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This Letter gives the results of numerical simulations of Quantum Cellular Neural Network (Quantum-
CNN) autonomous system with four state variables. Three positive Lyapunov exponents confirm hyper-
chaotic nature of its dynamics.

© 2008 Published by Elsevier B.V.
Nonlinear systems are capable of exhibiting a variety of behav-
iors, ranging from fixed points via limit cycles and tori to the more
complex chaotic and hyperchaotic attractors. It is well known that
continuous time systems of integer order must be at least third or-
der in order for chaos to appear. Such systems are characterized by
one positive Lyapunov exponent (PLE) in the Lyapunov spectrum
[1–11]. A chaotic signal is characterized by having a single posi-
tive Lyapunov exponent which indicates that the dynamics of the
underlying chaotic attractor expands only in one direction. When-
ever a chaotic attractor is characterized by more than one positive
Lyapunov exponent, it is termed hyperchaos. In this case, the dy-
namics of the chaotic attractor expands in more than one direction
giving rise to a “thick” chaotic attractor [12–15].

A hyperchaotic system is characterized by the presence of two
or more PLEs in its Lyapunov spectrum, indicating that it is unsta-
ble in more than one direction. Besides the theoretical interest in
the dynamics of such nonlinear systems, there has been a practical
interest in chaos and hyperchaos as means for secure communi-
cation. Hyperchaos was first reported from computer simulations
of hypothetical ordinary differential equations in [17–21]. The first
observation of hyperchaos from a real physical system, a fourth-
order electrical circuit, was later reported in [16]. Very few hy-
perchaos generators have been reported since then [22–26]. As
the numerical example, recently developed Quantum Cellular Neu-
ral Network (Quantum-CNN) autonomous oscillator with four state
variables is used. Quantum-CNN oscillator equations are derived
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from a Schrödinger equation taking into account quantum dots
cellular automata structures to which in the last decade a wide
interest has been devoted with particular attention towards quan-
tum computing [4]. For this system four Lyapunov exponents are
not zero. Although by traditional theory [27], for four-dimensional
continuous-time systems, there must be a zero Lyapunov expo-
nent, however, on the history of science, as said by T.S. Kuhn
[28] in his book “The Structure of Scientific Revolution”, the un-
expected discovery or anomality (counterinstance) is not simply
factual in its import and the scientist’s world is qualitatively trans-
formed as well as quantitatively enriched by fundamental novelties
of either fact or theory. “Conversion as a feature of revolutions in
science” is the conclusion of the book “Revolution in Science” writ-
ten by Cohen [29]. One of the patterns of the evolution of science
is: current paradigm → normal science → anomality (counterin-
stance) → crisis → emergence of scientific theories → new
paradigm.

For a two-cell Quantum-CNN, the following differential equa-
tions are obtained [4]:
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where x1 and x3 are polarizations, x2 and x4 are quantum phase
displacements, a1 and a2 are proportional to the inter-dot energy
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Fig. 1. The three-dimensional projections of four-dimensional phase portrait of Quantum-CNN, with a1 = 0.00009, a2 = 0.00009, ω1 = 0.0001, and ω2 = 0.0001.
inside each cell and ω1 and ω2 are parameters that weigh effects
on the cell of the difference of the polarization of neighboring
cells, like the cloning templates in traditional CNNs.

The evolution of a set of trajectories emanating from various
initial conditions is presented in the phase space. When the solu-
tion becomes stable, the asymptotic behaviors of the phase trajec-
tories are particularly interested and the transient behaviors in the
system are neglected. The three-dimensional projections of fourdi-
mensional phase portrait of the Quantum-CNN system, Eq. (1), are
plotted in Fig. 1.

If the states are not periodic, their spectrum must be in terms
of oscillations with a continuum of frequencies. Such a representa-
tion of the spectrum is called Fourier integral. The power spectrum
analysis of the nonlinear dynamical system, Eq. (1), is shown in
Fig. 2. The noise-like spectrum is the characteristics of chaotic dy-
namical system.

The Lyapunov exponents of the solutions of the nonlinear dy-
namical system, Eq. (1), is plotted in Figs. 3–8.

Furthermore, the parameter values, a1, a2, ω1, and ω2, are var-
ied to observe the regions of chaotization of the system. By varying
any two of a1, a2, ω1, and ω2, and fixing the other two, the
parametric diagrams are described and shown as Figs. 9–14. The
enriched information of chaotic behaviors of the system can be
obtained from the diagrams. Three positive Lyapunov exponents
occur in many regions.
Fig. 2. Power spectrum of x1 for Quantum-CNN, with a1 = 0.00009, a2 = 0.00009,
ω1 = 0.0001, and ω2 = 0.0001.

In this Letter, we have shown that the autonomous continuous-
time Quantum Cellular Neural Network (Quantum-CNN) system
with four state variables as described by (1) can exhibit hyper-
chaos with three positive Lyapunov exponents.
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Fig. 3. Lyapunov exponents of Quantum-CNN, with a1 = 0.00003, a2 = 0.00007, and
ω2 = 0.0054.

Fig. 4. Lyapunov exponents of Quantum-CNN, with a1 = 0.00005, a2 = 0.00004, and
ω2 = 0.0035.

Fig. 5. Lyapunov exponents of Quantum-CNN, with a1 = 0.000023, a2 = 0.00007,
and ω2 = 0.0027.

Fig. 6. Lyapunov exponents of Quantum-CNN, with a1 = 0.000049, a2 = 0.00005,
and ω1 = 0.00031.

Fig. 7. Lyapunov exponents of Quantum-CNN, with a1 = 0.00003, a2 = 0.000023,
and ω1 = 0.00021.

Fig. 8. Lyapunov exponents of Quantum-CNN, with a2 = 0.00006, ω1 = 0.0021, and
ω2 = 0.006.



352 Z.-M. Ge, C.-H. Yang / Physics Letters A 373 (2009) 349–353
Fig. 9. Parameter diagrams of Quantum-CNN, with a1 = 0.00003 and a2 = 0.00007.

Fig. 10. Parameter diagrams of Quantum-CNN, with a2 = 0.00004 and ω2 = 0.0035.

Fig. 11. Parameter diagrams of Quantum-CNN, with a1 = 0.000023 and ω2 =
0.00027.

Fig. 12. Parameter diagrams of Quantum-CNN, with a1 = 0.000049 and ω1 =
0.00031.

Fig. 13. Parameter diagrams of Quantum-CNN, with a2 = 0.000023 and ω1 =
0.00021.

Fig. 14. Parameter diagrams of Quantum-CNN, with ω1 = 0.0021 and ω2 = 0.006.
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