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基於串聯式剔除機制來減少視訊中時空搜尋空間的即時車牌辨識

學生：王舜正 指導教授： 李錫堅 教授

國立交通大學資訊科學與工程研究所

摘 要

在監控應用中，減少搜索空間(SSR)是發展高效率演算法的一項重要關鍵。 在接受視訊

的車牌辨識系統研究中，我們整合了空間上和時間上的減少搜尋空間技術。 然而由於

越來越多特徵需量測，計算量可能會顯著地增加。 當考量到大多數輸入樣式都是非目

標樣本(不是要認出的物件)的這個事實，似乎盡快剔除大量的非目標樣本是相當有效益

的。 因此我們提出了一個基於串聯式剔除架構來減少視訊中時空搜尋空間，同時確保

系統效能的即時車牌辨識。 甚至為了在複雜的環境下正確地擷取出車牌，我們首先提

出兩個物件表示法:簡潔車牌區域與重複區域。 簡潔車牌區域定義為車牌字元上下界內

所包含的區域，此區域可以在第一個步驟中擷取出來，以避免額外的字元上下界偵測

程序。 我們提出的方法就是由減少空間上的搜尋空間開始，其中包含了三個模組：單

次掃描的簡潔車牌區域偵測、雙階層的車牌字元切割和適應性的機器學習。 經由可便

利計算的特徵，如垂直梯度值和擴充 Haar-like 特徵值，這些模組擷取出簡潔車牌或字

元的候選區域並驗證之。 再者，我們提出要剔除在視訊中重複出現的相同外觀區域，

這些區域通常包含有停止的車輛或是固定的背景，且應可剔除以避免被重複分類。 為

了效能考量，重複樣式只會在車牌候選區域內偵測，在此稱之為時空關係上的減少搜

尋空間。 且該重複樣式比對是基於區塊為基礎的機制來設計，透過計算正切距離來克

服位置、大小、旋轉或是亮度的變異。 在我們的實驗中，經由時空關係上的減少搜

尋空間，可減少 87.9% 的搜尋空間；該車牌辨識系統在 Intel P-IV 3-GHz 的個人電腦

上，每秒可以處理 38 張 640x480 解析度的影像。
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ABSTRACT

In surveillance applications, search space reduction (SSR) is an essential element to ef-

ficient algorithms. In this study, spatial and temporal SSRs are integrated for license

plate recognition (LPR) in video sequences. However, as more features are measured, the

computational load may increase significantly. When regard to the fact that most input

patterns are negatives, it is apparently efficient to reject a majority of negatives as soon

as possible. Therefore, we propose a realtime LPR based on a cascaded rejection frame-

work to reduce spatiotemporal search space rapidly, while ensuring that the performance

is high. To extract plates accurately even in complicated situations, two representations,

compact plate regions and repeated regions, are first presented. Compact plate regions,

which bound the top and bottom of plate characters, could be extracted in the first stage

to avoid the use of additional removal procedures. Our method started from spatial SSR

by algorithms of one-pass compact plate extraction, bi-level plate character segmentation,

and adaptive machine learning. Region candidates of compact plates or plate characters

are extracted and verified by these algorithms performed on effectively calculated fea-

tures, such as vertical gradients and extended Haar-like features. Moreover, we proposed

to exclude repeated patterns with the similar appearances in the same location of consec-

utive frames, which usually include stopped vehicles or regular backgrounds and could be

excluded from repeated classification. For efficiency, repeated patterns were detected only

on the plate candidates, named spatiotemporal SSR, based on a block-based mechanism
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by estimating the tangent distance, which is invariant to the variations in positions, sizes,

rotations, or brightness. In our experiments, the search space could be reduced up to

87.9% by the spatiotemporal SSR; the LPR system can recognize plates over 38 frames

per second with a resolution of 640 × 480 pixels on a 3-GHz Intel P-IV PC.
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Chapter 1 Introduction

1.1 Motivations

Information automatically collected for smart visual surveillance applications, such as

portal controlling, traffic monitoring, or vehicle detecting, has gained increasing impor-

tance in Intelligent Transportation Systems (ITS). With rapid development of vehicles

and visual analysis technologies, automatic recognition of vehicles becomes more and

more practical in many applications during the past two decades. In vehicles, license

plates represent the unique identifications with regular patterns, such as a sequence of

characters. The design of robust license plate recognition (LPR) systems becomes an im-

portant issue for recording, analyzing, and reporting surveillance targets. The inputs of

LPR systems could be divided into two different types: still images and frame sequences.

In the first type, a still image from a camera can be designed explicitly to process complex

scenes such as multiple plates that exist in different locations of an image. In the second

type, temporal information could be used to identify plates more robustly. Figure 1 shows

examples of the two image types in surveillance applications. Figure 1(a) shows a still

image captured by a camera controlled by the police, while Fig. 1(b) shows several frames

from a capturing device installed in a car.

(a) (b)

Figure 1: Two image categories in surveillance applications: (a) a still image from a
camera, and (b) nine successive frames in a video stream.
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1.2 The Considered Problems

To develop a LPR system for surveillance, three requirements must be satisfied. The

first is the high accuracy performance; for instance, the accuracy rate measured as the

weighted sum of the true positive rate (TPR) and the false positive rate (FPR) should be

above 95%. The rate should be measured from a real surveillance environment with vari-

ations in plate types and environments. The second requirement is to process all frames

from an input stream in real time because successive frames may contain temporal plate

information useful in surveillance applications. Moreover, plates may not be recognized in

certain frames due to unexpected events; for example, the plates may be covered by other

passing vehicles or appear significantly blurred when they are out of focus. From the

successively recognized results, certain strategies such as voting could be used to increase

the accuracy rate. Currently, a common input stream may arrive at a standard frame

rate of approximately 30 fps (frames per second) and a resolution of 640 × 480 pixels.

Thus, a practical plate recognition system should function at over 30 fps, for example,

the real time system in this study, with a high dimensional input (640 × 480 pixels). The

third requirement is the adaptability. In real-world environments, there generally exist

unfamiliar plate types or background. When new plate types or backgrounds arise, the

plate recognition system should have the ability to recognize them correctly after learning

the variation in plates and non-plates automatically.

In plate recognition applications, since input plates or environments generally have

different variations, the techniques available are probably not very accurate, robust, or

practical. For instance, plate sizes and locations may change significantly in different

inputs because the target or the capturing device moves continuously; meanwhile, illu-

mination would also be different. Moreover, few of the publishes consider motorcycles.

The detection of license plates in the environment with motorcycles would be more diffi-

cult because the plates often connect directly with complex backgrounds. However, the
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detection of license plates on motorcycles is desired because motorcycles are important

transportation tools in many countries. Figure 2 shows several license plates captured

from different environments; some of the plates belong to motorcycles with white or green

plates. Figure 3 shows another examples of variations that were tested in this study.

The headlights of different vehicles at night are shown in Fig. 3(a), and examples of en-

vironmental lighting in different weather conditions are shown in Fig. 3(b). Plate-like

background patterns on a tiled floor are shown in Fig. 3(c).

Figure 2: Examples of variations in license plates and their environments.

(a)

(b)

(c)

Figure 3: Examples of variations in plate types and environments: (a) different vehicle
headlights, (b) different types of environment lighting, and (c) plate-like background.

Statistical mechanisms provide more robust and accurate representations. However,

an important problem of the statistical type of features or techniques is that the com-

putational load is high when a statistical mechanism is applied to all input candidates

(more than one hundred thousand units). Instead of explicitly segmenting the characters

in detected plates, Amit et al. [1] use a coarse-to-fine approach for both the detection

and recognition of characters on license plates. Although they achieve high recognition
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rates, the statistical technique requires 3.5 seconds to process an input image, and it does

not satisfy the requirement of surveillance applications. Another problem of the proposed

algorithms, as detailed in Chapter 2, is that there is a tradeoff between multiscale ability

and the computational effect. Most of them compute a multiscale image pyramid, which

is complicated and time-consuming to detect targets of a particular size.

It is a challenging task to develop a LPR system that satisfies all the three require-

ments. This is because it is difficult to adjust the existing approaches to achieve the

objective of a real-time system with a high TPR while maintaining a low FPR in various

plate types or environments. The system may satisfy the minimum real-time criterion

(for example, 15 fps) only for one module such as plate detection [2]. However, it is dif-

ficult to meet the real-time requirement in the entire LPR system. All variations under

consideration for single images and video sequences are summarized as follows.

1.2.1 Difficulties for Sigle Images

• Plate variations

– Location

∗ Plates may exist in different locations of an input image.

– Quantity

∗ An input image may contain many or no plates.

– Size

∗ Plates with different sizes may exist in an image or different images.

– Colors of plate characters and backgrounds

∗ Plates may have various characters and background colors due to different
plate types (taxis, private cars, etc.) or capturing devices.

– Others

∗ In addition to characters, a plate may contain adornments such as frames
and screws.

• Environment variations

– Illumination
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∗ Different types of illumination may occur in input images, mainly due to
environmental lighting and vehicle headlights.

– Plate-like background patterns

∗ A background may contain patterns similar to plates, such as numbers
stamped on a vehicle, bumpers with vertical patterns, and textured floors.

1.2.2 Difficulties for Video Sequences

In video-based surveillance applications, the input is usually fed from a video, which

consists of a sequence of frames with surveillance targets and backgrounds. Utilizing

temporal features over the sequence would speed up license plate recognition by avoiding

processing unnecessary areas. This necessarily involves the use of motion models which

describe and label the expected structure of the input sequence.

Motion segmentation has four conventional approaches: (1) background subtraction,

(2) temporal difference, (3) optical flow, and (4) predictive model. Background subtrac-

tion is a simple and popular method for motion segmentation, especially under those

situations with a relatively static background. Haritaoglu et al. [3], for example, used the

background subtraction method for segmenting potential foreground objects in the real-

time surveillance system W4. Temporal difference makes use of pixel differences between

two or more consecutive frames to extract moving regions and is adaptive to dynamic

environments. Lipton et al. [4], for example, obtained the absolute difference between

the current and the previous frame and used a threshold function to determine changes.

Optical flow could be used to detect moving objects even in the presence of camera mo-

tion. Schunck [5], for example, used characteristics of flow vectors of moving objects to

detect moving regions in an image sequence. The comparisons of the three approaches are

summarized in Hu et al. [6]. In predictive models, a set of features, such as points, edges,

or contours, are tracked over a sequence of frames and some prediction mechanisms are

used to minimize the potential candidates of these features. For example, Zayed et al. [7]
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applied Kalman filters while Jia et al. [8] utilized mean-shift filters to track recognized

vehicles.

The motion segmentation approaches may easily be deteriorated by the problems

of changes in illumination, shadow, or colors between the surveillance targets and back-

grounds. To deal with the problems, these approaches would become computationally

expensive. Direct enhancement and modification on above approaches would increase the

computational load.
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1.3 Goal

As described above, currently, some important problems are still remained to be resolved.

The following problems are focused in this dissertation:

1. Considerations for the development of real-time license plate recognition system

2. Machine learning for adaptive license plate recognition system

3. Search-space reduction(SSR) for improving the computational speed in single images

4. Search-space reduction(SSR) for improving the computational speed in video se-

quences

Certainly, it is a great challenge to overcome these problems. However, it is well

known that the license plates include general characteristics ranging from low-level gra-

dient features to high-level contextual meanings as follows:

1. The color of a plate character is always different from that of the background.

2. Plate characters are arranged in a sequence known as plate character lines.

3. A plate is mainly composed of plate characters.

4. Plate characters usually satisfy the plate specifications; for instance, the English

alphabet could not be used in certain parts of the plate or characters have specific

width-to-height ratios, depending on the location of the vehicle.

Thus, our major goal is to find out effective approaches to extract the license plates

in single images and video sequences.
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1.4 Summary of Achievements

To account for the lack of real-time consideration in the overall system, we propose a

cascade framework based on rejecting mechanisms to develop a real-time statistical plate

recognition system, which could deal with various problems effectively. We summarize

some valuable results in our works as follows:

1. A cascade framework for a real-time plate recogniton system: We first propose two

representations: spatial compact plate regions and temporal repeated regions. Com-

pact plate regions, which bound the top and bottom of plate characters, could be

extracted in the first stage to avoid the use of additional removal procedures. Re-

peated regions have similar appearances in the same location of consecutive frames.

The repeated regions could be detected and excluded from repeated classification

to save computation load. Moreover, under the assumption that most of the input

candidates are negative, a cascade framework is presented based on rejection mecha-

nisms to reduce spatial and temporal search-space. The computational speed of the

entire system can be improved because a majority of the negative candidates may be

rejected by the initial rejecters using simpler decision rules with a low computational

load.

2. Rejection mechanisms for single images: Cascaded rejection mechanisms have been

developed to process single images rapidly at high accuracy rates. The mechanisms

are designed to meet the requirements of performance, computational speed, and

adaptation for vehicle surveillance applications such as stolen car detection systems.

One-pass algorithms are proposed to extract candidates of compact plate regions

and segment plate characters precisely and compactly.

3. Rejection mechanisms for video sequences: In this study, we proposed to exclude

repeated patterns with the similar appearances in the same location of consecutive
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frames, which usually include stopped vehicles or regular backgrounds. For effi-

ciency, repeated patterns were detected only on the candidates of compact plate

regions, named spatiotemporal SSR, based on a block-based mechanism by esti-

mating the tangent distance, which is invariant to the variations in positions, sizes,

rotations, or brightness. Moreover, a bi-level one-pass plate extraction (BOPE)

algorithm developed to extract plates accurately even in complicated situations.
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1.5 Organization of this Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 is a review of related

research. In Chapter 3, we discribe approaches to detect license plates under two special

situations: the license plates with different appearances and the frame inputs with high

resolution. In Chapter 4, we will introduce our proposed cascaded license plate frame-

work in detail. Chapter 5 describes how to reject non-plates or non-characters for single

images. Furthermore, we developed a real-time statistical license plate recognition system

by some one-pass rejection mechanisms. Although variations in plates and environments

are existed, only candidates of license plates are extracted and outputted by our system.

In Chapter 6, we present the spatiotemporal search-space reduction for video sequences to

effectively save the computational load. Chapter 7 offers some conclusions and directions

of future work.
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Chapter 2 Related Research

In the last decade, many researchers [9–41,41–76] have focused heavily on plate recog-

nition. We will briefly review a number of works related to our research on automatic

license plate extraction in single images and video sequences in this chapter.

The first step in the recognition process is obtaining a frame of the vehicle, usually

by use of a CCD camera. In the related publishes, most publishes analyze license plates

from grayscale frames. Some publishes use color frames in RGB [16,26,56,69–73,76],

YCrCb [22,38], rgb [58], HSV [68], HLS [69], or HSI [58,66,67] spaces; few publishes the

IR image (cite...) Then, some pre-processing algorithms, such as noise reduction and

histogram equalization, would be performed to enhance images.

