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a b s t r a c t

We study the problem that among all hypergraphs with e edges of ranks l1, . . . , le and v
vertices, which hypergraph has the least number of vertex-covers of size e. The problem is
very difficult and we only get some partial answers. We show an application of our results
to improve the error-tolerance of a pooling design proposed in the literature.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let H(V, E) denote a hypergraph with vertex-set V and edge set E = {E1, . . . , Ee}. Let li denote the rank of Ei, i.e. li = |Ei|.
Then li = 1 is allowed. A subset V′ ⊆ V is called a vertex-cover of H if it intersects every Ei ∈ E. It is called a d-vertex-cover if∣∣V′∣∣ = d. Let fd (H) denote the number of d-vertex-covers in H.
Define
H(v; l1, . . . , le) = {H(V, E) : |V| = v, |E| = e, |Ei| = li, i = 1, . . . , e}

and
fd(v; l1, . . . , le) = min{fd(H) : H ∈ H(v; l1, . . . , le)}.

We study fd(v; l1, . . . , le) in this paper.
This problem is motivated by the construction of error-detecting and error-correcting pooling designs (used in clone

library screening). Ngo and Du [4] observed that the number of e-vertex-covers has bearing on the error-correcting ability of
a pooling design.

2. The hypergraph case

A vertex is called an isolated vertex if it is not in any edge. A hypergraph H(V, E) is called optimal in H(v; l1, . . . , le) if it
achieves fd(v; l1, . . . , le).

Lemma 2.1. For any given H(v; l1, . . . , le), there exists an H∗ such that H∗ does not have both an isolated vertex and a vertex
shared by two edges.
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Proof. Let H be a hypergraph in H(v; l1, . . . , le) with an isolated vertex i and a vertex j shared by two edges a and b. Let H′
be obtained fromH by eliminating i and splitting j into two vertices ja and jb such that ja ∈ a and jb ∈ b, i.e., a and b no longer
share the vertex j. We show fe(H′) ≤ fe(H) by mapping all e-vertex-covers C′ of H′ to distinct e-vertex-covers C of H.
We consider several cases:
(i) C′ contains neither ja nor jb. Set C′ = C.
(ii) C′ contains both ja and jb. C is obtained by replacing ja with j and jb with i.
(iii) C′ contains ja but not jb. C is obtained by replacing ja with j.
(iv) C′ contains jb but not ja, and no other vertex of b. C is obtained by replacing jb with j.
(v) C′ contains jb and another vertex of b, but no ja. C is obtained by replacing jb with i.

Clearly, C is an e-vertex-cover of H. To check that the mapping is injective, it is obvious that the only time two distinct
e-vertex-covers C′ and C′′ of H′ can map to the same C is when C′ and C differ only in one vertex, i.e., C′ = S ∪ {ja}, when S is
a set of e − 1 vertices containing neither ja nor jb. Consider C′′, S must contain a vertex of a other than ja. Hence S contains
both a vertex of a and a vertex of b. From our mapping rule, C′ will be mapped to S ∪ {j}, while C′′ to S ∪ {i}, two distinct
e-vertex-covers in H.
By repeating this procedure, and since |H (v; l1, . . . , le)| is finite, eventually we reach a hypergraph which has either no

isolated vertices or no vertices shared by two edges. Since this argument holds for all H (v; l1, . . . , le), Lemma2.1 follows. �

Define l =
∑e
i=1 li and L =

∏e
i=1 li. For v ≥ l, from Lemma 2.1, fe(v; l1, . . . , le) is nondecreasing in v. We next show that

it reaches maximum at a certain v.

Theorem 2.2. fe(v; l1, . . . , le) = L for v ≥ l.

Proof. Since any H ∈ H(v; l1, . . . , le)with two intersecting edges must have an isolated vertex, by Lemma 2.1, there exists
an optimal hypergraph H∗ with no intersecting edges, i.e., H∗ contains e disjoint edges of ranks l1, . . . , le and v − l isolated
vertices. Clearly, H∗ has L e-vertex-covers. �

Theorem 2.3. fe(l− 1; l1, . . . , le) =
∏
i6=1,2 li

[
l1l2 − 1+ 1

2

∑
i6=1,2 (li − 1)

]
.

