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電腦視覺為基礎之多部位人體追蹤系統設計 
研究生： 趙善隆 指導教授： 李錫堅 

 

國 立 交 通 大 學 資 訊 科 學 與 工 程 研 究 所 

摘   要 

本研究我們提出一個在錄影序列中之多部位的人體追蹤系統，首先我們利用一個背

景模型偵測並切割出錄影資料中之人體，由於背景影像通常成區塊變化，空間特性可用

來表示背景的外觀，為了要建立背景外觀的空間特性的模型，我們為成對的點上之組合

顏色建立混合高斯分布的模型。當人體被偵測及切割出來後，接著我們使用人體部位外

觀當作特徵並且使用粒子濾波器作為核心來追蹤此人體，我們採等化之顏色統計表當作

粒子濾波器中使用的外觀特徵以強化不同物體的鑑別率，為了建立可穩健區別目標物及

背景物體的追蹤器，我們同時使用目標的模型和背景模型來計算目標物的相似度，為了

對抗背景及目標物的外觀變化，背景模型及目標物模型都是可適應變化的。在一個粒子

濾波器中，當粒子數量很多時，特徵抽取的過程會有多餘的重複計算而沒有效率，為了

加速特徵抽取，我們為每張影像建立了數張累加的統計圖，每一個粒子的顏色統計表可

因此在常數時間中被計算出來。當追蹤人體的時候，我們會把人體切割為三個部位：頭、

軀幹、臀腳，這三個部位會分別被表示成為內縮的矩形並用粒子濾波器來追蹤，因為這

樣的處理，我們可以檢查這三個部位的一致性以減少可能的追蹤失敗，當追蹤過程中追

蹤狀態被更新後，我們會用支持向量機（SVM）來偵測追蹤錯誤並且判斷不正常的部位，

假如只有一個部位不正常，我們會校正這個不正常的部位並利用系統動態模型來追蹤此

部位，假如兩到三個部位不正常，我們就會從出此三個部位的預估位置重新初始化這三

個部位的追蹤。實驗結果顯示，我們提出的背景模型可以有效的偵測背景有改變時及物

體在原地移動時的移動物體區域，跟高斯背景模型和混合高斯背景模型比較，我們提出
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的方法可以抽取出更完整的移動物體區域。人體追蹤的實驗顯示出，我們提出的三部位

人體追蹤及錯誤校正可以正確持續追蹤 95%的人高達 105 個畫面，考慮人體部位追蹤，

我們提出的系統可以持續追蹤頭部、軀幹、臀腳這三個部位 105 個畫面的正確率分別高

達 95%、83%、91%，和整個人體視為一個部位的追蹤作比較，正確率提升 20%，這個結

果顯示出這個系統是一個有效的追蹤系統。 
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Abstract 

The study presents a multi-part human tracking system in video sequences. First, we 

detect and extract humans in a video according to a background model. Since background 

images usually change in blobs, spatial relations are used to represent background 

appearances. To model the spatial relations of background appearances, the joint colors of 

each pixel-pair are modeled as a mixture of Gaussian (MoG) distributions. After the human is 

detected and extracted, we then track body parts of the human by using appearances of these 

parts as the features and using particle filters as the tracking kernel. In the particle filter, we 

adopt color histograms as the appearance features and use a specific histogram mapping to 

enhance the discriminability between different objects. To form a robust tracker that can 

distinguish target objects from background objects that have color distribution similar to those 

of target objects, we calculate the target similarity from both the target object model and the 

background model. To handle the appearance variations of background and target objects, 

both the models of the background scene and the target object are adaptable. In a particle filter, 

when the number of particles is large, the feature extraction is repeated redundantly and 

inefficiently. To speed up feature extraction, we create a cumulative histogram map from each 

image. The color histograms of each particle can then be extracted in constant time. When 

tracking a human, we decompose the human body into three parts: head, torso, and hip-leg, 

represent them by three shrunk rectangles, and track them by particle filters. In this way we 

can reduce possible tracking failures by checking the consistency of states among these three 

parts. After the tracking states are updated, we use support vector machines (SVM) to detect 

tracking failures and abnormal body parts. If a single part is abnormal, we adjust its position 

and use the system dynamic model to track the abnormal one. If two or three parts are 

abnormal, we re-initialize the tracking process of the three parts around their predicted 
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positions. Experimental results show that the proposed background model can be used to 

efficiently detect the moving object regions when the background scene changes or the object 

moves around a region. By comparing with the Gaussian background model and the 

MoG-based model, the proposed method can extract object regions more completely. The 

experimental results of human tracking showed that the proposed three-part tracking system 

with failure detection and correction can track correctly about 95% persons until the 105th 

frame. With respect to the body parts, our system has about 95%, 83%, and 91% tracking 

rates for the head, torso, and hip-leg parts respectively until the 105th frame. The tracking rate 

of a human increases 20% comparing with that of the whole-body tracker. These rates show 

the effectiveness of the proposed system. 
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1. Introduction 

Human tracking is a fundamental and important step for many visual surveillance 

applications, such as security guard, patient care, and human-computer interaction. A human 

tracking system can be divided into two modules, human segmentation and human tracking. 

The human segmentation module detects and segments a person in a frame. After the person 

is detected and segmented, the human tracking module then locates the positions of the person 

in the following frames. 

1.1 Background Subtraction 

In an indoor environment, people are usually considered to be the only foreground 

objects, which are defined as ego-motion objects. If the images with only background objects 

can be captured in advance, the positions of a human can be detected by comparing the 

current image with the background images. However, background images vary when camera 

positions, background object positions, and illuminations change. Tracking objects in general 

environments will become very complicated. 

In many surveillance applications especially in indoor environments, camera positions 

are generally fixed. Illumination variations and background object motion may change the 

captured images significantly. Examples of the motions include placing a book on a desk and 

moving a chair to another position. The positions of the objects are usually changed by people 

or other external forces. After the motion stops, these objects remain in the same position for a 

certain period; these motions are usually not repeated. In an indoor environment, the 

illumination of objects is not affected by continuous light changes, such as sun rise, sun set, or 

weather changes. Ignoring these continuous changes, brightness variations such as turning 

lights on or off, as shown in Fig. 1.1, and opening a window are assumed to be abrupt. Several 
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researchers [1] assumed that brightness variations due to illumination changes are uniform. 

The right-hand side image in Fig. 1.1 shows the intensity differences after the lights were 

turned on. We observe that brightness variations in different pixels are not uniform. It is 

difficult to process this kind of variations. Several other researchers [1-4] assumed that 

illumination changes are not repeated like the motion of freely movable objects. However, 

light sources can be repeatedly turned on or off several times over a period of time. The 

appearance changes on the illuminated regions will also be repeated. 

To model the non-repeated background changes, we can use an online updating scheme 

to adapt to the background appearances in recently captured images [1-17]. When the 

appearances of a pixel repeatedly change, they can be modeled as a Mixture of Guassians 

(MoG) [9]. The online updating MoG model is useful for modeling rapidly repeated 

n‐th frame 

(n+1)‐th frame 

Fig. 1.1 Left column: two consecutive images in different illumination conditions.

Right image: intensity differences between the left two images. 
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background appearances such as waves on water surface, but does not works well in 

long-term repeated appearances such as door opening and closing. In consecutive images, the 

repeated appearances of background objects usually appear in blobs in fixed places, while the 

appearances of foreground objects usually change their places and do not form fixed blobs. In 

this study, we extend the MoG model by using the spatial relations among pixels to model the 

background appearances. 

The objective of our system is to extract moving object from a sequence of images. The 

system is divided into two modules: background modeling and foreground detection. The first 

module creates a background model to represent possible background appearances. The 

parameters of the model are learned and updated automatically from recently captured images. 

In the background model, the distributions of background features are assumed to be mixtures 

of Gaussians [9]. Since background appearances are changed in blobs, the features used in the 

MoG should be able to represent spatial relations in the blobs. To represent the spatial 

relations, we estimate the joint color distributions of pixel-pairs in a short distance. Since 

estimating the distributions of all pixel-pairs is costly and not all pixel-pairs provide enough 

information to model background, we first calculate the dependence of colors in each 

pixel-pair. A pixel-pair with a higher color dependency implies that the two pixels provide 

more information to represent the appearance changes in blobs. Highly dependent pixel-pairs 

are then selected to model the spatial relation of background. In the second module, the 

background model that has already been updated from recent images is used to calculate the 

background probability of each pixel of the current image. The probability is then used to 

decide whether the pixel belongs to the foreground or background. Connected foreground 

pixels are extracted to form foreground regions. 

1.2 Human Tracking 
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To track an object in a sequence of frames, we can model appearances of the object and 

then use the model to predict its position in the sequence. However, in a complex environment, 

detecting a target object using the appearance model in video sequences is not easy since the 

appearances of the object are variable due to occlusion, illumination variations, or orientation 

changes. In general, the movements of an object in consecutive frames are assumed smooth. 

Therefore, if we can locate the target object in several frames, the appearance model and 

movement model of the target object obtained from these frames can be used to track the 

object in the following frames. 

In this study, we aim to create the trajectory of a human and predict his positions for 

safeguarding, that is, to detect an intruder approaching a building or a designated place. Since 

a human is not a rigid object, his appearance might be greatly affected by his motion. We 

decomposed the human body into three parts: head, torso, and hip-leg, since the three parts 

usually have different appearances and can be distinguished as shown in Fig. 1.2. The images 

show that the colors of the head part contain mostly skin colors and hair colors, which are 

Fig. 1.2 Example of the three body parts used on tracking a person. The three body parts are

shrunk and the limbs are excluded to reduce the affection from human motion. 
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usually different from the colors of the other two parts. The colors of the torso and hip-leg 

parts consist mainly of those of the clothes, which may be similar, as shown in the fourth and 

fifth images of Fig. 1.2. To separate the three parts, we have to use other features such as 

height ratios. 

With respect to the features used, we adopted color histograms proposed by Perez et al. 

[18] and Nummiaro et al. [19] to model the appearances of the three body parts. In the 

initialization phase, we adopted the background subtraction method according to a Gaussian 

background model to extract a human and then extract the histograms of the body parts from 

the human region. We then tracked the humans by using their appearances as the features and 

tracked the three parts by particle filters to reduce possible failures due to appearance changes 

by checking the consistency of states among these three parts. Since the appearance model of 

each person in recent frames was usually unique and temporally context-dependent, the model 

can be used to distinguish different persons and track them independently. However, when 

modeling the color histogram in the whole color space, histogram matching was 

time-consuming due to the high dimensional features used. The method proposed by 

Nummiaro et al. [19] quantized the color histogram into an 8 8 8  or 8 8 4 

three-dimensional one. The method proposed by Perez et al. [18] modeled colors in HSV 

color space by two histograms. The intensity channel was modeled as a histogram and the 

other two channels as another two-dimensional histogram. The histograms were quantized 

into several bins to improve the speed and reduce the effect of noise. However, in these 

models, two objects with very few dissimilarities were not easily distinguished. In our 

research, we propose a specific histogram mapping for histogram feature extraction to 

improve the ability of discriminating the objects with similar color distributions. Since the 

camera in our system is fixed, the background scene can be assumed less changed in 

consecutive frames. To improve the discriminability between the target object and background 
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objects, we combined the adaptive background model with the adaptive color histogram 

model of the target object. 

