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Abstract

The study presents a multi-part human tracking system in video sequences. First, we
detect and extract humans in a video according to a background model. Since background
images usually change in blobs, spatial relations are used to represent background
appearances. To model the spatial relations of background appearances, the joint colors of
each pixel-pair are modeled as a mixture of Gaussian (MoG) distributions. After the human is
detected and extracted, we then track body parts of the human by using appearances of these
parts as the features and using particle filters as the tracking kernel. In the particle filter, we
adopt color histograms as the appearance features and use a specific histogram mapping to
enhance the discriminability between different objects. To form a robust tracker that can
distinguish target objects from background objects that have color distribution similar to those
of target objects, we calculate the target similarity from both the target object model and the
background model. To handle the appearance variations of background and target objects,
both the models of the background scene and the target object are adaptable. In a particle filter,
when the number of particles is large, the feature extraction is repeated redundantly and
inefficiently. To speed up feature extraction, we create a cumulative histogram map from each
image. The color histograms of each particle can then be extracted in constant time. When
tracking a human, we decompose the human body into three parts: head, torso, and hip-leg,
represent them by three shrunk rectangles, and track them by particle filters. In this way we
can reduce possible tracking failures by checking the consistency of states among these three
parts. After the tracking states are updated, we use support vector machines (SVM) to detect
tracking failures and abnormal body parts. If a single part is abnormal, we adjust its position
and use the system dynamic model to track the abnormal one. If two or three parts are

abnormal, we re-initialize the tracking process of the three parts around their predicted

il



positions. Experimental results show that the proposed background model can be used to
efficiently detect the moving object regions when the background scene changes or the object
moves around a region. By comparing with the Gaussian background model and the
MoG-based model, the proposed method can extract object regions more completely. The
experimental results of human tracking showed that the proposed three-part tracking system
with failure detection and correction can track correctly about 95% persons until the 105th
frame. With respect to the body parts, our system has about 95%, 83%, and 91% tracking
rates for the head, torso, and hip-leg parts respectively until the 105th frame. The tracking rate
of a human increases 20% comparing with that of the whole-body tracker. These rates show

the effectiveness of the proposed system.
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1. Introduction

Human tracking is a fundamental and important step for many visual surveillance
applications, such as security guard, patient care, and human-computer interaction. A human
tracking system can be divided into two modules, human segmentation and human tracking.
The human segmentation module detects and segments a person in a frame. After the person
is detected and segmented, the human tracking module then locates the positions of the person

in the following frames.

1.1 Background Subtraction

In an indoor environment, people are usually considered to be the only foreground
objects, which are defined as ego-motion objects. If the images with only background objects
can be captured in advance, the positions of a human can be detected by comparing the
current image with the background images. However, background images vary when camera
positions, background object positions, and illuminations change. Tracking objects in general
environments will become very complicated.

In many surveillance applications especially in indoor environments, camera positions
are generally fixed. Illumination variations and background object motion may change the
captured images significantly. Examples of the motions include placing a book on a desk and
moving a chair to another position. The positions of the objects are usually changed by people
or other external forces. After the motion stops, these objects remain in the same position for a
certain period; these motions are usually not repeated. In an indoor environment, the
illumination of objects is not affected by continuous light changes, such as sun rise, sun set, or
weather changes. Ignoring these continuous changes, brightness variations such as turning

lights on or off, as shown in Fig. 1.1, and opening a window are assumed to be abrupt. Several
1



n-th frame

="

(n+1)-th frame

Fig. 1.1 Left column: two consecutive images in different illumination conditions.

Right image: intensity differences between the left two images.

researchers [1] assumed that brightness variations due to illumination changes are uniform.
The right-hand side image in Fig. 1.1 shows the intensity differences after the lights were
turned on. We observe that brightness variations in different pixels are not uniform. It is
difficult to process this kind of variations. Several other researchers [1-4] assumed that
illumination changes are not repeated like the motion of freely movable objects. However,
light sources can be repeatedly turned on or off several times over a period of time. The
appearance changes on the illuminated regions will also be repeated.

To model the non-repeated background changes, we can use an online updating scheme
to adapt to the background appearances in recently captured images [1-17]. When the
appearances of a pixel repeatedly change, they can be modeled as a Mixture of Guassians

(MoG) [9]. The online updating MoG model is useful for modeling rapidly repeated



background appearances such as waves on water surface, but does not works well in
long-term repeated appearances such as door opening and closing. In consecutive images, the
repeated appearances of background objects usually appear in blobs in fixed places, while the
appearances of foreground objects usually change their places and do not form fixed blobs. In
this study, we extend the MoG model by using the spatial relations among pixels to model the
background appearances.

The objective of our system is to extract moving object from a sequence of images. The
system is divided into two modules: background modeling and foreground detection. The first
module creates a background model to represent possible background appearances. The
parameters of the model are learned and updated automatically from recently captured images.
In the background model, the distributions of background features are assumed to be mixtures
of Gaussians [9]. Since background appearances are changed in blobs, the features used in the
MoG should be able to represent spatial relations in the blobs. To represent the spatial
relations, we estimate the joint color distributions of pixel-pairs in a short distance. Since
estimating the distributions of all pixel-pairs is costly and not all pixel-pairs provide enough
information to model background, we first calculate the dependence of colors in each
pixel-pair. A pixel-pair with a higher color dependency implies that the two pixels provide
more information to represent the appearance changes in blobs. Highly dependent pixel-pairs
are then selected to model the spatial relation of background. In the second module, the
background model that has already been updated from recent images is used to calculate the
background probability of each pixel of the current image. The probability is then used to
decide whether the pixel belongs to the foreground or background. Connected foreground

pixels are extracted to form foreground regions.

1.2 Human Tracking



Fig. 1.2 Example of the three body parts used on tracking a person. The three body parts are

shrunk and the limbs are excluded to reduce the affection from human motion.

To track an object in a sequence of frames, we can model appearances of the object and
then use the model to predict its position in the sequence. However, in a complex environment,
detecting a target object using the appearance model in video sequences is not easy since the
appearances of the object are variable due to occlusion, illumination variations, or orientation
changes. In general, the movements of an object in consecutive frames are assumed smooth.
Therefore, if we can locate the target object in several frames, the appearance model and
movement model of the target object obtained from these frames can be used to track the
object in the following frames.

In this study, we aim to create the trajectory of a human and predict his positions for
safeguarding, that is, to detect an intruder approaching a building or a designated place. Since
a human is not a rigid object, his appearance might be greatly affected by his motion. We
decomposed the human body into three parts: head, torso, and hip-leg, since the three parts
usually have different appearances and can be distinguished as shown in Fig. 1.2. The images

show that the colors of the head part contain mostly skin colors and hair colors, which are



usually different from the colors of the other two parts. The colors of the torso and hip-leg
parts consist mainly of those of the clothes, which may be similar, as shown in the fourth and
fifth images of Fig. 1.2. To separate the three parts, we have to use other features such as
height ratios.

With respect to the features used, we adopted color histograms proposed by Perez et al.
[18] and Nummiaro et al. [19] to model the appearances of the three body parts. In the
initialization phase, we adopted the background subtraction method according to a Gaussian
background model to extract a human and then extract the histograms of the body parts from
the human region. We then tracked the humans by using their appearances as the features and
tracked the three parts by particle filters to reduce possible failures due to appearance changes
by checking the consistency of states among these three parts. Since the appearance model of
each person in recent frames was usually unique and temporally context-dependent, the model
can be used to distinguish different persons and track them independently. However, when
modeling the color histogram in the whole color space, histogram matching was
time-consuming due to the high dimensional features used. The method proposed by
Nummiaro et al. [19] quantized the color histogram into an 8 X8 X8 or 8 X8 x 4
three-dimensional one. The method proposed by Perez et al. [18] modeled colors in HSV
color space by two histograms. The intensity channel was modeled as a histogram and the
other two channels as another two-dimensional histogram. The histograms were quantized
into several bins to improve the speed and reduce the effect of noise. However, in these
models, two objects with very few dissimilarities were not easily distinguished. In our
research, we propose a specific histogram mapping for histogram feature extraction to
improve the ability of discriminating the objects with similar color distributions. Since the
camera in our system is fixed, the background scene can be assumed less changed in

consecutive frames. To improve the discriminability between the target object and background
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Fig. 1.3 The system flow diagram of the three-part human tracker.

objects, we combined the adaptive background model with the adaptive color histogram
model of the target object.

When adopting the color histograms as the features used in a particle filter, we need to
extract the histogram feature for each particle. It is generally very inefficient to extract the
features for a large number of particles. In this research, we will create a cumulative
histogram map (CHM) for each image to improve the efficiency of feature extraction. The
cumulative histogram map is similar to the integral map that is popularly used for extracting
Haar-Like features [20]. They will be modified to cumulate the histogram features of each
sample state in constant time.

For failure detection and adjustment, we will use a support vector machine (SVM)
[21,22] to distinguish abnormally and normally tracked body parts. The position of an
abnormal body part will be adjusted according to its relative positions with the other body
parts. If a single part was abnormal, we adjusted its position and used the system dynamic
model to track the abnormal one. If two or three parts were abnormal, we re-initialized the
tracking process of the three parts around their predicted positions. Next, we detect whether

the failure is caused by occlusion or similar appearances. For the latter case, we will estimate



the appearance model from the adjusted rectangle of the body parts; else, the appearance
model is kept unmodified. The flow diagram of our tracking system is depicted in Fig. 1.3. It
includes four major modules: initialization, particle-filter-based tracking, abnormal body part

detection, and state correction.

1.3 Organization of This Dissertation

The rest of this dissertation is organized as follows. Chapter 2 is a review of related
research. Chapter 3 describes the proposed spatially-extended background model. Chapter 4
describes the particle weight measurement and the cumulative histogram map used to improve
the calculation speed. Chapter 5 describes the three-part human tracking and consistency
checking for failure adjustment. Chapter 6 gives experimental results and their analysis.

Finally, Chapter 7 presents the conclusions and future works.



2. Related Works

2.1 Background Subtraction

A background model in a surveillance system represents background objects.
The method that compares the current processed image with the background
representation to determine foreground regions is called background subtraction. If
the background is unchanged but affected by Gaussian noise, the colors of the
background pixels can be modeled as a Gaussian distribution with mean vector (u)
and covariance matrix (X) [1-8]. Background subtraction is then performed by
calculating the probability of each pixel in the current image belonging to the
Gaussian model.

