95.70% 44.44% 0.49     
 
(C) The experiment result of smoothed PSSM with –b option in SVM by three-way 

data split 

Threshold Spec. Sens. MCC Threshold Spec. Sens. MCC 
0 0.00% 100.00% 0.00 0.51 93.44% 70.88% 0.66 

0.01 6.91% 99.87% 0.13 0.52 93.58% 70.14% 0.66 
0.02 19.24% 99.39% 0.22 0.53 93.72% 69.59% 0.66 
0.03 32.53% 98.69% 0.30 0.54 93.88% 68.87% 0.65 
0.04 45.75% 97.75% 0.38 0.55 94.07% 68.30% 0.65 
0.05 55.62% 96.80% 0.44 0.56 94.28% 67.40% 0.65 
0.06 63.25% 96.19% 0.50 0.57 94.45% 66.86% 0.65 
0.07 69.07% 95.29% 0.54 0.58 94.64% 66.07% 0.65 
0.08 72.24% 94.61% 0.57 0.59 94.81% 65.46% 0.65 
0.09 74.63% 93.98% 0.58 0.6 94.99% 64.62% 0.64 

0.1 76.52% 93.30% 0.60 0.61 95.17% 63.97% 0.64 
0.11 77.96% 92.51% 0.61 0.62 95.39% 63.09% 0.64 
0.12 79.00% 92.05% 0.62 0.63 95.60% 62.19% 0.64 
0.13 79.93% 91.40% 0.62 0.64 95.77% 61.49% 0.64 
0.14 80.77% 90.67% 0.63 0.65 95.99% 60.49% 0.63 
0.15 81.58% 89.91% 0.63 0.66 96.19% 59.39% 0.63 
0.16 82.31% 89.14% 0.63 0.67 96.35% 58.63% 0.63 
0.17 83.00% 88.64% 0.64 0.68 96.52% 57.33% 0.62 
0.18 83.62% 88.11% 0.64 0.69 96.69% 56.35% 0.62 
0.19 84.15% 87.57% 0.64 0.7 96.90% 54.97% 0.61 

0.2 84.65% 86.82% 0.64 0.71 97.08% 53.48% 0.60 
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0.21 85.10% 86.32% 0.65 0.72 97.26% 52.08% 0.60 
0.22 85.56% 85.95% 0.65 0.73 97.44% 50.88% 0.59 
0.23 85.92% 85.35% 0.65 0.74 97.65% 49.17% 0.58 
0.24 86.36% 84.92% 0.65 0.75 97.83% 47.59% 0.58 
0.25 86.80% 84.46% 0.66 0.76 98.02% 45.86% 0.57 
0.26 87.18% 84.06% 0.66 0.77 98.18% 43.72% 0.55 
0.27 87.45% 83.54% 0.66 0.78 98.32% 41.81% 0.54 
0.28 87.81% 83.25% 0.66 0.79 98.49% 39.62% 0.53 
0.29 88.09% 82.82% 0.66 0.8 98.65% 37.24% 0.51 

0.3 88.36% 82.51% 0.66 0.81 98.79% 35.09% 0.50 
0.31 88.69% 82.07% 0.67 0.82 98.96% 32.47% 0.48 
0.32 88.92% 81.63% 0.67 0.83 99.06% 29.95% 0.46 
0.33 89.14% 81.41% 0.67 0.84 99.19% 26.99% 0.44 
0.34 89.44% 80.93% 0.67 0.85 99.37% 23.86% 0.41 
0.35 89.75% 80.36% 0.67 0.86 99.46% 20.84% 0.38 
0.36 90.01% 79.64% 0.67 0.87 99.60% 18.19% 0.36 
0.37 90.29% 79.36% 0.67 0.88 99.70% 15.63% 0.34 
0.38 90.58% 78.72% 0.67 0.89 99.76% 13.20% 0.31 
0.39 90.80% 78.04% 0.67 0.9 99.85% 11.12% 0.29 

0.4 91.05% 77.47% 0.67 0.91 99.88% 9.33% 0.26 
0.41 91.30% 77.06% 0.67 0.92 99.92% 7.53% 0.24 
0.42 91.58% 76.38% 0.67 0.93 99.95% 6.35% 0.22 
0.43 91.73% 75.79% 0.67 0.94 99.96% 5.34% 0.20 
0.44 91.92% 75.39% 0.67 0.95 99.98% 4.23% 0.18 
0.45 92.10% 74.80% 0.67 0.96 99.99% 3.26% 0.16 
0.46 92.38% 74.10% 0.66 0.97 99.99% 2.21% 0.13 
0.47 92.60% 73.53% 0.66 0.98 99.99% 1.27% 0.10 
0.48 92.76% 72.70% 0.66 0.99 100.00% 0.42% 0.06 
0.49 92.95% 72.09% 0.66 1 100.00% 0.00% 0.00 

0.5 93.30% 71.32% 0.66     
 
(D) The experiment result of standard PSSM with –b option in SVM by three-way da-

ta split 

Threshold Spec. Sens. MCC Threshold Spec. Sens. MCC 
0 0.00% 100.00% 0.00 0.51 95.58% 42.27% 0.47 

0.01 1.92% 99.87% 0.06 0.52 95.84% 41.53% 0.47 
0.02 5.82% 99.50% 0.11 0.53 96.05% 40.89% 0.47 
0.03 10.48% 99.01% 0.14 0.54 96.21% 40.15% 0.47 
0.04 15.75% 98.29% 0.18 0.55 96.42% 39.14% 0.46 
0.05 21.92% 97.09% 0.21 0.56 96.59% 38.46% 0.46 
0.06 28.18% 95.91% 0.24 0.57 96.74% 37.48% 0.46 
0.07 34.69% 94.81% 0.28 0.58 96.90% 36.67% 0.45 
0.08 39.32% 93.41% 0.29 0.59 97.09% 36.01% 0.45 
0.09 43.60% 92.40% 0.32 0.6 97.28% 35.49% 0.45 

0.1 47.60% 91.24% 0.33 0.61 97.43% 34.92% 0.45 
0.11 51.42% 89.75% 0.35 0.62 97.56% 34.24% 0.45 
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0.12 54.90% 88.35% 0.36 0.63 97.66% 33.49% 0.45 
0.13 58.21% 86.87% 0.38 0.64 97.74% 32.92% 0.44 
0.14 61.21% 85.31% 0.39 0.65 97.86% 31.79% 0.44 
0.15 63.92% 84.04% 0.40 0.66 97.93% 31.20% 0.43 
0.16 66.37% 82.53% 0.41 0.67 98.02% 30.67% 0.43 
0.17 68.89% 81.22% 0.42 0.68 98.10% 29.71% 0.42 
0.18 70.99% 79.84% 0.43 0.69 98.17% 28.98% 0.42 
0.19 73.11% 78.31% 0.44 0.7 98.30% 28.31% 0.42 

0.2 74.95% 76.66% 0.45 0.71 98.44% 27.36% 0.41 
0.21 76.51% 74.98% 0.45 0.72 98.46% 26.69% 0.41 
0.22 78.14% 73.66% 0.46 0.73 98.55% 26.03% 0.40 
0.23 79.54% 72.37% 0.47 0.74 98.65% 25.44% 0.40 
0.24 80.78% 71.06% 0.47 0.75 98.74% 24.72% 0.40 
0.25 82.00% 69.68% 0.47 0.76 98.82% 24.10% 0.39 
0.26 83.18% 68.83% 0.48 0.77 98.90% 23.38% 0.39 
0.27 84.20% 67.38% 0.48 0.78 98.94% 22.57% 0.38 
0.28 85.22% 66.22% 0.49 0.79 99.01% 21.89% 0.38 
0.29 86.13% 64.75% 0.49 0.8 99.06% 21.23% 0.37 