Proof. Without loss of generality, assume l1 ≥ l2 ≥ · · · ≥ le. By Lemma 2.1, it suffices to consider H with no isolated
vertices.
Since v = l− 1, H contains exactly two edges intersecting in one vertex. Let H mn denote the hypergraph where Em and

En intersect, and fe(Hmn) its number of e-vertex-covers. Then

fe(Hmn) = [(lm − 1) (ln − 1)+ lm + ln − 2]
∏
i6=m,n

li +
∑
k6=m,n

(
lk
2

) ∏
i6=m,n,k

li

= (lmln − 1)
∏
i6=m,n

li +
1
2

∑
k6=m,n

lk (lk − 1)
∏
i6=m,n,k

li

= (lmln − 1)
∏
i6=m,n

li +
1
2

∑
i6=m,n

(li − 1)
∏
i6=m,n

li

=

∏
i6=m,n

li

[
lmln − 1+

1
2

∑
i6=m,n

(li − 1)

]
.

If l1 = l2 = · · · = le, then Theorem 2.3 obviously holds; if not, we prove:
Suppose ly > lz . Then fe(Hxy) < fe(Hxz) for all other x ∈ {1, . . . , e}.

fe(Hxy) =
∏
i6=x,y

li

[
lxly − 1+

1
2

∑
i6=x,y

(li − 1)

]

=

∏
i6=x,y,z

li

[
lxlylz − lz +

1
2
lz (lz − 1)+

1
2
lz
∑
i6=x,y,z

(li − 1)

]

=

∏
i6=x,y,z

li

[
lxlylz +

1
2
lz (lz − 3)+

1
2
lz
∑
i6=x,y,z

(li − 1)

]

<
∏
i6=x,y,z

li

[
lxlylz +

1
2
ly
(
ly − 3

)
+
1
2
ly
∑
i6=x,y,z

(li − 1)

]
= fe(Hxz).

Theorem 2.3 follows immediately. �
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Fig. 1. Graphs with v = l− 2 vertices and e edges.

For v = l − 2, we have to restrict our attention to the case l1 = l2 = · · · = le = k. Assume e ≥ 4, then there are four
hypergraphs as shown in Fig. 1.
We count the number of e-vertex-covers for each of them.

Lemma 2.4. For v = l− 2, l1 = l2 = · · · = le = k, the number of e-vertex-covers for the graphs in Fig. 1 is listed respectively
as follows:

(i)

fe((a)k) = (k− 1)3 ke−3 +
{(
3k− 3
2

)
ke−3 +

(
3k− 3
1

)(
e− 3
1

)(
k
2

)
ke−4

+

(
3k− 3
0

)[(
e− 3
1

)(
k
3

)
ke−4 +

(
e− 3
2

)(
k
2

)2
ke−5

]}
.

(ii)

fe((b)k) = (k− 1)2 (k− 2) ke−3 + 2
{[(

3k− 4
2

)
−

(
2k− 3
2

)]
ke−3 +

(
k− 1
1

)(
e− 3
1

)(
k
2

)
ke−4

}
+

[(
3k− 4
1

)
ke−3 +

(
3k− 4
0

)(
e− 3
1

)(
k
2

)
ke−4

]
.

(iii)

fe((c)k) = (k− 1)4 ke−4 + 2

{[
2
(
k− 1
2

)(
k− 1
1

)
+

(
k− 1
1

)2 (2k− 2
1

)]
ke−4

+

(
k− 1
1

)2 ( e− 4
1

)(
k
2

)
ke−5

}
+

{(
4k− 4
2

)
ke−4 +

(
4k− 4
1

)(
e− 4
1

)(
k
2

)
ke−5

+

(
4k− 4
0

)[(
e− 4
1

)(
k
3

)
ke−5 +

(
e− 4
2

)(
k
2

)2
ke−6

]}
.