Since background appearances may be affected by external forces, modeling a
pixel with a Gaussian distribution may misclassify some background pixels as
foreground ones. In many cases, the background may change repeatedly. A
background pixel with repeated changes can be divided into several background
constituents and modeled as an MoG distribution [9-13]. For each background
constituent in a pixel, the means (y;), covariances (Z;), and weights (w;) of the i-th
constituent (b;) have to be estimated. If there are K background constituents, the
parameters of the background model can be represented as {u;, Z;, w;|1 <i < K} In
order to decide whether a sample point X belongs to the background B, the conditional

probability P(B|X) is calculated as follows:

K K
P(B|X) =zwiP(bi|X) ocZwin(X;yi,zi). (2.1)
i=1 i=1

8



where 7 represents a Gaussian probability density function,

1

1 T
. — —5X—p)" Zi(X—pi)
n(X; i, Zi) = 22 E, 72 2 : (2.2)

The motion of some background objects may not be repeated. After the motion,
the objects remain in the same position for a period. To model the background
changes, researchers have proposed methods for online updating of the parameters of
background models [1-17]. The mean vector and covariance matrix in time ¢ are

represented as p, and X, respectively. The updating rules are formulated as follows:

pe = (1= plug_q + pXy, (2.3)

=0 —-p)Ziq +pXe — p) X — /«lt)T; (2.4)

where p is used to control the updating rate. To integrate the updating method into an
MoG model, Stauffer and Grimson [9] proposed a method to update the mean vector
and covariance matrix of a background constituent to match those of X; in Eqgs.(2.3)

and (2.4). The weight w; . of the i-th background constituent is updated as follows:
Wit = (1 —a)weq +aly, (2.5)

where [;; is an indicator function, whose value is one if the i-th background
constituent matches X; and zero otherwise, and a is a constant used to control the
updating rate of the weights. In Stauffer and Grimson's method [9], the updating rate p
for the parameters of the i-th constituent (Gaussian distribution) is calculated
according to a and n(X; u;, Z;).

To make background models more robust, researchers tried to modify updating
rules or adopt different features [10-13]. In adaptive background models, background

objects are assumed to appear more frequently than foreground ones. However, the

9
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Fig. 2.1 An example of a slowly moving person. (a) Sketches of two possible
background scenes. Left: door closed; Right: door opened. (b) Consecutive frames of
a person moving from left to right. (¢) Possible colors and their weights of the

rectangle region shown in the left image.

assumption is not always satisfied. If the appearances of a background pixel appear
less frequently than those of foreground objects, the background pixel is probably
misclassified as a foreground object. Taking the following case as an example, assume
a room is monitored by a fixed camera and the background objects in the room
include a door and a wall as shown in Fig. 2.1(a). People may enter the room, and

close or open the door. If a person wears a suit of clothes of single color and walks

10
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Fig. 2.2 Sketches of a person whose clothes colors are similar to the door color in
front of different background scenes: (a) scene when the door is closed and (b) scene

when the door is opened.

slowly across the room as shown in Fig. 2.1(b), the major color of the clothes may be
captured repeatedly in a certain position among several consecutive images. Assume
that the person moves from left to right in 30 frames. If the updating rate a in Eq.(2.5)
is set as 0.01, the weight of the repeatedly captured color of the clothes in the images
will increase from 0 to 0.26, as shown in Fig. 2.1(c). This large weight may cause the
clothes to be labeled as the background, when the MoG model in Eq.(6.2) is used.
Using a small updating rate can overcome this problem; however, the background
model will be updated very slowly and may fail to learn background changes.

In another situation, the color of the person's clothes is assumed to be the same
as that of the door, as illustrated in Fig. 2.2(a). If the person enters the room and
passes through the door, the region of clothes may be labeled as background due to
the similarity of colors. However, after the door is opened, the current background
color is not similar to the clothes color as shown in Fig. 2.2(b). The clothes may still
be labeled as the background, since they are very similar to possible background
colors been estimated.

In these two situations, we observe that modeling each pixel independently
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cannot sufficiently represent the similarity among different object appearances caused
by either object motion or illumination changes. Most researchers regarded the
variations caused by object motion as foreground changes and attempted to eliminate
the effect caused by illumination. In consecutive images, when the illumination
changes, the pixels of an object are usually changed simultaneously. In order to model
background objects, the pixels at different positions should be considered together. To
represent the relation among the pixels, Durucan and Ebrahimi [14] proposed to
model the colors of a region as vectors. They segmented the foreground regions by
calculating the linear dependence between the vectors of the current image and those
of the background model. However, it is expensive to represent the dependence
between vectors in terms of storage and speed. To reduce the cost, the vector of a
region should be reduced to a lower dimensional feature. Li et al. [15,16] used
two-dimensional gradient vectors as the features of local spatial relations among
neighboring pixels. In their proposed method, the appearance variations caused by
illumination changes can be distinguished from object motion. However, the gradient
features cannot be used to extract the foreground region that has a uniform color. To
model the relation among pixels, we need to use the relations among near pixels to
reduce time and storage consumption, and then extend the relations into a more global
form.

The methods based on the Markov random field (MRF) are well known for
extending the neighboring relations among pixels into a more global form. Image
segmentation methods based on MRF [17,23] assume that most pixels belonging to
the same object have the same label and these pixels form a group in an image. The
MRF combines colors among a clique of pixels in a neighboring system and uses an

energy function to measure the color consistency. Then, the maximum a posterior
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estimation method is used to minimize the energy for all the cliques to find the
optimal labels. In the MRF-based methods, the final segmentation results are strongly
dependent on the energy functions of the labels in different cliques. If a high energy is
assigned to the clique with unique labels, the extracted foreground regions will
become more complete than those of the pixel-wise background models. An
additional noise removal process is not required. However, when several pixels are
mis-labeled, these errors will propagate into neighboring pixels. The error propagation
will cause more pixels to be mis-labeled. In this research, we directly estimate the
relations among pixels instead of the labels, and therefore the errors will not easily

propagate.
2.2 Human Tracking

In the last few decades, tracking objects or humans in video sequences has
received much attention. Much research about the topic has been proposed and been
reviewed in several survey papers [24-28]. Moeslund et al. [24] divided a general
human tracking algorithm into two main phases: figure-ground segmentation and
temporal correspondences. The former finds the target human in an image, and the
latter associates the detected humans in consecutive frames to create temporal
trajectories. In the following, related work about these two phases will first be
addressed. The methods for segmenting human bodies and correcting tracking failures
will then be described.

The methods of figure-ground segmentation can be classified into five categories
according to the used features. These categories include background subtraction [6,9],
motion-based segmentation [29], depth-based segmentation [30], appearance-based

segmentation [18,19,21,31,32], and shape-based segmentation [2,33]. Background
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subtraction and motion-based segmentation methods find the differences between
images to extract the target. The two approaches assume that only one target object
moves in a specific region and the appearances of background objects in consecutive
images do not change. However, the assumptions usually cannot be met in general
environments. To achieve better segmentation results for tracking, further checks are
needed. The depth-based segmentation approach uses the positions of the target in
three-dimensional space or in the ground plane to segment the target. However, to
locate such kind of positions, specific hardware (such as multiple cameras) or
additional calculations (such as inverse perspective transform) are needed. The
appearance-based segmentation approach became popular recently, since the approach
is usually simple and fast. The approaches of shape-based and appearance-based
segmentation are similar except that the former does not use the color content inside
the object. Since the appearances of a tracking target may change with time, several
researchers proposed methods to model and update the appearance model of the target
person dynamically in consecutive images [19,32]. Since the target is a moving object,
some researchers tried to segment the target by a background subtraction method
[6,9,34]. Shan et al. [34] modeled the colors of the target object as the appearance
feature and then use the color cue to calculate a color probability distribution map
from the current image. The color probability distribution map was combined with the
background subtracted image using a logical AND operation to detect the target
position. Other researchers used classifiers such as SVM [21] and Adaboost [31] to
model the appearance of target objects.

In the tracking phase, temporal correspondence aims to predict and update the
states of the target person from the measurement and predicted state, where the

measurement is detected by figure-ground segmentation and the predicted state is
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calculated using the system dynamic model. To find the temporal correspondences,
Polat et al. [35] used MHT (Multiple Hypothesis Tracker) to construct hypotheses
representing all the predictions and measurements. The most likely hypothesis is
chosen as the target. To combine the predictions and measurements, Kalman filtering
is another well-known method and has already been applied in many studies [3,9,36].
The Kalman-filter-based approaches are commonly used for tracking a target whose
system dynamic model can be represented as a linear function and the noise as a
Gaussian. In non-linear systems, extended Kalman filters that approximate the
non-linear dynamic model by Taylor series have been applied [37]. Recently, particle
filters have been proposed to construct a robust tracking framework that are neither
limited to linear dynamic model nor Gaussian distributed noise [19,38,39]. The
method represents the state of a target object by a set of samples (particles) with
weights. The weight of a sample is calculated by the figure-ground segmentation and
the samples are generated by the importance sampling method so that the samples can
represent the probability distributions of the target object's appearances. We adopt the
particle filter in our system, since they can be applied in an appearance-based tracking
system very effectively.

A human is not a rigid object and his appearance changes irregularly.
Segmentation of human body parts in an image has already been proposed in several
papers [40-43]. Forsyth and Fleck [40] introduced the notion of 'body plans' to
represent a human or an animal as a structured assembly of body parts learnt from
images. Shashua et al. [41] divided a human body into nine regions, for each of which
a classifier was learnt based on features of orientation histograms. Mikolajczyk et al.
[42] divided a human body into seven parts. For each part, a detector was learnt by

following the Viola-Jones approach applied to scale invariant orientation-based
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features. loffe and Forsyth [43] decomposed the human body into nine distinctive
segments. The method finds a person by constructing assemblies of body segments.
The segments were consistent with the constraints on the appearance of a person that
result from kinematic properties. These body-parts-based human segmentation
methods usually focused on detecting humans in a static image. Recently,
body-parts-based human tracking in consecutive images has been proposed
[21,31,44-47]. Parts of these studies focused on precise decomposition of body parts
for motion type or pose analysis. However, in general environments, it is difficult to
decompose precisely body parts due to self occlusions and complex background
scenes. The studies in [21,47] proposed a detection-based tracking model to solve the
occlusion problem. They detected body parts by a pretrained model, and then tried to
associate the detected body parts to a target person by smoothing his trajectory.
However, when multiple humans appeared in a frame, the detection model could not
differentiate the body parts of the different persons. The spatial positions and
velocities were the only cues, which can be used to find the temporal correspondences
of different persons.

