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A modified interpolated cell mapping (MICM) method is developed for global analysis
of deterministic dynamical systems with smooth basin boundaries. By improving the
algorithm of the interpolated cell mapping (ICM) and including the idea of sampling
mappings of cells from the generalized cell mapping (GCM), MICM gives a more complete
and precise global analysis of systems than ICM. In addition, based on analysis using
MICM, a method using exact mappings is proposed to remedy the inaccuracy and
incompleteness of global analysis due to interpolated mappings and the assumption of the
sink cell. For the three systems studied in this paper, this method locates identical attractors
and basins of attraction as the integration of a grid of points (IGP) method, with a 100-fold
improvement in computational efficiency.
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1. INTRODUCTION

It is well known that there may be multiple attracting steady states, called attractors, in
a non-linear dynamical system. Since different initial conditions may lead to different
attractors, the attractors and their basins of attraction in the region of interest must be
delineated to characterize the global behaviour of the system [1]. No analytical method
can accomplish such a global analysis effectively. The conventional numerical approach
is carried out by the integration of a grid of points method, that takes a grid of starts and
iterates each forwards through numerical integration until a steady state behaviour is
approximately realized. In this approach, the Poincaré map is used to simplify the location
of the attractors and their basins of attraction; in addition, suitably defined
neighbourhoods of the attractors must be introduced, since a system does not reach an
attractor in finite time. As the number of points is increased, the location of the basin
boundaries becomes better approximated. However, the computational effort required can
soon become restrictive [2–4]. Thus, two kinds of cell mapping methods were provided to
improve computational efficiency.

The first was developed by Hsu and co-workers under the names of simple cell mapping
(SCM) and generalized cell mapping methods [5]. Both SCM and GCM divide the region
of interest in state space into an array of cells in cell-state space. Each cell is considered
to be an indivisible entity of the state of the system. The complement of the region of
interest forms a large cell called the sink cell, that is the attractor of cells mapped outside
the region of interest. SCM then constructs only one image cell for each cell, but GCM
constructs multiple image cells. From the image cells, SCM locates periodic cells
(attractors) and transient cells (basins of attraction) by using the concept of cell-state space;
GCM locates persistent groups (attractors), single-domicile transient cells (basins of
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attraction) and multiple-domicile transient cells (boundary regions) by applying the theory
of finite Markov chains. GCM then divides persistent groups and boundary regions into
smaller cells to locate attractors and basins of attraction more precisely [6]. In addition,
GCM was applied to study random systems [6–8] with improved computational efficiency
over Monte Carlo simulation [9].

The second was developed by Tongue and Gu under the name of interpolated cell
mapping method [10, 11]. ICM is also called interpolated mapping, since it is not based
on the concept of cell-state space [12]. This method takes the first mappings of all nodes
(centers of cells) given by numerical integration as reference mappings, and then constructs
interpolated mappings of nodes within the periods assigned. The attractors of cells are
located by the final mappings of nodes. The applications indicate that ICM locates
attractors and basins of attraction more precisely than SCM and GCM [10, 13]. ICM also
provides high resolution analysis of dynamical systems by locating the attractors of points
not situated at nodes. This method is often applied to determine the fractal-like [14] basins
of attraction of systems [11, 15]. In addition, Ge and Lee characterized global behaviour
of random systems using ICM and Monte Carlo simulation. This method yields more
precise results than GCM when compared with those from Monte Carlo simulation [16].

These cell mapping methods use only the first mappings of cells given by numerical
integration to characterize global behaviour of dynamical systems. The computational
efficiency of global analysis is thus superior to that using IGP. However, analyses using
cell mapping methods have three common limitations. First, the analyses are incomplete
due to the basin of attraction of the sink cell, in which the attractors of cells are still
unknown after the analyses. Second, the analyses are less accurate than the analysis using
IGP since only the first mappings of cells are precisely given by numerical integration and
other mappings are approximations. Third, the analyses require more computational
memories than the analysis using IGP since cell mapping methods study all cells
simultaneously. As the dimensions of systems increase, the computational memories
required can soon become restrictive. Thus, cell mapping methods are generally applied
to obtain a global picture of low order systems [14]. Furthermore, cell-state space is not
an actual feature of dynamical systems, but is only an assumption. From the point of view
of state space, a cell is just a small cube in state space. Thus, if a cell resides in a basin
of attraction wholly, all initial conditions in the cell eventually lead to an identical
attractor. If a cell includes part of basin boundaries, different initial conditions in the cell
may lead to different attractors. Such cells are important for global analysis since they
point out basin boundaries that define which regions of state space go to which attractors.
In addition, the cells in which attractors reside must also be located to indicate the
positions of attractors. Therefore, cells can be classified into attracting, basin and boundary
cells, to indicate the attractors, basins of attraction and basin boundaries of systems. If
a cell mapping method locates the attracting and boundary cells of a system correctly,
further analysis can study only these cells with satisfactory accuracy. However, as the
dimensions of systems increase, the difficulties of tracking the basin boundaries of the
systems by each cell mapping method goes up quickly due to the large amount of
computational memory and effort required.