When adopting the color histograms as the features used in a particle filter, we need to 

extract the histogram feature for each particle. It is generally very inefficient to extract the 

features for a large number of particles. In this research, we will create a cumulative 

histogram map (CHM) for each image to improve the efficiency of feature extraction. The 

cumulative histogram map is similar to the integral map that is popularly used for extracting 

Haar-Like features [20]. They will be modified to cumulate the histogram features of each 

sample state in constant time. 

For failure detection and adjustment, we will use a support vector machine (SVM) 

[21,22] to distinguish abnormally and normally tracked body parts. The position of an 

abnormal body part will be adjusted according to its relative positions with the other body 

parts. If a single part was abnormal, we adjusted its position and used the system dynamic 

model to track the abnormal one. If two or three parts were abnormal, we re-initialized the 

tracking process of the three parts around their predicted positions. Next, we detect whether 

the failure is caused by occlusion or similar appearances. For the latter case, we will estimate 

Fig. 1.3 The system flow diagram of the three-part human tracker. 
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the appearance model from the adjusted rectangle of the body parts; else, the appearance 

model is kept unmodified. The flow diagram of our tracking system is depicted in Fig. 1.3. It 

includes four major modules: initialization, particle-filter-based tracking, abnormal body part 

detection, and state correction. 

1.3   Organization of This Dissertation 

The rest of this dissertation is organized as follows. Chapter 2 is a review of related 

research. Chapter 3 describes the proposed spatially-extended background model. Chapter 4 

describes the particle weight measurement and the cumulative histogram map used to improve 

the calculation speed. Chapter 5 describes the three-part human tracking and consistency 

checking for failure adjustment. Chapter 6 gives experimental results and their analysis. 

Finally, Chapter 7 presents the conclusions and future works. 
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2. Related Works 

2.1 Background Subtraction 

A background model in a surveillance system represents background objects. 

The method that compares the current processed image with the background 

representation to determine foreground regions is called background subtraction. If 

the background is unchanged but affected by Gaussian noise, the colors of the 

background pixels can be modeled as a Gaussian distribution with mean vector (µ) 

and covariance matrix (Σ) [1-8]. Background subtraction is then performed by 

calculating the probability of each pixel in the current image belonging to the 

Gaussian model. 

Since background appearances may be affected by external forces, modeling a 

pixel with a Gaussian distribution may misclassify some background pixels as 

foreground ones. In many cases, the background may change repeatedly. A 

background pixel with repeated changes can be divided into several background 

constituents and modeled as an MoG distribution [9-13]. For each background 

constituent in a pixel, the means ( ), covariances (Σ ), and weights ( ) of the i-th 

constituent ( ) have to be estimated. If there are K background constituents, the 

parameters of the background model can be represented as , Σ , |1  In 

order to decide whether a sample point X belongs to the background B, the conditional 

probability |  is calculated as follows: 

| | ; , Σ .  (2.1)
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where η represents a Gaussian probability density function, 

; , Σ
1

2 / |Σ | / . (2.2)

The motion of some background objects may not be repeated. After the motion, 

the objects remain in the same position for a period. To model the background 

changes, researchers have proposed methods for online updating of the parameters of 

background models [1-17]. The mean vector and covariance matrix in time t are 

represented as  and Σ , respectively. The updating rules are formulated as follows: 

1 , (2.3)

Σ 1 Σ , (2.4)

where ρ is used to control the updating rate. To integrate the updating method into an 

MoG model, Stauffer and Grimson [9] proposed a method to update the mean vector 

and covariance matrix of a background constituent to match those of  in Eqs.(2.3) 

and (2.4). The weight ,  of the i-th background constituent is updated as follows: 

, 1 , , , (2.5)

where ,  is an indicator function, whose value is one if the i-th background 

constituent matches  and zero otherwise, and α is a constant used to control the 

updating rate of the weights. In Stauffer and Grimson's method [9], the updating rate ρ 

for the parameters of the i-th constituent (Gaussian distribution) is calculated 

according to α and ; , Σ . 

To make background models more robust, researchers tried to modify updating 

rules or adopt different features [10-13]. In adaptive background models, background 

objects are assumed to appear more frequently than foreground ones. However, the 



 

10 

 

assumption is not always satisfied. If the appearances of a background pixel appear 

less frequently than those of foreground objects, the background pixel is probably 

misclassified as a foreground object. Taking the following case as an example, assume 

a room is monitored by a fixed camera and the background objects in the room 

include a door and a wall as shown in Fig. 2.1(a). People may enter the room, and 

close or open the door. If a person wears a suit of clothes of single color and walks 

person 

(a) 

(b) 

(t + 1)-th frame (t + 2)-th frame (t + 30)-th frame 

Possible colors Weights after 30 
frames and α=0.01 

( )30
,130,1 01.01−=+ tt ww

( )30
,230,2 01.01−=+ tt ww

( )tt

ttt

ww
www

,2,1

30,230,130,3

74.01
1

+−≈

−−= +++

door 
knob

clothes 

(c) 

Fig. 2.1 An example of a slowly moving person. (a) Sketches of two possible

background scenes. Left: door closed; Right: door opened. (b) Consecutive frames of

a person moving from left to right. (c) Possible colors and their weights of the

rectangle region shown in the left image. 
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slowly across the room as shown in Fig. 2.1(b), the major color of the clothes may be 

captured repeatedly in a certain position among several consecutive images. Assume 

that the person moves from left to right in 30 frames. If the updating rate α in Eq.(2.5) 

is set as 0.01, the weight of the repeatedly captured color of the clothes in the images 

will increase from 0 to 0.26, as shown in Fig. 2.1(c). This large weight may cause the 

clothes to be labeled as the background, when the MoG model in Eq.(6.2) is used. 

Using a small updating rate can overcome this problem; however, the background 

model will be updated very slowly and may fail to learn background changes. 

In another situation, the color of the person's clothes is assumed to be the same 

as that of the door, as illustrated in Fig. 2.2(a). If the person enters the room and 

passes through the door, the region of clothes may be labeled as background due to 

the similarity of colors. However, after the door is opened, the current background 

color is not similar to the clothes color as shown in Fig. 2.2(b). The clothes may still 

be labeled as the background, since they are very similar to possible background 

colors been estimated. 

In these two situations, we observe that modeling each pixel independently 

(a) (b)

Fig. 2.2 Sketches of a person whose clothes colors are similar to the door color in

front of different background scenes: (a) scene when the door is closed and (b) scene

when the door is opened. 
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cannot sufficiently represent the similarity among different object appearances caused 

by either object motion or illumination changes. Most researchers regarded the 

variations caused by object motion as foreground changes and attempted to eliminate 

the effect caused by illumination. In consecutive images, when the illumination 

changes, the pixels of an object are usually changed simultaneously. In order to model 

background objects, the pixels at different positions should be considered together. To 

represent the relation among the pixels, Durucan and Ebrahimi [14] proposed to 

model the colors of a region as vectors. They segmented the foreground regions by 

calculating the linear dependence between the vectors of the current image and those 

of the background model. However, it is expensive to represent the dependence 

between vectors in terms of storage and speed. To reduce the cost, the vector of a 

region should be reduced to a lower dimensional feature. Li et al. [15,16] used 

two-dimensional gradient vectors as the features of local spatial relations among 

neighboring pixels. In their proposed method, the appearance variations caused by 

illumination changes can be distinguished from object motion. However, the gradient 

features cannot be used to extract the foreground region that has a uniform color. To 

model the relation among pixels, we need to use the relations among near pixels to 

reduce time and storage consumption, and then extend the relations into a more global 

form. 

The methods based on the Markov random field (MRF) are well known for 

extending the neighboring relations among pixels into a more global form. Image 

segmentation methods based on MRF [17,23] assume that most pixels belonging to 

the same object have the same label and these pixels form a group in an image. The 

MRF combines colors among a clique of pixels in a neighboring system and uses an 

energy function to measure the color consistency. Then, the maximum a posterior 
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estimation method is used to minimize the energy for all the cliques to find the 

optimal labels. In the MRF-based methods, the final segmentation results are strongly 

dependent on the energy functions of the labels in different cliques. If a high energy is 

assigned to the clique with unique labels, the extracted foreground regions will 

become more complete than those of the pixel-wise background models. An 

additional noise removal process is not required. However, when several pixels are 

mis-labeled, these errors will propagate into neighboring pixels. The error propagation 

will cause more pixels to be mis-labeled. In this research, we directly estimate the 

relations among pixels instead of the labels, and therefore the errors will not easily 

propagate. 

2.2 Human Tracking 

In the last few decades, tracking objects or humans in video sequences has 

received much attention. Much research about the topic has been proposed and been 

reviewed in several survey papers [24-28]. Moeslund et al. [24] divided a general 

human tracking algorithm into two main phases: figure-ground segmentation and 

temporal correspondences. The former finds the target human in an image, and the 

latter associates the detected humans in consecutive frames to create temporal 

trajectories. In the following, related work about these two phases will first be 

addressed. The methods for segmenting human bodies and correcting tracking failures 

will then be described. 

The methods of figure-ground segmentation can be classified into five categories 

according to the used features. These categories include background subtraction [6,9], 

motion-based segmentation [29], depth-based segmentation [30], appearance-based 

segmentation [18,19,21,31,32], and shape-based segmentation [2,33]. Background 
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subtraction and motion-based segmentation methods find the differences between 

images to extract the target. The two approaches assume that only one target object 

moves in a specific region and the appearances of background objects in consecutive 

images do not change. However, the assumptions usually cannot be met in general 

environments. To achieve better segmentation results for tracking, further checks are 

needed. The depth-based segmentation approach uses the positions of the target in 

three-dimensional space or in the ground plane to segment the target. However, to 

locate such kind of positions, specific hardware (such as multiple cameras) or 

additional calculations (such as inverse perspective transform) are needed. The 

appearance-based segmentation approach became popular recently, since the approach 

is usually simple and fast. The approaches of shape-based and appearance-based 

segmentation are similar except that the former does not use the color content inside 

the object. Since the appearances of a tracking target may change with time, several 

researchers proposed methods to model and update the appearance model of the target 

person dynamically in consecutive images [19,32]. Since the target is a moving object, 

some researchers tried to segment the target by a background subtraction method 

[6,9,34]. Shan et al. [34] modeled the colors of the target object as the appearance 

feature and then use the color cue to calculate a color probability distribution map 

from the current image. The color probability distribution map was combined with the 

background subtracted image using a logical AND operation to detect the target 

position. Other researchers used classifiers such as SVM [21] and Adaboost [31] to 

model the appearance of target objects. 