When a person is tracked in consecutive frames, the figure-ground segmentation
may fail, since the person may be occluded or other objects may have similar
appearances with the target person. The first problem can be classified into occluded
by other persons and occluded by background objects. To cope with the problem of
inter-person occlusion, several researchers proposed to detect occlusion events and
then used the system dynamics to estimate the position of the occluded person [48,49].
Using similar methods to predict the occlusion of background objects, one needs to
create background object models. However, it is difficult to model all background

objects in a complex environment. Several researchers tried to cope with the
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occlusion problems by tracking different body parts of a person simultaneously
[21,47,48]. When a body part is occluded, the position of the person can still be
tracked based on the other parts. Mohan et al. [21] extracted a human body by
detecting four parts: the head, legs, left arm, and right arm, by four distinct quadratic
support vector machines. After geometric constraints among these parts are confirmed,
another support vector machine is used to classify the combination of the four parts as
either a human or a non-human. Wu and Nevatia [47] used four detectors to detect
head-shoulder, torso, legs, and full-body. The detectors were learnt by a boosting
approach using edgelet features. They used a strong classifier to classify the body
parts in images. When we track multiple humans, the classifier cannot be used to
distinguish different persons, and their trajectories will easily be confused if no other
approaches are adopted. Lerdsudwichai et al. [48] proposed a method to model the
face and clothes in the initialization phase. To identify different persons, they used
clothes colors. However, the appearance of a person may change when the person
presents different poses or is affected by different illuminations. The appearances
captured in the initialization phase cannot be applied to track the person in other
frames. In our research, we use an adaptive appearance model to track the body parts,
even when multiple persons are tracked.

Apart from the occlusion events, a tracker may lose the tracking target when
other objects have similar appearances. In general, a robust appearance model can be
used to reduce the tracking failures, or the system dynamic model of the target person
can be used to predict his position. However, the robust appearance model may be too
complex to maintain efficiently. We will use the system dynamic model of the target
person to track him, when a tracking failure is detected. To detect the tracking failure,

Dockstader and Imennov [36] proposed a method that uses a structural model to
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represent a person and a hidden Markov model (HMM) to describe the temporal
characteristics of the tracking failure. In the tracking phase, the HMM was used to
predict the tracking failures. Since a person may change his velocity, the predicted
position of the person using the system dynamic model is too rough. A fine tune for

the target person is needed.
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3. A Spatially-Extended Background Model

In the initialization step of a tracking system, the human region in a image needs
to be segmented for tracking. To segment the human region, we create a background
model and update it using recent background variations. Since background images are
usually changed in blobs, spatial relations are used to represent background
appearances, which may be affected drastically by illumination changes and
background object motion. To model the spatial relations, the joint colors of each
pixel-pair are modeled as a mixture of Gaussian (MoG) distributions. Since modeling
the colors of all pixel-pairs is expensive, the colors of pixel-pairs in a short distance
are modeled. The pixel-pairs with higher mutual information are selected to represent
the spatial relations in the background model. Experimental results show that the
proposed method can efficiently detect the moving object regions when the
background scene changes or the object moves around a region. By comparing with
Gaussian background model and the MoG-based model, the proposed method can

extract object regions more completely.

3.1 Joint Background Model

In a sequence of images, colors will change in blobs instead of individual pixels
due to illumination changes or object motion. This paper proposes to utilize the
relations among pixels to represent the changes in blobs. The relations are formulated
as a spatially-extended background model, which is then used to classify the pixels
into either foreground or background.

311 Spatial Relation in Images
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Using pixel-wise features, if the color of a foreground pixel is similar to those of
the background, the pixel may be misclassified as background. If we can estimate the
distributions of color combinations for the pixels in blobs, the foreground objects can
be classified more precisely. Suppose there is a red door in a room and the appearance
outside the door is white. When a person wearing a suit of interlaced red and white
stripes passes through the door, parts of the suit may be misclassified as background
when the colors of the pixels are modeled independently. Nevertheless, if we model
the background appearances among pixels using joint multi-variate color distributions,
the interlaced red and white stripes can be classified as foreground using the method
introduced later. However, estimating the multi-variate distributions for all pixel-pairs
is still costly since the number of pixel combinations may be very large. In this
research, we will estimate the color distributions of joint random vectors in closed
pixel-pairs.

As stated in Sec. 2.1, illumination changes and background object motions may
change background appearances. Since the changes are complex, it is difficult to
collect enough training samples for all the possible changes. In this paper, we modify
Egs. (2.3) and (2.4) for updating the color distributions of pixel-pairs to adapt to the
appearances that have not been trained, to be described in Sec. 3.1.3.

3.1.2 Calculation of Background Probabilities

Assume that we have already estimated the color distributions of all background
pixel-pairs. In this research, we decide whether pixel a; belongs to foreground
according to its color and the color combinations of pixel-pairs (a;,A), where 4
denotes a set of pixels associated with a;.

Suppose that a sequence of pixels (ag, ay,...,a,) has a corresponding color

sequence (cg, ¢y, ..., C,). The probability of pixel a, belonging to background can be
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represented as P(Bylxy = cg, Xy = €1, .., X =€) , Where the sequence
(x9, X1, .-, X,) denotes the joint random variable of the colors for the sequence
(ag,aq, ...,a,), and B, represents the event that pixel ay belongs to the background.
Assuming that xq, x,, ..., x, are conditionally independent, based on the naive Bayes'
rule, the probability P(Bgy|x, = ¢, X1 = Cq, ..., X, = C,) can be computed as the
product of n pair-wise probabilities:

P(Bylxg = Coy X1 = €1y eery Xy = Cp)

n (3.1)
~ P(Bylxo = CO)HP(XO = Co, X = Cp) -
i=1

When estimating the background probabilities from above equation, we face two
problems. The first one is the estimation and updating of the probability distributions
P(Bylxg), P(xq,x;),and P(x;). The distribution P(B,|x,), a pixel-wise background
color distribution, is regarded as an MoG and can be calculated from Eq.(6.2), whose
parameters are estimated and updated by using Egs. (2.3), (2.4) and(2.5). It is tedious
to estimate and update the bivariate probability distribution P(x,,x;), since the
number of possible color combinations in x, and x; is large. We will simplify the
estimation and updating by combining the MoGs of pixels to form the joint random
vector distributions of pixel-pairs. The second problem is the cost of modeling
pixel-pairs. To model all pixel-pairs, the number of pixel-pairs is O(W? X H?),
where W and H are the width and height of the images, respectively. We reduce the
complexity by only modeling the pixel-pairs that can provide sufficient information to

represent spatial relations as described in Sec. 3.2.
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Fig. 3.1 Color samples of three pixels in 1000 frames. (a) A sample image and the
colors in three pixels in a time period. (b) Scatter plots of the pixels in the spaces
(r(x2), r(x3)) and (r(x,), r(x;)), and probability distributions of r(x;), r(x;), and r(x3).
3.1.3 Estimation of Bivariate Color Distributions

As mentioned before, the color distributions of pixel-pairs should be updated to

adapt to the background changes. If we assume the color distributions in a pixel-pair
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(a;,a,) to be independent, the joint probability P(x;,x,) can be regarded as
P(x;) - P(x;). Assuming the color distributions are a mixture of Gaussians, the
background colors of the two pixels a; and a, form several background
constituents, ~ which can be represented as  Gaussian distributions
G, = {n(uk1,2k1)|1 <k < Kl} and G, = {n(uk2,2k2)|1 <k, < KZ}, respectively.
The weights in both distributions are denoted as W; = {Wk1|1 < k < Kl} and
W, = {Wk2|1 < k, < KZ}. When the independence is satisfied, the joint color of the
pixel pair (aq,a,) forms K; X K, background joint constituents, and the joint color
distributions of the constituents are combinations of G; and G,, denoted as
G={ N(Hiey ey Zere,) |1 <kt S K 1< ky S Koy iy iy = (Hieys ) Zieyiep 18 the
covatiance matrix}. The weights of the joint constituents are W = {wy, - wy |1 <
ky < K;,1 <k, < K,}. Since the parameters of G, and G, can be estimated from Egs.
(2.3), (2.4) and (2.5), the parameters (G, W) of the bi-variate MoG P(x;,x,) can be
calculated easily.

In our background model, since the dependence between the colors of two pixels
is used to model the spatial relations, the colors cannot be assumed independent. To
estimate the parameter of a bi-variate MoG P (x4, x,), we first examine the example
depicted in Fig. 3.1. This figure shows the colors of three pixels a;, a,, and a;
collected from 1000 consecutive images, where a; and a, belong to the same
object but a3 does not. The right-hand side image of Fig. 3.1 (a) shows the histograms
of the colors in a;, a,,and as in a time period of the sample image in the left. From
the histograms, we observe that the colors of @; and a, usually change simultaneously
and their values are dependent. The two scatter plots of Fig. 3.1 (b) from top to
bottom are the scatters of (r(xz),r(xg)) and (r(xz),r(xl)), where r(x;) denote

the red values of the color random variable x;. The projection profiles from the top to
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bottom are the probability distributions of r(x3), r(x;), and r(x,). Each probability
distribution forms several clusters and each cluster is regarded as a background
constituent. As shown in the scatter plots, several combinations of background
constituents in a pixel-pair form joint background constituents. When the probability
distributions of a pixel-pair (a,,a,) are regarded as bi-variate MoGs, the probability

function P(xq,x,) is formulated as follows:

K K

P(x; =c¢,x = ¢3) = Z Z Wi, k, 'n(cl,Z'.ukl,kzizkl,kz)- (3.2)

k1=1 k2=1

In the equation, the color vector ¢;, is the joint color vector of colors ¢; and
C;, and the mean uy ,, is the vector [y ,uy,], where . and p, can be
estimated from the background updating in Eq.(2.3). The covariance matrix Xy ;. is

estimated with respect to the mean . ., as

2y (1= iy (¢52) ) B8 + @iy (62 (k2 = by ) (cf2 = i) B3)

where the ¢f, and y,tcl,kz are the joint color vector and joint mean vector in the
pixel-pair (x4, x,), respectively. In the equation, if a joint vector of colors is matched
with a joint constituent, the covariance matrix of the joint constituent should be

updated as follows:

if dist(ct 2.t g, Zhor,) < Thand

(ky kz) = argmin (dist(c 5 it iy Sho i) ) G4
0, otherwise

Ay ke (Ciz) = e

. . fer (ot gt t :

where a, is a constant to control the updating rate, and dist(c1 2, Uy, k, Tk, k,) 1S @
. . . . t . . t

distance function between the joint color vector ¢;, and joint mean vector py . .

The process of determining the minimal distance dist(cf'z,u,il_kz,z,il,kz) for all
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pairs of (kq,k,) is termed a matching process. In our experiments, the Mahalanobis
distance is selected as the distance function. If a joint color vector cf , does not match
with any Gaussian distribution, a new Gaussian distribution is created and its mean is
setas cf,. The weight of the new bi-variate distribution is initialized to zero.