0.3 86.92% 63.46% 0.49 0.81 99.12% 20.56% 0.37 
0.31 87.67% 62.30% 0.49 0.82 99.17% 19.81% 0.36 
0.32 88.23% 61.01% 0.49 0.83 99.21% 19.18% 0.35 
0.33 88.62% 60.29% 0.49 0.84 99.24% 18.45% 0.35 
0.34 89.26% 58.80% 0.49 0.85 99.27% 17.86% 0.34 
0.35 89.85% 57.51% 0.49 0.86 99.34% 17.14% 0.34 
0.36 90.43% 56.48% 0.49 0.87 99.36% 16.42% 0.33 
0.37 90.97% 55.54% 0.49 0.88 99.41% 15.59% 0.32 
0.38 91.52% 54.38% 0.49 0.89 99.45% 14.71% 0.31 
0.39 92.07% 53.74% 0.50 0.9 99.52% 14.05% 0.31 

0.4 92.47% 52.50% 0.49 0.91 99.56% 13.31% 0.30 
0.41 92.79% 51.44% 0.49 0.92 99.61% 12.52% 0.29 
0.42 93.12% 50.46% 0.49 0.93 99.67% 11.49% 0.28 
0.43 93.46% 49.47% 0.49 0.94 99.69% 10.25% 0.26 
0.44 93.81% 48.42% 0.49 0.95 99.76% 8.65% 0.24 
0.45 94.09% 47.22% 0.48 0.96 99.84% 6.81% 0.22 
0.46 94.39% 46.50% 0.48 0.97 99.93% 4.84% 0.19 
0.47 94.64% 45.73% 0.48 0.98 99.98% 3.02% 0.15 
0.48 94.92% 44.86% 0.48 0.99 99.99% 1.34% 0.10 
0.49 95.19% 43.94% 0.48 1 100.00% 0.00% 0.00 

0.5 95.50% 42.54% 0.47     
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Appendix 2.5 

Experiment results of the RBP109 
 
Table B 1. The detail performance of the RBP109 with different sliding window size 
under (A) five-fold cross-validation (w1 = 6.01, w-1 = 1, other parameters: default 
value) and (B) three-way data split (w1 = 6.01, w-1 = 1, other parameters: default 
value). 

(A) Five-fold cross validation. 

Window Size Spec. Sens. MCC Acc 
3 74.99% 67.89% 0.32  73.98% 
5 76.93% 68.22% 0.35  75.69% 
7 77.72% 68.89% 0.36  76.46% 
9 78.14% 69.73% 0.37  76.94% 
11 78.77% 69.98% 0.38  77.52% 
13 79.14% 69.42% 0.38  77.75% 
15 79.62% 70.09% 0.39  78.27% 
17 79.67% 70.15% 0.39  78.31% 
19 79.73% 69.79% 0.39  78.31% 
21 79.86% 69.95% 0.39  78.44% 
23 80.21% 69.65% 0.39  78.71% 
25 80.24% 69.51% 0.39  78.71% 
27 80.08% 69.42% 0.39  78.56% 
29 80.18% 69.20% 0.39  78.61% 
31 80.53% 69.17% 0.39  78.91% 
33 80.67% 68.92% 0.39  79.00% 
35 80.53% 69.45% 0.40  78.95% 
37 80.42% 69.56% 0.40  78.87% 
39 80.47% 68.75% 0.39  78.80% 
41 80.45% 68.84% 0.39  78.79% 
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(B) Three-way data split. 
Window Size Spec. Sens. MCC Acc 

3 75.22% 67.89% 0.33  74.17% 
5 76.72% 68.44% 0.35  75.54% 
7 77.82% 68.53% 0.36  76.50% 
9 78.24% 69.14% 0.37  76.94% 
11 78.73% 69.31% 0.37  77.38% 
13 79.16% 69.39% 0.38  77.76% 
15 79.38% 69.39% 0.38  77.95% 
17 79.55% 69.09% 0.38  78.05% 
19 79.54% 69.28% 0.38  78.07% 
21 79.67% 68.75% 0.38  78.11% 
23 80.09% 68.75% 0.39  78.47% 
25 80.05% 69.06% 0.39  78.48% 
27 79.87% 68.81% 0.38  78.29% 
29 80.09% 68.33% 0.38  78.42% 
31 80.12% 68.50% 0.38  78.46% 
33 80.26% 68.36% 0.38  78.56% 
35 80.13% 68.70% 0.39  78.50% 
37 80.25% 69.48% 0.39  78.71% 
39 80.34% 68.75% 0.39  78.69% 
41 80.43% 68.47% 0.39  78.72% 
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(A) Five-fold cross-validation. 

 
 
(B) Three-way data split. 

 
Figure B 1. The performance with different combination of C and γ in the RBP109 
data set under (A) five-fold cross-validation and (B) three-way data split. 
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Table B 2. The detail performance of the RBP109 with (A) different smoothing win-
dow size under five-fold cross-validation (w = 25, log C = 2, log γ = -6, w1 = 6.01, 
w-1 = 1, other parameters: default value) and (B) different smoothing window size 
under three-way data split (w = 25, log C = 3, log γ = -6, w1 = 6.01, w-1 = 1, other 
parameters: default value). 

(A) Five-fold cross-validation. 

Smoothing Window 
Size 

Spec. Sens. MCC Acc 

1 97.32% 32.62% 0.41  88.09% 
3 94.71% 54.82% 0.53  89.02% 
5 93.31% 65.04% 0.57  89.28% 
7 91.94% 70.37% 0.58  88.86% 
9 90.62% 73.67% 0.58  88.20% 
11 88.99% 75.96% 0.56  87.13% 

 
(B) Three-way data split. 

Smoothing Window 
Size 

Spec. Sens. MCC Acc 

1 97.30% 30.80% 0.39  87.81% 
3 95.53% 46.47% 0.48  88.53% 
5 94.47% 57.27% 0.54  89.16% 
7 93.56% 62.47% 0.56  89.13% 
9 92.66% 65.88% 0.56  88.84% 
11 91.53% 68.28% 0.56  88.21% 
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Table B 3. The detail performance of the RBP109 with (A) different weight parameter 
w1 under five-fold cross-validation (w = 25, log C = 2, log γ = -6, ws = 7, w-1 = 1, 
other parameters: default value) and (B) different weight parameter w1 under 
three-way data split (w = 25, log C = 3, log γ = -6, ws = 7, w-1 = 1, other parameters: 
default value). 

(A) Five-fold cross-validation. 

W1 Spec. Sens. MCC Acc 
1 97.63% 41.58% 0.51  89.63% 
2 94.96% 58.84% 0.56  89.81% 
3 93.45% 66.07% 0.58  89.54% 
4 92.57% 68.72% 0.58  89.17% 
5 92.19% 69.84% 0.58  89.00% 
6 91.94% 70.37% 0.58  88.86% 
7 91.71% 70.76% 0.58  88.72% 
8 91.59% 70.96% 0.58  88.64% 

 
(B) Three-way data split. 

