錄

中文摘要		i
英文摘要		ii
致謝		iii
目錄		V
表目錄		ix
圖目錄		X
_	緒論 MEISIN	1
1.1	前言	1
1.2	研究背景與目的	3
1.3	文獻回顧	8
1.3.1	生物感測器	9
1.3.2	壓電晶體生物感測器(Piezoelectric crystal	
	biosensor) ······	12
1.3.3	壓電陶瓷薄膜	14
1.4	研究方法與架構	16
<u>_</u>	理論	18

2.1	壓電材料	18
2.1.1	壓電現象之由來	18
2.1.2	壓電方程式	21
2.1.3	QCM 原理	25
2.1.4	錯鈦酸鉛(lead zirconate titanate, PZT)	27
2.1.4	現行 PZT 製程 ······	33
2.2	溶膠-凝膠法	36
2.2.1	溶膠-凝膠法(Sol-gel)之理論	39
2.2.2	溶膠-凝膠法(Sol-gel)之特點······	42
2.2.3	起始溶液的調配	43
2.2.4	薄膜製作	44
2.2.5	低溫焦化處理	45
2.2.6	高溫結晶熱處理	46
2.3	生物檢測流程	46
三	實驗	50
3.1	感測薄膜的製作	50
3.1.1	薄膜披覆	51
3.1.2	熱處理過程	52

3.1.3	薄膜性質分析	53
3.1.3.1	傅立葉轉換紅外線光譜儀(Fourier Transform	
	Infrared spectrometry,FTIR)分析	53
3.1.3.2	X 光繞射(X-Ray Diffraction,XRD)分析	56
3.1.3.3	掃瞄式電子顯微鏡(Scanning Electron	
	Microscopy,SEM)分析	59
3.1.3.4	掃描探針顯微鏡(Atomic Force Microscopy,	
	AFM)分析	62
3.2	感測元件的製作	64
3.2.1	實驗儀器	65
3.2.1.1	雙電子槍蒸鍍 (Electron-beam evaporation)	65
3.2.1.2	熱蒸鍍 (Thermal Evaporation) ······	66
3.2.1.3	剝離成形 (Lift-off patterning) ·······	66
3.2.2	元件製作流程	68
3.2.3	元件電路分析	75
3.3	生物感測元件的製作	77
3.3.2	BSA 濃度偵測極限測試	77
3.3.2	液相 DNA 專一性感測測試	78

四	結果與討論	85
4.1	感測薄膜性質分析	85
4.1.1	傅立葉轉換紅外線光譜儀(Fourier Transform	
	Infrared spectrometry, FTIR)分析	85
4.1.2	X 光繞射 (X-Ray Diffraction, XRD) 分析	86
4.1.3	掃瞄式電子顯微鏡(Scanning Electron	
	Microscopy,,SEM)分析 ·····	87
4.1.4	掃描探針顯微鏡(Atomic Force Microscopy,	
	AFM)分析······	90
4.2	感測元件製程分析	90
4.2.1	剝離成形(Lift-off patterning) ······	90
4.3	生物感測分析	92
4.3.1	BSA 濃度偵測極限測試	93
4.3.2	液相 DNA 專一性感測測試	94
4.4	生物感測薄膜分析	101
五	結論	108
參考文獻		112

表目錄

表 1.1	不需要使用標定雜交分析之相關研究比較	110
表 1.2	依轉換器之不同對生物感測器的分類	11
表 3.1	FTIR 光譜範圍·······	54
表 3.2	JCPDS 表······	58
表 4.1	不同濃度之 BSA 溶液的共振頻率下降値比較	100

圖 目 錄

圖 1.1	生物感測器之結構及其反應過程示意圖	12
圖 1.2	各種生物感測器偵測範圍之比較	13
圖 2.1	壓電材料單位晶格示意圖	20
圖 2.2	石英晶體的切割方式	25
圖 2.3	ABO3鈣鈦礦之結晶構造	28
圖 2.4	Ti ^{-⁴} 沿C軸之位能變化·······	29
圖 2.5	PbZrO3-PbTiO3相圖 ES	30
圖 2.6	PZT 晶格常數對成份的變化······	31
圖 2.7	膠體粒子之總位能爲吸引位能與排斥位能之和	41
圖 2.8	流體注入分析法	49
圖 2.9	注流式分析系統簡圖	49
圖 3.1	PZT 薄膜熱處理 FTIR 圖·······	55
圖 3.2	布拉格繞射圖	56
圖 3.3	PZT 不同熱處理溫度之 X 光繞射圖	59
圖 3.4	PZT top-view 之 SEM 圖······	61
圖 3.5	PZT cross-section 之 SEM 圖 ······	61

圖 3.6	PZT 熱處理 350℃之 AFM 圖	63
圖 3.7	lift - off 流程圖 ······	68
圖 3.8	元件製作流程圖	73
圖 3.9	PZT 微感測器 OM 圖······	74
圖 3.10	PZT 微感測器示意圖與實體圖······	74
圖 3.11	震盪電路電路圖	75
圖 3.12	PZT 微感測器安裝至震盪電路上進行震盪測試···········	76
圖 3.13	固相穩定性測試圖	76
	本實驗液相裝置示意圖	80
圖 3.15	液相穩完性測試圖	81
圖 3.16	戊二醛固定法示意圖	83
圖 4.1	PZT 熱處理前後 SEM 圖 ·······	87
圖 4.2	熱處理前後的鉑電極 AFM 圖	89
圖 4.3	lift-off失敗的微感測器之表面形貌 SEM 圖······	91
圖 4.4	檢測純水之頻率變化情形	93
圖 4.5	檢測 10 ⁻³ (mg/ml)BSA之頻率變化情形····································	94
圖4.6	檢測 10 ⁻⁴ (mg/ml)BSA之頻率變化情形····································	94
圖 4.7	檢測 10 ⁻⁵ (mg/ml)BSA之頻率變化情形····································	95

圖 4.8	檢測 10 ⁻⁶ (mg/ml) BSA之頻率變化情形····································	95
圖 4.9	檢測 10 ⁻⁷ (mg/ml)BSA之頻率變化情形·······	96
圖 4.10	檢測 10 ⁻⁸ (mg/ml)BSA之頻率變化情形·······	96
圖 4.11	檢測 10 ⁻⁹ (mg/ml) BSA之頻率變化情形····································	97
圖 4.12	檢測 10 ⁻¹⁰ (mg/ml) BSA之頻率變化情形····································	97
圖 4.13	檢測 10 ⁻¹¹ (mg/ml) BSA之頻率變化情形····································	98
圖 4.14	檢測 10 ⁻¹² (mg/ml) BSA之頻率變化情形····································	98
圖 4.15	BSA 濃度與之頻率位移變化情形	101
圖 4.16	檢測 10 ⁻³ (mg/ml)BSA之專一性頻率變化情形············	102
圖 4.17	檢測 1 mg/ml DNA 之專一性頻率變化情形······	103
圖 4.18	檢測經過 Plmsa 處理後 1 mg/ml DNA 之專一性頻率變化	
	情形	104
圖 4.19	未施加 BSA 前之表面形貌 AFM 圖······	105
圖 4.20	施加 BSA 後之表面形貌 AFM 圖······	106
圖 4.21	施加 BSA 前後之表面形貌 SEM 圖	107