In general, a general framework for an license plate recognition system would con-

sist of three modules: (1) license plate detection(LPD), (2) plate character segmenta-

tion(LPS), and (3) optical character recognition(OCR). In LPD, many methods ranging

from simple techniques to sophisticated mechanisms have been developed to detect license

plates based on the features of plate characteristics or statistical representations. In LPS

and OCR, the available methods generally use approaches that are similar to those used

in license plate detection except that features are extracted from characters. Moreover,

some publishes [10,33,54,60–65] would normalize the skew of the license plates before

segmenting plate characters. Instead of skew normalization, Naito et al. [9] recognized in-

clined plate characters in the OCR module. For better representation, a Markov random

field [74,75] could be used to perform super-resolution of license plates [30] in videos.

The natural control parameters for extracting license plates are the feature extraction

and classification. An ideal feature extractor would distinctly represent plates and non-

plates that make the classification process trivial; conversely, a strong classification process
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Table 2.1: List of research focus
LPD LPS OCR

[8,11,21,24,27,32,37,38,42,46,47,52,56,67,68,72,73,76–92] Yes
[10,16,19,23,62,63,93] Yes Yes
[9,12–15,17,18,25,26,31,33,34,40,43,51,53,58,64,66,69,70,94–111] Yes Yes Yes
[35,112,113] Yes
[39,41,41,45,54,114–117] Yes Yes
[28,29,50,61,65,118,119] Yes

would not require a sophisticated feature extractor. There is a large number of possible

feature types and associated classification measurements which emphasize different license

plate properties like pixel intensities, color, teture, edges, etc. Currently, most researchers

prefer a hybrid detection algorithm, where multiple features are involved in order to

make the algorithm more robust. The algorithms proposed in this study is also hybrid

algorithms. Different feature types and classification methods would be summarized in

the following.

2.1 List of Research Focus

Due to the different goals being emphasized in each publish, the comparison of research

focus is shown in Table 2.1. The value, Yes, in the filed means that the publishes listed in

the second column mentioned that they did contributions in the corresponding module.

2.2 Features Types

Gradient features:

Gradient features are usually the most important since the features are insensitive to

scale, rotation, size, or colors. After thresholding the gradient values, edges would be

analyzed in many publishes [12,15,19–21,25,33,36,42,51,53,55,58,62–64,67,79,80,83,91,98,
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103,104,114,120]. Moreover, vertical edges [15,20,25,33,36,55,64,79,80,83,91,120] would be

the most popular gardient feature to represent the license plate areas. By limiting the

colors of license plates, Xu et al. extract color edges from an RGB image; Chang et al. [58]

extract color edges from an rgb image; Yang et al. [68] extract color edges from an HSV

image.

Statistical features:

Statistical features for LPD or OCR are usually composed of the covariance matrix [84],

the density [8,16,25–27,36,44,48,76,79,81,82,85,87,91,120], density variance [85,87,91,120],

Haar-like features [85,87–89,91,111,120], or Gabor features [23,117]. The region density

may be measured from the edges [8,36,76,82] or the gradients [91,120] of the license plate

region. Wu et al. [86] use the frequency of zero crossing on the map of edges.

Shape-based features:

Shape-based features are usually composed of the skeleton [117], the size [10,20,36,81,94,

111], the width or the height [10,27,31,36,53,54,79,86], the aspect ratio [8,20,25,27,36,53,

60,70,76,79,81,82,86,104,109,111], the rectangularity [8,76,82], or the orientation [25,91,94]

of the license plate or plate characters. Although these features may not be scale-invariant

or rotation-invariant, they are insensitive to many environment changes. The plate orien-

tation calculated using least second moments would be adopted in some publishes [109].

Moreover, the symmetric property [22,38] of license plate regions is measured to eliminate

the false positives.
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2.3 Extracting Methods

Morphological methods:

Morphological operators, such as local or global thresholding, Sobel [19,24,78,83,95], thin-

ning [113], smoothing [10,88,89,93,106,110,121], opening or closing [10,36,62,67,79,80,88,

89,107,110], or differencing [10,88,89], are widely used in license plate extraction or charac-

ter segmentation because the operators does not require complex and heavy mathematical

calculations.

Transformation methods:

Hough transformation is a method for detecting the borders of the license plates [24,35,53,

55,104]. Martin and Borges [31] use bottom-hat transformation to enhances the charac-

ters. Hou et al. [110] measure the differences of top-hat and bottom-hat transformations

to extract the license plate characters. Wu et al. [86] use bottom-hat transformation

to enhance the texture in the input image. Hsieh et al. [81] and Guo et al. [122] per-

form wavelet decomposition in each block of the input image and generate four subbands

(smoothing, horizontal, vertical, and diagonal).

Projection:

License plates or characters could be extracted by analysing the horizontal and vertical

projections [12,34,35,42,51,69,80,93,95,99,104,107]. Because characters of license plates

are usually arranged in horizontal lines, some publishes [19,20,31,33,54,60,62,64,81,94,

115,123] only use vertical projection histograms to segment plate characters.

14



Mean Shift:

The mean shift algorithm [124] is a nonparametric clustering technique which does not

require prior knowledge of the number of clusters, and does not constrain the shape of

the clusters. Some publishes [8,76,82] would use the mean shift filter to extract candi-

dates of license plates. Kim et al. [71] adopted the continuously adaptive mean shift

algorithm (CAMShift)[xxx] to extract regions of license plates in the result after plate

color measurement.

Sliding window:

Each sub-window [63,78,85,91,104,106,109,111,122] in the input image would be extracted

and identifed by heuristic rules or classification methods. Anaqnostopoulos et al. [109]

proposed a sliding concentric windows(SCWs) to detect regions of license plates.

Vector quantization(VQ):

Based on vector quantization, Zunino and Rovetta [77] encode each row of the input image

for locating license plates. [23]

Hidden Markov Chain(HMC):

Franc and Hlavac [112] use the Hidden Markov Chain (HMC) model to describe a relation

between the image and its corresponding segmentation.
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2.4 Classification Methods

Template matching:

By thresholding the minimum distance calculated from the pre-defined database, tem-

plate matching algorithms [8,9,13,15,18,20,49,60,64,69,76,82,94,96,99,107,121,123] verified

an input pattern as a plate or a character.

K nearest neighbors (KNN):

Cano and Perez-Cortes [11,78] classify every pixels of the input image based on KNN

method. Guo et al. use a k-means cluster to identify license plate blocks.

Cascade classifier:

For object detection, Viola and Jones [125] propose an cascade classifier trained by Ad-

aBoost [126]. A cascade classifier can be taken as a degenerate decision tree. Some

publishes [85,87–89,91,111,120] adopt the cascade classifier to identify license plates.

Neural network(NN):

Various neural network architectures [12,16,28,39,41,41,44,48,55,56,58,70,84,90,95–97,102,

105,108,109,122] are proposed and implemented for plate identification or character recog-

nition. Artificial neural network(ANN) trained by a backpropagation algorithm is used

for plate character recognition in [58,97,105,106,121]. Guo et al. [122], Yuan et al. [90],

and Chacon and Zimmerman [21] classify license plates based on pulse coupled neuron

model(PCNN) [127], a kind of artifical neural network model. Anaqnostopoulos et al. [109]

trained a two-layer probabilistic neural network(PNN) to identify plate characters. Hu
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et al. [115] use a PNN to identify low-dimension test samples segmentated from actual

license plate images.

Hidden Markov Model(HMM):

For character recognition, Llorens et al. [103] and Duan et al. [104] use a HMM model

with the observations of the ratio of foreground pixels in a window.

Support vector machine(SVM):

Support vector machine with radial basis functions (RBFs) is usually used for plate clas-

sification [122] or plate character recognition [111,116]. Direct pixel values of an input

region are scaled and the size of the region is normalized. Otherwise, Kim et al. [71]

adopted a support vector machine (SVM) with a polynomial kernel as the color texture

classifier.

Genetic algorithms(GA):

Yoshimori et al. [22,37,38] and Yohimori et al. [49] change the threshold values based on

genetic algorithms to extract license plates. Karungaru et al. [121] use a genetic algorithm

to select the three parameters, position, size, and orientation of the input characters.

Xiong et al. [46] apply GA to seach the possible license plate area in the whole image.
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Chapter 3 Detection of License Plates

under Two Special Situations

3.1 License Plates with Different Appearances

This section proposes an approach to developing an automatic license plate detection

system with different appearances. The car images are taken from various positions in

outdoors. Because of the variations of angles from the camera to the car, the license plates

will have various locations and rotation angles in an image. In the license plate detection

phase, since the colors of characters and of the license plate background are generally

different, the magnitude of the gradients is used to detect candidate license plate regions.

The license plates are usually located on the bumper. In the car images, there are several

horizontal lines. If we use the horizontal gradients, it will be difficult to separate the

regions of license plates from the bumper. Thus, the magnitude of the vertical gradients

is used to detect the candidate license plate regions. These candidate regions are then

evaluated based on three geometrical features: the ratio of width and height, the size

and the orientation. The last feature is defined by the major axis. The various rotated

character images of a specific character can be normalized to the same orientation based

on the major axis of the character image. Two different appearances of the license plates

are shown in Fig. 4 Experimental results show that the license plates detection method

can correctly extract all license plates from 102 car images taken in outdoors.

Figure 4: Two different appearances of license plates.
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The remaining parts of this section are organized as follows. Section 3.1.1 studies

the motivation and modules of the orientation normalization and inverse rotation trans-

formation. Section 3.1.2 presents the procedure of license plates detection. Section 3.1.3

shows experimental results and Section 3.1.4 includes some concluding remarks.

3.1.1 Orientation Normalization

This section aims to detect the license plates of the car image with various locations and

to recognize the rotation-free characters in the license plates. It is useful to derive the

major axis which shows the orientation of the image to detect and recognize license plates.

In the license plate detection phase, the major axis is measured in possible license plate

region to evaluate the possibility to be a license plate region. Figure 5 shows the major

axis on each image of the character R in five different rotation angles, where the dash

lines represent the major axis of the character image.

Figure 5: The images of character R in different orientations. The dash lines represent
the major axis.

When the rotation angles of a specific character image are between 90o and 270o such

as Figs. 5(d)-(f), the normalized character images is inverse. However, the situation is

regardless because the license plate images would not have rotation angles between 90o

and 270o.

In general, the new position for the pixel in the original image after rotating an angle
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is defined below [128]

 x′

y′

 = R

 x

y

 =

 cos θ − sin θ

sin θ cos θ

 ×

 x

y

 (3.1)

The rotation transformation will result in some holes after the rotation transforma-

tion is applied. In Fig. 6(b) the destination pixel 2 is mapped from two source pixels,

while the destination pixel 1 is mapped from none of the source pixel. These undefined

destination pixels produce holes in the image. To solve the problem, for each pixel of

the rotated image, the relative origin pixel is checked to see if it is the black pixel of

the character image. If it is, the pixel of the rotated image is marked as character pixel;

otherwise it is marked as non-character one.

Figure 6: The rotation result of an image block. (a) The original image; (b) The rotated
image with a -30-degree transformation.

The processes of orientation detection will be discussed in the following.

A. Orientation Detection

In the binary image, we first define that the mass is the black pixels whose gray level is

1. The moment of mass of the binary image is the distribution of the mass throughout

the binary image. Horn [129] mentioned that the first moment of mass which is defined
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as mass times distance could be used to derive the center location of the mass and the

second moment of the mass could be measured the distribution of mass relative to axes

through the center of the mass. And the orientation, of the mass is derived from the least

second moment of the mass. Then, the major axis of the mass can be achieved from the

orientation and the center. The steps to derive the orientation from the binary image are

described in the following.

The first moment of mass in the binary image is defined as

C = (xc, yc) =

(∫ ∫
xg(x, y)dxdy,

∫ ∫
yg(x, y)dxdy

)
(3.2)

where g(x, y) is the black point (x, y) which gray level is 1 in the binary image.

The second moment of mass in the binary image is equal to mass times square of the

distance from the black point in the binary image to a line as shown below:

S =

∫ ∫
r2g(x, y)dxdy (3.3)

where r is the perpendicular distance from the black point (x, y) to a line L. In Fig. 7,

for a particular line in the binary image, two parameters are defined: the distance from

the origin to the closest point on the line, and the angle between the x-axis and the line,

which is measured counterclockwise. The equation of the line is presented as follows.

x sin θ − y cos θ + t = 0 (3.4)

Note that the line intersects the x-axis at −t
sin θ

and the y-axis a +t
cos θ

. The closest point

on the line to the origin is located at −t sin θ, +t cos θ. Suppose that the point (x0, y0 is
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Figure 7: The coordinate diagram.

located on the line The equations for the point (x0, y0) on the line L are as the following:

x0 = −t sinθ + r cos θ and

y0 = +t cos θ + r sin θ.

(3.5)

Given an arbitrary black point (x, y) in the binary image, the shortest distance

between (x, y) and the line L is defined as

r2 = (x − x0)
2 + (y − y0)

2

= t2 + 2t (x sin θ − y cos θ) − 2r (x cos θ + y sin θ) + r2 + (x2 + y2) .

(3.6)

Totally differentiating with respect to we obtain

r = x cos θ + y sin θ. (3.7)

Substituting the equation 3.7 back into the equation 3.6 lead to

r = x sin θ − y cos θ + t. (3.8)

By substituting the equation 3.8 back into the equation 3.3, the second moment of
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mass can be derived as

S =

∫ ∫
(x sin θ − y cos θ + t)2 g(x, y)dxdy. (3.9)

Because the second moment of mass crosses the center of the binary image, we can

substitute the equation 3.2 into the equation 3.9 and totally differentiating with respect

to t, we obtain

(xc sin θ − yc cos θ + t) = 0, (3.10)

where (xc, yc) is the center of the binary image. Without losing the generality, we can

change the coordinate to x′ = x − xc and y′ = y − yc the equation 3.10 can be rewritten

as follows:

x sin θ − y cos θ + t = x′ sin θ − y′ cos θ, (3.11)

and we can substitute the equation 3.11 back into the equation 3.9, then the new equation

is obtained.

S =

∫ ∫ (
(x′)

2
sin2 θ + 2 (x′y′) sin θ cos θ + y′2 (cos 2θ − 1)

)
g(x, y)dx′dy′ (3.12)

Total differentiating S with respect to θ and we can obtain

tan 2θ =

∫ ∫
2(x′y′)dx′dy′∫ ∫

x′2dx′dy′ −
∫ ∫

y′2dx′dy′ (3.13)

Finally, we obtain the orientation θ,

θ =
1

2
arctan

( ∫ ∫
2(x′y′)dx′dy′∫ ∫

x′2dx′dy′ −
∫ ∫

y′2dx′dy′

)
(3.14)

The major axis in the binary image is defined as the line which slope is θ and the
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major axis crosses the center.