In this paper, a modified interpolated cell mapping method is developed to study the
global behaviour of deterministic dynamical systems with smooth basin boundaries.
MICM gives more complete and precise global analyses than ICM for the systems studied
in this paper. After analysis using MICM, cells are classified into attracting, basin and
boundary cells to indicate attractors, basins of attraction and basin boundaries of systems.
However, further analysis must be carried out precisely to locate attractors and basins of
attraction of systems, since analyses using cell mapping methods are not precise and
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complete enough as stated above. Therefore, three methods (high-resolution analysis,
refined cell space and exact mappings) are proposed for such further analyses. The first
two methods still use interpolated mappings to locate attractors and basins of attraction,
but the last uses mappings given by numerical integration. Among these methods, the
method using exact mappings gives the most complete and accurate analysis, correctly
locating all attractors and basins of attraction of the three systems studied with a 100-fold
computational improvement over IGP.

2. A MODIFIED INTERPOLATED CELL MAPPING METHOD

When a deterministic system is studied by ICM, the interpolated mappings of each cell
are constructed within the mapping periods assigned, such as 20 periods used in [10], and
considered as the mapping sequence of the cell. Studying the mapping sequences
successively, ICM locates periodic attractors and their basins of attraction by an assigned
attraction criterion, such as a 10−3 used in [10]. The cells not attracted by the periodic
attractors located are all considered in the basin of attraction of a ‘‘strange attractor’’, that
is the set of attractors not located by the attraction criterion. However, this strange
attractor often indicates an actual strange attractor for a periodic system [10, 13]. Although
ICM is seemingly the best existing cell mapping method, global analysis using ICM still
has three drawbacks. First, an incorrect global analysis may result from an inappropriate
assignment of mapping periods and the attraction criterion, as shown in a later analysis.
When assigning few mapping periods and a small attraction criterion, ICM may not locate
basins of attraction of periodic attractors completely, since some cells may not lead to their
attractors within the criterion during the mapping periods [17]. On the other hand, when
assigning many mapping periods and a large attraction criterion, ICM may locate spurious
periodic attractors in the region of an actual strange attractor as follows. The region of
a strange attractor is divided into a finite number of small cubes with a uniform size of
the attraction criterion. Then a spurious periodic attractor is located by ICM if a cell is
mapped to one of these small cubes more than once within the mapping periods assigned.
This is more possible when more mapping periods are used or a larger attraction criterion
is assigned. Then various assignments of mapping periods and attraction criteria may yield
various global analyses of a system. Thus, different mapping periods and attraction
criteria, that may come from several trial analyses, are used by ICM to give precise global
analyses of different systems [10, 13, 15, 17, 18]. Second, ICM does not classify cells to
delineate the critical cells of global analysis. High resolution analysis of ICM studies points
in each cell. Thus, for dynamical systems with smooth basin boundaries, most of the
computational effort required is used to study points in basin cells, but precision of analysis
is not improved by these studies. Third, ICM does not distinguish multiple strange
attractors or limit cycles of a system, and considers them as a strange attractor only; thus,
the global analysis of such a system is incomplete.

ICM is applied to the analysis of a forced Duffing’s oscillator, governed by the following
equation:

ẍ+0·25ẋ+0·02x+ x3 =8·5 cos (t). (1)

This system, which was also studied in [10, 19], has a periodic attractor of period three
and a strange attractor in the region of interest, (1·5, 4·2)× (−3·0, 6·0). In Figure 1(a) are
shown the attractors and basins of attraction located by ICM with a total of 20 mapping
periods and an assigned attraction criterion of 10−4, in which 12·4% of the basin of
attraction of the periodic attractor is not located; Figure 1(b) shows those with a total of
50 mapping periods and an assigned criterion of 2×10−4, in which five spurious periodic
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attractors are located on the strange attractor. In these figures, the symbols ‘‘+’’, ‘‘×’’
and ‘‘·’’ denote the basins of attraction of the sink cell, the periodic attractor and the
strange attractor. Large and small dots show the periodic attractor and strange attractor
located by ICM. Curves show the reference basin boundaries located by IGP, with 9092

points studied. Moreover, all global analyses in this paper are carried out using 1012 cells
in the region of interest unless otherwise specified.

