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Three-Dimensional Fundamental Solutions of Displacements and Stresses in

an Inclined Transversely Isotropic Materials Subjected to Point Loads

Student: Tin Bin Hu Advisor: Dr. Jyh Jong Liao
Dr. Cheng Der Wang
Institute of Civil Engineering

National Chiao Tung University

ABSTRACT

Three-dimensional fundamental solutions of displacements and stresses due to
three-dimensional point loads in a transversely isotropic material, where the planes of
transverse isotropy are inclined with respect to the horizontal loading surface, are
presented in this thesis. Generally, the governing equations for infinite or semi-infinite
solids are partial differential equations. The Fourier and Laplace integral transforms
are commonly two efficient methods for solving the corresponding boundary value
problems of full or half space. Employing the Fourier transform, the partial
differential equations can be simplified as ordinary differential equations (ODE). Then,
three distinct approaches were used to solve the ODE and the solutions were presented
for both infinite and semi-infinite solids in this thesis. Firstly, we solve traditionally the
nonhomogeneous ordinary differential equations by the methods of undetermined
coefficients and separate variables Secondly, the method of an imaginary space was
proposed for deriving the solutions of the problems. Thirdly, the method of algebraic is

adopted for deriving the solutions for both full space and half space problems.



Finally, the present fundamental solutions are derived by performing the required triple
inverse Fourier transforms, or double inverse Fourier and Laplace transforms. These
transformations are powerful to generate the displacements and stresses resulting from
the three-dimensional point loads, acting in an inclined transversely isotropic material.
The yielded solutions demonstrate that the displacements and stresses are profoundly
influenced by: (1) the rotation of the transversely isotropic planes (¢), (2) the type and
degree of material anisotropy (E/E’, v/v', G/G’), (3) the geometric position (r, ¢, &), and
(4). the types of three-dimensional loading (Px, Py, Pz). The proposed solutions are
exactly the same as those of Wang and Liao (1999) if the full-space is homogeneous,
linearly elastic, and the planes of transversely isotropy are parallel to the horizontal
loading surface. Additionally, a parametric study is conducted to elucidate the
influence of the above-mentioned factors on the displacements and stresses.
Computed results reveal that the induced displacements and stresses in the planes of
transversely isotropic are parallel to the horizontal loading surface of
isotropic/transversely isotropic rocks by a vertical point load are quite different from
those from Wang and Liao (1999). Therefore, in the fields of practical engineering,
the dip at an angle of inclination should be taken into account in estimating the
displacements and stresses in a transversely isotropic rock subjected to applied loads.
Keywords: Displacements; Stresses; Inclined transversely isotropic, full-space;
half-space, Triple Fourier transforms; Double Fourier transforms; Laplace

transform; Rock anisotropy.
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CHAPTER I

INTRODUCTION

The failure of a foundation in soil/rock is often caused by extra strains (deformations)
or stresses. This fact is particularly important when structures impose very large loads
on the underlying soil/rock. Normally, however, the magnitude and distribution of
strains and stresses in soil/rock are predicted using numerical/analytical solutions that
model the constituent materials as a linearly elastic, homogeneous and isotropic
continuum. These solutions can not count the anisotropy of soils/rocks that are
deposited via sedimentation over a long period of time, or rock masses cut by regular
discontinuities, such as cleavages, foliations, stratifications, schistosities, and joints.
Anisotropic  soils/rocks are commonly modeled as transversely isotropic
(cross-anisotropic) materials based on the practical engineering considerations.
Nevertheless, the effects of inclination of discontinuities on the displacements and
stresses are of interest. Hence, this thesis derives the analytical solutions for
displacements and stresses due to three-dimensional point loads in a transversely
isotropic medium with inclined planes of elastic symmetry.

Briefly, this thesis aims to derive the three-dimensional elastic solutions in a
transversely isotropic full space and a half space subject to a three-dimensional point
load. Employing the Fourier transform, the governing partial differential equations
can be simplified as an ordinary differential equation. Then, three distinct approaches
were used to solve the ODE for both infinite and semi-infinite solids in this thesis. The

solutions show that there are identical for different approaches. The major deriving



procedures are shown in Fig. 1.1. The three approaches are briefly described as follows:

Firstly, we solve the nonhomogeneous ordinary differential equations by the methods of
undetermined coefficients and separate variables, and obtain the homogeneous and
particular solution for both a full-space and a half-space. Secondly, we separate the
full-space into three regions of —oo <z <0~ (region 2-upper half space), 0" <z<0"

(imaginary space) and 0" <z <400 (region 1-lower half space) or the half-space into
two regions of 0<z<0" (imaginary space) and 0" <z <+oo (region 1), the point
load force is loading in the region of 0” <z<0" for full-space and 0<z<0" for
half-space. The right-hand side of the governing equations are zero in regions of
—0<z<0 or 0" <z<+w, the equations are said to be homogeneous. Hence, we
can solve the boundary-value problem consisting of the three or two regions for
full-space or half-space. Thirdly, the Fourier transform respect to variables of z can
reduce the aforementioned ordinary differential equations to algebraic equations. This
method, which include three times of Fourier transform respect to variables of x, y and z,
is also called Triple Fourier transform method. In the other word, the triple Fourier
transforms with respect to x, y, and z could reduce the full-space problem of solving
partial differential equations to algebraic equations. However, in the half-space, the
double Fourier transforms with respect to x, and y can reduce the problem of solving
partial differential equations to ordinary differential equations. Furthermore, by
collocating the Laplace transform can reduce the aforementioned ordinary differential
equations to algebraic equations. Hence, the displacement components in the triple

Fourier transformed domains (U, (a,3,7)), or in the double Fourier and Laplace ones

(U,(a, B,s) ) can be obtained.



Finally, the present fundamental solutions are derived by performing the required
triple inverse Fourier transforms, or double inverse Fourier and Laplace transforms.
These transformations are powerful to generate the displacements and stresses resulting
from the three-dimensional point loads, acting in an inclined transversely isotropic
material.

The content of this thesis, includes that Chapter II provides a general literature

review on the existing relevant solutions for the transversely isotropic media; Chapter

I introduction the basic theory of Fourier and Laplace integral transforms in a
Cartesian co-ordinate system; Chapter IV and V present the detailed derivations for

three dimensional elastic solutions of an anisotropic full-space and half-space subjected
to point loads by employing the Fourier and Laplace integral transforms, respectively.
A series of parametric study using the present analytical solutions for displacements or
stresses is conducted by four illustrative examples; The numerical results are

demonstrated in Chapter VI; Eventually, Chapter VI includes summary and

recommendations for future work.
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CHAPTER 11

LITERATURE REVIEW

The elasticity of transversely isotropic materials is an important field of applied
mechanics and engineering science.  With the rapid development of modern
technologies, the theory of elasticity has become increasingly significant. In addition,
the field with which the theory has been typically associated, such as civil engineering
and material engineering, also, many emerging technologies demand the development
of transversely isotropic elasticity. = Some immediate examples are piezo-film
technology, anisotropic piezo-electric technology, functionally gradient materials
(FGMs), and those involving transversely isotropic and layered microstructures, such as
multi-layer systems and tribology mechanics of magnetic recording devices (Pan and
Yuan, 2000).

The mathematical details of the basic equations of elasticity can be found in a variety
of textbooks (e.g., Sneddon (1951) and Lekhnitskii (1981)). The basic equations of
elasticity are geometric equations, constitutive equations, and equations of equilibrium.
In tensor form, the geometric equations of strain-displacement relation in a Cartesian

co-ordinate system can be written as:

1
gy = +uy,)
L2 (2.1)

The constitutive equations of stress-strain relation in linear elasticity are represented

as:

Oy = Cyubu (2.2)



Considering the static state, the equations of motion can be reduced to the equations

of equilibrium as follows:

j.j Tt (2.3)
Egs. (2.1)-(2.3) will be further discussed in Chapter 3.1.

There are six basic equations of Eq. (2.1), six equations of Eq. (2.2), and three
equations of Eq. (2.3). Hence, total fifteen equations of Egs. (2.1)-(2.3) contain fifteen

unknows of three groups of u,, Oy

and &;. Generally, it is unrealistic to solve the
fifteen unknows all together. We often take one group of unknows or some unknows

from different groups as the basic variables. The displacements of u, are frequently

adopted as the basic variables to be found. In such a method, the other unknows of

two groups of o, and &, must be eliminated from the equations. More details

about the uniqueness and possibility of other similar displacement presentations can be
found in the works by Zou ef al. (1994) and Ding et al. (1996). However, if we take

the stress components (o, ) as the basic unknowns, these variables should be satisified

with corresponding stress boundary conditions and the compatibility conditions between
displacements and strains. Then, the solutions for stresses, and coresponding strains
and displacements, can be derived. In anisotropic elasticity, the stress method is
usually adopted to solve some relatively simpler problems (Ding et al., 2006). A
summary of the earlier works in this respect can be found in the monograph of
Lekhnitskii (1981). Base on the stress method, the general solutions of axisymmetric
problems of transversely isotropic media were derived by Ding (1987), Wang and Wang

(1989). In many other cases, it may be easier to find some stresses and some



displacements but not all the variables of one single group. The state-space method
usually deals with Egs. (2.1)-(2.3) with two groups of unknowns. It has been utilized

to solve the elasticity problems by Tarn (2002) and Georgiadis et al. (1999).

The equilibrium equations of Eq. (2.3) for infinite or semi-infinite solids are partial
differential equations. Partial differential equations arise in connection with various
physical and geometrical problems when the functions involved depending on two or
more independent variables. It is fair to say that only the simplest physical systems
can be modeled by ordinary differential equations. For infinite or semi-infinite
domains, the method of integral techniques is applicable for the partial differential
equations to reduce them to ordinary differential equations or algebraic equations. The
integral techniques include the Fourier, Laplace, Hankel, and Mellin transforms are
often employed to achieve the goal.

Pan and Yuan (2000) obtained the analytical solutions for stresses and strains in
anisotropic bimaterials by double Fourier integral transforms. Liao and Wang (1998)
presented the solutions of displacements and stresses in a transversely isotropic
half-space by using Hankel and finite Fourier exponential transforms. Nevertheless, in
transient dynamic problems, Laplace transforms are the most useful tools to transform
the variable of time. To the best of the author’'s knowledge, no solutions for
displacements and stresses have been proposed by employing the Laplace transforms
with respect to the spatial co-ordinate (x, y, or z) in a Cartesian co-ordinate system. the
Laplace transforms are adopted for solving the half space problem in this thesis.

This chapter reviews the current steate of knowledge with respect to the point loading

problem of a transversely isotropic medium. Existing analytical three-dimensional



solutions of displacement or stresses subjected to a point load in infinite or semi-infinite

space for a transversely isotropic medium are summerized.

2.1 Three-Dimensional Elastic Solution for Displacements and Stresses in a
Transversely Isotropic Full Space

Solutions to the problem of a point load acting in the interior of a full-space are called
the fundamental solutions or the elastic Green’s function solutions (Pan et al., 1976 and
Tarn et al., 1987). In the problems of infinite media, Willis (1965) estimated the
elastic interaction energy of two infinitesimal dislocation loops in transversely isotropic
magnesium and zinc media. There were two reasons to choice this medium, the first
being the case of presentation of the results afforded by the axial symmetry, facilitating
a ready comparison with the isotropic results. The second one was that to find the
closed-form expressions for fundamental elasticity tensor for such a medium were
possible.

Ting and Lee (1996) obtained the solution of Green’s function for three-dimensional
space of general anisotropic inclined medium subjected to a unit point force. It was
expressed in terms of the Stroh eigenvalues p, (v=1, 2, 3) on the inclined plane, and it
remained valid for the degenerate cases when p,=p,, and p,=p,=p;. The Stroh
eigenvalues p, were the roots with positive imaginary part of a sextic algebraic equation.
The Green’s function was simple when the sextic equation was a cubic equation in p°.
This was the case for any point in a transversely isotropic material and for points on a
symmetric plane of cubic, and monoclinic materials.

These solutions in exact closed-form have always played an important role in applied



mechanics and in particular numerical formulations of boundary element methods.
Many investigators have presented analytical solutions for displacement under a point
load in a transversely isotropic full-space, whose the transversely isotropic planes are
parallel to the horizontal loading surface. A summary of the existing solutions is given
in Table 2.1.

Table 2.1 Existing solutions for a transversely isotropic full-space subjected to a point

load
Author Analytical methods Type of loading Presented solutions
Chowdhury (1987) methods of images and vertical all displacements

Hankel transforms

Pan (1989) vector functions 3D all displacements

Willis (1965) Fourier transforms vertical all displacements

Elliott (1948) potential functions vertical all displacements

Chen (1966) potential functions vertical all displacements

horizontal all displacements

Pan and Chou (1976)  potential functions 3D all displacements

Fabrikant (1989) potential functions 3D all displacements

Sveklo (1969) complex variables vertical all displacements

Tarn and Wang (1987) Fourier and Hankel 3D all displacements
transforms

Lu (1991) Fourier and Hankel 3D all displacements
transforms

Liao and Wang (1998) Fourier and Hankel 3D all displacements
transforms



Sheu (2004) Fourier and Hankel 3D all displacements

transforms

Table I indicates the analytical methods, the type of loading and the presented
results. To the best of the authors’ knowledge, no closed-form solutions for the
displacement have been obtained in cases in which the planes of transverse
isotropy inclines to the full-space subjected to 3D point loads (Px, Py, P,), as
displayed in Figure 3.1. In this thesis, the methods proposed by Willis (1965) for
a transversely isotropic medium are followed. That is, the triple Fourier
transforms are adopted to obtain the integral expressions of Green’s displacement;
then, the triple inverse Fourier transforms and residue calculus are performed to
integrate the contours. However, Willis’s expressions for Green’s function are
only valid when the elastic constants fulfill conditions that enable inverse
transforms to be carried out (Tarn et al., 1987). Notably, the main difference
between Willis’s approach (1965) and that proposed herein was the use of
orthogonal vectors. In the former, two axes were on the transversely isotropic
plane, and the third was parallel to the axis of rotation associated with elastic

symmetry. Accordingly, a state of plane strain was assumed in that procedure.

2.2 Three-Dimensional Elastic Solution for Displacements and Stresses in a
Transversely Isotropic Half Space
A point load solution is the basis of complex loading problems. For an isotropic

solid, it has been studied by Kelvin (Thompson, 1848) for a full-space, Boussinesq

10



(1885) and Cerruti (1888) for a half-space with a vertical and horizontal point load,
respectively. In the case of a single concentrated force acting in the interior of a
half-space, Mindlin (1936) proposed closed-form solutions for an isotropic medium
using the principle of superposition of eighteen nuclei. Mindlin derived analytical
solutions following the Kelvin's (1848) approach and satisfying the condition of
vanishing traction on a plane boundary. However, the calculation of nuclei for a
half-space is very difficult (Mindlin and Cheng, 1950). Dean et al. (1944)
recommended another approach for the same problem by the method of images. Some
of their solutions can be extended to anisotropic media, whereas others are difficult.

For the displacements and stresses in transversely isotropic media subjected to a point
load, analytical solutions have been presented by several investigators. Some of the
solutions were directly derived using the approaches for isotropic solutions (Michell,
1900; Wolf, 1935; Koning, 1957; Barden, 1963; de Urena et al., 1966; Misra and Sen,
1975; Chowdhury, 1987; Pan, 1989). Nevertheless, others employed complex
mathematics techniques, such as Fourier transformations (KrOner, 1953; Willis, 1965;
Lee, 1979), potential functions (Lekhnitskii, 1940; Elliott, 1948; Shield, 1951; Eubanks
and Sternberg, 1954; Lodge, 1955; Hata, 1956; Chen, 1966; Pan and Chou, 1976; Pan
and Chou, 1979; Okumura and Dohba, 1989; Fabrikant, 1989; Lin et al., 1991; Hanson
and Wang, 1997) and complex variables (Sveklo, 1964, 1969), etc. The summary of
the existing solutions is given in Table 2.1. Table 2.1 indicates the type of analytical
space, the load, and the results presented in their solutions. Because of mathematical
difficulty or oversimplification for solving the problems, these solutions were limited to

three-dimensional problems with partial results of displacements (Michell, 1900; Shield,
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1951; Barden, 1963) and stresses (Michell, 1900; Shield, 1951; Barden, 1963; Misra
and Sen, 1975; Pan and Chou, 1979; Chowdhury, 1987; Fabrikant, 1989), or axially
symmetric problems invariant with the tangential co-ordinate, 0 (Lekhnitskii, 1940;
Elliott, 1948; Koning, 1957; Sveklo, 1964; de Urena et al., 1966; Misra and Sen, 1975).
Neglecting the 0, the solutions cannot be extended to solve a half-space problem
subjected to asymmetric loads. Pan and Chou (1979) proposed a more general solution
using potential functions. In their solution, the buried loads can be vertical or
horizontal with respect to the boundary plane. However, only the stress components

related to the z-direction were given (i.e., ,,, 6,, o, ), and the expressions for the

solution are quite lengthy.
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Table 2.2 Existing solutions for transversely isotropic media subjected to a point load

Author Space Type of loading Solutions

Michell (1900) half vertical vertical surface displacement,
and partial stresses
(inapplicable to boundary value problems)

Wolf (1935) half vertical all displacements and stresses
(oversimplified the elastic constants)

Koning (1957) half vertical all displacements and stresses

Barden (1963) half vertical vertical surface displacement,
and stresses on load axis

de Urena et al. half vertical all displacements and stresses
(1966)
Misra and Sen half vertical all displacements, and stresses on load axis
(1975) (oversimplified the elastic constants)
Chowdhury (1987) full vertical all displacements, and stresses on load axis
half buried, vertical all displacements, and stresses on load axis
Pan (1989) full 3-D all displacements and stresses
KrOner (1953) half vertical all displacements (dimensionally incorrect)
Willis (1965) full vertical all displacements (cumbersome and inaccurate)
Lee (1979) half buried, vertical all stresses (complicated)
Lekhnitskii (1940) half vertical all stresses (incomplete)
Elliott (1948) full vertical all displacements and stresses (incomplete)
Shield (1951) half buried, vertical all displacements and stresses at the surface
Eubanks and half vertical (completeness of Lekhnitskii’s method)
Sternberg (1954)
Lodge (1955) (transformed anisotropic problem

into isotropic one, inapplicable to
general boundary value problems)

Hata (1956) half vertical (rederived the Elliott’s and Lodge’s solution)
Chen (1966) full vertical all displacements and stresses
horizontal all displacements
Pan and Chou full 3-D all displacements and stresses
(1976)
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Table 2.2. Existing solutions for transversely isotropic media subjected to a point load

(continued)
Author Space Type of loading Solutions
Pan and Chou half buried, vertical all displacements, and stresses on load axis
(1979) buried, horizontal all displacements, and partial stresses

(potential functions assumed are lengthy)

Okumura and half vertical all displacements
Dohba (1989)
Fabrikant (1989) full 3-D all displacements, and partial stresses
half 3-D all displacements, and partial stresses

(solution of the shear stress is wrong)

Lin et al. (1991) half  wvertical, horizontal all displacements and stresses
Hanson and Wang half buried, 3-D (only the potential functions listed)
(1997)
Sveklo (1964) half vertical all displacements
Sveklo (1969) full vertical all displacements
half buried, vertical all displacements

Following the method proposed by Tarn and Wang (1987), Lu (1991) presented
analytical solutions for the displacements in a full or half soil space (transverse isotropy)
under a long-term consolidation. However, a part of the solutions might be error in
handwriting. Utilizing the approaches proposed by Lu (1991), closed-form solutions
for displacements and stresses in a transversely isotropic half-space subjected to a point
load are rederived and parts of the results are published (Liao and Wang, 1998).
However, the solutions are limited to the cases of planes of transverse isotropy parallel
to the horizontal loading surface.

The solution of the stresses and displscements in a half-space or a layered solid
with transverse isotropy is fundamental to the development of the theory of elasticity

and is of importance to many engineering applications. Ding (1987) presented a
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unified solution for a point force applied on the surface/in the interior of a half-space.
The solution could be extended to the problem of layered media using the state-space
and Fourier transform methods. Hence, to solve the problems of semi-infinite media,
Ding considered a transversely isotropic medium in a Cartesian co-ordinate system (x,
v, z), whose z-axis is perpendicular to the isotropic plane of material. Any point force
(or concentrated force) applied in the body can be resolved into three components 7, O
and P in x-, y-, and z-direction, respectively. Ding assumed that an arbitrary point
force was applied at the origin. It can be decomposed the problem into three
sub-problems by wusing the principle of superposition; namely, the solution
corresponding to a vertical force, P, in the positive z-direction, the solution to a
tangential force, 7,=T, in the x-direction, as well as the solution to a tangential force,
T,=0, in the y-direction. The last solution can be obtained from the second solution by
a co-ordinate transform with x replaced by y, and y by —x, respectively. However, it is
clear that Ding’s solutin has not yielded the analytical solutions of displacements and
stresses for an inclined transversely isotropic material owing to three—dimensional point
loads. All the fundamental solutions of literature for transversely isotropic materials

being the case of axisymmetric problem.
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CHAPTER I

BASIC THEORY

To derive the solutions for stresses, strains, and displacements in finite domains with
simple geometry, the method of separation of variables is usually applicable for the
partial differential equations to reduce to the ordinary differential equations (Chiang,
1997). Then the solutions can be constructed by superposition of eigenfunctions.
However, considering the domain is infinite or semi-infinite, it is hard to achieve a
similar reduction. Thus, the integral techniques include the Fourier, Laplace, Hankel,
and Mellin transforms are often utilized to attain the goal. Among them, the Fourier
and Laplace transforms are basic and most useful. Generally, the governing equations
for infinite or semi-infinite solids are partial differential equations. The Fourier and
Laplace integral transforms are efficient methods for solving the partial differential
equations and corresponding boundary value problems. Employing the two methods
can reduce the problem from solving partial differential equations to ordinary

differential equations or algebraic equations.

3.1 Basic Equations for Elastic Boundary Value Problems

Constitutive equations and transformation of elastic constants

The constitutive equations in linear elasticity are represented by the generalized
Hooke's law. If the state of vanishing strain corresponds to zero stress, then in

Cartesian co-ordinates, the generalized Hooke's law can be written as:

o, =Cpén (i), k I=x,y, 2) (3.01)

L
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where ¢, are components of a fourth-rank tensor, repressenting the properties of a
material, which generally varies from one point to another in the material. The ¢,

are called elastic stiffness constants. Since Eq. (3.01) contains nine equations
(corresponding to all possible combinations of the subscripts i and j and each equation
contains nine strain variables), there are 81 elastic stiffness constants. These are not all

independent hower. It will be seen that c¢,, =c;, =¢;; =c;;, which reduces the
number of independent constants to 36. In addition, the ¢, = ¢, , and this means the

constants are further reduced to 21. This is the maxium number of constants for any

medium.

In a Cartesian co-ordinate system, (x',)',z'), the Eq. (3.01) can then be expressed

as:
_Gx'x'— —Cn ¢, G, G, C; C16_— x'x |
Gy' »' C21 sz C23 C24 C25 C26 »'y'
O, _ G, G, Gy G Gy Cgfeé.. (3.02)
Ty Cy Cp Cpu Cy C Cuy|l 7y
Tox C, G, C; Cy Cy Ci| 7oy
| Doy | G Co Cq G G Cg | Vx|

The number of elastic constants Cia for describing their deformability is 21, 9, 5,

and 2 for generally anisotropic, orthotropic, transversely isotropic, and isotropic
material, respectively. Thus, for a general anisotropic elastic material, there are 21
independent elastic stiffness constants. If there exist three orthogonal planes of elastic
symmetry at any point in a solid, then there are 9 independent elastic stiffness constants,

and the material is said to be orthotropic. If at any point there is an axis of symmetry
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such that the elastic properties in any direction within a plane perpendicular to the axis
are all the same, the number of independent elastic stiffness constants will reduce to 5.
The plane is called an isotropic plane and the material is called a transversely isotropic
material. If any plane in the material is a plane of elastic symmetry, then the material

is isotropic, and has only 2 independent elastic stiffness constants.