W1 Spec. Sens. MCC Acc 
1 96.46% 48.53% 0.53  89.62% 
2 94.66% 59.09% 0.56  89.59% 
3 93.98% 61.55% 0.56  89.36% 
4 93.73% 62.22% 0.56  89.24% 
5 93.63% 62.36% 0.56  89.17% 
6 93.56% 62.47% 0.56  89.13% 
7 93.57% 62.58% 0.56  89.15% 
8 93.57% 62.58% 0.56  89.15% 
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Table B 4. The RBP109 data set experiment results with –b option in SVM for (A) 
smoothed PSSM by five-fold cross-validation, (B) standard PSSM by five-fold 
cross-validation, (C) smoothed PSSM by three-way data split, and (D) standard PSSM 
by three-way data split. 

(A) The experiment result of smoothed PSSM with –b option in SVM by five-fold 
cross-validation. 

Threshold Spec. Sens. MCC Threshold Spec. Sens. MCC 
0 0.00% 100.00% 0.00 0.51 96.58% 51.05% 0.55 

0.01 13.58% 99.16% 0.14 0.52 96.70% 50.43% 0.55 
0.02 29.55% 97.88% 0.22 0.53 96.79% 49.34% 0.54 
0.03 42.20% 96.51% 0.28 0.54 96.91% 48.59% 0.54 
0.04 52.11% 95.36% 0.33 0.55 97.07% 47.39% 0.54 
0.05 59.37% 93.61% 0.37 0.56 97.20% 46.66% 0.53 
0.06 65.68% 92.24% 0.41 0.57 97.36% 45.71% 0.53 
0.07 70.75% 90.65% 0.44 0.58 97.47% 44.85% 0.53 
0.08 74.08% 89.39% 0.47 0.59 97.57% 43.95% 0.52 
0.09 76.63% 87.82% 0.48 0.6 97.68% 43.00% 0.52 

0.1 78.88% 86.65% 0.50 0.61 97.75% 41.80% 0.51 
0.11 80.84% 85.42% 0.51 0.62 97.82% 40.83% 0.51 
0.12 82.20% 84.25% 0.52 0.63 97.91% 39.74% 0.50 
0.13 83.51% 83.30% 0.53 0.64 98.01% 38.87% 0.50 
0.14 84.55% 82.27% 0.54 0.65 98.14% 37.11% 0.49 
0.15 85.63% 81.35% 0.55 0.66 98.26% 36.41% 0.49 
0.16 86.47% 80.68% 0.56 0.67 98.34% 35.27% 0.48 
0.17 87.14% 79.73% 0.56 0.68 98.41% 34.07% 0.47 
0.18 87.73% 78.75% 0.56 0.69 98.53% 32.95% 0.47 
0.19 88.33% 77.72% 0.57 0.7 98.66% 31.36% 0.46 

0.2 88.79% 76.63% 0.57 0.71 98.74% 30.35% 0.45 
0.21 89.31% 75.82% 0.57 0.72 98.83% 28.79% 0.44 
0.22 89.82% 75.03% 0.57 0.73 98.95% 27.67% 0.43 
0.23 90.31% 74.00% 0.57 0.74 98.99% 26.42% 0.42 
0.24 90.76% 73.05% 0.58 0.75 99.08% 24.91% 0.41 
0.25 91.14% 72.30% 0.58 0.76 99.15% 23.01% 0.39 
0.26 91.52% 71.49% 0.58 0.77 99.20% 21.50% 0.38 
0.27 91.86% 70.57% 0.58 0.78 99.25% 19.99% 0.37 
0.28 92.14% 69.84% 0.58 0.79 99.29% 18.82% 0.36 
0.29 92.43% 69.09% 0.58 0.8 99.35% 17.56% 0.34 

0.3 92.69% 68.39% 0.58 0.81 99.41% 16.03% 0.33 
0.31 92.93% 67.75% 0.58 0.82 99.47% 14.94% 0.32 
0.32 93.23% 67.02% 0.58 0.83 99.52% 13.35% 0.30 
0.33 93.36% 66.43% 0.58 0.84 99.58% 12.20% 0.29 
0.34 93.67% 65.43% 0.58 0.85 99.64% 10.89% 0.27 
0.35 93.88% 64.62% 0.58 0.86 99.69% 9.86% 0.26 
0.36 94.08% 63.75% 0.58 0.87 99.74% 8.99% 0.25 
0.37 94.34% 63.03% 0.58 0.88 99.80% 7.82% 0.24 
0.38 94.56% 62.27% 0.58 0.89 99.83% 6.98% 0.22 
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0.39 94.75% 61.63% 0.58 0.9 99.85% 5.81% 0.20 
0.4 94.94% 60.96% 0.58 0.91 99.87% 4.86% 0.19 

0.41 95.13% 60.09% 0.58 0.92 99.90% 4.08% 0.17 
0.42 95.31% 59.23% 0.58 0.93 99.91% 3.55% 0.16 
0.43 95.50% 58.59% 0.58 0.94 99.94% 2.60% 0.14 
0.44 95.65% 57.61% 0.57 0.95 99.95% 1.84% 0.11 
0.45 95.82% 56.44% 0.57 0.96 99.98% 1.37% 0.10 
0.46 95.96% 55.52% 0.57 0.97 99.99% 0.84% 0.08 
0.47 96.08% 54.59% 0.56 0.98 100.00% 0.34% 0.05 
0.48 96.20% 53.62% 0.56 0.99 100.00% 0.11% 0.03 
0.49 96.34% 52.83% 0.56 1 100.00% 0.00% 0.00 

0.5 96.52% 51.49% 0.55     
 
(B) The experiment result of standard PSSM with –b option in SVM by five-fold 

cross-validation. 

Threshold Spec. Sens. MCC Threshold Spec. Sens. MCC 
0 0.00% 100.00% 0.00 0.51 98.00% 28.20% 0.39 

0.01 2.66% 99.80% 0.06 0.52 98.08% 27.42% 0.39 
0.02 10.49% 98.63% 0.11 0.53 98.20% 26.84% 0.39 
0.03 19.59% 96.65% 0.15 0.54 98.31% 26.19% 0.39 
0.04 28.65% 94.69% 0.19 0.55 98.41% 25.55% 0.38 
0.05 36.92% 92.52% 0.22 0.56 98.49% 24.57% 0.38 
0.06 44.75% 90.51% 0.25 0.57 98.56% 23.93% 0.37 
0.07 52.95% 87.88% 0.29 0.58 98.61% 23.37% 0.37 
0.08 58.54% 85.70% 0.31 0.59 98.69% 22.95% 0.37 
0.09 62.91% 83.55% 0.33 0.6 98.74% 22.54% 0.37 

0.1 66.68% 81.32% 0.34 0.61 98.84% 22.06% 0.37 
0.11 69.92% 79.14% 0.36 0.62 98.89% 21.28% 0.36 
0.12 72.72% 76.60% 0.36 0.63 98.94% 20.75% 0.36 
0.13 75.16% 74.70% 0.37 0.64 98.99% 20.08% 0.35 
0.14 77.37% 72.69% 0.38 0.65 99.10% 19.27% 0.35 
0.15 79.16% 71.32% 0.39 0.66 99.18% 18.68% 0.35 
0.16 80.96% 69.03% 0.40 0.67 99.22% 17.87% 0.34 
0.17 82.41% 67.61% 0.41 0.68 99.26% 17.20% 0.33 
0.18 83.96% 66.13% 0.42 0.69 99.32% 16.56% 0.33 
0.19 85.16% 64.28% 0.42 0.7 99.35% 15.97% 0.32 

