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Abstract

Automated function annotation is a major goal of post-genomic era with tremendous
amount of protein sequences in the databases. Prediction of subcellular localization or
binding sites in proteins is crucial for function analysis, genome annotation, and drug
discovery. Determination of localization or structure using experimental approachesis
time-consuming; thus, computational approaches become highly desirable.

We proposed two protein subcellular localization prediction methods, PSL101
and PSLDoc. PSL101 combines a structural homology approach and a support vector
machine model, in which compartment-specific biological features derived from bac-
terial trandocation pathways are incorporated. PSLDoc uses a probabilistic latent se-
mantic analysis on gapped-dipeptides of various distances, where evolutionary infor-
mation from position specific scoring matrix (PSSM) is utilized. Our methods achieve
93% in overall accuracy for Gram-negative bacteria, and compared favorably to the
state-of-the-art results by 7.4% on a benchmark dataset having low homology to the
training set. Experiment results demonstrate that both biological features derived from
tranglocation pathways and feature reduction.by-document classification techniques
can lead to a significant improvement in tthe prediction performance. Moreover, the
proposed biological features and gapped-dipeptide signatures are interpretable and
can be applied in advanced studies and experiment.designs.

For RNA-binding site prediction, wepropose another method, RNAProB, which
incorporates a new smoothed PSSM encoding scheme in a support vector machine
model. The proposed smoothed PSSM encoding considers correlation and dependen-
cy from neighboring residues for each amino acid in a protein sequence. Experiment
results show that smoothed PSSM encoding significantly enhances the prediction
performance, especialy for sensitivity. Our method performs better than the
state-of-the-art systems by 4.90%~6.83%, 7.05%~26.90%, 0.88%~5.33%, and
0.10~0.23 in terms of overall accuracy, sensitivity, specificity, and Matthew’s correla-
tion coefficient, respectively. This also supports our assumption that smoothed PSSM
encoding can better resolve the ambiguity in discriminating between interacting and
non-interacting residues by modeling the dependency from surrounding residues.

Because of the generality of the proposed methods, they can be extended to other
research topics in the future. Moreover, the information from predicted localization
and structure of proteins can be used collectively to assist biologists in both inferring
protein function and finding suitable drug targets. Therefore, we believe that our work
can contribute to scientific discoveries on a high-throughput basis.
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CHAPTER 1

Computational Approachesfor Protein Function

Analysis

1.1 Protein subcellular localization prediction

1.1.1 Introduction

The prediction of protein subcellular localization (PSL) focuses on determining local -
ization sites of unknown proteins in a cell. The study of PSL is important for el uci-
dating protein functions involved imwvarious cellular processes. Despite recent techni-
ca advances, experimental determination of. PSL' remains time-consuming and la-
bor-intensive. In addition, researches.in-the post-genomic era have yielded a tremen-
dous amount of sequence data. Given-the size and complexity of the data, many re-
searchers would prefer to use prediction systems to identify and screen possible can-
didates for further analyses. Hence, computational approaches have become increas-

ingly important.

1.1.2 Previous wor k

Extensive studies of PSL prediction have led to the development of several methods,

which can be classified as follows.

1. Amino acid composition-based methods These methods utilize machine learn-
ing techniques, including neural networks (Emanuelsson, et al., 2000) and sup-
port vector machines (SVM) (Hoglund, et a., 2006; Hua and Sun, 2001; Park

and Kanehisa, 2003; Pierleoni, et a., 2006; Wang, et a., 2005; Yu, et a., 2006;

1



Yu, et a., 2004). This category includes methods like P-CLASSIFIER (Wang, et
al., 2005) and CELLO (Yu, et d., 2006; Yu, et a., 2004), which utilize n-peptide

composition-based SVM approaches.

Methods that integrate various protein characteristics Several methods includ-
ing expert systems (Bannai, et al., 2002; Nakai and Kanehisa, 1991), k-nearest
neighbor (Chou and Cai, 2005; Horton, et a., 2006), SVM (Bhasin, et a., 2005;
Nair and Rost, 2005; Su, et al., 2006), support vector data description (Lee, et d.,
2006), and Bayesian networks (Gardy, et al., 2005; Gardy, et a., 2003; Lu, et al.,
2004; Scott, et al., 2005), integrate various biologica features that influence lo-
calization. The features that characterize a protein can be extracted from bio-
logical literature, public databases, and related prediction systems. Both PSORTb
(Gardy, et d., 2005; Gardy, et d., 2003) and PSLpred (Bhasin, et a., 2005) inte-
grate different analytical modules and ‘demonstrate that the hybrid approaches

perform better than each individual'module.

Sequence homology-based methods ‘It has been suggested that PSL is an evolu-
tionary conserved trait (Gardy and Brinkman, 2006; Nair and Rost, 2002). Ef-
forts to address the relationship between evolutionary information and localiza-
tion identity have relied heavily on exploiting sequence similarity to infer PSL.
Such methods include phylogenetic profiling (Marcotte, et a., 2000), domain
projection (Mott, et al., 2002), and a sequence homology-based method (Y u, et
a., 2006). Several other methods, such as PSORTb and PSLpred, also incorpo-

rate such sequence homol ogy-based componentsin their analyses.



1.1.3 Challenges

The prediction of PSL presents severa challenges. First, the performance of amino
acid composition-based and sequence homology-based methods might be signifi-
cantly degraded if homologous sequences are not detected. Second, the results of
these two methods are generally difficult to interpret; therefore, it is difficult to de-
termine which biological features should be used to identify specific PSL and why
they work well for prediction. If the features were biologically interpretable, the re-
sultant knowledge could help in designing artificial proteins with the desired proper-
ties. Meanwhile, methods that integrate various features could suffer from the prob-
lem of low coverage in high-throughput proteomic analyses due to the lack of infor-
mation to characterize unknown proteins. Finally, many PSL methods are imple-
mented on redundant training sets,"which might lead to overestimation of the predic-
tive performance. Thus, the performance would be-significantly lower if redundant

sequences were meticulously removed:

1.1.4 Our methods—PSL 101 and PSL Doc

In Chapter 2, we propose a hybrid method that combines a one-versus-one (1-v-1)
SVM mode referred to as PSL101 (Protein Subcellular Localization prediction by
1-On-1 classifiers) and a structural homology approach called PSLsse (Protein Sub-
cellular Localization prediction by secondary structure element alignment) to predict
the PSL for Gram-negative bacteria. PSL101 comprises a number of binary classifiers,
where compartment-specific biological features derived from Gram-negative bacteria
translocation pathways are incorporated. In PSLsse, we employ secondary structure
alignment for structural similarity comparison and assign the known localization of
the top-ranked protein as the predicted localization of a query protein. Experiment re-

sults show that PSL101 achieves high prediction accuracy, which demonstrates that



biological features derived from Gram-negative bacteria translocation pathways sig-
nificantly enhance the performance. Moreover, since the selected features are bio-
logically interpretable, they can be easily applied to advanced analyses and experi-
mental designs. Most notably, the overall accuracy of combining PSL101 and PSLsse
is further improved to 93.7%, which is a 2.5% improvement over the second best
method. Our analysis suggests that, in addition to sequence homology, structura ho-
mology can also be an effective indicator for inferring PSL. Lastly, since sequence
redundancy in the training data often leads to overestimation of prediction accuracy,
we present an evauation using non-redundant data sets. It is aso known that
cross-validation may overestimate the predictive performance when parameters are
optimized repeatedly on the same test data. Therefore, we adopt a three-way data split
procedure for evaluating the non-redundant data:sets. The results suggest that these
techniques can prevent overestimation of the-performance such that the genera per-
formance of PSL prediction shauld be approximately 85%. In the assessment of the
evaluation data sets, our hybrid method aso-provides accurate prediction, especialy

for those sequences of low homology to the training set.

In addition, PSL prediction can be formulated as a document classification prob-
lem. The document classification problem is to assign an electronic document to one
or more categories, based on its contents. A protein sequence can be considered as the
content of a document, and localization sites are considered as categories. To predict
the localization site(s) of a protein is equivalent to predicting the topic (e.g., sport,
politics) of a document (e.g., a piece of news). Given a large number of documents,
document classification is usually tackled by the following three steps. First, docu-
ments have to be transformed into feature vectors in which each distinct term corre-

sponds to a feature. The value of afeature in a vector represents the weight of aterm



in a document. Another set of documents with known categories are used as training
set. Second, because of high-dimensional feature spaces, feature reduction is neces-
sary before applying machine learning methods, to improve generalization accuracy
(Valdes-Perez, et a., 2000) and to avoid overfitting (Namburu, et a., 2005; Val-
des-Perez, et a., 2000). Finally, these reduced feature vectors are used to perform the
category assignment automatically. The first two steps could be considered as feature
representation. In Chapter 3, we present another prediction method, PSLDoc (Protein
Subcellular Localization prediction based on Document classification), which incor-
porates a probabilistic latent semantic analysis (PLSA) with a one-versus-rest (1-v-r)
SVM model based on document classification techniques. The feature representation
of PSLDoc includes the following tasks: (1) define the terms of a protein, (2) design a
term weighting scheme, and (3) apply a feature reduction and extraction method. For
a benchmark data set of Gram-negative bacteria,. PSLDoc also performs better than
the other approaches. Our method demonstraiesthat the specific feature representation

for proteins can be successfully applied te.PSL prediction.

1.2 Prediction of RNA-binding sitesin proteins

1.2.1 Introduction

RNA-protein interaction plays an important role in various biological processes, such
as protein synthesis, gene expression, post-transcriptional regulation, and antiviral
drug discovery. The prediction results of RNA-binding sites in proteins can provide
biological insights for investigating RNA-protein interaction. For instance, ribosome
is a protein synthesis complex consisting of ribosoma RNAs (rRNAS) and proteins.
Sunita et al. (Sunita, et a., 2007) applied predicted RNA-binding sites to study the

relationship between RNA methyltransferases RsmC and 16S rRNA. In addition, Be-



charaet al. (Bechara, et a., 2007) incorporated predicted results from a RNA-binding
site predictor to inspect the connection between fragile X mental retardation protein
and G-quartet RNA structure. Moreover, some RNA viruses, such as human immu-
nodeficiency virus (HIV) and hepatitis C virus, have a RNA genome and replicate
themselves by interacting with host proteins (McKnight and Heinz, 2003). Therefore,
identification of the RNA interacting residues in proteins provides valuable informa-
tion for understanding the mechanisms of protein synthesis, gene regulation, and

pathogen-host interaction.

In recent years, rapid advances in genomic and proteomic studies have yielded a
tremendous amount of DNA and protein sequences. We used the keyword
“RNA-binding” to search against the National Center for Biotechnology Information
(NCBI) protein sequence database on June.9, 2008, and obtained 196,686 protein se-
quences. However, when searching against Protein Data Bank (PDB) (Berman, et a.,
2002) for molecular / chain type.containing protein-and RNA, we only retrieved 684
structures. In addition, experimenta “determination of RNA-protein interaction re-
mains time-consuming and labor-intensive. Therefore, computational approaches for
predicting RNA-binding sites in proteins have become increasingly important to un-

derstand the mechanisms of RNA-protein interaction.

1.2.2 Previouswork
Extensive studies of RNA-protein binding site prediction have lead to the develop-

ment of several methods, which can be classified as follows.
1.  Amino acid composition-based methods

Jeong et al. (Jeong, et al., 2004) used an artificial neural network (ANN) to predict

RNA-protein interacting residues based on amino acid compositions and predicted



secondary structure elements. It achieved Matthew’s correlation coefficient (MCC) of
0.29 and overall accuracy of 77.50% along with specificity of 87.29% and sensitivity
of 40.30%. Terribilini et al. (Terribilini, et a., 2006) presented RNABIndR using a
Naive Bayes classifier on amino acid sequences to predict RNA binding sites in pro-
teins. RNABINdR attained MCC, overall accuracy, specificity, and sensitivity of 0.35,

84.80%, 93%, and 38%, respectively.
2. Evolutionary information-based methods

Jeong and Miyano (Jeong and Miyano, 2006) applied an ANN to predict the RNA in-
teracting residues based on evolutionary information from the position-specific scor-
ing matrix (PSSM), and achieved MCC, overal accuracy, specificity, and sensitivity
of 0.39, 80.20%, 91.04%, and 43.40%,_respectively. The MCC is further improved to
0.41 by the incorporation of weighted profiles. Kumar et al. proposed a predictor,
PPRint (Kumar, et a., 2008), using PSSM profiles in;a support vector machine (SVM)
model, and it achieved MCC, overall“accuracy, specificity, and sensitivity of 0.45,

81.16%, 89.55%, and 53.05%, respectively.
3. Hybrid methods

Wang and Brown (Wang and Brown, 2006) developed an SVM-based classifier,
BindN, using features including relative solvent accessible surface area, hydrophobic-
ity index, side chain pKa vaue, molecular mass, and BLAST results. The overall ac-
curacy, specificity, and sensitivity of BindN are 74.25%, 75.70%, and 65.78%, re-

spectively.

1.2.3 Challenges

Although many methods have been proposed for RNA-binding site prediction, several

challenges still remain. First, many of previous methods yield low sensitivities in



tradeoff for high specificities since some biological applications, such as identification
of critical residues for site-specific mutagenesis, emphasize more on specificities
rather than sengitivities (Kumar, et a., 2008; Terribilini, et a., 2006). These methods
could suffer from low coverage of RNA-binding sites in high-throughput proteomic
analyses. Second, the MCC vaues of existing methods remain in the range of
0.27~0.45, which presents a great room for improvement in the complementary
measure of prediction performance. Finaly, the parameters, such as the size of the
sliding window, in most methods are selected from testing results evaluated by n-fold
cross-validation, which may lead to overestimation of the prediction performance.
Thus, the performance would be much lower if a more rigorous procedure is applied

for parameter selection and performance eval uation.

1.2.4 Our method - RNAProB

In Chapter 4, we propose a method, RNAProB (RNA:Protein Binding site prediction),
for prediction of RNA-binding residues in proteins using SVM classifiers and a new
smoothed PSSM encoding scheme. Besides incorporation of upstream and down-
stream residues in a standard PSSM generated by PSI-BLAST, smoothed PSSM en-
coding aso considers, for each amino acid in a sequence, the dependency effect from
its neighboring amino acids. Similar to the spatial domain method used in the research
field of image processing (Gonzalez and Woods, 2002), smoothed PSSM encoding
calculates the evolutionary information of a central position based on the sum of those
from surrounding residues. Experiment results show that the prediction performance
of smoothed PSSM encoding performs better than the state-of-the-art approaches on
the benchmark data sets. Evaluated by five-fold cross-validation, RNAProB outper-
forms the other approaches by 0.10~0.23 in MCC, 4.90%~6.83% in overal accuracy,

and 0.88%~5.33% in specificity. Most notably, our method significantly improves



sensitivity by 26.90%, 26.62%, and 7.05% for the RBP86, RBP109, and RBP107 data
sets, respectively. To avoid data overfitting, we also incorporate a three-way data split
procedure to evaluate the prediction performance of RNAProB. Our results show that
our method not only achieves significant improvement on the performance, but also
attains a high prediction accuracy evaluated by a three-way data split procedure.
Moreover, our analysis indicates that smoothed PSSM could serve as a more dis-
criminative feature for distinguishing between interacting and non-interacting residues.
We believe that the proposed encoding scheme could be applicable to other research
fields, such as DNA-binding sites, protein-protein interaction, and prediction of

post-tranglational modification sites.
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CHAPTER 2
Protein Subcellular L ocalization Prediction Based

on Compartment-Specific Features Derived from

Trandocation Pathways

2.1 Methods

2.1.1 Gram-negative bacteria trandocation pathways

Proteins synthesized in the cytosol must, be targeted and transported to their desig-
nated compartments in Gram-negative hacteria.through one of the translocation path-
ways (Wickner and Schekman;-2005). Gram-negative bacteria have five mgor PSL
sites: the cytoplasm (CP), inner:membrane (IM),-periplasm (PP), outer membrane
(OM), and extracellular space (EC). Figure 2.1 shows some of the translocation path-
ways in Gram-negative bacteria. Translocations through the IM are targeted, both
co-trandationally and post-translationally, to the SecYEG translocase via the signa
recognition particle (SRP)-dependent pathways and the SecB-dependent pathways,
respectively. Alternatively, proteins localized to the PP can cross the IM by the twin
arginine translocation pathway. PP proteins can be inserted or translocated across the
OM through five secretory pathways, including Type | (Holland, et al., 2005) and
Type Il (Pugsley, 1993) export systems. Regardless of the mode of translocation, the
process is largely substrate specific, and therefore requires one or more signalsin or-
der to cross a membrane. For example, non-cytoplasmic proteins contain signa se-

guences that direct them to translocate through the IM. Furthermore, many proteins

11



localized to a compartment have characteristic structures and amino acid composi-
tions. Integra IM proteins contain mainly transmembrane a-helices, in which their
cores are populated by hydrophobic residues. Therefore, we model the prediction sys-
tem according to the tranglocation pathways by identifying signals that influence the
targeting and compartment-specific features that correlate with various localization

sites.

Type Il export Type | export

Figure 2.1: Diversity of Gram-negative bacteria translocation pathways. 1, 2, 3, 4, 5,
and 6 represent translocation pathways from CP to IM, CP to PP, CPto EC, IM to PP,
PP to OM, and PP to EC, respectively. SRP, signal recognition particle, SecB, ex-
port-specific cytoplasmic chaperone, SecA, preprotein translocase SecA subunit, Se-
CYEG, preprotein translocase complex, lep, leader peptidase, TAT, twin argine trans-
locase, Gsp complex, general secretion pathway complex, Omp85, outer membrane
protein assembly factor, ABC transporter, ATP-binding cassette transporter, TolC,
Type | secretion outer membrane protein. [Modified from Wickner and Schekman
(2005) with their permission]
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2.1.2 System ar chitecture of PSL 101

The system architecture of PSL101, shown in Figure 2.2, comprises ten binary 1-v-1
SVM (Vapnik, 1995) classifiers for the prediction of five localization sites of
Gram-negative bacteria. Each translocation step across compartmentsi and j is repre-
sented by a binary classifier C; j in which different biological features intrinsic to the
proteins in compartments i and j are incorporated. All translocationsin Figure 2.1, i.e.,
translocation pathways 1 to 6, can be modeled in this way by using six binary classi-
fiers. The remaining four classifiers, although not biologically occurring, are still con-
structed with compartment-specific features and combined with the above classifiers
for an integrated prediction. For each query protein, a predicted class and its corre-
sponding probability are returned by each classifier. To determine the predicted local-
ization site of the protein, we combine the resultsof the ten binary classifiers based on
majority vote. In the case of a ti€, the localization site with the highest average prob-

ability is assigned as the fina predictionresuli:
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Figure 2.2: System architecture of PSL101.

2.1.3 Feature extraction and representation of PSL 101

We consider the following biological features to distinguish between proteins trans-
located to different compartments, and construct our classification framework to
mimic the translocation process of Gram-negative bacterial secretory pathways. Since
some of these features may not be readily available, we utilize several web services to

predict them.
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General biological features

1

Amino acid (AA) composition: Protein descriptors based on n-peptide composi-
tions or their variations have proved effectivein PSL prediction (Yu, et a., 2004).
If n = 1, then the n-peptide composition reduces to amino acid composition,
which generates a 21 dimensional feature vector (i.e., 20 amino acid types plus a
symbol ‘X', for others) that represents the occurrence frequency of amino acids

in a protein sequence.

Di-peptide (DP) composition: Similar to (1), if n = 2, the di-peptide composition
gives a fixed length of 21x21 di-peptides, which represent the occurrence fre-

guency of amino acid pairsin a protein sequence.

Relative solvent accessibility (RSA): Preteins in different compartments have
various buried and exposed-residue compositions (Nair and Rost, 2003; Nair and
Rost, 2003). For example, CP proteins have a bal ance of acidic and basic surface
residues, while EC proteins have a dlight.'excess of acidic surface residues
(Andrade, et a., 1998). We use amino acid compositions of both buried and ex-
posed residues, with a cutoff of 25% (Cheng, et al., 2005), to represent the re-
sults derived by SABLE 11 (Adamczak, et al., 2005), a relative solvent accessi-

bility prediction method.

Secondary structure elements encoding scheme 1 (SSE1): Transmembrane
a-helices are frequently observed in IM proteins, while transmembrane g-barrels
are primarily found in OM proteins (Pautsch and Schulz, 1998). Secondary
structure elements (SSE) are crucia for detecting proteins localized in the IM

and OM. We compute the amino acid compositions of three SSEs (Nair and Rost,
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2003; Nair and Rost, 2005), a-hélix, p-strand, and loop, based on the predictions

of HYPROSP Il (Lin, et a., 2005), a knowledge-based SSE prediction approach.

5. Secondary structure elements encoding scheme 2 (SSE2): SSE1 alone cannot
discriminate proteins that share similar SSE compositions and localize in differ-
ent compartments. For example, the SSE compositions of OM proteins might be
similar to proteins localized in other compartments, but OM proteins are charac-
terized by p-strand repeats throughout the transmembrane domains. To further
depict such properties in a protein, three descriptors, composition, transition, and
distribution, are used to encode predictions of HYPROSP II. Composition de-
scribes the global composition of a given SSE type in a protein. Transition char-
acterizes the percentage frequency that amino acids of a particular SSE type are
followed by a different type..Distribution.measures the chain length within which
the first, 25, 50, 75 and 100% of the amino acids of a particular SSE type are lo-
cated (Dubchak, et al., 1995). An-example is shown in Figure 1.1S in Appendix

1.1.
Compartment-specific biological features

1. Signal peptides (SIG): Signal peptides are N-terminal peptides, typically between
15 and 40 amino acids long, which target proteins for translocation through the
genera secretory pathway (Emanuelsson, et a., 2000). The presence of a signal
peptide suggests that the protein does not reside in the CP. We employ SignalP
3.0 (Bendtsen, et al., 2004), a neura network- and hidden Markov model-based

method, to predict the presence and location of signal peptide cleavage sites.

2.  Transmembrane a-helices (TMA): Integra IM proteins are characterized by

o-helices, typicaly 20-25 amino acids in length, which traverse the IM. The
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presence of one or more transmembrane a-helices implies that the protein is lo-
cated in the IM. We apply TMHMM 2.0 (Krogh, et a., 2001), a hidden Markov

model-based method, to identify potential transmembrane a-helices.

3.  Twin-arginine translocase (TAT) motifs. The twin-arginine translocase system
exports proteins from the CP to the PP. The proteins translocated by
twin-arginine translocase bear a unique twin-arginine motif (Berks, 1996), the
presence of which is a useful feature for distinguishing between PP and non-PP
proteins. We use TatP 1.0 (Bendtsen, et a., 2005), a neural network-based

method, to predict the presence of twin-arginine translocase motifs.

4. Transmembrane f-barrels (TMB): A large number of proteins residing in the OM
are characterized by p-barrel structures;.thus, they could be candidate features for
detecting OM proteins. We-adopt , TMB=Hunt:(Garrow, et al., 2005), a method
that uses a k-nearest neighbor algorithm, to distinguish between transmembrane

p-barrels and non- transmembrane’s-barrels.

5. Non-classical protein secretion (SEC): For a long time, it was believed that an
N-terminal signal peptide was absolutely necessary to export a protein to the ex-
tracellular space. However, recent studies have shown that several EC proteins
can be secreted without a classical N-terminal signal peptide (Nickel, 2003).
Identification of non-classical protein secretion could be a potential discriminator
for CP and EC proteins. Predictions from SecretomeP 2.0 (Bendtsen, et a.,
2005), a non-classical protein secretion prediction method, are incorporated in
our method.

2.1.4 Sequence and structure conservation

Because PSL tends to be evolutionary conserved, the known localization sites of ho-

mologous sequences could be useful indicators of the actual localization of an un-
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known protein. We apply both sequence and structural homology approaches to infer
localization. For the sequence homology approach, we develop a prediction method,
called PSLseq, which is based on pairwise sequence alignment of ClustaW (Thomp-
son, et a., 1994). In the structura homology approach, we employ secondary struc-
tural similarity comparison, referred to as PSLsse. Based on secondary structure ele-
ments predicted by HYPROSP |1, we use SSEA (Fontana, et a., 2005) to perform
pairwise secondary structure alignment. In the sequence and structural homology ap-
proaches, the known localization of the top-rank aigned protein is assigned to the

guery protein asits predicted localization.

2.1.5 Data sets

To assess our method, we utilize severa data sets of Gram-negative bacteria proteins
that have been used in previous works (Bhasin, et al:, 2005; Gardy, et al., 2005; Gardy,
et a., 2003; Wang, et a., 2005, Y u, et a.;2006; YU, et al., 2004). Table 2.1 lists the
number of proteinsin different |ocalization sites in the data sets, which are detailed in

Table 1.1S of Appendix 1.2.

1. Benchmark data sets. Derived from the first release of ePSORTdb (Rey, et d.,
2005), the first data set, referred to as PS1302, consists of proteins with experi-
mentally determined localizations. The second data set, PS1444, is an expanded

version of PS1302.