Fig. 3.1 displays a transversely isotropic medium, in which the z' axis is the rotation

axis of elastic symmetry, the x’ and »' axes are in the plane of transversely isotropy.

In the co-ordinate system (x',)',z') , the corresponding matrix form is

(oo = [l

7z>0 (region 1)

N <«

Fig. 3.1 ( P, P, P.) acting in an inclined transversely isotropic full-space

Regarding the different co-ordinate system (x,y,z), the constitutive equations will

have the same form as {O'}xyz = [aLyz {g}xyz. Hence, the generalized Hooke's law for

the transversely isotropic material can be expressed as:
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(O | ¢, C, Gy O 0 0 T e
Oy C12 C11 C13 0 0 0 Eyry
0. C; G Gy 0 0 0 fe.
.| [0 0 0 C, 0 0|,
T... 0o 0 0 0 C, O |7
| Toyp | : 0 0 0 0 0 Cg|Vey] - (3.03)
a, a,—2a, a;—a; 0 0 0 |e&,,
a,—2a, a, a—a; 0 0 0 |&,,
|l a—as ay—as a, 0 0 O0]e..
10 0 0 a 0 0.
0 0 0 0 a; O 7.
0 0 0 0 0 a7y
where o, o,,, 0., arenormal stresses; &.., &,,, &, are normal strains;

T 7. are shear stresses; Vyizrs Voxrs Vi are shear strains, and C,;,

z'x' s x'y
C,, C;, C;i, Cu, Cg4i are elastic moduli or constants. Since
C;;=C;; —2Cg4, hence, only C;;, Cj5, Ci;, Cy, Cg are independent for a

transversely isotropic material. The relationship between C,;, C,;;, Cj;, Cyuy,

Cy¢s and a;, a,, a;, a,, as canbe presented in terms of five elastic constants as:

E /2
E —-U ,
a;=Cy = 2E .2 > azzcﬁzﬁ > as=Cy =G
(I+v)(l-v——v ) I-v——-v
E
Ev Cc,,-C E
I-v——-v
E

where:
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1. E and E' are Young's moduli in the plane of transverse isotropy and in a direction
normal to it, respectively.

2. p and p' are Poisson’s ratios characterizing the lateral strain response in the plane
of transverse isotropy to a stress acting parallel or normal to it, respectively.

3. G' is the shear modulus in planes normal to the plane of transverse isotropy.

If a new co-ordinate system (x, y, z) is obtained from the original system (x', ),

z') by rotation through an angle ¢ about the common axis x =x' (the axis of x and
x' parallel to the strike of transverse plane). The matrix of direction cosines /; for the

transformation formulae of the elastic constants are:

Z]] 112 l]3 1 0 0
[ll.j]z lyy 1y, 1z |=|0 cos¢g sing (3.05)
131 132 133 0 _Sin¢ COS¢

where i, j=1-3.
The elastic stiffnesses matrix in the old co-ordinate system (x',)',z") is [c]

Therefore, the elastic stiffnesses matrix [a]., in the new co-ordinate system (x,y,z)

xyz

can be expressed as:

[a]xyz=[q4‘/]T[C]x.yv:v[%]= Ay Ay Ay Ay G5 Ay (3.06)

where 7 is the transpose matrix; |_q,]J are written as follows.
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17 I I l12013 ELY Ii2lh
13 13 I3 I535; Lp35 Iyl
[qij]z 5 5 I35 I3315; [3515 [5513 (3.07)
23l 255y 233053 szlyy +1splhs Iszlyy + 131055 I3l +13505
23l 255l 205305 Dzl +splz Dzl + 15030 Il + 13500
|20l 20p5lhy 203055 Lyzloy +1plos Dyl +1plos Lglos + 1505

where i, j=1-3.

The new elastic constants of [a]x} obtained directly from the old elastic conctant

)Z

a;-as and ¢ It is important to note that [a] exist 13 elastic constants under the

oz
plane of elastic symmetry system, and the expressions of the elastic constants a; (i,
j=1-6) with respect to a;-as and ¢ are presented in Appendix A. Appendix A show that
the new constants of a=a,=0, ay=a,,=0, ay,=0a,,=0, a,;=a,,=0,

as;,=as, =as;=a5,=0 and a, =ag, =a,5=0a, =0

Then, the generalized Hooke's law for a transversely isotropic material is:

o, =lal,.{e},.. (3.08)

and {¢}

xyz

where {0'} are vectors of stress and engineering strain, respectively. In

xyz

Cartesian co-ordinates, they are

{O-}xyz = [0\:)6 ny O-zz Tyz sz Txy (309)

{g}xyz = [gxx gyy gzz }/yz yzx 7xy]r * (3'10)

Strain-displacement relations

When a sign convention for soil and rock problem is required, it is customary to

define compressive stresses as positive and tensile stresses as negative. The
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strain-displacement relationship under small strain condition in a Cartesian coordinate

system is:
_gXX ] i _ aux ]
ox
€y - %
y
c _ Ou,
zz 3 az
= _8uy ou, (3.11)
Ve 0z Oy
_ou, 0Ou,
Vx 0z Ox
_Ou, _ou,
7w | Ox Oy |

where u,, u,, and u. are three displacements of a point on the axis of a Cartesian

co-ordinate system.

Generalized Hooke's law in terms of the derivative of displacements

Hence, from Egs. (3.08), (3.09), (3.10) and (3.11), the generalized Hooke's law

equations for a transversely isotropic medium in a Cartesian coordinate system can be

expressed as:

Gxx = al ngx + a128y_v + a13gzz + a147/yz

Zh au, h ou, ou (3.12a)
=—a,—-—a, —ay——ay (- + =)
x oy 124 0z Oy

O_yy = a128xx + a228y) + a23gzz + a247yz

au dly au Guy ou
=—a,——ay, — @y — —ay( +—)
& 1% & oz Oy

(3.12b)
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O-zz = a13gxx + a23gyy + a33gzz + a347/yz

cu au au ou, ou (3.12¢)
- = —ay z_a34(azy+ =)

—dys
17,9 1%, V74 oy

=—dp

z-yz = a148xx + a248yy + a34gzz + a44]/yz

ou, ou, ou, ou, ou, (3.12d)
=—dy —ly —dy —a,,( + )
ox oy 0z oz 0oy
sz = aSSyzx + a567/xy
ou ou u au (3.12¢)
=5 () — s (5 +—5)
0z Ox & &
z-xy = a567/zx + a()ﬁyxy
ou, o ou. Ou (3.121)
- _ 7x + zZY\ _ X + Yy
asq( Py P ) — A oy o )

Equilibrium equations

In Cartesian coordinates, the equations of motion can be expressed by a tensor form
as:

o, +F =pi, (i=x,y,2) (3.13)

where p is the density of material, F, is the component of the body force per unit

volume in i-direction, and finally the double dot indicates the second order partial
differentiation with respect to time ¢. If the motion of the solid does not involve

acceleration, then Eq. (3.13) reduces to the equilibrium equation as:

w Ty Ta 0/ 0ox F. 0
r, 0, T,.|0/d|+|F, |=|0 (3.14)
T, 7, O0.|0/0z F 0
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where FY, F), and F. stand for the components of the body forces per unit volume in the

co-ordinate directions, x, y and z, respectively. Substituting Eqs. (3.12a)-(3.12f) (&

xx

> O T ) into Eq. (3.14) enables the equations to be regrouped as

Wy yz° Ty Txy

Navier-Cauchy equations for an inclined transversely isotropic material as:

ﬁZMX azux 62ux o%u
a +a +a +2a =
11 dcz 66 ay2 55 622 56 8y82
( LT s (3.150)
+(a;, +a —+(a;4 +a .15a
12 T ags e 14456 )T
o°u ou
+(a;,+a “+(a;;+a ==F
(agy 56)&@} (aj;; +ass) od x
ou o°u
a;, +a * v(a,,+a X
(a;; 66)axay (apy+asg) os
Uy T8y, T2 2, (3.15b)
+a +a +a +2a -
66 xz 22 2 44 &2 24 @}&
+a ou, +a u, +a _2142 +(ay; +a )é’zuz =
56 x2 24 2 34 &2 23 44 ay& y
azux é’zux
a, +tass ) —+(a;; +a
(ay 56)6x8y (a;; +ass) s
82uy ﬁzuy é’zuy é’zuy
+ass - tay——+ay——5+(a;+ay) G (3.15¢)
+a 82”Z+a 2u2+a 2u, 2a I, F,
55 x2 44 2 33 2 34 ay& z
Point loads

For a dynamic elastic problem, an arbitrary time-harmonic body force in z-direction
with angular frequency @ can be expressed as (Eringen and Suhubi, 1975; Rahman,

1995):

F. (x,y,2,t)=F, (x,y,2)¢'"" (3.16)
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where F(x,y,z) is the complex amplitude of the body force. Following the

suggestions of Eringen and Suhubi (1975) and Rahman (1995), a concentrated force in

z-direction (F%) can be represented as the form of a body force:

F, = p.6(x)5(y)5(z)e"” (3.17)

where o6 (') is the Dirac delta function.

Nevertheless, for static problems, the terms associated with time ¢ in Eq. (3.17)
should be removed. As this research concerning about the static problems, @ in Eq.
(3.17) will be zero. Hence, three-dimensional static point loads with components (F,

F),, F.) acting at the origin of the co-ordinate can be expressed as the form of body

forces:

F.=P.6(x)6(y)o(z) (3.18a)
F, =P,5(x)o(y)o(z) (3.18b)
F,=P.6(x)d(y)é(z) (3.18¢c)

Then, the point loads (Fy, F), F.) applied at the point (0, 0, /#) of the co-ordinate

system can be described as the form of body forces as:

F, = P.8(x)5(»)6(z ~ h) (3.192)
F, = P.8(x)5(»)8(z—h) (3.19b)
F. = PS(x)5(»)6(z ~ h) (3.19¢)

The Dirac detla function is a mathematical artifice for representing an extremely

localized function with a finite total area. For example, &(x—¢) is the limit of a
spike-like function of x, which is zero almost everywhere expect very near x=¢&.

That is, the Dirac detla function has an extremely sharp peak in such a way that its area
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above the x axis is unity, i.e.,

[ s-pn] ¥ §@D

0 if <ce(ab), (3.20)

where (a, b) stands for the open interval between a and b, excluding the end point. As
long as the point of concentration & lies between a and b, the upper and lower limits

can be replaced by (—o,0). Therefore, an alternative definition of the Dirac detla

function is:

[ oG-&dx=1 (3.21)

In mechanics, o(x—¢&) may symbolize a concentrated force, i.e., the limit of a
pressure distribution with a sharply peaked intensity around x=¢ and a unit body
forces per unit volume (Chiang,1997).

3.2 Basic Theory of Fourier and Laplace Transforms

In order to solve elastic solutions for stresses and displacements in an incline
transverselyisotropic medium subjected to a point load, the inverse Fourier and Laplace
transforms are the most frequently adopted methods since they can be evaluated in a
complex plane. One of the mathematical applications of Cauchy’s theorem is to
facilitate the explicit evaluation of integrals along a real line. The typical procedures
are (1) change the real integration variable to the complex variable, (2) find the
singularities of the integrand in the complex plane, (3) connect the original path of
integration with an additional path to from a closed contour, (4) apply Cauchy’s integral
formula to evaluate the integral along the closed contour, (5) find the integral along the

additional path, and (6) subtract from the results of (5) from (4) to get the original
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integral (Chiang, 1997).
In the first instance, we suppose that the elastic solid is infinite extend and it is

deformed by the action of known point loads (£, F), F) at the origin of the co-ordinate.

We shall further suppose that, as |x

; |y| or |z|—>oo, all the compontents of

displacement and of the stress tensor tend to zero. To solve the equations of
equilibrium equations, we introduce the Fourier transform (Section 3.2.1) by
considering the distribution of displacement and stress in an infinite elastic solid due to
the application of point loads acted at the origin of the co-ordinate. It is assumed that
the elastic medium is bounded by the space of infinite extend; However, in the case of a
semi-infinite domain, the solutions for displacement and stress components must tend to
zero as z tends to infinity. Similarly, the method of Laplace transform, as described in
Section 3.2.2, is introduced furth to solve the semi-infinite problem.
3.2.1 Fourier Transform

The Fourier transforms can be adopted for reducing an integral function to a simple

function, such as U,(a) is the Fourier transform ofu, (x). The definition of Fourier

transformation is:

u,(x)e" “dx

_ 1=
U(a)=——
V27 L (3.22)

Then u,(x), inverse Fourier transform, is given in terms of U,(«) by the following

relation:

1 % 4
u(x)=——| U(ax)e“da
V2x [o . (3.23)

Let u,(x) be continuous on the x-axis, and u,(x) >0 as |[x|—>o. Furthermore,
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let u'.(x) be absolutely integrable on the x-axis. Then,

\/_ .[ du,(x) _”’“dx—laU (o)

dx (3.24)
Further applications of Eq. (3.24) give:
d u (x) *llZ)C du (x) *HXX
j dx =ia j dx = (ia)*U ()
V27 2, V27 2, (3.25)

The same are true for higher derivatives.
The theory of Fourier transforms of function of a single variable can be extended to

functions of several variabes. Suppose, for instance, that u,(x,y) is a functions of the

two independent variables x and y; then, regarded as a function of x, u,(x,y) has the

Fourier transform:

: 1 T —iax
Ueny) == | wlxy)eds

(3.26)
and this function, regarded as a function of y, has the Fourier transform:
U@ )= [ O y)e ™y
2 %, (3.27)

Combining Egs. (3.26) and (3.27), we observe that the relation between the functions

u,(x,y) and U,(a,p) is:

U= [ utene sy
L (3.28)

Hence, U,(a,f) is the two-dimensional Fourier transforms of the function w.(x,y).

Sequentially, u,(x,y) may be expressed in terms of U (a,y) as:
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1 T > iox
oY) == [ Uia,y)e“da

(3.29)
Similarly from Eq. (3.29),
R 1 5 — 4
Ula,y)=—— | Ula.pe"dp
V27 L, (3.30)
and eventually that,
wxn) == [ [ Ulappe = dadp
27 (3.31)

giving the inversion formula for the double Fourier transform (Sneddon,1951).
Right now, the generalization to a greater number of variables is obvious. Suppose

u,(x,y,z) 1is a function of the three independent variables x, y, z; then the triple Fourier

transforms of the function u,(x,y,z) are defined to be:

- J. u,(x,y,2)e”" PP dxdydz
Q) ", , (3.32)

Qr) 2.7, , (3.33)

3.2.2 Laplace Transform
The function U,(s) of the variable s is called the Laplace transform of the original

function u,(z), and will be denoted by L{u.}. Thus,

171(5) =L{u;} = T u(z)e "dz
0 (3.34)
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Let u.(z) be a function that is piecewise continuous on every finite interval in the
range z=>0 and satisfies |u (z )| < Me "7 for all z>0. Then the Laplace
transform of u,(z) exists forall s>¥.

Since wu,(z) is piecewise continuous, u,(z)e *” 1is integrable over any finite interval

on the z-axis. From Eq. (3.34), assuming that s > ¥, we obtain:

['e]

[ u(2)edz
0

L{u}| = < T [u,(2)|e ™ dz < T Me" e dz =
0 0

s—¥

(3.35)

where the condition s> 'Y is needed for the existence of the last integral.

Furthermore, the original function u,(z) in Eq. (3.36) is called the inverse transform

or inverse of U,(s), and will be denoted by L'(U,). In another word,

w(@=LT} = [ Ueds
i (3.36)
In most physical applications, the variable z can be replaced by the time (¢). In this
research, the variable z is the position of z-axis.

The constant ¢ in Eq. (3.36) is chosen to be large enough, say ¢ > a, so that the last

integral exists. The value of @ depends on the behavior of u,(z) at large z.
Suppose that u,(x) is continuous for all z>0, and has a derivative u,'(x) that is

piecewise continuous on every finite interval. Then the Laplace transforms of the

derivative u,'(x) exist when s>, and
L{u,'(2)} = sL(u;(2)) — u;(0) (3.37)

Similarly,
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Liu."(2)} = s’ L(u,(2)) — su,(0) —u,'(0) (3.38)
3.3 Reducing the PDE of (3.15a)-(3.15c) to ODE Using Double Fourier
Transformation

The equilibrium equations, as expressed in Egs. (3.15a)-(3.15c) for an inclined
transversely isotropic space subjected to three-dimensional point loads are partial
differential equations. Double Fourier transforms can be employed for solving the two
independent variables of x and y to reduce the problem of solving partial differential
equations to ordinary differential equations. We introduce the double Fourier

transforms for displacement functions and derivatives as:

(%) T T u,(x,y,2)e " Pdxdy = u,(a, B,z) (3.39a)
T —00 —00

(21,,) f I a”a(,f( yy)’ 2) M dsdy — i (B (a, . 2) (3.39b)
(2171_) T ]3 62;[;(2)2’;;,)2) e—i(ax+ﬂy)dxdy — _az(ﬂz )L_ll (a,B,2) (3.39)

Hence, the double Fourier transforms for point forces F, are given as:

Ff:i [o [ Femaxdy (i=x,y,2) (3.40)

Using Egs. (3.392)-(3.39c) and Eq. (3.40), the Navier-Cauchy equations (Egs.
(3.15a)-(3.15¢)) can be simplified as the following system of linear ordinary differential

equations:
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2

@, + g —a; j+o%w L7 (a.8,2)
zZ
+{(a, +ag)apf +i(ay, + ass)a_d fu,(a,p,z) (3.41a)
Z

) d.,_ —
+{(a, +as)ap +i(a; + ass)ag}uz(a,ﬂ,Z) =F,

{(a, +ag)af +i(a, + a56)adi}b_tx(0{,ﬂ,z)
+{a.0’ +a,p —a 52 +21a24ﬂ }u (a,p,2) (3.41b)

2

d
+{a56a2 +az4ﬂ2 - U2 — +i(ay +a44)ﬂ }“ (a,B,2)= F

{(a, +ag)of +i(a; + ass)adi}ﬁx(aaﬂaz)

2
Hayd +af -a, j-m%+%m 17, (e, 8,) (3.410)
4
d2
+asa’ +aup’—a B2 +2’a34ﬂ }u (a.B.z)=F,
Z
The stress components of o_(x,y,z), 0,(,,2), 0.(xy.2), 7,.(x,y,2), 7..(x,,2)

and 7 (x,y,z) (Egs.(3.12a)-(3.12f)) are performed by the double Fourier transforms

with respect to x and y. Then,

o (a,p,z)=—icau (a,p,z)—ifa,u (a,p,z)+a; M
g dz
du,(a,f,z) (3.42a)
14(—— ipu_(a,p,z))
&, (@, B.z) = —iaa,i (@, B,2) - ifay,i, (@, B,2) + ay, du(a,p.z)
i, (. f.2) * (3.42b)
yy (— —ifi.(a, p,z))
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o.(a,B,2)=—iaau (a,B,z) —ifayi,(a, B,z) + ay

du_(a,p,z)
dz

du,(a,B,2) (3.42¢)
34(— —ipu_(a,p,z))
7.(a,B,2) =—iaa,i (@, f,2) —ifai, (@, f,2)+ay, du (a,p,z)
d7 (. ) a (3.42d)
44(— —ipu (a,p,z))
dit (a £,7)

7. o) = ayy (O PE) o (@, B,2)) ~ iag (S, (@, .2) + dil, (@, B,2)) (3.42¢)

dit (a,b’z)

Ty(a,p.2) = as(—————iau(a,p,z)) —iay(fu (e, ,2) + au,(a, §,2)) (3.42f)

To obtain the general solution of Egs. (3.41a)-(3.41c), the homogeneous solution are
solved first. Suppose that the solutions of the homogeneous equation can be expressed

as the exponential function, namely,
u(a, f,z) = A(a, p)e” . (3.43)

We thus set 4 ,=1. then,

ez (3.44)
Substituting Eq. (3.44) and it derivatives du[(cz,ﬂ,z) Cud and
A
2
4 ui(da’zﬂ_’Z)zuze“ into Egs. (3.41a)-(3.41c) and regrouping the system of
Z

homogeneous ordinary differential equations, we obtain
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dll(a’ﬂau) dl2(a’ﬂsu) dl}(a’ﬂsu)
detld, |= det| d,, (@, Bou)  dyp(a, Bout) dyy(ax, By)

dy(@. o) dy(@fou) dy( o) (3:45)
- —azaéﬁl A {() + @ + 7 ~[(iu) cos § - fBsin §1°} +[(iu) cos ¢ — Psin g =0

where
d (o, Bu) :allaz +6166ﬂz +6255(iu)2 +2a, i) (3.46a)
d (e, pu)=d, (e, fu) =(a, +a)off+(a,, +as)iu) (3.46b)
d (o, fu)=d, (o, f,u) =(ay, +ay )af+(a, +ass)odiv) (3.46¢)
d,(a, Bu) za“az +5122,Bz +a44(iu)2 +2a,,Aiu) (3.46d)
d (o, pu)=d,,(a, p,s)= a56az +6L24,6‘z +a}4(iu)2 +(ay; +a,,)Aiu) (3.46¢)
d,;(e, Pou) =a§50(Z +a44,6’2 +cg3(iu)2 +2a,,Aiu) (3.461)

The characteristic equation of Eq. (3.45) has six roots. The details and the physical

basis of which are given in Appendix B. The characteristic roots can be expressed as:

_ —iffsingeosp—1+4)—| A (S +a’(c08 g+ 4si §) (3.47a)
' oS P+ A4 sirt’ ¢
" —ifsingcosp(—1+ 4) —| A (F +0’(cod g+ A,sirt ) (3.47b)
oS ¢+ A, sirt’ ¢
_ —ifsingcosf(—1+ 4) | A (S +0(cos g+ Asitt 9) (3.47¢)
i oS ¢+ A, it ¢
_ —ifisingcos(-1+4)+| A (B +02(cos g+ 4 sirt ) (3.474d)
‘o oS ¢+ 4 sint’ ¢
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_ —ifsingeosf(—1+ 4) +| A (S’ +02(co8 ¢+ A sirt ) (3.47¢)
B oS ¢+ 4, sirt’ ¢

5

. —iBsingcosi—1+ A)+ A4S +0(coS p+ A sir? ) (3.47f)
oS ¢+ A, sirt’ ¢

where the real part of the {4, u, , u,} are negative and {u,, u, , u,} are positive, and,

4,=4 (3.48a)
ds
1
2 2 2 2’ 2
4 _llas+aa,-a; Jlas+aa,-a; | a; (3.48Db)
2 aras ajas a
i
2 2 2 2)? 2
4o L\ataay—a; a5 taa,—as | a4
3 2 a,as ajas az
(3.48¢)

By a linear combination of 6 functions w, u,, u, u,, u, and g, the expressions for

Uyp)(a.B.z), wypy(apz),and i,y (a pz) are:

6
U@, p,z) = z Ale"”
=1

(3.49a)
4 i u;z
ﬁy(H)(a’ﬂaz)zz A)J/e ’
= (3.49b)
¢ i u;z
Z’_IZ(H)(aJﬁJZ) = Z Ale”
= (3.49¢)

where 4;, A4, and 4. (i=1-6) are the undetermined coefficients.
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In order to derive the solution of the homogeneous equation ( Egs. (3.41a)-(3.41c¢)),

we redefine the three displacement functions (Egs. (3.49a2)-(3.49c)). In the lower

half-space, the @, (a,f,2), U, (@.B.2), iy (a,fp.2), A, A and 4! of Egs.
(3.49a)-(3.49¢c) would express as U (@, f,2)> Uy (a,B,2) ﬁzl(H)(a,ﬂ,z),A){l,
ijl’ and Azfl. Similarly, they can be expressed as ﬁxz(H)(a,ﬂ,z), ﬁyz(H)(a,ﬂ,Z),
Uy (@, ,2) 5 Al Ayfz,and A/, in the upper half-space. Hence,

for z>¢ (region I, as shown in Fig.3.1),

— o4l uyz 2 uyz 3 usz 4 uyz 5 usz 6 ugz
Uy (@, B,2) = A" + A€ + A,e™" + Aje™™ + e + A)e

(3.50a)
(@, B,2) = Ae"™ + A% + A" + A" + A5, e" + A5 e"” (3.50b)
iy (@, B,2) = ALe" + Ae" + ALe" + Ale' + A e" + Aj e (3.50¢)
and for z<0 (region 2, as also depicted in Fig.3.1),
T (@, ,2) = Ape"™ + Ae" + AL + ALe"" + A3, + A" (3.51a)
Uy (@, f,z)= A;ze”lz + Ayzze"zz + Aize”3z + A;‘ze““z + A;Ze”sz + Afze“ﬁz (3.51b)
U (@, B,2) = ALe"™ + ALe" + ALe" + AL + AL,e" + AL (3.51¢)
Now, let:
A, A A (=1-6) (3.52a)
Dy(a,pB,u;)  Dy(a,pu;) Dy(a,p,u;)
A7, 4, 4 (=1-6) (3.52b)

Dy(a,fou,)  Dy(a,fou,)  Dy(a,fou))

where D; (i, j=1-3) are the cofactors of the third—order determinant det[dl.jJ, which are
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presented in Appendix C.