0.2 86.37% 62.83% 0.42 0.71 99.41% 15.44% 0.32 
0.21 87.43% 61.13% 0.43 0.72 99.46% 15.02% 0.32 
0.22 88.26% 59.45% 0.43 0.73 99.50% 14.33% 0.31 
0.23 89.10% 57.69% 0.43 0.74 99.54% 13.80% 0.31 
0.24 89.89% 56.46% 0.43 0.75 99.55% 13.07% 0.30 
0.25 90.57% 55.07% 0.44 0.76 99.57% 12.59% 0.29 
0.26 91.24% 53.70% 0.44 0.77 99.60% 12.15% 0.29 
0.27 91.88% 52.33% 0.44 0.78 99.63% 11.51% 0.28 
0.28 92.42% 50.99% 0.44 0.79 99.67% 11.09% 0.28 
0.29 92.90% 50.07% 0.44 0.8 99.69% 10.58% 0.27 
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0.3 93.38% 48.90% 0.44 0.81 99.73% 10.16% 0.27 
0.31 93.74% 48.12% 0.45 0.82 99.74% 9.69% 0.26 
0.32 94.11% 46.89% 0.45 0.83 99.75% 9.16% 0.25 
0.33 94.37% 45.96% 0.44 0.84 99.78% 8.63% 0.25 
0.34 94.74% 44.76% 0.44 0.85 99.81% 7.90% 0.24 
0.35 95.03% 43.42% 0.44 0.86 99.86% 7.34% 0.23 
0.36 95.29% 42.11% 0.44 0.87 99.88% 6.65% 0.22 
0.37 95.51% 40.80% 0.43 0.88 99.90% 6.03% 0.21 
0.38 95.76% 39.77% 0.43 0.89 99.92% 5.17% 0.20 
0.39 96.04% 38.73% 0.43 0.9 99.93% 4.66% 0.19 

0.4 96.29% 37.70% 0.42 0.91 99.94% 4.19% 0.18 
0.41 96.52% 36.41% 0.42 0.92 99.96% 2.68% 0.14 
0.42 96.71% 35.41% 0.42 0.93 99.98% 2.01% 0.13 
0.43 96.91% 34.54% 0.42 0.94 99.99% 1.51% 0.11 
0.44 97.09% 33.73% 0.41 0.95 99.99% 1.23% 0.10 
0.45 97.25% 33.04% 0.41 0.96 99.99% 0.98% 0.09 
0.46 97.35% 32.20% 0.41 0.97 100.00% 0.70% 0.08 
0.47 97.48% 31.50% 0.41 0.98 100.00% 0.31% 0.05 
0.48 97.62% 30.58% 0.40 0.99 100.00% 0.03% 0.02 
0.49 97.75% 29.80% 0.40 1 100.00% 0.00% 0.00 

0.5 97.95% 28.71% 0.40     
 
(C) The experiment result of smoothed PSSM with –b option in SVM by three-way 

data split. 

Threshold Spec. Sens. MCC Threshold Spec. Sens. MCC 
0 0.00% 100.00% 0.00 0.51 96.72% 46.10% 0.51 

0.01 9.61% 99.72% 0.12 0.52 96.82% 45.38% 0.51 
0.02 22.97% 98.49% 0.19 0.53 96.96% 44.68% 0.51 
0.03 34.95% 97.01% 0.24 0.54 97.07% 43.84% 0.51 
0.04 44.47% 95.48% 0.29 0.55 97.24% 42.81% 0.50 
0.05 52.20% 93.83% 0.32 0.56 97.32% 42.06% 0.50 
0.06 58.64% 92.40% 0.36 0.57 97.43% 41.30% 0.50 
0.07 65.30% 90.48% 0.39 0.58 97.58% 40.32% 0.49 
0.08 69.44% 89.03% 0.42 0.59 97.69% 39.15% 0.49 
0.09 72.87% 87.49% 0.44 0.6 97.76% 38.26% 0.48 

0.1 75.75% 85.95% 0.46 0.61 97.86% 37.36% 0.48 
0.11 78.11% 84.86% 0.48 0.62 97.98% 36.30% 0.47 
0.12 80.21% 83.55% 0.49 0.63 98.07% 35.33% 0.47 
0.13 81.86% 82.44% 0.50 0.64 98.16% 34.18% 0.46 
0.14 83.20% 81.15% 0.51 0.65 98.33% 32.73% 0.45 
0.15 84.42% 79.78% 0.52 0.66 98.40% 31.75% 0.45 
0.16 85.44% 78.58% 0.53 0.67 98.48% 30.44% 0.44 
0.17 86.34% 77.41% 0.53 0.68 98.54% 29.43% 0.43 
0.18 87.16% 76.68% 0.54 0.69 98.64% 28.09% 0.42 
0.19 87.82% 75.31% 0.54 0.7 98.70% 27.12% 0.42 

0.2 88.43% 74.25% 0.54 0.71 98.76% 25.94% 0.41 
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0.21 89.00% 73.22% 0.55 0.72 98.84% 25.13% 0.40 
0.22 89.56% 72.27% 0.55 0.73 98.96% 23.93% 0.39 
0.23 90.13% 71.32% 0.55 0.74 99.05% 22.76% 0.39 
0.24 90.53% 70.43% 0.55 0.75 99.13% 21.47% 0.38 
0.25 90.92% 69.76% 0.56 0.76 99.24% 20.36% 0.37 
0.26 91.39% 68.61% 0.56 0.77 99.33% 19.18% 0.36 
0.27 91.81% 67.50% 0.56 0.78 99.41% 17.76% 0.35 
0.28 92.10% 66.85% 0.56 0.79 99.45% 16.28% 0.33 
0.29 92.46% 66.07% 0.56 0.8 99.51% 15.22% 0.32 

0.3 92.83% 65.15% 0.56 0.81 99.58% 14.16% 0.32 
0.31 93.11% 64.09% 0.56 0.82 99.62% 12.85% 0.30 
0.32 93.45% 63.22% 0.56 0.83 99.65% 11.59% 0.28 
0.33 93.62% 62.55% 0.56 0.84 99.71% 10.56% 0.27 
0.34 93.87% 61.71% 0.56 0.85 99.74% 9.63% 0.26 
0.35 94.14% 60.63% 0.56 0.86 99.78% 8.49% 0.25 
0.36 94.36% 59.76% 0.56 0.87 99.81% 7.48% 0.23 
0.37 94.56% 58.73% 0.55 0.88 99.84% 6.42% 0.21 
0.38 94.73% 58.06% 0.55 0.89 99.85% 5.67% 0.20 
0.39 94.93% 57.00% 0.55 0.9 99.87% 4.55% 0.18 

0.4 95.10% 56.35% 0.55 0.91 99.92% 3.60% 0.16 
0.41 95.28% 55.32% 0.55 0.92 99.94% 2.76% 0.14 
0.42 95.46% 54.54% 0.54 0.93 99.95% 1.98% 0.12 
0.43 95.60% 53.76% 0.54 0.94 99.97% 1.54% 0.11 
0.44 95.75% 52.86% 0.54 0.95 99.97% 1.09% 0.09 
0.45 95.94% 52.00% 0.54 0.96 99.97% 0.64% 0.06 
0.46 96.12% 50.91% 0.53 0.97 99.98% 0.39% 0.05 
0.47 96.25% 49.85% 0.53 0.98 99.99% 0.28% 0.04 
0.48 96.36% 48.81% 0.52 0.99 100.00% 0.11% 0.03 
0.49 96.48% 47.81% 0.52 1 100.00% 0.00% 0.00 

0.5 96.66% 46.58% 0.52     
 
 
(D) The experiment result of standard PSSM with –b option in SVM by three-way da-

ta split. 