The weight of a joint constituent in a pixel-pair is measured as the frequency of
colors in the pixel-pair in past frames matched with the joint Gaussian distribution of

the constituent, similar to Eq.(2.5). The updating rule of the weights is defined as

t—1
ngl'kz = (1 - 'kakz (Cf’z)) ngl,kz) + ﬁkl.kz (Cf,z)’ (35)

Brcoie, (cf2) = Ben(er, ey, Zie )n(cas b, 2, ), (3.6)

where [, is a constant used to control the updating speed. Thus far, all the
parameters used for estimating the joint color probability in Eq. (3.2) are ready and
the background probabilities of Eq. (3.1) can be estimated from a set of color joint
probabilities in a set of pixel-pairs.

Note that, during the background model estimate on, the weight wy . is not set
as the product of wy, and wy,. In other words, the constituents in the two pixels are
not independent, and their relations are represented by the weights of the joint
constituents. The relations in our model can be used to improve the accuracy of
foreground detection. For example, in Fig. 3.1(b), the weight of joint constituents in
R, is approximately zero, since no pixels match with the constituents; that is, the two
constituents belonging to pixels x; and x, in R, usually do not appear
simultaneously. However, when the joint colors in pixel-pair (x;,x;) match one of

the joint constituents in R,, the pixel-pair (x;,x,) is classified as foreground.

25



3.2 Saptially-Dependent Pixel-Pairs Selection

The joint colors in pixel-pairs are used to represent the spatial relations of a
background model. In a scene, not all pixel-pairs contain sufficient spatial relations.
Modeling the unrelated pixel-pairs is useless for foreground detection. To reduce the
computation cost, we will find the pixel-pairs with higher dependence.

The colors of two pixels with high dependence will form compact clusters in the
scatter plots as shown in Fig. 3.1(b). The compactness of a bi-variate distribution is
measured from mutual information [50]. The mutual information 1 (xi, x]-) for colors
¢; and ¢; is defined as

P(Ci, C]) ) .

I(x;, %) = Z P(ew¢)log (P(Ci)P(CJ') 37

(all ¢j in x;)
(all¢jinx;)
Here, P(ci),P(cj), and P(c;¢;) can be computed from Egs. (2.1) and (3.2). To
reduce the cost of calculating the probabilities for all possible colors, the probability

P(cl-, cj) can be replaced by the weights estimated from Eq. (3.5). The mutual

information [ (xi, xj) in Eq. (6.2) can thus be reformulated as follows:

K; Kj

K; Kj
W. Z _ Z "_ W 1111
I(x;,x;) =~ Z Z(Wm,nlog< ;,?] mooiome=l ROR )) (3.8)

w. n’ZKi W1
m=1n=1 n/=1"m m/=1"mn

The pixel pair (xl-,xj) with higher mutual information [ (xi,xj) is selected to

model spatial relations of the background model.
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4. A Particle Filter with Discriminability

Improved Histogram Model

A tracking algorithm is usually composed of two procedures: prediction and
update. In the prediction procedure, the system dynamic model of the target is used to
predict the current state of the target from previous states. In the update procedure,
current observations are used to adjust the predicted state of the target. Particle filters
are used to track the state of a target object approximated by a set of discrete samples
with associated weights. In our research, we adopt the color-based particle filter
proposed by Nummiar et al. [19] to track the targets. In the following, we will explain

the algorithm of the particle filter and our modifications.

4.1 Particle Filter

In a particle filter, a target object is tracked by a set of weighted sample states
(particles). In the prediction procedure, the samples are propagated into the next step
according to the system dynamic model. The update procedure can be divided into
two steps: particle weighting and particle selection. In the first step, the weight of a
sample is calculated according to the target model, which models the observations of
a target object and can be used to calculate the probability of a sample belonging to
the target. In the second step, the Monte-Carlo method is used to re-sample the
particles.

4.1.1 Prediction

When a target in consecutive images is tracked, the state parameters are usually
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defined by the position, size, and motion of the target. In this application, the target

objects are represented by several bounding rectangles. Each state is described as a

vector S = [X YW, H X, Y]T, where (X,Y) represents the center of the rectangle,

(W, H) the size of the rectangle, and (X,Y) the velocity of the center.

In the initialization stage, all particles tracking the same body part are assigned
the same rectangle position and size, but different velocities. The position and size of
a target are determined by the human segmentation process, to be described in Sec.
5.1 and Sec. 5.2. The initial velocities of each particle are randomly selected, because
we do not know where the target is moving toward and how fast it moves in the
human segmentation step.

If the target moves smoothly in a scene, the system dynamic model can be
defined as a motion with a constant velocity in a short time period. The model is

defined as:
St - ASt—l + W, (41)

where A defines the deterministic component of the model, and W the noise. In
general, the velocity and size of a target object do not vary greatly between two
consecutive images. Therefore, in the system dynamic model, the size and velocity of
the target object modeled by the deterministic component A are fixed. In the tracker,
the slowly changed velocity and size can be adjusted by the noise part W, which is
defined as a Gaussian vector. In this study, we define formally the matrix 4 and vector

W as:
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The component ¢_ of the noise vector W is a zero-mean Gaussian random
variable N(0,02). The variances {0,0?,0%,07, 05,07} of the components are set
to {10, 10, 2, 2, 2, 2}, according to our experimental results.

4.1.2 Particle Weighting

In the update procedure, we will convert the state of each particle into feature
values. Then the feature values will be compared with those of the target object to
calculate the similarity m between them as the weight of the particle.

Each particle is composed of a state vector and a weight. The set of particles is

defined as:
S={SMW,7M™|n=1..N} (4.4)

According to these weights {Tr(")}, the estimated state of the target object can be

determined from the expectation of {S(“)} at each time step, that is,
N
E(S) = Z n(Wsm, (4.5)

n=1

The weight of a particle in state St(n) is computed as:
™ =w - p(z|x, = 5{). (4.6)

where Zt(n) denotes the appearance feature vector of the n-th particle at time 7, and w

a normalization factor,
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1
S = 50

w = (4.7)
which ensures that YN_, m™ = 1. The detail of the feature extraction and similarity
measurement will be described in Sec. 4.2.
4.1.3 Particle Selection

After we track the target for several frames, the weights may concentrate on a
small number of particles. In the extreme case, the weight of a single particle may
approximate to one and the others to zero. In that case, the particle filter will only be
related to the system dynamic model. The particles should be resampled when the
weights are concentrated on a small number of particles. The sequential importance
sampling (SIS) algorithm draws new particles St(") at time ¢ from the particles St(f)l

at time ¢-1 according to St(n) = St(ilgn)). The function h(n) maps the selected

particles. To create the mapping, we first create an accumulated histogram of the

weights of old particles as follows:

{C(n) — C(n—l) + 7-[(71) 1<n<N+1

RO (4.8)

Then we generate N uniformly distributed random numbers {u(n)|1 <n<N } The

mapping h(i) is then defined as

h(n) =m when ¢™ < M < (m+1), (4.9)
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Fig. 4.2 The two histograms of the Cr channel in Fig. 4.2 quantized into eight bins.

(a) Uniform mapping. (b) Equalized mapping.

4.2 Target Object Similarity

To calculate the weight of each particle, the probability of a particle belonging to
the tracking target should be calculated. Considering the captured video of a fixed
camera, the tracking targets are usually the moving objects in the scene. If only a
target object moves in the scene, we can model the background image and extract the
target object by subtracting the background image from the current frame. However,
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when multiple target objects are tracked, background subtraction is not enough to
distinguish them. To distinguish different targets, Pérez et al. [18] introduced a target
appearance model using color histograms, since the color histogram is robust against
non-rigidity. When the target is moving, his appearance may change due to the
variations of poses or illumination. If the target appearance changes, the appearance
may fail to detect the target, but the background model can be used. Therefore, in our
study, we integrate the similarities of a particle from both background model and
target appearance model to form a robust tracking system.
4.2.1 Specific Histogram Mapping

In our application, we aim to track a human in consecutive color images. The
color histogram model [19] is robust against partial occlusion, non-rigidity, and
rotation. However, in our application, the region of a tracking target may be small. To
track the object in small regions, the histogram may be sparse and not sufficient to
represent the color distribution of the region. For instance, if the number of bins is set
as 8 X 8 X 8 and the region in image is 32 X 32, the expected number of pixels in
each bin is only two, which is insufficient to represent the color distribution. To
represent the color distribution, we model the histogram in color channel
independently. Here, we select YCbCr as the color space, since the three channels are
assumed independent. We divide the values in each channel into eight bins
respectively. The expected number of pixels in each bin is 128, which can represent
the color distribution more sufficiently. Another benefit of the modification is the
computational efficiency when we compare the histograms between a particle and the
target object, because the total number of bins is reduced to 24.

To represent the color histogram in several bins, another important task is how to

map from a range of colors in the histogram to a bin. If the range is equally quantized
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for each bin and the histogram is compact, all pixels may fall into a small number of
bins. In our cases, two different histograms cannot easily be distinguished. Fig. 4.2
shows two histograms of the Cr channel in the face region of a person and a
background region, whose histograms are very different. When the ranges are equally
divided into eight bins as shown in Fig. 4.2, the color distributions of the two regions
will be very similar. To cope with the problem, we first choose one histogram H as the
reference one for histogram equalization. The equalization can be denoted as
z = M(H), where M(.) is a function that equalizes the reference histogram H into
an equalized histogram z, which is represented as a vector. The function M(.) is then
applied to another histogram H'’ to form a feature vector z = M(H'). Based on the
mapping, we can prevent the pixels from falling into the same bins for two slightly
different color distributions. Fig. 4.2 shows the quantized bins of the face region and
background regions by selecting the face region as a reference one. In the figure, we
can easily find that the two quantized histograms are different, especially in the third
bin.
4.2.2 Target Appearance Model

We model the histogram in each of the three color channels in the color space
YCbCr, since the three channels are assumed independent. We divide the values in
each channel into eight bins. In the initialization phrase, the color histogram is
extracted from the image of the target object. Since the target object is moving, its
appearance may change gradually. To adapt to the changes, the histogram model is

updated as follows:

Ht+1 =Ht'(1—a)+Qt'0(, (410)

where H;,, and H, are the histogram models at time #+1 and ¢, Q; is the histogram
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directly extracted from the estimated state at time ¢, and a is a constant used to
control the updating speed. In a frame, the region of a particle state whose color
histogram is similar to that of the target object should have a higher probability
belonging to the target object.
4.2.3 Background Appearance Model

To check whether a particle state is located in the position of a moving object, we
also check the differences between the current frame and the background scene. Here,
we adopt a Gaussian background model [3] to extract the background image. In
general, the background appearances may change due to background object moving or

illumination change. To adapt to the change, the background model is updated as

Bey1(x,y) = B (x,y) - (1 = B) + I.(x,y) - B, (4.11)

where B:(x,y) and I;(x,y) are the color vectors in pixel (x,y) of the background
image and frame image in time ¢ respectively. To detect the foreground object, the
currently processed image can subtract with the background image. However, the
pixel-wise background subtraction is sensitive to background variations such as
variation of illumination or vibration of leaves. Since the background variation is not
greatly affect the color distributions in a region, we extract the color histograms in the
positions of particle states as the background features. In a frame, the region of a
particle state whose color histogram is similar to that of the background image should

have a lower probability belonging to the target object.