Dty =] ) 553
Pun g~ Datn ) ==ia S | 0
Dutatuy = Date =i 2L )0
Outapu) <DL apey) O
Date iy =Dty == M0 ) O
Dty = [ e ) 65

Since only Dy;, D»;, and D3; exist in Egs. (3.52a)-(3.52b), the symbols of them can be

simplified as:

Dy(a.pu;)=D},, Dy(a,pu;)=D}, Ds(a pu,;)=D} (3.54)
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CHAPTER IV

THREE DIMENSIONAL ELASTIC SOLUTIONS OF A
TRANSVERSELY ISOTROPIC FULL-SPACE SUBJECTED TO

POINT LOADS

The analytical solutions for displacements and stresses in an inclined transversely
isotropic full-space subjected to a point load in the medium are derived in Chapters 4.
To present the solutions, the ordinary differential equations reduced from partial
differential equations by Double Fourier transform respect to variables of x and y are
solved first. Three distinct approaches as shown in figure 1.1 were used to derive the
solutions in Sec 4.1-4.3. In Sec 4.1(traditional method), we consider the
nonhomogeneous part of the ordinary differential equations and solve the homogeneous

and particular solution of Egs. (3.41a)-(3.41c). In Sec.4.2 (imaginary space method),
we separate the full-space into three regions of —~® <z <0 (region 2), 0 <z<0"
(imaginary space), and 0" <z <+ (region 1) , the point load force is in the region of

0" <z<0" Inregions of ~®°<2<0" and 0" <z<+% the right-hand side of Egs.
(3.41a)-(3.41c) does not exist, the equilibrium equations are homogeneous linear
equations. Hence, we can solve the boundary-value problem consisting of the three
regions. In Sec.4.3(algebraic equation method), the Fourier transform respect to
variables of z can reduce the aforementioned ordinary differential equations (Egs.
(3.41a)-(3.41c¢)) to algebraic equations. This method, there are three time of Fourier

transform respect to variables of x, y and z, is also called Triple Fourier transform
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method.

4.1 Traditional Method

Aj

vl

In full-space, the coefficients A’ and A/, (j=1-6) of Egs. (3.50a)-(3.50c) can

x1 2
be determined by assuming the displacements in region 1, wu,;, u,;, and u,, must be
finite when z is approaching to o. The real part of the {u,, u , u} are positive,
therefore, A =A; =4, =0, A}, =4, =45 =0, and A4} =4 =45 =0. Likewise,
in region 2, u,,, u,,,and u,, also must be finite when z is approaching to -co. The
real part of the {u, w, , u } are negative, hence, A, =A4,=4,=0,
A, =4, =4, =0,and 4, =42, =4,=0.

In order to solve the homogeneous solutions, Eqgs. (3.41a)-(3.41c), we define the

costants of CJ, and C/, from Egs. (3.52a)-(3.52¢).

j A’ J A
4, = L = A =CJ, (j=1-3) (4.01a)
Dll(aaﬂ’uj) D21(a’ﬂ’uj) D31(a,,6’,uj)
J A’ J A
4, ¥2 45 =/, (=4-6) (4.01b)

Dy(a.Bou;)  Dy(a,fou,)  Dy(afou,)

Adopting the costants of CJ, and C/,, Egs. (3.50a)-(3.50c) and Egs. (3.51a)-(3.51¢)

can be re-written as follows:

for z>¢ (region 1, as shown in Fig.3.1),
iy (a0, B,2) = Cy,Dye"” + Cy,Dle' + Cy,D; e (4.02a)

iy (a, B,2) = CpyDy e + Cy, D5 e + Cj,Ds e (4.02b)
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— 1 1 uz 2 2 u,z 3
”zl(H)(auHaZ) = CyyDye™ + Cy, Dy e + Cy, D

,and for z<0 (region 2, as also depicted in Fig.3.1),
— 4 4 uyz 5 5 usz 6 6 ugz
uxZ(H)(a’ﬂ’Z) =C,,D e +C,,Dje™ +C),Dpe™

— 4 4 uyz 5 5 usz 6 6 Uz
”yz(H)(anBaZ) =C,,D5e"" +C,,D; e +C),D, e

— _ 4 4 uyuz 5 5 usz 6 6 _ugz
uzZ(H)(aJﬂ’Z) =C,,D;5e™" +C,,D5\e™ +C,),Dje™

31€

(4.02¢)

(4.03a)

(4.03b)

(4.03¢)

Based on the homogeneous solutions, we can assume the particular solutions with the

forms as:

6
l’_lx(P)(aaﬂaz) = Z B){ (Z)eujz
j=1
6 j u;z
ﬁy([’)(a:ﬂ:z) = z B;(Z)e !
j=1

6
l’_lz(P)(aaﬂaz) = z le (Z)e“/Z
=

(4.04a)

(4.04b)

(4.04¢)

The coefficients B){ , B;‘ , and sz (j=1~6) can be determined by the method of

variation of parameters (Hildebrand, 1976).

The point loads (F, F), F:) acting at the

origin point of the co-ordinate system can be described as Egs. (3.18a)-(3.18c).

Following the approaches for homogeneous solutions, Eqs. (4.04a)-(4.04c) are

expanded as:

for z>(0 (region 1, as shown in Fig. 3.1),
LTxl(P)(a,ﬂ,z) = Bie"‘z + Bje”zz + Bie'”z

— 1 _uz 2 _uyz 3 uyz
u,p(a,p,z)=Be" +Be" +Be"

U, p(a,pB,z) = lee“‘z + Bfe“zz + Bfew
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and for z<0 (region 2, as also depicted in Fig. 3.1),

iy p (a1, 8,2) = —Ble" — Ble"* — Ble" (4.06a)
Uy (@, fB,2) = —B;‘e“"z —B;eusz —Bfe“ﬁz (4.06b)
i,y (@, ,2) = —Ble"" — Ble"* — Ble" (4.06¢)
where

_ PxDll(uj) +PyD12(uj)+PzD13(“j)

BJ'
2mmU, (4.072)
B/ = PxDzl(uj) + PyD22(uj) +PzD23(uj)
y
2mmU, (4.07b)
B/ = PDyy(u;) + P, Dy, (u;) + P.Dyy (1)
2an U, (4.07c)
and
m, = ass(az3a,, — a324)
= a,a;(cos’ ¢+ A sin’ g)(cos’ #+ A, sin” g)(cos’ ¢+ A, sin” @) (4.08)
U (@.f) = Ol —uy ) — uy ) (u — 14y ) (e — 1, ) (1 — a5 ) (u — )] =,
ou (4.09)

Introducing an imaginary plane along z=0, to separate the full-space into two

half-spaces, one is 0" <z<o (region 1 in Fig. 3.1), and the other is —o0<z <0~

(region 2 in Fig. 3.1). In the lower half-space, the Eqgs. (3.42a)-(3.42f) would express as
Exxl(a’ﬂ’z) > 5yyl(a!ﬂaz) > Ezzl(a’ﬂﬂz) > z_-yzl(a'/’lgﬂz) > fle(a,ﬁ,Z) and z_-xyl((x’ﬁ’z) °

Similarly, Eqs. (3.42a)-(3.42f) can be expressed as &,,(a.f,2) , G,,(@.p,2) ,
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G...(a,.B.2), T.,(a pB.2), T.,(a pB,z) and T, B.2) in the upper half-space. In

this case, we may rewrite Eqs. (3.42a)-(3.42f) as

— . — . — dﬁz‘(aﬁﬂ’z)
o (@, B,2)=—iaa,u (a,B,2) -ifa,u (a,B,2) + a;———
' | dz 4.10a)
dit (@, 3,7) *
14(”——1',8172].(0{,,6’,2))
. ) _ ) _ du_(a,p,z)
o (@, B,2) =—iaa,u (a,f,z) —ifayu (a, B,2) + @ —————
B dz (4.10D)
du,(a,p,z) .
+ay (——————ipu(a,p.z))
dz !
_ o o du_(a,p,z)
0. (a,B,2) = —iaayu (a, B,2) —ifayi (&, B,2) + a5 —————
' ' ! dz 4.10¢)
dit (a,,2) (3
34(”—Z—iﬂﬁzj(a,,3,z))
_ R Y du(a, p,z)
T(a, B,2) =-iaa,u(a, B,2) —ifai(a, f,2) + @y ———
o h) dz (4.10d)
uw (a,p,z
44(W—Z—iﬂﬁzj(0{,ﬂ,2))
_ A @pa)
Tz;g‘(a:ﬂaz) - aSS(T lauzj(aaﬁaz)) (4106)
—ia56(ﬂﬁxj(a:ﬂaz)+aﬁy/(a>ﬂaz))
Ty, p,2) = asa(M_iaﬁzj(a’ﬂ’Z” (4.101)

- la66(/6—xj(a>ﬂaz) + aﬁyj(a’ﬂaz))

where j=1, 2.
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When the two half-space are ideally bonded at the interface z=0 such that the

material becomes continuous across the interface, we have:

7.0 (%,2,07) = 7.,(x,»,07) = Po(x)5(y) (4.11a)
7,16, 2,07) = 7,,(x,3,07) = P,5(x)5(y) (4.11b)
0..1(x,3,0") =0, (x,»,07) = P6(x)5(») (4.11¢)
U, (%,,07) =1, (x,3,07) =0 (4.11d)
Uy, (%, 3,07) —u,,(x,,01) =0 (4.11e)
u, (6, ,07) —u,(x,»,07) =0 (4.119)

where —w<x<ow, —w<y<ow. The subscripts 1 and 2 mean that z=0 plane is

approaching to 0" and 0, respectively.
pp g p

Following, the double Fourier transforms of Egs. (4.11a)-(4.11f) can be expressed as:

Ta(a,B.0") =T (e, f.07) = A (4.12a)

2r
_ . P

z_'zyl(ao ﬂ’0+) - szz(av ﬂao ) = (412b)
2

_ o — . P

(@, p07) -0 ,(a,p,07) === (4.12¢)
2r

I’_lxl (Ot,ﬂ,OJr)—L_lxz(a,ﬂ,O_) =0 (412d)

i, (@, B,07) i, (@, ,07) =0 (4.12¢)

ﬁzl(a>ﬁ90+)_ﬁzz(aaﬁ70_) =0 (412f)
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The general solutions of nonhomogeneous equations are the sum of the forms as:

7’_-zx(a’ﬂ’z) = Z_-zx([-])(a’ﬂ’z) + Z_-zx(p)(aoﬁaz)

r,(a.f.2) =T, (@.f.20)+ T, (@.5.2)

Ezz(aﬂﬂ7 Z) = EZZ(H)(a’ﬂ’Z) + EZZ(P)(a’IB’Z)

ﬁx(a’ﬁaz) = L_lx(H)(C(,ﬂ,Z) +l’7x(P)(a’ﬁaZ) ,

ﬁy(aaﬁaz) = L_‘y(H)(auBaZ) +L_‘y(P)(aaﬂ:Z)’

u(a,p,z)= L_lz(H)(a’ﬁ’Z)+L_lZ(P)(a’ﬂ’Z)’

(4.13a)

(4.13b)

(4.13¢)

(4.13d)

(4.13¢)

(4.13f)

where #, , (a,,z) are the corresponding homogeneous solutions, and #, , (a,f,z2)

are particular solutions.

Hence, from Eqgs. (4.02a)-(4.02c), Egs. (4.03a)-(4.03c), Egs. (4.05a)-(4.05¢c), Egs.

(4.06a)-(4.06¢), Egs. (4.10a)-(4.10f) and Egs. (4.13a)-(4.13f), the system of six linear

equations (Egs. (4.12a)-(4.12f)) has six undetermined coefficients

C4

Ju
Ja
S
Ja
I
o

5
u2 > Cu2 s

iz
I
e
Jio
I5
Jo

1 2 3
Cd2’ Cdz’ Cd2’

C?,. These coefficients can be associated with [fijJ (i, =1-6) as follows:

Jis
I
s
Ji
s
Je

Jia
S
S
s
Jsa
o4

Jis
s
Jas
Jas
Jss
f65

e
s
e
Jas
s

Jos JL

T op) (a,,07)— T op) (a,,07)
Tap) (a,B,07) - T (@, 5,07)

O..om(@, B07) - O, ,07)
Uy py (s B07)— Uypy (@, $,07)

Uysp (a,5,07)— Uyp) (a,,07)

L Uy p(Q, B0")— Uy p) (a,8,07) ]

where f;; (i, j=1-6) are presented in Appendix D.
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Then, the six undetermined coefficients C,,, C;,, C.,, C., C,, C° can be

u >
determined. The boundary conditions of the full space consists of two parts, the first
term and the second one in the left-hand side of Eq. (4.14) are the components of

homogenous solutions and particular solutions, respectively. At the region of

0" <z<0", the second term in the left-hand side of Eq. (4.14) can be solved as

follows:

T (@, B.07)— Tom(@, 5,07)
Toap) (a,,07) - TP (a,8,07)
EzzZ(P)(a’ ﬁ’0+)_EZZZ(P)(a’ 5,07) 1
I’_lx2(P)(a7ﬂ’0+) — U (a, ,07) 27z
Uy py (@, ZAUSES Uy (2, ,07)
Uy p) (a,B,07)— U (a, 5,07) |

o o © Ju. v . v

L (4.15)

where Eq. (4.15) will be demonstrated in Appendix E.

Due to the determinant of f; (i, j =1-6) does not equal to zero, the undetermined

: 1 2 3 4
coefficients C,, , C,,, C,, , C

u2 >

C), and C;, must be zero. Hence,
A)lcl :Ajl :A;l =0, A;»l :Ay21 :A; =0, A;l :A221 :Ajl =0 . Ajz :Ajz :Afz =0,
A, =45, =4°,=0,and 47, =4, =45, =0.

In the method of particular solution for full-space, it is clear that the homogenous
solutions do not contribute to the general solution of Eqgs. (3.41a)-(3.41c). In the other
word, the displacement and stress functions can be obtained alone from the particular
solutions in the form:
for z>¢ (region 1, as shown in Fig. 3.1),

u,(a,B,2) =v,p(a,pB,2) = B}Ce“‘z + Bfe“zz + Bi’e"“

(4.16a)

45



u, (@, f,2) =y p (@, p,2) = B}l,eu‘z + B;e”zz + B;ew

(4.16b)
i, (a,p,2) =i, (e, f,2) = Bie" + Ble" + Ble"” (4.16¢)
o, f,2) =0 (2, B,2) (4.16d)
G, f.2)=5G,,, (a,p,2) (4.16¢)
G...(a,B,2) =G, p(a, B,2) (4.161)
fyzl(a7ﬂ’z) = Z_-yzl(P)(a’ﬁ7Z) (4.16g)
Ta(a,8,2) =7 (a, 5,2) (4.16h)
To(a,B.2) =7 (a0, 3,2) (4.161)
and for z<0 (region 2, as also depicted in Fig. 3.1),
i (e, B,2) =iy (@, f,2) = —Ble" — Ble" — Ble"” (4.17a)
(. ,2) = L, (@0, B, 2) = = Bye" — Ble" — Bie'” (4.17b)
i, (@, f,2) = iy (@, B,2) =—Ble"* — Bl — Ble" (4.17¢)
G, B,2) = Gy p) (@, B, 2) (4.17d)
G, (a,B,2) =G, (. B,2) (4.17¢)
o..,(a,B,2)=0_,p(a,f,2) (4.171)
T.,(a,f,2) =7, (a,p,2) (4.17g)

46



T, B,2) =T (@, B,2) (4.17h)

Z_'xyz(a,ﬂ,z):fxyz(f))(a’ﬂaz) (4171)

4.2 Imaginary Space Method

In Fig. 4.1, we separate the full-space into three imaginary regions of —co<z <0,
0 <z<0",and 0" <z<+w. The point load force is in the region of 0" <z<0".
In region of —w0<z<0 and 0" <z < +o0, the right-hand side of Egs. (3.41a)-(3.41c)
are not existed, the equilibrium equations are homogeneous linear equations. In the
method of undetermined coefficients for full-space, it is clear that the particular
solutions do not contribute to the general solution of Egs. (3.41a)-(3.41c). In the other
word, the displacement and stress functions can be obtained alone from the

homogeneous solutions.

region 2 /

7

—0<z<0"

0’<z<0*/ %

0t <z<+0 £

y
region 1

Fig. 4.1 Separate the full-space into three imaginary regions of —co<z <0,

0 <z<0" and 0" <z< 4w
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In order to differentiate varieties of homogeneous solutions of Egs. (3.50a)-(3.50c)

and Egs. (3.51a)-(3.51c) in Sec 4.1.1 and Sec 4.1.2, we define the costants of C/ and

C/ from the Egs. (3.522)-(3.52b).

Jj A’ J i
4 _ )1 _ A =CJ (=1-3) (4.18a)
Dll(aaﬂauj) Dzl(aaﬂauj) D31(a,ﬂ,uj)
A 45 4} =C/ (j=4-6) (4.18b)

Dy(a,fou;)  Dy(a,fou;) Dy(a,fou,)

By using the costants of CJ and C/, Egs. (3.50a)-(3.50c) and Egs. (3.51a)-(3.51¢)

can obtain as follow:

for z> (0" (region 1, as shown in Fig. 3.2),

i, (a,B,z)=C,D, e"* + C;D}e" + CiD; e"* (4.19a)
i, (a,B,2) = C;Dye"* + CiD; e + C D3 e" (4.190b)
i, (a,B,z)=C,Dye"" +C;D; e + CiD;e"” (4.19¢)

and for z< 0 (region 2, as also depicted in Fig. 3.2),

i, (a,p,z)=CiD}\e" + C D] e"* + CSDfe"* (4.20a)
u,(a,p,z)= CyDje" + D\ e + CyDy e (4.20b)
i, (a,B,z)=C.Dje" +C Dje" + C: DS " (4.20c)

It is note that the difference between Eqgs. (4.02a)-(4.02¢c), Egs. (4.03a)-(4.03c) and
Egs. (4.19a)-(4.19¢), Egs. (4.20a)-(4.20c), Egs. (4.02a)-(4.02¢c) and Eqgs. (4.03a)-(4.03¢)
are the homogeneous solutions of the nonhomogeneous linear equations of the

equilibrium equations, and Eqgs. (4.192)-(4.19c) and Egs. (4.20a)-(4.20c) are the
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homogeneous solutions of the homogeneous linear equations part of the equilibrium

equations.
Furthermore, considering the following pertinent continuity and discontinuity
conditions at z=0 in the (x,5,z) and («,f,z) domain are as same as the Eqgs.

(4.11a)-(4.11f) and Egs. (4.12a)-(4.12f1), respectively.

Once Egs. (4.19a)-(4.19c) and Eqgs. (4.20a)-(4.20c) are substituted into Egs.
(4.12a)-(4.12f), the six undetermined coefficients, Cf,, Cj , Cj, C,f , le , Cf , can
be associated with [fl-jJ (i, j =1-6) as follows:

] [/ fo fis fu £ fe][C
C2 | fo fo fu fu Fus fu||C

o o © Ju. v . v

[fz] C% _ S fo fso S s S C% :L 4.21)
I C Ju Jo Jfo Ju S fsl|C; 2z
G| |foo Jfo Jo Ju Js Jsl|lCh
Gl e Jo Jo Ju Js JellC] 0]
where f;; (i, j =1-6) are presented in Appendix D.
The Py, Py, and P, can be expressed as:
P, =2r) —i(as(BB. + aB]) + ass(aB! —iBlu;)) (4.22a)
j=1
P, =21 —i(aa,B] + fa,B. + fa,B)—(a,B] +a,, B u, (4.22b)
Jj=1
P, =2r) —i(aa,B. + fayB. + fay,B))—(ay,B] + a;,B] Ju, (4.22¢)

J=1

where B/, B], B! are same as the Eqs. (4.07a)-(4.07¢) and the Eqgs. (4.22a)-(4.22c)
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will be demonstrated in Appendix E.

In order to find the undetermined coefficients, ¢/}, ¢2, ¢3, ¢?, ¢’ and C?.
We can solve by the Cramer’s rule, that is, C} can be obtained from [fijJ by

replaceing the first column by the term in the right—hand side of Eq. (4.21). Only the
first term (j=1) of Eqs. (4.22a)-(4.22c) make the determinant exist, and the term of j=2-6
must let the determinant equal to zero. So we find:

_ P.Dy (u)+ PyDlz(“1) + P D5 (u,)
2mm U, D, (u,)

Cy
(4.23a)

Identically, the aforementioned equations contain C7, CJ, C!, ¢’ and C’ may

be written as:

_ P.D,,(u,)+ PyDlz (uy) + P.Dy;5(u,)

Ca
27m,U, Dy, (u,) (4.23b)
C? = P.D(uy) + Blez(%) +P.D,;(uy)
’ 27m,U, D (uy) (4.23¢)
C* = P.Dy (u,)+ PyDlz(”4) +P.D;;(u,)
’ 2mmU D, (uy) (4.23d)
S = P.D,,(us)+ PyDlz(us) + P.D;(us)
' 2m,Us D (us) (4.23¢)
C = P.D(ug) + Rlez(ue) + P.D; (us)
' 27m,U Dy, (ug) (4.23)

The desired solutions, 7 (a,f,z) , 7, (a,fB.,2), o&.(a,B,2), u/(ap,z),

u,(a,p,z), and u_(«,f,z) can be obtained by substituting Eqs. (4.23a)-(4.23f) into
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Eqgs. (4.19a)-(4.19¢) and Egs. (4.20a)-(4.20c). They are the same as those from Egs.

(4.16a)-(4.161) and Egs. (4.17a)-(4.171).