Threshold Spec. Sens. MCC Threshold Spec. Sens. MCC 
0 0.00% 100.00% 0.00 0.51 98.10% 26.81% 0.38 

0.01 2.53% 99.89% 0.06 0.52 98.24% 25.80% 0.38 
0.02 9.94% 99.05% 0.11 0.53 98.32% 24.94% 0.37 
0.03 18.61% 97.18% 0.15 0.54 98.41% 24.24% 0.37 
0.04 27.52% 95.09% 0.18 0.55 98.49% 23.65% 0.37 
0.05 35.52% 92.96% 0.21 0.56 98.55% 23.07% 0.36 
0.06 42.99% 90.92% 0.24 0.57 98.63% 22.26% 0.36 
0.07 50.87% 88.19% 0.27 0.58 98.69% 21.59% 0.35 
0.08 56.31% 85.79% 0.29 0.59 98.79% 20.66% 0.35 
0.09 60.97% 83.13% 0.31 0.6 98.83% 20.11% 0.34 
0.1 65.08% 80.54% 0.32 0.61 98.89% 19.58% 0.34 
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0.11 68.78% 78.02% 0.34 0.62 98.97% 18.96% 0.34 
0.12 71.88% 75.87% 0.35 0.63 99.02% 18.35% 0.33 
0.13 74.40% 73.95% 0.36 0.64 99.08% 17.70% 0.33 
0.14 76.78% 72.02% 0.37 0.65 99.17% 16.95% 0.32 
0.15 78.70% 70.06% 0.38 0.66 99.24% 16.48% 0.32 
0.16 80.60% 68.25% 0.39 0.67 99.27% 15.75% 0.31 
0.17 82.10% 66.60% 0.39 0.68 99.34% 15.25% 0.31 
0.18 83.56% 64.73% 0.40 0.69 99.37% 14.69% 0.31 
0.19 84.84% 63.25% 0.41 0.7 99.42% 14.24% 0.30 
0.2 86.06% 61.32% 0.41 0.71 99.44% 13.52% 0.30 

0.21 87.09% 59.73% 0.41 0.72 99.48% 12.96% 0.29 
0.22 88.01% 58.42% 0.42 0.73 99.51% 12.20% 0.28 
0.23 88.77% 56.80% 0.42 0.74 99.55% 11.64% 0.28 
0.24 89.59% 55.38% 0.42 0.75 99.59% 11.11% 0.27 
0.25 90.29% 53.98% 0.42 0.76 99.62% 10.42% 0.26 
0.26 90.99% 52.42% 0.42 0.77 99.64% 9.77% 0.25 
0.27 91.59% 51.33% 0.43 0.78 99.66% 9.49% 0.25 
0.28 92.10% 49.93% 0.42 0.79 99.71% 8.96% 0.25 
0.29 92.67% 48.81% 0.43 0.8 99.72% 8.43% 0.24 
0.3 93.08% 47.78% 0.43 0.81 99.76% 7.93% 0.23 

0.31 93.49% 46.58% 0.43 0.82 99.78% 7.48% 0.23 
0.32 93.90% 45.16% 0.43 0.83 99.81% 7.07% 0.22 
0.33 94.11% 44.48% 0.42 0.84 99.85% 6.42% 0.22 
0.34 94.53% 43.54% 0.43 0.85 99.88% 6.00% 0.21 
0.35 94.84% 42.22% 0.42 0.86 99.91% 5.45% 0.20 
0.36 95.22% 41.30% 0.43 0.87 99.92% 5.03% 0.20 
0.37 95.51% 40.13% 0.42 0.88 99.94% 4.64% 0.19 
0.38 95.83% 39.35% 0.43 0.89 99.94% 4.22% 0.18 
0.39 96.03% 38.23% 0.42 0.9 99.95% 3.71% 0.17 
0.4 96.29% 37.11% 0.42 0.91 99.97% 3.38% 0.16 

0.41 96.52% 35.94% 0.42 0.92 99.98% 2.23% 0.13 
0.42 96.72% 34.99% 0.41 0.93 100.00% 1.56% 0.11 
0.43 96.91% 34.29% 0.41 0.94 100.00% 1.20% 0.10 
0.44 97.10% 33.04% 0.41 0.95 100.00% 0.92% 0.09 
0.45 97.26% 32.23% 0.41 0.96 100.00% 0.73% 0.08 
0.46 97.44% 31.25% 0.40 0.97 100.00% 0.50% 0.07 
0.47 97.59% 30.27% 0.40 0.98 100.00% 0.17% 0.04 
0.48 97.75% 29.29% 0.39 0.99 100.00% 0.03% 0.02 
0.49 97.87% 28.57% 0.39 1 100.00% 0.00% 0.00 
0.5 98.05% 27.23% 0.39     
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Appendix 2.6 

Experiment results of the RBP107 

 
Table C 1. The detail performance of the RBP107 with different sliding window size 
under (A) five-fold cross-validation (w1 = 7.63, w-1 = 1, other parameters: default 
value) and three-way data split (w1 = 7.63, w-1 = 1, other parameters: default value). 

(A) Five-fold cross-validation. 

Window Size Spec. Sens. MCC Acc 
3 75.28% 70.57% 0.32  74.73% 
5 76.77% 70.96% 0.34  76.10% 
7 78.08% 71.90% 0.36  77.37% 
9 78.58% 72.41% 0.37  77.86% 
11 79.42% 71.51% 0.37  78.50% 
13 79.65% 71.39% 0.37  78.69% 
15 80.09% 71.51% 0.38  79.10% 
17 80.17% 71.35% 0.38  79.15% 
19 80.43% 71.12% 0.38  79.35% 
21 80.60% 70.96% 0.38  79.48% 
23 80.95% 71.55% 0.39  79.86% 
25 80.83% 71.19% 0.38  79.72% 
27 80.80% 71.12% 0.38  79.68% 
29 80.87% 71.08% 0.38  79.74% 
31 80.95% 71.39% 0.39  79.84% 
33 81.05% 71.00% 0.38  79.89% 
35 81.08% 71.00% 0.39  79.91% 
37 81.07% 70.68% 0.38  79.86% 
39 80.99% 71.04% 0.38  79.84% 
41 81.07% 69.98% 0.38  79.78% 
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(B) Three-way data split. 
Window Size Spec. Sens. MCC Acc 

3 75.18% 69.98% 0.32  74.58% 
5 76.75% 70.65% 0.34  76.05% 
7 78.18% 70.96% 0.35  77.34% 
9 78.53% 71.62% 0.36  77.73% 
11 79.32% 71.23% 0.37  78.38% 
13 79.49% 71.12% 0.37  78.52% 
15 79.93% 71.12% 0.37  78.91% 
17 80.14% 70.88% 0.37  79.07% 
19 80.46% 70.57% 0.37  79.31% 
21 80.34% 70.22% 0.37  79.17% 
23 80.96% 70.06% 0.38  79.70% 
25 81.04% 70.53% 0.38  79.82% 
27 81.24% 70.49% 0.38  79.99% 
29 81.13% 69.94% 0.38  79.83% 
31 81.18% 69.90% 0.38  79.87% 
33 81.21% 69.90% 0.38  79.90% 
35 81.27% 69.47% 0.38  79.90% 
37 81.27% 69.43% 0.38  79.90% 
39 81.37% 69.28% 0.38  79.96% 
41 81.36% 69.47% 0.38  79.98% 
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(A) Five-fold cross-validation. 

 
 
(B) Three-way data split. 