In the tracking phase, temporal correspondence aims to predict and update the 

states of the target person from the measurement and predicted state, where the 

measurement is detected by figure-ground segmentation and the predicted state is 
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calculated using the system dynamic model. To find the temporal correspondences, 

Polat et al. [35] used MHT (Multiple Hypothesis Tracker) to construct hypotheses 

representing all the predictions and measurements. The most likely hypothesis is 

chosen as the target. To combine the predictions and measurements, Kalman filtering 

is another well-known method and has already been applied in many studies [3,9,36]. 

The Kalman-filter-based approaches are commonly used for tracking a target whose 

system dynamic model can be represented as a linear function and the noise as a 

Gaussian. In non-linear systems, extended Kalman filters that approximate the 

non-linear dynamic model by Taylor series have been applied [37]. Recently, particle 

filters have been proposed to construct a robust tracking framework that are neither 

limited to linear dynamic model nor Gaussian distributed noise [19,38,39]. The 

method represents the state of a target object by a set of samples (particles) with 

weights. The weight of a sample is calculated by the figure-ground segmentation and 

the samples are generated by the importance sampling method so that the samples can 

represent the probability distributions of the target object's appearances. We adopt the 

particle filter in our system, since they can be applied in an appearance-based tracking 

system very effectively. 

A human is not a rigid object and his appearance changes irregularly. 

Segmentation of human body parts in an image has already been proposed in several 

papers [40-43]. Forsyth and Fleck [40] introduced the notion of 'body plans' to 

represent a human or an animal as a structured assembly of body parts learnt from 

images. Shashua et al. [41] divided a human body into nine regions, for each of which 

a classifier was learnt based on features of orientation histograms. Mikolajczyk et al. 

[42] divided a human body into seven parts. For each part, a detector was learnt by 

following the Viola-Jones approach applied to scale invariant orientation-based 
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features. Ioffe and Forsyth [43] decomposed the human body into nine distinctive 

segments. The method finds a person by constructing assemblies of body segments. 

The segments were consistent with the constraints on the appearance of a person that 

result from kinematic properties. These body-parts-based human segmentation 

methods usually focused on detecting humans in a static image. Recently, 

body-parts-based human tracking in consecutive images has been proposed 

[21,31,44-47]. Parts of these studies focused on precise decomposition of body parts 

for motion type or pose analysis. However, in general environments, it is difficult to 

decompose precisely body parts due to self occlusions and complex background 

scenes. The studies in [21,47] proposed a detection-based tracking model to solve the 

occlusion problem. They detected body parts by a pretrained model, and then tried to 

associate the detected body parts to a target person by smoothing his trajectory. 

However, when multiple humans appeared in a frame, the detection model could not 

differentiate the body parts of the different persons. The spatial positions and 

velocities were the only cues, which can be used to find the temporal correspondences 

of different persons. 

When a person is tracked in consecutive frames, the figure-ground segmentation 

may fail, since the person may be occluded or other objects may have similar 

appearances with the target person. The first problem can be classified into occluded 

by other persons and occluded by background objects. To cope with the problem of 

inter-person occlusion, several researchers proposed to detect occlusion events and 

then used the system dynamics to estimate the position of the occluded person [48,49]. 

Using similar methods to predict the occlusion of background objects, one needs to 

create background object models. However, it is difficult to model all background 

objects in a complex environment. Several researchers tried to cope with the 
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occlusion problems by tracking different body parts of a person simultaneously 

[21,47,48]. When a body part is occluded, the position of the person can still be 

tracked based on the other parts. Mohan et al. [21] extracted a human body by 

detecting four parts: the head, legs, left arm, and right arm, by four distinct quadratic 

support vector machines. After geometric constraints among these parts are confirmed, 

another support vector machine is used to classify the combination of the four parts as 

either a human or a non-human. Wu and Nevatia [47] used four detectors to detect 

head-shoulder, torso, legs, and full-body. The detectors were learnt by a boosting 

approach using edgelet features. They used a strong classifier to classify the body 

parts in images. When we track multiple humans, the classifier cannot be used to 

distinguish different persons, and their trajectories will easily be confused if no other 

approaches are adopted. Lerdsudwichai et al. [48] proposed a method to model the 

face and clothes in the initialization phase. To identify different persons, they used 

clothes colors. However, the appearance of a person may change when the person 

presents different poses or is affected by different illuminations. The appearances 

captured in the initialization phase cannot be applied to track the person in other 

frames. In our research, we use an adaptive appearance model to track the body parts, 

even when multiple persons are tracked. 

Apart from the occlusion events, a tracker may lose the tracking target when 

other objects have similar appearances. In general, a robust appearance model can be 

used to reduce the tracking failures, or the system dynamic model of the target person 

can be used to predict his position. However, the robust appearance model may be too 

complex to maintain efficiently. We will use the system dynamic model of the target 

person to track him, when a tracking failure is detected. To detect the tracking failure, 

Dockstader and Imennov [36] proposed a method that uses a structural model to 
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represent a person and a hidden Markov model (HMM) to describe the temporal 

characteristics of the tracking failure. In the tracking phase, the HMM was used to 

predict the tracking failures. Since a person may change his velocity, the predicted 

position of the person using the system dynamic model is too rough. A fine tune for 

the target person is needed. 
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3. A Spatially‐Extended Background Model 

In the initialization step of a tracking system, the human region in a image needs 

to be segmented for tracking. To segment the human region, we create a background 

model and update it using recent background variations. Since background images are 

usually changed in blobs, spatial relations are used to represent background 

appearances, which may be affected drastically by illumination changes and 

background object motion. To model the spatial relations, the joint colors of each 

pixel-pair are modeled as a mixture of Gaussian (MoG) distributions. Since modeling 

the colors of all pixel-pairs is expensive, the colors of pixel-pairs in a short distance 

are modeled. The pixel-pairs with higher mutual information are selected to represent 

the spatial relations in the background model. Experimental results show that the 

proposed method can efficiently detect the moving object regions when the 

background scene changes or the object moves around a region. By comparing with 

Gaussian background model and the MoG-based model, the proposed method can 

extract object regions more completely. 

3.1 Joint Background Model 

In a sequence of images, colors will change in blobs instead of individual pixels 

due to illumination changes or object motion. This paper proposes to utilize the 

relations among pixels to represent the changes in blobs. The relations are formulated 

as a spatially-extended background model, which is then used to classify the pixels 

into either foreground or background. 

3.1.1 Spatial Relation in Images 
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Using pixel-wise features, if the color of a foreground pixel is similar to those of 

the background, the pixel may be misclassified as background. If we can estimate the 

distributions of color combinations for the pixels in blobs, the foreground objects can 

be classified more precisely. Suppose there is a red door in a room and the appearance 

outside the door is white. When a person wearing a suit of interlaced red and white 

stripes passes through the door, parts of the suit may be misclassified as background 

when the colors of the pixels are modeled independently. Nevertheless, if we model 

the background appearances among pixels using joint multi-variate color distributions, 

the interlaced red and white stripes can be classified as foreground using the method 

introduced later. However, estimating the multi-variate distributions for all pixel-pairs 

is still costly since the number of pixel combinations may be very large. In this 

research, we will estimate the color distributions of joint random vectors in closed 

pixel-pairs. 

As stated in Sec. 2.1, illumination changes and background object motions may 

change background appearances. Since the changes are complex, it is difficult to 

collect enough training samples for all the possible changes. In this paper, we modify 

Eqs. (2.3) and (2.4) for updating the color distributions of pixel-pairs to adapt to the 

appearances that have not been trained, to be described in Sec. 3.1.3. 

3.1.2 Calculation of Background Probabilities 

Assume that we have already estimated the color distributions of all background 

pixel-pairs. In this research, we decide whether pixel  belongs to foreground 

according to its color and the color combinations of pixel-pairs , , where A 

denotes a set of pixels associated with . 

Suppose that a sequence of pixels , , … ,  has a corresponding color 

sequence , , … , . The probability of pixel  belonging to background can be 
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represented as | , , … , , where the sequence 

, , … ,  denotes the joint random variable of the colors for the sequence 

, , … , , and  represents the event that pixel a0 belongs to the background. 

Assuming that , , … ,  are conditionally independent, based on the naive Bayes' 

rule, the probability | , , … ,  can be computed as the 

product of n pair-wise probabilities: 

| , , … ,  

| ,  . 
(3.1)

When estimating the background probabilities from above equation, we face two 

problems. The first one is the estimation and updating of the probability distributions 

| , , , and . The distribution | , a pixel-wise background 

color distribution, is regarded as an MoG and can be calculated from Eq.(6.2), whose 

parameters are estimated and updated by using Eqs. (2.3), (2.4) and(2.5). It is tedious 

to estimate and update the bivariate probability distribution , , since the 

number of possible color combinations in  and  is large. We will simplify the 

estimation and updating by combining the MoGs of pixels to form the joint random 

vector distributions of pixel-pairs. The second problem is the cost of modeling 

pixel-pairs. To model all pixel-pairs, the number of pixel-pairs is , 

where W and H are the width and height of the images, respectively. We reduce the 

complexity by only modeling the pixel-pairs that can provide sufficient information to 

represent spatial relations as described in Sec. 3.2. 
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3.1.3 Estimation of Bivariate Color Distributions 

As mentioned before, the color distributions of pixel-pairs should be updated to 

adapt to the background changes. If we assume the color distributions in a pixel-pair 
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Fig. 3.1 Color samples of three pixels in 1000 frames. (a) A sample image and the

colors in three pixels in a time period. (b) Scatter plots of the pixels in the spaces

(r(x2), r(x3)) and (r(x2), r(x1)), and probability distributions of r(x1), r(x2), and r(x3).
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,  to be independent, the joint probability ,  can be regarded as 

. Assuming the color distributions are a mixture of Gaussians, the 

background colors of the two pixels  and  form several background 

constituents, which can be represented as Gaussian distributions 

, 1  and , 1 , respectively. 

The weights in both distributions are denoted as 1    and 

1   . When the independence is satisfied, the joint color of the 

pixel pair ,  forms  background joint constituents, and the joint color 

distributions of the constituents are combinations of G  and G , denoted as 

G={   , , ,  |1 , 1 ,  , , ,    , is the 

covatiance matrix}. The weights of the joint constituents are W w |1

, 1 . Since the parameters of G1 and G2 can be estimated from Eqs. 

(2.3), (2.4) and (2.5), the parameters (G, W) of the bi-variate MoG ,  can be 

calculated easily. 