4.3 Algebraic Equation Method (Triple Fourier Transform)
In a full-space problem, u,(x,y,z) are set as the displacements in a homogeneous
and linearly elastic continuum with domain —o < x,y,z<o. Then the triple Fourier

transforms of the displacement components are applied to solve the equilibrium
equations (Egs. (3.15a)-(3.15¢)). The step by step Fourier transforms for u; (i=x, y, z)

are written as:

LT[ [ uy,20e @ dvdydz =T, ) (4240
(272’.)2 —00 —00 —00
1 _ I j j ou,(x,y,z) e " PR dxdydz = ia(B,y)U (a, B,7) (4.24b)
(27[)2 —00 —00 —00 8x(y,Z)
% 0w A2
1 ; J‘ J‘ J‘ 0 Li,(x;yozz) e—i(errﬁ'yHZ)dxdde — _az(ﬂzoﬂ/z)a(a,ﬂ,]/) (4240)
Q2r)* %% O (.20)

[l o(x)o(¥)o(z)dxdydz =1 (4.25)
i

F - (21)3 [ [ ] Po@smrs@e ™ »asdydz - (ff (4.262)
/) RO )’

F = L TrT “H @) e dvdz = Py b

y—angjj%ﬂﬂ&wﬂﬂe dpdz = (4.26b)
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F, ] I I PS(x)S(1)8(z)e P dxdyds =

z 3 z
2

(27f)

(4.26¢)
(27:)

According to Egs. (4.24a)-(4.24c) and Egs. (4.26a)-(4.26¢), Egs. (3.15a)-(3.15¢) can

be expressed as:

(j dll(a ﬂ 7/) d12(a ﬂ 7) d13(a ﬂ }/) U (0{ ﬂ 7/) F
[dij] U =ldy(a,B.y) dy(a,B,y) dy(a,pB.y) U (a,8,7)|= F (4.27)
u. F

dyy (e, B.7) dyn(e.pB.y) dy(a,B.0))| U.(a,B,7)

where

d, (@ B.7) =, & +afF +a ) +2a, By (4.28a)
dy(a, B,7) =dy(a, B,7) = (ay, +age)aff+(ay, +as)ary (4.28b)
d(a, f,y) =ds (o B, y) = (@, +as)ofp+(as +ass)ory (4.28¢)
A, B.7) =5’ +af8° +a,y” +2, fy (4.28d)
A, 1) =df0s B7) =5 + @+ +(ay +a,,) By (4.28¢)
do(a, By)=a e +a, B +ay’ +2a,,By (4.281)

Then, U (a,5.7), Uy(a,ﬂ,;/) and U_(a,f,y) can be simply obtained from Eq.

(4.27) by matrix operations as:

r(mﬂﬂ __[Du@pr],

) | |

Ve == e By

U.(a.,7) (4.29)

Dy(@.f.y) Dy(@.f.y) Dy@p.n)| |F
WX D, (a,B,y) Dy(a,B,y) Dy(a,B.y)|x E,
P Dy Boy) Du(@By) Du(afon)| | F
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From Egs. (4.26a)-(4.26c) and Eq. (4.29), the three algebraic equations U _(«, 3,7)

U,(a,5.7) and U_(a,f,y) can be obtained as follows:

U (aaﬂJ/):—FXDII(a’ﬂ’y)+FyDlz(anBaﬂ/)‘f‘Fan(asﬂ,?/)
| bl fir) (4.30a)
:_P)‘D“(a"g’y)"'PyDlz(aaﬂ,J/)'FPZDw(a,ﬁ,y)
Q7): D(a, f.7)

U, (a,ﬂ,7)=—EDZl(a’ﬁ’7)+FyDzz(a,ﬂaﬁ/)”*TzDzs(a,ﬁ,?/)
y e p.n) (4.30D)
__BDy(@B.7)+ BDy(a.f.7) + P.Du(a. fo7)
Q27): D(a, B,7)

U.(a,B.7)= —FXD“(a’ﬁ’y)—'_FyD32(aaﬂ,7)+FzD33(aa,Ba7)
| plefir) (4.30¢)
__BDy(a.B.7)+ P, Dyy(a,B,7) + P.Dy(a, B,7)
27): D(a, f.7)

DXa fy)=det [cﬁ,]zazaﬁn Ale’ + +7” —(ycosp—Psing)’} +(y cosp— fsing)’

(4.31)
== (=10 =1) =)0 =10 =7 =)
The mean of 13_[ /; 1s the product f; function start with i=1 to 3.
The characteristic equation (Eq. (4.31)) has six roots, and can be expressed as:
(e f)= —ﬁsin¢co%—1+4)-;i\//llwz. -Zaz(co§ P+ A sint’ @) —iap) (432)
COS P+ A sint ¢
. ,Bsin¢cos¢(—1+A2)+i\/A2(ﬂz‘+a2(co§ G+ A Sit? §)) @ @32b)
oS @+ A, sitt’ ¢
o= — Bsingcosf(—1+ A) +i A (S +a(cos g+ 4 sirT ) P 4320

COS ¢+ A, sitt
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— Bsingcosf(—1+ 4) —iy A +a(cos g+ A sitt )

v p)= cod pr s g =—iu,(a, ) (4.32d)
 —Bsingcosf(—1+ 4) iy A(F +P(cod g+ A it f)

%(a’ﬁ)_ C052¢+1425i1'12¢ __lus(a’ﬂ) (4326)

= Bsingcosh(—1+ A)—iy| A(F +a’(co p+ Asirt g) P @320

oS ¢+ A sin’ ¢
The D, (a,B,y) can be obtained from D, (a,B,u) the relations of » and y to
take the place of y = jy, which is expressed in Appendix B.
To obtain the solutions of displacement, u (a,pf,z), u,(a, B.z), and u_ (a,p,z)

from «, f, and y transformed domain to x, y, and z physical one, the following

inverse Fourier transforms should be addressed to solve Egs. (4.30a)-(4.30c¢) as:

7 (a, B,2) = 1 : T PD,(a,B,7)+P,D,(a,B,y)+ P.D; (&, B,7) Frdy (4.33)
(2r) e m(y =) =) =) T =r )@ =vs) 7 =)

7 (a0 fo2) = 1 : T PD,(a,B,7)+ P.D,(a,B,7)+ P.Dy,(a, B,7) Jrdy  (433b)
Q2r)" =, m(y=y)F =7 )Y =7)F =7 ) =¥ )¥ = 76)

7., p.z) = 1 T PD;(a,pB,y)+P.Dy(a,B,y) + P.Dy(a, B,7) drdy (4330)

(27)’ MRAVESD Va2 VESD VEIN VESD VEd
To evaluate the integral in Eqgs. (4.33a)-(4.33c), the complex y-plane is first

encountered. Since there are six poles in the integrand, we assume the imaginary part
of y, 7, y, arepositive, and that of y,, 7, 7, are negative.
For z>¢, a closed contour by adding a large semicirle on the upper y-plane, as

depicted in Fig. 4.2 is employed.

54



Imy

Fig. 4.2 A closed contour on the upper y-plane.

The solutions of Egs. (4.33a)-(4.33¢), as defined by the three displacement functions

arc:

— _ pl irz 2 iy,z 3 iysz
u,(a,p,z)=B,,e"" +B e + B, e

(4.34a)
u,(a,pB,z)= Biyew + Bjyeiyzz + Bf,yeW“ (4.34b)
i, (a,B,z) = B e” + B. " + B. &"** (4.34¢)

,and for z <0, the other closed contour in the lower y-plane is shown in Fig. 4.3.
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Imy

iE

=2

7

Fig. 4.3 A closed contour on the lower y-plane.

L_[xz (a,ﬂ,Z) = _BjyeUQZ _ Bjyei}/sz _ nyei}’éz (435a)
i, (a,B,z)=—B, e"* - B " - B ¢ (4.35b)
i (a,f,z)=—B.e"* - B. " - B " (4.35¢)
where

P.D,(a,pB,y;)+ P.D,(a,B,y,)+ P.Dy(a,B,7,)

B! (a,p)=i 4.36a
@)= - (4.362)
B (. p) i Pa@ L7+ BDn(@ By + PDo(@ B)) 436b)
7 2R,

ley(a,ﬂ) :lRCDB(a:ﬂ’}/j)+BVD23(a:ﬂ77/)+f)zD33(aaﬂ’7/) (4360)

27m,R ;
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R (a. ) = N =) =77 = 736)(7 7 )7 =) =76)] y=7,
y (4.36d)

Suppose that u;, =iy, , u/(a,B,z), u/(«,p,z), and u.(a,pB,z) from Egs.

(4.16a)-(4.16¢) and Egs. (4.17a)-(4.17c) have the same results as Eqs. (4.34a)-(4.34c)

and Eqgs. (4.35a)-(4.35¢).

4.4 Solutions for Displacements and Stresses by Inverse Fourier Transforms
The displacements u (x,y,z), u (x,y,z), and u_(x,y,z) in Egs. (4.16a)-(4.16¢)
and Eqgs. (4.17a)-(4.17¢c) also can be solved by the following inverse double Fourier

transforms as:

for z>¢ (region I, as shown in Fig. 3.1),

(@, 5,2) = B + B + B 4372
u,(a,pB,z)= B;e”'z + Bieuzz + B;ew (4.37b)
i.\(a:.,2) = Ble"" + Ble" + Ble"™ (4.37¢)
(e, B,2) =T (@, B,2) (4.37d)
o, p.2)=5,,, (a,p,2) (4.37¢)
o..(a,B,2)=0_,p(a,p,2) (4.371)
T.(a,f.2) =7, (2, p,2) (4.37g)
Ta(a,fB,2) =T yp(a, B,2) (4.37h)
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z_-xyl(a’ﬁ’z):z_-xyl(P)(aaﬁ5Z) (4371)

and for z<0 (region 2, as also depicted in Fig. 3.1),

,.(@.f.2) = ~Ble" ~ Ble' — Ble"” (4.382)
(2, f.2) = ~Bje" — Ble" ~ Ble' (4.38)
i,,(a,f,2) = ~Ble" — Bie"* — Bl (4.38¢)
C.(a,B,2)= O_-xe(P)(aﬁlB’Z) (4.38d)
G(a,f,2) =G, (a,p,2) (4.38¢)
O...(a,B,2) =0, p(a,p,2) (4.38f)
T, f,2) =T (@, f,2) (4.38g)
To(a,f.2) =T p) (@, B,2) (4.38h)
T, f.2) =T, (a,p,z2) (4.381)

The desired displacements of u (x,y,z), u,/(x,y,z), and u_(x,y,z) can be

obtained by the double inverse Fourier transforms of Eqs. (4.37a)-(4.37c) and Egs.
(4.38a)-(4.38c¢) as:

for z>0 (region 1),

u,(x,9,2) = 2i j j (Bl @iy proll@ Mg 4 ploil@ s Bivsiy qog g (4.39a)
T —00 —00
1 %% _ . A

u,(x,y,2) = g j j (B! BRIt o Bl I dod 3 (4.39b)
73 —00 —0 ’ ’
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1 ¢ % A A .
u.,(x,,z) = > j j {Ble!\ iz 4 pRollentiting 4 pghet iy dod 3 (4.39¢)

—00 —00

,and for z<0 (region 2),

1 %% _ _ o e s
Uy (X, y,z)=—g'[ [ (Bleemrs o g misnse o Bl My dods  (4.40a)

—00 —00

1 T i )+ i(cox+ )+ i(ax+py)+
uyz(x,y,z)=—2—j j (B! @t Bl st g ol e dod 3 (4.40b)
T

—00 —00

u_,(x,y,2) = —i [ [ (Blelexmm o grefxmins o ool M ydodp  (4.40c)

—00 —00

In addition, the stress components of Egs. (3.12a)-(3.12f) are performed by the

double Fourier transforms expressed as Eqs. (3.42a)-(3.42f). The desired o _(x,y,z),
o,(x,y,2), 0.(x,y,2), 7,.(x,y,2), 7.(x,y,2),and 7 (x,y,z) alsocan be acquired

by the double inverse Fourier transforms as:

for z>0 (region 1),

1 ¢ % L L s

o-xxl(x,y’z) = Z J. I {O'ixel(aw/)’y)wlz + O_jxel(acﬁﬁiv)mzz + ijel(aﬂﬂy)wﬂ}dadﬂ (441&)
1 ¢ % L P .

nyl (x,y,Z) — 2_ .[ ‘[ {O_;yel(oa+ﬂy)+ltlz + GyZyez(aerﬂy)Jruzz + O_ﬁyez(ax+ﬂy)+u32}dadﬂ (441b)
T

1 o0 00 ) . . ' .
0..(x,,2) = Ey I I (GLe\ s o G2 gllexeinrins 4 &3 gl TSI dod B (4.41c¢)
Tyzl(xayaz) = —2 j I {rylze’(“”ﬂ”*“‘z + ryzze’(““ﬁy”“zz + sze’(‘mm*““}dadﬂ (4.41d)
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zx

1 00 0 _ )
szl(xa y’ Z) — 2_ J- J- {Tl et(aor+/3y)+u]z + TZ i(ax+fy)+uyz + T3 l(ax+ﬂy)+u32}dadﬂ (4416)

ryl(x y,Z) _ZLJ- J- {z—_l et(ax+/3})+ulz) +7 =2 t(ax+ﬁy)+uzz +T3 l(ax+ﬂy)+u32}dadﬁ (441f)

—00 —00

,and for z<0 (region 2),

xxz(x y,Z) ——LJ. J‘ {54el(ax+ﬂ})+u4z +O_5 i(cx+fy)+usz +06 z(ax+ﬂy)+uéz}dadﬂ (4423)

—00 —00

yyz(x y,Z)—_ZLJ- J- {54 el(ax+ﬂy)+u4z +GS i(oax+fy)+usz +06 t(a‘c+/i’y)+uﬁz}dadﬂ (442b)
T

—00 —00

1
Zzz(x y,Z) _ _Z_J‘ J. {54el(ax+,3y)+u4z + O_S i(ax+fy)+usz + 06 t(ax+ﬂy)+u62}dadﬂ (4420)

—00 —00

o0 00

1 )
Tyzz (x’y, Z) — _2_ .[ I {Z—_4 el(ax+ﬂy)+u4z i TS i(ox+fy)+usz + T6 i(ox+fy)+ugz }dadﬂ (442d)
T

yz

—00 —00

1 _
zx2(x y,Z) = —2— J. J- {2-46’(‘”*@’)*“42 + T et(ax+ﬁv)+u52 + 2.6 l(ax*ﬁ}’)ﬂl(yz)}dadﬂ (442@)
T

1 T — i(ax+ Fuyz — i(ox+py)+usz i(ox+ +ugz
TX},Z(x,y,Z)=—2—I J. {Tfye( r)tus +szye( Pyvas +T6 (@B d od B (4.421)
where:

E)ir(aaﬂ) = _i(aanB){ + ﬂalszj + ﬂamsz) + i(amB; + anB;)”j (4.43a)
Ey]v (o, )= _i(aalzB){ + ﬂazsz + 130243!) + i(a24Byj + asz'zi )“_/ (4.43b)
Ezé (a,p)= _i(aamB){ + ,Basz; + /Ba34sz) + i(a34B; + a3ssz )uj (4.43¢)
Z_-){z (a,B)=—i(aa,,B] + ﬂa24B; + fa,B!) + i(a44B; +ay, B! u; (4.43d)

(a p)= —l(aséﬂB’ + aséaB’ + agaB! )+ zaSSB’ (4.43¢)
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fxi (a, ) = —i(a, BB, + a66aB; +agaB!) + ia56B){uj (4.431)
In Egs. (4.43a)-(4.43f), j=1-3 for z>0 (region 1), and j=4-6 for z<0 (region 2).
If we employe a spherical co-ordinate system, which is shown in Fig. 4.4, the
variables a, f, and u; can be expressed in terms of (k, €) as:

a=kxcosf, (4.44a)

B=kxsinf, (4.44b)

iRy b ———._ 7|

p O

Fig. 4.4 Spherical co-ordinate system (k, 0x)

By substiting Eqs. (4.44a)-(4.44b) into Egs. (3.47a)-(3.47f), we get

ising. sin¢cos¢(—l+Aj)—\/Aj (sirf @, +cos 6.(cos P+ 4, Si’ )
o :

cos @+ A4, sirt ¢ (=1-3) (4.45a)

u (o, P =k

isin@, sin¢5cos¢5(—l+Aj)+i\/Aj(sin2 6, +cos 0,(cos ¢+ 4, sirt ¢))

coS g+4, sirt ¢ (j=4-6) (4.45b)

u (o, f)=kx

where 0<k<co, and 0<6,<2rm.
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According to Eqs. (4.44a)-(4.44b) and Eqs. (4.452)-(4.45b), D, (a,p,y;) (m, n=1-3)
in Egs. (3.532)-(3.53f), B/(a,f.u,), B)(a.B.u;), Bl(a,pu;) (=1-6) in Egs.

(4.04a)-(4.04¢c), and U (e, ) in Eq. (4.09) can be expressed in terms of k and 6 as:

u(a,p)=u,(k,0)=ku,(0,)

(4.46a)
D, (@, B,u,) = D, (@, ) = D, (k,0,) = k'D,,(6,) (4.460)
U (a.f)=U,(k.0,)=kU,(0,) (4460
Bl(a.fp)=B!(k.0,)=k"'B/(0,) @46d)
Bj (a, ) = B)(k,0,) = k‘lByj(é’x) (4.46¢)
B/(a, )= B](k,0,) =k 'B/(0,) (4.46f)
Hence, we can obtain:
i, (e, f) =1, (k,0,) =k, 0,) (4.47a)
7, (a.f) =i, (k.0)=k"7,(0,) (4.47b)
u,(a,B)=u,(k,0,)= k’ILTZJ.(Hx) (4.47¢)
Furthermore, Eqs. (4.43a)-(4.43f) can be rewritten as:
&l (a,)=5/(k0,)=51(0,) (4.482)
) (a,B) =35, (k,0,)=5,(06,) (4.48b)
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o.(a.p)=5.(k0,)=5.(6,) (4.48c¢)

Tl(a,p)=7,.(k,0,)=7.(0,) (4.48d)
Tl (a, B)=71(k,0,)=T1(6,) (4.48¢)
7 (a,p) =7 (k,0,)=7](6,) (4.481)

The exponential terms in Eqgs. (4.41a)-(4.41c), Eqgs. (4.42a)-(4.42c), Egs.

(4.43a)-(4.431) and Eqgs. (4.44a)-(4.44f) can be expressed as:
i(ax+ py)+u,z=kxy,(6,) (4.49)

Additionally, dadp can be replaced by dkdd, times the absolute value of Jacobian

J as:
dadp =|J|dkd6, (4.50)
where:
oo Oa
0. —ksind
| =| A @B)|_|ok 00 _[cosO —Rsmby 4.51)
ok.0.) (98 9P| |sin6, kcoso,
ok 00,
and therefore,
dodf = kdkdo, (4.52)

Based on Egs. (4.46a)-(4.46f), Egs. (4.47a)-(4.47¢), Eq.(4.49) and Eq. (4.50), then
Eqgs. (4.392a)-(4.39¢) and Eqgs. (4.40a)-(4.40c) can be presented as:

For z>0 (region 1),
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1% BY(6) BX0) . B
uXI(x’y,Z)_ .(l). {Wl(ar)+l//2(0x)+l//3(0x)

1do. (4.53a)
27

1% B0 B6) BO)
hnl22) = ﬂj o) o) o) (4.53b)

I{B(e) B0, , B0,
2y wi(0) w,(6,) %(9)

u,(x,y,2) = 1do, (4.53c)

,and for z<0 (region 2),

Lf {Bf(ﬁx)JrB)f(@x)JrBf(@X)
271' 0 W4(9x) WS(ex) Wé(er)

u,(x,y,z)=- 1do. (4.54a)

1 B0 E0) BO)
walor )= [ G oy oy (4.54b)

J-{B .) B5(6?) B(e)

1do, (4.54¢)
27 l//4(6’) w(0,) wé(ﬂ)

uzz(x,y,z) -

Also, from Eqgs. (4.46a)-(4.46f), Eqs. (4.48a)-(4.48f), Eqgs. (4.49) and Eq. (4.52), Egs.
(4.41a)-(4.411) and Egs. (4.42a)-(4.42f) can then be written as:

For z>0 (region 1),

o (rupn2) = if LN+ TN s
+ ij(@)(% ( ex))z}da* |

nyl(x,y’z)?%zf {E;y(ex) 0.) % v,(0,) (4.55b)
+o, (0 )(——— 3(0)) 3o, |
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)" +6.. (0, )

1
w,(6,) w,(6,)

127r _
0. (63,2) == [ {TLOX
0

+6..(0,) )’}do,

1
w,(6,)

—26 2
lwf HE0C 6

+7,.(0,) (0 )) yd0,

H@ym———jr%)(

=1 =2

X 1 ? + sz X )2
l/jl (Hx ) 17[/2 (ex)

1
szl(x,y,Z): 272_
0

7> (0 1do
RO 51,
_ =1 1 2 A3 2
Ti(5,2) == ) @)
72 (6 1d6o
+ 0 5a) e,
,and for z <0 (region 2),
m@y@——J{—(> w> +EL0C )
6 1
. (6 do
+ELOC 5o,
Muym——ﬁ{y<x4w9 3‘X5w9
6 (g
+%‘”m@)
oonlirr) = [ o2 O rai @)y
27 v4(0,) ws(9,)
%0 1do
+ELOI 5oVl
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1

1% ., | 2
Ta(62,2) = j {ryxex)(@) L0 5) s
GG Ll
er(x,y,z):zizf (70— + F (0, )
7Ty %(61&) ws(6,) (4.56¢)
» )
FELON ) e,
rxﬂ(x,y,z)=2i2f (70— + 750 )’
Ty m(?x) ws(6,) (4.560)
Bt
Let w=¢"% , and hence, sinex:w_;_] ? cosﬁx:a)Jrzw_] , do=iwdd, . Egs.

(4.53a)-(4.53c) and Eqgs. (4.54a)-(4.54c) can be expressed as:

For z>0 (region 1),

_l¢ 1 B(o) Bl(o) Bl(®)
R v Bl (27
1 1 B B B
WEIDZ 3 e e ) (&7
1 1B, B, B
0D T ) Ty v (#570
for z<0 (region?2),
1 1B, B, B
R v A R R L (355
Uy y.z) =~ 5@ B B5®,,, (4.58b)

279 10 'y, () vi(0) v (@)
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1 ,Bl@) , Bl@) Bi(®)
o'y, (@) yi() y (0

o pn2) == f, 1o (4.58¢)

Besides, Eqgs. (4.55a)-(4.55f) and Egs. (4.56a)-(4.56f) can be represented as:

For z>0 (region 1),

1 1 1 1 p— ) 1 2
O-xxl(x’y’z)__g§c E{O-XX(CO)(I//I(O))) +O-X)C(a)) l/IZ(a)) (4 593)
+5. () 1 )’}
A
1 1 1 1 2 —2 1 2
O-yyl(x’y’z)__g 2 E{O-W(a))(l//l(a))) +O'yy(a)) l//z(a)) (4.59b)
3 1 2 |
+O'yy 1/13(60)
CA(wrD) =5 G @) T @) )’
27 de 1( ) v, (@) (4.59¢)
+Ez3z(a))(—) jdo
()
1 1 1 1 2 =2 1 2
O'yzl(xa%Z)__Z§c z{ayz(w)(y/l(a))) TOR® v, (®) (4.59d)
Ho Ol @)
1 | L o, o Ly
OBy =g g L@ @ (4.59)
+Ez3x(a))(;)2}da’
v (0)
Ot =5 —f T (@) ) + T @)
01 (X7, 27 e 1( )T () (4.591)
+a,, () ) }do
%(60)

,and for z <0 (region 2),
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Tl 022) = iﬁc i{&i(w)(—iw))z +5, (o) S iw) 2

(4.60a)
+oo () (——) ldw
V’é( o)
1 1 4 1 2 —5 1 2
ayyz(x,y,Z)—gﬁ g{% () Twi® vs(w) (4.60b)
+Gy (a))(L)2 jdaw
ye(w)
1 1 4 1 2, =5 1 2
Uzzz(x»yaz)—g§c 5{%(”)(%(@)) TN (@) (4.60¢)
+oo(w)( )’ Y
(@)
O'zz(x,y,Z):L§ —{54(60)( ) +5,.(0 oy
y 27t 4( )T ys(e) (4.60d)
+0, (a))(l//( ))}
1 1 4 1 [ — 1 2
Cualnr A= Y @ (4,600
+5° (w)( )'}dw
(@)
o z(x,y,Z):L§ 1T (@) R
o 273 ’ 4( ) A ) (4.60f)
+0,, () )Y
wﬁ(w)
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CHAPTER YV
THREE DIMENSIONAL ELASTIC SOLUTIONS OF A
TRANSVERSELY ISOTROPIC HALF-SPACE SUBJECTED TO

POINT LOADS

The analytical solutions for displacements and stresses in an transversely isotropic
half-space subjected to a point load in the medium are derived in Chapters 5. Three
distinct approaches as same as Chapters 4 were used to derive the solutions in Sec
5.1-5.3. In Sec 5.1, we consider the nonhomogeneous part of the ordinary differential

equations and solve the homogeneous and particular solution of Egs. (3.41a)-(3.41¢).
In Sec.5.2, we separate the half-space into two regions of 0 <Z<0" (imaginary
space) and 0" <Z<+% (regjon 1), the point load force is in the region of 0° <z <0",

In regions of 0" <z<+%0 the right-hand side of Egs. (3.41a)-(3.41¢) does not exist,
the equilibrium equations are homogeneous linear equations. Hence, we can solve the
boundary-value problem consisting of the two regions. In Sec.5.3, the Laplace
transform respect to variables of z can reduce the aforementioned ordinary differential

equations (Egs. (3.41a)-(3.41c)) to algebraic equations..