A modified interpolated cell mapping method is then developed to remedy the three
drawbacks of ICM when applied to global analysis of deterministic dynamical systems with
smooth basin boundaries. Two criteria are used by MICM. The first criterion is a 10−5

cell size to locate periodic attractors. This small criterion can avoid locating spurious
periodic attractors in the region of a strange attractor. The second criterion is a 10−2 cell
size to locate the cells attracted by the periodic attractors located. In addition, unlike ICM,
which assigns identical mapping periods for all cells, MICM constructs the interpolated
mappings of different cells through varied iterations of Np , typically ten, periods to locate
the attractors of cells. After long enough periods, MICM can locate periodic attractors

Figure 1. Various global analyses of the system given by equation (1): (a) by ICM with a total of 20 mapping
periods and an attraction criterion of 10−4; (b) by ICM with a total of 50 mapping periods and an attraction
criterion of 2×10−4; (c) a basin cell of an attractor defined by nine nodes leading to the attractor.
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with periods of less than Np and their complete basins of attraction correctly. Thus the
first drawback of ICM is remedied. Moreover, MICM classifies cells into the attracting,
basin and boundary cells of attractors to indicate attractors, basins of attraction and basin
boundaries of a system. This classification of cells reveals the critical cells for further
analysis of attractors and basins of attraction; namely, the attracting and boundary cells.
Thus the second drawback of ICM is remedied. Furthermore, MICM first regards all the
attractors not located by the first criterion as an ‘‘undetermined attractor’’. The attracting
cells of the undetermined attractor are then divided into different sets of attracting cells
with each indicating an attractor. Thus the third drawback of ICM is remedied. Global
analysis using MICM includes two stages. First, periodic attractors with periods of less
than Np and their basins of attraction are located. Second, the attracting cells of the
undetermined attractor are divided into different sets, and then the basin of attraction of
each set is located.

For n-dimensional dynamical systems, the algorithm of MICM is stated as follows. In
the first stage of analysis using MICM, the first mappings of cells in the region of interest
and of cells surrounding the region are constructed by numerical integration to serve as
the reference mappings for interpolation. Hence, (Nc +2)n cells are studied by MICM,
where Nc is the number of the total cells divided in each dimension of the region of interest.
Then each cell has a sequence of Np interpolated mappings at the first Np periods. When
mappings of cells are constructed, a cell is considered in the basin of attraction of the sink
cell if it is mapped outside the region of interest. From these mapping sequences, periodic
attractors with periods of less than Np are located by the first criterion assigned above.
If no periodic attractor is located, the Np th mapping of each cell is assigned to the first
mapping, and then iterated forward to construct the next iteration of Np mappings. If
periodic attractors are located and a cell leads to a periodic attractor within the second
criterion, the cell is considered in the basin of attraction of the attractor. In addition,
MICM assumes that a cell eventually leads to a periodic attractor if its Np th mapping in
a mapping sequence reaches a basin cell of the periodic attractor.

Definition 1. If a cell and its adjoining cells [5] all lead to an identical attractor, this cell
is a basin cell of the attractor.

This assumption is reasonable for the analysis of systems with smooth basin
boundaries. It considers only the central part of a region, the corners of which all lead
to an attractor, as a region in which all initial conditions eventually lead to the
attractor. For example, a basin cell of a two-dimensional system is the central quarter
of the region latticed by nine (3×3) nodes (centers of cells) that lead to the same
attractor, as shown in Figure 1(c). After each iteration, MICM defines the basin cells
of the periodic attractors located; furthermore, except for the cells attracted by the sink
cell and the periodic attractors located, all cells are considered to be in the basin of
attraction of an ‘‘undetermined attractor’’, that is the set of the final mappings of these
cells in the iteration. Then MICM constructs new mappings of only the cells in the basin
of attraction of the undetermined attractor. When cells are iterated forwards, some cells
reach the periodic attractors located after long enough periods, and thus the basin of
attraction of the undetermined attractor decreases. The construction of mappings of
cells is eventually halted upon satisfaction of two conditions. First, the number of cells
in the basin of attraction of the undetermined attractor does not decrease in an
iteration. This indicates that all cells attracted by the periodic attractors located have
led to the attractors within the second criterion or reached the basin cells of the
attractors. Second, the number of attracting cells of the undetermined attractor does not
decrease in the iteration.
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1 Definition 2. The attracting cells of an attractor are the cells in which the final mappings
of cells in the basin of attraction of the attractor reside.

The number of attracting cells of the undetermined attractor eventually decreases to a
constant value, since all cells will reach their attractors within one cell size after long
enough periods. If the second condition is satisfied, the attracting cells of the undetermined
attractor can efficiently indicate the regions of the attractors not located by the first
criterion. In addition, the sets of attracting cells for the periodic attractors located are
defined by the positions of the attractors. The first stage of global analysis is finished here.
The basins of attraction of the sink cell and the located periodic attractors have been
located completely. If all cells are attracted by the attractors located, global analysis using
MICM is also finished. Otherwise, the second stage of analysis is carried out. Note that
the undetermined attractor defined by MICM is the set of attractors not located by the
first criterion. If multiple attractors belong to the undetermined attractor, these attractors
and their basins of attraction must be further located for a complete global analysis. In
addition, after the first stage of analysis, MICM ensures that all cells reach the basin or
attracting cells of attractors through various long enough periods. On the other hand, ICM
cannot ensure this, since identical mapping periods are assigned for all cells, but different
cells require various periods to lead to their attractors within an identical distance, the
attraction criterion.