In our background model, since the dependence between the colors of two pixels 

is used to model the spatial relations, the colors cannot be assumed independent. To 

estimate the parameter of a bi-variate MoG , , we first examine the example 

depicted in Fig. 3.1. This figure shows the colors of three pixels , , and  

collected from 1000 consecutive images, where  and  belong to the same 

object but a3 does not. The right-hand side image of Fig. 3.1 (a) shows the histograms 

of the colors in , , and  in a time period of the sample image in the left. From 

the histograms, we observe that the colors of a1 and a2 usually change simultaneously 

and their values are dependent. The two scatter plots of Fig. 3.1 (b) from top to 

bottom are the scatters of ,  and , , where  denote 

the red values of the color random variable . The projection profiles from the top to 
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bottom are the probability distributions of , , and . Each probability 

distribution forms several clusters and each cluster is regarded as a background 

constituent. As shown in the scatter plots, several combinations of background 

constituents in a pixel-pair form joint background constituents. When the probability 

distributions of a pixel-pair ,  are regarded as bi-variate MoGs, the probability 

function ,  is formulated as follows: 

,   , , , , , , .  (3.2)

In the equation, the color vector ,  is the joint color vector of colors  and 

, and the mean ,  is the vector , , where  and  can be 

estimated from the background updating in Eq.(2.3). The covariance matrix Σ ,  is 

estimated with respect to the mean ,  as 

Σ , 1 , , Σ , , , , , , , ,  (3.3)

where the ,   and ,  are the joint color vector and joint mean vector in the 

pixel-pair , , respectively. In the equation, if a joint vector of colors is matched 

with a joint constituent, the covariance matrix of the joint constituent should be 

updated as follows: 

, ,
,       

if , , , , Σ , and

, argmin , , , , Σ ,

0,                   otherwise

,  (3.4)

where  is a constant to control the updating rate, and , , , , Σ ,  is a 

distance function between the joint color vector ,  and joint mean vector , . 

The process of determining the minimal distance , , , , Σ ,  for all 



 

25 

 

pairs of ,  is termed a matching process. In our experiments, the Mahalanobis 

distance is selected as the distance function. If a joint color vector ,  does not match 

with any Gaussian distribution, a new Gaussian distribution is created and its mean is 

set as , . The weight of the new bi-variate distribution is initialized to zero. 

The weight of a joint constituent in a pixel-pair is measured as the frequency of 

colors in the pixel-pair in past frames matched with the joint Gaussian distribution of 

the constituent, similar to Eq.(2.5). The updating rule of the weights is defined as 

, 1 , , , , , , (3.5)

, , , , Σ , , Σ , (3.6)

where  is a constant used to control the updating speed. Thus far, all the 

parameters used for estimating the joint color probability in Eq. (3.2) are ready and 

the background probabilities of Eq. (3.1) can be estimated from a set of color joint 

probabilities in a set of pixel-pairs. 

Note that, during the background model estimate on, the weight ,  is not set 

as the product of  and . In other words, the constituents in the two pixels are 

not independent, and their relations are represented by the weights of the joint 

constituents. The relations in our model can be used to improve the accuracy of 

foreground detection. For example, in Fig. 3.1(b), the weight of joint constituents in 

 is approximately zero, since no pixels match with the constituents; that is, the two 

constituents belonging to pixels and  in  usually do not appear 

simultaneously. However, when the joint colors in pixel-pair ,   match one of 

the joint constituents in , the pixel-pair ,  is classified as foreground. 
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3.2 Saptially‐Dependent Pixel‐Pairs Selection 

The joint colors in pixel-pairs are used to represent the spatial relations of a 

background model. In a scene, not all pixel-pairs contain sufficient spatial relations. 

Modeling the unrelated pixel-pairs is useless for foreground detection. To reduce the 

computation cost, we will find the pixel-pairs with higher dependence. 

The colors of two pixels with high dependence will form compact clusters in the 

scatter plots as shown in Fig. 3.1(b). The compactness of a bi-variate distribution is 

measured from mutual information [50]. The mutual information ,  for colors 

 and  is defined as 

, , log
,

     
   

.
(3.7)

Here, , , and ,  can be computed from Eqs. (2.1) and (3.2). To 

reduce the cost of calculating the probabilities for all possible colors, the probability 

,  can be replaced by the weights estimated from Eq. (3.5). The mutual 

information ,  in Eq. (6.2) can thus be reformulated as follows: 

, , log
, ∑ ∑ ,

∑ , ∑ ,
 .  (3.8)

The pixel pair ,  with higher mutual information ,    is selected to 

model spatial relations of the background model. 
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4. A Particle Filter with Discriminability 

Improved Histogram Model 

A tracking algorithm is usually composed of two procedures: prediction and 

update. In the prediction procedure, the system dynamic model of the target is used to 

predict the current state of the target from previous states. In the update procedure, 

current observations are used to adjust the predicted state of the target. Particle filters 

are used to track the state of a target object approximated by a set of discrete samples 

with associated weights. In our research, we adopt the color-based particle filter 

proposed by Nummiar et al. [19] to track the targets. In the following, we will explain 

the algorithm of the particle filter and our modifications. 

4.1 Particle Filter 

In a particle filter, a target object is tracked by a set of weighted sample states 

(particles). In the prediction procedure, the samples are propagated into the next step 

according to the system dynamic model. The update procedure can be divided into 

two steps: particle weighting and particle selection. In the first step, the weight of a 

sample is calculated according to the target model, which models the observations of 

a target object and can be used to calculate the probability of a sample belonging to 

the target. In the second step, the Monte-Carlo method is used to re-sample the 

particles. 

4.1.1 Prediction 

When a target in consecutive images is tracked, the state parameters are usually 
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defined by the position, size, and motion of the target. In this application, the target 

objects are represented by several bounding rectangles. Each state is described as a 

vector , , , , , , where ,  represents the center of the rectangle, 

,  the size of the rectangle, and ,  the velocity of the center. 

In the initialization stage, all particles tracking the same body part are assigned 

the same rectangle position and size, but different velocities. The position and size of 

a target are determined by the human segmentation process, to be described in Sec. 

5.1 and Sec. 5.2. The initial velocities of each particle are randomly selected, because 

we do not know where the target is moving toward and how fast it moves in the 

human segmentation step. 

If the target moves smoothly in a scene, the system dynamic model can be 

defined as a motion with a constant velocity in a short time period. The model is 

defined as: 

, (4.1)

where A defines the deterministic component of the model, and W the noise. In 

general, the velocity and size of a target object do not vary greatly between two 

consecutive images. Therefore, in the system dynamic model, the size and velocity of 

the target object modeled by the deterministic component A are fixed. In the tracker, 

the slowly changed velocity and size can be adjusted by the noise part W, which is 

defined as a Gaussian vector. In this study, we define formally the matrix A and vector 

W as: 
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1 0 0 0 Δ 0
0 1 0 0 0 Δ  
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

,  (4.2)

    . (4.3) 

The component  of the noise vector W is a zero-mean Gaussian random 

variable 0, . The variances , , , , ,  of the components are set 

to {10, 10, 2, 2, 2, 2}, according to our experimental results. 

4.1.2 Particle Weighting 

In the update procedure, we will convert the state of each particle into feature 

values. Then the feature values will be compared with those of the target object to 

calculate the similarity  between them as the weight of the particle. 

Each particle is composed of a state vector and a weight. The set of particles is 

defined as: 

, | 1… . (4.4)

According to these weights , the estimated state of the target object can be 

determined from the expectation of S  at each time step, that is,  

.  (4.5)

The weight of a particle in state  is computed as: 

. (4.6)

where  denotes the appearance feature vector of the n-th particle at time t, and w 

a normalization factor, 
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1

∑
, (4.7)

which ensures that ∑ π 1. The detail of the feature extraction and similarity 

measurement will be described in Sec. 4.2. 

4.1.3 Particle Selection 

After we track the target for several frames, the weights may concentrate on a 

small number of particles. In the extreme case, the weight of a single particle may 

approximate to one and the others to zero. In that case, the particle filter will only be 

related to the system dynamic model. The particles should be resampled when the 

weights are concentrated on a small number of particles. The sequential importance 

sampling (SIS) algorithm draws new particles  at time t from the particles  

at time t-1 according to . The function  maps the selected 

particles. To create the mapping, we first create an accumulated histogram of the 

weights of old particles as follows: 

1 1
0

. (4.8)

Then we generate N uniformly distributed random numbers u 1 . The 

mapping  is then defined as 

          when . (4.9)
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4.2 Target Object Similarity 

To calculate the weight of each particle, the probability of a particle belonging to 

the tracking target should be calculated. Considering the captured video of a fixed 

camera, the tracking targets are usually the moving objects in the scene. If only a 

target object moves in the scene, we can model the background image and extract the 

target object by subtracting the background image from the current frame. However, 

Fig. 4.2 A sample image and the histogram of the Cr channel in the two rectangles

(head and background). 

 

(a) (b)

Fig. 4.2 The two histograms of the Cr channel in Fig. 4.2 quantized into eight bins.

(a) Uniform mapping. (b) Equalized mapping. 
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when multiple target objects are tracked, background subtraction is not enough to 

distinguish them. To distinguish different targets, Pérez et al. [18] introduced a target 

appearance model using color histograms, since the color histogram is robust against 

non-rigidity. When the target is moving, his appearance may change due to the 

variations of poses or illumination. If the target appearance changes, the appearance 

may fail to detect the target, but the background model can be used. Therefore, in our 

study, we integrate the similarities of a particle from both background model and 

target appearance model to form a robust tracking system. 

4.2.1 Specific Histogram Mapping 

In our application, we aim to track a human in consecutive color images. The 

color histogram model [19] is robust against partial occlusion, non-rigidity, and 

rotation. However, in our application, the region of a tracking target may be small. To 

track the object in small regions, the histogram may be sparse and not sufficient to 

represent the color distribution of the region. For instance, if the number of bins is set 

as 8 8 8 and the region in image is 32 32, the expected number of pixels in 

each bin is only two, which is insufficient to represent the color distribution. To 

represent the color distribution, we model the histogram in color channel 

independently. Here, we select YCbCr as the color space, since the three channels are 

assumed independent. We divide the values in each channel into eight bins 

respectively. The expected number of pixels in each bin is 128, which can represent 

the color distribution more sufficiently. Another benefit of the modification is the 

computational efficiency when we compare the histograms between a particle and the 

target object, because the total number of bins is reduced to 24. 

To represent the color histogram in several bins, another important task is how to 

map from a range of colors in the histogram to a bin. If the range is equally quantized 
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for each bin and the histogram is compact, all pixels may fall into a small number of 

bins. In our cases, two different histograms cannot easily be distinguished. Fig. 4.2 

shows two histograms of the Cr channel in the face region of a person and a 

background region, whose histograms are very different. When the ranges are equally 

divided into eight bins as shown in Fig. 4.2, the color distributions of the two regions 

will be very similar. To cope with the problem, we first choose one histogram H as the 

reference one for histogram equalization. The equalization can be denoted as 

, where .  is a function that equalizes the reference histogram H into 

an equalized histogram z, which is represented as a vector. The function .  is then 

applied to another histogram H' to form a feature vector . Based on the 

mapping, we can prevent the pixels from falling into the same bins for two slightly 

different color distributions. Fig. 4.2 shows the quantized bins of the face region and 

background regions by selecting the face region as a reference one. In the figure, we 

can easily find that the two quantized histograms are different, especially in the third 

bin.  

4.2.2 Target Appearance Model 

We model the histogram in each of the three color channels in the color space 

YCbCr, since the three channels are assumed independent. We divide the values in 

each channel into eight bins. In the initialization phrase, the color histogram is 

extracted from the image of the target object. Since the target object is moving, its 

appearance may change gradually. To adapt to the changes, the histogram model is 

updated as follows: 

1 , (4.10)

where  and  are the histogram models at time t+1 and t,  is the histogram 
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directly extracted from the estimated state at time t, and  is a constant used to 

control the updating speed. In a frame, the region of a particle state whose color 

histogram is similar to that of the target object should have a higher probability 

belonging to the target object. 