4.2.4 Similarity Measurement
The appearance of the particle that belonging to target object should be similar to

target appearance model but different from the background appearance. As described
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(a) (b) (c)

(d) (e) (f)

Fig. 4.3 An example of the similarity measurement by using the color histograms of
target person and background image. (a) Image of a tracking target person, (b) Image
of a tracking frame, (c¢) Background image, (d) Target appearance similarity map of
the tracking frame, (e) Background appearance similarity map of the tracking frame,

(f) The similarity map by combining background and target appearance models.

above, we can model the target color histogram and map it into N bins according to
the mapping function M(.) defined in Sec. 4.2.1, labeled as x,. We can also extract
the background color histogram from the adaptive background model in the region of
a particle and map it into N bins, labeled as bt(n). To measure the probability of a
particle S™ belonging to the target object, we extract the color histograms of
particle from current processed image and map it into N bins, labeled as Zt(n). A
particle state S with a higher probability belonging to the target object has the
property that the distance between x; and zt(n) must be small, and between bfn)

and zt(n) must be high. Therefore, the probability used in Eq. (4.6) can be formulated
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p(Zt(n)|Xt _ St(n)) — ;e< % ( e bgn)) ) (4.12)
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Fig. 4.3(d) shows the similarity map of Fig. 4.3(b) comparing with the target
appearance model extracted from the person region of Fig. 4.3(a). Fig. 4.3(e) shows
the similarity map of Fig. 4.3(b) comparing with the background appearance model
extracted from Fig. 4.3(c). Fig. 4.3(f) shows the combines of the two similarity
according to Egs. (4.12) and (6.2). In the similarity map, the gray scale of a pixel
represents the similarity of a region with the same size of the person region in Fig.
4.3(a) centered in the pixel. In Fig. 4.3(f), we can observe that the region of the target
person in Fig. 4.3(b) has largest similarity.

Note that, in a particle filter, the measurement affects the selection of particles in
the resampling step. The motion of the selected particles in the next frame is
determined by the system dynamic model defined in Eq. (4.1). The noise W in the
system dynamic model affects the distribution of the particles. Since we assume that
the noise W is a Gaussian distribution, the distribution of particles forms a mixture of
Gaussians in the state space. The set of Gaussian distributed particles will be placed in
each important part of the state space, which will next be resampled according to the
weights calculated from the measurements. All the selection and generation of

particles are the characteristics of the particle filter.

4.3 Cumulative Histogram Map
When we track a target object in images, a set of particles should be used in the
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tracker and the color histograms of the current frame and background image in the
positions of these particles must be extracted. It is time-consuming to extract a large
number of color histograms in an image. Since most of the regions of these particles
are overlapped, many redundant calculations are spent for estimating the colors in the
pixels of the overlapped regions. To reduce the redundancy, we create a cumulative
histogram map (CHM) for the processing frame and background image. Then we can
extract the color histogram feature for each particle in a constant time.

The CHM is similar to the integral map popularly used for extracting Haar-Like
feature [20]. The map is created to cumulate the color histograms. In a region
R ={(x,y)|x; < x < x3,¥; <y < y,}, the color histogram of a color channel can be
calculated as

hp(D) = Z Z S[1(x,y) — ul, (4.14)

(x,y)ER ueM;

where &[.] is the Kronecker delta function, and M; is the set of colors that map into

i-th bin. According to the equation, we can define the CHM for an image as

CHM(x,y,i) = Z 25[1(x’,y’)—u]- (4.15)

x'<x,y'<y ueM;
The CHM can be calculated recursively as

CHM(x,y,i) = CHM(x,y — 1,i) + CHM(x — 1,y,i)

(4.16)
—CHM(x — 1,y — 1,0) + Z S[1(x, ) —ul.

UEM;

When we obtain the CHMs for an image, the histogram from Eq. (4.14) can be

calculated as
hR(l) S CHM(xz, yz, l) + CHM(xl, yll i) - CHM(xl, yz, l) - CHM(xz,yl, i). (417)
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Based on the modification, the time complexity for creating M CHMs for an
image is O(W X H X M), where W and H are the width and height of an image
respectively and M is the number of histogram bins. The time complexity for
extracting color histograms in a region is O(M). The complexity for extracting the
color histograms for N particles in an image is thus O(M X N + W X H X M). The
time complexity of histograms extraction in Eq. (4.14) for all particles in an image is
O(W'x H' X N), where W', H'are the width and height of the region R. The number
of bins is much smaller than W' X H'. If W X H X M is smaller than W’ X H' X N,
the speed can be improved. According to our test results, when more particles are used,
the target can be traced more precisely. In our experiments, we set the number of
particles around 1000. Therefore, the speed of the particle filter-based tracker can be
improved. The measurement of speed improvement will be described in the

experiment result section.

4.4 Dynamic Number of Particles Adjustment

The number of particles will greatly affect the search region of the target object
in an image. In general, when more particles are selected, the tracker may become less
efficient but more accurate. Recently, Fox [51] proposed a method to dynamically
adjust the number of particles by using the KL-distance to reduce the error. The
method adjusts the number of particles to minimize the error between the true
posterior and the sample-based approximation. However, the computation is costly. In
a particle filter, the particles with local maximum weights are much important for the
target state estimation and particle resampling. Therefore, we modify the number of
particles to control the covering range in state space so that the state with the local

maximum weight can be located.
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When we track a target with the particle filter, if the appearances of many
regions are similar to the target object, the weights of particles will approximate a
uniform distribution and have a higher entropy. If the target has been missed, the
conditional probability p(z;|X; = S*) will be low and the distribution of weights
will also approximate a uniform distribution. In these two cases, since we do not
know where the target object is, a wide search window should be set. Therefore, a
larger number of particles are needed. In another case, if there is only one region
whose appearance is similar to the target object, the weights will concentrate on few
particles and have a lower entropy. In that case, a small search window is needed and
a smaller number of particles is required.

To address the cases described above, we define the number of particles at time ¢

(or the #-th frame) based on the entropy as

N¢_
Ay 7™ log ™

(4.18)
—log(1/N;_1)

Nt=C'Nt—1’_

where C is a constant to control the increase rate of the number of particles. For
example, if C is set as two, the maximum number of particles at time #is 2 - Ny_;. In
our experiments, the constant C is 1.2. To avoid the number of particles increasing or
decreasing drastically, we limit the number N; between (200, 1000) in our

experiments.
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5. Three-Part Human Tracking and Consistency

Checking

To track a human reliably, the three parts, head, torso, and hip-leg, are tracked
simultaneously, as shown in Fig. 1.2. To design the tracking system, we first segment
a person in a frame via the background subtraction method, and decompose the person
into three parts. The positions of each part in the following frames are then predicted
and updated using the particle filter described in the previous section. For each frame,
after the positions of the three body parts are estimated by particle filters, consistency
checking and adjustment of these body parts are performed to correct the abnormal
body part. Finally, we perform an inter-person occlusion detection to avoid losing the

target person when the person is occluded by other persons.

5.1 Human Extraction

To segment the human from an image, we first apply the method described in
chapter 3. Next, we extract the connected-components of foreground pixels as
foreground regions. The connected-components smaller than a prespecified threshold
are regarded as noise and removed. The extracted foreground regions may include
shadows, other background objects being moved or due to illumination changes. A
foreground region may also include more than one person. To extract the persons, we
restrict the size of a human region by setting two thresholds, region size Tr, and
width to height aspect ratio T,,,. If a foreground region does not satisfy the criteria,

we will separate the foreground region into two sub-regions by finding the lowest
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(d) (e)
Fig. 5.1 Foreground subtraction images. (a) The current frame. (b) The mean colors
of the Gaussian background model. (c) Foreground regions. (d) The foreground
connected-component and its vertical projection profile. (e)(f)(g) Sub-regions after

recursive separation.

valley in the vertical projection profile [2]. After the separation, if the aspect ratio of a
sub-region is still larger than T,,;,, the separation rule will be performed recursively
until all sub-regions satisfy the criterion of aspect ratio. Note that the two thresholds
should be trained for different camera settings. In our experiments, the threshold Ty,
was set as 2000 pixels and T,,;, as 1.0. Also note that the region of a person may
touch with small misclassified background regions, such as shadows. Since we do not
use the whole image of the person for tracking, the small misclassified background

region will not affect greatly the tracking performance. Even though a detected body
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part of the person belongs completely to a misclassified background region, the part
can also be adjusted by using the other two parts during the process of tracking failure
adjustment described in Sec 5.4.

As an illustration, Fig. 5.1(a) shows the current frame, and Fig. 5.1(b) the mean
colors of the Gaussian background model. To perform human segmentation, we
extract foreground regions by the background subtraction method. After the image is
thresholded, we obtain the foreground image in Fig. 5.1(c). Then we extract
connected-components  from the foreground images and remove the
connected-components smaller than Ty, pixels. A large connected-component
remains. Since the aspect ratio of the component is greater than the threshold T, we
separate it into two blocks based on its vertical project profile, as shown in the lower
part of Fig. 5.1(d). The smaller block shown in Fig. 5.1(e) is removed because its size
is less than Ty,. For the larger block, another separation is performed and two
sub-blocks shown in Fig. 5.1(f)(g) are obtained. Since the aspect ratio criterion is now

satisfied, the recursive separation process stops.

5.2 Human Part Decomposition

Since the three body parts are used to track a person, their appearances should
not be confused with each other. In this study, we aim to separate the three parts with
a high distinguishability. The distinguishability can be defined as the difference
between the color histograms of two regions. Since the difference measurement of
color distributions used for our particle filter as depicted in Sec. 4.2.1 is costly, we

will compute and compare the mean colors of the three parts instead.
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(a) (b)
Fig. 5.2 An example of human parts decomposition of a person. (a) Initial horizontal

separation lines of the person. (b) Results of final three parts of the person.