In the second stage of analysis using MICM, the idea of sampling mappings of cells from
GCM [5] is introduced to divide the attracting cells of the undetermined attractor into
different sets of attracting cells. Some of these attracting cells are further iterated forwards
by interpolation in extra iterations. In each iteration, all mappings of an attracting cell
are assigned to the sampling mappings of the attracting cell. The first set of attracting cells
is located as follows. The first registered attracting cell of the undetermined attractor is
considered in the first set. If a sampling mapping of this attracting cell reaches another
attracting cell, the reached attracting cell is also included in the first set. Only the attracting
cells in the first set are continuously examined in extra iterations. The iterations to locate
the first set are halted when the number of attracting cells in the first set does not increase.
Then other sets of attracting cells are located by the attracting cells not in the existing sets
according to the same algorithm. In this analysis, if a sampling mapping of an attracting
cell reaches an attracting cell in an existing set, the former attracting cell is also included
in the set. Each attracting cell of the undetermined attractor eventually belongs to a set.
This simple algorithm divides the attracting cells of the undetermined attractor into
different sets with each indicating an attractor; moreover, no extra computational memory
is required. Then the basin of attraction of each set is located by checking the final
mappings of cells in the basin of attraction of the undetermined attractor. If the final
mapping of a cell resides in an attracting cell in a set, this cell is considered in the basin
of attraction of the set. Thus, all attractors and basins of attraction are located. MICM
then defines the basin and boundary cells of each attractor. Global analysis using MICM
is finished here.

Definition 3. If a cell and each of its adjoining cells [5] lead to different attractors, this
cell is called a boundary cell.

MICM is applied to analysis of the system given by equation (1), with Np =10. In
Figure 2(a), the number ‘‘1’’, ‘‘2’’ and ‘‘3’’ denote the regions of basin cells of the sink
cell, the periodic attractor, and the strange attractor located by MICM; squares denote
the boundary cells. Large and small dots denote the periodic attractor and the strange
attractor located; curves denote the precise basin boundaries located by IGP. It can be
seen that the 1665 boundary cells located with a thickness of two or three cell sizes include
the precise basin boundaries. In addition, all the attracting cells of the undetermined
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Figure 2. Global analysis using MICM of the system: (a) equation (1); (b) equation (2); (c) equation (3); (d)
equation (4).

attractor belong to a set. Note that if MICM does not locate the attractors of the cells
surrounding the region of interest, all cells at the edges of the region of interest must be
regarded as boundary cells due to the definition 3. Moreover, MICM yields the same global
analysis of the system with Np ranging from 4 to 900. Therefore, global analysis using
MICM is more stable than global analysis using ICM for this example.

The ability of MICM to locate all boundary cells correctly is examined by another forced
Duffing’s system, which was also studied by GCM [7], governed by the following equation:

ẍ+0·1ẋ+ x+ x3 = cos (2·5t), (2)

with the region of interest (−3·6, 3·6)× (−9, 9). MICM locates a periodic attractor of
period one situated at (−0·192, 0·229) and the undetermined attractor with only one
attracting cell situated around (1·898, 5·092). The 1261 boundary cells also include the
precise basin boundaries, as shown in Figure 2(b). Then the attracting cell of the
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undetermined attractor is examined by numerical integration. The undetermined attractor
is indeed a periodic attractor of period one. Although this periodic attractor is not located
by the first criterion, this global analysis is still complete, since MICM locates all attractors
and their basins of attraction in the region of interest. After this global analysis using
MICM, it is necessary to study the single attracting cell of the undetermined attractor. In
addition, all cells reach the attracting cells of attractors within 90 periods. However, this
is of no consequence in global analyses using MICM. On the other hand, to locate the
complete basins of attraction of this system by ICM, 120 periods are required for all cells
with an attraction criterion of 10−4, and 150 periods are required for an attraction criterion
of 10−5. The information cannot be obtained before several trial analyses.

MICM is then applied to global analysis of the autonomous system governed by the
following equation:

ẍ+0·3ẋ−4x+ x3 =0, (3)

with the region of interest (−4, 4)× (−4, 4). When characterizing the global behaviour
of an autonomous system, MICM locates point attractors [1] as periodic attractors of
period one, and considers all limit cycles as the undetermined attractor after the first stage
of analysis; in addition, the mapping time step duration is at our disposal [5]. Assigning
the mapping time step duration to 0·05×100=5 time units, MICM locates an
unstable node situated at (0, 0) and two point attractors situated at (2·00, 0·00) and
(−2·00, 0·00) for this system. No cell is mapped outside the region of interest. The 1942
boundary cells also include the basin boundaries located by IGP, as shown in Figure 2(c).

From these three analyses, it is found that MICM can locate all boundary cells correctly.
The accuracy of analysis using MICM forms a basis for the further analysis of locating
exact attractors and basins of attraction. On the other hand, the parameter variation
method of ICM (PVICM) [17] defines boundary cells as definition 3. However, PVICM
may not locate complete basins of attraction of periodic attractors, since PVICM
constructs mappings of all cells within identical periods as ICM. Thus, the boundary cells
located by PVICM may not include the entire basin boundaries, although PVICM is more
computationally efficient than ICM for parametrical analysis.