4.2.3 Background Appearance Model 

To check whether a particle state is located in the position of a moving object, we 

also check the differences between the current frame and the background scene. Here, 

we adopt a Gaussian background model [3] to extract the background image. In 

general, the background appearances may change due to background object moving or 

illumination change. To adapt to the change, the background model is updated as 

, , 1 , , (4.11)

where ,  and ,  are the color vectors in pixel ,  of the background 

image and frame image in time t respectively. To detect the foreground object, the 

currently processed image can subtract with the background image. However, the 

pixel-wise background subtraction is sensitive to background variations such as 

variation of illumination or vibration of leaves. Since the background variation is not 

greatly affect the color distributions in a region, we extract the color histograms in the 

positions of particle states as the background features. In a frame, the region of a 

particle state whose color histogram is similar to that of the background image should 

have a lower probability belonging to the target object. 

 

4.2.4 Similarity Measurement 

The appearance of the particle that belonging to target object should be similar to 

target appearance model but different from the background appearance. As described 
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above, we can model the target color histogram and map it into N bins according to 

the mapping function .  defined in Sec. 4.2.1, labeled as . We can also extract 

the background color histogram from the adaptive background model in the region of 

a particle and map it into N bins, labeled as . To measure the probability of a 

particle  belonging to the target object, we extract the color histograms of 

particle from current processed image and map it into N bins, labeled as . A 

particle state  with a higher probability belonging to the target object has the 

property that the distance between  and  must be small, and between  

and  must be high. Therefore, the probability used in Eq. (4.6) can be formulated 

as 

(a) (b) (c) 

(d) (e) (f) 

Fig. 4.3 An example of the similarity measurement by using the color histograms of

target person and background image. (a) Image of a tracking target person, (b) Image

of a tracking frame, (c) Background image, (d) Target appearance similarity map of

the tracking frame, (e) Background appearance similarity map of the tracking frame,

(f) The similarity map by combining background and target appearance models. 
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1

2 |Σ|
, , , (4.12)

, , .  (4.13)

Fig. 4.3(d) shows the similarity map of Fig. 4.3(b) comparing with the target 

appearance model extracted from the person region of Fig. 4.3(a). Fig. 4.3(e) shows 

the similarity map of Fig. 4.3(b) comparing with the background appearance model 

extracted from Fig. 4.3(c). Fig. 4.3(f) shows the combines of the two similarity 

according to Eqs. (4.12) and (6.2). In the similarity map, the gray scale of a pixel 

represents the similarity of a region with the same size of the person region in Fig. 

4.3(a) centered in the pixel. In Fig. 4.3(f), we can observe that the region of the target 

person in Fig. 4.3(b) has largest similarity. 

Note that, in a particle filter, the measurement affects the selection of particles in 

the resampling step. The motion of the selected particles in the next frame is 

determined by the system dynamic model defined in Eq. (4.1). The noise W in the 

system dynamic model affects the distribution of the particles. Since we assume that 

the noise W is a Gaussian distribution, the distribution of particles forms a mixture of 

Gaussians in the state space. The set of Gaussian distributed particles will be placed in 

each important part of the state space, which will next be resampled according to the 

weights calculated from the measurements. All the selection and generation of 

particles are the characteristics of the particle filter. 

4.3 Cumulative Histogram Map 

When we track a target object in images, a set of particles should be used in the 
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tracker and the color histograms of the current frame and background image in the 

positions of these particles must be extracted. It is time-consuming to extract a large 

number of color histograms in an image. Since most of the regions of these particles 

are overlapped, many redundant calculations are spent for estimating the colors in the 

pixels of the overlapped regions. To reduce the redundancy, we create a cumulative 

histogram map (CHM) for the processing frame and background image. Then we can 

extract the color histogram feature for each particle in a constant time. 

The CHM is similar to the integral map popularly used for extracting Haar-Like 

feature [20]. The map is created to cumulate the color histograms. In a region 

, | , , the color histogram of a color channel can be 

calculated as 

,
,

, (4.14)

where .  is the Kronecker delta function, and  is the set of colors that map into 

i-th bin. According to the equation, we can define the CHM for an image as 

CHM , , ,
,

. (4.15)

The CHM can be calculated recursively as 

CHM , , CHM , 1, CHM 1, ,

                                     CHM 1, 1, , . 
(4.16)

When we obtain the CHMs for an image, the histogram from Eq. (4.14) can be 

calculated as 

CHM , , CHM , , CHM , , CHM , , .  (4.17)
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Based on the modification, the time complexity for creating M CHMs for an 

image is , where W and H are the width and height of an image 

respectively and M is the number of histogram bins. The time complexity for 

extracting color histograms in a region is . The complexity for extracting the 

color histograms for N particles in an image is thus . The 

time complexity of histograms extraction in Eq. (4.14) for all particles in an image is 

, where , are the width and height of the region R. The number 

of bins is much smaller than . If  is smaller than , 

the speed can be improved. According to our test results, when more particles are used, 

the target can be traced more precisely. In our experiments, we set the number of 

particles around 1000. Therefore, the speed of the particle filter-based tracker can be 

improved. The measurement of speed improvement will be described in the 

experiment result section. 

4.4 Dynamic Number of Particles Adjustment 

The number of particles will greatly affect the search region of the target object 

in an image. In general, when more particles are selected, the tracker may become less 

efficient but more accurate. Recently, Fox [51] proposed a method to dynamically 

adjust the number of particles by using the KL-distance to reduce the error. The 

method adjusts the number of particles to minimize the error between the true 

posterior and the sample-based approximation. However, the computation is costly. In 

a particle filter, the particles with local maximum weights are much important for the 

target state estimation and particle resampling. Therefore, we modify the number of 

particles to control the covering range in state space so that the state with the local 

maximum weight can be located. 
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When we track a target with the particle filter, if the appearances of many 

regions are similar to the target object, the weights of particles will approximate a 

uniform distribution and have a higher entropy. If the target has been missed, the 

conditional probability |  will be low and the distribution of weights 

will also approximate a uniform distribution. In these two cases, since we do not 

know where the target object is, a wide search window should be set. Therefore, a 

larger number of particles are needed. In another case, if there is only one region 

whose appearance is similar to the target object, the weights will concentrate on few 

particles and have a lower entropy. In that case, a small search window is needed and 

a smaller number of particles is required. 

To address the cases described above, we define the number of particles at time t 

(or the t-th frame) based on the entropy as  

∑ log
log 1/ . (4.18)

where C is a constant to control the increase rate of the number of particles. For 

example, if C is set as two, the maximum number of particles at time t is 2 . In 

our experiments, the constant C is 1.2. To avoid the number of particles increasing or 

decreasing drastically, we limit the number  between (200, 1000) in our 

experiments. 
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5. Three‐Part Human Tracking and Consistency 

Checking 

To track a human reliably, the three parts, head, torso, and hip-leg, are tracked 

simultaneously, as shown in Fig. 1.2. To design the tracking system, we first segment 

a person in a frame via the background subtraction method, and decompose the person 

into three parts. The positions of each part in the following frames are then predicted 

and updated using the particle filter described in the previous section. For each frame, 

after the positions of the three body parts are estimated by particle filters, consistency 

checking and adjustment of these body parts are performed to correct the abnormal 

body part. Finally, we perform an inter-person occlusion detection to avoid losing the 

target person when the person is occluded by other persons. 

5.1 Human Extraction 

To segment the human from an image, we first apply the method described in 

chapter 3. Next, we extract the connected-components of foreground pixels as 

foreground regions. The connected-components smaller than a prespecified threshold 

are regarded as noise and removed. The extracted foreground regions may include 

shadows, other background objects being moved or due to illumination changes. A 

foreground region may also include more than one person. To extract the persons, we 

restrict the size of a human region by setting two thresholds, region size  and 

width to height aspect ratio . If a foreground region does not satisfy the criteria, 

we will separate the foreground region into two sub-regions by finding the lowest 
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valley in the vertical projection profile [2]. After the separation, if the aspect ratio of a 

sub-region is still larger than , the separation rule will be performed recursively 

until all sub-regions satisfy the criterion of aspect ratio. Note that the two thresholds 

should be trained for different camera settings. In our experiments, the threshold  

was set as 2000 pixels and  as 1.0. Also note that the region of a person may 

touch with small misclassified background regions, such as shadows. Since we do not 

use the whole image of the person for tracking, the small misclassified background 

region will not affect greatly the tracking performance. Even though a detected body 

(a) (b) (c) 

(d) (e) (f) (g) 

Fig. 5.1 Foreground subtraction images. (a) The current frame. (b) The mean colors

of the Gaussian background model. (c) Foreground regions. (d) The foreground

connected-component and its vertical projection profile. (e)(f)(g) Sub-regions after

recursive separation.  
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part of the person belongs completely to a misclassified background region, the part 

can also be adjusted by using the other two parts during the process of tracking failure 

adjustment described in Sec 5.4. 

As an illustration, Fig. 5.1(a) shows the current frame, and Fig. 5.1(b) the mean 

colors of the Gaussian background model. To perform human segmentation, we 

extract foreground regions by the background subtraction method. After the image is 

thresholded, we obtain the foreground image in Fig. 5.1(c). Then we extract 

connected-components from the foreground images and remove the 

connected-components smaller than  pixels. A large connected-component 

remains. Since the aspect ratio of the component is greater than the threshold , we 

separate it into two blocks based on its vertical project profile, as shown in the lower 

part of Fig. 5.1(d). The smaller block shown in Fig. 5.1(e) is removed because its size 

is less than . For the larger block, another separation is performed and two 

sub-blocks shown in Fig. 5.1(f)(g) are obtained. Since the aspect ratio criterion is now 

satisfied, the recursive separation process stops. 

5.2 Human Part Decomposition 

Since the three body parts are used to track a person, their appearances should 

not be confused with each other. In this study, we aim to separate the three parts with 

a high distinguishability. The distinguishability can be defined as the difference 

between the color histograms of two regions. Since the difference measurement of 

color distributions used for our particle filter as depicted in Sec. 4.2.1 is costly, we 

will compute and compare the mean colors of the three parts instead. 
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We assume that the size ratios of the three body parts of most people are similar. 

As shown in Fig. 5.2, we first locate two horizontal lines to separate the region of a 

person into three sections according to the predefined height ratio of the three parts, 

denote as , , and . Then we move the two separation lines vertically to find 

the positions such that the three regions have the highest differences in the mean 

colors. The foreground human region is accordingly separated by the two horizontal 

lines into three sections , , and . As described above, the segmented 

foreground regions may include background regions or noise. Besides, the shapes of 

the three parts for different persons and different poses are varied. To achieve a higher 

reliability of the tracked parts, we will shrink the segmented regions according to the 

spatial distribution of the pixels in the three sections. A section R is shrunk into a 

smaller rectangle, called inner rectangle hereafter, as the pixel set ,

, , , , where ,  is the center of 

the rectangle and ,  the covered range of the rectangle. They are defined as 

follows: 

(b)(a) 

Fig. 5.2 An example of human parts decomposition of a person. (a) Initial horizontal

separation lines of the person. (b) Results of final three parts of the person. 
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where  is used to control the shrinking rate. Our shrunk body parts are less 

affected by limb motions, and the three parts are usually located in a vertical line. 