5.1 Traditional Method
The thesis aims to determine the distribution of stress and displacement in a
semi-infinite elastic solid due to the application of an external point load to its surface

analytically. In order to derive the homogenous solutions of Egs. (3.41a)-(3.41c), we
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redefine the three displacement functions of Egs. (3.50a)-(3.50c)

(3.51a)-(3.51c) as follows:

for z>¢ (region 1 and 2, as shown in Fig. 5.1),

— _ ol uyz 2 uyz 3 uzz 4 uyuz 5 usz 6 ugz
Uy (@, B,2) = A,e"" + A e + A e + Aje™ + Ae™ + A e

X X

— _ gl wz 2 uyz 3 uzz 4 uyz S5 usz 6 ugz
Uy, B,2) = A,e"" + A,e"" + 4,,e"™" + Aje"" + 4)e™ + A)e

— 4l uz 2 uyz 3 uyz 4 uyz 5 usz 6 ugz
Z/IZI(H)(Cx’ﬂ’Z)_qule1 +14zle2 +Azle "'142164 'i'14zleS +Az1€

and for z <0 (region 3, as also depicted in Fig. 5.1),

I’sz(ﬁ)(aﬂﬂaz):()
L_lyz(m(a,ﬂ,z)=0
1’722(H)(a9ﬂ72) =0

In Egs. (5.01a)-(5.01c), the undetermined coefficients A4/, A’

vl

and Egs.

(5.01a)

(5.01b)

(5.01c¢)

(5.02a)

(5.02b)

(5.02¢)

and A/, (j=1-6)

can be obtained by assuming the displacements in region 1, wu,;, u,;, and u,; must

be finite when z is approaching to co. Hence, A, =4, =4%=0, A;‘l = Af,] = Aﬁl =0,

and A4 =4,=4%=0.
Now, let:

A A4
Dy(a,pu;)  Dy(a,pu;) Dy(a,p,u;)

= C&fz (=1-3)

(5.03)

where Dj; (i, j=1-3) can be written as the second order derterminants in the following,

and the complete forms of D;; are presented in Appendix C.
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Similar to the full space problem, the general solition of the

equation of Eqs.(3.41a)-(3.41c¢) can express as follow:
— _Cl Dl Uz C2 D2 Uz C3 D3 Uz
uxl(H)(a’ﬂ’Z)_ e +CpDhe™ +C,Dhe

— _Cl Dl uz C2 D2 Uyz C3 D3 U3z
uyl(H)(a’ﬂ’Z)_ e +C0e + 0,0 e

— _ 1 1 uz 2 2 uyz 3 3 uzz
”zl(H)(aaﬁaZ) =Cy,Dye"" + Cyy Dy e + Cy, D5 e™

homogeneous linear

(5.04a)
(5.04b)

(5.04c)

The point loads (Fy, F), F~) acts at the point (0, 0, &) of the co-ordinate system can be

described as Egs. (3.19a)-(3.19c). Hence, the three displacement functions of the

particular solutions can be gained from those of full space case (Sec. 4.1.1):

for z>h (region 1, as shown in Fig. 5.1),

L_IXI(P)(a’ﬂ, Z) — B)lreul(z—h) +Bfeuz(z—h) + Bjeu3(z—h)
— _ pl _u(z=h) 2 _uy(z—h) 3 _u3(z—h)
u,p(a,p,z)=Be" +Be" + Be”
I’_lzl(P) (aa ﬂaz) = Bieul(ZJl) + BzzeMZ(Zih) + Bjeus(z—h)

and for 0<z<h (region 2, as also depicted in Fig. 5.1),

= _ 4 uy(z—h) 5 jus(z—h) 6 jug(z—h)
Uypy (@, B,2)=—B """ = Be" "™ —Ble"""
— _ 4 uy(z—h) 5 us(z—h) 6 ug(z—h)
U, p,z)=—B """ —Be""" —Ble"

— . 4 —h 5 us(z—h) 6 ug(z—h)
uzz(P)(a,/?,z) = —Bze”“(z ) — B — Ble"”
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(5.06a)
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U@, f,2)=0
T, (@, f,2)=0
T, (a,f,2)=0
z=0 z<0
- 4 uy(z—h) S us(=—h) 6 ug(z—h)
Ty, B 2) = —BLe ) ~ Bl _ e 250
- _ _phouieh) _ pS uszh) _ p6 ugch) _ . oo .
P U,y (a, B,2)=—Be Bje Be’ T (&, Boz) = C\D\e" + CLDke" + ChD}\e"™
- 4 uy(z—h) S us(z—h) 6 ug(z—h)
U (a, p,z)=-B.¢ - Ble’ —B.e _ o e - s
z= h (@, f,2)=CyyDye"* + Ch, D5 e + C,D5e"™
< yvI(H) 2 d2=2 d2521 d2521
0 <z h (@, z):Ble”“:’m+Bze”3‘:4’)+BK€H“:J’) _ D)o O DL 4 D2 4 (O D g
HPYRE * x x (e, B,2) = CpyDse™” + Cpy Dyie" + Cp Dsje
E‘.“m({l,ﬂ,z) - B‘lgu‘(:fh)+Bieuzl:fh)+B‘3‘eu\(17h)
z> h E:,[P,(a,ﬂ,z):B!e”‘(:’m+Bfe“:(:’h‘ +B§e”‘(:’/"

Fig. 5.1 Displacement function for point loads (P, P,, P:) acting at (0, 0, h) of a
half-space
When the half-space (z > /) and the strip-space (0 < z < &) are ideally bonded at the

interface z=h such that the material becomes continuous across the interface, we

Consider the following boundary conditions:

T (X, 3,h7) = T (x5, p, ) = PS(x)6(y) (5.07a)
T (%,3,h") =7, (x,y,h7) = P,6(x)5(y) (5.07b)
O (50, h) =0, (%, y,h7) = P.5(x)5(y) (5.07¢)

Hence, the double Fourier transforms of Egs. (5.07a)-(5.07¢) can be obtained as:

Forlat Boh") — Fuy s B I) =2 (5.08a)
’ 27
_  _ _ BV
szl(aaﬂah ) _szz(aaﬂah ) =E (508b)
(5.08¢)

_ o P
O-zzl(a’ﬂ’h )_GZZZ(Q’ﬂ’h ):272_

When 7 —0,
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P (@ fO) T, 07) = 2 (5.099)
2
_ o N
szl(ao ﬂao ) - szz(aa ﬂ:o ) = E (509b)
_ N — _ P
O (C(, ﬂao ) - Gzzz(aa ﬁao ) = 9 - (509C)
T

where 7_,(a,8,0), 7 ,(@,B,07), G.,(«,,0), in the region of z<0, hence,

To(@.p.0)=7,,(a,,0)=0_,(a,,07)=0.

The Egs. (5.092)-(5.09¢c) can be simplifed as follow:

= + = + Pr

Taan (@, B.07)+ T (@, B0") = E (5.10a)
_ o ~ P

szl(H)(aaﬁao )+sz1(P)(anBaO ) ZE (510b)
— + — + Pz

O (@, 5.07) + 0y p) (a2, 5,07) = Y (5.10c)

The system of three linear equations (Egs. (5.10a)-(5.10c)) has three undetermined

coefficients Cj,, C,, and C,,. These coefficients can be associated with |f; ] (i,

j =1-6) as follows:

So o S CUIIZ P z_.le(P)(a’ﬂ90+)

LTI LY Cjz =5 Py - Z_-zyl(P)(a7ﬁ70+) (5.11)
3 27 _ +

S fuo fu])|Ca P, O-zzl(P)(a’ﬂ’O )

Eq. (5.11) can be separated into two parts as:

o S S| G . P,
Ja fu fa Cj :E y
fu fo fu] G P (5.12a)
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So S S Cfln T p) (a,,07)
fa fo Su|Chl= z_-zyl(P)(aoﬂ:0+) (5.12b)
S fuo Sy le Ezzl(P)(a’ﬂ’OJr)

Base on the Egs. (5.12a)-(5.12b), the relation of C;, Cj and CJ can be expressed
as::

1 _ 1
Cd_Cdl+Cd2

(5.13a)
2 2 2

G =Cy+Cy (5.13b)
3 3

Co=Car+Ca (5.13¢)

In region 1 (A<z),considering z=0 and A=0, the Egs. (3.42c)-(3.42¢e) can

CXpPress as:

3
z_'le(P)(O‘sﬂaO) = z_ i(as, (BB + O(B;) +ags(aB! - iB;”j))
Jj=1 (5.14a)

3
Tom (@ B0) =Y —i(aay, B + fa,,B] + fa,,B))—(a,B. +ay, B u,

= (5.14b)
3
Ty (@, B,0) =Y —i(oay;B] + BayB) + Bay, B! ) —(ay,B] + ay, B! u, (5.14c)
Jj=1

By substiting Egs. (5.14a)-(5.14b) into Eq. (5.12b), we get

C;l _ PxDll(ul)+PyD12(”1)+PzD13(”1) _ Bi _ B; _ le (5.15a)
2mm U, D, (u,) D, (u,) D, (u) D;(u,)
C? = Rch(uz)"'PyDlz(uz)"'Plez(uz) _ Bi _ B; _ BZ2 (5.15b)
« 2mmU, D, (u,) Dy, (u,) D, (uy,) Dy (u,)
c = P.D,(uy) + PyDlz(u3) + P.Dy;(uy) _ Bi _ B; _ B: (5.15¢)
< 2mmU,D, (uy) Dy (uy) Dy (u;)  Diy(uy)

The general solution of nonhomogeneous equation are the sum of the general solution

74



of homogeneous equation and particular solution.

i (a,B,z)=C,D, (a,B.u)e" +C;,D, (a, B,u,)e™ +C,,D, (a, B,u;)e"
+Ble" + Ble" + Ble'"”
=(C, -C,)D,,(a, B,u,)e"* +(C; —C:)D,,(a, B,u,)e"” (5.16a)
+(C3 - C3)Dy,(a, B,uy)e'” + Ble"™ + Ble" + Ble"”
=C,D,(a, B,u,)e"* + C:D, (a, B,u,)e"” + CiD, (a, B,us)e"

Similarly,

u, (a,p,2)= C;Dzl(aaﬂ’%)eulz + CazrDzl(aaﬂa“z)euzz + CjDzl(aaﬂa%)eusz (5.16b)

i, (@, f,2) = C\D,, (. fou,)e" +C2D; (. foy)e™ +CiD (@, fou)e™  (5.16¢)

5.2 Imaginary Space Method
In order to derive the solutions of Egs. (3.15a)-(3.15¢) in half-space, the Eqgs.

(4.19a)-(4.19¢) and Egs. (4.20a)-(4.20c) can be rewritten as:

for z>0" (region 1, as shown in Fig. 5.2),

i (a,B,z)=C,D}e"" + C:D}e" + C,D;e"* (5.17a)
u,(a,p,z)= C.\D,.e"” + C.:D; e + CiDje"’ (5.17b)
i (a,B,z)=C,Dye"" +C;D; e + CiD;e"” (5.17¢)

and for z< 0,

u,(a,p,z)=0 (5.18a)
u,(a,B,2)=0 (5.18b)
u,(a,B,z)=0 (5.18¢)

Introducing an imaginary plane along z=0, to separate the full-space into two

half-spaces, oneis 0" <z <oo (region 1 in Fig. 5.2), and the otheris 0<z<0".
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0<z<0 , J P.5(x)5(y)

N o
0" <z<+ y

region 1

Fig. 5.2 Separate the half-space into two imaginary region of 0 <z <0" and
0" <z<+4w0.

Furthermore, considering the following pertinent continuity and discontinuity

conditions at z=0 are:

7,.(x,3,0") = P6(x)o(y) (5.19a)
7, (x,3,07) = P,o(x)o(y) (5.19b)
0. (x,3,0")=P5(x)5(y) (5.19¢)

where —wo<x<ow, —w<y<o. The subscripts 1 and 2 mean that z=0 plane is
approaching to 0" and 0, respectively.

ch, €3, CJ.can be determined from the following system of three linear equations

These coefficients can be associated with [ f,-jJ (i,j =1-3) as:

C,IJ Su S S C,IJ 1 D,

[f,, Cj =\fu Jn S Cj ZE py
Cj fi fo S Cj p. (5.20)

where f;; (i, j =1-3) are presented in Appendix D.
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5.3 Algebraic Equation Method (Double Fourier and Laplace Transforms)

Double Fourier transforms with respect to x and y could reduce the desired problem
of solving partial differential equations to ordinary differential equations. Sequentiallt,
the Laplace transform could reduce the ordinary differential equations to algebraic
equations.

In the half-space problem, u,(x,y,z) are the displacement components in a
homogeneous and linearly elastic continuum with the domain of —co<x,y <o and

0<z<wo. To solve the equilibrium equations (Egs. (3.41a)-(3.41c)), the technique of

double Fourier transforms for the internal force F, of Egs. (3.19a)-(3.19¢) are utilized.

Hence, the double Fourier transforms of Egs. (3.19a)-(3.19¢) can be obtained as:

Ffo ] PSSz — he " Paxdy =L 5z — h) (5.21a)
S 2z Y Y 27
— 135 —iat
=3 ] [ RO e = Py = - 5= (5.210)
=2Lf | PE@ISS(—he ™ Pavdy == 5(z ~ h) (521e)
T

—00 —00

Based on Egs. (5.21a)-(5.21¢), the Navier-Cauchy equations (Egs. (3.41a)-(3.41c¢))

can be rewritten as the following system of linear ordinary differential equations:

2

{allaz +a66ﬂ2 - j +2la5618 }u (a,B,2)

+{(a, +ag)af +i(a, + aSé)ad_}ﬁy (a,p,2) (5.22a)

+{(ay, + ag)ap + ia, + as)a i (c fo2) =~ 8(z— )
dz 27
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((ay, +ag)af + ia, + a56>adi}m<a,ﬂ, 2)
Z

d’? , d,_

+{axa’ +a, B —a,—+ 2ia,,p—rtu (a,fB,2) (5.22b)
dz dz
d’ d B

+ {a56a2 + 6124152 _a34E+ i(ay; +ay)p dZ}ﬁz(a"B’Z) = _55(2_}1)

(ay, + ag)af +i(a, +ass)adi}b7x(a,ﬂ,2)
zZ

d*> . d._
+{aa’ +a,,p° - ay, pE +i(ay + a44)ﬂz}uy(aﬂﬂﬂz) (5.22¢)
2 2 d’ . d . _ P
+asa® +a,p” —ay, ;T 2iay,f—iu (a,B,z) =——==6(z—h)
dz dz 2r

The boundary-value problem for the lower half-space z <0 with the normal and

shear stresses applied on the ground surface. When z=0 and —oo<x,y<oo, the
stresses of o_.(x,y,2), 7,.(x,y,2), and z_(x,y,z) are equal to zero. Utilizing the
boundary conditions mentioned abov, we obtain &_(a, 8,0)=7,.(a,5,0)=7..(a, 5,0)=0

after performing the double Fourier transforms. Additionally, Eqgs. (3.42¢)-(3.42¢) can

be rewritten as:

ou,(a, 5,0) _ ifasu, (a, 5,0)+ ioasi, (a,B.0)+iacasu_ («, B,0) (5.23a)

0z Ass

ou,(a, B,0) _ ia(ay,ay; — a,za;)u (@, B,0) +if(ayas,; — ayas,)u,(a, 5,0) +ifi (@, B,0) (5.23b)

Oz - a324 +aya,,
ou,(a, 3,0) _ ia(a,ay, —aa)u (a, B,0)+if(ay,a, — a23a44)17y (o, 3,0) (5.23¢)
oz a324 T ay330y,

The Laplace transform for the component of z-axial displacement is adopted. The
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step by step Laplace transforms for u,(a, f,z) (i=x, y, z) are written as:

0

L{(a,B,2)} = [ (@, p,2)e "dz =U,(a, B,5) (5.242)

(=]

L@@ poz), 1 A BD) oy T (0, Bus) T (. B.O) (5.24b)
dz dz

O ey

L{d L_ll(di’zﬂ’Z)} :J. d L_[IEZZ;B’Z) eSZdZ:Sza(a,ﬂ,S)—Sﬁi((l,ﬂ,O)—dL_li(Z;'B’O)

0

(5.24¢)

Based on the aforemenioned transforms, the Egs. (5.22a)-(5.22c¢) can be expressed as:

p.e

_ 7 —+ /i

0] [heps) fo@ps) fo@po]O@po] | 27, " 529
110 |=| 2@ o) fal@pos) fo(@pos) | Uyapos)| =+ =+ fi |

Uz ﬂl(a’ﬂ’s) f;z(aﬂﬂ’s) f‘33(0!,ﬂ,S) Uz(a,,B,s) pzeﬂvh
where
Jo= (—asss+ia56ﬂ)ﬁx(a,ﬂ,0)+ia14w7y (&, B0)+ia 0, (a, 50) (5 263)
Jro =tasgou (@, 0)+(ia, B—a,s), (0, f0)+(iaf-ay,s)u. (o, f,0) (5.26b)
fro =iassti (o, BO)+(—tty,s +ia, S, (e, 0) +(—asys +iay, S (e, ) (5.26¢)
and
Sl B,5) = a0 +ag S’ +asis)’ +2as/is) (5.27a)
Sl B,s)= 1o, B,s) = (ay, +age )b+ (ayy +asg)oxis) (5.27b)
Jika B,5) = fr(&, B, s) =(a, +as)afp+(a; +ass)ois) (5.27¢)
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Sl B,s) :a“az +a2ﬁ2 ""‘144(1.5)2 +2a,,Ais)
S, B,s) = fin(a, B,s) = aseaz +024ﬂ2 +%4(is)2 +(ay; +a,)Ais)
Sis(a, B,s)= 6’5561‘2 +a44ﬂz +a33(i5)2 +2a5,(is)

det [1;]=

=a,@] | 4169’ +& +/8 ~{(is)cosp—Fsingl"} +{(is)cosp— Bsingl

=-m, (S _Sl)(S —Sz)(S _S3)(S —S4)(S _Ss)(s _S(,)

The u (a,p,0) , u (a,p,0), and u (a,f,0) are the undetermined

conditions in Egs. (5.26a)-(5.26c).

The characteristic equation (Eq. (5.28)) with six roots can be expressed as:

—iﬂsin¢cos¢(—l+A|)—\/Al(ﬂ2 +a’(co$ P+ A4 Sitt’ @)

s )= =, ) =iy (e f)

COS ¢+ A4 it ¢
@ f) —iﬁsin¢cos¢(—1+i23;ifﬁi; j:(co§ d+ A Sit? §)) @B =ira
@B —iﬁsin¢cos¢(—1+,i33§—;}/fgi; j(ccﬁ G+ A sitt §)) @B =iraf)
o f) —iﬁsin¢cos¢(—1+1:1()) ;ﬁﬁ;i(coé d+ 4 sitt §) @Bt
e —iﬂsin¢cos¢(—1+112()) ;;/ff;; (Z(co§ ¢+ A Sit? §)) @B =ir@f)
(- —iBsingcosy(—1+ A) -+ A (S +0(coS g+ A, sit? ) B =i

oS P+ A sirt ¢
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(5.27d)

(5.27¢)

(5.27f)

(5.28)

boundary

(5.292)

(5.29b)

(5.29¢)

(5.29d)

(5.29%)

(5.29f)



where the real part of the {5, s, , s,} are negative and {s,, s, , s, are positive.

The A4, A,,and A, are the same as presented in Eqs. (3.48a)-(3.48c).

Eq. (5.25) can be rewritten as a system of three equations:

U(Of B,s) = prll(a’ﬂvS)+pyD12(a,ﬂ,S)+pzD13(a,ﬂ,S) oo
T 27, (s — 5,)(s — 5,)(5 = 83)(5 = 8,)(5 = 85)(s — 56)
+inDll(a’ﬂ’S)+AOD12(a’ﬂ’S)+J{30D13(a’ﬂas)

m, (s —$,)(8 = 5,)(8 = 8;)(s —5,)(s — 55)(s — 55)

(5.30a)

D, (a, B, S)+py (@, B,5) + p.Dy(a, B,5) o
2ﬂmt(s S = 55)(s = 83)(s — 5,)(s = 85)(s — S6)
n 10021 (@, B,5) + fooDn (@, B 5) + f30Dns (@0, B,5)

m, (s —5,)(s = 5,)(s = 5;,)(s —5,)(s — 55)(s — 54)

T, (a,.5) =

(5.30b)

U(Ol B,s) = pr31(a,ﬂ,s)+pyD32(a,ﬂ,s)+pZD33(a,,H,s) oot
T 2, (s = sy)(s = 5,)(s = 85)(5 = 8,)(5 = 5)(s = 5)
" S10Ds1 (&, B,5) + fooDs (s B,8) + [10Dss (&0, B, )
m, (s —5,)(s = 5,)(8 = 5;)(s —5,)(8 = 55)(s — 55)

(5.30¢)

In a half-space, the desired displacements of u (a,f,z), u,/(a,B,z), and

u(a,B,z) can be obtained by the following inverse Laplace transform of Egs.

(5.30a)-(5.30c) as:

1 C+ioo prll(a,ﬂ’S)—l—pyDlz(a,ﬂas)+ple3(a’ﬂ’S)

I/TX(OC,IB,Z) = 2. €S(z_h)ds
(2z)i 5, m(s—s)(s —5,)(8 = 8;)(5 —54)(s —55)(s —55)
+ioo (5.31a)
CJ' oD@, B,5)+ oD (@, Bys) + [Py (@, B, s) e ds
e m, (s —5;)(s = 5,)(s —53)(s = 5,)(s = 55)(s — )
LTy(a,,B,z)= 21 “ p.D,(a,p, S)+py (2, B,5)+ p.Dy(a, B,s) RSN
( ) i, m (5= 5)(s —5,)(s —535)(s —5,)(5 —55)(5 —54) (5.31b)

L]iw S10Do (@, B,5) + [0 Dy (&, By5) + [10Dos (@, B, 5) e ds
T i M (8= 8)(s —5,)(8 = 85)(8 = 5,)(s —55)(s —55)
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1 “r pr31(a,,6’,s)+pyD32(0{,ﬁ,s)+pZD33(a,,B,s)
(271')2i i m, (s —s,)(s —5,)(s —55)(s —5,)(s —55)(s —55)
_{_L'c]iw JioDsi(a, B,8) + froDs, (@, B,5) + f10Dss(a, B,5) e ds

27 5, m(s—s)(s—8,)(s—55)(s —5,)(s—55)(s —55)

e F M

u(a,p,z)=
(5.31c)

where ¢ >0 and the path of integration with respect to s is a vertical line parallel to

and on the right of imaginary axis in the complex s plane.