Global analysis using MICM also provides information on whether the basin boundaries
of a system are smooth. For example, MICM is applied to the analysis of a forced Duffing’s
oscillator governed by the following equation:

ẍ+0·1ẋ− x+ x3 =3·2 cos (0·4776t), (4)

with the region of interest (−2·4, 2·4)× (−4, 4). This system with fractal basin boundaries
was also studied by high resolution analysis of ICM [18]. Two periodic attractors of period
two and their basins of attraction are located by MICM, as shown in Figure 2(d). The
symbol ‘‘+’’ and squares denote the basins of attraction of the sink cell and the first
attractor, and the symbol ‘‘×’’ and blank areas for that of the second attractor. Small dots
denote the first mappings of cells in the basin of attraction of the first attractor. This
analysis provides the following information. First, a large amount of the cells in each basin
of attraction are not situated continuously. This indicates that this system has fractal-like
basins of attraction. Second, the first mappings of some cells in the basin of attraction of
the first attractor reside in the basin of attraction of the second attractor. Note that all
mappings of a point reside in the same basin of attraction, since each mapping assigned
to an initial condition follows the mapping trajectory of the point to the attractor. Let all
points in a basin of attraction be a set H. Then G(H)WH, where G is a point mapping.
Therefore, each basin of attraction is a positively invariant set [5]. The phenomenon
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obtained by the analysis conflicts with this feature of basins of attraction. Finally, the first
mappings of some cells in the basin of attraction of the first attractor are surrounded by
the cells in the basin of attraction of the second attractor. Thus, the second mappings of
these cells in the basin of attraction of the first attractor are constructed by interpolation
of the reference mappings of cells in the basin of attraction of the second attractor. This
construction is not reasonable. According to these considerations, MICM cannot be
directly applied to global analysis of a system with fractal basin boundaries; however, high
resolution analysis of ICM without these considerations will locate fractal-like basins of
attraction with some degree of error. This topic is not pursued in this paper.

MICM is finally applied to global analysis of the four-dimensional system, which was
also studied by SCM [22], governed by the coupled van der Pol equations as follows:

6ẍ1

ẍ27− m$1− x2
1

0
0

1− x2
2%6ẋ1

ẋ27+$1+ n

−n

−n

1+ h+ n%6x1

x27=6007, (5)

with m=0·1, n=0·1 and h=0·04. The region of study, −3 E x1, ẋ1, x2, ẋ2 E 3, is divided
into 254 cells. The mapping time step duration is assigned to 0·2×50=10 time units with
Np =10. MICM first locates an unstable node situated at (0, 0, 0, 0). In Figures 3(a) and
(b) are shown the projections of the undetermined attractor on the x1–ẋ2 plane after the
first and second iterations. There is no change in the attracting cells and the basin of
attraction of the undetermined attractor in the seventh iteration. Thus, the first stage of
global analysis is finished there. The attracting cells of the strange attractor are then
divided into two sets of 136 and 128 attracting cells, indicating the first and second limit
cycles. In Figures 3(c) and (d) are shown the projections of the two limit cycles on the x1–ẋ2

and ẋ1–ẋ2 planes, with dots denoting the two limit cycles located by MICM and curves
for those located by IGP. The two limit cycles located by MICM agree well with those
located by IGP. In addition, there are altogether 390 625 cells in the region of study, of
which 1, 189 772 and 200 852 cells are in the basins of attraction of the unstable node,
the first limit cycle and the second limit cycle. There are only 152 cells with attractors
incorrectly located when compared with those located by IGP. For ẋ2 =0 and ẋ1 =0, 0·24,
0·48 and 0·72, the basins of attraction are shown in Figures 4(a)–(d). The symbols ‘‘+’’,
‘‘×’’ and ‘‘·’’ denote the cells attracted by the unstable node, the first limit cycle, and the
second limit cycle, respectively. The basins of attraction located by MICM are more precise
than those located by SCM [20]. In addition, the algorithm of ICM [10] cannot distinguish
the two limit cycles and their basins of attraction. In Figures 3(a)–(c) it is also indicated
that the number of attracting cells of the undetermined attractor decreases as the mappings
of cells are iterated forwards. Hence, MICM appropriately finishes the first stage of
analysis by checking the number of attracting cells of the undetermined attractor. In
analysis using IGP, the two limit cycles are first located. If a cell is mapped near a limit
cycles within 0·05, this cell is assumed to be attracted by the limit cycle.