Fig. 5.2(a) shows the three inner rectangles found for the position in Fig. 5.2(b), 

in which the colors are more uniform. Note that the height of the inner rectangle of 

hip-leg is set to the half height of the segmented hip-leg, because the appearances of 

lower legs may vary significantly for different motions and dresses, which are not 

stable for tracking. 

5.3 Tracking Failure Detection 

The relative positions of the three body parts are limited in a certain range and 

the velocity of each part is also limited. Tracking failure will generate abnormal 

relative positions of estimated body parts, and the states will change irregularly in 

recent frames. If we can create a classifier to distinguish normally and abnormally 

tracked body parts, we can detect the event of tracking failure. 

To detect the tracking failure, we also have to detect the failure component. In 

this study, we use support vector machines (SVM) [22] as classifiers to detect whether 
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and which body part cannot be tracked properly. The SVM is a well-known classifier 

that finds a hyperplane in a higher dimensional space to separate data of two 

categories with the largest margin. The optimal hyperplane is computed as follows: 

, (5.5)

where 

, .  (5.6)

Here, we select the radial basis function as the kernel function K to map the feature 

vectors into the higher dimensional space. The class label 1,1  denotes 

whether the feature vector  belongs to tracking failure or not. The set 

|1  is a subset of the training data set, called support vectors. The 

coefficients  and b are determined by solving a large-scale quadratic programming 

problem. 

To detect which part cannot be tracked, we design three SVMs for detecting the 

tracking failures of the three body parts. If the tracker fails to track two or three parts, 

the SVM failure detector for different body parts may become ineffective, since we 

cannot easily distinguish which part is abnormal by the relative positions. To cope 

with the problem, we design an additional SVM to determine whether the failure type 

is a single part failure or a multi-part failure. 

The features used in an SVM are the estimated states of the three parts in the 

current frame and the relative state changes between the current frame at time  and 

a previous frame at time Δ . Here Δ  is selected to make the state changes large 

enough (In our experiments,Δ 0.5 seconds). The feature vector is defined as 

, , , Δ ,
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Δ , Δ , where the vectors RS , RS , and RS  

denote the relative state vectors of the three body parts in time t. The relative state 

vectors are defined as: 

∑ , ,

3 , , , (5.7)

where ,  and  are the estimated state vectors of head, torso and 

hip-leg parts. 

To collect training samples, we apply particle filters to track the three body parts 

in several video sequences. We than manually label the training samples from these 

tracking results for each SVM. In our experiments, the number of training samples for 

each SVM is 150. The state vectors not covering the target body part are labeled as 

negative, while those falling inside are labeled as positive. The samples not satisfying 

these two criteria are eliminated; this ensures that the feature vectors of the two 

classes are distinguishable. In the tracker, since a misclassified tracking failure may 

cause error propagation and hard to be adjusted, we prefer a higher true-negative rate. 

Thus, we adjust the parameters of SVMs to achieve the goal. 

5.4 Tracking Failure Adjustment 

In case when a tracking failure is detected, we have to adjust the state of the 

target person. If two or three parts cannot be tracked, we will detect the foreground 

region around the previous tracked position of the target object, and re-initialize the 

tracking process. If the state of a single part is abnormal, we will use the other two 

body parts to adjust the position and size of the abnormal one. To keep the adjusted 

body part tracked in the following frames, the particle states and the appearance 

model (color histogram) must also be modified. If the abnormal body part still appears 
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in the image, we can use the adjusted position and size to extract the particle states 

and the appearance model. However, if the failure is caused by occlusion, the 

appearances of the target person may not be correctly extracted as shown in Fig. 5.3, 

and thus the system dynamic model should be used to track the person. In this case, 

the appearance model is not updated and the process of failure detection and 

adjustment is not performed either. The method of occlusion detection is discussed 

below. 

5.4.1 Failure from Inter-Person Occlusion 

When two persons are both tracked, the occlusion event can easily be detected by 

checking whether the tracked body parts of the two persons are touching. If the 

answer is positive, we determine which one of them is occluded. Here, we use the 

(a)

(b)

Fig. 5.3 Examples of two types of tracking failure. (a) A person with clothes colors

similar to those of background regions. (b) A person occluded by a pillar. 
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weighted function in Eq.(4.6) to calculate the feature similarity between the tracking 

target and the feature kept in the particle filter. When two persons are overlapped, the 

person with the lower probability is determined as the occluded one. 

5.4.2 Failure from Background Object Occlusion 

If a person is occluded by a fixed background object such as a pillar or a door, 

we cannot detect the event since we only track the position of a person but not the 

background object. To cope with the problem, we can label manually the large and 

fixed background objects that may occlude moving humans. This is reasonable for a 

scene monitored by a fixed sensor. 

The position of the tracking failure part can be adjusted according to the position 

of the other two parts. If the tracking failure part is the torso part as shown in Fig. 

5.3(a), we adjust the center of the torso to the middle of the other two parts and the 

size to the average of the other parts as follows: 

, , ,
, , , , , ,

2 . (5.8)

Since the torso of a person is usually large enough, the adjusted rectangle usually 

lies inside the torso. Instead, the head of a person is usually smaller than the other two 

parts. Using similar adjustment method, its inner rectangle may contain background 

objects. We will use the background model to segment the foreground region above 

the torso part, and then extract the inner rectangle from the foreground region by the 

method described in Sec. 5.2. For the hip-leg part, its shape may have great variations. 

The adjustment method is similar to that of the head part, except that the foreground 

region is segmented below the torso part. 

In our tracker, the moving velocity of the particles will affect the predicted target 

position in the next frame. If we set the same moving velocity to all particles, the 
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particle filter may be unable to predict the state in the next frame. For a moving 

human, the velocities of the three body parts are assumed similar. If the trackers of the 

other two parts have  and  particles, we set the particle number of the tracking 

failure part as . All the particles of the adjusted body part have the same size 

,  and position , , but different velocities ,  from the particles of the 

other two parts.
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6. Experimental Results 

In this research, we propose a spatially-extended background model, and a 

human tracking model. The human tracking model composed an adaptive color-based 

particle filter using cumulative histogram maps and a three-part consistency checking 

algorithm. In this chapter, we will verify the performances of these algorithms 

respectively. 

 

6.1 A Spatially‐Extended Background Model 

The test video clips used to test the background model are captured in two 

different sites and by three different cameras. Two cameras are set in the two ends of a 

corridor (Cam1 and Cam2), and the other one is set in a laboratory (Cam3). The 

camera Cam1 is a grayscale CCD camera, Cam2 a color CCD camera, and Cam3 a 

USB-Webcam. The resolution of each video frame is 320 × 240 and the frame rate is 

30 fps. The total time of captured video clips is about 97.4 minutes, which include 

175394 frames. The clips contain moving humans, moving background objects, and 

changing illuminations.  

In our experiments, we will compare the foreground detection results of three 

background models: the Gaussian background model (GBM), MoG-based model 

(MBM) [9], and spatially-extended background model (SBM). In both MBM and 

SBM, we represent the background color distributions as a mixture of six Gaussians. 

In our SBM, we model the pixel-pairs with the distance of five pixels, and use the two 

spatially-dependent pixel-pairs to represent the spatial relations. 
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(a) 

GBM MBM SBM 

(b) 

(c) 

Fig. 6.1 Foreground detection results of an image captured by Cam1. (a) Original

image, (b) Detected foreground regions: the images from left to right are the results

based on GBM, MBM, and SBM, and from top to bottom are results with 3N/40,

5N/40, and 7N/40 pixels. (N=image size), (c) Foreground regions after noise

removal. 
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(a) 

(b) 

GBM MBM SBM 

(c) 

Fig. 6.2 Foreground detection results of an image captured by Cam2. (a)

Original image, (b) Detected foreground regions: the images from left to right

are the results based on GBM, MBM, and SBM, and from top to bottom are

results with 3N/40, 5N/40, and 7N/40 pixels, (c) Foreground regions after noise

removal. 
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(a) 

(b) 

GBM MBM SBM 

(c) 

Fig. 6.3 Foreground detection results of an image captured by Cam3. (a) Original

image, (b) Detected foreground regions: the images from left to right are the results

based on GBM, MBM, and SBM, and from top to bottom are results with N/40, 3N/40,

and 5N/40 pixels, (c) Foreground regions after noise removal. 
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To detect foreground, an effective background model can label most foreground 

pixels and very few background pixels as the foreground. The number of detected 

candidate foreground pixels is generally affected by the foreground segmentation 

threshold used to classify the pixels into foreground or background. Comparing 

different methods with unsuitable foreground segmentation thresholds cannot reflect 

the real performances. Here we perform two different kinds of experiments that detect 

foreground pixels via controlling either detected pixel numbers or foreground 

segmentation thresholds. 

Fig. 6.1 through Fig. 6.3 show result images by controlling detected pixel 

numbers. Figures Fig. 6.1 through Fig. 6.3(a) show the original images, Fig. 6.1 

through Fig. 6.3(b) the detected foreground pixels using different methods, and Fig. 

6.1 through Fig. 6.3(c) the foreground regions of the images in the middle row of Fig. 

6.1 through Fig. 6.3(b) after morphology-based noise removal. In the noise removal 

process, if the closing operator is performed before opening, near noises may be 

merged into a large one and cannot be removed by opening using the same structure 

element. If the opening is performed before closing, near small holes may not be 

removed. Therefore we first apply a closing operator with a smaller structure element 

(3 3) to fill the holes and then apply an opening with a bigger structure element 

(5 5) to remove noise pixels. 

Fig. 6.1(b) shows the results of a sample image captured by Cam1. Since the 

image is a gray scale one, different objects may easily have similar appearances. The 

distributions of joint random vectors of pixel-pairs are less efficient to distinguish 

different objects than those in color images. Thus, the results of SBM and MBM are 

much similar. After we apply noise removal as shown in Fig. 6.1(c), the regions of the 

person using SBM are still more complete than those using MBM. The result shows 



 

55 

 

our proposed SBM is better than the other two methods. 

Fig. 6.2(b) shows the results of a sample image captured by Cam2. The captured 

image is colored, and the colors of many parts of the person are similar to those of the 

background. The detected foreground regions of GBM and MBM are fragmental. 

Even though we apply a morphology-based hole filling procedure as shown in Fig. 

6.2(c), the foreground regions of the two methods are still fragmental. Thus, we can 

also conclude that SBM are more efficient than MBM and GBM. 