2. Non-redundant data setss To assess the predictive performance of
non-homologous proteins, we utilize CD-HIT (Li and Godzik, 2006), a redun-
dancy filtering program, to eliminate sequences that share greater or equal to
30% sequence identity in the PS1302 and PS1444 data sets, which yields the

NR755 and NR828 data sets, respectively.
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Table 2.1: Number of proteins distributed in different localization sites in the data

Sets.
Benchmark Non-redundant Evaluation
Localization
PS1302 PS1444  NR755 NR82g ~ EVO0h EVIS3 - EV243
igh low al
Cytoplasm (CP) 248 278 206 229 28 9 124
Inner membrane (IM) 268 309 182 205 26 26 52
Periplasm (PP) 244 276 147 161 13 11 24
Outer membrane
(OM) 352 391 134 148 19 9 28
Extracellular space 190 190 86 85 4 11 15
(EC)
Total 1302 1444 755 828 0 153 243

Evaluation data sets: Recently, a new data set (Gardy and Brinkman, 2006) com-
prised of 299 proteins was created for comparison of different methods. We first
apply ClustaW to divide the.new set into twio'subsets according to the sequence
identity of each protein pair between the 299 proteins and proteins in the known
training sets (i.e., PS1302 and PS1444) with a cutoff of 30%. Then, redundant
sequences are removed from each subset by CD-HIT with a 30% threshold; the
resultant non-redundant data sets are called EV90_high (greater or equal to 30%)
and EV153 |ow (less than 30%). The combination of both sets is referred to as

the EV243_all data set.

2.1.6 Perfor mance assessment

For comparison with other approaches, we follow the measures used in previous

works (Bhasin, et a., 2005; Wang, et a., 2005; Yu, et al., 2006; Yu, et a., 2004). To

assess the performance in each localization class, the accuracy and Matthew’s correla-
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tion coefficient (MCC) (Matthews, 1975) are calculated by Equations (1.1) and (1.2),

respectively. The overall accuracy is defined in Equation (1.3).

Acc, = (TR /N;)x100% (1.1)

(TR)(N;) - (FR)(EN;)

M = TR FN) R PR, + FR) TN, S ANy (2

i=1

| |
Acc = ( TR /> Nijxloo% (1.3)
i=1

where | = 5 is the total number of localization sites for Gram-negative bacteria, and
TPi, TNi, FP;, FN;, and N; are, respectively, the number of true positives, true nega-
tives, false positives, false negatives, and proteins in localization site i. MCC, which
considers both under- and over-predictions, provides a complementary measure of the
predictive performance, where MCC = 1 indicates a perfect prediction, MCC = 0 in-
dicates a completely random assignment,-and-MCC = -1 indicates a perfectly reverse

correlation.

2.1.7 Training and testing

We apply the LIBSVM (Chang and Lin, 2001) software in our experiments. For all
classifiers, we use the Radial Basis Function kernel, and tune the cost (c) and gamma
(y) parameters. The probability estimates in LIBSVM are used to determine the con-
fidence levels of the classifications (Wu, et a., 2004). The performance of PSL101 is

assessed as follows.

1. n-fold cross-vaidation: The data set is randomly partitioned into ten distinct
non-overlapping sets of proteins (i.e., n = 10), nine of which are used to train the

predictor. Then, the accuracy of the predictor is evaluated on the remaining set.
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Three-way data split: To prevent data overfitting, a three-way data split proce-
dure (Ritchie, et al., 2003) is used to assess the performance of PSL101. The data
set is randomly divided into three digoint sets, i.e., a training set for classifier
learning, avalidation set for feature selection and parameter tuning, and atest set
for performance evaluation. Here, we divide the data set into ten distinct sets:

eight for training, one for validation, and one for testing.
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2.2 Results and discussion

2.2.1 Effect of biological features derived from Gram-negative bac-

teria trandocation pathways

Since it is impractical to try all possible feature combinations in different classifiers,
heuristics guided by biological insights are used to determine a small subset of feature
sets specific to each classifier. Starting with an empty subset, a sequential forward
search agorithm (Tsal, et a., 2006) keeps adding the best feature sets that improve
the accuracy. The process terminates when adding a feature set no longer makes any
improvement. The performance of PSL101 evaluated by ten-fold cross-validation for
the benchmark data sets is shown inithe leftmostrcolumn of Table 2.2. PSL101 attains
overal accuracy of 92.7% and 91.6% for the PS1302 and PS1444 data sets, respec-
tively. Most notably, CP and IM preteins.attain accurate prediction performance in
terms of both accuracy and MCC, whieh.can.be explained by the fact that proteins lo-
calized in CP and IM are characterized by several well-known biological features in

our method.
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Figure 2.3:. Feature combinations derived. from the PS1302 data set using
cross-validation. Selected genera and compartment-specific features are represented
by filled circles and triangles, respectively.

The features selected from -PSL101 -for the PS1302 data set using
cross-validation are shown in Figure 2.3; the same set of featuresis used in the corre-
sponding training and testing scheme for the PS1444 data set. The experiment results
demonstrate that our feature selection not only yields a significant improvement in the
performance, but also correlates well with biological insights. For example, in Figure
2.3, PSL101 selects signa peptides, transmembrane a-helices, and relevant solvent
accessibility (i.e. SIG, TMA, and RSA) as the optimal features to distinguish CP and
IM proteins. In addition, di-peptide composition, signal peptides, and transmembrane
[-barrels (i.e. DP, SIG, and TMB) are used in the discrimination of CP and OM pro-
teins. The combination of general and compartment-specific features works well in
differentiating between any two compartments in each classifier; accordingly, the

overal accuracy of the combined predictions of each classifier isimproved. There
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PSL sse using cross-validation for the PS1444 data set, respectively.

sults support our assumption that“compartment-specific biological features derived
from Gram-negative bacteria translocation pathways can significantly enhance the
performance of PSL prediction. Moreover, the selected features are biologically inter-

pretable and can be easily applied in further analyses.

2.2.2 Effect of sequence and structure conservation

We now explore the relationship between sequence and structural similarity and lo-
calization identity. Both sequence and structural homology approaches, referred to as
PSLseq and PSLsse, are developed to infer localization based on sequence alignment
using ClustalW and secondary structure alignment using SSEA, respectively. Figure
2.4 shows that when the structural similarity is greater or equal to 80%, PSLsse per-

forms dlightly better than PSL101; otherwise, PSL101 is significantly better. Thus, we
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propose a hybrid approach that combines PSLsse and PSL101, called
PSLsse+PSL101. For each query protein, if the top-rank aligned protein shares an
80% or greater structural similarity with any of the proteins in the training set, the lo-
calization is predicted by PSLsse; otherwise, it is predicted by PSL101. In addition,
we implement another hybrid approach, called PSLseq+PSL 101, which uses a cutoff

of 30% sequence identity [7] to combine PSLseq and PSL101.

Table 2.2 compares the performance of different hybrid approaches using
ten-fold cross-validation for the benchmark data sets. Compared with PSL101, the
performance of the two hybrid approaches, PSLseq+PSL101 and PSLsse+PSL 101, is
significantly enhanced in terms of the overall accuracy, as well as the accuracy and
MCC of most localization sites. Most notably, the accuracy of EC proteins in both
data sets isimproved by 1.6%~5.3%, which.suggests that homol ogy-based approaches
can compensate for the performance of PSL101 and thereby enhance the prediction of
EC proteins. Moreover, PSLsse+PSLL101 achieves an overall accuracy of 93.7% and
93.2% in the PS1302 and PS1444 data sets, respectively, which are 0.6%~0.8% im-
provements over PSLseq+PSL101. We show that homology approaches based on se-
guence and structure conservation work well in PSL prediction; in fact, structura
homology could be effective for prediction in addition to sequence homology. Thus, it

could also be a useful indicator for inferring PSL.
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Table 2.2: Comparison of different hybrid approaches using cross-validation for the benchmark data sets.

PS1302
Localization PSL101 PSLseg+PSL101 PSLsse+PSL101
Acc (%) MCC Acc (%) MCC Acc (%) MCC
CP 97.2(94.8) 0.91 (0.89) 96.4 (94.4) 0.90 (0.89) 95.6 (94.4) 0.90 (0.90)
IM 94.4 (92.9) 0.95 (0.94) 93.3(91.8) 0.95(0.93) 93.3(91.8) 0.94 (0.93)
PP 87.7 (88.1) 0.86 (0.84) 88.9 (88.9) 0.86 (0.85) 91.4 (91.0) 0.88 (0.88)
oM 94.3 (93.8) 0.94 (0.91) 95.5.(95.7) 0.96 (0.93) 96.3 (96.9) 0.96 (0.95)
EC 87.9(83.2) 0.87 (0.84) 89.5(85.8) 0.89 (0.87) 90.0 (87.9) 0.89 (0.89)
Overal 92.7 (91.2) - 93.1(91.9) - 93.7 (92.9) -
PS1444
Localization PSL101 PSkE seqg+PSL101 PSLsse+PSL101
Acc (%) MCC Acc (%) MCC Acc (%) MCC
CP 96.0 (94.2) 0.91 (0.90) 94.6 (92.8) 0.89 (0.88) 95.0 (93.5) 0.91 (0.90)
IM 94.5 (92.6) 0.95 (0.94) 93.5(91.6) 0.94 (0.93) 93.5(91.6) 0.94 (0.93)
PP 85.1(88.0) 0.82 (0.83) 87.0 (88.4) 0.84 (0.83) 90.2 (91.7) 0.86 (0.87)
oM 94.9 (93.9) 0.93 (0.91) 95.9 (95.7) 0.95 (0.93) 96.7 (96.4) 0.96 (0.95)
EC 82.6 (83.2) 0.83 (0.85) 87.9 (86.3) 0.87 (0.88) 87.4 (87.9) 0.87 (0.89)
Overal 91.6 (91.2) - 92.4 (91.6) - 93.2(92.8) -

8 The performance of incorporating athree-way data split procedure is indicated in the parentheses.
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Table 2.3: Performance comparison of different approaches using cross-validation for the benchmark data sets.

PS1302
Localization HYBRID CELLO PSORTbv.1.1 PSL pred P-CLASSIFIER
Acc (%) MCC Acc (%) MCC Acc (%) MCC Acc (%) MCC Acc (%) MCC
CP 95.6 0.90 90.7 0.85 69.4 0.79 90.7 0.86 94.6 0.85
IM 93.3 0.94 88.4 0.92 78.7 0.85 86.8 0.88 87.1 0.92
PP 91.4 0.88 86.9 0.80 57.6 0.69 90.3 0.90 85.9 0.81
oM 96.3 0.96 94.6 0.90 90.3 0.93 95.2 0.95 93.6 0.90
EC 90.0 0.89 78.9 0.82 70.0 0.79 90.6 0.84 86.0 0.89
Overall 937 - 88.9 - 74:8 - 91.2 - 89.8 -
PS1444
Localization HYBRID CELLOII PSORTb v.2.0 PSLpred P-CLASSIFIER
Acc (%) MCC Acc (%) MCC Acc (%) MCC Acc (%) MCC Acc (%) MCC
CP 95.0 0.91 95.3 0.89 70.1 0.77 - - -
IM 93.5 0.94 90.0 0.91 92.6 0.92 - - -
PP 90.2 0.86 87.7 0.82 69.2 0.78 - - -
oM 96.7 0.96 92.8 0.90 94.9 0.95 - - -
EC 87.4 0.87 79.5 0.82 789 0.86 - - -
Overdl 93.2 - 90.0 - 82.6 - - - -

8§ The best performance of overall and individua localization sitesis underlined.
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2.2.3 Performance comparison of n-fold cross validation and

three-way data split

The performance of the three-way data split experiments is shown in parentheses in
Table 2.2. The features selected from PSL101 for the PS1302 data set using three-way
data split are shown in Figure 1.2Sin Appendix 1.3; the same set of featuresisused in
the corresponding training and testing scheme for the PS1444 data set. The overall
accuracy of PSL101, PSLseq+PSL101, and PSLsse+PSL101 drop 0.4%~1.5% for
both the PS1302 and PS1444 data sets. Specifically, the accuracy and MCC of the
same |ocalization sites are consistent across the two different data sets. Moreover, the
performance of the two data sets evaluated using a three-way data split is more con-
sistent than that assessed by ten-fold cross-validation. This suggests that a three-way
data split procedure could avoid-overestimation of the predictive performance; there-

fore, it should be considered in PSL prediction.

2.2.4 Comparison with other approaches using the benchmark data

Sets

Table 2.3 compares the performance of PSLsse+PSL101, referred to as HYBRID,
with other prediction methods using cross-validation on the benchmark data sets.
HYBRID attains the best overal accuracy of 93.7% and 93.2% for the PS1302 and
PS1444 data sets, respectively. In both sets, HYBRID achieves improvements of
2.5%~3.2% in overall accuracy compared to the second best approaches in each data
set. With respect to accuracy and MCC, HYBRID performs better than the other ap-
proaches in most localization sites. HYBRID ranks the best in terms of accuracy for

CP, IM, and OM proteins, in which more biological features are incorporated than the
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other localization sites. The high predictive performance for CP, IM, and OM proteins
demonstrates that biological features derived from Gram-negative bacteria transloca-
tion pathways are effective for PSL prediction. Most notably, it outperforms the sec-
ond best approaches for IM proteins by 4.9~14.6% and 0.9~3.5% in terms of accuracy
for the PS1302 and PS1444 data sets, respectively. This is a particular strength of
HYBRID because IM proteins constitute the key components of various cellular
processes and serve as important targets for drug discovery [30]. In addition, it isin-
teresting to note that the accuracy of IM proteins is significantly improved from
78.7% in PSORTDb v.1.1 to 92.6% in PSORTb v.2.0, in which an expanded homology
module is incorporated. This also lends support on our assumption that sequence and

structural homology approaches could be effective indicators for inferring PSL.

2.2.5 Comparison with other, approaches using the evaluation data

sets

The evaluation data sets were submitted to the' web servers of each prediction method.
The predictive performance is shown in Table 2.4. CELLO Il and P-CLASSIFIER
achieve consistent overall accuracy in the range of 71.9%~77.8% for the EV90_high
and EV153 low data sets. PSLpred attains overall accuracy of 72.5% and 88.9% for
the EV153 low and EV90_high sets, respectively. PSORTb v.2.0 performs very well
for the EV90_high set, but poorly for the EV153 low set. HYBRID yields the best
predictions for lowly homologous sequences and ranks second best for highly ho-
mologous sequences. This demonstrates that when no homologous sequences are de-
tected, biological features derived from Gram-negative bacteria translocation path-
ways Yields accurate prediction; on the other hand, the incorporation of structural

homology approach further improves the predictive performance for highly homolo-
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gous sequences. When both data sets are evaluated on the EV243 all set, HYBRID
achieves an overall accuracy of 84.0%, which is a 5.4% improvement over the second
best method. This suggests that HY BRID could enhance the robustness of PSL pre-

diction, especially when highly homologous sequences are not detected.

2.2.6 Performance of non-redundant data sets

In both benchmark data sets, proteins sharing up to 30% sequence identity comprise
approximately 42% of the sets. One drawback of a high level of redundancy in data
sets is that it could lead to poor generalization for a predictor, since the predictor
might fail to assign a correct PSL, especially when low homology is detected. For this
reason, the construction of non-redundant data sets is necessary when evaluating the

performance of PSL prediction.

Here, we present performance.assessments using non-redundant sequences from
Gram-negative bacteria data sets. Using-the-same features derived from the PS1302
set by cross-vaidation, we use HY BRID:te train and evaluate the two non-redundant
sets viaten-fold cross-validation. The performance is shown in Table 2.5. The overall
accuracy declines markedly by approximately 8% using the non-redundant sets com-
pared with those using the redundant sets. The MCC for individua localization sites
also drops by 0.04~0.26. These results indicate that the genera performance of PSL
prediction for Gram-negative bacteria is approximately 85% for non-redundant data
sets. Methods that are less dependent on homology detection should be developed if

highly homol ogous sequences are removed completely.
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Table 2.4: Predictive performance of different prediction methods for the eval uation data sets.

EV153 low

Localization HYBRID CELLOI PSORTbv.2.0 PSL pred P-CLASSIFIER

Acc (%) MCC Acc (%) MCC Acc (%) MCC Acc (%) MCC Acc (%) MCC
CP 91.7 0.67 91.7 0.70 63.5 0.61 89.6 0.59 91.7 0.66
IM 65.4 0.73 46.2 0.64 46.2 0.58 38.5 0.41 30.8 0.48
PP 455 0.25 81.8 0.49 0.0 -0.03 54.5 0.34 818 0.49
oM 44.4 0.58 333 0.34 22.2 0.46 44.4 0.58 22.2 0.17
EC 27.3 0.43 45.5 0.50 9.1 0.29 45.5 0.54 27.3 0.33
Overdl 76.5 - 76.5 - 49.7 - 725 - 71.9 -

EV90_high

Localization HYBRID CELLOI PSORTbv.2.0 PSL pred P-CLASSIFIER

Acc (%) MCC Acc (%) MCC Acc (%) MCC Acc (%) MCC Acc (%) MCC
CP 100.0 0.95 929 0.83 100.0 1.00 96.4 0.88 929 0.78
IM 96.2 0.97 73.1 0.75 100.0 1.00 92.3 0.92 80.8 0.84
PP 100.0 0.96 61.5 0.58 100.0 1.00 92.3 0.83 46.2 0.46
oM 94.7 0.97 73.7 0.67 94.7 0.97 68.4 0.79 73.7 0.69
EC 75.0 0.86 75.0 0.54 100.0 1.00 100.0 0.81 75.0 0.54
Overdl 96.7 - 77.8 - 98.9 - 88.9 - 77.8 -

EV243 al

Localization HYBRID CELLOII PSORTbv.2.0 PSLpred P-CLASSIFIER

Acc (%) MCC Acc (%) MCC Acc (%) MCC Acc (%) MCC Acc (%) MCC
CP 93.5 0.80 91.9 0.77 71.8 0.73 91.1 0.72 91.9 0.73
IM 80.8 0.85 59.6 0.70 73.1 0.80 65.4 0.68 55.8 0.67
PP 75.0 0.56 70.8 0.51 54.2 0.66 75.0 0.57 62.5 0.45
oM 78.6 0.85 60.7 0.58 714 0.83 60.7 0.73 57.1 0.53
EC 40.0 0.57 53.3 0.50 333 0.57 60.0 0.62 40.0 0.39
Overal 84.0 - 77.0 - 67.9 - 78.6 - 74.1 -

8 The best performance of overall and individual localization sitesis underlined. HY BRID is trained on the PS1444 data set.
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Table 2.5: Performance of non-redundant data sets.

NR828

Localization

Acc (%) MCC Acc (%) MCC
CP 95.6 0.86 97.8 0.87
IM 88.5 0.88 88.8 0.90
PP 81.0 0.76 80.7 0.76
OM 85.1 0.84 83.8 0.82
EC 64.0 0.65 57.6 0.61
Overdl 85.6 - 85.6 -

32



2.3 Conclusion

In this chapter, we have proposed a hybrid method for predicting PSL for
Gram-negative bacteria based on a combination of a 1-v-1 SVM model using com-
partment-specific biological features and a structural homology approach using sec-
ondary structure alignment. Experiment results show that the SVM model achieves
high prediction accuracy for both benchmark data sets, thus supporting the assump-
tion that biological features derived from Gram-negative bacteria translocation path-
ways could significantly improve the performance. The overall accuracy of combining
the SVM model and the structural homology approach is further improved, which in-
dicates that structural homology, like sequence homology, could aso be a useful in-
dicator for inferring PSL. A three-way data split procedure is incorporated to prevent
overfitting of the parameters and features: In-addition, non-redundant data sets have
been used for the evauation of.Gram-negattve:bacteria. The results suggest that the
performance could be overestimated if redundant sequences are considered. In the as-
sessment of the evaluation data sets, our hybrid method provides accurate predictions,
especially when sequences of low sequence similarity to the training data are detected.
The proposed method can be used in large-scale analyses of proteomes and is freely
available for public use at [32].

There are still some challenges to be addressed in PSL prediction. In our work,
we only consider proteins with single localization sites. However, proteins with mul-
tiple localization sites are not a rarity, especialy in higher order species [33,34]. In
our future development, we will consider those proteins localized to multiple com-
partments. In addition, better accuracy and coverage are needed, particularly for sev-

era poorly predicted localization sites. We will also extend our method to combine
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more biological features, analyze multiple compartment proteins, and incorporate

proteins of more species, including those of humans.



CHAPTER 3
Protein Subcellular Localization Prediction Based

on Gapped-dipeptide Signatures and Probabilistic

L atent Semantic Analysis

3.1 Methods

3.1.1 A basdline system using TFIDF
Before describing our PSL prediction method based on document classification, we

introduce a baseline system for performance comparison that uses a traditional docu-
ment classification method. Salton’ s vector'space model (VSM) is one of the most
widely used methods for ad-hoc retrieval (Manning-and Schiitze, 1999) in document
classification. Each document is represented by a feature vector (vector, in short)
composed of al terms in a collection of documents, where each entry (or feature) of
the vector corresponds to aterm and its value is given by the weight of the term in the
document(Salton, et a., 1975). The similarity between two documents d and g, de-
noted by sim(d,q), can be defined as the cosine of the angle between their vectors,

called cosine similarity, as shown below:

sim(d, q) = cos£(d, ) )= <;H||Zﬁ (3.1)

where d denotes the vector for a document d. Given a collection of documents with
known categories, we classify a document with unknown category (called query

document) into the same category as the document whose cosine similarity with the

35



guery document is the largest. We refer to this prediction method as the 1-nearest
neighboring (1-NN) method based on cosine similarity. The advantage of the 1-NN

method is that there is no training required as in normal machine learning approach.

Weighting scheme, i.e., determining the weight of each entry in a vector, is cru-
ciad in document classification. In this baseline system, we use term fre-
guency—inverse document frequency (TFIDF) as the weighting scheme. For a term t;
in a document d, a simple term frequency (TF) is the number of occurrences of t; in
the document, denoted as n;. However, to prevent a bias towards longer documents,

term frequency tf(t;,d) is usually normalized as follows:

n;

z n, g (3.2

k

tf (t.,d) =

where the denominator is the number of occurrences-of all terms. The term frequency
tf(t;,d) gives a measure of the importance-of-the term t; in the document d. The higher
the term frequency, the more likely the term.isagood description of the content of the
document. In contrast, inverse document frequency (IDF) of t; is a measure of the
general importance of the term. A semantically important term will often occur sev-
eral timesin a document if it occurs at all. However, semantically unimportant terms
are spread out homogeneously over al documents. A frequently used IDF for t;, idf(t;)

(Salton and Buckley, 1988), is defined as follows:

_ D
idf (t,) = Iogﬁ, (3.3)

where |D| is the number of documents in the collection, and |(di ) ti)| denotes the

number of documents in which t; appears. In the TFIDF scheme, the weight of the

36



term t;in a document d, W(t;, d)*, equals to tf(t;, d) multiplied by idf(t;) (Salton and
Buckley, 1988). The values in a vector are normalized to (0~1] by dividing the

maximum value in the vector.

3.1.2 Gapped-dipeptides asthe ter ms of proteins
PSLDoc uses gapped-dipeptide (Liang, et al., 2005) as the terms of a protein and cal-

culates their weights according to position specific score matrix (PSSM) instead of the
TFIDF used in the baseline system. PLSA is used for feature reduction to improve
learning efficiency and accuracy. The reduced feature vectors are input to five 1-v-r
SVM classifiers corresponding to five localization sites. The probability estimated by
a classifier can be considered as the confidence level of atarget protein belonging to
the corresponding localization site. The final prediction is determined to be the local-

ization site whose corresponding classifier outputs the largest confidence score.

When considering proteins as documents, many different types of terms have
been proposed, including single amino_acid (AA) (Cedano, et a., 1997; Chou and
Elrod, 1999; Garg, et a., 2005; Hua'and Sun; 2001; Nair and Rost, 2003; Park and
Kanehisa, 2003; Reinhardt and Hubbard, 1998) as a uni-gram descriptor, and the gen-
eral n-peptide (Yu, et a., 2004), i.e., peptides of length n without gaps. In particular,
for n = 2, dipeptide (Dip) is a neighboring bi-gram descriptor. However, AA and Dip,
are not able to represent information between two gapped peptides. The use of
n-peptide to capture long distance amino acid information will result in a
high-dimensional vector space. For example, the feature number of a vector is
3,200,000 (= 20°), when n equals 5. Liang et al. (Liang, et al., 2005) proposed a
method based on amino acid-coupling patterns to extract the information from a pro-

tein sequence, which works well on distinguishing thermophilic proteins. An amino

! In this paper, we consider the weights of the terms in a document and the vector to be the same.
Which is denoted by W(t;, d) or W(t;, d ) depending on the context.
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acid-coupling pattern XdZ denotes the peptides of length d + 2 such that amino acids
X and Z are separated by d amino acids, where d can be negative depending on

whether the position of X closer to N-terminus or C-terminus.

We adopt the same encoding scheme asin Liang et al. with non-negative d as the
term of a protein sequence regardiess of whether the pattern appear near the
N-terminus or C-terminus. We call such amino acid-coupling pattern as gapped
dipeptide. For example, the gapped dipeptides for d=0 are dipeptide without gaps
(Dip’'s). Given apositive integer | asthe upper bound of gapped distance, each protein
sequence is represented by a vector in the space of gapped dipeptides with each fea-

ture given by XdZ for 0=d=I. The length of vectors is the number of al possible

combinations of gapped dipeptide, i.e., (I+1)x20x20. For example, given | = 10, a
protein is represented as a feature vector. of 4,400 (=.11x20x20) features.

3.1.3 Term weighting - position specific scor e matrix information

Motivation

On the basis of the finding in a previous work that sequence identity and subcellular
localizations of proteins have a strong correlation (Yu, et al., 2006), Yu et al. (Yu, et
al., 2006) proposed a homology search method for PSL prediction, which predicted
the localization of a query protein by the most similar protein among the aligned pro-
tein sequences with known localizations generated by the global aignment program
ALIGN (Myers and Miller, 1988). The authors observed that, when the query protein
and its most similar protein with known localization have sequence identity over 30%,
the homology search method performed very well with 97.7% accuracy. But the pre-
diction performance dropped significantly when the sequence identity is under 20%.
In this case, it would be difficult to predict the localization of a query protein based on

the sequence identity or sequence information. To overcome this difficulty, we bor-
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row the idea from protein secondary structure prediction, in which homologous se-
guences are usualy removed from the testing and training data set (Cuff and Barton,
1999; Hua and Sun, 2001; Jones, 1999; Lin, et al., 2005; Rost and Sander, 1993; Wu,

et dl., 2004).