The computational times required for various global analyses of the systems, equations
(1–3) are listed in Table 1. The mapping periods used by ICM indicate the periods within
which the mappings of all cells are constructed, and those used by MICM and IGP indicate
the periods within which the mappings of cells are constructed in each iteration. The two
criteria of ICM and IGP are used to locate the periodic attractors and their basins of
attraction, respectively. In global analysis using IGP, if a point does not reach a periodic
attractor before 100 periods, the point is considered to be in the basin of attraction of a
strange attractor. When compared with the analysis using IGP, the number of cells with
incorrectly located attractors is indicated by the item ‘‘number of cells of error’’. It can
be seen that analysis using MICM is more precise than analysis using ICM: in addition,
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the computational times required for global analysis using MICM and ICM are of the
same order. Furthermore, the computational times required for analyses using MICM and
IGP of the four-dimensional system given by equation (5) are 8093 and 48 820 seconds.
The computational improvement of ICM over IGP is not so apparent as that of analyses
of two-dimensional systems, since more computational effort is required to construct an
interpolated mapping for higher-dimensional systems [12, 21]. In addition, all
computations in this paper were processed on an IRIS Indigo workstation with 16 MB
of main memory. The algorithm used for numerical integration is the fourth order
Runge–Kutta method. Each mapping time step duration for periodic systems [5], namely
one period, is divided into 100 integration steps used in numerical integration.

3. FURTHER ANALYSIS BASED ON GLOBAL ANALYSIS USING MICM

Since global analysis using MICM correctly locates the boundary and attracting cells
of systems, as shown previously, the systems can be further studied on the basis of global
analysis using MICM. In this section three methods are provided for further analysis of

Figure 3. The evolution of the undetermined attractor using MICM for global analysis of the system given
by equation (5): (a) after the first iteration; (b) after the second iteration; (c, d) after the seventh iteration with
the attracting cells of the undetermined attractor divided into two sets of attracting cells.



      199

Figure 4. Basins of attraction of the system given by equation (5), located by MICM for ẋ2 =0: (a) ẋ1 =0;
(b) ẋ1 =0·24; (c) ẋ1 =0·48; (d) ẋ1 =0·72.

basins of attraction and attractors: high resolution analysis, refined cell space and exact
mappings. The first two methods still use interpolated mappings, but the last method uses
exact mappings given by numerical integration.

High resolution analysis of ICM is first applied to locate the detailed basin of attraction
of the system, equation (1), with 9092 points studied, a total of 35 mapping periods and
an atttraction criterion of 10−5. In Figure 5(a), the basin boundaries located by ICM and
IGP are shown by the thin and thick curves. The maximum difference between these two
basin boundaries is more than one cell size. This reduces the reliability of high resolution
analysis of ICM. The errors of the basins of attraction located come from two sources.
First, some points do not reach the periodic attractor within 10−5 before 35 periods and
are considered to be in the basin of attraction of the strange attractor. This error can be
remedied by high resolution analysis of MICM with the maximum difference of less than
one cell size, as shown in Figure 5(b). In high resolution analysis of MICM, all basin cells
of attractors are considered to be criteria of attraction for the attractors located by global
analysis using MICM; moreover, only the mappings of points in the boundary cells are
given by interpolation of reference mappings used in global analysis until the points are
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mapped to the basin cells. If a mapping of a point reaches a basin cell of an attractor,
the point is considered to be in the basin of attraction of the attractor. Using the large
attraction criteria for attractors and constructing mappings of points in the boundary cells
through various long enough periods, high resolution analysis of MICM locates more
complete basins of attraction of the periodic attractor than high resolution analysis of
ICM, as shown in Figure 5(b). Another source of error results from the fact that the
interpolated mappings of points near basin boundaries are not precise enough to locate
the attractors correctly. If an interpolated mapping of a point resides in the basin of
attraction of another attractor, the attractor of the point is not correctly located. This error
cannot be remedied by high resolution analysis of MICM, since identical reference
mappings are used by high resolution analyses of MICM and ICM.

To reduce the source of error due to interpolated mappings, the method of refined cell
space is proposed. The boundary cells located by global analysis using MICM are further
divided into refined boundary cells. The first mappings of the refined cells from numerical
integration serve as precise reference mappings of interpolation. If a mapping of a refined
cell still resides in a boundary cell, the next mapping is given by interpolation of these
reference mappings. If a refined cell is mapped to a basin cell of an attractor, the refined
cell is considered to be in the basin of attraction of the attractor. When this method is
applied to the location of detailed basins of attraction of the system given by equation (1),
with each boundary cell divided into 92 refined boundary cells, the detailed basins of
attraction located are almost identical to those located by IGP with only the attractors
of 51 refined cells incorrectly located. This approach is more precise than high resolution
analyses of MICM and ICM, since the reference mappings of refined boundary cells can
construct more precise interpolated mappings to locate the attractors of refined cells more
correctly.

The method of refined cell space is also applied to locate precise attractors. The
attracting cells located by global analysis using MICM are divided into refined attracting
cells for precise reference mappings. The mappings of each refined cell are then given by
interpolation of these reference mappings. If a mapping of a refined cell reaches a basin
cell located by global analysis using MICM, the basin cell is also refined for precise
reference mappings. In this approach, the region of study is reduced to only the sets of
attracting cells located by global analysis using MICM; moreover, the two criteria, 10−5

and 10−2 refined cell size, are used to locate periodic attractors and their basins of

T 1

Computational time required (seconds) for various global analyses

Mapping Number of cells
System Method periods Criteria Time of error

Equation (1) ICM 20 10−4, 10−4 39 229
ICM 50 2×10−4, 2×10−4 48 39
MICM 4 41 39
MICM 10 42 39
MICM 50 48 39
IGP 10 10−5, 10−4 2192 0