(iv)

fe((d)k) = (k− 2)2 ke−2 + 2
[(
2k− 4
1

)
ke−2 +

(
2k− 4
0

)(
e− 2
1

)(
k
2

)
ke−3

]
+ ke−2.

Proof. We start with the proof of (i) for Fig. 1(a). Clearly, if an e-vertex-cover does not contain the vertex x, then each of
the three edges incident to x has k− 1 choices as vertex covers and all the other edges have k choices. Thus, the number of
e-vertex-covers is equal to (k − 1)3ke−3 which gives the first term. On the other hand, if an e-vertex-cover does contain x,
then it contains atmost two other vertices in the x-tree sincewe have e−2 components. So, the second term can be obtained
by considering the number of extra vertices in the x-tree (different from x) which are chosen for the e-vertex-cover. Now, it
is not difficult to see that if the e-vertex-cover contains three vertices of the x-tree, then it contains exactly one vertex of the
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other e− 3 edges; if the e-vertex-cover contains two vertices of the x-tree, then one of the remaining e− 3 edges contains
exactly two vertices and each of the other e− 4 edges contains exactly one vertex; and if the e-vertex-cover contains only
x in the x-tree, then we have choices of (3, 1, 1, . . . , 1) or (2, 2, 1, . . . , 1) for the other e− 3 edges. Therefore, we have the
second term.
Following the same line of reasoning, in each of (ii), (iii), (iv), the terms are broken down into taking none of x, y, one

of them, and both of them. It is worth of noting that in (ii)
(
3k−4
2

)
−

(
2k−3
2

)
represents the case that, assuming x is taken

but not y, then two other vertices are taken from the (x, y)-tree, at least one of them from the edge not incident to x; and in
(iii) the last three terms represent taking both x and y, and 2 or 1 or 0 other vertices from the x-tree and the y-tree. �

Theorem 2.5. fe(l− 2, ke) = fe((b)k) for e ≥ 4 and k ≥ 2.

Proof. Let fe(l− 2, ke) denote the case that all e edges have length k. By using MAPLE, we obtain

fe((a)k)− fe((b)k) = ke−3
[
3(k− 1)2e2 − (5k+ 11) (k− 1) e+ 12 (k+ 1)

]
/24

= ke−3 {[3(k− 1)e− (2k+ 8)] [(k− 1) e− (k+ 1)]− 2 (k− 2) (k+ 1)} /24.

fe((a)k)− fe((b)k) is clearly increasing in e. So it suffices to prove fe((a)k)− fe((b)k) ≥ 0 for e > 4.
For e = 4,

fe((a)k)− fe((b)k) = k [10 (k− 2) (3k− 5)− 2 (k− 2) (k+ 1)] /24
= k (k− 2) [5 (3k− 5)− (k+ 1)] /12
= k (k− 2) (7k− 13) /6 ≥ 0 for k ≥ 2.

fe((c)k)− fe((b)k) = ke−4
{
(k− 1)

[
3(k− 1)e2 − (11k+ 5) e+ 4 (2k+ 5)

]
+ 24

}
/24

= ke−4 {(k− 1) [[3(k− 1)e− 4 (2k+ 5)] (e− 1)+ 12e]+ 24} /24
= ke−4 {(k− 1) [[3(k− 1)e− 4 (2k+ 5)+ 12] (e− 1)+ 12]+ 24} /24
= ke−4 {(k− 1) [[3(k− 1)e− 8 (k+ 1)] (e− 1)+ 12]+ 24} /24.

fe((c)k)− fe((b)k) is clearly increasing in e. So it suffices to prove fe((c)k)− fe((b)k) ≥ 0 for e > 4.
For e = 4,

fe((c)k)− fe((b)k) = {(k− 1) [[12 (k− 1)− 8 (k+ 1)] · 3+ 12]+ 24} /24
= [(k− 1) (12k− 48)+ 24] /24
=
(
k2 − 5k+ 6

)
/2

= (k− 2) (k− 3) /2 ≥ 0 for k ≥ 2.

fe((d)k)− fe((b)k) = ke−3 (ke− e− k− 1) /2 ≥ 0. �

While we have no result on general fe(v; l1, . . . , le), the following lemma helps us to obtain lower bounds.