Most of the prediction methods address the problem of weak homology by util-
izing sequence evolutionary information. One widely used representation of evolu-
tionary information if the PSSM generated by PSI-BLAST (Altschul, et a.,
1997),which has been used in PSIPRED (McGuffin, et a., 2000), a very popular sec-
ondary structure prediction method. PSI-BLAST finds remote homologues to a query
protein from a chosen sequence database (e.g. NCBI nr database(Whedler, et al., 2007)
nr(Wheeler, et a., 2007)). Instead of TFIDF based on the sequence information, our

weighting scheme is based on PSSM.

Position specific score matrix

The PSSM of a sequence S of length n is'represented by an n x 20 matrix, in which

the n rows correspond to the amino acid sequence of S and the columns correspond to
the 20 distinct amino acids. Each row of a PSSM represents the log-likelihood of the
residue substitutions at the corresponding positions in S (Altschul, et a., 1997).The
PSSM elements are scaled to the required 0~1 range using the following logistic func-

tion (Jones, 1999).

F(x)= ! (34)

1+e™*

where x is the original PSSM value. The higher the scaled value of the residue is, the

higher the propensity of the residue is in this position. In PSLDoc, the PSI-BLAST’s
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parameters were set to j = 5 (five iterations), e = 10 (E-value <0.01) and the se-

guence database is NCBI nr (which contains 3,747,820 sequences).

TFPSSM weighting scheme

We design aterm weighting scheme based on PSSM, denoted by TFPSSM as follows.
Given a protein sequence S of length n, any gapped dipeptide XdZ of S has PSSM en-
tries corresponding to gapped dipeptide S(i)dS(i+d+1) for 1 = i = n-(d+1), where
S(i) denotes the ith amino acid of S. Take the sequence MPLDLYNTLT as an exam-
ple. Its PSSM (with original value without normalization) is shown in Figure 3.1.
From the sequence information, M2D only occurs once. However, in view of PSSM,
M2D may occur in the corresponding gapped dipeptides obtained from the sequence,

i.e, M2D, P2L, L2Y, D2N, L2T, ¥.2L, N2T..We define the weight of XdZ in S as

W (Xdz,S) = zf(i,X)x fli+d+12) (3.5)

| Isi<ns(d+1)

where f(i,Y) denotes the normalized vaue-of the PSSM entry at the ith row and the
column corresponding to amino acid Y. In the above example, the weight of M2D
based on PSSM is given by f(1,M) x f(4,D) + f(2,M) x f(5,D)+...+f(7,M) x f(10,D)
= 0.99995 x 0.04743 + 0.11920 x 0.00247 +...+ 0.00669 x 0.26894. It is unnec-

essary to incorporate IDF based on PSSM because the term occurs in all documents

based on PSSM.

As mentioned before, each protein is represented by a vector, and each entry of
the vector is given by TFPSSM of the corresponding gapped dipeptide. Note that the
values in each feature vector are normalized between (0~1] by dividing the maximum

vauein the vector.
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A RNDCOQEGHTILIKMFPSTWYV

1M -3-3-4-5-3-3-4-5-401-310-2-5-4-3-4-3-1

2P 2-3-3-1-3-1-1-1-4-2-4-2-2-54 2 4-5-4:-3

3L -4-5-6-6-4-3-5-6-5135-540-5-5-3-4-3 12

4D -2 5-1-3-4 2-1-4 2-5-3 5-2-2-4-2 0-1 0-3

SL  -4-5-6-6-4-5-6-6-44 4-501-5-5-3-4-3 3
6Y -4-3-3-5-5-3-4-54-4-3-3-24-5-3-22 8-4
TN <43 8 4-6-3-2-3-2-6-6-3-5-6-4-1-3-7-5-6
8T -2-3-1-3-1-3-3-4-3-4-4-1-4-4-4 4 6-5-4-2
9L 0-1-5-5-4-3-4-4-3-15-330-4-3-3-3-2-1

0T -1-3-1-1-4-2-3-2-1-4-3-1-3-4-413 6-5-4-3

Figure 3.1: PSSM of the sequence MPERLYNTL, where each entry is the original
value without normalization.

3.1.4 Featurereduction - probabilistic latent semantic analysis

Motivation

There are some limitations on the VSM for document classification. First, the vector
space is high-dimensional (Namburu, et a., 2005). Training and testing have to deal
with the curse of dimensionality. Second, document vectors are typically very sparse,
i.e., most features of a vector are zero, which are susceptible to noise (Kumar, et a.,
2006), and cosine similarity could be inaccurate. Finaly, the inner product defining
document similarity can only match occurrences of the same terms. As a result, the
vector representation does not capture semantic relations between terms. Furthermore,
this representation, which considers a document as a bag of words, is unable to cap-

ture phrases and semantic/syntactic regularities.
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Hence, dimension reduction (feature reduction) is proposed for dealing with
above limitations. The goal of dimension reduction is to map similar terms to similar
location in a low dimensiona space called latent semantic space, which reflects se-
mantic associations. The usual dimension reduction is Latent Semantic Analysis (LSA)
(or called Latent Semantic Indexing in some papers) which uses singular value de-
composition (SVD) to do data mapping (Deerwester, et a., 1990).The document
similarity based on the inner product is computed in the latent semantic space. Ex-
perimentally, there are advantages of SVD over naive VSM. However, SVD 4till has
the following disadvantages (Nair and Rost, 2003). First, the resulting dimensions
might be difficult to interpret. For instance, the size of a vector is reduced from three

to two by LSA as shown below:
{(AQA), (A1A), (GOG)} -->{(1.3* AOA +0.2* GOG), (A1A)}

The value of the first reduced feature equals 1.3 multiplied by the value of the origanl
first feature plus 0.2 multiplied by the value of the origina third feature. This leads to
results which might be justifiable on the mathematical level, but have no interpretable
meaning in the original application. Second, the probabilistic model of LSA does not
match observed data (Hofmann, 2001). Third, the reconstruction may contain negative

entries, which are inappropriate as a distance function for count vectors.

Probabilistic latent semantic analysis

Hofmann proposed probabilistic latent semantic analysis (PLSA) based on an aspect
model for dealing with those disadvantages (Hofmann, 2001).The aspect model is a
latent variable model for co-occurrence data (i.e., documents and terms) which asso-
ciates an unobserved class variable ze Z={z;, ..., zx}with each observation. The

weight of the term w in a document d, W(w, d), is considered as a joint probability
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P(w, d) between w and d, which is modeled through z, a latent variable which can be
loosely thought of as a topic or a reduced feature. Thus, the joint probability P(w, d)

based on PLSA moddl is

P(w,d) = P(d)P(w|d),P(w|d)=> P(w|2)P(z|d).2 (36)

el

where P(w|z) denotes the topic-conditional probability of a term conditioned on the

unobserved topic, and P(z|d) denotes a document-specific probability distribution over

the latent variable space; that is, considering a vector d in latent variable space,
P(z|d) denotes the weight of the latent variable z. Hence, avector is mapped from term

space to latent space and its size is reduced from |W| to |Z].

PLSA model fitting (training)

A PLSA model is parameterized hy P(w|z) and P(z|d) which are estimated by fitting
P(w, d) to atraining corpus D, ie., W(w, d):-The fitting process is obtained by maxi-

mizing the log-likelihood function L givenhelow (Hofmann, 2001):

L=> > W(wd)logP(w,d) (3.7)

wed deD

The parameters of a PLSA model, P(wjz) and P(z|d), are estimated using the iterative
Expectation-Maximization (EM) algorithm by maximizing the log-likelihood function
L. P(w|z) and P(z|d) are initialized by random values in (0,1)-range. Then, the EM
procedure iterates between the E-step and the M-step. In the E-step, the probability
that aterm w in a particular document d which is explained by the class corresponding

toz, is estimated as

%It is assumed that the distribution of terms given a class is conditionally independent of the document,
i.e., P(w|z,d) = P(wl2).
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P(z,w,d) (3.8)

P(z|w,d)= P(W.d)

P(z,w,d)=P(d)P(z|d)P(w]|z)?
(3.9)

Using Equations (3.6), (3.8) and (3.9), we can get

P(d)P(z|d)P(w|z) _  P(w|z)P(z]|d)
P(d))_, P(w|z)P(z'|d) > P(w|z)P(z'|d) (3.10)

P(z|w,d)=

In the M-step, we calcul ate

D W (w,d)P(z|w,d)
D2 W (w,d)P(z|w',d)

> W (w,d)P(z|w,d) (3.11)
20y Wi, d)P(z'|w,d)

P(w|z)=

P(z|d) =

where parameters P(w|z) and P(z|d) are re-estimated to maximize L.

PLSA model testing

After training, the estimated P(w|z) parameters are used to estimate P(z|q) for new
(test) documents g through a folding-in process (Hofmann, 2001). In the folding-in
process, EM procedure runs in a similar manner to the training step. The E-step is
identical but the M-step keeps al the P(w|z) constant and only re-calculates P(z|q).
Usudly, a very smal number of iterations of the EM agorithm are sufficient for

folding-in process.

Feature reduction by PLSA

% This equation is derived from according to the Figure 1(a) of Hofmann®.
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We apply PLSA not only for feature reduction but also for gapped-dipeptide semantic
relation extraction. Vectors are mapped from the gapped-dipeptide space to the latent
semantic space. Thiswill lead to improvement in learning performance and efficiency.
Though it is not easy to determine an appropriate reduced feature size of PLSA, it can
be approximated by the reduced feature size of LSA. To determine the reduced fea-
ture size of LSA, we calculate singular values of LSA and sort them in decreasing or-
der. Then, the reduced feature size of LSA equalsto n if the n-th largest singular value

iscloseto zero.

3.1.5 System ar chitecture of PSLDoc
Prediction of PSL can be treated as a multiclass classification problem. For multiclass

classification, the 1-v-r SYM model has demonstrated a good classification perform-
ance (Garg, et al., 2005). For each classi, we construct a 1-v-r (C; versus non-C;) bi-
nary classifier. PSLDoc consists of five|1:v-r:SVM-classifiers corresponding to five
localization sites in Gram-negative bacteria. Input features for all binary classifiers are
the same. The SVM program LIBSVM (Chang.and Lin, 2001) is used in PSLDaoc,
and it can generate probability estimates that are used for determining the confidence
levels of classifications (Wu, et al., 2004). For al classifiers, we use the Radial Basis
Function kernel, and tune the cost (c) and gamma (y) parameters optimized by 10-fold

cross-validation on the training data set.

Given aprotein, PSLDoc performs the following steps:

1. UsePSI-BLAST to generate PSSM of the protein.

2. Generate the feature vector of the protein, where each feature is defined as
TFPSSM corresponding to a gapped dipeptide.

3. Perform PLSA to generate a reduced feature vector, which will be the input to

each 1-v-r classifier.
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4. Runfive 1-v-r SVM classifiers.

In the training stage of PSLDoc, to train PLSA model with some topic size and
the SVM classifiers, proteins with known localizations are used to estimate P(w|z) and
P(z|d), and reduced vectors are used to determine the c and ¢ parameters of the RBF
kernel of each classifier. In the testing stage of PSLDoc, Step 3 of PSLDoc performs
PLSA folding-in process on trained P(w(z). Step 4 of PSLDoc is performed on the
trained SVM classifiers. The localization site of the protein is predicted as the class
with the highest probability (prob;: the confidence of the query protein predicted as

classi; 0= prob;=1) generated from the five 1-v-r classifiers. The system architecture

of PSLDoc is shown in Figure 3.2.
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MPLDLYNTLT...

PSI-BLAST

ARNDCQEGHILKMFPSTWYYV
1M -3-3-4-5-3-3-4-5-401-310-2-5-4-3-4-3-1
2P 2-3-3-1-3-1-1-1-4-2-4-2-2-542 4-5-4-3
3L -4-5-6-6-4-3-5-6-535-540-5-5-3-4-32
4D -25-1-3-42-1-42-535-2-2-4-20-10-3
5L -4-5-6-6-4-5-6-6-444-501-5-5-3-4-33
6Y -4-3-3-5-5-3-4-54-4-3-3-24-5-3-22 8-4
7N -4-384-6-3-2-3-2-6-6-3-5-6-4-1-3-7-5-6
8T -2-3-1-3-1-3-3-4-3-4-4-1-4-4-4 4 6-5-4-2
9L 0-1-5-5-4-3-4-4-3-15-330-4-3-3-3-2-1
10T -1-3-1-1-4-2-3-2-1-4-3-1-3-4-4 3 6-5-4-3
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Figure 3.2: System architecture of PSLDoc based on 1-v-r SYM models using
reduced/transformed feature vectors.
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Table 3.1: Number of proteinsin different localization sites.

Localization sites No.
Cytoplasmic (CP) 278
Inner membrane (IM) 309
Periplasmic (PP) 276
Outer membrane (OM) 391
Extracelular (EC) 190
All sites 1,444

3.1.6 Data sets
To evaluate the performance of PSLDaoc, we utilize a benchmark data set of proteins

from Gram-negative bacteria with single localization that have been used in previous
works (Gardy, et a., 2005; Yu, et al., 2004). It consists of 1444 proteins with experi-
mentally determined localizations, referred to asPS1444 (Rey, et al., 2005). Table 3.1

lists the distribution of localization sites of the data set.

To analyze the performance of PSEDecunder the effect of sequence homology
information, we further classify each proteinin PS1444 into two data sets, the high- or
low-homology data sets based on whether or not the protein’s highest sequence iden-
tity of all-against-all alignment by ClustalW is greater than an identity threshold of
30%. The high-homology data set, referred to as PSHigh783, consists of 783 proteins
and the low-homology set, referred to as PSLow661, consists of 661 proteins. The
three data sets are available at

http://bio-cluster.iis.sinica.edu.tw/~bioapp/PSL Doc/DataSet.htm.

3.1.7 Evaluation measures
To evaluate the performance of our method, we follow the same measures used in

previous works (Gardy, et a., 2003; Nakai and Kanehisa, 1991; Wang, et a., 2005;

Yu, et a., 2004) for comparison with other approaches. These measures include ac-
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curacy (Acc), precision, recal, Matthew’s correlation coefficient (MCC) (Matthews,
1975) for five localization sites, and the overall accuracy defined in Eg. (3.12), (3.13),

(3.14), (3.15) and (3.16) below:

Precision, =TP, /(TP + FP) (3.13)
Recall. =TP, /(TP, + FN,) (3.14)

(TR)(TN;) — (FR)(EN;)

N TR PR PR, + PRI, PNy C19

| |
Acc=> TP /Y N;, (3.16)
i=l i=1

where | = 5 is the number of localization-sites, and TP;, TN;, FP;, FN; ,and N; are the
number of true positives, true negatives;-false positives, false negatives, and proteins
in localization site i, respectively. MCC considers both under- and over-predictions,
and takes range from —1 to 1, where MCC = 1 indicates a perfect prediction; MCC =0
indicates a completely random assignment; and MCC = -1 indicates a perfectly re-
verse correlation. The Acc; is the same as Recall; because N; equals to the sum of TP;
and FN;. We will use Acc; or Recall; interchangeably in the experiments depending on

which method is compared.

3.1.8 Fivesimple PSL prediction methods
To evaluate the benefit of each step in our document classification method, we pro-

pose two simple prediction methods: INN_TFIDF and INN_TFPSSM, which consist
of different parts of PSLDoc. To further analyze the effect of the PSSM information
generated from databases of different sizes, we propose two methods based on

PSI-BLAST: INN_PSI-BLAST ;s and INN_PSI-BLAST,. In addition, we also con-
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struct a homology search method, INN_ClustalW, which issimilar to Yu et. al.’s (Yu,

et a., 2004) for comparison with PSLDoc.

INN_TFIDF

INN_TFIDF solely incorporates protein encoding scheme, the gapped-dipeptides of
PSLDoc. The remaining steps are the same as the baseline system. That is, terms are
weighted according to the TFIDF weighting scheme, and a query protein is predicted

by 1-NN method based on cosine similarity.

INN_TFPSSM

INN_TFPSSM incorporates two parts of PSLDoc, the gapped-dipeptide encoding
scheme and the TFPSSM welighting scheme. It predicts a query protein using 1-NN

method based on cosine similarity.

INN_PSI-BLAST

INN_PSI-BLAST s performs two PSI-BLAST searches, one of which for gener-
ating a PSSM and the other for searching the most similar protein using the PSSM
generated in the previous step. First, for each query protein, PSI-BLAST search is
performed against the training data and its parameters are the same as those in
PSLDoc. Then, INN_PSI-BLAST ;s performs a one-run PSI-BLAST search (i.e, j =
1)* against the training data using the obtained PSSM°. Finally, the localization site
of the protein with the highest e-value is assigned as the predicted localization for the

query protein. In a five-fold cross-validation, the PSSM information used in

* The parameters of e-vlaue are ignored because we want to find the most similar protein instead of
constructing a PSSM.

® Please refer to the last example on blastpgp’s document for how to save a PSSM and perform
PSI-BLAST search from the PSSM (http://biowulf.nih.gov/apps/blast/doc/blastpgp.html).
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INN_PSI-BLAST s is generated from a small database which consists of approxi-

mately 1,155 (=1,444x4/5) sequences from PS1444.

INN_PSI-BLAST,,

Although INN_PSI-BLAST s utilizes the PSSM information, the source data-
base used is not as large as that of INN_TFIDF and PSLDoc. For fair comparison
with INN_TFIDF and PSLDoc, we construct INN_PSI-BLAST,, which uses PSSM
generated from the NCBI nr database. The only difference between
INN_PSI-BLAST,, and INN_PSI-BLAST s is the size of the databases searched in
the first step, and the remaining steps are al the same, including the generation of
PSSM, followed by performing a second PSI-BLAST search, and lastly, the predic-

tion of the localization site of the query pretein.

INN_ClustalW

INN_ClustaW differs from Yu et al.’s method (Yu, et a., 2004) only in the pairwise
sequence alignment agorithm used, i.e., ClustaW in the former and ALIGN in the
latter. For a query protein, we calculate its pairwise sequence identities with the re-
maining proteins by performing 1-against-others pairwise sequence alignment. Then,
the localization site of the query protein is predicted by the 1-NN method based on
pai rwise sequence identity, that is, itslocalization site is assigned as that of the protein
whose pairwise sequence identity is highest.

3.1.9 Experiment design
We conduct the following experiments to evaluate the benefit of each step in our

document classification model where the gapped distance upper bound, |, ranges from

3 to 15. We follow the same validation procedures for the performance measurement
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as those of the other approaches (Gardy, et a., 2005; Yu, et a., 2006). All experi-
ments are carried out in five-fold cross-validation, that is, the data is equally divided
into five parts. In each run, four folds are used for training and the remaining fold is
used for testing. All reported results are average over the five folds. We have con-

ducted the following six experiments:

Experiment 1: Comparison between INN_TFIDF and INN_TFPSSM on the

PS1444, PSHigh783, and PSLow661 data sets

The purpose of this experiment is to evaluate the benefit of using the TFPSSM
weighting scheme because the simple 1NN prediction method can reflect the relation
between performance and weighting schemes avoiding the effect of the prediction al-
gorithm. The distribution of benefit among 1444 protein sequences is further analyzed

by comparing their performance:on.PSHigh783 and PSLow661.

Experiment 2: Comparison “ameng INN_TFPSSM, 1NN_ClustalW,
INN_PSI-BLAST,;, and 1NN_PSI-BLAST, on the PSHigh783 and

PSLow661 data sets

To compare the effect of utilizing PSSM, we compare the performance of
INN_TFPSSM, 1INN_ClustalW, 1NN_PSI-BLAST,, and 1NN_PSI-BLAST,,.
INN_ClustalW is based on a pairwise sequence alignment in which no PSSM infor-
mation is incorporated. We further analyze the relationship between the effect of
PSSM and the size of databases used in the construction of PSSM. Compared with
INN_PSI-BLAST s, both INN_TFPSSM and INN_PSI-BLAST,, incorporate a lar-

ger database for PSSM construction. Finally, the comparison between INN_TFPSSM
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and INN_PSI-BLAST,, serves to highlight the benefit of gapped-dipeptide encoding

scheme.

Experiment 3: Comparison between PSLDoc and PSLDocCp.sa On the

PS1444 data set

PSLDoc.p sa represents PSLDoc without PLSA, which simply applies SVM on the
original feature vectors. The overall accuracies of PSLDoc and PSLDoCp sy are

compared in order to evaluate the benefit of PLSA feature reduction for SVM learn-

ing.

Experiment 4: Comparison among PSLDoc, 1NN _TFPSSM, and

INN_ClustalW on the PSHigh783 and PSLow661 data sets

Using the PSHigh783 data set, we can verify whether PSLDoc can replace
INN_ClustaW. Using PSLow661, we can investigate whether PSLDoc can improve
INN_TFPSSM by applying PLSA and SVM classification. Hence, we could deter-

mine whether PSLDoc is suitable for both high- and low-homology data sets.

Experiment 5: Comparison among PSLDoc, HYBRID, and PSORTb v.2.0 on the

PS1444 data set

We compare the performance of PSLDoc, HYBRID, and PSORTb v.2.0. Besides, we
also assess the performance of PSLDoc using a three-way data split procedure
(Ritchie, et al., 2003) which is usually used in machine learning to prevent overesti-
mation of the performance. The data set is randomly divided into three digoint sets,
that is, atraining set for classifier learning, a validation set for feature selection and

parameter tuning, and atest set for performance evaluation. Hence, for each run in the
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origina five-fold cross-validation, we divide the training data set into four distinct
sets: three for training, one for validation. Then, we select the gapped distance upper
bound and PLSA reduced feature size based on validation set instead of test set. Then
PSLDoc performance is evaluated under the selected parameters in the original

five-fold cross-validation.

Experiment 6: PSLDoc under Prediction Threshold versus PSORTDb v.2.0 on the

PS1444 data set

The precision and recall of PSLDoc is evaluated under different prediction thresholds

to compare with PSORTb v.2.0.



3.2 Reaults

3.2.1 Experimental results
Experiment 1: The benefit of using the TFPSSM weighting scheme

The overall accuracy of INN_TFIDF and INN_TFPSSM for each gapped distance
are shown in Figure 3.3. The highest overall accuracy of INN_TFPSSM is 89.47%
when | equals 4, 5, and 13 and it is considerably higher than the best INN_TFIDF
score 74.38% when | equals to 4. Therefore, adopting the TFPSSM wei ghting scheme

significantly improves the performance of INN_TFIDF.

The performance of 1NN _TFIDF and INN_TFPSSM in the high- and
low-homology data sets is shown in. Table 3.2: ANN_TFPSSM dramatically improves
the performance of INN_TFIDFE by about:26%. in-overall accuracy on PSLow661.
Hence, incorporation of PSSM in the weighting scheme is useful for improving per-

formance due to insufficient sequence informationin the low-homology data set.
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Figure 3.3: Overal accuracy of INN_TFIDF and INN_TFPSSM with respect to
gapped distances on the PS1444 data set.
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Table 3.2: The comparison of INN_TFIDF and INN_TFPSSM on the PSHigh783
and PSLow661 data sets.

PSHigh783 PSLow661

INN_TFPSSM  INN_TFIDF INN_TFPSSM  INN_TFIDF

Loc. Sites Acc.(%) MCC Acc. (%) MCC  Acc. (%) MCC Acc(%). MCC

CP 9420 09 7101 0.74 8325 077 4115 0.36

IM 9931 099 9862 0.89 8293 082 8415 048
PP 9586 094 8621 0.89 7405 063 3817 046
OM 99.66 099 9588 0.9 85 082 66.00 0.48
EC 96.99 096 9248 091 5789 051 2807 0.26
Overal 97.96 - 91.83 - 79.43 - 53.86 -

Experiment 2: The effect of incorporating PSSM information and

gapped-dipeptide encoding scheme

Table 3.3 shows the performance .of ~INN_TFPSSM, 1NN_ClustaW,
INN_PSI-BLAST s, and INN_PSI-BLAST-0n the PSHigh783 and PSLow661 data
sets. The overall accuracy on the PSHigh783 data set is very similar for all methods.
However, for the PSLow661 data set, INN_ClustalW, INN_PSI-BLASTs, and
INN_PSI-BLAST,, attain 42.97%, 57.94% and 66.57%, respectively, in overal ac-
curacy. This result reveals that better performance can be achieved when a larger da-
tabase is used in constructing PSSM. This also lends support to our assumption that
incorporating more information into PSSM is more effective for the prediction of
proteins with low sequence identity to the training set. Most notably, INN_TFPSSM
outperforms INN_PSI-BLAST,, by 12.86% in overal accuracy. This suggests that
the incorporation of PSSM based on gapped-dipeptide encoding scheme significantly

improves the predictive performance, especially for proteins of low sequence identity.
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Table 3.3: Comparison of INN_TFPSSM, 1INN_ClustalW, INN_PSI-BLAST ;s and
INN_PSI-BLAST,, for the PSHigh783 and PSLow661 data sets

PSHigh783
Loc. INN TFPSSM 1NN _ClustaW INN_PSI-BLAST,s INN_PSI-BLAST
Sites Acc. ) MCC  Acc. ) MCC  Acc.w) MCC Acc.) MCC
CP 94.20 0.96 89.86 0.90 88.41 092 86.96 0.90
IM 99.31 0.99 98.62 0.97 99.31 0.98 90.31 0.98
PP 95.86 0.94 93.79 0.93 93.79 0.93 9241 0091
OoM 99.66 0.99 90.66 0.99 99.66 0.99 90.66 0.99
EC 96.99 0.96 98.50 0.98 98.50 0.98 98.50 0.98
Overdl 97.96 - 97.32 - 97.32 - 96.93 -

PSLow661
Loc. INN TFPSSM  1INN_ClustaW INN_PSI-BLAST,s  INN_PSI-BLAST
Sites Acc.») MCC  Acc.w) MCC  Acc.w) MCC Acc.x) MCC
CP 83.25 0.77 39.23 0.23 36.84 0.40 55,50 0.53
IM 8293 0.82 46.95 0.33 68.29 0.57 75.00 0.66
PP 74.05 0.63 41.98 0.44 5054 051 64.12 054
oM 85.00 0.82 45.00 0.47 87.00 057 87.00 0.66
EC 57.89 051 43.86 0.10 50.88 0.37 52.63 0.45
Overdl 79.43 - 42.97.% - 57.94 - 66.57 -

Experiment 2: The benefit of PLSA feattire reduction

Determine the reduced size of PLSA

The size of PLSA is determined by LSA singular values. Figure 3.4 show the singular

values in decreasing order on different gapped distances upper bound data sets.