3.1.2 License Plates Detection

The first step of the license plate detection system is to detect the license plate regions of

the input car images. Due to the similar colors of the license plate background and that of

the car body, it is difficult to detect the boundary of the license plate from the input car

images in outdoors. Because the color of characters is different from that of the license

plate background, the gradients of the original image are adopted to detect candidates of

license plate regions. Figure 8 shows the processing flow of license plates detection.

Figure 8: The system diagram.

This section presents the details of license plates detection. The procedure consists

of four major steps: (1) detection of possible license plate regions, (2) possibility mea-

surement, (3) merging of broken regions, (4) inverse rotation transformation. The last

step, inverse rotation transformation, has already been described in the previous section.

The details of the remaining steps are explained as follows.

A. Detection of Possible License Plate Regions

At the first step of the license plate detection phase, the possible license plate regions are

detected from the vertical gradients of the input car images. The vertical gradients are

derived by multiplying with a mask value for each pixel and its neighboring pixels. In the

vertical gradients image, the license plate region is the area with large local variance. The

local variances of the vertical gradients image are measured with a local window mask. In
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this section, in order to cover the characters in the license plate of the input car images,

the size of the local window mask is set as 11 × 7. The smaller the window size is, the

more possible the license plate regions are separated, while the larger the window size is,

the over detected license plate regions occur. Figure 9 shows the possible license plate

regions with three different window sizes: 7 × 3, 11 × 7 and 15 × 11.

Figure 9: (a) The license plate image; (b)-(d) The possible license plate regions with the
sizes of window mask, 7 × 3, 11 × 7 and 15 × 11.

The pixel is defined as 1 for possible license plate regions. When we threshold the local

variance image, the image of possible license plate regions is obtained. Figure 10(a) shows

the image of a car with a license plate, where the colors of the license plate background

and that of the car body are similar. Figure 10(b) displays the vertical gradient image of

Fig. 10(a). Figure 10(c) and Fig. 10(d) demonstrate the local variance image of Fig. 10(b)

and the possible license plate regions, respectively.

There may be some noise in the images of possible license plates such as holes and

single dots. An opening operation of morphological analysis, in which the dilation oper-

ation is performed after an erosion operation, is applied in order to reduce the undesired

effect of noise and to separate the regions that were slightly connected.
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Figure 10: (a) The car image with a license plate; (b) The vertical gradients of Fig. 10(a);
(c) The local variance of Fig. 10(b); (d) The possible license plate regions.

B. Possibility Measurement

To detect the most possible license plate regions from the candidate plate regions, the

geometrical properties of the license plate are introduced to measure the possibility value.

The following defines the geometrical features:

• Area: If the candidate region is large, it is more likely being a license plate. A higher

possibility value represents a more possible license plate region. The possibility of

the area is defined as Ns∑
Ns

, where Ns is the number of boundary rectangle of the

possible license plate region, s.

• Orientation: As described before, the orientation of each possible license plate re-

gion can be measured. A license plate usually appears as a horizontal rectangle.

The smaller the orientation of the possible license plate region is, the higher the

possibility value is. The possibility of the orientation is given by 90−θ
90

, where θs is
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the orientation of the possible license plate region, s.

• Density: The ratio between the black regions and the area of the bounding rectangle

is defined as the density of the license plate region. The license plate is always a

rectangle. A higher density value means that the region is more likely to be a

rectangle and to be viewed as a license plate region. The possibility of the density

is defined as Bs/Ns, where Bs is the number of the possible license plate region, s.

For each possible license plate region, s, the possibility value p(s), is defined as the

weighted sum of the above three features, as shown below.

p(s) = ω1
Ns∑
Ns

+ ω2
90 − θs

90
+ ω1

Bs

Ns

(3.15)

where ωi is the weighting coefficient. We need to select proper ωi that can keep a high

detection rate. These values are determined according to experimental results. In this

study, ω1 = 0.2, ω2 = 0.3, and ω3 = 0.5 are adopted.

C. Merging of Broken Regions

After the detection of all candidate license plate regions, a license plate is probably sepa-

rated into several adjacent regions. In Fig. 11(a), since the distance between the characters

F and 4 in the license plate is larger than the threshold of the window mask defined above,

two separated candidate license plate regions are generated. These separated regions have

to be merged to extract the accurate license plate region.

Assume that s1 and s2 are two possible license plate regions and s is the merged

region of s1 and s2. Regions s1 and s2 are merged when the following two rules are

satisfied.

• The distance between s1 and s2 is smaller than a threshold value.
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Figure 11: (a) The car image with a license plate; (b) The separated possible license plate
regions.

• The possibility value of the merged region s is larger than both of s1 and s2.

The merging operation is repeatedly performed until no regions could be merged. Then,

the region with the largest possibility value is viewed as the license plate region.

3.1.3 Experimental Results

The system proposed in this chapter has been applied to 102 images with 104 license

plates, involving vehicles at different pan/tilt angles. We implemented the proposed

system on a Pentium II 300MHz PC with C++ language under Windows environment

and used Nikon 5700 digital camera as an input device. For the license plate detection

method, Fig. 12 shows the original car images, the possible license plate regions and the

result image of license plate detection. There are 108 totally license plate images extracted

from the test images.
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Figure 12: (a) The car images with license plates; (b) The possible license plate regions;
(c) The license plate detection results.
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3.1.4 Conclusion

In this chapter, we have proposed an automatic license plate detection system with dif-

ferent appearances. In conventional license plate detection methods, it is difficult to

determine the license plate with large pan and tilt angles. The proposed methods use

major axis information which is non-sensitive to rotation variance to detect the license

plate. The major axis is determined by the orientation which is the second moment of

the mass and center which is the first moment of the mass in the binary image. Then, the

input images can be taken from large pan and tilt angles relative to the car in outdoors.

Experiments carried out on some samples of outdoors car images show the feasibility of

using the proposed methods to detect the license plates. The system proposed can be

applied in general security systems and car violation prevention systems.
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3.2 License Plates in High Resolution Frames

To reduce the search space in high resolution inputs, this study presents two fast rejection

mechanisms to extract license plates of motorcycles and vehicles on highways. First, a

block-based rejection mechanism was proposed to eliminate regions of non-vehicles uti-

lizing temporal information over the input sequence. In the mechanism, three types of

blocks, low-contrast, stationary, and false blocks, would be removed to reduce the search

space. Second, a spatial projection-based rejection mechanism based on orthogonal gra-

dient projections was proposed to extract candidates of license plates. To reduce the

candidates, horizontal lines were rejected in the horizontal projections of the vertical

gradients, and vertical lines were rejected in the vertical projections of the horizontal

gradients. The remaining candidate plate regions were further segmented and verified by

the character segmentation and statistical recognition modules. In our experiments, we

tested 180 pairs of images, where an image contains 2560 × 1920 pixels. Our rejection

mechanisms successfully extracted 98% license plates and improved the computational

speed of the system to 0.075 seconds per image on a personal computer with Pentium 4

2GHz CPU because 88% of pixels were excluding from processing by the plate extraction,

plate segmentation, and character recognition procedures.

Although much work has been done on the recognition of license plates, most studies

focused on the processing of images with only one vehicle and few studies reported on that

of motorcycles. Moreover, many of these algorithms are robust to small-scale variations

(such as local variations of colors or sizes); they are not intended for matching images

with large differences in sizes or amounts as shown in Fig. 13. In many environments, an

input image may contain several motorcycles and vehicles. The situation becomes more

difficult when the target plates are occluded by others as shown in Fig. 14. In another

difficult case, the gray levels of plates are similar to those of backgrounds as shown in

Fig. 15. This study aims to develop methods to extract license plates of motorcycles and
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vehicles under these situations rapidly and effectively.

Figure 13: License plates with different
sizes in an frame.

Figure 14: License plates with partial
occlusion in an frame.

Figure 15: A license plate with unobvious borders. The plate and background have similar
gray values.

Although license plate extraction in a video stream has drawn much attention, stable

segmentation results would only be obtained from heavy computational approaches with

some predefined criteria. The primary purpose of this study is to present two rejection

mechanisms to extract license plates in high-resolution image inputs. By combining tem-

poral rejection and spatial rejection mechanisms, we can rapidly extract license plates of

motorcycles and vehicles on highways.

The remainder of this section is organized as follows. Section 3.2.1 presents the

reject-based plate recognition system. Section 3.2.2 shows the mechanism of block-based

rejection to reduce the search space in the high resolution inputs, and Section 3.2.3 de-

scribes the mechanism of projection-based rejection to extract license plates rapidly. In
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Section 3.2.4, some experimental results are presented. Section 3.2.5 concludes this section

and gives suggestions for the future works.

3.2.1 Overview of the Reject-based License Plate Extraction

System

To design a plate extraction system, it is apparently efficient to reduce the search space

as soon as possible. In this chapter, we design two rejection mechanisms that can dra-

matically reduce the search space, while ensuring the high performance of the system.

The system architecture mainly composed of temporal and spatial rejection mechanisms

is depicted in Fig. 16(a). To avoid processing unnecessary areas in high resolution inputs,

the block-based rejection, as shown in Fig. 16(b), utilizes temporal features in consecu-

tive frames. Three types of blocks, low-contrast, stationary, and false blocks, would be

removed in this module. The three removal procedures are detailed in Section 3.2.2.

(a)

(b) (c)

Figure 16: Schematic diagram of the rejection mechanisms for license plate extraction.

Moreover, instead of detecting license plates directly, we propose the projection-

based rejection to eliminate non-characters lines. With respect to the computational

load, a reject-based method is proposed to rapidly remove uniform lines on vertical and

horizontal projections, named orthogonal projections, simultaneously. The projection-
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based rejection algorithm is shown in Fig. 16(c) and detailed in Section 3.2.3. By only

detecting regions of license plate characters, the system can avoid additional procedures

for removing the adornments before plate character segmentation. The last block in the

system flowchart consists of three modules: plate classification, character segmentation,

and character recognition, which are summarized in the following.

After we extract candidates of license plates, characters in the regions may be skew

and recognized erroneously. Skew correction is important to recognize correctly the char-

acters. In this study, the skew angle of a license plate is determined from the plate bottom

border, as shown in Fig. 17.

(a) Source image (b) Edge image

Figure 17: Skew correction. The bottom border can be obtained from the original image.

After skew correction, the plate region could be classified by support vector machine

(SVM), Neural Network, or cascade classifiers. Then, the classified plate region could be

divided into individual character regions after binarization. In our collected license plates,

the character widths are four times of the dash “-” width. Since we have six characters

in our samples, we can divide the plate region into 25 (6 × 4 + 1) units and then cut

the characters in the computed location. For example, the partial segmentation result

is depicted in Fig. 18. For characters recognition, a classification mechanism based on

support vector machine (SVM) is adopt to recognize the segmented characters of license

plates. Moreover, the characters in license plates follow regulation rules. In the current

study, the following four rules are used.
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1. The license plates consist of six characters.

2. The first two characters are capital letters form A to Z.

3. The third character is a letter or a number.

4. The late three characters are numbers from 0 to 9.

The recognition output of a character is a list sorted by the difference between the

input and the candidate. If the first character in the list does not satisfy one of the rules,

the following character candidate is selected for testing.

(a) (b)

Figure 18: Character Segmentation: (a) a source image and (b) the segmentation result
part.

3.2.2 Block-based Rejection in High Resolution Frames

(a) The reference frame ft−1 (b) The current frame ft (c) The difference frame Difft

Figure 19: A difference result of two consequent images. If the corresponding pixels in
the two images have different grey-levels, the original gray value in the current frame is
stored in the difference frame.

The size of an input image in our system may be very large and the image could be

composed of various variants of plates and backgrounds. We would spend much time to
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correctly identify so many variants of the targets in the large searching space. However,

only the regions of license plates result in the final output. In other words, not all pixels in

the input image have to be evaluated during the recognition procedures. On highways, the

plates belong to either motorcycles or vehicles, both of which would move continuously

and be presented in different locations in the sequential frames. Note that motionless

vehicles may be neglected because we could detect them when they start moving. To

remove most motionless regions robustly, rapidly, and effectively, a block-based rejection

mechanism is introduced to extract candidates of vehicle regions from the difference of

two consecutive frames.

By comparing the reference frame ft−1 and the current frame ft, where t stands for

the time, we can generate a difference image in which the gray level in the position that

the two frames have different gray levels is set as that of the current frame. Formally, the

difference frame, Difft, at time t is defined as follows:

Difft (x, y) =

 ft (x, y) if ft (x, y) 6= ft−1 (x, y)

0 otherwise.

(3.16)

From the example in Fig. 19, we can find the candidates of vehicle objects, which are

composed of real vehicle objects and background regions. Since the background regions

usually exist in the regions where objects left, the appearances of these regions may

contain similar intensities. In this study, all these region candidates would be categorized

as three types: low-contrast, stationary, and moving blocks. Only the moving regions are

the interested ones, in which license plates would exist.

In the beginning, each image is tessellated into M × N blocks. In our experiments,

the size of an image is 2560 ×1920 pixels and the size of each tessellated block is 40 × 20,

which is the minimum size of license plates in our experimental samples. To discard
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non-moving regions, the block-based rejection module is further divided into three stages:

low-contrast blocks removal, stationary blocks removal, and false blocks removal and

recovery.

Low-contrast blocks removal

In this stage, all blocks are classified as high-contrast and low-contrast ones according to

their intensity variances. Because the colors of backgrounds and plate characters have

significant differences, the blocks containing license plates will have high contrast. The

low-contrast blocks could be removed by analyzing the intensity histogram. Instead of all

pixels, for efficiency, we use the pixels located in the two diagonal lines in a block. Two

examples after this stage are shown in Figs. 20(b) and (d).

(a) (b)

(c) (d)

Figure 20: The white blocks have low contrast and will be removed from the current
frames. (a) Current frame, Ft1; (b) the result of the frame Ft1; (c) current frame Ft2; (d)
the result of the frame Ft2.
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Stationary blocks removal

After we remove low-contrast blocks, the remaining blocks will be classified as stationary

or moving ones. We compare the block in the current frame with the corresponding

block in the reference frame. If a block in the current frame is a stationary one, the

appearances of the two blocks will be similar; for a moving block, the appearances of

the two blocks would be dissimilar. Stationary blocks would be discarded according to a

similarity measure defined as follows:

sim =

[
(St+St−1)

2
+

(
(Mt−Mt−1)

2

)2
]2

St × St−1

, (3.17)

where M and S denote the mean and the variance for the block in the current and the

reference frames, respectively. If the similarity sim is less than a threshold, then the block

is categorized as a stationary one. One example of Fig. 19 after the stationary blocks are

removed is shown in Fig. 21.