We assume that the size ratios of the three body parts of most people are similar.
As shown in Fig. 5.2, we first locate two horizontal lines to separate the region of a
person into three sections according to the predefined height ratio of the three parts,
denote as Hj, H;, and H;. Then we move the two separation lines vertically to find
the positions such that the three regions have the highest differences in the mean
colors. The foreground human region is accordingly separated by the two horizontal
lines into three sections R, R;, and R;. As described above, the segmented
foreground regions may include background regions or noise. Besides, the shapes of
the three parts for different persons and different poses are varied. To achieve a higher
reliability of the tracked parts, we will shrink the segmented regions according to the
spatial distribution of the pixels in the three sections. A section R is shrunk into a
smaller rectangle, called inner rectangle hereafter, as the pixel set {(x, y)|Cx -5 <
x<Cx+S5,C -5, <y<C,+S,,(x,y) €R}, where (Cy Cy) is the center of
the rectangle and (Sx,Sy) the covered range of the rectangle. They are defined as

follows:
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1
Cr = IR X, (5.1)
(x¥)€ER
1
Cy =Rl Z Y (5.2)
(x,y)ER
1 2
Sx = Kg - Rl Z (x — Cy)?,and (5.3)
(x,¥)ER
1 2
Sy =Ke |11 > -o). (5.4)
(x,¥)ER

where Ky is used to control the shrinking rate. Our shrunk body parts are less
affected by limb motions, and the three parts are usually located in a vertical line.

Fig. 5.2(a) shows the three inner rectangles found for the position in Fig. 5.2(b),
in which the colors are more uniform. Note that the height of the inner rectangle of
hip-leg is set to the half height of the segmented hip-leg, because the appearances of
lower legs may vary significantly for different motions and dresses, which are not

stable for tracking.

5.3 Tracking Failure Detection

The relative positions of the three body parts are limited in a certain range and
the velocity of each part is also limited. Tracking failure will generate abnormal
relative positions of estimated body parts, and the states will change irregularly in
recent frames. If we can create a classifier to distinguish normally and abnormally
tracked body parts, we can detect the event of tracking failure.

To detect the tracking failure, we also have to detect the failure component. In

this study, we use support vector machines (SVM) [22] as classifiers to detect whether
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and which body part cannot be tracked properly. The SVM is a well-known classifier
that finds a hyperplane in a higher dimensional space to separate data of two

categories with the largest margin. The optimal hyperplane is computed as follows:

f(x) = sgn(g(x)), (5.5)

where

.
96 = O i (6, x) + b). (5.6)
i=1

Here, we select the radial basis function as the kernel function K to map the feature
vectors into the higher dimensional space. The class label y; € {—1,1} denotes
whether the feature vector x; belongs to tracking failure or not. The set
{x/|1 <i<Ul'} is a subset of the training data set, called support vectors. The
coefficients a; and b are determined by solving a large-scale quadratic programming
problem.

To detect which part cannot be tracked, we design three SVMs for detecting the
tracking failures of the three body parts. If the tracker fails to track two or three parts,
the SVM failure detector for different body parts may become ineffective, since we
cannot easily distinguish which part is abnormal by the relative positions. To cope
with the problem, we design an additional SVM to determine whether the failure type
is a single part failure or a multi-part failure.

The features used in an SVM are the estimated states of the three parts in the
current frame and the relative state changes between the current frame at time t, and
a previous frame at time t, — At. Here At is selected to make the state changes large
enough (In our experiments,At = 0.5 seconds). The feature vector is defined as

[RSy(to), RS7(to), RSy (to), RSy (ty) — RSy (ty — At), RSy (ty) — RSy (to —
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At), RS, (to) — RS, (to — At)]", where the vectors RSy(t), RSt(t), and RSy(t)
denote the relative state vectors of the three body parts in time ¢. The relative state

vectors are defined as:

Yi=nr S (t)
3

RS(K)(t) = S(K)(t) - (K = H, T, L), (5-7)

where S, (t), Sp(t) and S, (t) are the estimated state vectors of head, torso and
hip-leg parts.

To collect training samples, we apply particle filters to track the three body parts
in several video sequences. We than manually label the training samples from these
tracking results for each SVM. In our experiments, the number of training samples for
each SVM is 150. The state vectors not covering the target body part are labeled as
negative, while those falling inside are labeled as positive. The samples not satisfying
these two criteria are eliminated; this ensures that the feature vectors of the two
classes are distinguishable. In the tracker, since a misclassified tracking failure may
cause error propagation and hard to be adjusted, we prefer a higher true-negative rate.

Thus, we adjust the parameters of SVMs to achieve the goal.

5.4 Tracking Failure Adjustment

In case when a tracking failure is detected, we have to adjust the state of the
target person. If two or three parts cannot be tracked, we will detect the foreground
region around the previous tracked position of the target object, and re-initialize the
tracking process. If the state of a single part is abnormal, we will use the other two
body parts to adjust the position and size of the abnormal one. To keep the adjusted
body part tracked in the following frames, the particle states and the appearance

model (color histogram) must also be modified. If the abnormal body part still appears
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(a)

(b)

Fig. 5.3 Examples of two types of tracking failure. (a) A person with clothes colors

similar to those of background regions. (b) A person occluded by a pillar.

in the image, we can use the adjusted position and size to extract the particle states
and the appearance model. However, if the failure is caused by occlusion, the
appearances of the target person may not be correctly extracted as shown in Fig. 5.3,
and thus the system dynamic model should be used to track the person. In this case,
the appearance model is not updated and the process of failure detection and
adjustment is not performed either. The method of occlusion detection is discussed
below.
54.1 Failure from Inter-Person Occlusion

When two persons are both tracked, the occlusion event can easily be detected by
checking whether the tracked body parts of the two persons are touching. If the

answer is positive, we determine which one of them is occluded. Here, we use the
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weighted function in Eq.(4.6) to calculate the feature similarity between the tracking
target and the feature kept in the particle filter. When two persons are overlapped, the
person with the lower probability is determined as the occluded one.
54.2 Failure from Background Object Occlusion

If a person is occluded by a fixed background object such as a pillar or a door,
we cannot detect the event since we only track the position of a person but not the
background object. To cope with the problem, we can label manually the large and
fixed background objects that may occlude moving humans. This is reasonable for a
scene monitored by a fixed sensor.

The position of the tracking failure part can be adjusted according to the position
of the other two parts. If the tracking failure part is the torso part as shown in Fig.
5.3(a), we adjust the center of the torso to the middle of the other two parts and the

size to the average of the other parts as follows:

{XH! YHr WHr HH} + {XL; YL; WL: HL}

5.8
5 (5-8)

{XT' Yr, Wr, HT} =

Since the torso of a person is usually large enough, the adjusted rectangle usually
lies inside the torso. Instead, the head of a person is usually smaller than the other two
parts. Using similar adjustment method, its inner rectangle may contain background
objects. We will use the background model to segment the foreground region above
the torso part, and then extract the inner rectangle from the foreground region by the
method described in Sec. 5.2. For the hip-leg part, its shape may have great variations.
The adjustment method is similar to that of the head part, except that the foreground
region is segmented below the torso part.

In our tracker, the moving velocity of the particles will affect the predicted target

position in the next frame. If we set the same moving velocity to all particles, the
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particle filter may be unable to predict the state in the next frame. For a moving
human, the velocities of the three body parts are assumed similar. If the trackers of the
other two parts have N; and N, particles, we set the particle number of the tracking
failure part as N; + N,. All the particles of the adjusted body part have the same size
{W,H} and position {X,Y}, but different velocities {X , Y} from the particles of the

other two parts.
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6. Experimental Results

In this research, we propose a spatially-extended background model, and a
human tracking model. The human tracking model composed an adaptive color-based
particle filter using cumulative histogram maps and a three-part consistency checking
algorithm. In this chapter, we will verify the performances of these algorithms

respectively.

6.1 A Spatially-Extended Background Model

The test video clips used to test the background model are captured in two
different sites and by three different cameras. Two cameras are set in the two ends of a
corridor (Caml and Cam2), and the other one is set in a laboratory (Cam3). The
camera Caml is a grayscale CCD camera, Cam2 a color CCD camera, and Cam3 a
USB-Webcam. The resolution of each video frame is 320 x 240 and the frame rate is
30 fps. The total time of captured video clips is about 97.4 minutes, which include
175394 frames. The clips contain moving humans, moving background objects, and
changing illuminations.

In our experiments, we will compare the foreground detection results of three
background models: the Gaussian background model (GBM), MoG-based model
(MBM) [9], and spatially-extended background model (SBM). In both MBM and
SBM, we represent the background color distributions as a mixture of six Gaussians.
In our SBM, we model the pixel-pairs with the distance of five pixels, and use the two

spatially-dependent pixel-pairs to represent the spatial relations.
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Fig. 6.1 Foreground detection results of an image captured by Caml. (a) Original
image, (b) Detected foreground regions: the images from left to right are the results
based on GBM, MBM, and SBM, and from top to bottom are results with 3/N/40,
5N/40, and 7N/40 pixels. (N=image size), (c¢) Foreground regions after noise

removal.

51



GBM MBM

SBM

(b)

Fig. 6.2 Foreground detection results of an image

captured by Cam2. (a)

Original image, (b) Detected foreground regions: the images from left to right

are the results based on GBM, MBM, and SBM, and from top to bottom are

results with 3N/40, 5N/40, and 7N/40 pixels, (c) Foreground regions after noise

removal.
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(b)

Fig. 6.3 Foreground detection results of an image captured by Cam3. (a) Original
image, (b) Detected foreground regions: the images from left to right are the results
based on GBM, MBM, and SBM, and from top to bottom are results with N/40, 3N/40,

and 5N/40 pixels, (¢) Foreground regions after noise removal.
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To detect foreground, an effective background model can label most foreground
pixels and very few background pixels as the foreground. The number of detected
candidate foreground pixels is generally affected by the foreground segmentation
threshold used to classify the pixels into foreground or background. Comparing
different methods with unsuitable foreground segmentation thresholds cannot reflect
the real performances. Here we perform two different kinds of experiments that detect
foreground pixels via controlling either detected pixel numbers or foreground
segmentation thresholds.

Fig. 6.1 through Fig. 6.3 show result images by controlling detected pixel
numbers. Figures Fig. 6.1 through Fig. 6.3(a) show the original images, Fig. 6.1
through Fig. 6.3(b) the detected foreground pixels using different methods, and Fig.
6.1 through Fig. 6.3(c) the foreground regions of the images in the middle row of Fig.
6.1 through Fig. 6.3(b) after morphology-based noise removal. In the noise removal
process, if the closing operator is performed before opening, near noises may be
merged into a large one and cannot be removed by opening using the same structure
element. If the opening is performed before closing, near small holes may not be
removed. Therefore we first apply a closing operator with a smaller structure element
(3 x 3) to fill the holes and then apply an opening with a bigger structure element
(5 X 5) to remove noise pixels.

Fig. 6.1(b) shows the results of a sample image captured by Caml. Since the
image is a gray scale one, different objects may easily have similar appearances. The
distributions of joint random vectors of pixel-pairs are less efficient to distinguish
different objects than those in color images. Thus, the results of SBM and MBM are
much similar. After we apply noise removal as shown in Fig. 6.1(c), the regions of the

person using SBM are still more complete than those using MBM. The result shows
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Fig. 6.4 Foreground detection results of the images captured by the three cameras.
The images from top to bottom are original images, the results of GBM, MBM,

and SBM.

our proposed SBM is better than the other two methods.