Substituting Eqgs. (5.26a)-(5.26¢) into Egs. (5.31a)-(5.31c), then u (a,p,z),

u/(a,p,z),and u_(a,B,z) canbe rewritten as:

1 (TC p.D,(a,fB,5)+ pyDlz(aaﬂaS) +p.Dy(a,p,s)
2n)’i,

+ j (A (a, B,0)+ A_it (a, B,0) + A_it (a, B,0)e"ds

es(z—h)ds

e M (8= 5)(5 = 5,)(8 = 53)(s =5, )(5 = 55)(5 — S6) (5.32a)

ﬁx(a,ﬂ,z) =

xxx Xy Xz 2

_ 1 “ prZI(a7ﬂDS)+pyDZZ(aﬂﬂ7s)+pzD23(a5ﬂ7S) s(2—h)
w,(a.8,5) == | s
2r)"i 2, m(s—s)(s—5,)(s = 55)(s = 5,)(s —55)(s —55) (5.32b)

c+ioo

+ [ (4,0 (@, p0)+ A, i1, (o, B.0) + 4,01 (a, B0)e" ds

yx—x Wy

1 c]iw prsl(a,ﬂ,S)+p},D32(0!,,BaS)+pzD33(anﬂ»S) & M g
Q7% (s =5)(s = 5,)(5 = 8,)(s = 5,)(5 = 5)(5 = 5,) (5.32¢)

c+ioo

+ [ {40 (. B0)+ A, (a, B,0)+ AL (a, B0)e" ds

ﬁz(a,ﬁ,z)z

vy 2%z

C

where

Am(a,ﬂ,S) — (_aSSS + ia56ﬂ)Dll(anHaS) + ia56aD12(a>ﬂaS) + ia55aD13(anH’S) (5333)
m,S(a, B,s)

Axy(aaﬂ,s) — ia,ab, (a, B,s) + (iay, B — au,s)D,(a, B,5) + (—ay,s +ia,B)Dis(a, B,s)

sz(a: ﬂ,S)
(5.33b)
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sz(a’ﬁ’s) =

iaaDy(a, B,s) + (iayf — ay,s)Dy(a, B,s) + (—ays +ia, B)Ds(a, B,5)

m,S(a,p,s)
(5.33¢)
A (a.p.s) = 08+ a5B)Duy (@, B.5) + itssaDyy (@ B.5) + 550Dy (@ B.8) (5 334,
' m,S(t, B,5)
A (. fs) = ia, oD, (a, B,5) + (iay ff — a,s)D,, (a, B,s) + (—ay,s +ia,, B)D,,(a, B,5)
A mS(a, f.s)
(5.33¢)
A (. Bos) = ia,aD, (a, f,5) + (iayf — ay,8) Dy, (@, ,5) + (—ay,s +iay, ) Dy (a, B, s)
T mS(a, f,s)
(5.33f)
A_(a,B,5) = (—asss +ias f)Dy (@, f,5) +iassaDs, (a, B, 5) + iassaDy; (a, B, 5) (5.33¢)
m,S(a, p,s)
A (o, fs) = ia,,aD, (a, B,s) + (ia,, 8 — a,s) Dy, (@, B,5) + (—ay,s + ia, B) Dy (a, B,5)
T m,S(a. f.s)
(5.33h)
A (ar, fus) = ‘2D (@ 5.5) + (i f — 15) Dy (@ :5) + (~as5 + i3, 5) Dy(@. f-5)
zZZ 3 2 mtS(a’ﬂ’S)
(5.33i)
S(a, B,5)=(s=5)(s —5,)(5s =8)(s —5,)(s —55)(s — 5¢) (5.33))

When 0<z<h, the solutions of the first term in the left-hand side of Egs.

(5.32a)-(5.32c¢) can be integral by the path of the contour in Fig. 5.3 and expressed as:
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Ims

Res

Fig. 5.3 A closed contour on right-hand side of s-plane.

= _ 4 s4(z—h) 5 (z—h) 6 (z=h)
ux(l)(a’ ﬂ,Z) = _Bxseq4 : _Bxsess 2 BxseS6 S
= _ 4 (z=h) 5 ss(z=h) 6 s¢(z=h)
uy(l)(a,ﬂ,z) = —Byses4 = Byxe65 = Byse"" z

— _ 4 s,(z—h) 5 ss(z—h) 6 s¢(z—h)
uz(l)(a,,B,z) =—B e -B eV —B e

(5.34a)

(5.34b)

(5.34c¢)

When z>h ,the solutions can be integral by the path of the contour in Fig. 5.4 and

expressed as:
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Ims

S, S,
Ss Ss Res
S: | s,

Fig. 5.4. A closed contour on left-hand side of s-plane.

— _ pl _si(z=h) 2 _s,(z—h) 3 s3(z—h)
ux(l)(a,ﬂ,z) =B e" + B e + B e”

= _pl (z=h) 2 (z—h) 3 s3(z=h)
u},(l)(a,ﬂ,z) = Byses1 =y Byses2 =y Byxe63 =

— _ pl (z=h) 2 (z=h) 3 s3(z—h)
uz(l) (a7 ﬂ’ Z) - steSl - + stesz : + steS3

where

B){S(a’,ﬂ) _ P;ch(aa,BaSj) + [)yDl2(a’ﬂ’Sj) + PzD13(a>:B>Sj)
2mm,S,;

B () = D@13+ P.Du(@ ) + P Dy (@)
27m, S,

szs(a’ﬂ) — RCDN(aaﬂ’Sj)+I)}»D32(a9ﬂasj) +PZD33(C¥,ﬂ,Sj)

27m,S,
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(5.35a3)

(5.35b)

(5.35¢)

(5.36a)

(5.36b)

(5.36¢)



Suppose that u=s and u,=s,, since B (a,f), B)(a.B), and Bl(a,f) in
Egs. (5.36a)-(5.36¢) have the same forms as B](a,f), Bl(a,f), and B!(a,f) in
Egs. (4.07a)-(4.07¢); hence, u ,(a,B,2), u,,(a,B,z), and u_,(a,pB,z) in Egs.
(5.34a)-(5.34c) and Egs. (5.352)-(5.35¢), and u, . (a,f,2) , u,p(@,B.2), and
u,p(a,B,z) in Egs. (5.052)-(5.05c), and Egs. (5.06a)-(5.06c) are the particular

solutions of the three displacement functions.
Following, we can find the solutions of the second term in the left-hand side of Eqgs.

(5.32a)-(5.32c¢) should be the general solution of Egs. (5.04a)-(5.04c) as:

When z >0, the solutions can be integral by the path of the contour in Fig. 5.4 and

expressed as:

ity (@, B,2) = A" + Al + Ale™ (5.37a)
iy (@, B,2) = A, + Are™ + L™ (5.37b)
i@, B,2) = A’ + A2e' + Ale™ (5.37¢)
where

Al = ALu (a, B.0)+ ALt (a, B,0) + ALt (a, 5,0) (5.38a)
A = A u (a,,0)+ A i (a, 5,0)+ A (a, B,0) (5.38b)
Al = AL (o, B,0)+ AL, (a, B,0) + AL, (a, B,0) (5.38¢)

, and in which:
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(_a55Sj +ia56:6)D11(aa,BaSj)+ia56aD12(anBaSj) +ia55aD13(auB>Sj)

5.39a
s (5.39)

Al(a.p)=

iay, oDy (@, f,s;) + (iay S —ays;)Dy(a, B,s )+ (—ays; +ia,f)D;(a, B,s))
m.S
)

Al (a,p) =
(5.39b)

ia;aD, (a, f, Sj) +(iay,f — as,S; )Dy, (e, B, sj) +(—ays, + iay,fB)Dys(a, B, Sj)
m,S,

Al (a,p) =
(5.39¢)

(=asss, +ias f)Dy (a, f,5)) +iasgaD,, (a, f,5)) + lassaD,y (a, .5 )

5.39d
s (5.39d)

Al (a.p)=

ia,,0D,, (e, B,5 ;) + (iay, S — ays ;) Dy (@, f,5 ) + (—ay,s; +ia,B)Dy(a, B,s;)
m,S;

Al (a, )=
(5.39%¢)

iaoD, (a, B,s;) + (iay B — ay,s ) Dy (1, B,5 )+ (=ay8, +iay, B) Dy (@, B, ;)

A (a, ) =
(e, ) 55
(5.399)
Al (a,p) = (=asss; +ias,S)Dy (@, B,5,) +iasaDy (@, f,5,) + iassaDy (a, B, s ) (5.39g)
m,S,;
A (a0 f) = ia, oDy (a, B,s;) +(iayff —a,,s;) Dy, (a, B,s;) +(=ay,s; +ia,B)Dy(a, B,s ;)
zy s -

mS,
(5.39h)

ia13aD31(auB’Sj) +(iayf - a34Sj)D3z(aaﬂij) +(—ays; + ia34ﬂ)D33(avﬂij)
m,S,

AL(a.f) =
(5.39i)
Ol = 5,)(s = 5,)(s = $,)(5 = 5,)(5 = 5,)(5 = 5] (5.39))

S (@) = 2 5=,
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When z=0, Egs. (5.37a)-(5.37¢), and Egs. (5.04a)-(5.04c) can be stated as:

ﬁx(H)(aﬂ 1390) Aylcx + Afx + ij Aylcy + Ajy + A;y A)]cz + Ajz + A)::z L_lx (a’ 1390)
Ty (o, f0) |=| Ay + A} + A A+ A, + A, A+ AL+ A | i (a,B0)
ﬁz(H) (a7 ﬁ’o) A;x + Azzx + ij A;y + Azzy + Ajy Azlz + Azzz + Az32 1’72 (a’ ﬂ’o)

1 1
U] Uz U3 ﬁl Jp21 f}] L_lx(a,ﬂ,())
- flz f‘22 f32 Z’_ly (aa ﬂ,O)
D311 D321 D;l f13 f23 f33 u, (a, ﬂ,o)

1 Dlll D|21 D|31 So o S | u(a,B,0)
= T 2 13 D, Dj D231 Jo [ fu|u(a,p,0)
UUUD,\ DDy | 2 3 —
Dy, Dy Dy || fis S Sy | u.(a,B,0)
Dlll D121 D131 Cclzz
= D;l D221 D231 Cjz
Dy, D; Dj | Ci, (5.40)

Then Eq. (5.40) can be rewritten as:

iy (@, f,0)= (A, + A% + A (a, B.0) + (4, + 4, + A,z (a, 5,0)
+(A + A+ Ay (e, 5,0) (5.41a)
= Cclllell + C§2D121 + CzliZDlzl

L_ty(H)(a,ﬂ,O) = (A}l,x + Ayzx + Aix)b_tx(a,ﬂ,()) + (A;y + A}Z,y + Aiy)b_ty (a,,0)
(A, + AL+ 4L (a, .0) (5.41b)
= CgllzDzll + C52D221 + C;2D221

0, (@, B.0) = (AL + A2+ At (c, B0) + (A, + AL, + A)it, (a, B,0)
+ (A + A2+ AD)i (a, 5,0) (5.41¢)

ol 2 2 1 2
= Cd2D31 + Cd2D31 + Cd2D3l

The general solutions are the sum of the homogeneous solution (Egs. (5.37a)-(5.37¢))

and particular solutions (Egs. (5.34a)-(5.34c)) as follows:
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i (a, f.0) = (A, + 4, + At (a, f.0) + (4, + 45, + 4, (o, B.0)

(5.42a)
+(AL + A2+ A )i (a, B0)-Ble™" —Bl e — Bl
i, (o, B.0)= (4, + A} + A (a, B.0) + (4, + A + 4 )i (e, 5,0) (5420)
1 2 3N~ 4 _—s4h 5 —ssh 6 —sgh :
+(A, + 4, + 4, )u.(a,p,0)-Be" " —B e —B e
7 _ 1 2 3N— 1 2 3 \—
i, (o, ,0) = (4., + A + A2t (a, B,0) + (AL, + A2, + Ay, (, B,0) (5420
+(AL+ A2 + A (a, B,0) - Ble™" — Bl e — BSe "
Since,
DAL= A= AL =1
! ’ / (5.43a)
6 _ 6 _ 6 ) 6 } 6 A 6 ‘
DAL= AL=D AL =D A= A=) AL =0
/ / J / J j (5.43b)

Egs. (5.41a)-(5.41¢) and Eqs.(5.42a)-(5.42c) can be expressed as:

I’_lx(P) (a’ IB’O) = _B;se_34h - B)fse_SSh B Bjse_S6h
4 5 6 \— 4 5 6 \—
= (A} + A5+ A% (@, f.0)+ (A2 + A3 + 4%, (@, 5.0) (5.44a)
+ (AL + AL + A7) (a, 5.0)

@ P B~ B B
. ; 8 Yir 4 5 6 \—
=yt A+ A (0 f0)+(A, + 4, + 4, ), (@, 5.0) (5.44b)
4 5 6 \—
+(A + 4, + A (e, 5,0)

L_[Z(P) (a,ﬂ,o) — _B;Le—&th _ BZSSe—Ssh _ Bzése_S6h
4 5 6 \— 4 5 6 \—
= (AL + A+ AT (0, B0) + (AL, + A + AT, (a0, 8.0) (5.44c)

When z>h and 7 — 0, the particular of Egs. (5.352)-(5.35¢c), and the general
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solutions of u (a,f,0), ﬁy(a,ﬂ,O),and u_(a,p,0) canbe expressed as:

i (a,B,0)= (A, + 4 + 4 u (a,B,0)+ (A)lcy + szy + Ajy)ﬁy (o, 5,0)

(5.45a)
+(A,, + A, + A )i (a, B,0)+ B, + B, + B,
i, (o, B.0) = (A4, + A} + 4 (a, B,0)+ (4, + 4, + 4 )i, (e, 5,0) (5.45b)
1 2 3 \— 1 2 3 :
+ (Ayz +A4,+A4, u_(a, B,0)+ B+ B, +B,
L_lz (aﬁﬂﬁo) = (A;x + Azzx + Azx)ﬁx (a’ﬂﬁo) + (A;y + Azzy + A:y)ﬁy(a’ﬂ’o) (5 45 )
45¢

+(AL + A2+ AD)u (o, p,0)+ B, + B. + B,

The general solutions of u, , (a,p,0), u,, (@, pB,0), and u, ., (a,B,0) can present

as:

I’TX(P)(a’ﬂDO) Bglc:+Bjs+Bis
i,p(a,B,0)|=| B, +B, +B)
LTz(P)(aﬂﬂDO) Bis+Bzzs+sts

D111 +D121 +D131 Dllz +D122 +D13z D113 +D123 +D133 _PX_
U, U§ Ug U, U22 Ug U11 U22 Ug 2
1 1

_ D,, +D21 +D21 D, +D22 +D22 D, +D23 +D23 i

U, U, U, U, U, U, U, U, U, 2P7Z
1 2 3 1 2 3 1 2 3

Dy, +D31 +D31 D;, +D32 +D32 Dy, +D33 +& =

L U, U, U, U, U, U, U, U, U, _-27[-

L D1]2 D113 [ P, i
D' D2 D3 U, DlllU1 DIIIU1 2 p. p2 p:lc
11 11 11 ) ) P 1 1 11 dl
= Dzll D221 D231 L D212 12)13 —|= Dé1 D221 D231 le
U DU D U 2
D' p2 p? 2 Y2 Y2 D' p2 pillce
31 31 sl D}, D} P 31 31 31 di
U, D131U3 D131U3_—27[—
(5.46)
We show that:
u(a,p,0)=u . (a,p,0)+u,,(a,p,0)= CiDy, +C;Dj + CuD;) (5.47a)
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7, (00, £.0) = T, (@0, B.0) + T, (01, £,0) = C4 D}, + C3D3, + CiD;, (5.47b)
1’_[2 (0(, ﬂao) = L_lz(H)(aa /B’O) + L_lz(P) (0(, ﬂao) = CallD3ll + C'0?1)3'21 + C3D3'31 (5470)

The undetermined coefficients u (a,f,0), u, (a,5,0), and u_(a,B,0) can be

transformed to C}, C;, and C;, in which C}, C;, and C, satisfy the rules of Eq.

(5.12a). Hence, Egs. (5.31a)-(5.31c¢) can be rewritten as:

i (a,B,z)=C,D\e"* +C;De" + C,D;e"* (5.48a)
i, (a,p,2) = CyDye"* + C1D; e + CyD5 " (5.48b)
i, (a,B,z)=C,De"" + C;D;e"* + C,D;e"” (5.48¢c)

The undetermined coefficients C,, C,, and C, can be determined using the

method of Cramer’s rule.

5.4 Solutions for Displacements and Stresses by Inverse Fourier Transforms

The desired u (x,y,z), u,(x, »,z), and u_(x,y,z) can be obtained by performing

the double inverse Fourier transforms of Egs. (5.16a)-(5.16c¢) as follows:

1 [ i uz i Unz
ux(x,y,z) ZEI I {C;D”(Ot,ﬂ,ul)e (ax+py)+u, +Cd2D11(a,ﬂ,1/l2)€ (ax+fy)+u,

J (5.49a)
+CD, (a, Bouy)e" P Y dod B
1 T 1 i(ax+py)+u z 2 i(ax+fy)+uyz
u (x,y,z)=— C.D, (a,p,u)e s COD, (e, Bau)e T
Sy 2= [ [ ACiDy (@, f) D (a, Bou) (5.49)

—00 —00

+CoD, (a, fouy)e" P dod B
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177 o -
uZ(x’y’Z):Z.[ j {C)Dy (a, Byuy)e" ™ P+ CID, (a, Byu, ) @ )0

—00 —00

(5.49¢)
+CD, (a, Bouy)e P dad

Similarly, o, (x,y,2) , ©,(x,y,2), o.(x,y,2), 7.(x,y,2), 7,.(xy,z), and
7,,(x,»,z) also can be acquired by the double inverse Fourier transforms as:

For z>0 (region 1),

o o

O-xx(x y,Z)—ziJ j {Cl —1 z(ooc+ﬁy)+ulz+c2 —2 l(00c+ﬂy)+uzz+c3 —3 l(ax+ﬁ’})+u32}dadﬁ
(5.50a)
1 T P i(ox uz — z ax Uyz — i(ox+ +usz
0, (5.7,2) =~ [ [ (Cia e+ Clape e 4+ Cian e P dad B
(5.50b)
O-zz('x y,Z)—LJ. I {Call_zlz i(ax+fy)+u,z C2—2 i(ax+fy)+uyz +C3 —3 z(ax+ﬁy)+u32}dadﬂ
(5.50¢)
z_yz(x y,Z)—LJ- J- {le_l i(ox+py)+uz +C2 =2 t(ax+ﬂy)+uzz+c3 =3 z(ax+ﬂy)+u32}dadﬂ
(5.50d)
sz(x:y,Z)ZzLJ-J‘ {Callz—_zlxei(wﬁﬂyhulz C2 =2 z(ax+ﬂy)+uzz C3 =3 z(ax+ﬁy)+u3z}dadﬂ(5.soe)
7[—00—00
Txy(x y’Z)_zij J’ {Ctli—l 1(ax+ﬁy)+ulz+c2 =2 l(m+ﬂy)+uzz+c3 =3 1(m+ﬁy)+u12}dadﬂ(5.50f)
7Z-700 —00
where:
&), = —i(aa,,D}, + pa, D3, + fa,, Dy, —i(a,, D3, + a13D3jl)uj) (5.51a)
Eyy —i(aa, D) + fay, D3, + fa,,Di, —i(ay,D;, +a23D31)” ) (5.51b)
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o = —i(aa,, D, + fay,D3, + fas,Di, —i(a;, D3, + ay, Dy, ;)

(5.51¢)
7 =—i(aa D}, + fa,, D3, + pa,,Di, —i(a, D}, + a, D )u,) (5.51d)
7). = ~ias(BD}, + aDj,) + ass(aDy, —iDu ;) (5.51e)
ij; = —i(ag (BD}, + aDy,) + as(aDy, — iDljl“j ) (5.511)

In Egs. (5.51a)-(5.511), j=1-3.
If we take a spherical co-ordinate system, which is shown in Fig. 4.4, the variables o,

f, and u; can be expressed in the Eqs. (4.44a)-(4.44b) and Egs. (4.45a)-(4.45b).

According to Egs. (3.53a)-(3.53f), p/,, pJ,, D], (j=1-6) and ¢ (j=1-3) in Egs.

(5.492)-(5.49c¢) and Eqgs. (5.50a)-(5.50f) can be presented in terms of k£ and 6, as:

D}\(k,6,)=k*Dj\(8,) (5.52a)
Dj (k,0,)=k*DJ (6, (5.52b)
Dy, (k,0,) = k"Di,(6,) (5.52¢)
Cl(k,0,)=k>Cj(6,) (5.52d)

Hence, Egs. (5.51a)-(5.51f) also can be rewritten as:

G..(k,0)=k5/(0,) (5.53a)
&, (k.0,) =k5,,(6,) (5.53b)
GL(k.0,)=k'cL(6,) (5.53¢)
7.(k,0,)=k7](6,) (5.53d)
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7/ (k,0.)=k’T.(6,)

7). (k,0,) = ksz_'xi 4,

(5.53¢)

(5.53f)

Based on Egs. (4.44a)-(4.44b), Egs. (4.45a)-(4.45b), Eq. (4.49), Eq. (4.52), Egs.

(5.52a)-(5.52d) and Egs. (5.53a)-(5.53f), then Egs. (5.49a)-(5.49c) and Egs.