(a) The image after low-contrast blocks removal (b) The image after stationary blocks removal

Figure 21: The results of removing low-contrast and stationary blocks in the current frame
of Fig. 19.
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False blocks removal and recovery

The remaining blocks after above two stages may have two types of misclassification.

First, some blocks in license plates would be misclassified into stationary or low-contrast

ones if two different objects with similar illuminations locate on the same position in

the current and reference frames. An example is shown in Fig. 22, where block B2 in

the current frame would be misclassified into stationary one because the similarity sim

between blocks B1 and B2 is small than the pre-specified threshold.

(a) (b) (c)

Figure 22: The example of the misclassified stationary block, block (2, 3).

Second, if a moving object appears on the reference frame but does not appear on

the current one, the blocks in the current frame corresponding to the moving object may

be misclassified as moving ones. An example is shown in Fig. 23. The non-white blocks

in Fig. 8(d) are misclassified into moving ones because a moving object appears in the

reference frame.

In order to correct these two kinds of misclassified blocks, we first reduce each moving

block as a black pixel and other blocks as white pixels. The closing operator is then

performed in the reduced image with a 3 × 3 structure element. To remove misclassified

moving blocks, the opening operator is then performed in the reduced image by a 4 × 4

structure element. If a pixel in the reduced image is black, the corresponding block in the

current frame is labeled as a moving block instead of a stationary one. Fig. 24 shows the

result of the current frame in Fig. 19 being processed after this stage.
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(a) (b)

(c) (d)

Figure 23: Misclassified moving blocks. (a) Blocks in the reference frame; (b) blocks in
the current frame; (c) image blocks after removing low-contrast ones; (d) image blocks
after removing stationary ones.

Figure 24: The non-white blocks represent the moving vehicle blocks after our block-based
rejection module.
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3.2.3 Projection-based Rejection on Orthogonal Projections

License plate characters generally have distinctive colors to backgrounds. The high gradi-

ent values between the characters and backgrounds could be used as key features to detect

the desired license plate characters. However, some non-license plate areas would have

similar properties and be extracted from the images captured on highways. For example,

the bodies of vehicles or humans both have high gradients. To extract license plates on

highways, four difficulties to be solved in this chapter are summarized in the following:

1. The vehicles on a highway may have different sizes of license plates due to different

distances from the camera to the objects. The license plates closed to the camera

are bigger than those of far away.

2. There are various types of objects on a highway at the same time.

3. Some objects in an image may be occluded by others.

4. The intensity values of backgrounds vary greatly because of sudden illumination

changes.

Instead of extracting a whole license plate, we propose to extract the characters on

the license plate only. We will describe a projection-based rejection method below to

quickly eliminate non-character areas on orthogonal projections, which will be introduced

in the following Sections.

Orthogonal projections removal

Since the color of plate characters are always different from that of plate backgrounds,

there would be high gradient counts when we project gradients values horizontally or

vertically. The locations of these high gradient counts could be detected as peaks in the
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projections. However, because of high background variations, several peaks may exist and

the two peaks bounding the license plates have to be verified by using more information.

To discriminate license plates from backgrounds effectively, we propose to project the

vertical and the horizontal gradients separately, which are measured independently by

the Sobel operators. For example, Figs.25(b) and (c) show the vertical and horizontal

gradients of the source image in Fig. 25(a), respectively. In the two figures, the histograms

of the vertical and horizontal projections are also shown.

(a) (b) (c)

Figure 25: Results of gradients measurements and the vertical and horizontal projections:
(a) the original image, (b) vertical gradients image, and (c) horizontal gradients image.

A pixel with a high gradient value is termed as a strong gradient pixel, otherwise

a weak gradient one. Because a license plate usually contains many strong gradient

pixels, the projection count of the scanning lines across license plates will be high. The

horizontal and vertical scanning lines with weak gradient pixels are removed because they

are possibly not the plate regions.

As mentioned before, there are two horizontal projection histograms generated from

both horizontal and vertical gradients. For the histogram generated from the horizontal

gradients, the horizontal scanning lines across characters may not have high count. Some
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scanning lines across characters will be removed. The regions of characters in license

plates are possibly broken as shown in Fig. 26. However, this problem does not happen in

that of vertical gradients, as shown in Fig. 27 because the horizontal projections of vertical

gradients have consistently high counts. Thus, when we remove the horizontal scan lines

with less vertical gradients count, we can keep the license plate more completely.

(a) (b) (c)

Figure 26: A result of removing horizontal lines from horizontal projections. The char-
acters in license plates become broken. (a) The source image, (b) the horizontal gradient
image, and (c) the result image.

(a) (b) (c)

Figure 27: A result of removing horizontal lines from vertical projections. The characters
in license plates remain completely. (a) The source image, (b) the vertical gradient image,
and (c) the result image.
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To reduce the high background gradients, horizontal lines would be only rejected

in the horizontal projections of the vertical gradients. The same concept can be used

to remove vertical scanning lines. Characters have a low gradient count in the vertical

projections of vertical gradients. Removing the scan lines with lower gradients count will

break the regions of the license plates. The problem does not happen in the projections of

horizontal gradients, which is accordingly used to remove vertical scanning lines as shown

in Fig. 28. For the regions of moving objects in Fig. 29(a), two complete license plates

are preserved as shown in Fig. 29(b) after horizontal scanning lines are removed.

(a)Horizontal gradients (b)Vertical gradients

Figure 28: A comparison of vertical projections of the horizontal and the vertical gradients.
Characters have low counts in the projections of vertical gradients.

Uniform lines removal

In this stage, we will remove the scan lines with weak gradient pixels in the remaining

blocks by the orthogonal projection-based method again. Fig. 30 shows that most non-

plate regions would be removed, while the regions of three license plates are kept. However,

the lowest license plate “IWA-091” is broken into two blocks, which is caused by the

vertical projection of horizontal gradients.
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(a) (b)

Figure 29: The result of removing non-license plate regions for the image in Fig. 14. (a)
Result of the block-based rejection; (b) Result after the horizontal scan lines of non-license
plate regions are removed.

Figure 30: A result of removing scan lines in blocks. Note that the license plate “IWA-091”
is broken into two blocks
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Extraction of license plate candidates

The height of detected blocks is approximately equal to the height of characters in the

license plate. Small blocks on the same row are merged if they are close enough and

satisfy the constraint on the aspect ratio of a license plate. We can thus detect license

plates of different sizes.

Not all blocks detected so far belong to license plates. We will use geometric prop-

erties of those regions to select license plate ones. The properties used are listed in the

following:

1. The size of a license plate region lies in a limited range.

2. The aspect ratio is in a predefined range.

3. The scanning line in a license plate region cannot have a very long white or black

run.

4. The numbers of black and white runs in the middle scanning line are kept in a

limited range.

For the example shown in Fig. 31, region R1 does not satisfy property 3; region R2

does not satisfy property 1; region R3 does not satisfy property 2. To identify plate regions

more reliably, more constraints could be added. The regions satisfied all the properties

will be identified as the candidates of license plates.

3.2.4 Experimental Results and Analysis

Our experimental images are captured every 1.5 second by a fixed camera mounted upon

a bridge. The system was implemented on a personal computer with Pentium 4 2GHz
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Figure 31: Candidate regions selection. Several regions are excluded since they do not
satisfy the geometrical constraints.

CPU with 512 MB RAM. Each input image pair includes two images, a current frame

and a reference frame. The training data contains 30 image pairs. The testing data are

composed of 180 images pairs with 351 whole license plates, excluding the occluded ones.

In the following, we show the experiments of the testing data according to our three

modules.

For interesting region detection, the average pixels of the regions we detected are

592, 667 per image, while an input image contains 2560 × 1920 pixels. Thus, we can

remove 88 percent of pixels. Figure 32 shows an example that five license plates of the

motorcycles are detected successfully. Figure 33 shows an erroneous example where the

license plate of the up-middle car is missed because the blocks near the vehicle’s license

plate are removed by the opening operator.

A license plate is considered as detected successfully if the characters in the license

plate are classified into the same interesting region as shown in Fig. 34. Even though

the vehicle is divided into two interesting regions, the license plate is viewed as detected

successfully because the whole license plate is included in one interesting region. In our

experiments, 344 plates are detected successfully; thus the accuracy rate is 98.0%.
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(a) (b)

Figure 32: Five license plates detected successfully. (a) The source image; (b) The inter-
esting regions detected.

(a) (b)

Figure 33: An erroneous example of interesting region detection. (a) Source image; (b)
The result of interesting regions detection.

(a) (b)

Figure 34: A result of license plate detection.(a) The test image; (b) Two regions of a
moving object are detected. The plate region is detected successfully.
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For license plate extraction, a license plate is extracted successfully if the charac-

ters in license plates are all extracted. There are 344 license plates in the experimental

data. Among them, 325 plates are extracted successfully. The accuracy rate is 94.4%.

An interesting region without license plates is removed successfully if no inside area is

detected as a license plate. For the 1222 interesting regions without license plates, 1128

objects are removed successfully while 94 are fail to be removed. The accuracy rate is

thus 92.3%. Moreover, applying block-based and projection-based rejections sequentially,

the processing speed is 0.075 seconds per image. If more pixels could be rejected, the

processing speed would be faster.

Figure 35 shows an erroneous case that the system fails to detect the license plate

region because the image contains other strong-gradients points except the license plate.

The area of the license plate is only a small part comparing with that of vegetables.

(a) (b)

Figure 35: An erroneous example for license plate extraction. (a) Source image; (b) Image
after gradients measurement.
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3.2.5 Conclusion and Future Work

In this section, we have proposed two fast rejection mechanisms to extract license plates

of motorcycles and vehicles on highways. The first temporal rejection mechanism, block

based rejection, could reduce 88 percent searching space in the processed frames. The

second spatial rejection mechanism, orthogonal projection-based rejection, provides an

effective and rapid solution to extract different sizes and various amounts of license plates.

By cascading the two rejection mechanisms, we could extract license plates rapidly in high

resolution frames.

To improve the performance in each phase, we propose the following two suggestions

for future study:

1. For block-based rejection, it may be sensitive to its structure elements. Dynamically

adjusting the size of a structure element would improve the results. For example, if

the blocks contain strong-gradients pixels, the structure element can be bigger than

those with weak-gradients pixels.

2. For orthogonal projection-based rejection, it may be restricted by the illumination

effect. A shadow or non-uniform light may cause an error in the stage. The Sobel

operator cannot handle the illumination problem. Using other local operators, the

mistakes may be reduced.
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Chapter 4 Fundamentals of Cascade

License Plate Recognition Framework

To achieve a high accuracy rate with variations in plate types or environments, spatial

features and temporal information could be used simultaneously to detect and recognize

plates. However, as more features are measured, the computational load may increase

significantly. A tradeoff then exists in the plate recognition system between discrimination

and computation. We must design a system that satisfies the constraints in various

environments simultaneously. However, even while detecting a single plate type, it is still

difficult to detect all plates without false positives.

In this study, we propose a cascade framework for license plate recognition composed

of two representations of license plates and three strategies, which are detailed in the

following.

4.1 Representations of License Plates

Given an image, appropriate representations will speed up extraction of license plates. In

this study, we proposed two representations according to spatial and temporal character-

istics, respectively.

4.1.1 Spatial Compact Plate Regions

The plate region contains plate characters and various adornments such as frames, screws,

and subtitles. This type of region is termed the normal plate region. The presence of

adornments increases the difficulties in plate character segmentation because the charac-
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ters and adornments may contact each other in the captured input. It may be difficult

to correctly recognize certain adornments such as screws and emblems because they may

be very small and blurred; moreover, they do not provide distinguishing information for

plate recognition. Therefore, these adornments should be discarded before plate character

segmentation and recognition. However, the use of additional procedures for removing

the adornment increases the computation time of the system. In this study, we propose

to detect compact plate regions, i.e., the regions that bound the top and bottom of plate

characters, in the initial stage to avoid the use of additional removal procedures. Figure 36

shows the patterns of normal plate regions and compact plate regions.

(a) (b)

Figure 36: Patterns of (a) normal plate regions and (b) compact plate regions.

4.1.2 Temporal Repeated Regions

In a motion detection system, moving or foreground objects are usually detected first

and then classified by using their characteristics. Instead of detecting moving objects

directly in the cascade framework, we propose to reject repeated patterns with similar

appearances in the same location of consecutive frames. In vehicle surveillance, repeated

patterns usually stand for static objects, such as stopped vehicles or regular background

patterns. To save computational load, these repeated patterns should be excluded from

repeated classification.
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4.2 Design Strategies

This study investigates the problems of plate detection in video sequences from the fol-

lowing directions.

4.2.1 Cascade Framework with Rejecters

The natural control parameters for balancing discrimination and computation are the

complexities of feature extraction and classification. The conceptual boundary between

feature extraction and classification is rather arbitrary. An ideal feature extractor would

distinctly represent positive and negative inputs that make the classification process triv-

ial; conversely, a strong classification process would not require a sophisticated feature

extractor. However, it would be computationally demanding or impossible to distinguish

between features that are invariant to irrelevant transformations of the input. When em-

phasis is placed on the computational load, it is apparently efficient to reject a majority

of negatives immediately with a single relatively inexpensive process. By the concatena-

tion of rejecting processes with increasing complexity, the overall computational load of

the system can be reduced because not all input candidates are processed by the more

heavy-computational processes.

Based on the above reasoning, we consider two coarse-to-fine computational designs

that can dramatically reduce the computation, while ensuring that the performance of

the system is high. First, a major portion of the searching space may be quickly discarded

by features with increasing complexity: low computational features such as gradients fol-

lowed by heavy computational features such as statistical region representations. Second,

increasingly more feature dimensions are adopted to correctly discriminate between pos-

itives and negatives. The two designs allow quick rejection of incorrect input candidates,

while more computation time is used for promising candidates of plates or character re-
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gions. To produce the two designs, a cascade framework is built on successively more

complex processes, termed cascaded rejecters. In comparison with a process with a high

accuracy rate, a rejecter only requires a slightly higher accuracy than chance and has a

minimal computational load. Figure 37 shows the differences of the ROC curves between

a rejecter, a strong classificer, and a random classificer. The key constraints of such a

Figure 37: Differences of the ROC curves between a rejecter, a strong classificer, and a
random classificer.

rejecter are a high TPR and a relatively low FPR, for instance, less than 50%. In other

words, all, or almost all, positive targets must be preserved after they are processed by

the rejecter.