Equation (2) MICM 10 46 18
IGP 10 10−5, 10−4 2748 0

Equation (3) MICM 10 22 4
IGP 10 10−5, 10−4 308 0



      201

Figure 5. Further analysis of the system given by equation (1), based on interpolated mappings: (a) basin
boundaries located by high resolution analysis of ICM; (b) basin boundaries located by high resolution analysis
of MICM; (c) the detailed structure of the strange attractor located by the method of refined attracting cells;
(d) the region of refined cells located by ARBICM.

attraction. Each refined cell that does not reach a periodic attractor located before 100
periods is considered in the basin of attraction of a strange attractor. If multiple attractors
are located in each set of attracting cells, of course, the global analysis using MICM is
incorrect. Then, increasing the number of cells or reducing the region of study can improve
the accuracy of global analysis. This method is applied to analysis of the system, equation
(1), with each attracting cell divided into 92 refined cells and Np =10. The periodic
attractors of period three located by various methods are situated at (2·66416, 4·66427),
(3·04256, −2·00013) and (2·13566, −0·61915) from global analysis using MICM,
(2·66307, 4·67678), (3·04084, −2·00374) and (2·13328, −0·60474) from numerical inte-
gration, and (2·66308, 4·67663) (3·04086, −2·00371) and (2·13331, −0·60491) from
MICM refined-attracting-cell analysis. The precision of the periodic attractor located is
much improved by this method over that from global analysis using MICM. In Figure 5(c)
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is shown the structure of the strange attractor in the region of (2·28, 2·31)× (−0·98,
−0·88), which is somewhat distorted since the reference mappings of refined attracting
cells can reduce distortion of the attractors located by interpolated mappings to a certain
extent only. Note also that high resolution analysis of ICM cannot locate more precise
attractors than global analysis using ICM since identical reference mappings are used by
the two methods.

We then discuss the precision of analysis using the method of adaptive refinement of
bilinear interpolated cell mapping (ARBICM), developed by Tongue [22]. This method
uses phase deformation as the criterion for refinement of cells. To study a two-dimensional
system, the region of interest is first divided into an array of original cells (O-cells). The
four corners of each O-cell are points of integration (POIs), the first mappings of which
from numerical integration serve as reference mappings for interpolation, and form a
mapped image. In this approach, the ratio of the size of a mapped image to the O-cell
size is defined as a quantity s, which judges whether an O-cell is refined. For a system with
fractal basin boundaries studied in [22], ARBICM constructs precise reference mappings
of refined cells with s=10. This method is computationally more efficient than ICM using
uniform cells to yield global analysis with the same order of accuracy. However, to refine
cells by this criterion, most basin cells of a strange attractor will be refined because of the
sensitivity of initial conditions in the basin of attraction of a strange attractor [14]. Much
computational effort is then used to study the basin cells of a strange attractor without
improvement of precision of analysis. For example, ARBICM is applied to study the
system given by equation (1) with s=3. The 5004 cells (49·1% of the total cells) to be
refined are shown by squares in Figure 5(d). These cells do not include the entire basin
boundaries, which must be located for efficient further study of basins of attraction. Thus,
ARBICM is not suitable for global analysis of systems with strange attractors. By studying
a sufficient number of points and introducing the division of uniform cells, IGP can locate
the boundary cells that include the entire basin boundaries and have a thickness of one
or two cell sizes. However, the large amount of computational effort required becomes
restrictive. On the other hand, global analysis using MICM indicates the basin boundaries
by boundary cells with a thickness of two or three cell sizes. It is hoped that the location
of extra boundary cells can remedy the inaccuracy of the basin boundaries located by
interpolated mappings.

A method using exact mappings is further applied to remedy the incompleteness and
inaccuracy of the basins of attraction due to the assumption of the sink cell and
interpolated mappings. First, the mappings of cells in the basin of attraction of the sink
cell are given by numerical integration, until the cells reach the basin cells, to identify their
attractors, as previously. Then the basin and boundary cells of attractors are defined again,
since the attractors of all cells have been located. Finally, the mappings of points in the
boundary cells are given by numerical integration, until these points reach the basin cells,
to identify their attractors. Thus, the attractors of all points in the region of interest are
located. Moreover, the mappings of points near the basin boundaries given by numerical
integration are precise enough to locate the attractors of these points correctly. This further
analysis to locate the detailed basin of attraction is therefore complete and precise. This
method is applied to detailed global analysis of the systems governed by equations (1–3),
with 9092 points studied. When compared with analysis using IGP, the attractors of all
points are located correctly. The basins of attraction of the systems governed by equations
(1) and (2) are shown in Figures 6(a) and 6(b). The solid curves denote the basin boundaries
located by this method, and the dotted curves show the basin boundaries of the sink cell
located by IGP. The complete basins of attraction of systems cannot be located by each
of the existing cell mapping method. Due to the assumption of the sink cell, there is still
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15% of uncertainty about attractors of points in the region of interest after analysis using
cell mapping methods of the system governed by equation (1). In addition, for analysis
of the system given by equation (1), the average periods of all points in the boundary cells
required to reach the basin cells are only 2·88 periods. Hence this method combines
completeness and precision of analysis using IGP and computational efficiency of analyses
using cell mapping methods.