The 40-th largest singular value is close to zero in Figure 3.4, but in the inset the
160-th largest singular value is close to zero. Hence, the reduced feature size of PLSA
is set to 40, 80 and 160. However, we do not test larger PLSA reduced size or
one-by-one PLSA reduced size in consideration of the training efficiency and avoid-

ance of data overfitting.

57



1400

250

1200
.

N cee 12
20 11 || o

; .
i + 14
1000 | g : 15 H

2
150 -

800 -

value

&
o~z

+
600 -

200 [

; ! : o \ \ |
1] 20 40 B0 80 100 120 140 160
#-th feature

Figure 3.4: Singular values in decreasing order of-each gapped distance. The inset
shows singular values without 1-thilargest one for detailed representation.

For one PLSA reduced size,‘the training and testing procedures of PSLDoc take
1.5 hours and about 2~3 minutes for all gapped distances, respectively. However,
PSLDoc.p_sa takes about 180 and 1.4 hours in training and testing, respectively. Fig-
ure 3.5 shows the performance of PSLDoc.p sa and PSLDoc, where PSLDoc_Fx de-

notes PSLDoc with PLSA reduced size x.

The highest overall accuracy among all gapped distances of PSLDoc F40,
PSLDoc F80, and PSLDoc F160 is 92.31%, 93.01%, and 92.52%, respectively,
which is 0.83%, 1.52%, and 1.04% better than that of PSLDoc.p sa. Using PLSA not
only improves learning efficiency but also performance. In the following experiments,

PSLDoc takes the gapped distance 13 and PLSA at reduced size 80.
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Figure 3.5: Overal accuracy of PSLDoc F40, PSLDoc F80, PSLDoc F160 and
PSLDoc-PLSA with respect to gapped distance on the PS1444 dataset.

Experiment 4: The benefit of SVM and PLSA feature reduction

Table 3.4 shows the performance of,PSLDoc, INN_TFPSSM and 1INN_ClustalW on
PSHigh783 and PSLow661. The overall -‘accuracy of INN_ClustaW on PSHigh783
(97.32%) is very similar to that;of Yu et-“al."s-(97.7%). INN_TFPSSM and PSLDoc
perform better than INN_ClustaW. on. PSHigh783. On the other hand, PSLDoc im-
proves INN_TFPSSM on PSLow661 by 7.41% due to the non-linear SVM classifica-
tion and PLSA feature reduction and extraction. This shows that PSLDoc is suitable

for both the high- and low-homology data sets.

Table 3.4: Comparison of PSLDoc, INN_TFPSSM, and 1INN_ClustaW for the
PSHigh783 and PSLow661 data sets.

PSHigh783 PSLow661

PSLDoc INN _TFPSSM 1NN_ClustaW PSLDoc INN _TFPSSM 1INN_ClustaW

Loc. Acc.(%) MCC Acc.(%) MCC Acc.(%) MCC  Acc.(%) MCC Acc.(%) MCC Acc.(%) MCC
CP 9565 096 942 096 913 0.89 9474 088 8325 0.77 3923 0.23

IM 9931 099 9931 099 9793 0.97 8780 088 8293 082 4695 0.33

PP 9517 094 9586 094 931 093 8244 078 7405 063 4198 044

oM 9966 099 9966 099 99.66 0.99 8400 084 8500 082 4500 047
EC 985 098 9699 09 9925 0.99 7018 065 5789 051 4386 0.10

Ove - - 97.32 - 86.84 - 79.43 - 42.97 -

rall .

98.21

97.96
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Table 3.5: Comparison of PSLDoc, HYBRID and PSORTDb v.2.0 on the PS1444 data
sets. The PSLDoc performance of incorporating a three-way data split procedure is
indicated in the parentheses.

PSLDoc HYBRID PSORTbv.2.0

Loc. Sites Acc. MCC Acc. MCC Acc. MCC
CP 94.96(94.24) 0.91(0.91) 95.00 0.89 70.10 0.77

IM 93.20(93.53) 0.94(0.94) 9060 0.92 92.60 0.92

PP 89.13(89.13) 0.87(0.85) 8880 0.84 69.20 0.78
OM 95.65(95.14) 0.95(0.94) 9510 0.93 94.90 0.95
EC 90.00(87.37) 0.87(0.86) 8530 0.87 78.90 0.86

Overall 93.01(92.45) - 91.60 - 82.60 -

Experiment 5: Comparison of PSLDoc, HYBRID and PSORTb v.2.0

Table 3.5 shows the performance of PSLDoc, HYBRID, and PSORTb v2.0 on
PS1444. PSLDoc achieves the best_performance93.01%, better than HY BIRD 91.6%

and PSORTb 82.6%.

Experiment 6: PSLDoc under different prediction thresholds versus PSORTDb v.2.0

on the PS1444 data set
Prediction confidence

The probability estimated by LIBSVM is used for determining the confidence levels
of classifications. The class with the largest probability is chosen as the final predicted
class. The confidence of the final predicted class, prediction confidence (Jones, 1999),
could be regarded as the value of the largest probability minus the second largest
probability. Figure 3.6 shows the relationship between accuracy and prediction confi-
dence. For proteins with prediction confidence in the range [0.9-1], the prediction ac-

curacy is near 100% (99.12%).
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Figure 3.6: Overall accuracy of PSLDoc with respect to prediction confidence. [X,y)
represents the prediction confidence is more than x but under y.

Prediction threshold

Gardy et al. suggested that when a prediction system-is unable to generate a confident
prediction, the program had better report. aresult of “Unknown” because biologists
usually prefer correct prediction (high precision) to prediction coverage (recall)
(Gardy, et a., 2005). To provide more precise prediction results, we determine a pre-
diction threshold to filter out prediction results with low confidence. That is, the SVM
classifier predicts results only when the prediction confidence is above the threshold,
otherwise the SVM classifier will output “Unknown” (Gardy, et a., 2005; Gardy, et

al., 2003). Recall and precision for each prediction threshold are shown in Figure 3.7.
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Figure 3.7: Overall accuracy of PSLDoc with respect to prediction confidence. The
value above the point denotes the corresponding prediction threshold.

Table 3.6 shows the performance of,PSkDoc under different prediction thresh-

olds. Setting the prediction threshald to 0.7, PSLDoc achieves dlightly better recall

than PSORTDb v.2.0 (83.66% versus 82.6%), whereas the precision of PSLDoc is bet-

ter than PSORTDb v.2.0 (97.89% versus'95.8%). Besides, when the prediction thresh-

old is set to 0.3, PSLDoc achieves comparable precision to PSORTb v.2.0 (95.77% vs.

95.8%), and PSLDoc's recall is much better than that of PSORTDb v.2.0 (89.27% vs.

82.6%).

Table 3.6. Comparison of PSLDoc under the prediction threshold 0.7, PSLDoc under
the prediction threshold 0.3 and PSORTbv.2.0

Loc. PSLDoc PreThr=0.7 PSLDoc PreThr=0.3 PSORTbv.2.0

TP FP FN Pre. Rec. TP FP EN Pre. Rec. TP FP FN Pre. Rec.
CP 216 6 62 97.30 77.70 243 13 35 9492 8741 195 15 83 9286 70.14
IM 273 3 36 9891 88.35 285 6 24 9794 9223 286 14 23 9533 9256
PP 202 8 74 96.19 7319 226 17 50 93.00 81.88 191 9 85 9550 69.20
OM 366 2 25 9946 9361 372 6 19 9841 9514 371 10 20 97.38 94.88
EC 151 7 39 9557 79.47 163 15 27 9157 85.79 150 4 40 97.40 78.95
Total 1208 26 236 97.89 8366 1289 57 155 95.77 89.27 1193 52 251 9582 82.62
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3.3 Discussion

In PLSA, we associate proteins and gapped-dipeptides with topics. Through analyzing
the trained PLSA model with P(w|z) and P(z|d) for gapped-dipeptide w, topic z and
protein d, gapped-dipeptide signatures in proteins with different localization sites are
discovered for the PS1444 data set. Some of these signatures have been reported in
the literature as motifs critical for stability or localization. We aso discuss the prob-

lem of polysemy and solve it through the PLSA model.

3.3.1 Gapped-dipeptide signatures for Gram-negative bacteria lo-
calization sites

In Figure 3.8, we show the distribution of topic versus protein as visuaized by P(z|d)
for topic zeZ and protein de D. Insthe figure,the size of topic (|Z|) is set to 80 ac-

cording to the conclusion from Experiment 2.

To find site-topic preference, we thenycluster proteins according to their localiza-
tion sites for examining preferred topics for-each localization site. The site-topic pref-
erence of the topic z for alocalization site | is calculated by averaging P(z|d), where d
(a protein) belongs to | class (i.e., d has localization site I.) The site-topic preference
over topics per localization site is shown in Figure 3.9. We can observe from the fig-
ure that topics can be divided into five groups such that each group “prefers’ a spe-

cific localization site.

We say atopic z prefers alocalization size |, if the corresponding site-topic pref-
erence is the largest of al localization sites. For some topics preferring PP and EC
classes, the difference of the site-topic preference between their own preferring site
and other sites are not obvious in Figure 3.9. This also reflects the relative poor per-

formance of PSLDoc in PP and EC classes.
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Figure 3.8: Distribution of topic versus protein plotted as an image with its color-
mapd, where the topics are sorted such that topics™ preferring” (to be explained in the
third paragraph) the same localization site are grouped together.
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Figure 3.9: Distribution of site-topic preference versus localization site. The 80 topics
are divided into five groups of 17, 13, 18, 20 and 12 topics that prefer CP, IM, PP,
OM and EC, respectively.
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Figure 3.10: Distribution of topic versus gapped-dipeptide.

The distribution of topic :versus gapped-dipeptide is visuaized by P(wjz) for
gapped-dipeptide w e W and topiC-ze Z as shown.in-Figure 3.10. In the figure, the size

of gapped-dipeptides (|W|) is set to 5,600 (=14x20x20) following the conclusion of
Experiment 2.

To list gapped-dipeptides of interest, we select ten preferred topics for each lo-
calization site according to site-preference confidence, which is defined as the largest
site-topic preference minus the second largest site-topic preference. For each topic,
five most frequent gapped-dipeptides are selected. We list the gapped-dipeptides sig-
natures of ten preferred topics corresponding to each of the localization sitesin Table

3.7.
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Table 3.7: Gapped-dipeptide signatures for each Gram-negative bacteria localization

site.
Site Gapped-dipeptide signatures
EOE, K1I, K5V, K1V, DOE; L1H, L5H, L3H, H4L, HOL; A12C, A9C, A13C, A5C, A7C;
Cp R3R, R6R, R2R, ROR, R9R; AGA, A13A, A7A, A10A, A11A; I0E, Rél, I3R, I3K, R6V;
H3H, H1H, H7H, H13H, H10H; H1M, H2M, H11M, MOH, HOM;  A4E, E1E, A2E, V4E, A9E;
E4AE, K6E, E6E, E3E, EOE
121, 13, 101, LOI, IOF; L7L, L4L, L10L, L3L, L6L; M3M, M2M, MOM, M8M, M6M;

IM V2l,Vv2Vv,Vva3l, V3V, I0V; T2F, T6F, F3F, T4F, T8F; Al1A, A7L, A4A, A1C, A11L;
W3W, Wow, W2w, Wew, Waw;  Y12L, Y1L, Y11L, LOY, L1L; M2T, M3T, M10T, M4T, MOL;
F10P, F8P, F12P, F3P, F13P
AlA, A2A, AOA, A3A, M4A,; MOH, W1Q, W1H, W1K, W5Q; P1E, POE, EOP, POK, E1P,

PP DOD, QOD, D3D, D3Q, D11D; WOE, E4W, W11E, EOW, W13E; K3K, KOK, K2K, K1K, K7K;
A3A, A7A, A1P, A6R, A10R; P3N, N4P, N3P, N5P, NOP; H6G, G3M, H7D, G11H, H11G;
Al10A, A11A, AGA, A12A, A3A
T1R, R3T, R1T, T5R, POP,; ROF, R4F, Y 13R, R6F, R2F; N4N, NON, N10ON, N7N, F1N;

OM Q6Q, Q1Q, Q3Q, Q13Q, Q4Q; SOF, A3F, FOS, R9F, F7F; GOG, AQG, A1G, G1A, G3A;
N1Q, NIN, Q1Q, N12N, Q11V; W2N, N2W, NOW, D2W, N13W; Q5R, R1Q, Q1R, Q3R, R2Q;
Y1Y, YOY, Y5Y, Y4Y, Y12Y
S6S, S2S, T11T, S13S, T6S; G8G, G0G;:G7G, G9G, G6G; T1T, T3T, T5T, T9T, T10T;

EC NI0N, NON, N13N, N11IN, N12N;  NIN;'N3N, N4N,; N11N, N1T; I5Y, Y12S, Y3S, Y9S, Y6l;

Q2N, N1Q, Q1Q, N3Q, Q7Q;
NON, N12V, N4V, V12N, N9V

K1S, $6S, S5S, S11M, SOS;

S3G, G3G, G4S, G3S, G2G;

3.3.2 Gapped-dipeptide signatures for Gram-negative bacteria lo-

calization sites

Interestingly, some of the signatures in Table 3.7 found by PSLDoc have been re-

ported in the literature as motifs critical for stability or localization. One example is

observed in the integral membrane (IM) proteins, in which helix-helix interactions are

stabilized by aromatic residues(Sal-Man, et a., 2007). Specifically, the aromatic motif

(WXXW or W2W) is involved in the dimerization of transmembrane (TM) domains

by n-n interactions(Sal-Man, et al., 2007). Remarkably, one preferred topic predicted

for the IM class includes this motif (W2W) among other signatures of aromatic resi-

dues. Another example is found in the outer membrane (OM) class, where the

C-terminal signature sequence is recognized by the assembly factor, OM P85, regulat-
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ing the insertion and integration of OM proteins in the outer membrane of
gram-negative bacteria(Robert, et a., 2006). The C-terminal signature sequence con-
tains a Phe (F) at the C-terminal position, preceded by a strong preference for a basic
amino acid (K, R)(Robert, et a., 2006). One of the preferred topics indeed contains

thismotif (ROF.)

The above findings demonstrate the sensitivity of PSLDoc for capturing
gapped-dipeptide signatures relevant to localization sites. Thus, the predicted signa-
tures can provide important clues for further studies of uncharacterized sequence mo-

tifsrelated to protein localization.

3.3.3 Comparison of gapped-dipeptide signature encoding and

amino acid composition

Figure 3.11 shows the amind acid compositions of single residues and
gapped-dipeptide signatures for each-Jocalization site, respectively. It is observed that
the distributions of 20 amino acids calculated from single residues and
gapped-dipeptide signatures are quite different. The distribution from single residues
[Fig. 11(A)] has no clear separation for some amino acids but the distribution from

gapped-dipeptide signatures [Fig. 11(B)] has a clear separation among five classes.
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Figure 3.11: The amino acid compositions of single residues (A) and selected
gapped-dipeptide signatures (B) in different localization sites.

From Fig. 11(A) and (B), it is observed that for some amino acids, general amino
acid composition bias have an effect on the gapped-dipeptide signatures (e.g., CP: E;
IM: 1, L; PP: P, K; OM: Y; EC: G, N). That is, amino acids having high composition
in a localization site tend to aso have high composition in gapped dipeptide signa-
tures of the localization site. For example, there are relatively high proportions for Ile
and Leu in both single residue and gapped-dipeptide signature compositions in IM
proteins. However, many amino acids have high compositionsin at least two localiza-

tion sites. Therefore, it is difficult to predict localization site based on single residue
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compositions. From the amino acid composition of gapped-dipeptide signatures, we
observe a clear separation among different localizations for several amino acids,
which are indistinguishable at the single residue level (i.e., A, M, V, Q, S, H, W).
Specifically, Met, Val, and Trp have similar proportions across al five localizations in
single residue composition. The small differences in single amino acid composition
for these residues are amplified by examining the gapped-dipeptide signature compo-
sitions and thus, they can be used for predicting localization site in a discriminative
manner. We further analyze the correlation between single amino acid and
gapped-dipeptide signature compositions by the Pearson correlation coefficient whose

definition for a series of n measurements of variables X and Y is as follows:

r o= nz X Yi _inzyi (3.17)

T (RS e ()

The Pearson correlation coefficient (r) between the two compositions (single residues

vs. gapped dipeptide signatures) for CP, IM, PP, OM, EC and all localization sites are
0.29, 0.50, 0.41, 0.07, 0.50 and 0.36, respectively. The correlation for all localization

sitesis medium (in range 0.30 to 0.49)(Cohen, 1988).

In summary, the gapped-dipeptide signatures predicted by PSLDoc can (1) suc-
cessfully capture the compositional bias inherent at the single residue level; and (2)
better resolve ambiguity in discriminating amino acid compositions for each localiza-

tion site.
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3.3.4 The physicochemical preference of gapped-dipeptide signa-

tures

To further analyze the physicochemical preference of gapped-dipeptide signatures,
each amino acid is classified into one of the four groups: non-polar (AIGLMV), polar
(CNPQST), charged (DEHKR), and aromatic (FYW). Figure 3.12 shows the grouped
amino acid compositions of single residues and gapped-dipeptide signatures for each
localization class. The grouped amino acid composition of single residues for each
localization site has very similar preferences, but different preferences are observed
for gapped-dipeptide signature composition. For example, in Fig. 12(A), IM, PP, OM,
and EC have similar distribution, but in Fig. 12(B), each localization has distinct dis-
tribution of grouped amino acid composition:, This also lends support to the second
point in the previous section, that gapped-dipeptide signature can better resolve am-
biguity in discriminating amino-acid compositions for each localization. Furthermore,
our analysis shows that the amino acid compositions of predicted gapped-dipeptide

signatures exhibit some over-represented patterns for a particular compartment.

Gapped-dipeptide signatures predicted for CP, IM, and EC classes have distinct
preferences for different groups of amino acids, possibly reflecting the phys-
ico-chemical constraints imposed by the environment of a subcellular compartment.
In particular, the signatures predicted for IM has a high percentage of non-polar
amino acids (60%) and no charged (0%) amino acids. This can be explained in terms
of the physico-chemical properties of the lipid bilayer, in which non-polar amino ac-
ids are favored in the transmembrane domains of IM proteins(UImschneider, et a.,
2005). In contrast, charged amino acids are disfavored due to the penalty incurred in
energy terms during the assembly of IM proteins(Hessa, et a., 2005). CP and EC

classes are found to contain a high percentage
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Figure 3.12: The amino acid compositions of single residues (A) and predicted
gapped-dipeptide signatures (B) for each protein class distinguished by the localiza-
tion site. Localization sites: CP, IM, PP, OM, and EC. Amino acid groups. N
(non-polar: AIGLMV), P (polar: CNPQST), C (charged: DEHKR), and A (aromatic:
FYw)
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of charged and polar amino acids, respectively. The role of charged amino acids in the
cytoplasm is probably related to pH homeostasis in which they act as buffers, whereas
secreted proteins in the EC classes may require more polar amino acids for promoting

interactions in the solvent environment(Booth, 1985).

Although gapped-dipeptide signatures are found, PSLDoc performs training and
testing procedures solely based on the topics of the PLSA model. In addition, Hof-
mann(Hofmann, 2001) also noted that PLSA can capture the semantic meaning of
words, in our case, the gapped-dipeptides. This part will be discussed in the following

section.

3.3.5 Capability to solve the polysemy of Gapped-dipeptides

In document classification, a word with two different meanings is called polyseme
(e.g., ‘bank’ means (i) an organization that provides:various financial services or (ii)
the side of a river). Hofmann mentioned-PESA-could deal with polysemy and gave an
example about the word “segment™ ((i)-an image region or (ii) a phonetic seg-
ment)(Hofmann, 1999; Hofmann, 2001). Such a word w would have a high probabil-
ity in two different topics. The hidden topic variable, P(wj|z), associated with each
word occurrence in a particular document is used to determine which particular topic
w is assigned to, depending on the context of the document. Sivic et al.(Sivic, et d.,
2005) applied PLSA to images and discussed the polysemy on images. We discuss the

polysemy effect on gapped-dipeptides.
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Table 3.8: “AB6A” is among the top five frequent dipeptides of Topic 73 and Topic 6,
where gapped-dipeptides are arranged to the decreasing order of P(w|z).

Topic 73 | Topic6
ABA A10A
Al13A AllA
ATA ABA
A10A Al12A
Al11A A3A

A gapped-dipeptide may prefer two localization sites, e.g., “A6A” prefer CP and
PPin Table 3.7. It is sometimes difficult to determine the localization site of a protein
based on the weight of a polysemous gapped-dipeptide. PLSA can be used to remedy
the polysemy effect of a gapped-dipeptide by associating the gapped-dipeptide with
different topics. For example, “A6A” is among the top five frequent dipeptides of
Topic 73 in CP and Topic 6 in PP.that their probabilities P(w|z) are sorted in a de-

creasing order as shown in Table 3.8.

For example, two proteinsfrom PS1444 data set, chemotaxis protein cheZ and
Endoglucanase B®, contain subsequences of the polysemous gapped-dipeptide “ABA.”
They are in different classes, CP class and PP class, respectively, and some of their
relevant information is listed in Table 3.9. Using the original vector space, the two
proteins have P{w = “ABA”", ds} = 0.7001 and P{w = “AB6A", dggo} = 0.651, which
differ dightly, and thus it is difficult to distinguish them. However, using the posterior
probabilities of Topic 73 and Topic 6, given the different occurrences of “A6A” based
on the PLSA reduced vector space can distinguish the two proteins and determine
their classes. That is, since (P{z7s| w = “ABA”", daa}, P{zs| W =“ABA”, das}) = (0.0794,
0.0) and (P{z73| w = “AB6A", deso}, P{zs| W = “ABA”, dsgo} ) = (0.0, 0.0596) and Topics

73 and 6 are associated with different classes, the proteins ds4 and degp can be distin-

® chemotaxis protein cheZ and Endoglucanase B are 44-th and 680-th proteins in PS1444, respectively.
We use d44 and dggg to denote them for ease.
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guished to be in CP and PP classes. This example demonstrates PLSA’s capability to

remedy the polysemy effect of gapped-dipeptides.

Table 3.9: Examples of two proteins in PS1444 having the gapped-dipeptide “AGA”™.

. aARA A (P{z73|di, wj = “ABA”}, WA AAP Localization
Protein Name | P{w;="“A6A", d;} P{z6| di, W; = “ABA"}) ABA Site
AIAEAAEA (40%)
116294 0.7001 (0.0794, 0.0) ASQPHQDA (75) CP
APGDPGSA(362)
121816 0.651 (0.0, 0.0596) AQWGV SNA(409) PP
AQY GGFLA(420)

*The number in brackets denotes the starting position of the gapped-dipeptide “A6A.”
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3.4 Conclusion

In this chapter, we present a new PSL prediction method, PSLDoc, based on
gapped-dipeptides and PLSA and demonstrate that it is suitable for proteins of awide
range of sequence homologies. PSLDoc extracts features from gapped-dipeptides of
various distances, where evolutionary information from the PSSM is utilized to de-
termine the weighting of each gapped-dipeptides such that its performance is compa
rable to the homology search method in the high-homology data set. These features
are further reduced by PLSA and incorporated as input vectors for SVM classifiers.
PSLDoc performs very well in low-homology data set with overall accuracy of
86.84%. It can also achieve very high precision by using a flexible prediction thresh-
old. Experiments show PSLDoc performs better than some of the current methods in
overal accuracy by 1.51%. Because of the-generality of this method, it can be ex-
tended to other species or multiple localization sites in the future. Through analyzing
the amino acid composition of gapped-dipeptide signatures, there is a relationship
between the amino acid group and localization sites. For future work, we will incor-
porate the amino acid groups with gapped-dipeptides to design a new representation

of terms for predicting protein subcellular localization.
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CHAPTER 4

Prediction of RNA-binding Sitesin Proteins

4.1 Methods

In this chapter, we propose a method, RNAProB, which incorporates a new smoothed
position-specific scoring matrix (PSSM) encoding scheme with a support vector ma-
chine model to predict RNA-binding sites in proteins. Besides the incorporation of
evolutionary information from standard PSSM profiles, the proposed smoothed PSSM
encoding scheme a so considers the correlationand dependency from the neighboring

residues for each amino acid in aprotein.