Based on rejecting negatives in the shortest possible time using simpler decision

rules, the average computational speed of the system would be faster than that obtained

by adopting the more complex processes for all input candidates. Section 4.3 summarizes

the advances of the cascade framework based on a “rejection chain,” which is composed

of gradually complicated rejecting procedures to reject negatives (said, non-character,

non-plate, and repeated regions) as quickly as possible.
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4.2.2 Spatiotemporal Search-space Reduction

Since we can extract plate candidates by a very efficient algorithm BOPE using spatial

information, the repeated candidates can be discarded using temporal information of

consecutive frames. In consecutive frames, candidates extracted by BOPE would not

have the same dimensions or not exist in the same locations due to variations in plates or

environments. It is time consuming to compare the candidates in the current frame to all

of the candidates in the preceding frame. In this study, we proposed to exclude repeated

patterns with the similar appearances in the same location of consecutive frames, which

usually include stopped vehicles or regular backgrounds.

4.2.3 Computational Reduction in Algorithmic Design

In addition to the plate characteristics, the cascade framework, and the search-space

reduction, the system could not function at a high speed without appropriate algorithms.

Duplicate memory access and computation would occur in different processes or even

in the same process. In this study, we propose one-pass algorithms, as mentioned in

Sections 5.2 and 6.2, that scans the entire input only once but can extract all candidates

of compact plate regions. The values of the features could be calculated at constant

time using acceleration tables, which will also be generated in a single scanning process,

as mentioned in Sections 5.2.3 and 5.3.3. Moreover, Section 6.3 presented a block-based

procedure to verify repeated patterns by the detected reapeated blocks, while the repeated

blocks would not be calculated every frames.
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4.3 Overview of the Framework

(a) (b)

Figure 38: (a) Schematic diagram of the cascade framework and (b) ROC curves for the
three rejecters.

Based on the strategies, the framework is composed of cascaded rejecters to reject

negative from the output of the preceeding rejecter, as presented in Fig. 38(a) while

the ROC curves of the three rejecters in Fig. 38(a) are shown in Fig. 38(b). For the

cascade framework, the performance and computation speed requirements for surveillance

applications are analyzed below.

4.3.1 Performance

To explain the performance requirement, we make the following three assumptions: (1)

the total number of rejecters is 20, (2) the TPR of each rejecter is 99.9%, and (3) the

FPR of each rejecter is 40%. Then, the final TPR and FPR of the entire cascade plate

recognition system are 98%(0.99920) and 10−6%(0.420), respectively. The final accuracy

rate is 99%; it is measured by the following formula:

AccuracyRate = λ × TPR + (1 − λ) × (1 − FPR), (4.1)

where TPR is the rate of positives that are correctly recognized; FPR, the rate of nega-

tives that are incorrectly recognized; and λ, the weighting coefficient, for example, 0.5.
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4.3.2 Computational Speed

Under the assumption that most of the input candidates are negative, the computational

speed of the entire system can be improved because a majority of the negative candidates

may be rejected by the initial rejecters using simpler decision rules with a low compu-

tational load. The strategy is referred to as computational risk reduction. Consider the

following experimental case as an example: In a 640 × 480 input image, the total number

of plate region candidates for detecting a minimum recognizable plate size, 60 × 15, is

270, 746. In our experiments, approximately 20 candidates of the plate regions remain

after the application of the spatial search-space reduction. In addition to computational

risk reduction, duplicate memory access can be avoided by one-pass algorithms, which

will be described in sections 5.2 and 6.2, respectively.
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Chapter 5 Rejection Mechanisms for

Single Images

This chapter describes a plate recognition system that can process images rapidly at

high accuracy rates. This system is designed to meet the requirements of performance,

computational speed, and adaptation for vehicle surveillance applications such as stolen

car detection systems. These requirements are satisfied by adopting a cascade frame-

work, utilizing plate characteristics, and developing fast one-pass algorithms. Our system

is composed of three main cascading modules for plate detection, character segmenta-

tion, and post-processing. Each module is further decomposed into several cascading

procedures, which are composed of successively more complex rejecters. The first mod-

ule rapidly rejects a majority of non-plate regions by using low computational gradient

features and a one-pass scanning algorithm followed by heavy computational statistical

rejecters. The second module rejects a majority of non-character regions in a similar

manner. A peak-valley analysis algorithm is proposed to rapidly detect all promising

candidates of character regions. The third module eliminates the plate characters that do

not satisfy the plate specifications. In our experiments, the system can recognize plates

over 38 frames per second with a resolution of 640 × 480 pixels on a 3 GHz Intel Pentium

4 personal computer.
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5.1 Introduction

Based on the three strategies, the rejection mechanisms for single images, as presented

in Fig. 39(a), are composed of three cascaded modules for plate detection, character

segmentation and recognition, and post-processing.

(a)

(b) (c)

Figure 39: Schematic diagram of the rejection mechanisms for single images.

The first module shown in Fig. 39(b) aims to reduce the searching space of the plates

by three cascading procedures. The first procedure eliminates most of the non-character

regions by the low computational features, gradients, according to plate characteristic 1.

The second procedure extracts the promising plate regions by a one-pass extraction algo-

rithm according to plate characteristic 2. The third procedure rapidly rejects a majority

of the non-plate regions by using complex rejecters with increasing complexity and higher

dimensions of statistical features according to plate characteristic 3. Moreover, these re-

jecters could be automatically learned by a boosting algorithm from the characteristics

between the plate and non-plate regions. In the second module, shown in Fig. 39(c), three

procedures are designed for the aforementioned scenario in order to reduce the searching

space of the characters. To extract character candidates rapidly, a peak-valley analysis

algorithm is proposed to detect all promising segments from intensity histograms and pro-

jection profiles in the first and second procedures, respectively. Non-character candidates

would be rejected quickly by the rejecters, which are automatically trained with character
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candidates detected from the preceding procedures. Then, the remaining character can-

didates will be recognized by an optical character recognizer (OCR). In the last module,

the recognized plate characters that do not satisfy the plate specifications are discarded.

The plate specifications used for the experimental data are defined as follows.

• PLATE = T1 | T2 | T3 | T3

• T1 = (M2)(N4) | (N4)(M2)

• T2 = (M2)(N3)

• T3 = (M2)(N2)

• T4 = (M3)(N3)

• M2 = Alphabet Alphabet | Alphabet Number | Number Alphabet

• M3 = M2 Alphabet | M2 Number

• N2 = Number Number

• N3 = N2 Number

• N4 = N3 Number

In general, the rejection mechanisms for single images are a cascade of rejecters,

each of which focuses on the rejection of non-characters, non-plate character lines, or

non-plates.
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5.2 Compact Plate Region Detection

5.2.1 Generation of Plate Region Candidates

Irrespective of the plate type, according to plate characteristic 1, the color of a plate

character is always different from that of the background. Therefore, plate regions may be

distinguished from most non-plate regions by using gradient features. However, horizontal

gradients are not distinctive features because plates may usually contact some other parts,

such as bumpers, which also have strong horizontal gradients. To reduce the searching

space effectively, only vertical gradients are used in this step. The vertical gradients in

Fig. 40(c) represent the plate regions that appear clearer than others. After the vertical

gradient operation, pixels whose gradient values are higher than a threshold are used

as the pixels of plate candidates. The threshold is obtained automatically from Otsu’s

method [130] and the thresholding map is termed Gp.

(a) (b) (c) (d)

Figure 40: Different gradient results of an input image: (a) Original image, (b) Sobel
gradients, (c) vertical gradients, and (d) horizontal gradients.

5.2.2 Extraction of Compact Plate Regions

Non-plate Run Suppression

To extract the compact plate regions with precision, four types of non-plate runs should

be suppressed. Here, a “plate run” is defined as the successive pixels of plate candidates

in Gp, while a “non-plate run” is defined as successive pixels of non-plate candidates. Let

Wp and Hp denote the width and height of a compact plate region, respectively. We define

suppressed non-plate runs as follows:
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1. Vertical plate runs higher than Hp

2. Horizontal plate runs longer than Wp

3. Plate runs located between two non-plate runs longer than the maximum width of

plate characters

4. Small isolated plate regions

Runs of types 1 and 2 are mainly caused by plate frames or bumpers, while those

of types 3 and 4 are generated by screws, noises, and other parts connected with plate

characters.

Compact Plate Region Extraction

After the non-plate runs are suppressed, the remaining plate runs may not comprise a set

and they may be scattered significantly, thereby making it difficult to compose compact

plate regions. A horizontal smearing technique is then used to group two plate runs whose

distance is less than the criterion λs into compact plate regions. The smearing criterion

could be determined from the plate characteristic 2. Since the distance between two plate

runs should not exceed the maximum width of the plate characters, λs is defined as Wp/N ,

where N indicates the number of plate characters. In our experiments, the range of Wp

is set to four times Hp according to the plate specifications, while Hp is selected from 15

pixels (minimal height of the recognizable plate size) to the quarter-width of the input

image. Finally, the connected components whose size exceeds a threshold defined by type

4 suppression are extracted as candidates of compact plate regions. Moreover, the map,

Gp, should be restored in the first step of every iteration because it would be modified by

the non-plate run suppression. The extraction steps are summarized in Alg. 1.
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Data: Gp

Result: candidates of compact plate regions
foreach (wp, hp) in Wp and Hp do

λs ← (wp/N) ;
1. restore the map, Gp;
2. remove vertical plate runs higher than hp (type 1 suppression);
3. remove horizontal plate runs longer than wp (type 2 suppression);
4. remove horizontal plate runs which are shorter than λs and located between
two horizontal non-plate runs longer than wp (type 3 suppression);
5. smear Gp with the parameter, λs;
6. remove regions smaller than (hp × wp)/4 (type 4 suppression);
7. extract connected components;

end
Algorithm 1: Multi-pass algorithm for extracting compact plate regions.

Data: the rowy of Gp

Result: plate and non-plate runs
Initialize an array Acc[width of Gp];
foreach column(x) in the rowy do

if rowy(x) > 0 then
Acc[x] = Acc[x] + 1;

else
Acc[x] = 0;

end
if rowy(x) > 0 and Acc[x] ≤ Hp then

update the plate run;
else

update the non-plate run (Type 2 suppression) ;
end

end
Algorithm 2: Algorithm for run determination, FindAllRuns.
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One-pass Extraction of Compact Plate Regions

For each size of compact plate regions, the procedure of compact plate region extraction

scans the input image seven times when the extraction algorithm is executed. In this

study, we propose a one-pass algorithm for the extraction of compact plate regions, as

illustrated in Fig. 41. During one-pass scanning, type 1 suppression is performed in the

step of run determination described in Alg. 2 and type 4 suppression is performed in

connected component extraction. Smearing and type 2 and 3 suppressions are performed

based on the run information without modifying the image. The one-pass extraction

algorithm is described in detail in Alg. 3, where dist(Runi, Runj) implies the distance

from the end of Runi to the start of Runj. Figure 42 shows an example in which a

candidate of the compact plate region is extracted explicitly by the application of the

algorithm.

Figure 41: Schematic diagram of the one-pass algorithm for extracting compact plate
regions.

(a) (b) (c)

Figure 42: An example in which the one-pass plate extraction algorithm is applied: (a)
Original image, (b) Gp of plate candidates, and (c) detected compact plate region.

64



Data: Gp

Result: candidates of compact plate regions
foreach row in the image do

FindAllRuns() ;
foreach Runi do

j = i - 1;
k = i + 1;
if dist(Runi, Runj) ≤ λs then group Runi and Runj // Smearing;
if length(Runi) > Wp then continue to process next run // Type 1
suppression;
if length(Runi) < λs and dist(Runj, Runi) > Wp and
dist(Runi, Runk) > Wp then

continue to process next run // Type 3 suppression;
end
// Type 4 suppression;
update corresponding connected components information when Runi is
connected with runs of the previous row

end
extract connected components whose sizes are larger than (Hp × Wp)/4 and are
not updated at previous procedures;

end
Algorithm 3: One-pass scanning algorithm for extracting compact plate regions.

5.2.3 Plate Verification

After the plate regions are extracted based on low-level gradient features, background

patterns such as bumpers or texture floors may not be rejected. The properties of a

compact plate region are different from those of a non-plate region. A significant property

is that a sequence of character patterns will exist in compact plate regions but not in most

of the non-plate regions. However, it is difficult to determine all heuristic rules for all

variations in different types of plate and non-plate regions. To reject non-plates quickly

and robustly, we adopt a cascade classifier [125] and a learning mechanism, AdaBoost

[126], to determine the minimum dominant features from our feature pool (Sec. 5.2.3)

and the statistical weak learners, hi(x) (Sec. 5.2.3), using the samples of compact plate

regions and non-plate ones. As shown in Fig. 43, the final rejecter is composed of all

selected weak learners, hi(x), combined with the weight, wi, and the threshold, θ. As

shown in Fig. 44, plate verification is performed by cascading rejecters with increasing
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complexity to reject non-plate regions in the shortest possible time. The verification

procedure is described in detail in the following subsections.

Figure 43: Schematic diagram of the learning and verification steps.

Figure 44: Schematic diagram of the plate verification procedure.
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Feature Extraction

To verify the plates correctly, instead of using raw pixel values, features are extracted to

minimize the within-class variability while maximizing the between-class variability. In

response to significant characteristics originating from variations in the plate characters,

our feature pool is based on the Haar-like features in Oren [131] and the fast computation

schemes proposed by Viola [125]. To represent all discriminating features, we extract over-

complete Haar-like features in all sizes. More specifically, the values of twenty feature

prototypes shown in Fig. 45, which include four edge features, eight line features, two

center-surround features, and six plate character-line features, are extracted to represent

compact plate regions and non-plate ones. Their prototypes are classified into two types:

upright and skewed. As discussed later, our features can be computed at any position

and scale in the same constant time; only one scanning procedure is required.

1. Edge (a) (b)

(c) (d)

2. Line (a) (b) (c) (d)

(e) (f) (g) (h)

3. Center-surround (a)

(b)

4. Plate Character line (a) (b) (c)

(d) (e) (f)

Figure 45: Feature prototypes of upright and skewed Haar-like features used in our system.
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(i) Upright Haar-like features: Haar-like features, which represent regional bright-

ness differences, are reminiscent of Haar basis functions. As shown in the left part of

Fig. 43, Haar-like features are computed by subtracting the weighted sum of the pixels

covered by the dark rectangle from that covered by the white rectangle. For a normalized

input region of 32 × 8, the total number of upright Haar-like features extracted in this

stage is 175, 256. In general, the total number of upright feature prototypes with a size

of w × h in an image of size W × H could be defined as

N = XY

(
W + 1 − w

X + 1

2

)(
H + 1 − h

Y + 1

2

)
, (5.1)

where X =
⌊

W
w

⌋
and Y =

⌊
H
h

⌋
denote the maximum scaling factors in the horizontal and

vertical directions, respectively. This formula is explained below.