Fig. 6.3(b) shows foreground detection results of a sample image captured by 

Cam3. Some of the regions of the door and its shadow are misclassified as foreground 

ones by using GBM and MBM, but not misclassified by using SBM. In the sample, 

since the door is opened when the person enters the room, the GBM does adapt to the 

current appearance of the door and its shadow. In MBM, since the color distributions 

of the person, door and shadow may all be modeled, the regions of these object may 

be misclassified. As shown in the middle column of Fig. 6.3(b), the regions of the 

(a) (b) (c) (d) (e) (f) 

Fig. 6.4 Foreground detection results of the images captured by the three cameras.

The images from top to bottom are original images, the results of GBM, MBM,

and SBM. 
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door and its shadow may also be misclassified or those of the person may be 

fragmental when an unsuitable segmentation threshold is set. By adopting SBM, the 

appearances of the person are not taken as background, since the joint colors of a 

pixel-pair in the person are not captured repeatedly in the same position. The results 

in Fig. 6.3(c) show that the person regions do not touch with background ones and 

less background regions are misclassified as foreground. 

Fig. 6.4 shows the foreground detection results of the images captured by the 

three cameras by setting a fixed threshold. The threshold that results in 15% false 

positive rate in training images is selected to test the performance of the models. The 

foreground regions depicted are noise removed. The results show that the foreground 

regions extracted by SBM are more complete, and the false positive regions are less 

than those of the other two methods. The persons in Fig. 6.4(a), (c) and (f) walk 

around a place. Since the appearances of the persons are repeated in similar locations, 

the colors of the persons will be learnt as background by the pixel-wise background 

models GBM and MBM. In SBM, the colors of pixel-pairs will be modeled and the 

pixel-pairs without higher spatial dependency will be eliminated. Even though the 

appearances of a person are similar in a specific location, the joint colors of a 

pixel-pair in a fixed distance are usually varied and have low probabilities to be 

Cam1 Cam2 Cam3 

Fig. 6.5 Test samples and the manually labeled ground truth masks used for

estimating the ROC curves. 
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labeled erroneously as background. Note that the illuminations in these scenes are 

dramatically changed in Fig. 6.4(e) and (f), when the lamplight is turned on, and 

slowly changed in Fig. 6.4(a) (b) (c) and (d), when the illuminations are affected by 

the sunlight. In such environments, our proposed method is less affected by the 

illumination variations than others. 

Fig. 6.6-Fig. 6.8 show the receiver operating characteristic (ROC) curves of the 

video clips by controlling thresholds. The results of each figure are estimated from 20 

randomly selected test images. These images all include moving persons. The ground 

truth data of the test samples are manually labeled as shown in Fig. 6.5. The results 

show that the curves of SBM and MBM are very similar and the true positive rates of 

SBM are usually higher than that of MBM. When we fix the true positive rate on 80%, 

the false positive rates are about 21% and 30% for the test images captured by Cam2 

(Fig. 6.7) using SBM and MBM, respectively. The results show that we can eliminate 

about 30% (9% in 30%) misclassified non-foreground pixels by extending MBM with 

Fig. 6.6 The ROC curve of test images captured by Cam1. 
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spatial relations. 

 

 

 
Fig. 6.8 The ROC curve of test images captured by Cam3. 

Fig. 6.7 The ROC curve of test images captured by Cam2. 
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Note that the performances of GBM are usually better than those of MBM and 

SBM for the samples captured by Cam1 and Cam2 when the false positive rate is 

lower than 15%. The reason is that the background appearances do not change 

frequently in the corridor. In the environment with less frequently changed 

background, a Gaussian distribution can easily model the color distribution. However, 

when the background changes, the performance of GBM may become unacceptable 

for a fixed threshold as shown in Fig. 6.4. 

Although experimental results show that SBM usually outperforms MBM and 

GBM, the SBM is slower than the other two methods. The computation complex of 

calculating the background probability of a pixel of MBM is O , where K is the 

number of background constituents, but SBM is O , where M is the number 

of pixel-pairs used. When we update the model of a pixel, the computation complex 

of MBM is still O , but SBM is O  since the computation cost of 

updating each weighting matrix is O . On a PC with Pentium4 2 GHz CPU, the 

SBM can perform about one frame per-second, but the MBM is about 10 frames 

per-second. In our tests, about 90% CPU time spends on calculating the mutual 

information (Eq. (3.8)) and updating the matrix w (Eq. (3.5)). 

6.2   Adaptive Color‐Based Particle Filter   

We evaluated the proposed adaptive color based particle filter on two video sets. 

The first set called the "TCU set", which is captured with four stationary cameras 

mounted on Tzu Chi University and on a house near Tzu Chi University. The cameras 

are mounted approximately three meters high and the angle between the camera and 

floor is smaller than 30 . The video set consists 10 video clips with 48 target 

sequences in four scenes. Fig. 6.9 shows the images of the four scenes. The captured 
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image size shown in Fig. 6.9(a) is 720 480, and others are 640 480. The 

sampling rate is about 15 fps. The test video and ground truth data are released in the 

ftp site ftp://203.64.84.203. The second set is 12 video clips selected from the 

CAVIAR video corpus [52] (six are front view and six are corridor view of the 

Shopping Center in Portugal). The image size is 384 288 pixels and the sampling 

rate is 25 fps. The details of the database can be found in [52]. 

To analyze the tracking accuracy and speed, we compared the proposed method 

with the method proposed by K. Nummiaro et al. [19]. In the K. Nummiaro's method, 

the target similarity is measured using weighted color histogram represented by 

8 8 8 matrix. The weighted color histogram is extracted as 

(a) (b) 

(c) (d)

Fig. 6.9 Sample images of the four scenes in the TCU video set. 
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,  (6.1)

1 1
0 otherwise

, (6.2) 

where y is the center, I is the number of pixels in the regions, a is  and 

f is the normalization factor that ensures ∑ 1. In our proposed methods, we 

implemented the similarity measurement described in Sec.4.2. The experiments are 

performed in a personal computer with 3GHz CPU. 

 

0 6 12 18
(a)

0 6 12 18
(b)

0 6 12 18
(c)

Fig. 6.10 Sample images and the tracking results of a target person. (a) The manually

labeled bounding rectangle of the target person. (b) The tracking results created by

the proposed method. (c) The tracking results created by K.Nummiaro's method. 
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6.2.1 The TCU Video Set 

In this research, the purpose is to create the trajectories for visual surveillance 

system. The centers of state vectors of a person in consecutive frames represent the 

trajectory as shown in Fig. 6.11. Fig. 6.11(a) shows the ground truth trajectory, which 

is created by connecting the centers of the manually labeled bounding rectangles. 

Several sample images of the manually labeled bounding rectangles are show in Fig. 

6.10(a), where the number labeled below is the frame index. Fig. 6.10(b) and Fig. 

6.10(c) show the trajectories created by the proposed method and K. Nummiaro's 

method, respectively, and Fig. 6.10(b) and Fig. 6.10(c) show the sample images of the 

tracking results of the two methods. 

(a) (b) (c) 

Fig. 6.11 The trajectories of a target person. (a) Trajectory of the target person from

manually labeled ground truth. (b) Trajectory of the target person created by the

proposed method. (c) Trajectory of the target person created by K. Nummiaro's

method. 
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Here, we want to measure the difference between trajectories of ground truth 

data and tracking results as the error measurement. Since the trajectories are 

composed by a set of center points, we measure the Euclidean distance between the 

center points of ground truth and those of the tracking result (called center deviation 

in following descriptions). Table 1 shows that the average center deviation of our 

proposed method is smaller than K. Nummiaro's method. Comparing with the sample 

images in Fig. 6.10, the colors of the person's clothes are similar to the colors of the 

floor. If we just use the color histogram of the target person to measure the particle 

weight, the particles located in the floor may be assigned high weight. Therefore, in 

Fig. 6.11(c), the trajectory of K. Nummiaro's method curves to the floor region of the 

scene. In our method, that kind of tracking failures can be reduced, since our 

similarity measurement considers both target appearances and background 

appearances. 

Table 2 shows the comparison of tracking speed, where the speed is measured as 

Table 1 Average Center Deviation by Different Similarity Measuement 

#of particles 200 400 600 800 1000 2000 

Our method 52.2 46.3 41.7 43 41.7 39.1 

K. Nummiaro's method 78.4 73 73.5 73 71.3 68.6 

 

Table 2 Tracking Speed by Different Similarity Measuement (fps) 

#of particles 200 400 600 800 1000 2000 

Our method 28.1 25 23.7 21.9 21.1 15.9 

K. Nummiaro's method 12.3 6.1 4.1 3.2 2.5 1.3 
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the average frames per second (fps). In the table, K. Nummiaro's method is in inverse 

proportion to the number of the particles, since most computation costs of the method 

are spent on feature extraction and similarity measurement of particles. In our 

methods, most cost are spent on creating CHMs for current captured image and 

background image. When applying large number of particles, our method is 

significantly faster than the K. Nummiaro's method (over two times faster when apply 

200 particles and about four times faster when apply 600 particles). The result shows 

that the proposed method can easily be applied to a realtime tracking system. 

6.2.2 The CAVIAR Video Set 

Table 3 shows the average center deviation and Table 4 shows the tracking speed 

when applying the tracking methods on the CAVIAR video set. The results also show 

that the proposed method can achieve high accuracy and high speed. 

Table 4 Tracking Speed on The Caviar Video Set by Different Similarity 

Measuement (fps) 

# of particles 200 400 600 800 1000 2000 

Our method 62.4 56.1 49.7 45 41.1 21.5 

K. Nummiaro's method 50.3 26.4 17 12.9 10.3 4.6 

 

Table 3 Average Center Deviation on The Caviar Video Set by Different 

Similarity Measuement 

# of particles 200 400 600 800 1000 2000 

Our method 32.9 26.9 22.2 22.4 22.6 19.8 

K. Nummiaro's method 44.7 42.1 41.2 39 41.3 40.5 
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The results also show that the more particles cannot ensure higher accuracy. In 

Table 3, when we apply 2000 particles, the proposed method can reduce the average 

center deviation but K. Nummiaro's method cannot. By further analyzing the tracking 

results, when a large number of particles are used, the particles will widely separated 

in the state space, and several particles will located in background regions. If the 

correction process cannot assign distinguishable weights for target object and 

background regions, the tracker may lost the target. In our proposed method, since the 

weight assigned to target object and background are significant different, the precision 

can be improved when we apply 2000 particles. However, the widely separated 

particles also cause that the minimal bounding box of all particles become larger. 

Since the CHMs are created for the image in the minimal bounding box, the speed 

when applying 2000 particles is greatly dropped. Even though the speed is dropped, 

the proposed method can also achieve 21.5 fps. The speed is higher than that of the K. 

Nummiaro's method and approximates to the frame rate of the test videos. 

6.2.3 Specific Histogram Mapping 

We perform the experiment of the tracking model with specific histogram 

mapping, as described in Sec. 4.2.1, on the TCU video set. To verify the tracking 

model, we first define three rectangles on the head, torso, and hip-leg parts in 50 

images as the target regions. We then compare the numbers of false-alarm target 

regions with and without specific histogram mapping. A wrongly classified region is 

defined as the region that does not overlap with the target rectangle but its histogram 

feature is similar to that of the target one, whose similarity is less than a threshold. 