4.1.1 Data sets
In this study, we apply three data sets used- previous studies to compare the per-

formance of our method and other systems."Table 4.1 shows a summary of these data
sets, which are detailed as follows and available in the supplementary material [see

Appendix 2.1, 2.2, and 2.3].

1. RBP86

The RBP86 data set consists of 86 protein chains extracted from RNA-protein com-
plexes with X-ray crystallography resolution better than 3A in PDB. Sequence redun-
dancy in the data set is removed so that no protein pair has a sequence identity greater
than 70%. In the RNA-protein complexes, a residue is regarded as interacting with
RNA if the distance between an RNA molecule and the residue in the protein is less
than 6A. The resultant data set contains 4,568 RNA interacting residues and 15,503

non-interacting residues. The RBP86 data set has been used in Terribilini et al. (Ter-
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ribilini, et al., 2006) and Kumar et al. (Kumar, et a., 2008). In Kumar et al., it isalso

referred to asthe “main” data set.

2. RBP109

The RBP109 data set contains 109 protein sequences obtained from 56 RNA-protein
complexes with X-ray crystallography resolution better than 3.5A in PDB. For any
two protein chains, the sequence identity is no more than 30%. The numbers of inter-
acting and non-interacting residues are 3,581 and 21,526, respectively. The RBP109
data set is downloaded from RNABIndR web server
(http://bindr.gdcb.iastate.edu/RNABIndR/) (Terribilini, et al., 2007). In Terribilini et

al. (Terribilini, et a., 2006), it is named as the “RB109” data set.

3. RBP107

Derived from 61 RNA-protein camplexes|in PDB, the RBP107 data set is comprised
of 107 protein chains with X-ray crystallography resolution better than 3.5A and se-
quence identity no more than 25%. Based on a cutoff distance of 3.5A, the RBP107
data set contains 2,555 interacting residues and 19,496 non-interacting ones. Wang
and Brown (Wang and Brown, 2006) applied this data set to construct and evaluated

their approach. In Kumar et al. (Kumar, et al., 2008), it is named as the “alternate” set.

Table 4.1: Summary of three benchmark data sets.

Data set RBP86 RBP109 RBP107
Number of protein chains 86 109 107
X-ray crystallography resolution >3A >3.5A >3.5A
Sequence identity <70% <30% <25%
Number of interacting residues 4,568 3,581 2,555
Number of non-interacting residues 15,503 21,526 19,496
Non-interacting/interacting residues 3.39 6.01 7.63
Total number of residues 20,071 25,107 22,051
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4.1.2 Support vector machines (SVM)
SVM is a machine learning approach proposed by Vapnik (Vapnik, 1995) based on

structural risk minimization principle of statistics learning theory. It can be used to
deal with classification or regression. Distinguishing RNA binding residues form
non-binding residues in a protein could be regarded as a binary classification problem.
For a set of given input data vectors x; (; ER®, i = 1, 2, ..., n) with labels
(yi€{+1.-1},i=1, 2, ..., n; where “+1” represents a positive instance and “-1” de-
notes a negative instance), the mission in the training procedure is to optimize the
following equation that maps input vectors into a higher dimensional feature space
(i.e., Hilbert space), and seeks a separation hyperplane with a maximum margin to
divide positive instances from negative ones. The calculation of SVM is defined in

Equation (4.1).

Ming |7 (%m-‘rw SRR f] (4.1)

&

subject to v, (wT®(%)i='b) = 1 — 452 = 0,i=1,2,... ,n,

where w € B® s aweight vector, b is a bias (constant), and 2 is a mapping func-
tion. For more flexible classification, SVYM allows instance i positions at the wrong
side of hyperplane with slack variable ¢; and cost parameter C. In SVM, a kernel
function K(x;,X;), such as linear, polynomial, radial basis function (RBF), and sigmoid
function, is used to present € (x;)- ?(x;) wherex; and x; are two data vectors. In this
study, we use RBF as the kernel function in the SYM. The formulation of RBF is de-

fined in Equation (4.2), where y is atraining parameter.

K(x ,_\'j} = exp (—7x - _\'j| :j 4.2)
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Developed by Lin et al. (Lin and Chang, 2001), LIBSVM is a powerful and
well-known SVM package used by many researchers. We apply LIBSVM to imple-

ment our classifiers for prediction of RNA-binding sitesin proteins.

4.1.3 Feature extraction and representation
Evolutionary information has been shown to be effective for RNA-binding site pre-

diction (Kumar, et a., 2008). For this reason, we use PSI-BLAST (Altschul, et a.,
1997) to search against NCBI non-redundant (nr) database and generate a PSSM
based on BLOSUMG62 substitution matrix (Henikoff and Henikoff, 1992) for each
protein with e-value as 0.001 and iteration number as 3. A PSSM is comprised of L
vectors (L denotes the length of the protein), in which contain the log-likelihoods for
different amino acids in a position. Next, we illustrate two different encoding schemes

to represent the PSSM.
1. Standard PSSM encoding scheme

Standard PSSM has been used:for-RNA-binding-site prediction by Kumar et al.
(Kumar, et a., 2008). For a PSSM profile, the feature representation of a residue ¢; at
position i in a protein sequence is presented by an evolutionary information vector Vi
comprised of log-likelihoods for 20 different amino acids. Considering the surround-
ing residues of «;, we apply a sliding window of size w to incorporate the evolutionary
information from upstream and downstream neighbors. The feature vector of aresidue
o; is represented by (Vi-w-1y2, .-+, Vi, «..,Visw-1)2). FOr the N-terminal and C-terminal
of a protein, (w-1)/2 ZERO vectors, consisting of 20 zero elements, are appended to
the hand or tail of a PSSM profile. The feature values in each vector are normalized to
arange between -1 and 1. In our study, we apply different sliding window sizes from

3to4lwithastepas2(i.e,w=3,5,...,41). Figure 4.1 (A) shows an example of
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Figure 4.1: Examples of (A) standard PSSM and (B) smoothed PSSM generated by PSI-BLAST (e-value = 0.001, iteration number = 3).
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standard PSSM of a protein with e-value as 0.001 and iteration number as 3 in

PSI-BLAST.

2. Smoothed PSSM encoding scheme

In addition to the consideration of neighbors of aresidue a;, we propose a new encod-
ing scheme to incorporate the dependency of surrounding residues. In a standard
PSSM profile, the log-likelihood at each position is calculated based on an assumption
that each position is independent from the others. However, Terribilini et al. (Terribi-
lini, et al., 2006) observed that RNA binding residues tend to occur in clusters. Their
analysis revealed that 95% of interacting residues in the RBP109 data set have at least
one additional interacting residue among the four amino acids on either side, and 49%
of those have at least four. Inspired by the consideration of adjacent pixels used in the
gpatial domain method from the.research field of. image processing (Gonzalez and
Woods, 2002), we present a new encoding scheme to model the dependency or corre-
lation among surrounding neighbors of.a central residue. Similar to the feature repre-
sentation in standard PSSM encoding, we use a sliding window of size w to incorpo-
rate the evolutionary information from upstream and downstream residues. In the
construction of a smoothed PSSM, each row vector of aresidue ¢; is represented and
smoothed by the summation of ws surrounding row vectors (Vsmoothed i = Vi-ws1)/2
+ ...+ Vi+ ... + Viywsa)r ). For the N-terminal and C-terminal of a protein, (w-1)/2
ZERO vectors, are appended to the hand or tail of a smoothed PSSM profile. Using
the smoothed PSSM encoding scheme, the feature vector of aresidue ¢; is represented
by (Vsmoothed i-w-1)/2s -5 Vsmoothed is ---» Vsmoothed i+(w-1)2). | he feature values in each
vector are normalized to a range between -1 and 1. Here, we apply different smooth-
ing window sizesfrom 3to 11 withastepas2 (i.e,ws=3,5, ..., 11). Figure 4.1 (B)

illustrates an example of a smoothed PSSM profile. At position 9, the corresponding
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value of amino acid ‘A’ represented by a smoothed PSSM encoding is the sum of
[(-:2)+(-2)+ (-3)+5+(-2)+3+0].

4.1.4 Window size selection and parameter optimization
In order to optimize the performance of RNAProB, we have to determine the best

combination of several parameters, including the sliding window size w, cost parame-
ter C and kernel parameter y in the SVYM classifier, the smoothing window size ws,
and the weight parameters w; and w_; in SVM. Table 4.2 shows the workflow of win-
dow size selection and parameter optimization. In our study, the best parameters are
optimized with respect to overall accuracy. First, we test the performance of different
dliding window sizesw from 3, 5, 7, ..., 41 in standard PSSM encoding scheme using
default C and y parameters in SVM, and initial weight parameter w; as 1 and w.; as
the ratio of the number of non-interacting residues to that of interacting residuesin a
data set. As shown in Table 4.1,theratios of the numbers of non-interacting residues
to those of interacting residues in the RBP86, RBP109, and RBP107 data sets are
1:3.39, 1:6.01, and 1:7.63, respectively. Second, based on the optimized sliding win-
dow size w selected from the first step, the best combination of cost parameter C and
kernel parameter y is determined with initial weight parameters. The log,C and logyy
ranged from -3 to 12 and -3 to -15, respectively. Third, the prediction performance of
different smoothing window sizes ws ranged from 3 to 11 with a step 2 is evaluated
using initial weight parameters and previously selected parameters (i.e., w, C, and y).
Fourth, due to data set imbalance, the weight parameters w; and w.; are tuned with
optimized w, C, y, and ws. After these steps, the optimal parameters, including sliding
window size w, cost parameter C, kernel parameter y, smoothing window size ws, and

weight parameters w; and w.;, are determined.

83



Table 4.2: The workflow of window size selection and parameter optimization.

Sliding window size (w) Candy Smoothing window size (ws)  Weight parameter (w; and w.;)

Step 1 3<w <41 (step =2) Default - Default ratio
-3<log,C <12 (step=1)

Step 2 Optimized w from step 1 - Default ratio
-3<logyy <-15 (step =-1)

Step 3 Optimized w from step 1 Optimized C and y from-step2 3<ws <11 (step=2) Default ratio

Step 4 Optimized w from step 1 Optimized C and y from step 2 Optimized ws from step 3 1<w; <8 (step=1),w,=1

Final Optimized w from step 1 Optimized C and y from step 2 Optimized ws from step 3 Optimized wy and w.; from step4

# In the RBP107 data set, we test w; ranged from 1 to 10 (step = 1).
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4.1.5 System ar chitecture of RNAProB
The system architecture of RNAProB is shown in Figure 4.2. Given a protein se-

guence, RNAProB performs the following steps:
1. Apply PSI-BLAST to generate a standard PSSM of the protein.

2.  Generate a smoothed PSSM of the protein using an optimized smoothing win-

dow size.

3. Construct a feature vector for each residue in the protein sequence by an opti-
mized sliding window size, and normalize all feature values in the vector into a

range of -1 and 1.

4. Useatrained SVM classifier with optimized parameters (C, y, wi, w.;) to predict

the interacting and non-interacting'residues in the protein.

After the above steps, RNAProB: outputs the corresponding interacting or

non-interacting state of each residue in the protein.

4.1.6 Training and testing
The performance of RNAProB is assessed by n-fold cross-validation and three-way

data split. To compare with other approaches, we use five-fold cross-validation to
evaluate the performance of RNAProB. However, to prevent data-overfitting, a
three-way data split procedure is applied to assess our predictor. The performance of

RNAProB is evaluated as follows.

1. n-fold cross-validation: A data set is randomly divided into five distinct
non-overlapping sets of positive and negative instances (i.e,, n = 5), four of
which are used to train the predictor and the accuracy of the predictor is eva

luated on the remaining set. This procedure is repeated five times.
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Figure 4.2: System architecture of RNAProB.
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2. Three-way data split: To avoid overfitting, we use a more stringent three-way
data split procedure (Ritchie, et a., 2003; Su, et al., 2007) to evaluate the per-
formance of RNAProB. A data set is randomly partitioned into three
non-overlapping sets: atraining set for classifier learning, a validation set for pa-
rameter selection, and atest set for performance evaluation. In this paper, we di-
vide a data set into five distinct sets, three for training, one for validation, and

one for testing. The procedureis also iterated 5 times.

4.1.7 Perfor mance evaluation measures
For comparison with other approaches, we follow the measures used in previous work

(Kumar, et al., 2008; Wang and Brown, 2006; Wang and Brown, 2006), including
specificity (Spec.), senditivity (Sens.), MCC (Matthews, 1975), and overall accuracy
(Acc). Specificity and sensitivity measure how .well the binary classifier recognizes
negative and positive cases, respectively:- A" specificity of 100% and a sensitivity of
100% imply that the classifier identifies-all non-interacting residues as non-interacting
and all interacting residues as interacting, correspondingly. When a predictor’s speci-
ficity increases, its sensitivity often decreases. On the other hand, MCC, which con-
siders both under- and over-predictions, gives a complementary measure of the pre-
diction performance, where MCC = 1 denotes a perfect prediction, MCC = 0 indicates
a completely random assignment, and MCC = -1 means a perfectly reverse correlation.
Moreover, overal accuracy presents how well the classifier distinguishes true posi-
tives and true negatives, and 100% overall accuracy denotes a perfect prediction. The
definitions of specificity, sensitivity, MCC, and overall accuracy are defined in Equa-
tions (4.3), (4.4), (4.5), and (4.6), respectively. In the equations, TP, TN, FP, and FN
denote the numbers of true positives, true negatives, false positives, and false nega-

tives, correspondingly.
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Specificity = TN/(TN + FP) x 100 (4.3)

Sensitivity = TP/(TP + FN) X 100 (4.4)

MCC = (TP x TN —FP x FN)/,/(TP + FF) = (IP + FN) x (IN + FP) x (IN + FN)  (4.5)
Acc= (TP+ TN)/(TP+ TN +FP + FN) x 100 (4.6)

In addition to the above measures, we also use the receiver operating characteris-
tic (ROC) curve (Swets, 1988) and area under the ROC curve (AUC) (Bradley, 1997)
to evaluate the performance of standard and smoothed PSSM encoding schemes. In an
ROC curve plot, the X-axis represents fase positive rate (i.e., 1-specificity) and
Y -axis denotes true positive rate (i.e., sensitivity). We incorporate different thresholds
in the SVM classifier to plot the true positive rates against false positive rates in an
ROC curve. Moreover, AUC calculates the area.under an ROC curve and the maxi-
mum value of AUC is 1, which:denotes a perfect prediction. A random guess results
inan AUC value closeto 0.5.

To determine the thresholds in the SV M classifiers, we follow the criteriaused in
the previous work. We notice that the thresholds in other approaches are optimized
with respect to different measures. For example, Kumar et al. (Kumar, et a., 2008)
and Jeong and Miyano (Jeong and Miyano, 2006) both optimized their results in the
RBP86 data set based on MCC. In addition, Terribilini et al. (Terribilini, et al., 2006)
aso selected the thresholds with the best MCC for the RBP109 data set. On the other
hand, Wang and Brown (Wang and Brown, 2006) determined the best thresholds in
the RBP107 data set based on the average of specificity and sensitivity. Therefore, the
thresholds in RNAProB are optimized with respect to MCC for RBP86 and RBP109
data sets, while the threshold is determined by the average of sensitivity and specific-

ity for the RBP107 data set.
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4.2 Results

4.2.1 Effect of smoothed PSSM encoding scheme

Here we compare the performance of smoothed PSSM and standard PSSM encoding
scheme in terms of MCC, overall accuracy, ROC curve, and AUC for the benchmark
data sets. Table 4.3 shows the performance comparison of standard PSSM and
smoothed PSSM using five-fold cross-validation and three-way data split. Evaluated
by five-fold cross-validation, smoothed PSSM encoding scheme attains overall accu-
racy of 87.99%, 89.70%, and 80.44% compared to 83.39%, 87.38%, and 77.80% by
standard PSSM encoding for the RBP86, RBP109, and RBP107 data sets, respectively.
Moreover, smoothed PSSM encoding'scheme achieves improvements of 0.06~0.178
in MCC compared to standardPSSM. Similarly, assessed by three-way data split,
smoothed PSSM encoding also-performs better than-standard PSSM in terms of both

overall accuracy and MCC in the three data sets.

Table 4.3: Performance comparison of standard PSSM and smoothed PSSM.

Smoothed PSSM Standard PSSM
Data set
Acc (%) MCC Acc (%) MCC
RBP86 87.99 (87.65) 0.68 (0.67) 83.39(83.35)  0.502 (0.496)
RBP109 89.70 (89.36) 0.58 (0.56) 87.38 (86.95) 0.45 (0.43)
RBP107 80.44 (79.84) 0.42 (0.40) 77.80 (77.55) 0.36 (0.35)

8 The performance of incorporating a three-way data split procedure is shown in the
parentheses.
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Figure 4.3: ROC curves and AUC of the (A) RBP86, (B) RBP109, and (C) RBP107 data sets.
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Figure 4.3 (A), (B), and (C) illustrate the ROC curves and AUC of smoothed
PSSM and standard PSSM encoding schemes for the three benchmark data sets. The
solid blue line and dotted red line represent the ROC curves plotted according to the
performance of smoothed PSSM and standard PSSM encoding schemes, respectively.
When smoothed PSSM encoding scheme is used to represent the proteins, AUC
achieve 0.929, 0.902, and 0.860 on the RBP86, RBP109, and RBP107 data sets, re-
spectively; on the other hand, standard PSSM only attains AUC of 0.835, 0.824, and

0.817

Experiment results demonstrate that our proposed smoothed PSSM encoding
scheme not only achieves good prediction performance, but also yields a significant
improvement over standard PSSM encoding. Smoothed PSSM encoding scheme out-
performs standard PSSM by 2.32%~4.60% in overall accuracy and 0.06~0.178 in
MCC. The consideration of dependency among neighboring residues works well in
distinguishing interacting residues from non-interacting ones; accordingly, the predic-
tion performance of smoothed PSSM encoding scheme is substantially improved.
This supports our assumption that the incorporation of the correlation between sur-
rounding residues in PSSM profiles can significantly enhance the performance of

RNA-binding site prediction.

4.2.2 RNAProB prediction performance on the benchmark data sets

For each data set, we used five-fold cross-validation and three-way data split to
evaluate the prediction performance, which is detailed below and summarized in Ta-

ble4.4.
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Table 4.4. Performance of five-fold cross-validation and three-way data split for the
benchmark data sets.

Dataset Measurements Spec. (%) Sens. (%) Acc (%) MCC  Threshold

RBP86  5-fold CV 9036  79.95  87.99 0.68 0.36
3way datasplit 9001 7964  87.65 0.67 0.36
RBP109 5-fold CV 9388  64.62  89.70 0.58 0.35
3way datasplit 9414 6063  89.36 0.56 0.35
RBP107 5-fold CV 80.87 7714  80.44 0.42 0.11
3-way datasplit 8065 7362  79.84 0.40 0.12

1. Performance comparison with other approaches on the RBP86 data set

The window sizes, including the gliding,window: Size w and smoothing window size
ws, and other parameters in RNAProB are selected with respect to overall accuracy.
First, Figure 4.4 (A) shows the overall accuracy of applying different diding window
sizes on the RBP86 data set. The ‘overal “accuracy evaluated by both five-fold
cross-validation and three-way data split grows rapidly before it reaches 77%. How-
ever, a slow growth in the overall accuracy is observed as the size of dliding window
Is greater than 25. Thus, the sliding window size w is set as 25 for the RBP386 data set.
Next the prediction performance of different smoothing window sizes based on pre-
viously determined sliding window size (i.e. w = 25) isillustrated in Figure 4.4 (B)
and (C). In Figure 4.4 (B), athough there is a very slow growth in the overall accu-
racy, we observe that MCC isimproved from 0.50 to 0.67 when the size of smoothing
window isincreased from 1 to 7. Nevertheless, the performance improvement in MCC
(i.e. improvement < 0.01) is not significant as the size of smoothing window is greater

than 7. Similar trendsin MCC and overall accuracy are observed in Figure 4.4 (C).
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Figure 4.4: (A) Accuracy with respect to different diding window sizes using five-fold
cross-validation and three-way data split for the RBP86 data set, respectively. (B) The performance of
the RBP86 data set with different smoothing window sizes by five-fold cross-validation. (C) The per-
formance of the RBP86 data set with different smoothing window sizes by three-way data split.
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Therefore, we use 7 as the smoothing window size ws in our method. As shown in
Table 4.4, the performance of RNAProB evaluated by five-fold cross-validation
achieves MCC, overall accuracy, specificity, and sensitivity of 0.68, 87.99%, 90.36%,
and 79.95%, (with sliding window size w = 25, smoothing window size ws = 7, cost
parameter C = 4, kernel function parameter y = 0.015625, weight parameter wy = 4,
w_ = 1, and threshold value = 0.36), respectively. Besides, using a more rigorous
three-way data split procedure, our method also attains MCC, overall accuracy, speci-
ficity, and sensitivity of 0.67, 87.65%, 90.01%, and 79.64%, (withw = 25, ws =7, C
=1, y=0.03125, w; = 4, w; = 1, and threshold value = 0.36), correspondingly. The
experiment results of window size selection and parameter optimization on the RBP86

data set are shown in the supplementary material [see Appendix 2.4].

The performance comparison with two ether approaches developed on the same
data set is shown in Table 4.5. Jeong and Miyano (Jeong and Miyano, 2006) used an
ANN to incorporate evolutionary information and-obtained MCC, overall accuracy,
specificity, and sensitivity of 0.39, 80.20%, 91.04%, and 43.40%, respectively. The
MCC of their proposed method was further improved to 0.41 based on a weighted
profile approach. In addition, Kumar et al. developed PPRint (Kumar, et al., 2008),
which incorporated PSSM profiles in an SVYM model, and attained MCC, overal ac-
curacy, specificity, and sensitivity of 0.45, 81.16%, 89.55%, and 53.05%, respectively.
Compared to these approaches, our method not only achieves high overall accuracy
but also significantly improves the sensitivity by 26.90%~36.55% using five-fold
cross-validation. Moreover, RNAProB achieves 0.68 in MCC, compared to 0.45 by

PPRint and 0.41 by Jeong and Miyano.
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Table 4.5. Performance comparison of different approaches using five-fold
cross-validation for the benchmark data sets.

Dataset Method Spec. (%) Sens. (%) Acc (%) MCC Threshold
RBP86  Jeong 2006 91.04 43.4 80.2  0.39(0.41) -
PPRint 89.55 53.05 81.16 0.45 -
RNAProB®  90.36 79.95 87.99 0.68 0.36
RNAProB*  90.01 79.64 87.65 0.67 0.36
RBP109 RNABindR  93.00 38.00 84.80 0.35 -
RNAProB®  93.88 64.62 89.70 0.58 0.35
RNAProB*  94.14 60.63 89.36 0.56 0.35
RBP107 BindN-PCP*  69.84 66.28 69.32 0.27 -

BindN-ALL%®  75.70 65.78 74.25 -- -

PPRint 75.54 70.09 75.43 0.32 --
RNAProB ® 80.87 77.14 80.44 0.42 0.11
RNAProB * 80.65 73.62 79.84 0.40 0.12

% presents the performance by five-fold cross-validation.

# denotes the performance by a three-way data split procedure,

* indicates the performance of weighted profiles by Jeong and Miyano (Jeong and

Miyano, 2006).

% BindN-PCP represents the results based only on physicochemical properties, while
BindN-ALL shows the performance using physicochemical properties, relative sol-
vent accessible surface area, and BLAST results.
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2. Performance comparison with RNABIndR on the RBP109 data set

Figure 4.5 illustrates the experiment results of different sliding and smoothing win-
dow sizes on the RBP109 data set. Similar to the RBP86 data set, the RBP109 data set
exhibits a slow growth in the prediction performance when sliding window size w is
greater than 25 or smoothing window size ws is larger than 7. Thus, we also select w
as 25 and ws as 7 for this data set. Table 4.4 shows that RNAProB attains 0.58,
89.70%, 93.88%, and 64.62% in MCC, overall accuracy, specificity, and sensitivity
using five-fold cross-validation (withw =25, ws =7, C =4, y = 0.015625, w; = 4, w_;
= 1, and threshold value = 0.35), respectively. Besides, evaluated by three-way data
split, our method obtains MCC, overall accuracy, specificity, and sensitivity of 0.56,
89.36%, 94.14%, and 60.63% (withw =25, ws =7, C = 8, y = 0.015625, wy = 4, w_; =
1, and threshold value = 0.35), respectively. The prediction performance of different
window sizes and parameters on the RBP109 data set is detailed in the supplementary

material [see Appendix 2.5].

Table 4.5 illustrates the performance comparison with RNABIndR (Terribilini, et
a., 2006; Terribilini, et a., 2007), a Naive Bayes based method developed on the
same data set. Using five-fold cross-validation, RNAProB achieves 0.58, 89.70%,
93.88%, and 64.62% in MCC, overall accuracy, specificity, and sensitivity, respec-
tively, compared favourably to 0.35, 84.80%, 93.00%, and 38.00% by RNABindR.
Particularly, our method significantly outperforms RNABIndR by 26.62% in terms of

sensitivity.
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Figure 4.5: (A) Accuracy with respect to different sliding window sizes using five-fold
cross-validation and three-way data split for the RBP109 data set, respectively. (B) The performance of
the RBP109 data set with different smoothing window sizes by five-fold cross-validation. (C) The per-
formance of the RBP109 data set with different smoothing window sizes by three-way data split.
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3. Performance comparison with other approaches on the RBP107 data set

The prediction performance of different sliding and smoothing window sizes on the
RBP107 data set is demonstrated in Figure 4.6. Similar to the RBP86 data set, we ob-
serve that the overall accuracy converges as sliding window size is greater than 25 on
the RBP107 data set in Figure 4.6 (B). Moreover, the MCC shows a slight peak when
the smoothing window size reaches 7 in Figure 4.6 (C). Thus RNAProB aso selectsw
as 25 and ws as 7 for this data set. Asillustrated in Table 4.4, our method reaches 0.42,
80.44%, 80.87%, and 77.14% in MCC, overall accuracy, specificity, and sensitivity by
five-fold cross-validation (withw = 25, ws = 7, C = 4, y = 0.015625, w; = 4, w =1,
and threshold value = 0.11), respectively. In addition, RNAProB also attains MCC,
overal accuracy, specificity, and sensitivity. of 0.40, 79.84%, 80.65%, and 73.62% by
three-way data split (with w = 25, ws =7, C =8, »= 0.015625, w; = 4, w.; = 1, and
threshold value = 0.12), correspondingly. The detailed experiment results on the

RBP109 data set are summarized'in the'supplementary material [see Appendix 2.6].