Fig. 6.2(b) shows the results of a sample image captured by Cam2. The captured
image is colored, and the colors of many parts of the person are similar to those of the
background. The detected foreground regions of GBM and MBM are fragmental.
Even though we apply a morphology-based hole filling procedure as shown in Fig.
6.2(c), the foreground regions of the two methods are still fragmental. Thus, we can
also conclude that SBM are more efficient than MBM and GBM.

Fig. 6.3(b) shows foreground detection results of a sample image captured by
Cam3. Some of the regions of the door and its shadow are misclassified as foreground
ones by using GBM and MBM, but not misclassified by using SBM. In the sample,
since the door is opened when the person enters the room, the GBM does adapt to the
current appearance of the door and its shadow. In MBM, since the color distributions
of the person, door and shadow may all be modeled, the regions of these object may

be misclassified. As shown in the middle column of Fig. 6.3(b), the regions of the
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Fig. 6.5 Test samples and the manually labeled ground truth masks used for

estimating the ROC curves.

door and its shadow may also be misclassified or those of the person may be
fragmental when an unsuitable segmentation threshold is set. By adopting SBM, the
appearances of the person are not taken as background, since the joint colors of a
pixel-pair in the person are not captured repeatedly in the same position. The results
in Fig. 6.3(c) show that the person regions do not touch with background ones and
less background regions are misclassified as foreground.

Fig. 6.4 shows the foreground detection results of the images captured by the
three cameras by setting a fixed threshold. The threshold that results in 15% false
positive rate in training images is selected to test the performance of the models. The
foreground regions depicted are noise removed. The results show that the foreground
regions extracted by SBM are more complete, and the false positive regions are less
than those of the other two methods. The persons in Fig. 6.4(a), (c) and (f) walk
around a place. Since the appearances of the persons are repeated in similar locations,
the colors of the persons will be learnt as background by the pixel-wise background
models GBM and MBM. In SBM, the colors of pixel-pairs will be modeled and the
pixel-pairs without higher spatial dependency will be eliminated. Even though the
appearances of a person are similar in a specific location, the joint colors of a

pixel-pair in a fixed distance are usually varied and have low probabilities to be
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labeled erroneously as background. Note that the illuminations in these scenes are
dramatically changed in Fig. 6.4(e) and (f), when the lamplight is turned on, and
slowly changed in Fig. 6.4(a) (b) (c) and (d), when the illuminations are affected by
the sunlight. In such environments, our proposed method is less affected by the
illumination variations than others.

Fig. 6.6-Fig. 6.8 show the receiver operating characteristic (ROC) curves of the
video clips by controlling thresholds. The results of each figure are estimated from 20
randomly selected test images. These images all include moving persons. The ground
truth data of the test samples are manually labeled as shown in Fig. 6.5. The results
show that the curves of SBM and MBM are very similar and the true positive rates of
SBM are usually higher than that of MBM. When we fix the true positive rate on 80%,
the false positive rates are about 21% and 30% for the test images captured by Cam?2
(Fig. 6.7) using SBM and MBM, respectively. The results show that we can eliminate

about 30% (9% in 30%) misclassified non-foreground pixels by extending MBM with

Fig. 6.6 The ROC curve of test images captured by Caml.
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spatial relations.

Fig. 6.7 The ROC curve of test images captured by Cam2.

Fig. 6.8 The ROC curve of test images captured by Cam3.
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Note that the performances of GBM are usually better than those of MBM and
SBM for the samples captured by Caml and Cam2 when the false positive rate is
lower than 15%. The reason is that the background appearances do not change
frequently in the corridor. In the environment with less frequently changed
background, a Gaussian distribution can easily model the color distribution. However,
when the background changes, the performance of GBM may become unacceptable
for a fixed threshold as shown in Fig. 6.4.

Although experimental results show that SBM usually outperforms MBM and
GBM, the SBM is slower than the other two methods. The computation complex of
calculating the background probability of a pixel of MBM is O(K), where K is the
number of background constituents, but SBM is O(K X M), where M is the number
of pixel-pairs used. When we update the model of a pixel, the computation complex
of MBM is still O(K), but SBM is O(K? X M) since the computation cost of
updating each weighting matrix is O(K?). On a PC with Pentium4 2 GHz CPU, the
SBM can perform about one frame per-second, but the MBM is about 10 frames
per-second. In our tests, about 90% CPU time spends on calculating the mutual

information (Eq. (3.8)) and updating the matrix w (Eq. (3.5)).
6.2 Adaptive Color-Based Particle Filter

We evaluated the proposed adaptive color based particle filter on two video sets.
The first set called the "TCU set", which is captured with four stationary cameras
mounted on Tzu Chi University and on a house near Tzu Chi University. The cameras
are mounted approximately three meters high and the angle between the camera and
floor is smaller than 30°. The video set consists 10 video clips with 48 target

sequences in four scenes. Fig. 6.9 shows the images of the four scenes. The captured
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Fig. 6.9 Sample images of the four scenes in the TCU video set.

image size shown in Fig. 6.9(a) is 720 X 480, and others are 640 X 480. The
sampling rate is about 15 fps. The test video and ground truth data are released in the
ftp site ftp://203.64.84.203. The second set is 12 video clips selected from the
CAVIAR video corpus [52] (six are front view and six are corridor view of the
Shopping Center in Portugal). The image size is 384 X 288 pixels and the sampling
rate is 25 fps. The details of the database can be found in [52].

To analyze the tracking accuracy and speed, we compared the proposed method
with the method proposed by K. Nummiaro et al. [19]. In the K. Nummiaro's method,
the target similarity is measured using weighted color histogram represented by

8 X 8 x 8 matrix. The weighted color histogram is extracted as
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(c)
Fig. 6.10 Sample images and the tracking results of a target person. (a) The manually
labeled bounding rectangle of the target person. (b) The tracking results created by

the proposed method. (c) The tracking results created by K.Nummiaro's method.
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where y is the center, / is the number of pixels in the regions, a is +/|[|[W? + H?|| and
m W _

fis the normalization factor that ensures Y7L, p;~ = 1. In our proposed methods, we

implemented the similarity measurement described in Sec.4.2. The experiments are

performed in a personal computer with 3GHz CPU.
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Fig. 6.11 The trajectories of a target person. (a) Trajectory of the target person from
manually labeled ground truth. (b) Trajectory of the target person created by the
proposed method. (c) Trajectory of the target person created by K. Nummiaro's

method.

6.2.1 The TCU Video Set

In this research, the purpose is to create the trajectories for visual surveillance
system. The centers of state vectors of a person in consecutive frames represent the
trajectory as shown in Fig. 6.11. Fig. 6.11(a) shows the ground truth trajectory, which
is created by connecting the centers of the manually labeled bounding rectangles.
Several sample images of the manually labeled bounding rectangles are show in Fig.
6.10(a), where the number labeled below is the frame index. Fig. 6.10(b) and Fig.
6.10(c) show the trajectories created by the proposed method and K. Nummiaro's
method, respectively, and Fig. 6.10(b) and Fig. 6.10(c) show the sample images of the

tracking results of the two methods.

62




Table 1 Average Center Deviation by Different Similarity Measuement

#of particles 200 400 600 800 | 1000 | 2000

Our method 522 463 |41.7 |43 41.7 39.1

K. Nummiaro's method 78.4 73 73.5 73 71.3 68.6

Table 2 Tracking Speed by Different Similarity Measuement (fps)

#of particles 200 400 | 600 800 1000 | 2000

Our method 281 |25 237 219 |21.1 15.9

K. Nummiaro's method 12.3 6.1 4.1 32 2.5 1.3

Here, we want to measure the difference between trajectories of ground truth
data and tracking results as the error measurement. Since the trajectories are
composed by a set of center points, we measure the Euclidean distance between the
center points of ground truth and those of the tracking result (called center deviation
in following descriptions). Table 1 shows that the average center deviation of our
proposed method is smaller than K. Nummiaro's method. Comparing with the sample
images in Fig. 6.10, the colors of the person's clothes are similar to the colors of the
floor. If we just use the color histogram of the target person to measure the particle
weight, the particles located in the floor may be assigned high weight. Therefore, in
Fig. 6.11(c), the trajectory of K. Nummiaro's method curves to the floor region of the
scene. In our method, that kind of tracking failures can be reduced, since our
similarity measurement considers both target appearances and background
appearances.

Table 2 shows the comparison of tracking speed, where the speed is measured as
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Table 3 Average Center Deviation on The Caviar Video Set by Different

Similarity Measuement

# of particles 200 400 600 800 1000 | 2000

Our method 329 1269 |222 |224 |226 19.8

K. Nummiaro's method 447 42.1 41.2 39 413 40.5

Table 4 Tracking Speed on The Caviar Video Set by Different Similarity

Measuement (fps)

# of particles 200 400 600 800 1000 | 2000

Our method 62.4 |56.1 |49.7 |45 41.1 21.5

K. Nummiaro's method 50.3 26.4 17 12.9 10.3 4.6

the average frames per second (fps). In the table, K. Nummiaro's method is in inverse
proportion to the number of the particles, since most computation costs of the method
are spent on feature extraction and similarity measurement of particles. In our
methods, most cost are spent on creating CHMs for current captured image and
background image. When applying large number of particles, our method is
significantly faster than the K. Nummiaro's method (over two times faster when apply
200 particles and about four times faster when apply 600 particles). The result shows
that the proposed method can easily be applied to a realtime tracking system.
6.2.2 The CAVIAR Video Set

Table 3 shows the average center deviation and Table 4 shows the tracking speed
when applying the tracking methods on the CAVIAR video set. The results also show

that the proposed method can achieve high accuracy and high speed.
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The results also show that the more particles cannot ensure higher accuracy. In
Table 3, when we apply 2000 particles, the proposed method can reduce the average
center deviation but K. Nummiaro's method cannot. By further analyzing the tracking
results, when a large number of particles are used, the particles will widely separated
in the state space, and several particles will located in background regions. If the
correction process cannot assign distinguishable weights for target object and
background regions, the tracker may lost the target. In our proposed method, since the
weight assigned to target object and background are significant different, the precision
can be improved when we apply 2000 particles. However, the widely separated
particles also cause that the minimal bounding box of all particles become larger.
Since the CHMs are created for the image in the minimal bounding box, the speed
when applying 2000 particles is greatly dropped. Even though the speed is dropped,
the proposed method can also achieve 21.5 fps. The speed is higher than that of the K.
Nummiaro's method and approximates to the frame rate of the test videos.