(5.50a)-(5.50f) can be represented as:

For z>0 (region 1),

060,22 =5 [ (CHOIDLO) s+ CHOIDL ) o
1
C3(6.)D?> (0 do
+ d( x) ll( X)l//3(9x)} X
1% | 1 ; ) 1
,(5,,2) === [ {CUOIDL6) s + CHOIDL ) s
1
Cj Hx D;l Hx dg\f
HGOIPA )5
1% | 1 ) ) 1
u(xp.2) == (CL0ID; 055+ COIDIO) o
1
Cj 9)( D331 ex dex
+COIDI O o5
1 2 1 —1 1 2 2 —2 1 2
00, y2) =~ j {Cd(9x>axx<9x)(wl(9x)) +Cd(0x)am<ex)<% (0»)
-COIT0N (19 e,
1 2 1 —1 1 2 2 —2 1 2
0, (n3,2) = j {cd(@)oyy(ex)(% (6;)) +Cd<9x)ayy(0x>(%@))
+C0IZ0) (19 e,
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1 1 2

1 ¢ ) i 2 2 —2
0.(x,y,2) = 5 ! {C, (QX)GZZ(QY)(%(HX)) +C; (Hx)Uzz(ex)(%(ex))
1
+C3(0,)7-.(6,)( )*}do,
w5(6,) (5.54)
e wra = [ OO sy e)— Ly
g 27y g w,(6,) T w,0)
1
+C3(0,)7,.(0,) )*}de,
w5(0,) (5.54g)
e (er2) = [ COIRON =+ o) 0Ny
27 5, v, (6,) w,(0,)
1
+C(0,)72(0)(——)}d6,
v(0,) (5.54h)
e D) = [ CHOITL )L+ OOy
’ 27 T (6) A CH
1
+C(0,)7,,(0,)( )*}do,
v(6.) (5.54i)
Again, assuming w=¢'%, and hence, sing, = oo cosO, = @ +2w_1 , do=iwd, ,
Egs. (5.54a)-(5.541) can be expressed as:
For z>0 (region 1),
0, (63,2) ==, - (CH @D (@) D 4 )] (0) L)
¢ o v, (@) A
+ @D (@40
Vo) (5.552)
1, (59,2 ===, ~—CH (@)D} (@) LD 1 2 w) D3 () L2
, 27 e V(@) vy(®)
+ (@)D} (0) LD 4
Vo(@) (5.55b)
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uz (x,y,z) = _iﬁc i{c; (w)DSII(a))M + C; (Q))D; (a)) l/IS (CU)

v, (o) v, (o)
+ C (@D (0 YD yd0
9(60)
0,502 = 5 f, G @) 1 o @)Dy
27 °¢ v, (o) v (@)
+ Cj (w)asx(w)(m)z} do
Wo()
o, (x,y,z)= 1 _{Cl ()5 (a))(W4( )) +C ()5 (a))(l//s(a)))z
) 27 @) 7 @)
+C(0)5) (a))(%ga);) vdo
= L i 1 =1 Y, (@), 2 Vs (@),
o.(x,y,z)= o ifc I {C,(w)T, (a))(—%(w)) + CH0)T2 (o) (2 Vo ))
+ C(@52 (@)D 140
Wo(®)

u(xmzhijﬁ —{C%w)“( )(""f ;) +Clw )fz(a))(%gw;)

+ C()E (w)(%ga’;)} o

rnn) = f, (), <w)(l/‘{j§“’;> 4 C )2 (w)(‘”:§”;>

+Co(0)T.. (@(M)z} dw
Wo()

Txy(x’y’z):%ﬂ %'{Cl(w)f (w)('/"‘ia’;) + CH0)T; (a))("’sza’;)

+ C0) ()L f“’;)} o

where:

v, (@) =y, (o) xy,(®)

96

(5.55¢)

(5.55d)

(5.55¢)

(5.55f)

(5.559)

(5.55h)

(5.551)

(5.56a)



ws(@) =y, (@) xys(w) (5.56b)

vy (0) =y (0) Xy (0) (5.56¢)
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CHAPTER VI

ILLUSTRATIVE EXAMPLES

The present analytical solutions demonstrate that there are several factors could affect
the displacements and stresses in an inclined transversely isotropic material. These
factors include (1) the rotation of the transversely isotropic planes (@), (2) the type and
degree of material anisotropy (E/E’, v/v’, G/G’), (3) the geometric position (7, ¢, &), as
seen in Fig. 6.1, and (4) the types of three-dimensional loading (P,, Py, P:). Based on
Eqgs. (4.57a)-(4.57¢c), (4.59a)-(4.59f) (for z>0, region 1) and Egs. (4.58a)-(4.58c¢),
(4.60a)-(4.60f) (for z<0, region 2), a Mathematica™ (1999) program is written to clarify
the effect of aforementioned factors on the induced displacements and stresses in a full
space with transversely isotropic medium subjected a point load. (* The Mathematica
program is written on the basis of Eqs. (4.57a)-(4.57c), (4.59a)-(4.59f) and Egs.
(4.58a)-(4.58¢), (4.60a)-(4.601), which can be adopted for calculation the displacement

and stress components at any point in the full-space subjected a point load.*)
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Fig. 6.1 Spherical co-ordinate system (7, ¢, &)

6.1 Selected Parameters for Calculation

A parametric study is conducted in this chapter to illustrate the generated analytical
solutions, and investigate the influence of the rotation of transversely isotropic planes,
the geometric position, and the degree and type of rock anisotropy on the displacements
and stresses. Two examples, one is to present the effect of ¢ on the displacements and
stresses subjected to a vertical point load P, at x=y=z=1 (as shown in Figs. 6.2(a)-6.2(c)
for displacements, and Figs. 6.3(a)-6.3(f) for stresses), and the other is to exhibit the
effect of @ on the stresses owning to P. at ¢=90° and £=45° (as depicted in Figs.
6.4(a)-6.4(f)). Seven hypothetical rocks, including one isotropic and six transversely
isotropic rocks are considered to constitute the foundation materials. For typical
ranges of transversely isotropic rocks, Gerrard (1975) and Amadei et al. (1987)
suggested that the ratios E/E’” and G/G’ ranging from 1.0 to 3.0, and /v’ varying
between 0.75 and 1.5. Hence, the degree of rock anisotropy, specified by the ratios
E/E’, v/v’, and G/G’is accounted for investigating its effect on the displacements and

stresses. Table 6.1 lists the rock types, and the elastic properties for the present
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hypothetical rocks. The values adopted in Table 6.1 of £ and v are 50 GPa and 0.25,

respectively.
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Table 6.1 Elastic properties for the hypothetical rocks (E=50 GPa, v=0.25)

Rock type E/E’ 174%4 G/G’
Rock 1. Isotropy 1.0 1.0 1.0
Rock 2. Transversely isotropy 2.0 1.0 1.0
Rock 3. Transversely isotropy 3.0 1.0 1.0
Rock 4. Transversely isotropy 1.0 0.75 1.0
Rock 5. Transversely isotropy 1.0 1.5 1.0
Rock 6. Transversely isotropy 1.0 1.0 2.0
Rock 7. Transversely isotropy 1.0 1.0 3.0

6.2 Example Results for Full-Space Problem

Using the elastic properties of the hypothetical rocks listing in Table 6.1, the effect of
dip angle (¢ on the displacements and stresses of the position of x=y=z=1 induced by
the P; at origin (0,0,0) are depicted in Figs. 6.2-6.3.  In addition, the effect of ¢ on the
stresses resulting from P, at ¢=90° and {&=45° is shown in Fig. 6.4.

Figs. 6.2(a)-6.2(c) show the normalized displacements u,*r/P. (Fig. 6.2(a)), u,*r/P;
(Fig. 6.2(b)), and u.*/P. (Fig. 6.2(c)) at the position x=y=z=1 vs. the rotation of the
transversely isotropic planes (¢), due to a vertical point load (P;) at the origin, for the
constituted isotropic/transversely isotropic rocks (Rock 1/Rocks 2-7, Table 6.1). Fig.
6.2(a) depicts the normalized displacement u, of the rocks, induced by P.. It is
observed that any value in each curve is symmetric with respect to the origin of the
co-ordinates, and the ratios £E/E’(Rocks 2 and 3), v/v’(Rocks 4 and 5), and G/G"(Rocks

6 and 7) all strongly influence this displacement. This figure also exhibits that the
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magnitude of the normalized induced displacement (0.00026 m*/GN) for Rock 1 is
independent of the change in ¢. However, for Rocks 2 and 3, the displacement is
maximal at about ¢=0°-180°, and is minimal at approximately ¢=60°-240°. As for
Rocks 6 and 7, the displacement is maximal at around ¢=50°-230°, and is minimal at
about ¢=100°-280°. Fig. 6.2(b) presents the normalized displacement u, of the rocks,
due to P.. This figure clearly reveals that the displacement induced in transversely
isotropic rocks is deeply affected by the ratios E/E”(Rocks 2 and 3) and G/G’(Rocks 6
and 7), but is only slightly influenced by v/v’ (Rocks 4 and 5). Notably, the
normalized displacement (0.00026 m?/GN) of the isotropic rock (Rock 1) is also
independent of ¢. Nevertheless, it is found that the values of induced displacement for
Rocks 2 and 3 would be partially within the range of -0.0004 to 0, meaning there could
be an opposite-direction displacement occurred in these media. Fig. 6.2(c) displays the
normalized displacement u. of the rocks, subjected to P.. Clearly, the ratios E/E’
(Rocks 2 and 3) and G/G"(Rocks 6 and 7) profoundly impact the induced displacement,
but the effect of /v’ (Rocks 4 and 5) on it is little. The magnitude of the normalized
induced displacement for Rock 1 is always 0.00179 mz/GN; however, for Rocks 2, 3, 6,
and 7, the values of u, are nearly greater than those of Rock 1. The calculated results
for the displacement fields are all in good agreement with Wang and Liao's solutions
(1999) if the full-space is homogeneous, linearly elastic, and the planes of transversely
isotropy are parallel to the horizontal axes.

Figs. 6.3(a)-6.3(f) plot the non-dimensional normal stresses O 17 /P. (Fig. 6.3(a)),

O'yy*rz/Pz (Fig. 6.3(b)), o..**/P. (Fig. 6.3(c)), and the non-dimensional shear stresses
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7,.%°/P; (Fig. 6.3(d)), z..*"/P. (Fig. 6.3(¢)), 7, *"/P, (Fig. 6.3()), vs. the rotation of the
transversely isotropic planes (¢), subjected to a vertical point load (P,), at x=y=z=1, for
the isotropic (Rock 1) and transversely isotropic rocks (Rocks 2-7). Fig. 6.3(a)
illustrates the effect of ¢ on axx*rz/Pz, for Rocks 1-7. This figure shows the induced
stress for the isotropic rock (Rock 1) has the same value (0.005105), that is again
independent of ¢. However, it is found that the values of induced stress for Rocks 1-7
varying between -0.004 and 0.02, namely, there is an obvious tensile stress occurred in
Rock 7. In addition, any value in each curve is symmetric with respect to the origin of
the co-ordinates. Hence, from this figure, it is apparently revealed that the induced
stress is greatly influenced by the rotation of the transversely isotropic planes (¢#), and
the type and degree of rock anisotropy (E/E’, v/v), G/G’). Fig. 6.3(b) presents the
effect of ¢ on o, *7/P., for Rocks 1-7. Notably, the value in the curves is also
symmetric with respect to the origin of the co-ordinates, and the ratios £/E” (Rocks 2
and 3), /v’ (Rocks 4 and 5), and G/G” (Rocks 6 and 7) do also have a considerable
influence on the stress. This graph exhibits the magnitude of the non-dimensional
normal stress (o, *</P.) for Rock 1 (0.005105) is also independent of ¢, and the value
of the non-dimensional stress is within 0.06. In particular, the computed results of
Rock 4/Rock 5 are totally great/less than those of Rock 1.  Fig. 6.3(c) depicts the effect
of ¢ on o..**/P., for Rocks 1-7. This stress depends heavily on the ratios E/E’(Rocks
2 and 3) and G/G’"(Rocks 6 and 7); nevertheless, the effect of the ratios /v’ (Rocks 4
and 5) on it is slight. The maximum value of the non-dimensional stress approaches

0.026. Fig. 6.3(d) plots the effect of ¢ on z'yz*rZ/Pz, for Rocks 1-7. Evidently, the
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ratios £/E’(Rocks 2 and 3) and G/G’(Rocks 6 and 7) could intensely affect the induced
stress; however, the effect of the ratios /v’ (Rocks 4 and 5) on it is still little. The
trend of these stress curves in this figure is similar to that in Fig. 6.3(c). Fig. 6.3(e)
displays the effect of ¢ on z'zx*rz/Pz, for Rocks 1-7. The maximum value of the
non-dimensional stress is about 0.026. Fig. 6.3(f) shows the effect of ¢ on Txy*FZ/PZ,
for Rocks 1-7. The effect of the ratios v/v’ (Rocks 4 and 5) in this figure is more
explicit than another shear stresses (Figs. 6.3(d) and 6.3(e)). Especially, the calculated
results of Rock 4/Rock 5 are great/less than those of Rock 1. The maximum value of
the non-dimensional stress is within the range of 0.024. The computed results for the
stress fields are exactly identical with those estimated from Wang and Liao’s solutions
(1999), in which the planes of transversely isotropic full-space are parallel to the
horizontal loading surface.

Figs. 6.4(a)-6.4(f) plot the non-dimensional normal stresses (o *r"/Ps, ayy*rz/Pz,
fo i *rZ/PZ), and the non-dimensional shear stresses (7. *rZ/PZ, Tox >’<r2/PZ, Ty *rZ/PZ), vs. the
geometric position ¢ (from 0° to 360°), due to a vertical point load (P,), at the rotation
of the transversely isotropic planes ¢=90° and the geometric position &&=45°, for the
constituted isotropic/transversely isotropic rocks (Rock 1/Rocks 2-7). Fig. 6.4(a)
clarifies the effect of ¢ on o;cx*rz/PZ, for Rocks 1-7. It is observed that the magnitudes
of the estimated stress are symmetric with respect to ¢=180°. The upper/lower part of
this figure denotes the compressive/tensile stress occurred in the rock media. The
maximum values of tensile/compressive stress appeared at ¢=0°/180° in Rock 7. In

addition, the induced stresses are found to be influenced by the ratios £/E’(Rocks 2 and
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3), v/v/(Rocks 4 and 5), G/G’(Rocks 6 and 7), and they are all zero at ¢=90° and 270°.
Fig. 6.4(b) demonstrates the effect of ¢ on a3, */P,, for Rocks 1-7. Results reveal that
the magnitudes of the computed stress are also symmetric with respect to ¢=180°, and
the tensile and compressive stresses would be occurred in all media. However, the
maximum values of tensile/compressive stress approximately appeared at ¢=125° and
235°/55° and 305° in Rock 4. That means at a given position (¢=90° and £&=45°), the
decrease of the ratio v/v’from 1.0 (Rock 1) to 0.75 (Rock 4) could remarkably affect the
stress (o). Fig. 6.4(c) shows the induced non-dimensional normal stress o..*r*/P. for
Rocks 1-7. The distributions and magnitudes of the calculated stress are quite different
from those of Figs. 6.4(a) and 6.4(b). The tensile/compressive stress can be found
within ¢=0°-90° and 270°-360°/90°-270°. Moreover, the stress (o:.) is apparently
impacted by the ratios G/G” (Rocks 6 and 7); nevertheless, it is little affected by the
ratios E/E’(Rocks 2 and 3) and v/v’”(Rocks 4 and 5). The induced non-dimensional
shear stress ryz*rZ/Pz for Rocks 1-7 is depicted in Fig. 6.4(d). It is noted that the
positive/negative values of 7,. are respectively symmetric with respect to ¢=180°.
Additionally, the computed stresses are all zero at ¢=0°, 180°, and 360°.  The results of
Rocks 2, 4, 6, 7 are rather distinct from those of Rocks 1, 3, 5. Similarly, the trends
can be discovered in Fig. 6.4(e) for 717 /P.. Eventually, the induced non-dimensional
shear stress rxy*rz/Pz for Rocks 1-7 is displayed in Fig. 6.4(f). The calculated
positive/negative values of 7, are symmetric with ¢=90° and 270°. The zero values
for z,, are found at ¢=0°, 90°, 180°, 270°, and 360°. Furthermore, the influences of

the type and degree of rock anisotropy in this figure are more explicit than those in Figs.
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6.4(d) and 6.4(e). That signifies again that at ¢=90° and &=45°, the normal and shear
stresses owing to a vertical point load are strongly impacted by the geometric position
(@) and rock anisotropy (E/E’, v/v’, G/G).

The examples are presented to illustrate the derived solutions and demonstrate how
the rotation of transversely isotropic planes (¢), the geometric position (7, @, &), and the
degree and type of material anisotropy (E/E’, v/v’, G/G’) would influence the
normalized displacements and non-dimensional normal and shear stresses. Results
reveal that the displacements and stresses in the inclined isotropic/transversely isotropic
rocks (Rock 1/Rocks 2-7) due to a vertical point load are quite different from those
solutions by assuming the transversely isotropic planes are parallel to the horizontal
surface. Hence, it is imperative to consider the dip at an angle of inclination when
calculating the induced displacements and stresses in a transversely isotropic material

by applied loads.
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Loading is P,
Effect of ¢
(x=y=z=1)

Rock 1
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Fig. 6.2.(a) At the position x=y=z=1, the effect of ¢ on the normalized displacement
u,*r/P;
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Loading is P,
Effect of ¢
(x=y=z-1)

Rock 1
A — A — —A Rock 2
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Fig. 6.2.(b) At the position x=y=z=1, the effect of ¢ on the normalized displacement

u,*r/P.
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Loading is P,
Effect of ¢
(x=y=z-1)
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Fig. 6.2.(c) At the position x=y=z=1, the effect of ¢ on the normalized displacement
u, *r/P,
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Loading is P,
Effect of ¢
(x=y=z=1)
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Fig. 6.3.(a) At the position x=y=z=1, the effect of ¢ on the non-dimensional normal

2
stress oy, *r°/P,
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Loading is P,
Effect of ¢
(x=y=z=1)
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Fig. 6.3.(b) At the position x=y=z=1, the effect of ¢ on the non-dimensional normal

2
stress oy, *r°/P,
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Loading is P,
Effect of ¢
(x=y=z=1)
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Fig. 6.3.(c) At the position x=y=z=1, the effect of ¢ on the non-dimensional normal

2
stress o, *r°/P,
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Loading is P,
Effect of ¢
(x=y=z=1)
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Fig. 6.3.(d) At the position x=y=z=1, the effect of ¢ on the non-dimensional shear

2
stress 7. *r/P;
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Loading is P,
Effect of ¢
(x=y=z=1)
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Fig. 6.3.(e) At the position x=y=z=1, the effect of ¢ on the non-dimensional shear

2
stress 7, *r°/P;
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Loading is P,
Effect of ¢
(x=y=z=1)
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Fig. 6.3.(f) At the position x=y=z=1, the effect of ¢ on the non-dimensional shear

2
stress 7, *r"/P-
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Loading is P,
Effect of ¢ when $=90°, £=45°
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Fig. 6.4.(a) At the position ¢=90°, £&=45°, the effect of ¢ on the non-dimensional

2
normal stress oy, *r°/P,
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Loading is P,
Effect of ¢ when $=90°, £=45°
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Fig. 6.4.(b) At the position ¢=90°, £&=45°, the effect of ¢ on non-dimensional

2
normal stress oy, *r/P.
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Loading is P,

Effect of ¢ when $=90°, £=45°
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Fig. 6.4.(c) At the position ¢=90°, &=45°, the effect of ¢ on the non-dimensional

2
normal stress o, *r°/P,
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Loading is P,

Effect of ¢ when $=90°, £=45°
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Fig. 6.4.(d) At the position ¢=90°, &=45°, the effect of ¢ on the non-dimensional

2
shear stress 7. *r"/P.
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Loading is P,
Effect of ¢ when $=90°, £=45°
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Fig. 6.4.(e) At the position ¢=90°, &=45°, the effect of ¢ on the non-dimensional

2
shear stress ., *r*/P,
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Loading is P,
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Fig. 6.4.(f) At the position ¢=90°, £&=45°, the effect of ¢ on the non-dimensional

2
shear stress z,,*r"/P;
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6.3 Example Results for Half-Space Problems

Equations (5.55a)-(5.55¢) can be utilized to calculate the displacements in a
transversely isotropic half-space induced by a point load. A Mathematica® (1999)
program based on these solutions was written for conducting a parametric study.

A vertical point load acting on the bounded surface is considered as an example
(Figures 6.5 and 6.6) for demonstrating the presented formulations. The hypothetical
constituted foundation materials include several types of isotropic and transversely
isotropic rocks. Their elastic properties are listed in Table 6.1 with E/E" and G/G
ranging between 1 and 3, and v/v varying between 0.75~1.5. For transversely
isotropic rocks, the ratios E/E’, v/v and G/G' define the degree of rock anisotropy.
The values adopted in Table 6.1 of E and v are 50 GPa and 0.25, respectively. The
chosen domains of anisotropy variation are based on the suggestions of Gerrard (1975)
and Amadei et al. (1987).

A parametric study is conducted for looking at the effect of the ratios E/E’, v/v
and G/G' on the vertical or lateral displacements. Briefly, only parts of the results,
including the vertical displacement (U ) on the line (-10<x<10, y=0 and z=1), and the
lateral displacement (U ) on the line (x=1, y=0 and 0<z<3) are presented and discussed
in the following.

Firstly, the influence of the degree and type of rock anisotropy on the vertical
displacement is investigated. Figure 6.5 presents the effect of ratios E/E’, v/v and
G/G  on the normalized vertical displacement. This figure indicates that the
normalized vertical displacement is less than the value of 0.03 on the line (x=1, y=0 and

0<z<3) for all the constituted foundation materials. However, the magnitude of
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displacement is influenced by rock anisotropy. Figure 6.1 shows that the vertical

displacement increases with the increase G/G with E/E'=v/v' =1. However, the

variation of v/v and E/E  on the vertical displacement is little for this cases.
Secondly, the effect of rock anisotropy on the lateral displacement in the medium is
studied. Figure 6.6 presents the effect of ratios E/E', v/v and G/G on the
normalized lateral displacement. This figure indicates that the normalized lateral
displacement is minus sign near the surface. It is mean that the direction of the
displacement turn toward the point load. And the normalized lateral displacement is
positive sign when the area distant from the surface. However, the magnitude of

displacement is influenced by rock anisotropy. Figure 6.6 shows that the lateral
displacement increases with the increase E/E with G/G =v/v'=1. However, the

variation of v/v and G/G on the lateral displacement is little for this cases.

This example was utilized to examine the closed-form solutions and investigate the
effect of rock anisotropy on the displacement distributions in the medium. The results
show that the displacement in the medium subjected to a point load on the surface are
easy and correct to calculate by the presented solutions. Also, the results indicate that
the displacement accounted for rock anisotropy are quite different for the displacement

calculated from isotropic solutions.
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Normalized Vertical Displacement Uz/Pz (m/GN)

Displacement from Point Load (m)
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Fig. 6.5 Effect of ratios of E/E, v/v" and G/G on normalized vertical

displacement
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CHAPTER VI

SUMMARY AND RECOMMENDATIONS

7.1 Summary

In this work, analytical solutions are presented for displacements and stresses induced
by three-dimensional point loads in a transversely isotropic, where the transversely
isotropic planes are arbitrarily oriented with respect to the horizontal axis. The
solutions for the full-space and half-space are identical to those of Wang and Liao
(1999), when the transversely isotropic planes are parallel to the horizontal axis. The
approaches adopted herein can be conveniently applied to analyze the strains and
stresses by using the strain-displacement, and stress-strain relations. These solutions
could realistically imitate the actual stratum of loading situations in numerous areas of
engineering. In addition, they provide a mathematical model for solving problems in
soil/rock mechanics in which the transversely isotropic planes dip at an angle of
inclination from the horizontal surface. Analyses based on the proposed solutions
could be helpful in benchmarking modern computational analysis techniques, such as

FEM, FDM and others.

The summary of this dissertation can be concluded with the following points:

e The strata of transversely isotropic rock masses usually incline with respect to the

horizontal ground surface. In this thesis, the point loading problem for a
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transversely isotropic rock mass with strata dipping at an angle to the horizontal
surface are conscientiously and carefully studied.

¢ There are six eigenvalues in the characteristic equation of Eq. (3.45), then, the general
solutions of Egs. (3.49a)-(3.49¢) in the transformed domain can superpose the six
eigensolutions of Egs. (3.50a)-(3.50c), and Egs. (3.51a)-(3.51¢). It is very important
but rather difficult to find the eigenvalues of the present characteristic equations.
Fortunately, by discovering the relations of the determinant of [dUJ and the velocity
of body waves, the six eigenvalues can be obtained.

e Three distinct approaches are introduced to derive the partial differential equations of
governing equations in infinite or semi-infinite solids. The present methods are

proved to be have the identically results.

7.2 Recommendations for Future Work

The work accomplished in this thesis can be improved and enhanced by further
research on the following points:
e By using the method of undetermined coefficients, it is possible to expand the

approach to solve the multi-layer or multi-material problems.
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o [f the singular points can be completely found in the process of inverse transforms,
then the proposed solutions could be easily extended to determine the displacements,
strains, and stresses resulting from three-dimensional point loads in an inclined
transversely isotropic half-space. The interesting results would be addressed in the
near future.

e Using the relation of the determinant of [dl_]_J, and the velocity of body waves, it is

possible to solve the loading problem for the cubic and orthotropic materials.
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APPENDIX A THE EXPRESSIONS OF g (i, j=1-6)

The elastic constants in Eq. (3.06) can be expressed as:
a, =aq
a,=a, =(a, - 2a4)cos2 ¢+ (ay;— as)sin2 @
a, = ay, = (a, —a;)cos’ ¢+ (a, — 2a,)sin’ ¢
a, =a, =(a,—a,—2a, +a;)cosgsing

a,, = a,cos’ ¢+ 2(a, +a;)cos’ gsin’ ¢ + a, sin* ¢
1

Ay, =0yy = g{a1 +a, +6a,—-10a, —[a, +a, —2(a, + a;)]cos 44}
1 \

Ay, =a, = Z{a1 —a, +[a, +a,—2(a; +as)]cos2¢}sin 2¢

ay; = a, cos' ¢+2(a, +a;)cos’ gsin’ g+ a, sin* ¢

Ay, = Ay = —%{—a1 +a, +[a, +a, —2(a, +as)]cos 2¢} sin 2¢

a, = %{al +a,—2a,+6a,—[a, +a,—2(a, +a;)|cos4¢}

ag = ascos” ¢ +a,sin’ ¢
asg = ags = (a, —as)cosgsing

a, = a,cos’ ¢+assin’ ¢

Qs = Gyg = ys = Upg = Uy5 = Uyg = Uy = Ay = ds) = Us) =ds3 = A5y, =g = Agy =y = Ay =0
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APPENDIX B THE DERIVATION OF THE CHARACTERISTIC EQUATION
According to Eq. (3.02), the x” and y’ axes are in the plane of transversely isotropy.