Table 4.5 compares the performance of RNAProB with other approaches on the
RBP107 data set. Based on physicochemical properties, BindN (i.e. referred to as
BindN-PCP in Table 4.5) attains MCC, overall accuracy, specificity, and sensitivity of
0.27, 69.32%, 69.84%, and 66.28%, respectively (Wang and Brown, 2006). Incorpo-
rated with more biological features, BindN (i.e. denoted as BindN-ALL in Table 4.5)
further improves specificity and accuracy by 5.86% and 4.93% with a slight decrease
in sengitivity (Wang and Brown, 2006). PPRint improves sensitivity to 70.09% with
the other measures performed comparable to those of BindN-ALL. Our method sig-
nificantly outperforms the-state-of-the-art approaches by 0.10, 5.10%, 5.33%, and

7.05% in MCC, overall accuracy, specificity, and sensitivity, respectively. This dem-
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onstrates that RNAProB not only achieves accurate performance, but also substan-

tially improves sensitivity in the prediction of RNA-binding sites.
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Figure 4.6: (A) Accuracy with respect to different diding window sizes using five-fold
cross-validation and three-way data split for the RBP107 data set, respectively. (B) The performance of
the RBP107 data set with different smoothing window sizes by five-fold cross-validation. (C) The per-
formance of the RBP107 data set with different smoothing window sizes by three-way data split.
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4.3 Discussion

4.3.1 Physicochemical preferences of interacting and non-interacting

residues

In this section, we examine the physicochemical properties of RNA interacting and
non-interacting residues. Figure 4.7 (A), (B), and (C) show the amino acid composi-
tions of interacting and non-interacting residues in the RBP86, RBP109, and RBP107
data sets, respectively. It is observed that interacting and non-interacting residues
show preferences for different amino acids. RNA interacting residues tend to have
high compositions for Arginine (R), Asparagine (N), Glutamine (Q), Glycine (G),
Histidine (H), and Lysine (K). For,example, there are relatively high proportions for
Arginine (R) and Lysine (K), which may-interact with negatively charged RNA with
their positive side chains. In addition, the smallest amino acid, Glycine (G), also has a
high composition in interacting residues because‘it rotates easily and provides flexi-
bility to interact with RNA molecules. Moreover, positively charged Histidine (H) can
have an aromatic interaction with RNA molecules due to its specific pKa value and
imidazole ring. On the other hand, non-interacting residues show dlight preferences
for Alanine (A), Aspartic acid (D), Glutamic acid (E), Isoleucine (1), Leucine (L),
Phenylalanine (F), and Valine (V). Cysteine (C), Aspartic acid (D), and Glutamic acid
(E) are favoured by non-interacting residues because of their negatively charged side
chains. In addition, athough Kumar et al. (Kumar, et a., 2008) reported that Aspartic
acid (D) showed no preference for interacting or non-interacting residues in their main

data set (i.e., the RBP86 data set in our study), we observed that the Aspartic acid (D)
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Figure4.7: Amino acid compositions of interacting and non-interacting residuesin
the benchmark data sets.
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composition of non-interacting residues is significantly higher than that of interacting
residues in both of the RBP109 and RBP107 data sets. Our anaysis indicates that the

finding from Kumar et al. could be a bias from the data set.

To further analyze the physicochemical properties of the RNA interacting and
non-interacting residues, each amino acid is classified into one of the four groups:
acidic (DE), basic (HKR), polar (CGNQSTY), and non-polar (AFILMPVW) (Yu, et
al., 2006). Figure 4.8 shows the grouped amino acid compositions of interacting and
non-interacting residues for the benchmark data sets. It is observed among the three
data sets that basic and polar amino acids tend to interact with RNA, and acidic and
non-polar amino acids are not favoured by RNA molecules. Particularly, our analysis
shows that the compositions of basic amino acids exhibit significantly

over-represented patterns for interacting residues.

Furthermore, we inspect the amino acid compositions of proteins that interact
with different RNA molecules. The proteinsin the RBP109 data set are divided into
four categories according to the definitionin Terribilini et al (Terribilini, et a., 2006).
Figure 4.9 (A), (B), (C), and (D) show the amino acid compositions of (A) rRNA, (B)
MRNA, snRNA, dsRNA, and siRNA, (C) tRNA, and (D) viralRNA, respectively. It is
observed that viralRNA group shows a different amino acid composition compared to
the other groups. Proteins that interact with viralRNA evolve fast and induce confor-
mational changes in the active sites. Thus, these proteins exhibit a specific mechanism

to interact with viralRNA.
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Figure 4.8: Grouped amino acid compositions of interacting and non-interacting
residues in the benchmark data sets.
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(A) The rRNA group (55 protein chains with 2,392 (B) The mRNA, snRNA, dsRNA, and siRNA group

interacting and 5,302 non-interacting residues). (23 protein chains with 394 interacting and
3,320 non-interacting residues).
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Figure 4.9: Amino acid compositions of interacting and non-interacting residues in four different RNA groups of the RBP109 data set.
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4.3.2 Comparison of smoothed PSSM and standard PSSM

Here we examine the correlation between interacting and non-interacting residues for
both smoothed PSSM and standard PSSM encoding schemes. We incorporate Pearson
correlation coefficient (PCC) (Chang, et a., 2008) to measure the correlation between
the evolutionary information of interacting and non-interacting for an amino acid. For
each amino acid a, we use two vectors, X and Y, to present the sum of PSSM evolu-
tionary information vectors for interacting and non-interacting amino acid a, respec-
tively. The Pearson correlation coefficient for a series of n measurements for variables

X andY isdefined in Equation (4.7).

PCC =ry = (nZxy, — L% Zy,)/ynZx? — (Lx)%/nky* — (Zy)(47)

Figure 4.10 shows the Pearson correlation.coefficient between interacting and
non-interacting evolutionary information vectors based on different PSSM encoding
schemes in the benchmark data“sets. It 1s observed that the correlation coefficients
calculated from smoothed PSSM encoding scheme are lower than those from standard
PSSM, especidly for Cysteine (C) and Tryptophan (W). In Figure 4.10 (A), smoothed
PSSM encoding attains lower correlation coefficients not only in interacting residues,
such as Arginine (R), Asparagine (N), Glutamine (Q), Glycine (G), Histidine (H), and
Lysine (K), but also in non-interacting residues, including Alanine (A), Aspartic acid
(D), Glutamic acid (E), Isoleucine (1), Leucine (L), Phenylalanine (F), and Vaine (V).
Similarly, Figure 4.10 (B) and (C) aso show lower correlation coefficients between
interacting and non-interacting residues based on smoothed PSSM encoding. Fur-
thermore, it is observed that the correlation coefficients calculated with smoothing
window size ws = 7 are usually lower than those generated by other smoothing win-

dow sizes. If an encoding scheme leads to a lower Pearson correlation coefficient, it
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indicates that the encoding scheme can better resolve ambiguity in discriminating in-
teracting residues from non-interacting ones. Our anaysis lends support to our as-
sumption that smoothed PSSM encoding scheme can improve the recognition RNA
interacting and non-interacting sites by modelling the dependency from surrounding

residues.
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Figure 4.10: Pearson correlation coefficient between interacting and non-interacting
evolutionary vectors generated by different PSSM encoding schemes in the bench-
mark data sets.
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4.4 Conclusion

In this chapter, we present RNAProB, which combines a new smoothed PSSM en-
coding scheme with a SVM model for prediction of RNA-binding sites in proteins. In
a standard PSSM profile, evolutionary information is calculated based on an assump-
tion that each position is independent of others. However, the correlation or depend-
ency from surrounding residues is incorporated in the proposed smoothed PSSM en-
coding. Experiment results show that the prediction performance of smoothed PSSM
encoding performs better than the state-of-the-art approaches on the benchmark data
sets. Evaluated by five-fold cross-validation, RNAProB outperforms the other ap-
proaches by 0.10~0.23 in MCC, 4.90%~6.83% in overall accuracy, and 0.88%~5.33%
in specificity. Most notably, our method significantly improves sensitivity by 26.90%,
26.62%, and 7.05% for the RBP86, RBP109, and RBP107 data sets, respectively.
Performance improvement in RNAProB not-only demonstrates that smoothed PSSM
can better resolve the ambiguity: inmidiscriminating RNA interacting and
non-interacting residues, but also supports our assumption that consideration of cor-
relation between neighboring residues can significantly enhance prediction accuracy.
To prevent data overfitting, a rigorous three-way data split procedure is incorporated
to evauate our prediction performance. The proposed method can be used in other
research topics, such as DNA-binding site prediction, protein-protein interaction, and

prediction of post-tranglational modification sites.
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Appendix 1.1

The Second Encoding Scheme for Secondary Struc-

ture Elements

To depict secondary structure elements (SSE), i.e., a-helix (H), g-strand (E), and loop
(L), in a protein, three descriptors, composition (C), transition (T), and distribution
(D), are used to encode predictions from HYPROSP |l using Equations (1), (2), and

(3), respectively [1].

C, =(n,/N)x100%, >".C, =100%, i € {H,E,L} (1)
Ty = [ty /(N =1)]x200%, i, | &TH, Epbhyd # @
D" =(d”/N)x100%, i e {H:E, L}, p={1,2550,75,100} , 3

where C; represents the composition of*SSE type i; n; is the number of SSE typeiina
protein; N is the total number of amino acid residues in a protein; Ti.; measures the
transition between SSE type i and j; ti..j is the number of transitions between SSE type
i and j; DP* gives the distribution of p% located SSE type i; and d* is the posi-
tion of p% located SSE typei in aprotein.

For illustration purposes, a hypothetical SSE sequence is shown in Figure 1.1S. The
sequence includes 12 a-helix residues (ny = 12) and 8 S-strand residues (ng = 8). The
percent compositions are calculated as follows: ny / (hy + ng + n) x 100% = 60.0%
for H, ng / (ny + ng + n.) x 100% = 40.0% for E, and n_ / (ny + ng + n.) x 100% =
0.0% for L. These three numbers represent the first descriptor, C. The second de-

scriptor, T, characterizes the percent frequency that amino acids of a particular sec-
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ondary structure element type are followed by a different type. Inthis case, there are

4 transitions of H to E or E to H, Ty..g is represented by (4 / 19) x 100.0% = 21.1%.

ThoL and Te.,, are equal to 0.0%, respectively. The third descriptor, D, measures the
chain length within which the first, 25%, 50%, 75%, and 100% of the amino acids of

a particular secondary structure element type are located. In Figure 2.1S, the first per-
cent residue of a-helices coincides with the beginning of the chain, so the D} de-

scriptor equals 0.0%. Twenty-five percent of a-helix residues are contained within the

first 3 residues of the protein chain, so the second number equals (3 / 20) x 100.0% =

15.0%. Fifty percent of a-helix residues are within the first 11 residues of the chain;

thus, the third number is (11 / 20) x 100.0% = 55.0%. The fourth and fifth numbers of

the distribution descriptor are 70.0% and 100.0%, respectively. Similarly, analogous

numbers for S-strand and loop residues are calcul ated.

SSE sequence HHHAEEEEEHHHHHEEEHHH

SSE index 1 5 10 15 20
Index for H 1234 567809 101112
Index for E 12345 6 78

H < E transtions ’ ’

Figure 1.1S: A hypothetica SSE sequence that illustrates the derivation of the SSE2
feature vector for a protein.
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Appendix 1.2

Data Sets

1. We provide the data sets for protein subcellular localization prediction used in
the training and testing of the proposed method. Table 1.1S lists the links to
download the benchmark data sets, the non-redundant data set, and the evaua-

tion data sets described in the main paper.

Table 1.1S: The benchmark, non-redundant, and evaluation data sets used in PSL101.

Number of

Data Set Proteins Link

PS1302 1302 http://bie-cluster.iis.sinica.edu.tw/~bieapp/PSL 101/dataset/PS1302.fasta
pPS1444 1444 http://bio=cluster:iis.sinica-edu:tw/~bioapp/PSL 101/dataset/PS1444. fasta
NR755 755 http://bio-cluster:iis.si nica.edu:tw/~bioapp/PSL 101/dataset/NR755.fasta
NR828 828 http://bio-cluster.iis.sinica.edu.tw/~bioapp/PSL 101/dataset/NR828.fasta
EV90_high 90 http://bio-cluster.iis.sinica.edu.tw/~bioapp/PSL 101/dataset/EV90_high.fasta
EV153_low 153 http://bio-cluster.iis.sinica.edu.tw/~bioapp/PSL 101/dataset/EV 153 _|ow.fasta
EV243 al 243 http://bio-cluster.iis.sinica.edu.tw/~bioapp/PSL 101/dataset/EV 243 _all .fasta
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Appendix 1.3

Selected Feature Combinations

The features selected from PSL101 for the PS1302 data set using a three-way data

split procedure are shown in Figure 1.2S. The selected features correspond well to

those discussed in the main paper. In Figure 1.2S, PSL101 also selects SIG, TMA,

and RSA as the optimal features to distinguish cytoplasmic and inner membrane pro-

teins. In addition, RSA, TMA, and SEC are used in the discrimination of proteins lo-

calized in the inner membrane and extracellular space. The results indicate that the

selected features are highly correlated with the biological insights derived from

Gram-negative bacteria transl ocation‘pathways.

F R F & & L
| | | | |

NI &

|
Cerim o
CCP,PP - o
Ccrov— @
Crec|{ @ @ @
Civ,pp
Cim, om
Cim, Ec — o
Crrom | @ L
CPP,EC -1 @ o
Com,Ec ] o

A

A

A

A

Figure 1.2S. Feature combinations derived from the PS1302 data set using a
three-way data split procedure. Selected general and compartment-specific features

are represented by filled circles and triangles, respectively.
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Appendix 2.1

The RBP86 Data Set
2BBV _C 1F7U_A 116U_A 1312 O 1J12_S
1A9N_D 1F7Y_A 1IVS B 1312 _P 1332 _U
1ASZ B 1F8V_A 1JBR_A 1312 Q 1312 W
1AV6 A 1FEU D 1JD A 1J32 R 1332 Y
1B23 P 1FJG B 132 1 32T 1K8W_A
1B7F B 1FJG D 1332 2 1332V 1KQ2_M
1CO0A_A 1FJG L 1312_A 1332_X 1IM50 F
1C9S L 1FJG M 1J12 B 1312 7 1M8Y B
1CVJ H 1FJG_S 1312 C 1KNZ_A IMMS_A
1DDL_C 1FIG T 1332 D 1LNG_A IN35 A
1DFU_P 1GIX_F 1J12_E 1IM8V_M INB7 B
1DI2 B 1G1X_G 1332 _H IMJ_A 1QTQ A
1DRZ_A 1G1X_H 13321 IMZP_A 1SER B
1DUL_A 1G2E_A 13023 IN78 B 2A8V_B
1E6T C 1H38 D 1J12_K 1QF6 A 1312 S
1E7K_B 1H3E_A 1302 L 1QU2_A 1332 _U
1EC6_A 1H4S B 1312 M 1URN_C 1332 W
1EFW B 1HQ1 A 1J32_ N 2FMT B 1312 Y

127




128



Appendix 2.2

The RBP109 Data Set

1A34 A 1FJG D 1H3E_A 1312 O IN78 A
1A9N_A 1FJG E 1HRO W 1312 _P INB7_A
1ASY A 1FJG_G 116U_A 1312 Q 100A_A
1AV6 A 1FJG | 1J1U_A 1J32 R 1PGL_2
1B23 P 1FIG J 132B_A 1312_S 1Q2R A
1COA_A 1FJG K 1JBR_A 132 T 1QF6 A
1DDL_A 1FJG L 1JID_A 1332 _U 1QTQ A
1DFU_P 1FJG M 1332 1 1332V 1R3E_A
1DI2_ A 1FJG N 1332 2 1332 W 1RC7_A
1E6T A 1FJG P 1312_A 1332_X 1IRMV_A
1E7K_A 1FJG Q 1J12 B 1312 Y 1RPU_A
1E80 A 1FJG_S 1312 C 132 7 1S03 G

1E80 B 1FIG T 1J32_D 1K8W A 1SER A
1EC6_A 1FJG V 1302 E 1KNZ_A 1SI3 A

1EIY_A 1FXL A 1J12_F 1KQ2_A 1UNG6 B
1EIY_B 1GIX_A 1312.G 1LAJ A 1URN_A
1F7U_A 1G1X_B 1312 H 1LNG_A 1UVJ A
1F8V_A 1G1X_C 13321 1IM8V_A 2A8V_A
1FEU_A 1G1X_G N IMFQ C 2BBV_C
1FFY_A 1GAX_A 1312 K IMMS A 2BBV_F
1FJG B 1GTF Q 132 L 1IMZP_A 2FMT_A
1FJG_C 1H2C A 1332 M IN35 A IN78 A
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Appendix 2.3

The RBP107 Data Set

1ALV A 1GAX_A 112 O 1IRMV_A IXMQ M
1A34 A 1H38 A 132 P 1RPU A IXMQ N
1AON_A 1HC8 A 132 Q 1S72 H IXMQ P
1APG_A 1HQL A 132 R 1SER B 1IXMQ Q
1AQ3 A 116U _A 132 S 1SI12_A IXMQ R
1ASY A 1JBR A 12T 1ITTT A 1IXMQ_S
1BMV 2 1JD_A 132 U 1UOB_B IXMQ T
1COA_A 132 Y 132 V 1URN_A IXMQ_V
1C9S A 112 z 132 W 1UVJ A 1IXOK_C
1CVJ A 132 A 132 X IWMQ A 1XOK_D
1CWP A 1332 1 112 G IWNE_A 1IYTU A
1DDL_A 112 B 1IK8W_A 1IXMQ B 1IYVP A
1IDFU_P 132 2 1IKNZ_A 1IXMQ C 1ZE2 A

1DI2 A 112 C 1KOG. A 1XMQ D 1ZE2 B

1E7K_A 112 D 1L9A A IXMQ E 1ZIW A
1E80 A 12 E 1NI8Y -A 1IXMQ F 2A8V_A
1E8O B 1332 | IMFQ C IXMQ G 2BBV_F
1EC6 A 1332 J IMZP-A IXMQ _H 2BH2 A

1F8V_A 112 K 100A A IXMQ | IXMQ M
1FFY A 1332 L 1P6V_A IXMQ J

1IFKA_O 112 M 1Q2R A IXMQ K

1G59 A 1J2 N 1QF6_A IXMQ L
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Appendix 2.4

Experiment results of the RBP86

Table A 1: The detail performance of RBP86 with (A) different sliding window size
under five-fold cross-validation (w1l = 3.39, w-1 = 1, other parameters. default value)
and (B) different sliding window size under three-way data split (w1l = 3.39, w-1 =1,
other parameters. default value).

(A) Five-fold cross-validation

Window Size Spec. Sens. MCC Acc
3 73.38% 66.16% 0.35 71.74%
5 75.60% 66.94% 0.38 73.63%
7 76.81% 67.62% 0.40 74.72%
9 77.30% 69.33% 0.41 75.49%
11 77.92% 68.96% 0.42 75.88%
13 78.06% 69.00% 0.42 76.00%
15 78.71% 69.33% 0.43 76.58%
17 78.77% 69.48% 0.43 76.65%
19 78.87% 69.40% 0.43 76.71%
21 78.75% 69.46% 0.43 76.64%
23 78.93% 69.94% 0.44 76.88%
25 79.22% 69.75% 0.44 77.06%
27 79.24% 69.88% 0.44 77.11%
29 79.38% 69.66% 0.44 77.17%
31 79.26% 69.70% 0.44 77.08%
33 79.36% 69.77% 0.44 77.18%
35 79.41% 69.86% 0.44 77.24%
37 79.77% 69.55% 0.45 77.45%
39 79.50% 69.81% 0.44 77.30%

41 79.66% 70.05% 0.45 77.47%
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(B) Three-way data split

Window Size
3
5
4
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41

Spec.
73.59%
75.59%
76.77%
76.93%
77.70%
78.17%
78.44%
78.60%
78.77%
78.85%
79.20%
79.38%
79.47%
79.45%
79.41%
79.40%
79.58%
79.82%
79.67%
79.78%

Sens.
66.20%
66.24%
66.81%
68.08%
68.13%
68.35%
68.43%
68.59%
68.65%
69.24%
68.78%
69.35%
69.40%
69.26%
69.70%
69.33%
69.13%
69.00%
69.33%
69.37%

134

MCC
0.35
0.37
0.39
0.40
0.41
0.42
0.42
0.42
0.43
0.43
0.43
0.44
0.44
0.44
0.44
0.44
0.44
0.44
0.44
0.44

Acc
71.91%
73.46%
74.50%
74.91%
75.52%
75.93%
76.16%
76.32%
76.46%
76.66%
76.83%
77.10%
77.18%
77.13%
77.20%
77.11%
77.21%
77.36%
77.32%
77.42%



(A) Five-fold cross-validation.
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Figure A 1: The performance with different combination of C and y in the RBP86 da
taset under (A) five-fold cross-validation and (B) three-way data split.
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Table A 2. The detail performance of the RBP86 with (A) different smoothing win-
dow size under five-fold cross-validation (w = 25, log C = 2, log y = -6, wl = 3.39,
w-1 = 1, other parameters. default value) and (B) different smoothing window size
under three-way data split (w =25,log C =0, log y = -5, wl = 3.39, w-1 = 1, other
parameters: default value).

(A) Five-fold cross-validation.

Smoothing Window Spec. Sens. MCC Acc

Size
1 94.37% 48.18% 0.50 83.86%
3 92.95% 69.64% 0.64 87.64%
5 91.67% 76.58% 0.67 88.23%
7 90.12% 80.36% 0.67 87.90%
9 89.28% 82.82% 0.68 87.81%
11 88.34% 84.37% 0.68 87.44%

(B) Three-way data split.

Smoothing Window Spec. Sens. MCC Acc
Size
1 96.40% 38.68% 0.46 83.26%
3 92.14% 66.53% 0.60 86.31%
5 90.72% 76.95% 0.66 87.58%
7 89.65% 80.34% 0.67 87.53%
9 88.62% 82.84% 0.67 87.31%

11 88.04% 83.87% 0.67 87.09%
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Table A 3. The detail performance of the RBP86 with (A) different weight parameter
w1 under five-fold cross-validation (w = 25, log C =2, log y = -6, ws =7, w-1 = 1,
other parameters. default value) and (B) different weight parameter w1l under
three-way data split (w = 25,log C =0, log y = -5, ws =7, w-1 = 1, other parameters:
default value).

(A) Five-fold cross-validation.

w1 Spec. Sens. MCC Acc
1 96.01% 62.26% 0.65 88.33%
2 92.33% 75.28% 0.67 88.45%
3 90.60% 79.73% 0.68 88.13%
4 89.80% 81.37% 0.68 87.88%
5 89.42% 81.74% 0.67 87.67%
6 89.23% 82.05% 0.67 87.60%
7 89.12% 82.20% 0.67 87.55%
8 89.04% 82.18% 0.67 87.48%

(B) Three-way data split.

W1 Spec. Sens. MCC Acc
1 96.79% 56.41% 0.62 87.60%
2 92.17% 73.53% 0.66 87.93%
3 90.18% 78.94% 0.66 87.62%
4 89.07% 81.68% 0.67 87.38%
S 88.56% 82.44% 0.67 87.17%
6 88.22% 82:713% 0.66 86.97%
7 88.08% 82.86% 0.66 86.89%
8 88.02% 82.97% 0.66 86.87%
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Table A 4. The RBP86 data set experiment results with —b option in SVM for (A)
smoothed PSSM by five-fold cross-vaidation, (B) standard PSSM by five-fold
cross-validation, (C) smoothed PSSM by three-way data split, and (D) standard PSSM

by three-way data split.

(A) The experiment result of smoothed PSSM with —b option in SVM by five-fold
cross-validation.