 
Figure C 1. The performance with different combination of C and γ in the RBP107 
data set under (A) five-fold cross-validation and (B) three-way data split. 
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Table C 2. The detail performance of the RBP107 with (A) different smoothing win-
dow size under five-fold cross-validation (w = 25, log C = 2, log γ = -6, w1 = 7.63, 
w-1 = 1, other parameters: default value) and (B) different smoothing window size 
under three-way data split (w = 25, log C = 3, log γ = -6, w1 = 7.63, w-1 = 1, other 
parameters: default value). 

(A) Five-fold cross-validation. 

Smoothing Window 
Size 

Spec. Sens. MCC Acc 

1 97.80% 27.83% 0.37  89.69% 
3 94.91% 45.21% 0.43  89.15% 
5 93.09% 54.64% 0.46  88.63% 
7 91.44% 59.65% 0.46  87.76% 
9 90.22% 63.29% 0.47  87.10% 
11 88.85% 65.83% 0.46  86.18% 

 
(B) Three-way data split. 

Smoothing Window 
Size 

Spec. Sens. MCC Acc 

1 98.04% 26.18% 0.36  89.71% 
3 95.91% 38.20% 0.40  89.23% 
5 94.64% 45.95% 0.43  89.00% 
7 93.51% 49.98% 0.44  88.47% 
9 92.68% 53.86% 0.45  88.18% 
11 91.60% 57.10% 0.45  87.61% 
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Table C 3. The detail performance of the RBP107 with (A) different weight parame-
ter w1 under five-fold cross-validation (w = 25, log C = 2, log γ = -6, ws = 7, w-1 = 1, 
other parameters: default value) and (B) different weight parameter w1 under 
three-way data split (w = 25, log C = 3, log γ = -6, ws = 7, w-1 = 1, other parameters: 
default value). 

(A) Five-fold cross-validation. 

W1 Spec. Sens. MCC Acc 
1 97.81% 29.75% 0.39  89.93% 
2 94.86% 48.77% 0.46  89.52% 
3 93.27% 55.54% 0.47  88.90% 
4 92.29% 58.47% 0.47  88.37% 
5 91.79% 58.87% 0.47  87.98% 
6 91.59% 59.33% 0.47  87.86% 
7 91.48% 59.49% 0.46  87.77% 
8 91.44% 59.69% 0.47  87.76% 
9 91.43% 59.69% 0.46  87.75% 
10 91.42% 59.73% 0.46  87.75% 

 
(B) Three-way data split. 

W1 Spec. Sens. MCC Acc 
1 96.54% 36.75% 0.41  89.62% 
2 94.28% 47.40% 0.43  88.85% 
3 93.79% 49.39% 0.44  88.64% 
4 93.59% 49.86% 0.44  88.53% 
5 93.53% 50.06% 0.44  88.49% 
6 93.51% 49.98% 0.44  88.46% 
7 93.51% 49.98% 0.44  88.47% 
8 93.51% 49.98% 0.44  88.47% 
9 93.51% 49.98% 0.44  88.47% 
10 93.51% 49.98% 0.44  88.47% 
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Table C 4. The RBP107 data set experiment results with –b option in SVM for (A) 
smoothed PSSM by five-fold cross-validation, (B) standard PSSM by five-fold 
cross-validation, (C) smoothed PSSM by three-way data split, and (D) standard PSSM 
by three-way data split. 

(A) The experiment result of smoothed PSSM with –b option in SVM by five-fold 
cross-validation. 

Threshold Spec. Sens. MCC Threshold Spec. Sens. MCC 
0 0.00% 100.00% 0.00 0.51 97.47% 32.72% 0.41 

0.01 7.60% 99.61% 0.09 0.52 97.60% 31.86% 0.40 
0.02 21.19% 98.24% 0.16 0.53 97.72% 30.22% 0.39 
0.03 34.93% 96.09% 0.21 0.54 97.80% 28.65% 0.38 
0.04 46.04% 93.31% 0.26 0.55 97.90% 27.75% 0.37 
0.05 54.70% 90.53% 0.29 0.56 98.02% 26.81% 0.37 
0.06 61.88% 88.49% 0.32 0.57 98.14% 25.60% 0.36 
0.07 68.56% 85.68% 0.36 0.58 98.26% 24.31% 0.35 
0.08 72.79% 83.37% 0.38 0.59 98.35% 23.68% 0.35 
0.09 76.38% 81.10% 0.40 0.6 98.41% 22.54% 0.34 

0.1 78.88% 79.14% 0.41 0.61 98.53% 21.33% 0.33 
0.11 80.87% 77.14% 0.42 0.62 98.60% 20.27% 0.32 
0.12 82.65% 74.95% 0.43 0.63 98.70% 19.37% 0.32 
0.13 83.94% 73.58% 0.44 0.64 98.79% 18.24% 0.31 
0.14 85.10% 72.56% 0.45 0.65 98.90% 17.38% 0.31 
0.15 86.07% 71.23% 0.45 0.66 98.97% 16.40% 0.30 
0.16 86.93% 69.43% 0.45 0.67 99.04% 15.50% 0.29 
0.17 87.71% 67.83% 0.46 0.68 99.12% 14.40% 0.28 
0.18 88.37% 66.54% 0.46 0.69 99.22% 13.50% 0.27 
0.19 89.06% 65.44% 0.46 0.7 99.31% 12.76% 0.27 

0.2 89.66% 64.66% 0.47 0.71 99.37% 12.09% 0.27 
0.21 90.06% 63.52% 0.47 0.72 99.44% 10.80% 0.25 
0.22 90.52% 62.50% 0.47 0.73 99.50% 9.90% 0.24 
0.23 90.94% 61.33% 0.47 0.74 99.57% 8.88% 0.23 
0.24 91.36% 60.31% 0.47 0.75 99.60% 8.14% 0.22 
0.25 91.72% 59.84% 0.47 0.76 99.64% 7.08% 0.20 
0.26 92.13% 58.83% 0.47 0.77 99.69% 6.26% 0.19 
0.27 92.50% 57.69% 0.47 0.78 99.73% 5.28% 0.17 
0.28 92.81% 56.44% 0.47 0.79 99.74% 4.85% 0.17 
0.29 93.12% 55.23% 0.47 0.8 99.78% 4.27% 0.16 

0.3 93.43% 53.93% 0.47 0.81 99.80% 3.84% 0.15 
0.31 93.77% 52.96% 0.47 0.82 99.85% 3.21% 0.14 
0.32 94.05% 51.86% 0.46 0.83 99.87% 2.97% 0.13 
0.33 94.21% 51.15% 0.46 0.84 99.88% 2.58% 0.12 
0.34 94.49% 50.22% 0.46 0.85 99.90% 2.19% 0.12 
0.35 94.68% 49.28% 0.46 0.86 99.92% 1.76% 0.10 
0.36 94.90% 48.45% 0.46 0.87 99.94% 1.45% 0.09 
0.37 95.16% 47.16% 0.46 0.88 99.94% 1.33% 0.09 
0.38 95.36% 45.95% 0.45 0.89 99.96% 0.98% 0.08 
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0.39 95.55% 44.97% 0.45 0.9 99.97% 0.74% 0.07 
0.4 95.73% 43.68% 0.44 0.91 99.97% 0.43% 0.05 

0.41 95.92% 42.86% 0.44 0.92 99.98% 0.31% 0.04 
0.42 96.11% 42.00% 0.44 0.93 99.98% 0.27% 0.04 
0.43 96.30% 40.94% 0.44 0.94 100.00% 0.20% 0.04 
0.44 96.41% 40.00% 0.43 0.95 100.00% 0.04% 0.02 
0.45 96.59% 38.71% 0.43 0.96 100.00% 0.00% 0.00 
0.46 96.74% 37.57% 0.42 0.97 100.00% 0.00% 0.00 
0.47 96.90% 36.83% 0.42 0.98 100.00% 0.00% 0.00 
0.48 97.06% 35.73% 0.42 0.99 100.00% 0.00% 0.00 
0.49 97.24% 34.32% 0.41 1 100.00% 0.00% 0.00 

0.5 97.45% 33.15% 0.41     
 
(B) The experiment result of standard PSSM with –b option in SVM by five-fold 

cross-validation. 