When sliding along the row, the feature size could be (w × 1), (2w × 1), · · ·, or (Xw × 1).

The feature size can be measured from

(W − w + 1) + (W − 2w + 1) + · · · + (W − Xw + 1)

= X
(
W + 1 − w × X+1

2

)
.

When sliding along the column, the feature size could be (1 × h), (1 × 2h), · · ·,

or (1 × Y h). The feature size can be measured from

(H − h + 1) + (H − 2h + 1) + · · · + (H − Y h + 1)

= Y
(
H + 1 − h × Y +1

2

)
.

(ii) Skewed Haar-like Features: To represent skewed plate characters, we extend

the basic Haar-like features by an efficient set of horizontal skewed features. The number

of skewed feature types with a size of w × h could be observed as an upright feature type

with a size of (w + h) × h.
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(iii)Fast Computation Schemes: One problem of these features is that the compu-

tational effort increases when a window sweeps the entire input region at various scales.

To reduce duplicate summation operations, each used feature can be computed by the

acceleration tables, summed area table (SAT) [125] [132], or skewed summed area table

(SSAT), as shown in Fig. 46. In the SAT, the value at location (x, y) contains the sum of

the pixels above and to the left of (x, y):

SAT (x, y) =
∑

x′≤x;y′≤y

i(x
′
, y

′
), (5.2)

where i(x, y) is the value of the input image.

In the SSAT, the value at location (x, y) of SSAT contains the sum of the pixels of

the indefinite quadrangle that begins at the rightmost corner at (x, y) and extends to the

boundaries of the image:

SSAT (x, y) =
∑

x
′≤x;y

′≤y;x
′≤x−(y−y

′
)

i(x
′
, y

′
), (5.3)

where i(x, y) is the value of the input image. In this study, we propose to calculate the

values of SSAT in one-pass by the following formula:

SSAT(x,y) = SSAT(x−1,y) + SSAT(x−1,y−1) + i(x, y) − SSAT(x−2,y−1)

with

SSAT(−1,y) = SSAT(−2,y) = SSAT(x,−1) = 0

Then, each value of the summation in a quadrilateral region can be measured by two
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additions and one subtraction independent of the position or scale. For example, the gray

region denoted by D in Fig. 46 can be measured by

D = 4 − (2 + 3) + 1, (5.4)

where 1 · · · 4 are the values in the SAT or SSAT.

Thereafter, all values of the Haar-like features can be measured at constant time from

the acceleration tables. In the system, these acceleration tables are also created in the

one-pass extraction algorithm of the compact plate regions without scanning the image

again in subsequent procedures.

(a) (b)

Figure 46: Acceleration tables: (a) SAT and (b) SSAT.

Feature Dimension Reduction

More than one hundred thousand quadrilateral features are associated with each region

of plate candidates. Although each feature could be computed efficiently, the hypothesis

space was still very large and therefore it was difficult to satisfy the real-time requirement

of the system. In this study, we attempt to determine a dominant subset of the exhaus-

tive Haar-like features that reject the non-plates very effectively. For this purpose, we use

boosting techniques that could help to improve the accuracy of any given learning algo-

rithm. There are many variations in basic boosting. AdaBoost (adaptive boosting) [126],

which is the most popular boosting technique, allows the designer to continue adding
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weak learners until some desired low training error has been achieved.

Figure 47: Schematic diagram of the learning phase: f denotes the maximum acceptable
FPR per stage; t, the minimum acceptable TPR per stage; Ftarget, the overall false
positive rate; FPRi, the false positive rate at stage i; and TPRi, the true positive rate
of stages i.

AdaBoost: The main concept of AdaBoost is to assign a weight to each sample of

the learning set. In the beginning, all weights are equal; however, in every iteration, the

weak learner returns a hypothesis, and the weights of all samples classified incorrectly by

that hypothesis are increased. The weak learner is then forced to focus on the difficult

samples of the learning set. The final hypothesis is a combination of the hypotheses of all

iterations, namely, a weighted majority vote, where hypotheses with a lower classification

error have higher weights. The AdaBoost algorithm is summarized in Alg. 4.

Learning Procedure: In the learning phase, the feature dimension in a rejecter and

the number of rejecters are automatically determined by the AdaBoost learning algorithm

and the criteria satisfying the required TPR and FPR. As shown in the loop procedure in

the right side of Fig. 47, the learning procedure constructs cascading rejecters by search-

ing the set of possible features and returns the feature with the lowest classification error

iteratively. For each feature, the weak learner determines the optimal classification func-

tion that has the minimum number of misclassified samples. The learner is termed weak

because we do not expect to classify the training data effectively (i.e, it may only classify

the training data correctly 51% of the time). Therefore, a weak classifier, hj(x), consists

of a feature, fj(x), in which hj(x) is defined as a threshold-type function with a boolean-

valued output that indicates whether x is positive or negative. Here, x is a 32 × 8 image of
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the normalized regions of the plate candidates. The formal expression of a threshold-type

function is hj(x) = sign[fj(x) − b], where b is the threshold. Learning samples are then

reweighted in order to emphasize the false negatives and positives by previous learned

classifiers. The final rejecter takes the weighted combination of weak classifiers followed

by a threshold. In each iteration of boosting: (i) evaluate each quadrilateral feature (a

weak classifier) of each input training sample, (ii) select the best threshold for each weak

classifier, (iii) select the best weak classifier (feature) and the threshold, (iv) re-weight the

samples, and (v) determine the number of rejecters when the overall FPR is satisfied, as

shown in the loop procedure in the left part of Fig. 47.

Data: Given samples (x1, y1), · · · , (xn, yn), where yi = 0, 1 for negative and
positive samples, respectively.

Result: The final classifier H(x)
Initialize weights w1,i = 1/2m, 1/2l for yi = 0, 1 respectively, where m and l are the
number of negatives and positives respectively.
for t = 1, . . . , T do

1. Train one weak classifier hj for each feature j using wt, with error
εj =

∑
i wi |hj(xi) − yi|;

2. Choose ht(x) = argmin(εk), where k ∈ features (i.e., the hypothesis with
the lowest error εj). Let εt = εk;
3. Update the weights: wt+1,i = wt,iβ

1−ei , where ei = 0 if sample xi is classified
correctly, ej = 1 otherwise, and βt = εt/(1 − εt);
4. Normalize wt+1,i ← wt+1,i∑n

j=1 wt+1,j
so that wt+1 is a distribution.

end
Form the final classifier as

H(x) =

{
1 if

∑T
t=1 wtht(x) ≥ 1

2

∑T
t=1 wt

0 otherwise.
(5.5)

Algorithm 4: Algorithm of AdaBoost
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5.2.4 Multiscale Implementation

Scale selection is a fundamental problem in computer vision and a key bottleneck for

object detection algorithms. To increase the speed of detecting variant plate sizes, we

scale our detector in the parameter space (Wp and Hp) without spending computational

effort on scaling the input image, as in the case of other pyramid searching techniques.

Moreover, without normalizing the input plate candidates, the quadrilateral features used

for plate verification are measured in proportion to the extracted plate regions because

these features are rather invariant to the variations in the plate size and shape. As shown

in Fig. 48, the left image is detected with Wp = 60 pixels and Hp = 15 pixels, while the

right image is detected with Wp = 120 pixels and Hp = 30 pixels. The two images in

the middle show the results of one Haar-like feature measurements of the compact plate

regions detected from the two input images.

Figure 48: Schematic diagram of the extraction of one Haar-like feature (1 × 2) from two
compact plate regions.
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5.3 Cascading Segmentation and Recognition of Plate

Characters

Three procedures are developed in a cascade to segment and recognize the plate charac-

ters. First, low-computational histogram features are adopted in the first two procedures

to extract promising plate character candidates. Moreover, to segment characters effec-

tively with different variations, such as illumination changing on a plate or the variant

numbers of plate characters, a new segmentation approach is proposed based on peak-

valley analysis in conjunction with heuristics that determine the potential segments. In

the third procedure, heavy-computational statistical Haar-like features are selected to re-

ject non-character regions robustly. The remaining character regions are recognized by

an OCR.

5.3.1 Plate Character Segmentation

A compact plate region may contain two types of plate characters: distinct and indistinct.

A distinct character is a plate character that can be separated from the plate region on

the basis of thresholding from gray values, while an indistinct character is connected with

other ones. Four compact plate regions are shown in Fig. 49(a). The distinct characters

extracted as connected components after a certain values of thresholding are exhibited

in Fig. 49(b), and the indistinct characters are presented in Fig. 49(c). In most cases,

the plate characters would be distinct, which will be extracted first to avoid the use of

additional splitting procedures. In indistinct character regions, the region candidates of

single characters are determined by projection analysis. For measuring the projection

effectively, we use an additional acceleration table, PSAT, to avoid the recomputation

of the summation operations during the projection. The value at location (x, y) in the
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PSAT is the sum of the pixels above (x, y). Each value in the projection histogram could

be calculated by one subtraction operation.

(a) (b) (c)

Figure 49: Patterns of (a) compact plate regions, (b) distinct characters, and (c) indistinct
characters.

Searching for natural segmentation points

It is generally difficult to determine optimum thresholds during histogram segmentation

or projection segmentation because the difference between the color of the characters

and the background is usually not evident. For example, a compact plate region with

indistinct colors between the characters and the background is shown in Fig. 50(a), whose

histogram is displayed in Fig. 50(b), where the white line represents the threshold value

detected by Otsu’s method. The result obtained after thresholding by Otsu’s method is

presented in Fig. 50(c), in which only one distinct character, “7,” could be detected after

connected-component extraction. Other characters such as “5” or “8” would be extracted

by other thresholds.

With the assumption that each character is composed of pixels with similar colors,

the potential thresholds to separate distinct characters from others would occur in a valley

of the histogram for the plates with light-coloured characters or in a peak for the other

plates with dark-coloured characters. After thresholding, the connected components are

selected as candidates of distinct characters when their regions satisfy plate characteristic

4, for example, the width to height ratio of 0.5. To segment the indistinct characters in

the remaining regions, we propose to use the projection profile to detect all promising

segment points, which would exist in the local peaks or valleys of the projection profile

according to the change from the plate characters to the background.
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(a) (b) (c)

Figure 50: Inevident difference between the colors of the characters and the background:
(a) compact plate region, (b) histogram, and (c) binary representation after thresholding
by Otsu’s method.

Certain local peaks (white lines) and valleys (gray lines) of the histogram are shown

in Fig. 51(b), and three results obtained after thresholding with different peak values

are shown in Fig. 51(c)-(e). The distinct character, “7,” would be extracted from the

connected components of Fig. 51(c) and the others, “5” and “8,” could be extracted

from Fig. 51(d). All the extracted distinct characters “5,” “7,” and “8,” are displayed

in Fig. 51(f). The character representation after thresholding with a lower threshold

would be more fragmented than that shown in Fig. 51(e); this shows that other plate

characters marked as indistinct characters shown in Fig. 51(g) could not be extracted

effectively at this moment. The lower part of Fig. 51(g) shows the projection profile of

the upper part and the corresponding peaks and valleys. Using the peak or valley values

for segmentation, we could separate all single characters from the indistinct characters,

as shown in Fig. 51(h).

(a) (b)

(c) (d) (e)

(f)
(g)

(h)

Figure 51: One segmentation result: (a) Original compact plate region, (b) histogram of
image (a) where peaks and valleys are indicated by white and gray lines, respectively;
(c)-(e) three thresholding results with three different peak values-from low to high; (f)
indistinct characters detected by histogram segmentation; (g) distinct characters detected
by histogram segmentation; (h) projection profile of (f); (i) single characters detected by
projection segmentation.
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Searching for special segmentation points

Some natural segmentation points are highly concentrated or dispersed according to the

degree of noise or different combinations of characters. The high concentration of segmen-

tation point appears usually in the middle of thin connected characters such as “H,” “N,”

or “U.” To reduce the number of character candidates, we select only the regions that

satisfy plate characteristic 4, for example, regions with a width-to-height ratio of 0.5. The

segmentation points are dispersed when the character regions are not segmented exactly

because these points would not exist in the boundaries of characters such as “T” or “L.”

For example, a valley point would be detected at the middle of the “T” projection or at

the left of the “L” projection. To improve the performance of projection segmentation, a

segmentation point also locate in the middle of two detected segmentation points whose

distance is greater than λs.

5.3.2 Peak-Valley Analysis

In a histogram or projection profile, a peak is a point with the value of the maximum

height between two local minima. In order to consider a point as a peak, the value must

be the local maximum and at least λ greater than the local minimum. Similarly, a valley

point is defined as a point with the minimum value that is less than λ between two local

maxima.

To detect all peaks and valleys, two decision modes, which are termed peak decision

mode and valley decision mode, are designed to determine a peak and a valley, respectively.

Moreover, two cascading procedures are proposed to detect all promising peaks and valleys

in one-pass scanning. The first procedure is termed mode initialization as shown in Fig. 52,

where f(i) denotes the value of the profile at position i. The mode of peak finding or

valley finding is determined according to the initial progressive increase or decrease in
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profile values. The second procedure is termed peak-valley decision as shown in Fig. 53.

A point is selected as a peak when its value is higher than that of its neighbor and the

previous valley by λ in the peak finding mode, while a point is selected as a valley when

its value is less than that of its neighbor and the previous peak by λ in the valley finding

mode. The peak and valley finding modes are performed alternately in order to determine

all peaks and valleys.

Figure 52: Schematic diagram of the mode initialization step.

Figure 53: Schematic diagram of the peak-valley decision step.
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5.3.3 Character Verification

The variations in characters and non-characters extracted from the preceding segmenta-

tion procedures are automatically learned using the same scenario of plate verification

as that described in section 5.2.3. The classification phase of character verification is

depicted in Fig. 54. During the feature extraction step, the SAT and SSAT are reused

to calculate the Haar-like features for character rejecters. As compared with the plate

verification, one more procedure of the OCR is adopted to recognize each character explic-

itly. We have investigated the development of an OCR for plate characters with different

appearances [133]. In the OCR, the feature extraction step is first adopted to transform

the character images into feature vectors.

Figure 54: Schematic diagram of the character verification step.

OCR feature Extraction

Three robust character features are extracted to represent the characters: (1) contour-

crossing counts (CCs), (2) directional counts (DCs), and (3) peripheral background area

(PBA).