The similarity measurement between two histograms is defined as that in [19]. To 

define the threshold, we select the regions that are overlapped with the target one with 

more than half of size and then calculate the average histogram similarity. To 
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calculate the number (or rate) of false alarms, we randomly define 1000 regions that 

do not overlap with the target one as the test regions from each test image. Among the 

50000 test regions (1000 regions x 50 images), 66 (0.13%), 79 (0.16%), and 45 

(0.09%) regions were wrongly classified as belonging to a body part when we use the 

proposed specific histogram mapping; and 973 (1.95%), 734 (1.47%), and 725 (1.45%) 

without specific histogram mapping which demonstrates the effectiveness of our 

proposed method. 

Fig. 6.12 shows the tracked results using different color histogram models. Fig. 

6.12 (a) is the three body parts extracted in the initialization step, where the upper 

rectangle denotes the head part, middle the torso part, and lower the hip-leg part. Fig. 

6.12 (b) is the tracked three body parts using the equalized color histogram model and 

Fig. 6.12 (c) using a general color histogram model after several frames. Both the 

methods model the three channels of YCbCr space separately. In the images, the 

colors of the target person's hair are similar to those of a dark background region. 

(a) (b) (c 

Fig. 6.12 he tracked body parts using different color histogram models. (a) Body

parts in the initialization frame. (b) The tracked body parts using the equalized color

histogram model. (c) The tracked body parts using the color histogram model

without equalization. There are 7 frames apart between (a) and (b) and between (a)

and (c). 
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0 40 80 

150 200 220 

(a) 

0 40 80 

150 200 220 

(b) 

Fig. 6.13 The tracking results captured in an open space in front of a house. (a)Tracking

results with failure detection and adjustment. (b) Tracking results without failure

adjustment. 
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Using uniform quantization, the hair region and the background region may have 

similar feature vectors, so the head part may be tracked erroneously as shown in Fig. 

6.12 (c). By using the equalized color histogram model, we can distinguish them as 

shown in Fig. 6.12 (b). 

6.3 Tracking Failure Adjustment 

In our experiments on tracking the head, torso, hip-leg, and whole body on 20 

video sequences longer than 100 frames, the tracking failure rates are 35%, 35%, 40%, 

20% in the 100-th frame, respectively. Note that if the bounding rectangle of a target 

object contains less than a half of regions of other objects, the target object is regarded 

as tracked correctly; otherwise it is considered as tracked incorrectly. In the test 

results, most of the failures, about 100%, 100%, 87.5%, 75%, are propagated from 

previous frames. If we can keep the correctly tracked body parts and adjust the 

positions of other body parts, error will not propagate easily to the following frames 

and the accuracy can be improved. 

6.3.1 Tracking Results 

Fig. 6.13 shows the human tracking results of scene 1 in the TCU video set by 

applying our proposed method with failure adjustment and that without failure 

adjustment [19]. The numbers below the images denote the frame number after 

tracking initialization. Fig. 6.13(a) is the tracking results using failure detection and 

adjustment, while Fig. 6.13(b) is the results without failure detection. Since several 

non-human regions have similar appearance to parts of the target person, the regions 

may be mistaken as the body parts as shown in the 40th and 80th frames of Fig. 

6.13(b). In the frames, the appearances of the hip-leg part are similar to those of the 

stone. In the 200th and 220th frames, another background object is mistaken as the 
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head part. In the 80th, 150th, 200th, and 220th frames, the tracking rectangles of the 

torso are slightly departed from the torso part, since the torso appearances are not 

similar to those in previous frames due to the motion of arms. Using our proposed 

method, we can detect the abnormal part and adjust its position as shown in Fig. 

6.13(a). Note that in the 150th and 200th frames, the head tracking rectangle is 

slightly departed from the head part. According to our failure adjustment, the head is 

corrected in the 220th frame. Fig. 6.14 shows the tracking results in a corridor. The 

results also show that the failure adjustment is useful for tracking. 

 

6.3.2 Analysis of Tracking Accuracy 

 

Fig. 6.15(a-d) show the tracking accuracy curves of the three body parts and the 

0 20 40 

0 20 40 

(a) 

(b) 

Fig. 6.14 The tracking results in a corridor. (a) Tracking results with failure

detection and adjustment. (b) Tracking results without failure adjustment. 
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(a)

(b)

(c)

(d)

Fig. 6.15 Tracking rates without and with failure detection. (a) head. (b) torso.

(c)hip-leg. (d) whole body. 
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0 5 

10 12

14 20

Fig. 6.16 The tracking results with failure adjustment and inter-person occlusion

detection. 



 

72 

 

whole body of the test video clips. Different persons appearing in a scene are recorded 

in different lengths of time intervals. Here, we test on 22 video clips with 72 target 

persons. The experiments were performed on 22 video clips with 72 target persons in 

six scenes. The input images are in color with resolution of 720 480. The number 

of particles is set within 200 to 1000, which was automatically modified by using the 

entropy of particle weights. The accuracy rate is defined as the ratio of the number of 

correctly tracked objects to the total number of detected objects. The accuracy rate of 

the ith frame is the ratio of the persons tracked correctly from initialization to the 

frame. Since the sequence lengths of different persons are different, the denominators 

of the accuracy rates for the sequence of frames are varied. 

The curves in Fig. 6.15(a-c) show that the tracker with failure adjustment can 

improve the accuracy rate. The method of body part tracking without failure 

adjustment is similar to that proposed by Nummiar et al. [19] except for histogram 

extraction and weighting calculation, as described in Sec. 3. In frame 105, for instance, 

the tracking accuracy rates with failure adjustment are 95%, 83%, and 91% for the 

three parts respectively. Note that the result curves are not monotonically decreasing, 

since the particle filter can adjust the target parts to the correct positions, and the 

numbers of frames that different persons walk in a scene are not the same. Comparing 

with the accuracy rates of the tracker without failure adjustment, 67%, 68%, and 64%, 

the tracking rates of the three body parts are improved about 28%, 15%, and 27%. In 

these samples, the torso parts of the target persons in the sequences longer than 70 

frames are relatively stable than other parts as shown in Fig. 6.13. Therefore the 

accuracy curves of the two methods in the 80-th frame of Fig. 6.15(b) are much 

similar. 

To test the effect of the multi-part tracker with failure adjustment for human 
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tracking, we define the detected body region as the minimum bounding rectangle 

(MBR) that encloses the rectangles of the body parts. The single whole-body tracker 

is the same as that for the body part. Fig. 6.15(d) shows the accuracy curves for the 

whole-body tracker (drawn as triangles) and the MBR of the whole body from the 

three-part tracker with failure adjustment (drawn as squares). In frame 105, for 

instance, the accuracy of the three-part tracker with failure adjustment is 95%. 

Comparing with the accuracy rate 75% of the whole-body tracker, the tracking rate is 

improved about 20%. 

6.3.3 Multi-person tracking  

When we track multiple humans, the main problem is occlusion. When a person 

is occluded, the figure-ground segmentation may fail. We can use the system dynamic 

model to predict whether two persons are touching in a frame. In case of occlusion, 

we will find the occluded one and predict the target person until two persons are not 

touching anymore as described in Sec. 5.4.1. 

Fig. 6.16 shows the images of a video that has multiple walking persons. In the 

first frame, the three persons from right to left are labeled as numbers 0, 1 and 2. In 

(a) (b) 

Fig. 6.17 The tracking failure samples. (a) A person bending down. (b) A sample

affected by shadow. 
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the fifth frame, person 1 hides the hip-leg part of person 2, and in the 12th and 14th 

frames, person 0 hides almost the whole body of person 2. In the images the white 

rectangles denote the tracked persons. The results show that our tracker can track 

target persons even during inter-person occlusion. 

6.3.4 Tracking failure analysis 

In our tracking system, we assume that the relative positions of body parts are 

fixed in a certain range. However, the assumption cannot be applied to track the body 

parts of a person when his posture is not trained, such as bending down as shown in 

Fig. 6.17(a). In this situation, we can still track the same target person, but not his 

body parts correctly. Since these parts belong to the same person, we can still track 

the target person when he stands up. 

In our failure adjustment, we use the background model to extract foreground 

regions. However, several false objects, such as shadow, may be regarded as 

foreground objects. In Fig. 6.17(b), the target person is still tracked but the torso part 

is too large and the hip-leg part includes shadow. Usually, the false detected 

foreground regions only affect the tracking results several frames. When the three 

tracked body parts are not located in the correct relative positions, the failure 

adjustment scheme will adjust the positions of the body parts. 
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7. Conclusions and Future Works 

In this research, we designed a human tracking system. In the system, firstly, we 

have developed a spatially-extended background model for foreground detection. In 

the background model, we have used the probabilities of joint random vectors 

between near pixels to model the spatial relations. To reduce the cost of modeling the 

pixel-pairs, we calculate the mutual information in each pixel-pair for finding the 

spatially-dependent pixel-pairs. 

In general environments, when the background regions are stable, the Gaussian 

background model is suitable to segment foreground regions. However, when 

background regions change, the model is unsuitable. To detect foreground regions 

more accurately with respect to either changed or still background regions, we should 

combine our propose model with Gaussian background model. To achieve this, some 

heuristic rules should be created for deciding which model should be selected. This is 

left for future studies. 

To track a human, we decompose a human body into three parts, the head, torso, 

and hip-leg, and use color-based particle filters to track the three parts separately. We 

combined the appearance models of target object and background scene to calculate 

the weight of each particle. To reduce the redundancy during calculating color 

histograms in the overlapped regions of the particles, we have created a cumulative 

histogram map for each frame. We have also proposed an SVM-based method to 

detect the lost tracking part. In the tracking algorithm, we have used a particle filter 

for tracking an individual part. Since the particle number affects the tracking 

performance and tracking speed, we use entropy of particle weights to modify the 
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particle number dynamically. To further improve the tracking accuracy, we have 

designed a histogram equalization method for color histogram comparison. The 

experimental results show that the three parts tracking algorithm can improve the 

tracking accuracy significantly. 

In this research, we assume that a human is standing up and the three body parts 

can be segmented from top to bottom. If a human crouches down or lies down, the 

body part decomposition may fail. Our experimental results show that in the case of 

failure, the three parts will not be labeled correctly. However, the failure will be 

adjusted after the target person stands up again, since we can detect the failure by 

SVM. To improve the body part decomposition, we may train detectors for different 

body parts. This is left for future research. 

In our method, each of the three parts is tracked by a particle filter independently. 

The relative positions of the body parts are used to detect the tracking failure. We can 

reduce tracking failures by preventing the particles of abnormal poses to be generated. 

To achieve the goal, we needs to combine the state vectors of the three parts into a 

single vector to be tracked by a particle filter. Then the particle weights are adjusted 

according to the relative positions of the body parts. Also the behaviors of intruders 

defined on object appearances and the trajectories found will be analyzed. These are 

all left for future research. 
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