Threshold Spec. Sens. MCC Threshold Spec. Sens. MCC 
0 0.00% 100.00% 0.00 0.51 98.52% 21.84% 0.34 

0.01 3.03% 99.61% 0.05 0.52 98.56% 21.17% 0.33 
0.02 12.75% 98.63% 0.11 0.53 98.60% 20.67% 0.33 
0.03 23.83% 96.48% 0.16 0.54 98.66% 20.00% 0.32 
0.04 34.14% 93.66% 0.19 0.55 98.71% 19.49% 0.32 
0.05 43.04% 90.57% 0.22 0.56 98.74% 18.83% 0.31 
0.06 51.69% 87.63% 0.25 0.57 98.79% 18.20% 0.31 
0.07 59.83% 83.87% 0.28 0.58 98.86% 17.57% 0.31 
0.08 64.93% 80.82% 0.30 0.59 98.92% 16.83% 0.30 
0.09 69.40% 77.65% 0.31 0.6 98.97% 16.01% 0.29 

0.1 73.06% 75.19% 0.33 0.61 99.03% 15.69% 0.29 
0.11 76.10% 73.03% 0.34 0.62 99.07% 14.95% 0.28 
0.12 78.74% 70.61% 0.36 0.63 99.11% 14.44% 0.28 
0.13 80.82% 68.53% 0.37 0.64 99.15% 13.86% 0.27 
0.14 82.69% 66.18% 0.37 0.65 99.22% 13.11% 0.27 
0.15 84.29% 63.84% 0.38 0.66 99.26% 12.29% 0.26 
0.16 85.71% 61.80% 0.38 0.67 99.28% 11.59% 0.25 
0.17 86.95% 59.69% 0.38 0.68 99.33% 11.08% 0.25 
0.18 88.16% 57.85% 0.39 0.69 99.36% 10.88% 0.24 
0.19 89.22% 55.93% 0.39 0.7 99.39% 10.06% 0.23 

0.2 90.06% 54.21% 0.40 0.71 99.41% 9.43% 0.22 
0.21 90.86% 52.80% 0.40 0.72 99.45% 8.73% 0.22 
0.22 91.66% 51.74% 0.41 0.73 99.47% 8.34% 0.21 
0.23 92.27% 49.67% 0.40 0.74 99.48% 7.98% 0.20 
0.24 92.85% 48.10% 0.40 0.75 99.50% 7.36% 0.19 
0.25 93.38% 46.54% 0.40 0.76 99.54% 7.08% 0.19 
0.26 93.81% 45.05% 0.40 0.77 99.56% 6.65% 0.19 
0.27 94.17% 43.87% 0.40 0.78 99.60% 6.34% 0.18 
0.28 94.53% 42.54% 0.40 0.79 99.63% 5.99% 0.18 
0.29 94.84% 41.68% 0.40 0.8 99.65% 5.48% 0.17 
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0.3 95.17% 40.39% 0.40 0.81 99.67% 4.85% 0.16 
0.31 95.45% 38.75% 0.39 0.82 99.69% 4.62% 0.15 
0.32 95.72% 37.73% 0.39 0.83 99.72% 4.15% 0.15 
0.33 95.89% 37.14% 0.39 0.84 99.76% 3.76% 0.14 
0.34 96.09% 35.73% 0.38 0.85 99.78% 3.37% 0.13 
0.35 96.38% 34.76% 0.38 0.86 99.82% 3.05% 0.13 
0.36 96.63% 33.86% 0.38 0.87 99.86% 2.47% 0.12 
0.37 96.86% 32.84% 0.38 0.88 99.89% 2.11% 0.11 
0.38 97.07% 32.05% 0.38 0.89 99.92% 1.80% 0.10 
0.39 97.26% 30.61% 0.38 0.9 99.94% 1.29% 0.09 

0.4 97.43% 29.98% 0.38 0.91 99.97% 0.90% 0.08 
0.41 97.54% 29.47% 0.38 0.92 99.98% 0.74% 0.07 
0.42 97.66% 28.57% 0.37 0.93 99.99% 0.63% 0.07 
0.43 97.76% 27.87% 0.37 0.94 99.99% 0.51% 0.06 
0.44 97.91% 26.97% 0.37 0.95 100.00% 0.27% 0.05 
0.45 98.03% 26.18% 0.36 0.96 100.00% 0.16% 0.04 
0.46 98.12% 25.44% 0.36 0.97 100.00% 0.04% 0.02 
0.47 98.19% 24.62% 0.35 0.98 100.00% 0.00% 0.00 
0.48 98.28% 24.03% 0.35 0.99 100.00% 0.00% 0.00 
0.49 98.37% 23.17% 0.35 1 100.00% 0.00% 0.00 

0.5 98.48% 22.07% 0.34     
 
(C) The experiment result of smoothed PSSM with –b option in SVM by three-way 

data split. 

Threshold Spec. Sens. MCC Threshold Spec. Sens. MCC 
0 0.00% 100.00% 0.00 0.51 97.78% 27.87% 0.37 

0.01 5.11% 99.80% 0.08 0.52 97.90% 27.24% 0.37 
0.02 17.04% 98.55% 0.14 0.53 98.00% 26.42% 0.36 
0.03 29.12% 96.48% 0.19 0.54 98.11% 25.60% 0.36 
0.04 40.02% 94.64% 0.23 0.55 98.18% 24.58% 0.35 
0.05 49.04% 91.90% 0.26 0.56 98.32% 23.25% 0.34 
0.06 56.72% 89.24% 0.29 0.57 98.39% 22.15% 0.34 
0.07 64.12% 85.87% 0.32 0.58 98.47% 21.14% 0.33 
0.08 69.08% 83.56% 0.35 0.59 98.57% 20.16% 0.32 
0.09 72.94% 80.86% 0.37 0.6 98.66% 19.10% 0.31 

0.1 76.05% 77.57% 0.37 0.61 98.73% 18.08% 0.31 
0.11 78.68% 75.58% 0.39 0.62 98.80% 17.26% 0.30 
0.12 80.65% 73.62% 0.40 0.63 98.90% 16.75% 0.30 
0.13 82.53% 71.51% 0.41 0.64 98.96% 15.85% 0.29 
0.14 83.96% 69.32% 0.41 0.65 99.09% 14.60% 0.28 
0.15 85.19% 67.71% 0.42 0.66 99.17% 13.74% 0.27 
0.16 86.25% 66.22% 0.42 0.67 99.24% 12.92% 0.27 
0.17 87.24% 64.85% 0.43 0.68 99.29% 12.09% 0.26 
0.18 88.05% 62.97% 0.43 0.69 99.32% 11.78% 0.26 
0.19 88.82% 61.33% 0.43 0.7 99.37% 11.08% 0.25 