The generalized Hooke’s law for a transversely isotropic material can be expressed as:

Ox'x' a; aj—2a4 az—as; 0 0 O | &gy
Oyy | |a1—2a4 a;  az—as 0 0 0 |eyy
Ozz | _| a3—as az-—as a) 0 0| &y B.1)
Tyz! 0 0 0 as 0 0 | vyz
Ty 0 0 0 0 as 0 |vzx
Ty | L0 0 0 0 0 ayg|vxy|

The strain-displacement relationship for small strain condition is:

_SX'X'_ i _aux‘ ]
ox'
I RN (B2)
Yy'Z' - oz' - ayv
_Ouy _Buy
Tz'x' 0z ox'
_ Gy duy
_Yx‘y'_ L ox' 8y'_

where Uygs Uyrs and u, are three displacements of a point on the axis of a Cartesian

y
co-ordinate system.

The equation of force equilibrium is:
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B o T 6211)('
— ) . 8t2
8x FX'
Oxx' Tx'y  Tzx' i F.. azuy,
' y
’vayv Gyvyv Ty‘Z' ay —_ = p atz (B.3)
TZ'X‘ Tylzv GZVZV_ qu
Gi azuz.
VA L - 2
ot

If we set (Fy, Fy, F,)=(0,0,0), then, Eq. (B.3) can be expressed as:

2 , 2 ' 2 f azu ' 2 ' 2 '
ala u; a4a u;( + 58 u2X +(a; —ay) Y +aj3 0°u, =pa Ux (B.4a)
ox' oy’ A ox' oy’ ox'oz' ot
20, o*u o*u 0 uy 240, o*uy
(al —a4) 0 Ux 4 Y +a1 y +3.5 y +a3 0 Uz =p y (B4b)
ox'oy' " ox? oy" 072 Coyor T ot
2 ' azu ' 2 ' 2 ' 2 ' 2 '
as O7uy +a;—+as 0uy Jral56 Uz +a28 Uz =pa Uz (B.4c)
ox'oz - dy'oz ox"2 oy 0z ot

For the elastic dynamic problem, an arbitrary time-harmonic body force in x’, y’, and

z’ direction with angular frequency ® can be written as:

ug(x',y',z',t) = u;(x',y',z')exp(—icot) (B.5a)
uy(x,y',7',t) = u;(x',y',z')exp(—imt) (B.5b)
u,(x,y',z',t) = u;(x',y',z')exp(—icot) (B.5¢)

*

*
where .., uy

. and u; are the complex amplitude of the body force.

Further, Egs. (B.5a)-(B.5c¢) are preformed the triple Fourier transforms as:
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o0 00 00 . , , ,
T (0, B, y) = 1 . J~ J- J~ uxv(X',y',Z')e_l(aX +BY+YZ)ddeyvdZ| (B.6a)
— —00 —00 —00
(2m)?
uy(o,B,y) = ! 1] ug(x',y',2)e OBy ) gy gy dz! (B.6b)
Tp(B=—s | ] [ up(x,y,2)e X8 e dy az (B.6c)
— —00—00—00
(2m)?

Substituting Egs. (B.5a)-(B.5¢) and Egs. (B.6a)-(B.6¢) into Egs. (B.4a)-(B.4c), we

have the triple Fourier-type integrals as:

__* — - % % %
aloczuxv + a4[32u; + a5y2u:~ +(aj —ag)aPuy +azoyu, = p(ozuxv (B.7a)
_* o o 2% _* 2_x*
(a) —ag)aPuy +azo Uy +a 1B Uy +asy Uy +azByl, =pouy (B.7b)
a3ocyﬁ; + a3Byﬁ; + a50c2ﬁ; + aSBzﬁ; + azyzﬁ; = pmzﬁ; (B.7¢)

Rearranging Egs. (B.7a)-(B.7¢c) as:

dj1 - po’ dip di3 | Te| [0
dy  dyp-pe’  dy Ty |=]0 (B.8)
d3; dsp d33—po’ | @ | |0
ajo” +a,B” +asy’ (aj —ag)ap azoy
where [dij]: (a; —ay)ap aq0” +ap’ +asy’ asPy (1, j=1-3).
asoy a3y asa’ +asp” +ary°

It is very clear that the zero vector lﬁi ﬁ; ﬁ;JZ[O 0 0] is the solution of Eq.

(B.8) for any value of pw?. However, the value of pw® for Eq. (B.8) when
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Uy Uy ﬁ;J;t [O 0 0] is called the eigenvalue of this matrix.

i 2
dj; —po P di3
2
dpy dy —pow dp3
2
d3; d3p d33 —po

al(oc2 +[?>2)+a2y2 +aS(0L2 +[32 +y2)+A

= —{po’ —[asy? +as(a’ + B} fpo’ - . L
(o2 1@ +B7) +ay” +2a5(ocz B2 774,
(B.9)

where A=y[(a; —as)(a® +B>)—(az —asyy* | +4a3 (o> +p7 0’ .
In addition, the variables a., 3, y can be expressed in terms of k, 6., 0, as:
o =ksin0, cosO,:,
B=ksin0,sin0y,
vy =kcosO, .
Hence, the relationships between a, B, v, and k, 6,:, 6, are:
(0 +B?)=k>sin?0,,,
y2 =k? cos? 0, .
Moreover, by introducing V2 = ;:—j (V denotes the body-wave velocity), the final

results for the three body-wave velocities are identical with those in a transversely
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i1sotropic medium, as follows:

2 -2
ascos“ 0, +a,sin” 0,
VSH,G,Z':\/ : Zp 4 z (B.10a)

- 2 2
a;sin“ 0, +a,cos” 0, +as+A'
VP,S,z‘Z\/ — 22p 255 (B.10b)
aq sin? 0, +a, cos? 0, +as—A'
Vsv, 0,2 = 2% (B.10c)

where A'= \/[(al —a5)sin2 0, —(ap —::15)cos2 sz]z +4a§ sin’ 0, cos’ 0, .

The angle 6, is between the direction of travel wave and the z’ axis. Therefore,
the determinant of [d;;], is witten as:
D= det[dij]
31,6 2
=p k" (Vsn,0,2 " Vp.0.2  Vsv.0.7)
2 2, @2 2, @2 2 2, a2 2 2,2 p2\,2
=[35Y +ag(a” +p )]([31(0t +p7) +asy Jlas(a” +B7) +ay ] -az"(a” +B7)y7}

3
=ajas° H1 [Ai(Ot2 +B%)+ Yz]
1=

3
= a2a52k6 1‘[1 [Ai sin’ 0, + cos? Ozv]
1=

(B.11)
where
a
A =4
as
1
2 2
1 352 +aja, —8.33 352 +aja, —332 28]
AZ =7 + -4— )
2 djas djsas as
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2 2
Aq = a52+a1a2—a33_ (3524-3.13.2—332] _4ﬂ
3=

1

2 djasg ajsas
As depicted in Fig. B1, considering a new co-ordinate system x, y, z and the original

system x’, y’, z’ with a common origin point be taken so that x and x’ axes lie in the xy

plane (basic plane). The angle between the x and x’ axes is taken as one co ordinate,

@, and the angle between the y’ axis and the xy plane as the other co-ordinate, ¢. We

assign the cosines of the angles between the axes of the old and new co-ordinate system

by Table B1.

Table B1 the cosines of the angles between the old and new axes

b 2 2

X y z
X cos @ sing 0
y -cos¢@ sing cos¢ cos@ sing
z sing sing -sing cos¢@ cos ¢

Then, the value of D in Eq. (B.11) can be presented as:

31,6 2
D=p"k"(Vsh,6,t " Vp,0,t* Vsv,0,t)
3 (B.12)
= a2a52k6 1A sin? 0¢ + cos? 0
i=1

where 0; is the angle between the vector (o, B, y) and the z axis, and it can be
expressed in terms of a, B, v, and ¢ as:

asingsin @ — fsin gcos @+ y cos @ (B.13)
\/0!2+ﬁ2+7/2

cosd, =
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. . . 2
asmesme— [Sme@cos @+ y cos
Additionally, from Eq. (B.13), cos’ 6, = ( gsing zﬂ 2¢ 2¢ 7 Cos9) ,
a +p +y

2 2 2 : . . 2
and thus, sin29,=a +p +y —(as1n¢zsm(pz—ﬂ2sm¢cosgo+7/cos¢) .
a +p +y

Hence, Eq. (B.12) can be rearranged as:

3
D=a,a’kT] [Ai sin” @, + cos’ Q]

i=1

 aak® 3|4, [az + %+ y? — (asin gsin @ — Bsin gcosp + y cos §)’

(@A) D {+ (asin gsin @ — Bsinpcos @ + y cos )’ ]}
, .3 Al.[az + > +y° —(asingsing — Bsingcosp + }/cos¢)21}

{+ (asin gsin g — Bsingcos + ycos @)’

= a,d;
i=1
(B.14)

Eventually, the six eigenroots can be generated by setting D=0 in Eq. (B.14) (also in

Eq. (3.45)). They are respectively expressed as follow:

Beosgsingcosp(—1+4,) —acospsingsing(—1+ 4,)
+i\/Aj {(@ +[F)cos p+sirt ¢ Bcosp—asing)’ +sir’ facosp+ fsing)’ 4.}
7 (&, p)= J )
COS P+ 4, sint ¢
(=1-3)(B.15a)
— peospsingcosp(—1+4,) +acospsingsing(—1+ 4,)
+1'\/Aj{(at2 +/8%)cos g+sitt g fcosp—asing)’ +sir gacosp+ fsing)’ 4}
7@ p)= ,
cos P+4, Sirt ¢

(7=4-6)(B.15b)
As depicted in Fig. 1, considering a new co-ordinate system X, y, z is obtained from

the original system x’, y’, z’ by rotation an angle ¢ about the x=x’ axis, ¢ =0. Then,

the eigenvalue, y of Egs. (B.15a)-(B.15b), can be presented as:
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_ —Boospsing(—1+ 4) i A {F +a’(cos g+ A sin' §)}
7@ p)= ol i) -y (G=1-3) (B.16a)

— feospsing(~1+ A)+i| A 4+ (cod g+ A sitt )} -

cos g+ A4, sirt ¢ 6) (B.16b)

7@ p)=

If we further set iy =u;, then, Eq. (B.16a)-Eq.(B.16b) can be respectively expressed

in Egs. (3.47a)-(3.471).
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APPENDIX C THE EXPRESSIONS OF Dj; (i, J=1-3)

The complete expressions for Dj; (1, j=1-3) in Egs. (3.53a)-(3.53f) are presented as:

D, (u;) = (aza,, - a324 )”j
+2if(ayas, — a24a33)u?
+(a’ (—a33046 + 203,055 — A44055) + B’ (—apay; + aé + 20,550,y — 205,05, ))“,2
+ 2iﬂ(a2 (ay,a55 + ay,a5 — ase(ay; +ay,)) + ﬂz (ay,a5, — aya,, ))”,

4 2 2 p2 4 2
(" (a55a45 — asg) + @7 P (aya55 — 205,05 + ayyag) + B (aya,, — asy)

. 3
D, (u,) =ia(ay(ay, +ase) — as(ag; + ass ))“,
2
tapf(ay(a, +ag)+as,(a, +as)—(a; +ass)(ay + a44))“j
. 2 2
tia(a (anpass — a,as) + B(ay(ay, +as) +ay(a; +ass) —2a,(a, + ag ))“,

- aﬂ(az (ass(ay, +ag) —asg(ay, + ase)) + 182 (may(ay, +ase) +ay(ay, +ag)))

Dys(u;) =ia(=ay(ay, + asg) + ay,(a; + as ))”13
—afi(ay(ay, +as)—2a,,(a; +ass) + ay(a, +ag ))”,2
— 100 (~as (ay + as) + A (a5 + as5))
+ ﬂz (map(ay +ay) + ay(a; +ass) + ay(ay, +asg) —ag(ay,; +ay, )))”,

2 2
taf(a(apas —a,aq) + B (ay(ay, +ag) —an(a, +as)))

D,, (”/) = a33a55uj
—2if(azas, + a3,ass )“,3
+ (az (=ay a3 + a3 (a5 + 2as5)) — ﬂz (@304 +4as,a56 + a,,as; ))ujz
+2i(0 (a5 — Ay (ay, + s) = @1, 055) + [ (A5406 + Q405 Nu;

4 2 92 2 4
ta'aass+a f(a),a,, +assaq —(a, +a5s)") + B a,a4

D,, (“(,—) = _a34assu?
+if(2ayass +ass(ay +ay, ))uf
- (a2 (=ay,a3, +ayass +a;(a, +ag)) - ﬁz (@y,a55 + 3,06 +2as5(ay, +ay, )))“f
—if (0 () (g + a4y) = @y (a4 + as) = A5 (@, = asg) = (@), = Age )@y + ds5))
+ 7 (2a5,055 + g (ay + ayy N,

4 2 2 4
—(a"ay a5 +a” B7(a),ay, —ay (@, +a5s) — a,06) + B ay,04)
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Di; (u;) = (a,as; )”j
=2if(ay,as + a,,as )u?
+ (052 (—a),ay —assag +(ay, + ase)z) - ﬂz (Ayass + 405,056 + A4y Qg )))“,2
+ (2iﬂ(a2 (@G5, —a),a4 — ayy(ay, +asg)) + 182 (ay,a55 + aya4 )))“]

4 2 p2 4
ta'a,ae+a B (a0, —a(a, +2ag))+ B ayag
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APPENDIX D THE EXPRESSIONS OF fj (i, j=1-6)

The expressions of fj; (i, j=1-6) can be presented as:

S =-i(as (ﬂDlll + aD;l) + s (aD;l - iDlllul )

S =—i(as (ﬂDIZI + aDzzl) +ds;s (aD321 - iDlzluz)) >

Sz =—i(as (IBD131 + (ZD231) +a;s (anl - iD131“3 ) >

Sia=i(as (ﬂD141 + aD;l) + s (aD341 - iD141u4)) >

Sis =i(as (ﬂDISI + aDZSI) +ass (aD351 _iDlsluS )

Jis =i(as (ﬂDlél + aD261) +ds;s (aD361 - in1u6)) >

. 1 1 1 1 1
Jo =—ilaa,, Dy, + fa,D,, + fa,,Ds,) —(a, Dy, + a3, Dy u,

. 2 2 2 2 2
Jon ==i(aa,, Dy, + fa,, Dy, + fay,Ds,) = (a,D;, + ay, Dy u,

. 3 3 3 3 3
fo =—i(aa,,D;, + fa,,D;, + fa,,D;) —(a,,D;, + a3, Dy u,

. 4 4 4 4 4
oy =i(aa,, Dy, + fa,,D;, + fa,Ds)) +(a, Dy, +ay,Ds)u,

. 5 5 5 5 5
Jrs =i(aa, Dy, + fa,,D;, + Pay,Ds)) +(a,D;, +ay, D3 us

. 6 6 6 6 6
Jrs =i(aa, Dy, + fa,,D;, + Pa,Ds)) +(a, Dy, +ay,Ds)ug

. 1 1 1 1 1
Ju =—i(aa,; Dy, + fay; Dy, + fay D)) — (a3, Dy, + a3 Dy )uy
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2 2 2 2 2
Sy =—(aa; D}, + Pay,D;, + fay,Ds)) — (a3, D;, + ay Dy u,

. 3 3 3 3 3
Sy =—i(aa Dy, + Pay,Ds, + Pay,Ds)) — (a3,D5, + ay,Ds) us

. 4 4 4 4 4
Sia =i(aa,; Dy, + fay, Dy, + fay, Dy ) + (a3, Dy, + ay, D3 uy

. 5 5 5 5 5
Jis =i(aa,; Dy, + fay, Dy, + fay, D)) + (a3, Dy, + ayy D3 us,

. 6 6 6 6 6
Sy =i(aay; Dy, + fay, Dy, + fay D)) + (a3, Dy, + ay, D3 ug

1 2 3 4 5 6
Ju=Dy» f=D5, f43=D11’ Jua=-Dy» f45=_D11’ f46:_Dll’

1 2 3 4 5 6
f51:D21’ f52:D21’ f53=D21’ f54=_D21’ f55=_D21> f56:_D21’

f61=D311’ f62:D321’ f63:D331’ f64=_D341’ f65=_D351’ f66:_D361'
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APPENDIX E BOUNDARY CONDITIONS

In order to demonstrate the Eq. (4.15), considering the pertinent continuity and

discontinuity conditions at z=0:

In region I of Fig. 3.1, for z=0", the Cauchy’s theory of residues are utilized to

integrate the contours, and a closed contour by adding a large semicirle on the upper

y-plane, is shown in Fig. E.1

w@.p.0) == [ D pr)edy

1 _ . _ .
= —( Ux(aalg’y)el}qd}/ - Ux(aﬂﬂﬂy)elﬂd]/)
27 §Cl J-Cm (EO]a)

i, (a, p,2) = ﬁ j U, (a,pB,y)e"dy

1 - . - .
=——( Uv(a,ﬂﬂ/)el}zd?/_ Uy(aﬂﬂa7)emd7/)
27 §Cl ) J‘Cm (E.Olb)

@ p.5) =~ | U py)edy

1 _ . _ .
=——( Ta.py)e=dy - | U.(a.p.y)e"dy)
27 §Cl J-CSI (E.Olc)
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Imy

Fig. E.1 Path of integration for Egs. (E.01a)-(E.O1c)

Similarly, as depicted in Fig. 3.1, the region II, for z=0", a closed contour by adding

a large semicirle on the lower y-plane is utilized.

no@p2)= | D@ppedy

. i _ .
= G U@ - [ Ut ppretay)

(E.02a)
i, (ap,2)= ﬁi U, (a,p,y)e"dy

-~ U@ pemdr =], U petdr) .
i, (a,fB,2) = ﬁz U.(a,pB,y)e"dy

=ﬁ(§cza(a,ﬂ,7)efﬂdy—jcm U. (. B.y)e"dy) o
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Imy

Ig

=2

7

Fig. E.2 Path of integration for Egs. (E.02a)-(E.02c)

From Egs. (E.01a)-(E.Olc), Egs. (E.02a)-(E.02c), and Fig. E.3, we can find that:
— — 1 T i T i
(@ fo2)~Ta@f.2) = =([, Udappédy=[ Ulap.y)edy=0
(E.03a)

(@, f,2) = (@ f,2) = ﬁ( o, U@p.perdy=| U (ap.r)e dy)=0

(E.03b)

@ f.2) o p.) =], U ppe™dy= U fr)edn)=0

(E.03c)
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Re v

Fig. E.3. Path of integration for Egs. (E.03a)-(E.03c)

From Egs. (4.16a)-(4.16c), Eqs. (4.17a)-(4.17c), and the relations of Eqgs.

(E.03a)-(E.03c¢), we observe that:

i, (a,B0)~u,(a,f,0)=B. +B}+B +B'+B +B’ =0

(E.04a)
— — 1 2 3 4 5 6

Myl(a;ﬂao) —uyz(a,ﬂ,O) = By + By + By + By + By * By = 0 (E04b)
i, (, B,0) ity (a, f,0) = B, + B + B+ B + B. + B =0 (E.04c)

From Eqgs. (4.16f)-(4.16h) and Eqs. (4.17)-(4.17h), 7_, -7, T —T and

zx2 yz1 yzl 2

g

zz1

— 0., canexpress as follow:

L ou, Oou P — : TS U, —u
Tog = Ton = s (T — ) —ia(u, —u,,)} —ia { S, —u,)+ (i, — )}
o P (E.05a)
o ‘ o ‘ _ ou, Ou,
T = Ty = 0y, (U — ) = iy, (U, — ;) + sy ( 8221 - 8222 )
ow, oW, . _
ta \(——-——")-ifu, —u,)}
Py PR (E.0O5b)
o . o _ L ai, du
0., — 0., =—ilaa,(u, —u,)—ifay,(u, —iu,)+ a;( 0}21 - ﬁzzz)
ou, ou o —
+ay {(—= -—)- ipu., —u.,)}
o P (E.05¢)
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when z =0, substituting Egs. (E.04a)-(E.04c) into Egs. (E.05a)-(E.05¢) can obtain the

following expressions:

= = ou, ou,

zxl zx2 82 82 ) (E06a)
N ou, Oi, (6u 8uy2 LN
S : e e 0z (E.06b)
_ ar, ai, ou, 8uy2
O-zzl O-ZZZ a33 34( )
x 0z (E.06¢)

By using the method of Laurent’s theorem, we find that:

Oit,y Ol
az Oz
oU (a, ﬁ y)e” oU (a,pB,y)e”
27 (i;a dy_j;cz Oz dy)
E.07a
_ i (§ PyD,, + PyD,, + P.yD,, e dy ( )
@) e m =)= 1)~ )T =1 =7~ 76)
= — 1 })x
27as
ou, Oiy,
oz oz
oU (a, ﬁ y)e” oU (a,B,y)e”
(§c1 dy_ﬂz . P dy)
«/ 74 b)
(E.07
_ i (iﬁ PyD,, + PyDy, + PyDy " dy
(277)2 m(y =y =)y =r)¥ =)y —vs)¥ —7)
_ A33ds;5 034455

2 - 2
2mags(aya,, —as,) g 2mags(aza,, — as,) ’
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ou, 3 ou_,

62 0z
oU (a e’ oU (a, B,7)e”
(jga ( ﬂ 7) d7‘§cz ( azﬂ 7) )
E.07c
_ (iﬁ P.yDs, + PyDy, + PyDs, e dy ( )
Q27)* ¢ m (y = )7 =y )F =77 =1 )F = 7)Y = Vo)
__ 34955 44955
2mags(asa,, — a324) b 2mag(agay, - a§4) )
Replacing Egs. (E.07a)-(E.07¢) into Egs. (E.06a)-(E.06c¢), we prove that:
_ _ ou, Ou, P
r -7 = SR o) e E.08a
zx1 zx2 82 82 ) 272_ ( )
_ _ Ou, Ou, ou, Ou
yzl - vzl a34( 62 8Z ) a—;z)
a.a a,a
a,( 34%ss 4 44%ss P)
™ 27ag a0y —a5,) " 2mag(asa,, - as,)
a,.a a,,a
+a ( 3355 P . 34755 Pz)
“ 2rass(ay3a,, — a324) ' 2mag(aga,, - a§4)
_B
27 (E.08b)
— — éﬁzl dZZZ az’_lyl aﬁﬂ
-0,.,=a - +a,,(—————=
zz1 z; 33( & & ) 34( 82 62 )
a.a a,a
—a,(~ 34%ss 44%ss P)
. 2mags(aya,, — a324) Y 2mag(aga,, - a324)
a,.a a,a
+ay,( 33%ss _ 34%ss P)
* 27, (ayayy = azy) " 2755 (aysay, — as,)
P,
2z (E.08¢)

According to the Cauchy’s theory of residues and the method of Laurent’s theorem,

we already accomplish the purpose desired and demonstrate the Eq. (4.15).
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