Threshold
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
0.3
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38

Spec.
0.00%
13.08%
27.49%
39.48%
48.89%
56.51%
62.70%
67.71%
70.92%
73.43%
75.29%
77.03%
78.46%
79.69%
80.71%
81.67%
82.48%
83.23%
83.76%
84.33%
84.87%
85.42%
85.89%
86.34%
86.73%
87.14%
87.48%
87.86%
88.20%
88.50%
88.76%
89.06%
89.37%
89.54%
89.77%
90.06%
90.36%
90.66%
90.94%

Sens.
100.00%
99.54%
99.01%
98.16%
97.31%
96.67%
96.06%
95.10%
94.53%
93.76%
93.15%
92.64%
92.05%
91.46%
90.98%
90.56%
90.06%
89.45%
88.88%
88.53%
88.03%
87.52%
87.00%
86.67%
86.25%
85.73%
85.22%
84.63%
84.15%
83.65%
83.17%
82.71%
82.14%
81.87%
81.33%
80.71%
79.95%
79.18%
78.57%

MCC | Threshold

0.00
0.17
0.27
0.34
0.40
0.45
0.49
0.53
0.55
0.57
0.59
0.60
0.61
0.62
0.63
0.64
0.64
0.65
0.65
0.65
0.66
0.66
0.66
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.68
0.68
0.68
0.68
0.68
0.68
0.67
0.67
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0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59

0.6
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69

0.7
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79

0.8
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89

Spec.
93.83%
93.96%
94.18%
94.43%
94.61%
94.74%
94.90%
95.08%
95.23%
95.35%
95.58%
95.79%
95.94%
96.10%
96.32%
96.52%
96.72%
96.88%
97.06%
97.17%
97.37%
97.53%
97.67%
97.79%
97.96%
98.06%
98.20%
98.37%
98.52%
98.61%
98.75%
98.87%
98.95%
99.03%
99.18%
99.34%
99.44%
99.55%
99.63%

Sens.
71.21%
70.71%
70.07%
69.29%
68.78%
68.13%
67.21%
66.35%
65.41%
64.89%
64.14%
63.35%
62.70%
61.93%
60.68%
59.63%
58.67%
57.42%
56.44%
55.36%
54.07%
52.74%
51.29%
50.00%
48.71%
46.61%
44.51%
42.78%
41.20%
39.01%
37.41%
35.49%
33.69%
31.94%
29.62%
27.50%
25.15%
23.05%
21.04%

MCC
0.67
0.67
0.67
0.67
0.67
0.66
0.66
0.66
0.65
0.65
0.65
0.65
0.65
0.65
0.64
0.64
0.64
0.63
0.63
0.62
0.62
0.61
0.60
0.59
0.59
0.57
0.56
0.55
0.54
0.53
0.52
0.50
0.49
0.48
0.46
0.45
0.43
0.41
0.39



0.39

0.4
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49

0.5

91.20%
91.47%
91.78%
91.99%
92.22%
92.40%
92.67%
92.85%
92.99%
93.21%
93.38%
93.70%

77.87%
77.32%
76.86%
76.29%
75.83%
75.15%
74.54%
73.99%
73.42%
12.77%
72.22%
71.41%

0.67
0.67
0.68
0.67
0.68
0.67
0.67
0.67
0.67
0.67
0.67
0.67

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1 100.00%

99.71%
99.77%
99.81%
99.86%
99.90%
99.94%
99.95%
99.97%
99.98%
99.99%

18.76%
16.62%
14.45%
12.52%
10.66%
8.91%
7.25%
5.58%
3.96%
1.88%
0.00%

0.37
0.35
0.33
0.31
0.28
0.26
0.23
0.21
0.17
0.12
0.00

(B) The experiment result of standard PSSM with —b option in SVM by five-fold
cross-validation.

Threshold
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29

Spec.
0.00%
0.73%
4.15%
8.98%
14.75%
20.42%
26.66%
33.99%
39.66%
44.46%
49.17%
53.23%
56.49%
59.52%
62.39%
64.93%
67.26%
69.34%
71.17%
73.13%
75.02%
76.55%
77.71%
79.02%
80.35%
81.46%
82.46%
83.42%
84.42%
85.33%

Sens.
100.00%
100.00%

99.65%
99.08%
98.29%
97.31%
95.93%
94.48%
92.93%
91.51%
90.30%
88.68%
87.22%
86.08%
84.41%
83.10%
81.66%
80.43%
78.59%
77.30%
76.03%
74.58%
73.47%
72.29%
71.28%
70.16%
69.11%
67.78%
66.97%
65.78%

MCC | Threshold

0.00
0.04
0.09
0.13
0.17
0.20
0.23
0.27
0.29
0.31
0.34
0.35
0.37
0.38
0.39
0.40
0.41
0.42
0.43
0.43
0.44
0.45
0.45
0.46
0.47
0.47
0.48
0.48
0.48
0.49
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0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59

0.6
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69

0.7
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79

0.8

Spec.
95.84%
96.08%
96.37%
96.54%
96.74%
96.90%
97.07%
97.19%
97.36%
97.48%
97.64%
97.83%
97.94%
98.08%
98.26%
98.34%
98.42%
98.51%
98.58%
98.65%
98.71%
98.79%
98.86%
98.94%
99.05%
99.09%
99.13%
99.19%
99.23%
99.27%

Sens.
43.91%
43.06%
42.16%
40.94%
40.11%
39.43%
38.59%
37.63%
36.91%
36.21%
35.25%
34.30%
33.60%
32.82%
31.59%
30.91%
30.06%
29.07%
28.04%
27.04%
26.36%
25.48%
24.54%
23.82%
23.14%
22.53%
21.63%
20.86%
20.14%
19.40%

MCC
0.49
0.49
0.49
0.48
0.48
0.48
0.48
0.47
0.47
0.47
0.46
0.46
0.46
0.45
0.45
0.44
0.44
0.43
0.42
0.42
0.41
0.41
0.40
0.39
0.39
0.39
0.38
0.37
0.37
0.36



0.3
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39

0.4
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49

0.5

86.04%
86.89%
87.61%
88.05%
88.76%
89.44%
90.03%
90.55%
91.10%
91.66%
92.10%
92.59%
92.92%
93.27%
93.65%
94.11%
94.53%
94.83%
95.08%
95.35%
95.70%

64.65%
63.42%
62.26%
61.62%
60.55%
59.52%
58.38%
57.27%
56.30%
55.34%
54.33%
53.06%
52.21%
51.34%
50.35%
49.43%
48.27%
47.48%
46.56%
45.84%
44.44%

0.49
0.49
0.49
0.49
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.49

0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1

99.32%
99.37%
99.40%
99.48%
99.55%
99.60%
99.64%
99.65%
99.70%
99.74%
99.79%
99.84%
99.86%
99.94%
99.95%
99.97%
99.99%
100.00%
100.00%
100.00%

18.43%
17.64%
16.97%
16.00%
15.11%
14.19%
13.05%
12.13%
10.75%
9.52%
8.12%
7.05%
6.22%
5.30%
4.29%
3.46%
2.50%
1.44%
0.46%
0.00%

0.35
0.34
0.34
0.33
0.32
0.31
0.30
0.29
0.27
0.26
0.24
0.22
0.21
0.20
0.18
0.16
0.14
0.11
0.06
0.00

(C) The experiment result of smoothed PSSM with —b option in SVM by three-way

data split

Threshold
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2

Spec.
0.00%
6.91%
19.24%
32.53%
45.75%
55.62%
63.25%
69.07%
72.24%
74.63%
76.52%
77.96%
79.00%
79.93%
80.77%
81.58%
82.31%
83.00%
83.62%
84.15%
84.65%

Sens.
100.00%
99.87%
99.39%
98.69%
97.75%
96.80%
96.19%
95.29%
94.61%
93.98%
93.30%
92.51%
92.05%
91.40%
90.67%
89.91%
89.14%
88.64%
88.11%
87.57%
86.82%

MCC;-Threshold

0.00
0:13
0.22
0.30
0.38
0.44
0.50
0.54
0.57
0.58
0.60
0.61
0.62
0.62
0.63
0.63
0.63
0.64
0.64
0.64
0.64
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0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59

0.6
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69

0.7
0.71

Spec.
93.44%
93.58%
93.72%
93.88%
94.07%
94.28%
94.45%
94.64%
94.81%
94.99%
95.17%
95.39%
95.60%
95.77%
95.99%
96.19%
96.35%
96.52%
96.69%
96.90%
97.08%

Sens.
70.88%
70.14%
69.59%
68.87%
68.30%
67.40%
66.86%
66.07%
65.46%
64.62%
63.97%
63.09%
62.19%
61.49%
60.49%
59.39%
58.63%
57.33%
56.35%
54.97%
53.48%

MCC
0.66
0.66
0.66
0.65
0.65
0.65
0.65
0.65
0.65
0.64
0.64
0.64
0.64
0.64
0.63
0.63
0.63
0.62
0.62
0.61
0.60



0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29

0.3
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39

0.4
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49

0.5

85.10%
85.56%
85.92%
86.36%
86.80%
87.18%
87.45%
87.81%
88.09%
88.36%
88.69%
88.92%
89.14%
89.44%
89.75%
90.01%
90.29%
90.58%
90.80%
91.05%
91.30%
91.58%
91.73%
91.92%
92.10%
92.38%
92.60%
92.76%
92.95%
93.30%

86.32%
85.95%
85.35%
84.92%
84.46%
84.06%
83.54%
83.25%
82.82%
82.51%
82.07%
81.63%
81.41%
80.93%
80.36%
79.64%
79.36%
78.72%
78.04%
77.47%
77.06%
76.38%
75.79%
75.39%
74.80%
74.10%
73.53%
72.70%
72.09%
71.32%

0.65
0.65
0.65
0.65
0.66
0.66
0.66
0.66
0.66
0.66
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.66
0.66
0.66
0.66
0.66

0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.8
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.9
0.91
0.92
0.93
0.94
0.95
0:96
0.97
0.98
0.99
1

97.26%
97.44%
97.65%
97.83%
98.02%
98.18%
98.32%
98.49%
98.65%
98.79%
98.96%
99.06%
99.19%
99.37%
99.46%
99.60%
99.70%
99.76%
99.85%
99.88%
99.92%
99.95%
99.96%
99.98%
99.99%
99.99%
99.99%
100.00%
100.00%

52.08%
50.88%
49.17%
47.59%
45.86%
43.72%
41.81%
39.62%
37.24%
35.09%
32.47%
29.95%
26.99%
23.86%
20.84%
18.19%
15.63%
13.20%
11.12%
9.33%
7.53%
6.35%
5.34%
4.23%
3.26%
2.21%
1.27%
0.42%
0.00%

0.60
0.59
0.58
0.58
0.57
0.55
0.54
0.53
0.51
0.50
0.48
0.46
0.44
0.41
0.38
0.36
0.34
0.31
0.29
0.26
0.24
0.22
0.20
0.18
0.16
0.13
0.10
0.06
0.00

(D) The experiment result of standard PSSM with —b option in SVM by three-way da-

tasplit

Threshold
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11

Spec.
0.00%
1.92%
5.82%
10.48%
15.75%
21.92%
28.18%
34.69%
39.32%
43.60%
47.60%
51.42%

Sens.
100.00%
99.87%
99.50%
99.01%
98.29%
97.09%
95.91%
94.81%
93.41%
92.40%
91.24%
89.75%

MCC | Threshold

0.00
0.06
0.11
0.14
0.18
0.21
0.24
0.28
0.29
0.32
0.33
0.35
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0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59

0.6
0.61
0.62

Spec.
95.58%
95.84%
96.05%
96.21%
96.42%
96.59%
96.74%
96.90%
97.09%
97.28%
97.43%
97.56%

Sens.
42.27%
41.53%
40.89%
40.15%
39.14%
38.46%
37.48%
36.67%
36.01%
35.49%
34.92%
34.24%

MCC
0.47
0.47
0.47
0.47
0.46
0.46
0.46
0.45
0.45
0.45
0.45
0.45



0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19

0.2
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29

0.3
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39

0.4
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49

0.5

54.90%
58.21%
61.21%
63.92%
66.37%
68.89%
70.99%
73.11%
74.95%
76.51%
78.14%
79.54%
80.78%
82.00%
83.18%
84.20%
85.22%
86.13%
86.92%
87.67%
88.23%
88.62%
89.26%
89.85%
90.43%
90.97%
91.52%
92.07%
92.47%
92.79%
93.12%
93.46%
93.81%
94.09%
94.39%
94.64%
94.92%
95.19%
95.50%

88.35%
86.87%
85.31%
84.04%
82.53%
81.22%
79.84%
78.31%
76.66%
74.98%
73.66%
72.37%
71.06%
69.68%
68.83%
67.38%
66.22%
64.75%
63.46%
62.30%
61.01%
60.29%
58.80%
57.51%
56.48%
55.54%
54.38%
53.74%
52.50%
51.44%
50.46%
49.47%
48.42%
47.22%
46.50%
45.73%
44.86%
43.94%
42.54%

0.36
0.38
0.39
0.40
0.41
0.42
0.43
0.44
0.45
0.45
0.46
0.47
0.47
0.47
0.48
0.48
0.49
0.49
0.49
0.49
0.49
0.49
0.49
0.49
0.49
0.49
0.49
0.50
0.49
0.49
0.49
0.49
0.49
0.48
0.48
0.48
0.48
0.48
0.47
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0.63
0.64
0.65
0.66
0.67
0.68
0.69

0.7
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79

0.8
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1 | 100.00%

97.66%
97.74%
97.86%
97.93%
98.02%
98.10%
98.17%
98.30%
98.44%
98.46%
98.55%
98.65%
98.74%
98.82%
98.90%
98.94%
99.01%
99.06%
99.12%
99.17%
99.21%
99.24%
99.27%
99.34%
99.36%
99.41%
99.45%
99.52%
99.56%
99.61%
99.67%
99.69%
99.76%
99.84%
99.93%
99.98%
99.99%

33.49%
32.92%
31.79%
31.20%
30.67%
29.71%
28.98%
28.31%
27.36%
26.69%
26.03%
25.44%
24.72%
24.10%
23.38%
22.571%
21.89%
21.23%
20.56%
19.81%
19.18%
18.45%
17.86%
17.14%
16.42%
15.59%
14.71%
14.05%
13.31%
12.52%
11.49%
10.25%
8.65%
6.81%
4.84%
3.02%
1.34%
0.00%

0.45
0.44
0.44
0.43
0.43
0.42
0.42
0.42
0.41
0.41
0.40
0.40
0.40
0.39
0.39
0.38
0.38
0.37
0.37
0.36
0.35
0.35
0.34
0.34
0.33
0.32
0.31
0.31
0.30
0.29
0.28
0.26
0.24
0.22
0.19
0.15
0.10
0.00



Appendix 2.5

Experiment results of the RBP109

Table B 1. The detail performance of the RBP109 with different sliding window size
under (A) five-fold cross-validation (wl = 6.01, w-1 = 1, other parameters. default
value) and (B) three-way data split (wl = 6.01, w-1 = 1, other parameters. default
value).

(A) Five-fold cross validation.

Window Size Spec. Sens. MCC Acc

3 74.99% 67.89% 0.32 73.98%
5 76.93% 68.22% 0.35 75.69%
7 77.72% 68.89% 0.36 76.46%
9 78.14% 69.73% 0.37 76.94%
11 78.77% 69.98% 0.38 77.52%
13 79.14% 69.42% 0.38 77.75%
15 79.62% 70.09% 0.39 78.27%
17 79.67% 70.15% 0.39 78.31%
19 79.73% 69.79% 0.39 78.31%
21 79.86% 69.95% 0.39 78.44%
23 80.21% 69.65% 0.39 78.71%
25 80.24% 69.51% 0.39 78.71%
27 80.08% 69.42% 0.39 78.56%
29 80.18% 69.20% 0.39 78.61%
31 80.53% 69.17% 0.39 78.91%
33 80.67% 68.92% 0.39 79.00%
35 80.53% 69.45% 0.40 78.95%
37 80.42% 69.56% 0.40 78.87%
39 80.47% 68.75% 0.39 78.80%

41 80.45% 68.84% 0.39 78.79%
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(B) Three-way data split.

Window Size
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41

Spec.
75.22%
76.72%
77.82%
78.24%
78.73%
79.16%
79.38%
79.55%
79.54%
79.67%
80.09%
80.05%
79.87%
80.09%
80.12%
80.26%
80.13%
80.25%
80.34%
80.43%

Sens.
67.89%
68.44%
68.53%
69.14%
69.31%
69.39%
69.39%
69.09%
69.28%
68.75%
68.75%
69.06%
68.81%
68.33%
68.50%
68.36%
68.70%
69.48%
68.75%
68.47%
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MCC
0.33
0.35
0.36
0.37
0.37
0.38
0.38
0.38
0.38
0.38
0.39
0.39
0.38
0.38
0.38
0.38
0.39
0.39
0.39
0.39

Acc
74.17%
75.54%
76.50%
76.94%
77.38%
77.76%
77.95%
78.05%
78.07%
78.11%
78.47%
78.48%
78.29%
78.42%
78.46%
78.56%
78.50%
78.71%
78.69%
78.72%



(A) Five-fold cross-validation.
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Figure B 1. The performance with different combination of C and y in the RBP109
data set under (A) five-fold cross-validation and (B) three-way data split.
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Table B 2. The detail performance of the RBP109 with (A) different smoothing win-
dow size under five-fold cross-validation (w = 25, log C = 2, log y = -6, wl = 6.01,
w-1 = 1, other parameters. default value) and (B) different smoothing window size
under three-way data split (w = 25,log C = 3, log y = -6, wl = 6.01, w-1 = 1, other
parameters. default value).

(A) Five-fold cross-validation.

Smoothing Window Spec. Sens. MCC Acc

Size
1 97.32% 32.62% 0.41 88.09%
3 94.71% 54.82% 0.53 89.02%
5 93.31% 65.04% 0.57 89.28%
7 91.94% 70.37% 0.58 88.86%
9 90.62% 73.67% 0.58 88.20%
11 88.99% 75.96% 0.56 87.13%

(B) Three-way data split.

Smoothing Window Spec. Sens. MCC Acc
Size
1 97.30% 30.80% 0.39 87.81%
3 95.53% 46.47% 0.48 88.53%
5 94.47% 57.27% 0.54 89.16%
7 93.56% 62.47% 0.56 89.13%
9 92.66% 65.88% 0.56 88.84%

11 91.53% 68.28% 0.56 88.21%
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Table B 3. The detail performance of the RBP109 with (A) different weight parameter
w1 under five-fold cross-validation (w = 25, log C =2, log y = -6, ws =7, w-1 = 1,
other parameters. default value) and (B) different weight parameter w1l under
three-way data split (w = 25, log C = 3, log y = -6, ws = 7, w-1 = 1, other parameters:
default value).

(A) Five-fold cross-validation.

w1 Spec. Sens. MCC Acc
1 97.63% 41.58% 0.51 89.63%
2 94.96% 58.84% 0.56 89.81%
3 93.45% 66.07% 0.58 89.54%
4 92.57% 68.72% 0.58 89.17%
5 92.19% 69.84% 0.58 89.00%
6 91.94% 70.37% 0.58 88.86%
7 91.71% 70.76% 0.58 88.72%
8 91.59% 70.96% 0.58 88.64%

(B) Three-way data split.

W1 Spec. Sens. MCC Acc
1 96.46% 48.53% 0.53 89.62%
2 94.66% 59.09% 0.56 89.59%
3 93.98% 61.55% 0.56 89.36%
4 93.73% 62.22% 0.56 89.24%
S 93.63% 62.36% 0.56 89.17%
6 93.56% 62.47% 0.56 89.13%
7 93.57% 62.58% 0.56 89.15%
8 93.57% 62.58% 0.56 89.15%
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Table B 4. The RBP109 data set experiment results with —b option in SVM for (A)
smoothed PSSM by five-fold cross-vaidation, (B) standard PSSM by five-fold
cross-validation, (C) smoothed PSSM by three-way data split, and (D) standard PSSM

by three-way data split.

(A) The experiment result of smoothed PSSM with —b option in SVM by five-fold
cross-validation.

Threshold
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
0.3
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38

Spec.
0.00%
13.58%
29.55%
42.20%
52.11%
59.37%
65.68%
70.75%
74.08%
76.63%
78.88%
80.84%
82.20%
83.51%
84.55%
85.63%
86.47%
87.14%
87.73%
88.33%
88.79%
89.31%
89.82%
90.31%
90.76%
91.14%
91.52%
91.86%
92.14%
92.43%
92.69%
92.93%
93.23%
93.36%
93.67%
93.88%
94.08%
94.34%
94.56%

Sens.
100.00%
99.16%
97.88%
96.51%
95.36%
93.61%
92.24%
90.65%
89.39%
87.82%
86.65%
85.42%
84.25%
83.30%
82.27%
81.35%
80.68%
79.73%
78.75%
77.72%
76.63%
75.82%
75.03%
74.00%
73.05%
72.30%
71.49%
70.57%
69.84%
69.09%
68.39%
67.75%
67.02%
66.43%
65.43%
64.62%
63.75%
63.03%
62.27%

MCC | Threshold

0.00
0.14
0.22
0.28
0.33
0.37
0.41
0.44
0.47
0.48
0.50
0.51
0.52
0.53
0.54
0.55
0.56
0.56
0.56
0.57
0.57
0.57
0.57
0.57
0.58
0.58
0.58
0.58
0.58
0.58
0.58
0.58
0.58
0.58
0.58
0.58
0.58
0.58
0.58
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0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59

0.6
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69

0.7
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79

0.8
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89

Spec.
96.58%
96.70%
96.79%
96.91%
97.07%
97.20%
97.36%
97.47%
97.57%
97.68%
97.75%
97.82%
97.91%
98.01%
98.14%
98.26%
98.34%
98.41%
98.53%
98.66%
98.74%
98.83%
98.95%
98.99%
99.08%
99.15%
99.20%
99.25%
99.29%
99.35%
99.41%
99.47%
99.52%
99.58%
99.64%
99.69%
99.74%
99.80%
99.83%

Sens.
51.05%
50.43%
49.34%
48.59%
47.39%
46.66%
45.71%
44.85%
43.95%
43.00%
41.80%
40.83%
39.74%
38.87%
37.11%
36.41%
35.27%
34.07%
32.95%
31.36%
30.35%
28.79%
27.67%
26.42%
24.91%
23.01%
21.50%
19.99%
18.82%
17.56%
16.03%
14.94%
13.35%
12.20%
10.89%

9.86%

8.99%

7.82%

6.98%

MCC
0.55
0.55
0.54
0.54
0.54
0.53
0.53
0.53
0.52
0.52
0.51
0.51
0.50
0.50
0.49
0.49
0.48
0.47
0.47
0.46
0.45
0.44
0.43
0.42
0.41
0.39
0.38
0.37
0.36
0.34
0.33
0.32
0.30
0.29
0.27
0.26
0.25
0.24
0.22



0.39

0.4
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49

0.5

94.75%
94.94%
95.13%
95.31%
95.50%
95.65%
95.82%
95.96%
96.08%
96.20%
96.34%
96.52%

61.63%
60.96%
60.09%
59.23%
58.59%
57.61%
56.44%
55.52%
54.59%
53.62%
52.83%
51.49%

0.58
0.58
0.58
0.58
0.58
0.57
0.57
0.57
0.56
0.56
0.56
0.55

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

99.85%
99.87%
99.90%
99.91%
99.94%
99.95%
99.98%
99.99%
100.00%
100.00%
100.00%

5.81%
4.86%
4.08%
3.55%
2.60%
1.84%
1.37%
0.84%
0.34%
0.11%
0.00%

0.20
0.19
0.17
0.16
0.14
0.11
0.10
0.08
0.05
0.03
0.00

(B) The experiment result of standard PSSM with —b option in SVM by five-fold
cross-validation.

Threshold
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29

Spec.
0.00%
2.66%
10.49%
19.59%
28.65%
36.92%
44.75%
52.95%
58.54%
62.91%
66.68%
69.92%
72.72%
75.16%
77.37%
79.16%
80.96%
82.41%
83.96%
85.16%
86.37%
87.43%
88.26%
89.10%
89.89%
90.57%
91.24%
91.88%
92.42%
92.90%

Sens.
100.00%
99.80%
98.63%
96.65%
94.69%
92.52%
90.51%
87.88%
85.70%
83.55%
81.32%
79.14%
76.60%
74.70%
72.69%
71.32%
69.03%
67.61%
66.13%
64.28%
62.83%
61.13%
59.45%
57.69%
56.46%
55.07%
53.70%
52.33%
50.99%
50.07%

MCC | Threshold

0.00
0.06
0.11
0.15
0.19
0.22
0.25
0.29
0.31
0.33
0.34
0.36
0.36
0.37
0.38
0.39
0.40
0.41
0.42
0.42
0.42
0.43
0.43
0.43
0.43
0.44
0.44
0.44
0.44
0.44
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0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59

0.6
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69

0.7
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79

0.8

Spec.
98.00%
98.08%
98.20%
98.31%
98.41%
98.49%
98.56%
98.61%
98.69%
98.74%
98.84%
98.89%
98.94%
98.99%
99.10%
99.18%
99.22%
99.26%
99.32%
99.35%
99.41%
99.46%
99.50%
99.54%
99.55%
99.57%
99.60%
99.63%
99.67%
99.69%

Sens.
28.20%
27.42%
26.84%
26.19%
25.55%
24.57%
23.93%
23.37%
22.95%
22.54%
22.06%
21.28%
20.75%
20.08%
19.27%
18.68%
17.87%
17.20%
16.56%
15.97%
15.44%
15.02%
14.33%
13.80%
13.07%
12.59%
12.15%
11.51%
11.09%
10.58%

MCC
0.39
0.39
0.39
0.39
0.38
0.38
0.37
0.37
0.37
0.37
0.37
0.36
0.36
0.35
0.35
0.35
0.34
0.33
0.33
0.32
0.32
0.32
0.31
0.31
0.30
0.29
0.29
0.28
0.28
0.27



0.3
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39

0.4
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49

0.5

93.38%
93.74%
94.11%
94.37%
94.74%
95.03%
95.29%
95.51%
95.76%
96.04%
96.29%
96.52%
96.71%
96.91%
97.09%
97.25%
97.35%
97.48%
97.62%
97.75%
97.95%

48.90%
48.12%
46.89%
45.96%
44.76%
43.42%
42.11%
40.80%
39.77%
38.73%
37.70%
36.41%
35.41%
34.54%
33.73%
33.04%
32.20%
31.50%
30.58%
29.80%
28.71%

0.44
0.45
0.45
0.44
0.44
0.44
0.44
0.43
0.43
0.43
0.42
0.42
0.42
0.42
0.41
0.41
0.41
0.41
0.40
0.40
0.40

0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

99.73%
99.74%
99.75%
99.78%
99.81%
99.86%
99.88%
99.90%
99.92%
99.93%
99.94%
99.96%
99.98%
99.99%
99.99%
99.99%
100.00%
100.00%
100.00%
100.00%

10.16%
9.69%
9.16%
8.63%
7.90%
7.34%
6.65%
6.03%
5.17%
4.66%
4.19%
2.68%
2.01%
1.51%
1.23%
0.98%
0.70%
0.31%
0.03%
0.00%

0.27
0.26
0.25
0.25
0.24
0.23
0.22
0.21
0.20
0.19
0.18
0.14
0.13
0.11
0.10
0.09
0.08
0.05
0.02
0.00

(C) The experiment result of smoothed PSSM with —b option in SVM by three-way

data split.