0.2 89.52% 60.27% 0.43 0.71 99.44% 10.06% 0.24 
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0.21 90.20% 59.14% 0.44 0.72 99.48% 9.35% 0.23 
0.22 90.74% 57.65% 0.44 0.73 99.54% 8.85% 0.23 
0.23 91.31% 56.28% 0.44 0.74 99.61% 8.49% 0.23 
0.24 91.72% 55.11% 0.44 0.75 99.68% 7.55% 0.22 
0.25 92.13% 54.05% 0.44 0.76 99.69% 7.05% 0.21 
0.26 92.53% 52.96% 0.44 0.77 99.71% 6.22% 0.19 
0.27 92.91% 51.90% 0.44 0.78 99.75% 5.83% 0.19 
0.28 93.26% 50.88% 0.44 0.79 99.78% 5.01% 0.18 
0.29 93.61% 50.02% 0.44 0.8 99.84% 4.23% 0.16 

0.3 93.89% 48.81% 0.44 0.81 99.87% 3.84% 0.16 
0.31 94.16% 47.83% 0.43 0.82 99.90% 3.44% 0.15 
0.32 94.42% 46.89% 0.43 0.83 99.92% 2.90% 0.14 
0.33 94.59% 46.18% 0.43 0.84 99.93% 2.39% 0.13 
0.34 94.83% 44.78% 0.43 0.85 99.93% 1.80% 0.11 
0.35 95.08% 43.84% 0.43 0.86 99.95% 1.49% 0.10 
0.36 95.30% 42.54% 0.42 0.87 99.95% 1.25% 0.09 
0.37 95.54% 41.49% 0.42 0.88 99.96% 1.21% 0.09 
0.38 95.73% 40.43% 0.42 0.89 99.97% 0.82% 0.07 
0.39 95.91% 39.22% 0.41 0.9 99.97% 0.59% 0.06 

0.4 96.10% 37.89% 0.40 0.91 99.97% 0.35% 0.04 
0.41 96.30% 37.18% 0.40 0.92 99.98% 0.31% 0.04 
0.42 96.47% 36.20% 0.40 0.93 99.98% 0.23% 0.03 
0.43 96.61% 35.23% 0.40 0.94 99.99% 0.20% 0.03 
0.44 96.77% 34.21% 0.39 0.95 99.99% 0.08% 0.02 
0.45 96.88% 33.19% 0.39 0.96 99.99% 0.04% 0.01 
0.46 97.09% 32.52% 0.39 0.97 100.00% 0.04% 0.02 
0.47 97.22% 31.62% 0.39 0.98 100.00% 0.00% 0.00 
0.48 97.39% 30.57% 0.38 0.99 100.00% 0.00% 0.00 
0.49 97.52% 29.47% 0.38 1 100.00% 0.00% 0.00 

0.5 97.74% 28.30% 0.37     
 
(D) The experiment result of standard PSSM with –b option in SVM by three-way da-

ta split. 

Threshold Spec. Sens. MCC Threshold Spec. Sens. MCC 
0 0.00% 100.00% 0.00 0.51 98.66% 20.08% 0.33 

0.01 3.04% 99.73% 0.05 0.52 98.73% 19.33% 0.32 
0.02 12.44% 98.79% 0.11 0.53 98.79% 18.55% 0.31 
0.03 23.07% 96.67% 0.16 0.54 98.85% 17.77% 0.31 
0.04 33.19% 94.52% 0.19 0.55 98.92% 17.26% 0.31 
0.05 42.39% 91.66% 0.22 0.56 98.94% 16.71% 0.30 
0.06 50.56% 88.22% 0.25 0.57 98.98% 16.20% 0.30 
0.07 58.88% 84.74% 0.28 0.58 99.02% 15.62% 0.29 
0.08 64.43% 81.53% 0.30 0.59 99.08% 15.19% 0.29 
0.09 68.83% 78.75% 0.32 0.6 99.14% 14.68% 0.29 

0.1 72.64% 76.16% 0.33 0.61 99.21% 14.09% 0.28 
0.11 75.86% 73.11% 0.34 0.62 99.23% 13.54% 0.28 
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0.12 78.46% 70.57% 0.35 0.63 99.25% 13.27% 0.27 
0.13 80.62% 67.83% 0.36 0.64 99.28% 12.84% 0.27 
0.14 82.56% 65.83% 0.37 0.65 99.33% 12.25% 0.26 
0.15 84.25% 63.68% 0.37 0.66 99.37% 11.74% 0.26 
0.16 85.67% 61.25% 0.38 0.67 99.40% 11.55% 0.26 
0.17 86.86% 58.98% 0.38 0.68 99.42% 11.23% 0.26 
0.18 88.03% 57.30% 0.38 0.69 99.45% 10.88% 0.25 
0.19 89.02% 55.07% 0.38 0.7 99.46% 10.45% 0.25 

0.2 89.89% 53.31% 0.39 0.71 99.50% 9.82% 0.24 
0.21 90.59% 51.90% 0.39 0.72 99.53% 9.32% 0.23 
0.22 91.28% 50.72% 0.39 0.73 99.57% 8.85% 0.23 
0.23 91.95% 49.24% 0.39 0.74 99.59% 8.26% 0.22 
0.24 92.53% 47.48% 0.39 0.75 99.59% 8.06% 0.22 
0.25 93.10% 45.91% 0.39 0.76 99.62% 7.67% 0.21 
0.26 93.62% 44.58% 0.39 0.77 99.65% 6.97% 0.20 
0.27 94.10% 43.17% 0.39 0.78 99.67% 6.54% 0.19 
0.28 94.56% 41.76% 0.39 0.79 99.69% 6.14% 0.19 
0.29 94.96% 40.20% 0.39 0.8 99.70% 5.64% 0.18 

0.3 95.36% 38.83% 0.39 0.81 99.74% 5.24% 0.17 
0.31 95.66% 37.50% 0.39 0.82 99.75% 4.85% 0.17 
0.32 95.92% 36.59% 0.39 0.83 99.77% 4.54% 0.16 
0.33 96.07% 35.89% 0.39 0.84 99.78% 3.99% 0.15 
0.34 96.30% 34.56% 0.38 0.85 99.80% 3.64% 0.14 
0.35 96.53% 33.58% 0.38 0.86 99.83% 3.41% 0.14 
0.36 96.72% 32.52% 0.38 0.87 99.84% 3.09% 0.13 
0.37 96.91% 31.43% 0.37 0.88 99.87% 2.62% 0.12 
0.38 97.10% 30.53% 0.37 0.89 99.89% 2.00% 0.11 
0.39 97.26% 29.55% 0.37 0.9 99.93% 1.53% 0.10 

0.4 97.49% 28.57% 0.36 0.91 99.94% 0.98% 0.07 
0.41 97.56% 27.91% 0.36 0.92 99.96% 0.70% 0.06 
0.42 97.70% 26.97% 0.36 0.93 99.99% 0.47% 0.06 
0.43 97.83% 26.26% 0.35 0.94 99.99% 0.35% 0.05 
0.44 97.93% 25.28% 0.35 0.95 99.99% 0.12% 0.03 
0.45 98.03% 24.27% 0.34 0.96 100.00% 0.08% 0.03 
0.46 98.15% 23.56% 0.34 0.97 100.00% 0.00% 0.00 
0.47 98.26% 22.66% 0.34 0.98 100.00% 0.00% 0.00 
0.48 98.36% 21.76% 0.33 0.99 100.00% 0.00% 0.00 
0.49 98.47% 21.21% 0.33 1 100.00% 0.00% 0.00 

0.5 98.62% 20.39% 0.33     
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