6.2.3 Specific Histogram Mapping

We perform the experiment of the tracking model with specific histogram
mapping, as described in Sec. 4.2.1, on the TCU video set. To verify the tracking
model, we first define three rectangles on the head, torso, and hip-leg parts in 50
images as the target regions. We then compare the numbers of false-alarm target
regions with and without specific histogram mapping. A wrongly classified region is
defined as the region that does not overlap with the target rectangle but its histogram
feature is similar to that of the target one, whose similarity is less than a threshold.
The similarity measurement between two histograms is defined as that in [19]. To
define the threshold, we select the regions that are overlapped with the target one with

more than half of size and then calculate the average histogram similarity. To
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Fig. 6.12 he tracked body parts using different color histogram models. (a) Body

parts in the initialization frame. (b) The tracked body parts using the equalized color
histogram model. (c) The tracked body parts using the color histogram model
without equalization. There are 7 frames apart between (a) and (b) and between (a)

and (¢).

calculate the number (or rate) of false alarms, we randomly define 1000 regions that

do not overlap with the target one as the test regions from each test image. Among the

50000 test regions (1000 regions x 50 images), 66 (0.13%), 79 (0.16%), and 45

(0.09%) regions were wrongly classified as belonging to a body part when we use the

proposed specific histogram mapping; and 973 (1.95%), 734 (1.47%), and 725 (1.45%)
without specific histogram mapping which demonstrates the effectiveness of our

proposed method.

Fig. 6.12 shows the tracked results using different color histogram models. Fig.
6.12 (a) is the three body parts extracted in the initialization step, where the upper
rectangle denotes the head part, middle the torso part, and lower the hip-leg part. Fig.
6.12 (b) is the tracked three body parts using the equalized color histogram model and
Fig. 6.12 (c) using a general color histogram model after several frames. Both the
methods model the three channels of YCbCr space separately. In the images, the

colors of the target person's hair are similar to those of a dark background region.
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Fig. 6.13 The tracking results captured in an open space in front of a house. (a)Tracking

results with failure detection and adjustment. (b) Tracking results without failure

adjustment.




Using uniform quantization, the hair region and the background region may have
similar feature vectors, so the head part may be tracked erroneously as shown in Fig.
6.12 (c). By using the equalized color histogram model, we can distinguish them as

shown in Fig. 6.12 (b).

6.3 Tracking Failure Adjustment

In our experiments on tracking the head, torso, hip-leg, and whole body on 20
video sequences longer than 100 frames, the tracking failure rates are 35%, 35%, 40%,
20% in the 100-th frame, respectively. Note that if the bounding rectangle of a target
object contains less than a half of regions of other objects, the target object is regarded
as tracked correctly; otherwise it is considered as tracked incorrectly. In the test
results, most of the failures, about 100%, 100%, 87.5%, 75%, are propagated from
previous frames. If we can keep the correctly tracked body parts and adjust the
positions of other body parts, error will not propagate easily to the following frames
and the accuracy can be improved.

6.3.1 Tracking Results

Fig. 6.13 shows the human tracking results of scene 1 in the TCU video set by
applying our proposed method with failure adjustment and that without failure
adjustment [19]. The numbers below the images denote the frame number after
tracking initialization. Fig. 6.13(a) is the tracking results using failure detection and
adjustment, while Fig. 6.13(b) is the results without failure detection. Since several
non-human regions have similar appearance to parts of the target person, the regions
may be mistaken as the body parts as shown in the 40th and 80th frames of Fig.
6.13(b). In the frames, the appearances of the hip-leg part are similar to those of the

stone. In the 200th and 220th frames, another background object is mistaken as the
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Fig. 6.14 The tracking results in a corridor. (a) Tracking results with failure

detection and adjustment. (b) Tracking results without failure adjustment.

head part. In the 80th, 150th, 200th, and 220th frames, the tracking rectangles of the
torso are slightly departed from the torso part, since the torso appearances are not
similar to those in previous frames due to the motion of arms. Using our proposed
method, we can detect the abnormal part and adjust its position as shown in Fig.
6.13(a). Note that in the 150th and 200th frames, the head tracking rectangle is
slightly departed from the head part. According to our failure adjustment, the head is
corrected in the 220th frame. Fig. 6.14 shows the tracking results in a corridor. The

results also show that the failure adjustment is useful for tracking.

6.3.2 Analysis of Tracking Accuracy

Fig. 6.15(a-d) show the tracking accuracy curves of the three body parts and the
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Fig. 6.15 Tracking rates without and with failure detection. (a) head. (b) torso.
(c)hip-leg. (d) whole body.
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Fig. 6.16 The tracking results with failure adjustment and inter-person occlusion

detection.



whole body of the test video clips. Different persons appearing in a scene are recorded
in different lengths of time intervals. Here, we test on 22 video clips with 72 target
persons. The experiments were performed on 22 video clips with 72 target persons in
six scenes. The input images are in color with resolution of 720 X 480. The number
of particles is set within 200 to 1000, which was automatically modified by using the
entropy of particle weights. The accuracy rate is defined as the ratio of the number of
correctly tracked objects to the total number of detected objects. The accuracy rate of
the ith frame is the ratio of the persons tracked correctly from initialization to the
frame. Since the sequence lengths of different persons are different, the denominators
of the accuracy rates for the sequence of frames are varied.

The curves in Fig. 6.15(a-c) show that the tracker with failure adjustment can
improve the accuracy rate. The method of body part tracking without failure
adjustment is similar to that proposed by Nummiar et al. [19] except for histogram
extraction and weighting calculation, as described in Sec. 3. In frame 105, for instance,
the tracking accuracy rates with failure adjustment are 95%, 83%, and 91% for the
three parts respectively. Note that the result curves are not monotonically decreasing,
since the particle filter can adjust the target parts to the correct positions, and the
numbers of frames that different persons walk in a scene are not the same. Comparing
with the accuracy rates of the tracker without failure adjustment, 67%, 68%, and 64%,
the tracking rates of the three body parts are improved about 28%, 15%, and 27%. In
these samples, the torso parts of the target persons in the sequences longer than 70
frames are relatively stable than other parts as shown in Fig. 6.13. Therefore the
accuracy curves of the two methods in the 80-th frame of Fig. 6.15(b) are much
similar.

To test the effect of the multi-part tracker with failure adjustment for human
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Fig. 6.17 The tracking failure samples. (a) A person bending down. (b) A sample

affected by shadow.

tracking, we define the detected body region as the minimum bounding rectangle
(MBR) that encloses the rectangles of the body parts. The single whole-body tracker
is the same as that for the body part. Fig. 6.15(d) shows the accuracy curves for the
whole-body tracker (drawn as triangles) and the MBR of the whole body from the
three-part tracker with failure adjustment (drawn as squares). In frame 105, for
instance, the accuracy of the three-part tracker with failure adjustment is 95%.
Comparing with the accuracy rate 75% of the whole-body tracker, the tracking rate is
improved about 20%.
6.3.3 Multi-person tracking

When we track multiple humans, the main problem is occlusion. When a person
is occluded, the figure-ground segmentation may fail. We can use the system dynamic
model to predict whether two persons are touching in a frame. In case of occlusion,
we will find the occluded one and predict the target person until two persons are not
touching anymore as described in Sec. 5.4.1.

Fig. 6.16 shows the images of a video that has multiple walking persons. In the

first frame, the three persons from right to left are labeled as numbers 0, 1 and 2. In
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the fifth frame, person 1 hides the hip-leg part of person 2, and in the 12th and 14th
frames, person 0 hides almost the whole body of person 2. In the images the white
rectangles denote the tracked persons. The results show that our tracker can track
target persons even during inter-person occlusion.

6.3.4 Tracking failure analysis

In our tracking system, we assume that the relative positions of body parts are
fixed in a certain range. However, the assumption cannot be applied to track the body
parts of a person when his posture is not trained, such as bending down as shown in
Fig. 6.17(a). In this situation, we can still track the same target person, but not his
body parts correctly. Since these parts belong to the same person, we can still track
the target person when he stands up.

In our failure adjustment, we use the background model to extract foreground
regions. However, several false objects, such as shadow, may be regarded as
foreground objects. In Fig. 6.17(b), the target person is still tracked but the torso part
is too large and the hip-leg part includes shadow. Usually, the false detected
foreground regions only affect the tracking results several frames. When the three
tracked body parts are not located in the correct relative positions, the failure

adjustment scheme will adjust the positions of the body parts.
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7. Conclusions and Future Works

In this research, we designed a human tracking system. In the system, firstly, we
have developed a spatially-extended background model for foreground detection. In
the background model, we have used the probabilities of joint random vectors
between near pixels to model the spatial relations. To reduce the cost of modeling the
pixel-pairs, we calculate the mutual information in each pixel-pair for finding the
spatially-dependent pixel-pairs.

In general environments, when the background regions are stable, the Gaussian
background model is suitable to segment foreground regions. However, when
background regions change, the model is unsuitable. To detect foreground regions
more accurately with respect to either changed or still background regions, we should
combine our propose model with Gaussian background model. To achieve this, some
heuristic rules should be created for deciding which model should be selected. This is
left for future studies.

To track a human, we decompose a human body into three parts, the head, torso,
and hip-leg, and use color-based particle filters to track the three parts separately. We
combined the appearance models of target object and background scene to calculate
the weight of each particle. To reduce the redundancy during calculating color
histograms in the overlapped regions of the particles, we have created a cumulative
histogram map for each frame. We have also proposed an SVM-based method to
detect the lost tracking part. In the tracking algorithm, we have used a particle filter
for tracking an individual part. Since the particle number affects the tracking

performance and tracking speed, we use entropy of particle weights to modify the
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particle number dynamically. To further improve the tracking accuracy, we have
designed a histogram equalization method for color histogram comparison. The
experimental results show that the three parts tracking algorithm can improve the
tracking accuracy significantly.

In this research, we assume that a human is standing up and the three body parts
can be segmented from top to bottom. If a human crouches down or lies down, the
body part decomposition may fail. Our experimental results show that in the case of
failure, the three parts will not be labeled correctly. However, the failure will be
adjusted after the target person stands up again, since we can detect the failure by
SVM. To improve the body part decomposition, we may train detectors for different
body parts. This is left for future research.

In our method, each of the three parts is tracked by a particle filter independently.
The relative positions of the body parts are used to detect the tracking failure. We can
reduce tracking failures by preventing the particles of abnormal poses to be generated.
To achieve the goal, we needs to combine the state vectors of the three parts into a
single vector to be tracked by a particle filter. Then the particle weights are adjusted
according to the relative positions of the body parts. Also the behaviors of intruders
defined on object appearances and the trajectories found will be analyzed. These are

all left for future research.
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