Threshold
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2

Spec.
0.00%
9.61%
22.97%
34.95%
44.47%
52.20%
58.64%
65.30%
69.44%
72.87%
75.75%
78.11%
80.21%
81.86%
83.20%
84.42%
85.44%
86.34%
87.16%
87.82%
88.43%

Sens.
100.00%
99.72%
98.49%
97.01%
95.48%
93.83%
92.40%
90.48%
89.03%
87.49%
85.95%
84.86%
83.55%
82.44%
81.15%
79.78%
78.58%
77.41%
76.68%
75.31%
74.25%

MCC-Threshold

0.00
0.12
0.19
0.24
0.29
0.32
0.36
0.39
0.42
0.44
0.46
0.48
0.49
0.50
0.51
0.52
0.53
0.53
0.54
0.54
0.54
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0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59

0.6
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69

0.7
0.71

Spec.
96.72%
96.82%
96.96%
97.07%
97.24%
97.32%
97.43%
97.58%
97.69%
97.76%
97.86%
97.98%
98.07%
98.16%
98.33%
98.40%
98.48%
98.54%
98.64%
98.70%
98.76%

Sens.
46.10%
45.38%
44.68%
43.84%
42.81%
42.06%
41.30%
40.32%
39.15%
38.26%
37.36%
36.30%
35.33%
34.18%
32.73%
31.75%
30.44%
29.43%
28.09%
27.12%
25.94%

MCC
0.51
0.51
0.51
0.51
0.50
0.50
0.50
0.49
0.49
0.48
0.48
0.47
0.47
0.46
0.45
0.45
0.44
0.43
0.42
0.42
0.41



0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29

0.3
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39

0.4
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49

0.5

89.00%
89.56%
90.13%
90.53%
90.92%
91.39%
91.81%
92.10%
92.46%
92.83%
93.11%
93.45%
93.62%
93.87%
94.14%
94.36%
94.56%
94.73%
94.93%
95.10%
95.28%
95.46%
95.60%
95.75%
95.94%
96.12%
96.25%
96.36%
96.48%
96.66%

73.22%
72.27%
71.32%
70.43%
69.76%
68.61%
67.50%
66.85%
66.07%
65.15%
64.09%
63.22%
62.55%
61.71%
60.63%
59.76%
58.73%
58.06%
57.00%
56.35%
55.32%
54.54%
53.76%
52.86%
52.00%
50.91%
49.85%
48.81%
47.81%
46.58%

0.55
0.55
0.55
0.55
0.56
0.56
0.56
0.56
0.56
0.56
0.56
0.56
0.56
0.56
0.56
0.56
0.55
0.55
0.55
0.55
0.55
0.54
0.54
0.54
0.54
0.53
0.53
0.52
0.52
0.52

0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.8
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.9
0.91
0.92
0.93
0.94
0.95
0:96
0.97
0.98
0.99
1

98.84%
98.96%
99.05%
99.13%
99.24%
99.33%
99.41%
99.45%
99.51%
99.58%
99.62%
99.65%
99.71%
99.74%
99.78%
99.81%
99.84%
99.85%
99.87%
99.92%
99.94%
99.95%
99.97%
99.97%
99.97%
99.98%
99.99%
100.00%
100.00%

25.13%
23.93%
22.76%
21.47%
20.36%
19.18%
17.76%
16.28%
15.22%
14.16%
12.85%
11.59%
10.56%
9.63%
8.49%
7.48%
6.42%
5.67%
4.55%
3.60%
2.76%
1.98%
1.54%
1.09%
0.64%
0.39%
0.28%
0.11%
0.00%

0.40
0.39
0.39
0.38
0.37
0.36
0.35
0.33
0.32
0.32
0.30
0.28
0.27
0.26
0.25
0.23
0.21
0.20
0.18
0.16
0.14
0.12
0.11
0.09
0.06
0.05
0.04
0.03
0.00

(D) The experiment result of standard PSSM with —b option in SVM by three-way da-

tasplit.

Threshold
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

Spec.
0.00%
2.53%
9.94%
18.61%
27.52%
35.52%
42.99%
50.87%
56.31%
60.97%
65.08%

Sens.
100.00%
99.89%
99.05%
97.18%
95.09%
92.96%
90.92%
88.19%
85.79%
83.13%
80.54%

MCC | Threshold

0.00
0.06
0.11
0.15
0.18
0.21
0.24
0.27
0.29
0.31
0.32
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0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59

0.6
0.61

Spec.
98.10%
98.24%
98.32%
98.41%
98.49%
98.55%
98.63%
98.69%
98.79%
98.83%
98.89%

Sens.
26.81%
25.80%
24.94%
24.24%
23.65%
23.07%
22.26%
21.59%
20.66%
20.11%
19.58%

MCC
0.38
0.38
0.37
0.37
0.37
0.36
0.36
0.35
0.35
0.34
0.34



0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19

0.2
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29

0.3
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39

0.4
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49

0.5

68.78%
71.88%
74.40%
76.78%
78.70%
80.60%
82.10%
83.56%
84.84%
86.06%
87.09%
88.01%
88.77%
89.59%
90.29%
90.99%
91.59%
92.10%
92.67%
93.08%
93.49%
93.90%
94.11%
94.53%
94.84%
95.22%
95.51%
95.83%
96.03%
96.29%
96.52%
96.72%
96.91%
97.10%
97.26%
97.44%
97.59%
97.75%
97.87%
98.05%

78.02%
75.87%
73.95%
72.02%
70.06%
68.25%
66.60%
64.73%
63.25%
61.32%
59.73%
58.42%
56.80%
55.38%
53.98%
52.42%
51.33%
49.93%
48.81%
47.78%
46.58%
45.16%
44.48%
43.54%
42.22%
41.30%
40.13%
39.35%
38.23%
37.11%
35.94%
34.99%
34.29%
33.04%
32.23%
31.25%
30.27%
29.29%
28.57%
27.23%

0.34
0.35
0.36
0.37
0.38
0.39
0.39
0.40
0.41
0.41
0.41
0.42
0.42
0.42
0.42
0.42
0.43
0.42
0.43
0.43
0.43
0.43
042
0.43
0.42
0.43
0.42
0.43
0.42
0.42
0.42
0.41
0.41
0.41
0.41
0.40
0.40
0.39
0.39
0.39
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0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69

0.7
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79

0.8
0.81
0.82
0.83
0.84
0.85
0-86
0.87
0.88
0.89

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

98.97%
99.02%
99.08%
99.17%
99.24%
99.27%
99.34%
99.37%
99.42%
99.44%
99.48%
99.51%
99.55%
99.59%
99.62%
99.64%
99.66%
99.71%
99.72%
99.76%
99.78%
99.81%
99.85%
99.88%
99.91%
99.92%
99.94%
99.94%
99.95%
99.97%
99.98%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%

18.96%
18.35%
17.70%
16.95%
16.48%
15.75%
15.25%
14.69%
14.24%
13.52%
12.96%
12.20%
11.64%
11.11%
10.42%
9.77%
9.49%
8.96%
8.43%
7.93%
7.48%
7.07%
6.42%
6.00%
5.45%
5.03%
4.64%
4.22%
3.71%
3.38%
2.23%
1.56%
1.20%
0.92%
0.73%
0.50%
0.17%
0.03%
0.00%

0.34
0.33
0.33
0.32
0.32
0.31
0.31
0.31
0.30
0.30
0.29
0.28
0.28
0.27
0.26
0.25
0.25
0.25
0.24
0.23
0.23
0.22
0.22
0.21
0.20
0.20
0.19
0.18
0.17
0.16
0.13
0.11
0.10
0.09
0.08
0.07
0.04
0.02
0.00



Appendix 2.6

Experiment results of the RBP107

Table C 1. The detail performance of the RBP107 with different sliding window size
under (A) five-fold cross-validation (wl = 7.63, w-1 = 1, other parameters. default
value) and three-way data split (w1l =7.63, w-1 = 1, other parameters. default value).

(A) Five-fold cross-validation.

Window Size Spec. Sens. MCC Acc
3 75.28% 70.57% 0.32 74.73%
5 76.77% 70.96% 0.34 76.10%
7 78.08% 71.90% 0.36 77.371%
9 78.58% 72.41% 0.37 77.86%
11 79.42% 71.51% 0.37 78.50%
13 79.65% 71.39% 0.37 78.69%
15 80.09% 71.51% 0.38 79.10%
17 80.17% 71.35% 0.38 79.15%
19 80.43% 71.12% 0.38 79.35%
21 80.60% 70.96% 0.38 79.48%
23 80.95% 71.55% 0.39 79.86%
25 80.83% 71.19% 0.38 79.72%
27 80.80% 71.12% 0.38 79.68%
29 80.87% 71.08% 0.38 79.74%
31 80.95% 71.39% 0.39 79.84%
33 81.05% 71.00% 0.38 79.89%
35 81.08% 71.00% 0.39 79.91%
37 81.07% 70.68% 0.38 79.86%
39 80.99% 71.04% 0.38 79.84%

41 81.07% 69.98% 0.38 79.78%
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(B) Three-way data split.

Window Size
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41

Spec.
75.18%
76.75%
78.18%
78.53%
79.32%
79.49%
79.93%
80.14%
80.46%
80.34%
80.96%
81.04%
81.24%
81.13%
81.18%
81.21%
81.27%
81.27%
81.37%
81.36%

Sens.
69.98%
70.65%
70.96%
71.62%
71.23%
71.12%
71.12%
70.88%
70.57%
70.22%
70.06%
70.53%
70.49%
69.94%
69.90%
69.90%
69.47%
69.43%
69.28%
69:47%
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MCC
0.32
0.34
0.35
0.36
0.37
0.37
0.37
0.37
0.37
0.37
0.38
0.38
0.38
0.38
0.38
0.38
0.38
0.38
0.38
0.38

Acc
74.58%
76.05%
77.34%
77.73%
78.38%
78.52%
78.91%
79.07%
79.31%
79.17%
79.70%
79.82%
79.99%
79.83%
79.87%
79.90%
79.90%
79.90%
79.96%
79.98%



(A) Five-fold cross-validation.

FRIHRZ2S pssm w23 x scale g9

ow
ow
o

lgigammal

1giCs

(B) Three-way data split.

FRTHRES p=sm WEs. x =scale g9

lycgammal

lgiCy

Figure C 1. The performance with different combination of C and y in the RBP107
data set under (A) five-fold cross-validation and (B) three-way data split.
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Table C 2. The detail performance of the RBP107 with (A) different smoothing win-
dow size under five-fold cross-validation (w = 25, log C = 2, log y = -6, wl = 7.63,
w-1 = 1, other parameters. default value) and (B) different smoothing window size
under three-way data split (w =25,log C =3, log y = -6, wl = 7.63, w-1 = 1, other
parameters: default value).

(A) Five-fold cross-validation.

Smoothing Window Spec. Sens. MCC Acc

Size
1 97.80% 27.83% 0.37 89.69%
3 94.91% 45.21% 0.43 89.15%
5 93.09% 54.64% 0.46 88.63%
7 91.44% 59.65% 0.46 87.76%
9 90.22% 63.29% 0.47 87.10%
11 88.85% 65.83% 0.46 86.18%

(B) Three-way data split.

Smoothing Window Spec. Sens. MCC Acc
Size
1 98.04% 26.18% 0.36 89.71%
3 95.91% 38:20% 0.40 89.23%
5 94.64% 45.95% 0.43 89.00%
7 93.51% 49.98% 0.44 88.47%
9 92.68% 53.86% 0.45 88.18%

11 91.60% 57.10% 0.45 87.61%
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Table C 3. The detail performance of the RBP107 with (A) different weight parame-
ter wl under five-fold cross-validation (w = 25, logC =2, logy =-6, ws=7,w-1=1,
other parameters. default value) and (B) different weight parameter w1l under
three-way data split (w = 25,log C = 3, log y = -6, ws = 7, w-1 = 1, other parameters:
default value).

(A) Five-fold cross-validation.

w1 Spec. Sens. MCC Acc
1 97.81% 29.75% 0.39 89.93%
2 94.86% 48.77% 0.46 89.52%
3 93.27% 55.54% 0.47 88.90%
4 92.29% 58.47% 0.47 88.37%
5 91.79% 58.87% 0.47 87.98%
6 91.59% 59.33% 0.47 87.86%
7 91.48% 59.49% 0.46 87.77%
8 91.44% 59.69% 0.47 87.76%
9 91.43% 59.69% 0.46 87.75%
10 91.42% 59.73% 0.46 87.75%

(B) Three-way data split.

W1 Spec. Sens. MCC Acc
1 96.54% 36.75% 0.41 89.62%
2 94.28% 47.40% 0.43 88.85%
3 93.79% 49.39% 0.44 88.64%
4 93.59% 49.86% 0.44 88.53%
5 93.53% 50.06% 0.44 88.49%
6 93.51% 49.98% 0.44 88.46%
7 93.51% 49.98% 0.44 88.47%
8 93.51% 49.98% 0.44 88.47%
9 93.51% 49.98% 0.44 88.47%
10 93.51% 49.98% 0.44 88.47%
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Table C 4. The RBP107 data set experiment results with —b option in SVM for (A)
smoothed PSSM by five-fold cross-validation, (B) standard PSSM by five-fold
cross-validation, (C) smoothed PSSM by three-way data split, and (D) standard PSSM

by three-way data split.

(A) The experiment result of smoothed PSSM with —b option in SVM by five-fold
cross-validation.

Threshold
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
0.3
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38

Spec.
0.00%
7.60%
21.19%
34.93%
46.04%
54.70%
61.88%
68.56%
72.79%
76.38%
78.88%
80.87%
82.65%
83.94%
85.10%
86.07%
86.93%
87.71%
88.37%
89.06%
89.66%
90.06%
90.52%
90.94%
91.36%
91.72%
92.13%
92.50%
92.81%
93.12%
93.43%
93.77%
94.05%
94.21%
94.49%
94.68%
94.90%
95.16%
95.36%

Sens.
100.00%
99.61%
98.24%
96.09%
93.31%
90.53%
88.49%
85.68%
83.37%
81.10%
79.14%
77.14%
74.95%
73.58%
72.56%
71.23%
69.43%
67.83%
66.54%
65.44%
64.66%
63.52%
62.50%
61.33%
60.31%
59.84%
58.83%
57.69%
56.44%
55.23%
53.93%
52.96%
51.86%
51.15%
50.22%
49.28%
48.45%
47.16%
45.95%

MCC | Threshold

0.00
0.09
0.16
0.21
0.26
0.29
0.32
0.36
0.38
0.40
0.41
0.42
0.43
0.44
0.45
0.45
0.45
0.46
0.46
0.46
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.46
0.46
0.46
0.46
0.46
0.46
0.45
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0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59

0.6
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69

0.7
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79

0.8
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89

Spec.
97.47%
97.60%
97.72%
97.80%
97.90%
98.02%
98.14%
98.26%
98.35%
98.41%
98.53%
98.60%
98.70%
98.79%
98.90%
98.97%
99.04%
99.12%
99.22%
99.31%
99.37%
99.44%
99.50%
99.57%
99.60%
99.64%
99.69%
99.73%
99.74%
99.78%
99.80%
99.85%
99.87%
99.88%
99.90%
99.92%
99.94%
99.94%
99.96%

Sens.
32.72%
31.86%
30.22%
28.65%
27.75%
26.81%
25.60%
24.31%
23.68%
22.54%
21.33%
20.27%
19.37%
18.24%
17.38%
16.40%
15.50%
14.40%
13.50%
12.76%
12.09%
10.80%

9.90%

8.88%

8.14%

7.08%

6.26%

5.28%

4.85%

4.27%

3.84%

3.21%

2.97%

2.58%

2.19%

1.76%

1.45%

1.33%

0.98%

MCC
0.41
0.40
0.39
0.38
0.37
0.37
0.36
0.35
0.35
0.34
0.33
0.32
0.32
0.31
0.31
0.30
0.29
0.28
0.27
0.27
0.27
0.25
0.24
0.23
0.22
0.20
0.19
0.17
0.17
0.16
0.15
0.14
0.13
0.12
0.12
0.10
0.09
0.09
0.08



0.39

0.4
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49

0.5

95.55%
95.73%
95.92%
96.11%
96.30%
96.41%
96.59%
96.74%
96.90%
97.06%
97.24%
97.45%

44.97%
43.68%
42.86%
42.00%
40.94%
40.00%
38.71%
37.57%
36.83%
35.73%
34.32%
33.15%

0.45
0.44
0.44
0.44
0.44
0.43
0.43
0.42
0.42
0.42
0.41
0.41

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

99.97%
99.97%
99.98%
99.98%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%

0.74%
0.43%
0.31%
0.27%
0.20%
0.04%
0.00%
0.00%
0.00%
0.00%
0.00%

0.07
0.05
0.04
0.04
0.04
0.02
0.00
0.00
0.00
0.00
0.00

(B) The experiment result of standard PSSM with —b option in SVM by five-fold
cross-validation.

Threshold
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29

Spec.
0.00%
3.03%
12.75%
23.83%
34.14%
43.04%
51.69%
59.83%
64.93%
69.40%
73.06%
76.10%
78.74%
80.82%
82.69%
84.29%
85.71%
86.95%
88.16%
89.22%
90.06%
90.86%
91.66%
92.27%
92.85%
93.38%
93.81%
94.17%
94.53%
94.84%

Sens.
100.00%
99.61%
98.63%
96.48%
93.66%
90.57%
87.63%
83.87%
80.82%
77.65%
75.19%
73.03%
70.61%
68.53%
66.18%
63.84%
61.80%
59.69%
57.85%
55.93%
54.21%
52.80%
51.74%
49.67%
48.10%
46.54%
45.05%
43.87%
42.54%
41.68%

MCC | Threshold

0.00
0.05
0.11
0.16
0.19
0.22
0.25
0.28
0.30
0.31
0.33
0.34
0.36
0.37
0.37
0.38
0.38
0.38
0.39
0.39
0.40
0.40
0.41
0.40
0.40
0.40
0.40
0.40
0.40
0.40

159

0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59

0.6
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69

0.7
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79

0.8

Spec.
98.52%
98.56%
98.60%
98.66%
98.71%
98.74%
98.79%
98.86%
98.92%
98.97%
99.03%
99.07%
99.11%
99.15%
99.22%
99.26%
99.28%
99.33%
99.36%
99.39%
99.41%
99.45%
99.47%
99.48%
99.50%
99.54%
99.56%
99.60%
99.63%
99.65%

Sens.
21.84%
21.17%
20.67%
20.00%
19.49%
18.83%
18.20%
17.57%
16.83%
16.01%
15.69%
14.95%
14.44%
13.86%
13.11%
12.29%
11.59%
11.08%
10.88%
10.06%

9.43%

8.73%

8.34%

7.98%

7.36%

7.08%

6.65%

6.34%

5.99%

5.48%

MCC
0.34
0.33
0.33
0.32
0.32
0.31
0.31
0.31
0.30
0.29
0.29
0.28
0.28
0.27
0.27
0.26
0.25
0.25
0.24
0.23
0.22
0.22
0.21
0.20
0.19
0.19
0.19
0.18
0.18
0.17



0.3
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39

0.4
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49

0.5

95.17%
95.45%
95.72%
95.89%
96.09%
96.38%
96.63%
96.86%
97.07%
97.26%
97.43%
97.54%
97.66%
97.76%
97.91%
98.03%
98.12%
98.19%
98.28%
98.37%
98.48%

40.39%
38.75%
37.73%
37.14%
35.73%
34.76%
33.86%
32.84%
32.05%
30.61%
29.98%
29.47%
28.57%
27.87%
26.97%
26.18%
25.44%
24.62%
24.03%
23.17%
22.07%

0.40
0.39
0.39
0.39
0.38
0.38
0.38
0.38
0.38
0.38
0.38
0.38
0.37
0.37
0.37
0.36
0.36
0.35
0.35
0.35
0.34

0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

99.67%
99.69%
99.72%
99.76%
99.78%
99.82%
99.86%
99.89%
99.92%
99.94%
99.97%
99.98%
99.99%
99.99%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%

4.85%
4.62%
4.15%
3.76%
3.37%
3.05%
2.47%
2.11%
1.80%
1.29%
0.90%
0.74%
0.63%
0.51%
0.27%
0.16%
0.04%
0.00%
0.00%
0.00%

0.16
0.15
0.15
0.14
0.13
0.13
0.12
0.11
0.10
0.09
0.08
0.07
0.07
0.06
0.05
0.04
0.02
0.00
0.00
0.00

(C) The experiment result of smeothed PSSM with —b option in SVM by three-way

data split.

Threshold
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2

Spec.
0.00%
5.11%
17.04%
29.12%
40.02%
49.04%
56.72%
64.12%
69.08%
72.94%
76.05%
78.68%
80.65%
82.53%
83.96%
85.19%
86.25%
87.24%
88.05%
88.82%
89.52%

Sens.
100.00%
99.80%
98.55%
96.48%
94.64%
91.90%
89.24%
85.87%
83.56%
80.86%
77.57%
75.58%
73.62%
71.51%
69.32%
67.71%
66.22%
64.85%
62.97%
61.33%
60.27%

MCC-Threshold

0.00
0.08
0.14
0.19
0.23
0.26
0.29
0.32
0.35
0.37
0.37
0.39
0.40
0.41
0.41
0.42
0.42
0.43
0.43
0.43
0.43
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0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59

0.6
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69

0.7
0.71

Spec.
97.78%
97.90%
98.00%
98.11%
98.18%
98.32%
98.39%
98.47%
98.57%
98.66%
98.73%
98.80%
98.90%
98.96%
99.09%
99.17%
99.24%
99.29%
99.32%
99.37%
99.44%

Sens.
27.87%
27.24%
26.42%
25.60%
24.58%
23.25%
22.15%
21.14%
20.16%
19.10%
18.08%
17.26%
16.75%
15.85%
14.60%
13.74%
12.92%
12.09%
11.78%
11.08%
10.06%

MCC
0.37
0.37
0.36
0.36
0.35
0.34
0.34
0.33
0.32
0.31
0.31
0.30
0.30
0.29
0.28
0.27
0.27
0.26
0.26
0.25
0.24



0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29

0.3
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39

0.4
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49

0.5

90.20%
90.74%
91.31%
91.72%
92.13%
92.53%
92.91%
93.26%
93.61%
93.89%
94.16%
94.42%
94.59%
94.83%
95.08%
95.30%
95.54%
95.73%
95.91%
96.10%
96.30%
96.47%
96.61%
96.77%
96.88%
97.09%
97.22%
97.39%
97.52%
97.74%

59.14%
57.65%
56.28%
55.11%
54.05%
52.96%
51.90%
50.88%
50.02%
48.81%
47.83%
46.89%
46.18%
44.78%
43.84%
42.54%
41.49%
40.43%
39.22%
37.89%
37.18%
36.20%
35.23%
34.21%
33.19%
32.52%
31.62%
30.57%
29.47%
28.30%

0.44
0.44
0.44
0.44
0.44
0.44
0.44
0.44
0.44
0.44
0.43
0.43
0.43
0.43
0.43
0.42
0.42
0.42
0.41
0.40
0.40
0.40
0.40
0.39
0.39
0.39
0.39
0.38
0.38
0.37

0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79

0.8
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89

0.9
0.91
0.92
0.93
0.94
0.95
0:96
0.97
0.98
0.99

99.48%
99.54%
99.61%
99.68%
99.69%
99.71%
99.75%
99.78%
99.84%
99.87%
99.90%
99.92%
99.93%
99.93%
99.95%
99.95%
99.96%
99.97%
99.97%
99.97%
99.98%
99.98%
99.99%
99.99%
99.99%
100.00%
100.00%
100.00%
100.00%

9.35%
8.85%
8.49%
7.55%
7.05%
6.22%
5.83%
5.01%
4.23%
3.84%
3.44%
2.90%
2.39%
1.80%
1.49%
1.25%
1.21%
0.82%
0.59%
0.35%
0.31%
0.23%
0.20%
0.08%
0.04%
0.04%
0.00%
0.00%
0.00%

0.23
0.23
0.23
0.22
0.21
0.19
0.19
0.18
0.16
0.16
0.15
0.14
0.13
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0.02
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(D) The experiment result of standard PSSM with —b option in SVM by three-way da-

tasplit.
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0.03
0.04
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0.07
0.08
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0.1
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3.04%
12.44%
23.07%
33.19%
42.39%
50.56%
58.88%
64.43%
68.83%
72.64%
75.86%
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99.73%
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96.67%
94.52%
91.66%
88.22%
84.74%
81.53%
78.75%
76.16%
73.11%
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0.22
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0.30
0.32
0.33
0.34
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0.29
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