Lemma 2.6. Suppose li ≥ l′i for 1 ≤ i ≤ e. Then fe(v; l1, . . . , le) ≥ fe(v; l
′

1, . . . , l
′
e).

In particular, fe(v; l1, . . . , le) ≥ fe(v, ke) if li ≥ k for 1 ≤ i ≤ e.

Lemma 2.7. Let C be a vertex-cover of G such that |C | = c < e and S be the set of vertices in G such that each vertex is incident
to at least two edges of G. Let |E i \ S| = l′i , i = 1, 2, . . . , e. Then fe(v; l1, . . . , le) ≥

(
v−c
e−c

)
+
∏
l′i.

Proof.
(

v−c
e−c

)
represents the number of e-covers which contains C and

∏
l′i is the number of e-covers which are different

from the above e-covers (since c < e, C contains at least one vertex in S). �

Proposition 2.8. If e(k− 1)+ 1 ≤ v < ek, then fe(v, ke) ≥ (k− 2)ke−3.

Proof. Since |S| ≤ k− 1,
e∑
i=1

l′i ≥ k (e− 2) .

Hence∏
l′i>0

l′i ≥ 1 · 1 · (k− 2) k
e−3. �
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3. A bound for the graph case

For the graph case li = 2 for all i; hence no isolated vertex can be an edge. We will write G instead of H for a graph.
In particular, H(v; l1, . . . , le) will be written as G(v, e) and fd(v; l1, . . . , le) as fd(v, e). Theorems 2.2 and 2.3 then yield
fe(v, e) = 2e for v ≥ 2e and fe(2e− 1, e) = 2e−1 + e2e−3.
Further, we have

Lemma 3.1. fe(e+ 1, e) = e+ 1.

Proof. Since an edge has two vertices. Any set of e vertices must be a vertex-cover as it leaves at most one vertex out in an
edge. Clearly, there are e+ 1 sets of e vertices. �

For the general case, we give a lower bound.

Theorem 3.2. fe(v, e) ≥ 2v−e−1(2e− v + 2) for e+ 1 ≤ v ≤ 2e− 1.

Proof. By Lemma 2.1, it suffices to consider graphs with no isolated vertex. Suppose such a graph G has c components. Then
c ≥ v − e, where equality prevails only when each component is a tree.
Let component Ci have vi vertices and ei edges. Then any choice of vi − 1 vertices is a vertex-cover of Ci. Further, any G

has at least v − e trees. Fix v − e− 1 trees, say, C1, . . . , Cv−e−1 of G and let G′ consist of the remaining components (G′ is a
tree if G is a forest) with v′ vertices. Then any choice of v′ − 1 vertices of G′ is a vertex-cover of G′, and there are v′ such set.
By taking vi− 1 vertices from each Ci, and 1 ≤ i ≤ v− e− 1, and v′− 1 vertices of G′, we obtain an e-vertex-cover of G, and
there are v′

∏v−e−1
i=1 vi of them, with

∑v−e−1
i=1 vi + v′ = v.

Since for a < b, ab ≤ (a+ 1)(b− 1), v′
∏v−e−1
i=1 vi is minimized by the most uneven distribution of vi, namely, all vi = 2

except one vi = 2e− v + 2. �

Note that for v = e+1, this bound yields a value of 20(e+1) = e+1, whichmatches fe(e+1, e) as shown in Lemma 3.1.
But for v− 1 > 1, the bound can certainly be strengthened by allowing some trees or G′ to have all their vertices taken and
other Ci with vi ≥ 3 to have more than one vertex not taken. In particular, we have

Corollary 3.3. Suppose v < 2e. Then fe(v, e) ≥ 2v−e−1 (2e− v + 2)+
∑2e−v
x=min{e+1−dv/2e,3e−2v+2} 2

x−(3e−2v+2).