For the CC feature, each subimage is segmented non-uniformly into 8 strips in both

the horizontal and vertical directions. These strips have the same number of character

pixels. In order to increase the speed of the extraction, four scan lines are selected to

extract the features in each strip. One value of the contour-crossing count, CCk, is

the number of strokes intersecting each scan line k, as indicated by the dashed line in

Fig. 55(a). The CC feature dimension of an input sample is 16(= 8 × 2). Each CC feature
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value fi in strip i is defined as follows.

fi =
4∑

k=1

CCik (5.6)

The DC feature represents the number of contour points in four main directions. As

shown in Fig. 55(b), we divide the directions into four groups: G1, G2, G3, and G4, which

correspond to the horizontal, vertical, diagonal, and inverse diagonal strokes, respectively.

The patterns are only measured from the pixels located at the boundaries of the strokes.

The angle of a stroke, ranging from 0o to 180o, is determined by the Sobel operator. The

DC feature dimension of an input sample is estimated as 64(4 × 4 × 4) by splitting the

input character image into 4 × 4 sub-blocks.

The PBA feature is the length of line segments that begin from the boundary of

the image to the character contour. The input character image is first segmented into 8

strips in both the horizontal and vertical directions by the method described in the above

processing technique. In each strip, two feature values are measured from the lengths

between the strip boundary and the nearest character contour. Each PBA faeture value

is then divided by the length of the strip for normalization. The PBA feature dimension

of an input sample is 32(= 8 × 2 × 2). The final feature dimension of each character is

112(16 + 64 + 32).

(a) (b)

Figure 55: Feature prototypes of OCR: (a) CC and (b) DC.
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OCR Classification

The classification step is realized by a support vector machine (SVM) [134] to classify

each plate character. The SVM method searches for a linear separating hyperplane as a

linear combination of support vectors (in addition to a constant). The distance from all

the support vectors to the hyperplane is 1. The SVM implementation used in this study

is LibSVM [135]. In order to determine the best setting for the SVM, we test different

settings for the parameters. The radial basis function (RBF) is the final used kernel given

to LibSVM for the OCR. The highest OCR accuracy (with only one character error on

the training set) is obtained by setting gamma (related to the RBF radius) to 0.0078125.

Non-plate Character Suppression

After the extraction and recognition of the plate characters, several characters would be

suppressed when they exist in the subregions of the real characters such as “L” in the

region of “C,” “7” in the region of “Z,” or “F” in the region of “E.” For the first example,

if “L” is another recognition candidate in the region of the recognized character “C,” it

should be suppressed according to the geometrical similarity between the lower half of the

plate character “C” and the plate character “L.” In this study, these heuristic rules are

collected and generated manually in the training phase from the recognition candidates

and the ground truth data. In the region of character “Z”, for example, if over 30%

sub-regions, are recognized as “7,” the recognition result should be supressed.
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5.4 Experimental Results and Discussion

This section describes the results of our cascade plate recognition system, including the

detection and the final recognition results. The discussion includes details on a comparison

with other publishing systems as well as the results of a large real-surveillance testing

set. The system proposed in this study was implemented in C language and tested on

a standard Intel Pentium 4, 3 GHz personal computer. To recognize the plates more

effectively, we reduced the height of the test images to half or directly captured the half-

height images from the capturing devices without performing the deinterlace procedure.

This indicates that the width-to-height ratio of the plate character is set to 1 in the

experiments.

5.4.1 Plate Recognition System Performance

The plate training set consisted of 8, 520 manually selected plates scaled to a base reso-

lution of 32 × 8 pixels. The plates were extracted from images captured in actual visual

surveillance environments. The training and test images showed different plate types,

sizes, locations, or illuminations. The character training set consisted of 4, 786 manually

selected characters scaled to a base resolution of 16 × 16 pixels. The characters were

extracted from the plate training set.

The test images are arranged into three sets according to the captured image size

to demonstrate the performance, computational speed, and adaptation. Each test set is

mainly composed of three kinds of capturing environments, which are a portal, roadside,

and pavement background. These datasets are used to show different types of lighting or

environment on a wet day, cloudy day, and sunny day. The datasets also shows tolerance

of our plate recognition system to camera’s pan and tilt motion.
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In these images, the plate candidates extracted by compact plate region extraction

are shown with blue rectangles, while the final recognized plates are indicated by red rect-

angles. Figure 56 shows the experimental results obtained with different headlights on a

wet day, while Figs.57 and 58 show the results obtained with different types of environ-

mental lighting on cloudy and sunny days, respectively. The results of images captured

in the environment of the pavement background with texture patterns are presented in

Fig. 59. Figure 60 demonstrates the ability to recognize the frames from a capturing de-

vice installed in a car. Although the capturing device placement (pan/tilt) was changed

(approximately 20o), as shown in Fig. 60, our plate recognition system still performed

well without the application of any skew correction procedure.

The system performances are shown in Tables 5.1 and 5.2. In Table 5.1, plate heights

are shown in the third column, while the testing numbers of images with and without

plates are presented in the fourth column. The numbers of images with plates recognized

are given in the fifth column. In dataset 3, for example, 11, 598 images (say, true positives)

are recognized correctly in the 11, 896 plate images and 516 images (say, false positives)

are recognized erroneously in the 52, 000 non-plate images. The TPR, defined as the

ratio of true positives to the number of input images with plates, is shown in the sixth

column; the FPR, defined as the ratio of false positives to the number of input images

without plates, is shown in the seventh column. In dataset 3, for instance, the FPR is

0.01%, standing for one false alarm in ten thousand input images. The errors occur due to

the existence of similar patterns such as the symbol “|” near the borders of the plate, or

ambiguous characters such as “8” and “B” or “0” and “D.” Finally, the system accuracy

rates shown in the last column are all greater than 96%, which are the weighted sum of

the TPR and the FPR, as defined in section 4.3.1.
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Table 5.1: Recognition results of our plate recognition system (I)
Dim. Max./Min. Plate/Non-plate True Positives/

PlateHeight Image # False Positives
1 320 × 240 40/15 3, 756/19, 000 3, 575/369
2 640 × 240 60/15 4, 153/22, 000 4, 028/357
3 640 × 480 120/30 11, 896/52, 000 11, 598/516

Table 5.2: Recognition results of our plate recognition system (II)
Dim. TPR (%) FPR(%) Accuracy (%)

1 320 × 240 95.176 0.019 96.638
2 640 × 240 96.990 0.016 97.695
3 640 × 480 97.495 0.01 98.251

5.4.2 Plate Detection Performance

The number of features used in the stages of the plate verifier using only upright Haar-like

features and both upright and skewed Haar-like features are demonstrated in Fig. 61. The

detection performance is shown in Table 5.3. The detection accuracy rates are greater

than 99%. As shown in Figs. 56(c)-60(c), the algorithm for one-pass compact plate

region extraction could detect the plate character regions without restrictions on the

sizes, locations, and colors of the plate or the environmental lighting.

5.4.3 Comparison of Computational Speed

A comparison of the experimental computational speed and performance comparisons

with those of two other studies is shown in Table 5.4. The term, “LPD,” indicates

that the system only dealt with plate detection, “LPS” presents that the system only

dealt with plate character segmentation and character recognition, and “All” denotes the

system including plate detection, plate character segmentation, and character recognition.

Moreover, our system also outperforms commercial systems with respect to computational

speeds. The VECON-VIS system [136] processes each image in less than 0.5 seconds while

the SeeCar library [137] could response at 25msec per image but requiring at least 80 pixels
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Table 5.3: Detection results of our plate detection module
Dim. Max./Min. Plate/Non-plate True Positives/ TPR (%) FPR(%)

PlateHeight Candidate # False Positives
1 320 × 240 40/15 3, 756/ 341, 240 3, 718/ 87, 268 98.997 0.256
2 640 × 240 60/15 4, 153/ 418, 438 4, 145/ 89, 998 99.807 0.215
3 640 × 480 120/30 11, 896/1, 137, 348 11, 879/223, 636 99.857 0.197

height per typical plate. When we applied our system to the dataset, thirty-two local

vehicle images used in the SeeCar library [137], all plates in the images are recognized

correctly. Other systems, such as Zamir’s LPR engine [138] and CARMENR Parking

License Plate Recognition Engine [139], would perform less than 20 frames per second.

Above commercial systems all proclaim that the accuracy rates are over 95%. However,

the details of settings and testing environments are unavailable for detail comparisons.

(a)

(b)

(c)

Figure 56: Examples of a variety of plates on a wet day: (a) input images, (b) recognized
results shown in color images, and (c) enlarged recognized plates.

(a)

(b)

(c)

Figure 57: Examples of a variety of plates on a cloudy day: (a) input images, (b) recog-
nized results shown in color images, and (c) enlarged recognized plates.
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(a)

(b)

(c)

Figure 58: Examples of a variety of plates on a sunny day: (a) input images, (b) recognized
results shown in color images, and (c) enlarged recognized plates.

(a)

(b)

(c)

Figure 59: Examples of a variety of plates with the pavement background of texture
patterns: (a) input images, (b) recognized results shown in color images, and (c) enlarged
recognized plates.

(a)

(b)

(c)

Figure 60: Examples of a variety of plates captured from a device installed in a car: (a)
input images, (b) recognized results shown in color images, and (c) enlarged recognized
plates.

Table 5.4: Comparison results of the computational speed and the accuracy rate for plate
recognition

Speed (fps) Dim. # Accuracy(%) Env.
Chang, et al., ITS’04 ˜2.5(LPD) 640 × 480 1061 ˜93.7 P4 1.6 GHz
Amit, et al., PAMI’04 ˜0.3(LPS) None 520 ˜99 P3 1 GHz
Our system ˜40(All) 320 × 240 22, 756 96.638 P4 3.0 GHz
Our system ˜36(All) 640 × 240 26, 153 97.695 P4 3.0 GHz
Our system ˜38(All) 640 × 480 63, 896 98.251 P4 3.0 GHz
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Figure 61: Comparison of feature numbers between classifiers using only upright and both
upright and skewed Haar-like features.
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Chapter 6 Rejection Mechanisms for

Video Sequences

In surveillance applications, search space reduction (SSR) is an essential element to effi-

cient algorithms. In this study, spatial and temporal SSRs are integrated for license plate

detection in video sequences; the plates could be extracted robustly and extremely fast.

Our method started from spatial SSR by a bi-level one-pass plate extraction (BOPE)

algorithm developed to extract plates accurately even in complicated situations. The

search space was reduced by applying information from both spatial characteristics and

temporal representation in consecutive frames. We proposed to exclude repeated patterns

with the similar appearances in the same location of consecutive frames, which usually

include stopped vehicles or regular backgrounds. For efficiency, repeated patterns were

detected only on the results of BOPE, named spatiotemporal SSR, based on a block-based

mechanism by estimating the tangent distance, which is invariant to the variations in po-

sitions, sizes, rotations, or brightness. To reduce the computational load, the repeated

patterns and their measured invariant features could be retained for next estimation. In

our experiments, the search space could be reduced up to 87.9% by the spatiotemporal

SSR; all plates with the heights ranging from 24 to 40 are extracted correctly. The im-

plementation of the system on a 3G Hz PC run on average 76 frames per second. The

high performance suggests that the real-time goal for surveillance applications could be

accomplished.
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6.1 Introduction

This study develops a bi-level one-pass plate extraction (BOPE) to detect plate candidates

robustly and accurately even in complicated situations, where vehicles and motorcycles

may appear simultaneously in parking spaces. In these environments, plates might be close

or connected with backgrounds in the captured frame. Moreover, to save computational

load, we propose to reject repeated patterns with similar appearances in the same location

of consecutive frames instead of detecting moving objects directly. The patterns repeated

in consecutive frames would be identified utilizing the similarity measurement between the

extracted plate candidates of the previous frame and those of the current frame. In LPR

system, usually stand for unnecessary ones, such as stopped vehicles or regular background

patterns. By the procedure of repeated region detection, redundant computations could

be avoided. However, it is time consuming to compare the candidates in the current frame

to all of the candidates in the preceding frame. In Section 6.3, a block-based procedure

is presented to verify repeated patterns.

To detect plate candidates rapidly and effectively, the mechanism of our spatiotem-

poral SSR is depicted in Fig. 62. Three major modules of the mechanism are summarized

as follows:

• Plate candidates generation: This module generates a plate candidate map, Gp, by

thresholding the vertical gradients of the original input.

• Bi-level one-pass plate extraction: This module extracts candidates of compact plate

regions, Candp, by the BOPE algorithm (Section 6.2).

• Repeated region detection: This module detects repeated regions by the similarity

measurement (Section 6.3) between Candp at the current frame and ones at the

preceding frame.
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Figure 62: Overview of the rejection mechanisms for video sequences.

6.2 Bi-level One-pass Plate Extraction

A one-pass plate extraction (OPE) was designed to extract all plate candidates from

the connected components after the removal of four types of plate runs and horizontal

smearing. The steps of OPE are summarized in the following:

1. For an image input, calculate vertical gradients, Gp.

2. For each row in the Gp, find all plate runs; and remove the runs of type 1.

3. For each plate run, smear horizontally with other plate runs and remove the runs

of types 2 and 3.

4. After processing all plate runs in each row, update information of connected com-

ponents.

5. After processing al rows, extract connected compoents and remove the type 4 runs.

In more complex surveillance environments, the plate candidates might be close or

connected with complex backgrounds, in which there are high gradient values. To further

explain the problem, a frame of a parking lot is demonstrated in Fig. 63(a), while the

corresponding plate candidate map, Gp, and the result after we remove the four types
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of plate runs are displayed in Figs. 63(b) and (c), respectively. Because of the trees in

the background, OPE would extract many candidates with large regions as shown in

Fig. 63(d). The large candidates would meaninglessly consume recognition time. For

example, the largest candidate, region R1, is a non-plate one, which is still demanded to

be rejected in the cascade plate recognition system. Moreover, we would have inclined

plates connected with other patterns; it is difficult to extract compact plates accurately

only by suppressing the four types of plate runs. Some of these plate candidates may have

wide-margins and are not compact plate regions. For example, the characters in region

R2 are connected with other patterns, where the rightmost character is connected with a

label. Region R3 shows another example of a plate with wide-margin, where the plate is

connected with the backgrounds. The extracted regions R1, R2, and R3 are enlarged in

Figs. 63(f)-(h), respectively.

(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 63: Results of the OPE and the BOPE algorithms in a complex environment of a
parking lot: (a) the original frame with multiple motorcycle plates, (b) the corresponding
plate candidate map, (c) the result after removing the four types of plate runs from (b),
(d) the result after applying the OPE procedure in (b), (e) the result after applying
the BOPE procedure in (b), (f)-(h) the extracted regions R1-R3 of (d), and (i)-(k) the
extracted regions R1-R3 of (e).