The method using exact mappings is also applied to locate exact attractors. First, Nn
s

interior-and-boundary points [5] are uniformly sampled within the first registered
attracting cell in each set. The mappings of each sampling point are then given by
numerical integration within 200 periods, and the two criteria, 10−8 and 10−5, are used to
locate periodic attractors and their basins of attraction. These mappings are considered
to be transient and steady states within the former and latter 100 periods. Then the
attracting cells in the same set in which the steady state mappings reside require no further

Figure 6. Further analysis based on exact mappings given by numerical integration: (a, b) complete and precise
basins of attraction of the systems equations (1) and (2); (c, d) the detailed structures of the strange attractor
of the system given by equation (1) in the two regions.
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T 2

Computational time required (seconds) for various further analyses

Region Number of points
System Method Cells of study (%) Time of error

Equation (1) ICM-HIGH 1012 100·0 467 3753
MICM-HIGH 1012 16·3 11 3302
MICM-RBC 1012 16·3 454 51
MICM-RAC 1012 4·5 251 —
MICM-NIB 1012 14·1 1127 0
MICM-NIA 1012 0·47 289 —
IGP 9092 100·0 194 999 0

Equation (2) MICM-NIB 1012 11·6 1078 0
MICM-NIA 1012 0·03 32 —
IGP 9092 100·0 245 539 0

Equation (3) MICM-NIB 1012 19·0 291 0
MICM-NIA 1012 0·03 9 —
IGP 9092 100·0 24 388 0

analysis, since these attracting cells have been correctly located by global analysis using
MICM. Other attracting cells are also studied by Nn

s sampling points as above. In addition,
if a steady state mapping of a sampling point reaches a basin cell, the basin cell is regarded
as an attracting cell in the same set, and is examined as above. If multiple attractors are
located by different sampling points of attracting cells in each set, global analysis using
MICM is incorrect. Otherwise, the finally located attractors are the same as those located
by IGP. This method is applied to analysis of the systems given by equations (1)–(3), with
32 interior-and-boundary sampling points within each attracting cell. The attractors
located by this method are the same as those located by IGP. In Figures 6(c) and (d) are
shown the strange attractors of the system given by equation (1) in the regions of
(1·5, 4·2)× (−3, 6) and (2·28, 2·31)× (−0·98, −0·88).

The computational times required for various analyses of the systems given by equations
(1)–(3) are listed in Table 2. The methods ‘‘ICM-HIGH’’ and ‘‘MICM-HIGH’’ denote
high resolution analyses of ICM and MICM; ‘‘MICM-RBC’’ and ‘‘MICM-RAC’’ denote
the refined-boundary-cell and refined-attracting-cell methods; and ‘‘MICM-NIB’’ and
‘‘MICM-NIA’’ denote the methods using exact mappings to locate the basins of attraction
and attractors. The item ‘‘Cells’’ denotes the number of cells used by global analysis using
a cell mapping method. The item ‘‘Region of study’’ shows the ratio of the region studied
by a method to the region of interest of a system. To locate detailed basins of attraction,
9092 points within the region of interest are studied by each method. The item ‘‘Number
of points of error’’ indicates the number of points with incorrectly located attractors when
compared with analysis using IGP. The two criteria used to locate periodic attractors and
their basins of attraction are 10−5 and 10−5 for ICM and 10−5 and 10−4 for IGP. It can
be found that high resolution analysis of MICM is far more computationally efficient than
high resolution analysis of ICM. This is because only the points in the boundary cells are
studied, and all basin cells serve as criteria of attraction of the attractors located. High
resolution analysis of MICM is also more precise than high resolution analysis of ICM.
Moreover, the computational time required for analysis using the refined-boundary-cell
method is of the same order as that required by high resolution analysis of ICM, with the
precision of analysis much improved. Note that only IGP and the method using exact
mappings can locate exact attractors and complete basins of attraction in the region of
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interest. For the three systems, the method using exact mappings locates identical
attractors and basins of attraction as IGP with a 100-fold improvement in computational
efficiency.

4. CONCLUDING REMARKS

In this paper, MICM was developed to give a more complete and precise global analysis
than ICM for deterministic dynamical systems with smooth basin boundaries. Three
methods were also developed for further analysis of attractors and basins of attraction:
high resolution analysis, refined cell space and exact mappings. For further analysis using
each of the three methods, all of the basin cells located by analysis using MICM serve as
criteria of attraction for the attractors located; in addition, only the boundary and
attracting cells located by analysis using MICM are studied. The method using exact
mappings accomplishes a complete and precise global analysis efficiently. Some algorithms
and concepts used by GCM are of much help in the development of the proposed methods,
since GCM has been well developed.
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