Proof. It is easily verified that a connected graph with n vertices has an x-vertex-cover for every x ≥ bn/2c. Since G′ has
2e−v+2 vertices, it has an x-vertex-cover for every e+1−dv/2e ≤ x ≤ 2e−v. This x-vertex-cover plus one vertex fromeach
of the v−e−1 2-trees constitute a (x+v−e−1)-vertex-cover for G. Suppose e−(x+v−e−1) = 2e−x−v+1 ≤ v−e−1,
or 3e − 2v + 2 ≤ x. Then we can choose two vertices from 2e − x − v + 1 2-trees and one from the rest 2-trees to obtain
an e-vertex-cover of G. The number of such choices is 2x−(3e−2v+2). �

4. An application

A long DNA molecule M is often cut into short segments called clones for easy storage and reproduction. Typically, it
is cut more than once, with each cutting having independent cutpoints, to facilitate reconstruction of M. One approach of
reconstruction is to make use of many sequence-tagged-sites (STS) each is assumed to have a unique appearance in M.
By identifying for each clone which set of STS it contains, we can use this information to sequence overlapped clones. The
identification is done one STS at a time. A clone is called positive if it contains this STS and negative if not. Suppose d cuttings
have been made. Due to the unique presence of an STS in M, at most d clones can be positive (‘‘at most’’ because an STS can
be cut into half in a cutting, or a clone can be damaged).
Given a set of n clones containing e (e ≤ d) positive clones, where n can be in the thousands while e is single-digit, the

currently most efficient way of identifying the positive clones is through group testing [1]. A group test applies to a subset
of the n clones with two possible outcomes: a positive outcome indicates that the subset contains a positive outcome (not
knowing which or how many), while a negative outcome indicates otherwise. Since each test is a biological experiment
taking several hours, it is crucial that all tests can be performed parallelly. This implies that all subsets under testing must
be determined simultaneously, known as nonadaptive group testing in the literature, or a pooling design as preferred by
biologists.
A major tool in constructing a pooling design is the d-disjunct matrix, which is a binary matrix such that if a column is

viewed as a set of row indices (those rows with a 1-entry), then no column is covered by the union of any d columns. Let
M denote the incidence matrix between test-subsets (rows) and clones (columns). Kautz and Singleton [2] proved that if M
is d-disjunct, then it can identify the e positive clones if e ≤ d by simply noting that any clone which appears in a negative
pool is a negative clone, and the others are positive clones.
Macula [3] generalized the notion of d-disjunctness to dz-disjunctness where every column has at least z 1-entries not

covered by the union of any other d columns. A dz-disjunct matrix allows a negative clone C to be identified even though up
to b(z − 1)/2c errors can occur to outcomes. Namely, in the worst case b(z − 1)/2c negative pools in which C appears are
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all recorded as positive, but C still appears in at least dz/2e negative pools (correctly recorded) to be identified. Note that a
d-disjunct matrix is a d1-disjunct matrix and offers no error tolerance.
Ngo and Du gave a construction of dz-disjunct matrices. Consider 2k vertices. A matching is called an m-matching if it

consists ofmmatches. Then there are

g(m, k) =
(
2k
2m

)
2k!
k!2k

m-matchings, where m ≤ k. Construct a g(d, k) × n matrix M by indexing its rows by all the d-matchings, d < k, and its
columns by n arbitrary (but distinct) k-matchings. M has a 1-entry in cell (i, j) if and only if the index of row i is contained
in the index of column j. For each column C and a set D = {D1, . . . ,Dd} of other columns, define a hypergraph H(C,D) whose
vertices are the matches in the kmatching of C, and edge Ei consists of the matches in C \ Di, 1 ≤ i ≤ d. Since each pair of
maximummatchings differ in at least two matches, li ≡ |Ei| ≥ 2. Ngo and Du proved that M is dz-disjunct with z = d+ 1.
By Theorems 2.2 and 3.2 and Lemma 2.6, we improve z to{

2k−d−1 (2d− k+ 2) for d+ 1 ≤ k ≤ 2d− 1, and
2d for 2d ≤ k.
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