91



The problems after we apply the OPE are summarized as follows:

• Large plate candidates. This type of candidates is caused by the complex envi-

ronments.

• Wide-margin plate candidates. This type of candidates is caused by the complex

environments or adornments closed to the plate characters.

• Small plate candidates. This type of candidates sometimes occurs when special

characters, such as “1”, exist successively with a large gap.

In order to solve the problems, some procedures, such as character boundary detec-

tion, could be applied to reject the large background patterns or to remove the wide-

margins, but they would be time-consuming. To extract all compact plate regions accu-

rately without increasing the algorithm’s time complexity, we propose a bi-level one-pass

plate extraction algorithm (BOPE) as shown in Algos. 5, 6, and 7.

In the first level as depicted in Algo. 5, plate candidates are extracted as connected

components after we apply the smearing method and exclude the three types of plate

runs 2, 3, and 4. These steps are similar to the OPE and shown in the loop “foreach”

of Algo. 5. The sub-procedure of runs finding as shown in Algo. 6 is used to determine

all horizontal plate runs while excluding the vertical plate runs 1 higher than Hp. In the

algorithm, the numbers of pixels, which are grouped in plate candidates, are accumulated

in a summed area table [132], CS, to speed up the second level procedure. Each value at

location (x, y) of CS contains the sum of the pixels above and to the left of (x, y):

CS(x,y) =
∑

x′≤x;y′≤y

pr(x
′
,y

′
) = CS(x−1,y) + CS(x,y−1) − CS(x−1,y−1) + pr(x,y) (6.1)
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with

CS(−1,y) = CS(x,−1) = 0,

where pr(x, y) equals to one if the point (x, y) belongs to the plate run, or zero if it is

not.

In the second level as depicted in Algo. 7, large or wide-margin plate candidates are

adjusted to compact plate ones by comparing the probabilities of compactness for each

sub-region inside the candidates. The probability could be estimated from the number of

pixels in a grouped plate run, since each point in the plate run is identified as a part of

the plate region. Then, for each sub-region, the probability of compactness Pc is defined

as

Pc =
∑

x

∑
y

pr(x, y), (6.2)

where (x, y) is the point in the sub-region. The sub-region with the highest Pc is selected

as the new compact plate candidate based on the assumption that the sum in the plate

region would be larger than those of neighboring regions. Moreover, to avoid redundant

calculations, Pc is measured in constant time from CS and re-defined as

Pc = CS(r,t) − CS(l,t) − CS(r,b) + CS(l,b), (6.3)

where l, t, r, b denote the left, top, right, and bottom boundaries of the sub-region, respec-

tively.

As shown in Fig. 63(e), the three plates extracted by our BOPE are tighter than

those extracted by the OPE. The extracted regions R1, R2, and R3 by the BOPE are

shown in Figs. 63(i)-(k), where the regions R2 and R3 are compact plate regions.
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Data: Gp

Result: candidates of compact plate regions
foreach row in the image do

FindAllRuns() ;
foreach Runi do

if ‖Runi, Runj‖ ≤ λs then group Runi and Runj // Smearing;
if ‖Runi‖ > Wp then continue to process next run ;
if ‖Runi‖ < λs and ‖Runi−1, Runi‖ > Wp and ‖Runi, Runi+1‖ > Wp then

continue to process next run ;
end
update information of corresponding connected components when Runi is
connected with runs of the previous row ;

end
for non-updated connected components do

PlateReestimation() ;
extract connected components whose sizes are larger than (Hp × Wp)/4;

end

end
Algorithm 5: BOPE algorithm for extracting compact plate regions.

Data: the rowy of Gp

Result: plate and non-plate runs
Initialize an array Acc[width of Gp];
foreach column(x) in the rowy do

if rowy(x) > 0 then
Acc[x] = Acc[x] + 1;

else
Acc[x] = 0;

end
if rowy(x) > 0 and Acc[x] ≤ Hp then

update the plate run;
else

update the non-plate run;
end
CS(x,y) = CS(x−1,y) + CS(x,y−1) − CS(x−1,y−1) + pr(x,y) (Eq. 6.1) ;

end
Algorithm 6: Algorithm for run determination, FindAllRuns.
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Data: connected components and CS
Result: plate candidates
foreach connected component, CCi do

if the size of CCi is larger than (Hp × Wp) then
determine the compact plate candidate, which size is (Hp × Wp) with the
largest Pc (Eq. 6.3);
reject the plate candidate when the gradient sum is lower than a threshold

end
else

extend the left and right boundaries
end

end
Algorithm 7: Algorithm for plate re-estimation, PlateReestimation.

6.3 Repeated Region Detection

After we extract plate candidates from BOPE, the candidates in the current frame may

be classified as the same results with those in the preceding frame if they have similar

appearances. The similarity can be defined as a distance measurement such as the Eu-

clidean distance, assuming that the source and target patterns are represented as vectors.

However, there are always variations between plate candidates even when they are the

same targets because of variations of sensing or motion of surveillance targets. Measuring

image distances is a complex task because these different image variabilities have to be

considered.

One way to measure the similarity is to extract features invariant to certain sensing

variations. To avoid the computational load of feature extraction, we propose an alterna-

tive way using “deformable” prototypes. During the matching process, each target pattern

is deformed so as to best fit the incoming pattern. Mathematically, when the repeated

patterns are subject to spatial transformations (rotations, scaling, changes of positions,

etc.) or variable lighting, they span manifolds in the high-dimensional Euclidean space of

pixel intensities; here, a manifold is an abstract mathematical space that locally resembles

Euclidean space, but globally represents more complicated structure. With the examples

of Fig. 64, the regions labeled as “R1” or “R2” in the right of Fig. 64(b) would be shifted
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or scaled so as to best match the previous appearances shown in the left. Hence, the

applicable measure of distances is the one between the manifolds resulting from all possi-

ble transformations of the input pattern, rather than the Euclidean distance between the

patterns.

(a)

(b)

(c)

Figure 64: Examples of repeated regions in the same locations of two successive frames:
(a) Left: the frame at time t − 1, Right: the frame at time t, (b) the candidate regions in
the two frames, (c) and the enlarged regions.

This idea has been formalized in the machine learning literature through the “tangent

distance” between the manifold tangents at the location of the input patterns [140]. The

tangent distance has been shown to be especially effective in pattern recognition applica-

tions [141] and is quite easy to understand and implement. Through the tangent distance,

the various transformations of an input pattern could be represented by a parameterized

multi-dimensional manifold, where each parameter accounts for one transformation. This

idea can be extended to any desired transformation, such as brightness changes.

In the following, we first give an overview of the invariant distance measure, tangent

distance (TD) in Section 6.3.1. The compensation for several transformations of the

repeated patterns is discussed in Section 6.3.2. We show its integration into the license

plate detection system in Section 6.3.3. Finally, an improvement mechanism for reducing

computational load is presented in Section 6.3.4.
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6.3.1 Overview of Tangent Distance

The tangent distance between two manifolds is defined as the Euclidean distance between

their closest points. Let the function s (P, α) transform an input pattern P according to

the parameter α. The function s is required to be differentiable with respect to α and P ,

and s (P, 0) is equal to P . The parameter α would be an m-dimensional parameters vector;

each parameter stands for one control factor of the transformation, such as shifting or

rotation. Then, the set of all transformed patterns is a manifold of at most m dimensions

after orthogonalization [142]. For example, if the allowable transformations of input

patterns are vertical shift and rotation, the space will be a two-dimensional manifold.

Given two patterns P and E, the distance between the associated manifolds is defined as

DMD (P,E) = minα {‖s (P, α) − s (E,α)‖} (6.4)

where ‖x‖ stands for Euclidean norm; the norm of x is the positive square root of the

scalar product of x with itself. For another example, the pixel values of a 32 by 8 plate

image can be represented as a 256-dimensional vector. Assuming that the set of allowable

transformations is continuous, the set of all the transformed patterns is a surface in the

256-dimensional pixel space. Formally, when a pattern P is transformed (e.g. rotated)

according to a transformation s (P, α), which is dependent on the parameter α (e.g. the

angle of the rotation), the set of all the transformed patterns is

SP = {x|∃α → x = s (P, α)} . (6.5)

In general, these manifolds will not be linear and the global minimum-distance match-

ing would be very expensive and unreliable. In practice, the minimum distance can be

considered as the distance between the manifolds’ tangent spaces. By approximating the
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surface of possible transforms of an input pattern by its tangent plane, the matching pro-

cedure is reduced to finding the shortest distance between two planes, that is, the tangent

distance. The line, Tp, in Fig. 65 depicts the linear approximation of the curve, Sp, given

by the Taylor expansion of s around α = 0:

s (P, α) = s (P, 0) + α × ∂s (P, α)

∂α
+ O

(
α2

)
≈ P + αTP , (6.6)

where ∂s(P,α)
∂α

is termed as the tangent vector, TP .

The lines TP and TE would not intersect in three-dimensional space. The tangent

distance between P and E is the shortest distance between them;

DTD (P,E) = minα {‖x − y‖} , (6.7)

where x ∈ TP and y ∈ TE.

Figure 65 schematically represents the difference between the Euclidean distance,

the full invariant distance (the minimum distance between manifolds), and the tangent

distance in 3-dimensional space. In the figure, both the input patterns are deformable,

but it is also possible to deform only one pattern (one-sided distance) for simplicity.

Figure 65: Schematic diagram of the Euclidean distance and the tangent distance between
P and E. The curves Sp and Se represent the sets of patterns after certain transformations
to P and E. The lines TP and TE represent the tangent spaces passing through P and
E, respectively.
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6.3.2 Tangent Vector

During the matching process by the tangent distance, the appearance of each input pattern

is deformed so as to best fit that of the preceding pattern. This approach has two problems

to be solved. First, allowed deformations must be known a priori. Fortunately, this is

the case for our plate detection system and we will summarize the allowed deformations

in detail later. Second, the search for the best-matching deformation is often enormously

expensive. To simplify the search, the one-sided tangent distance is selected, which is

defined as

DTD (P,E) = minα {‖P − E − αTE‖} . (6.8)

In this study, the representation of repeated patterns should be invariant with respect

to position, size changes, slight rotations, or changes in brightness. The dimension of

the manifold for each repeated pattern is five corresponding to the five transformations,

which are vertical shift, horizontal shift, scaling, rotation, and brightness. The transform

in Eq. 6.6 can be rewritten as:

s (P, α) = P +

(
TP1, TP2, TP3, TP4, TP5

)
×



α1

α2

α3

α4

α5


, (6.9)

where αn denotes the scaling parameter of the nth tangent vector, TPn.

The tangent vectors used in this study are explained as follows:
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Horizontal shift

The transformation is useful when vehicles or the sensor moves slightly and horizontally.

s (P, α1) :

 x

y

 7→

 x + α1

y

 (6.10)

The tangent vector is defined by:

TP1 =
∂s (P, 0)

∂x
(6.11)

Vertical shift

The transformation is useful when vehicles or the sensor moves slightly and vertically.

s (P, α2) :

 x

y

 7→

 x

y + α2

 (6.12)

The tangent vector is defined by:

TP2 =
∂s (P, 0)

∂y
(6.13)
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Rotation

This transformation is useful when vehicles make a turn suddenly. In the entry of a

building, for example, the vehicle may turn to left or right 90 degree quickly, which

causes the captured patterns rotated.

s (P, α3) :

 x

y

 7→

 x × cos α3 − y × sin α3

x × sin α3 + y × cos α3

 (6.14)

The tangent vector is defined by:

TP4 = y × ∂s (P, 0)

∂x
− x × ∂s (P, 0)

∂y
(6.15)

Scaling

This transformation is useful when the sensor is installed in the front of a surveillance vehi-

cle. The size of plate regions would become larger and larger when the vehicle approaches

the camera.

s (P, α4) :

 x

y

 7→

 x + α4 × x

y + α4 × y

 (6.16)

The tangent vector is defined by:

TP4 = x × ∂s (P, 0)

∂x
+ y × ∂s (P, 0)

∂y
(6.17)
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Brightness

This transformation is useful when we monitor vehicles in outdoor environments. The

brightness of plate region candidates would be variant in consecutive frames because of

lighting changes.

s (P, α5) :

 x

y

 7→

 x

y

 + α5 (6.18)

The tangent vector is defined by:

TP5 = 1 (6.19)
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6.3.3 Repeated Block Matching

After BOPE at time t, a plate candidate PCt could be detected and the candidate would

be overlapped with some plate candidates at time t − 1. The overlapped region is named

a candidate region CR as shown in Fig. 66(a). A candidate region would be classified

as a repeated region or a non-repeated one in consecutive frames, when we measure the

difference between the candidate region at the current frame and the same region at the

preceding frame. For example, if patterns P and E represent one of the candidate regions

in the current and previous frames, respectively, patten P could be classified as a repeated

one if the tangent distance in Eq. 6.8 is lower than a threshold.

(a) (b)

(c) (d)

Figure 66: Schematic diagram of the repeated block matching mechanism: (a) the can-
didate region CR extracted from the overlap between the plate candidates in the current
frame PCt and the preceding frame PCt−1 (b) the selected candidate blocks, (c) the
matched repeated blocks, and (d) the selected regions to detect repeated regions.

However, the large input dimension of candidate regions may result in matching

errors because the terms after the second order in the Taylor expansion are truncated, as

shown in Eq. 6.6. In order to reduce the errors and to judge the candidate region easily

by a threshold, each image is tessellated into blocks with 16 × 16 dimensions as shown in

the dash rectangles of Fig. 66(b). Instead of matching the candidate regions, the tangent
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distance is measured on the candidate blocks CB, which are selected from the blocks

overlapped with the candidate region, as shown in the dark blocks of Fig. 66(b). Then,

repeated blocks RB in the current frame, as depicted in Fig. 66(c), could be identified by

matching against the same block in the preceding frame. Finally, the repeated candidate

is determined when the overlapping ratio of the repeated blocks and the candidate is lower

than a threshold. For example, the plate candidate PCt in Fig. 66(d) could be classified

as a non-repeated region because of the low overlapping ratio. The detailed steps are

summarized as follows.

1. We obtain two consecutive frames from time t − 1 to t as displayed in Fig. 67(a).

2. Extract plate candidates by BOPE as shown in Fig. 67(b).

3. Extract candidate regions that are overlapped plate candidates in frames t − 1 and

t as shown in Fig. 67(c).

4. Select candidate blocks that are overlapped with the extracted candidate regions as

shown in Fig. 67(d).

5. For each candidate block, compute the tangent vectors according to Eqs.6.10-6.19

in Sections 6.3.2 and 6.3.4.

6. For each candidate block, calculate the one-sided tangent distance defined in Eq. 6.8.

7. Select the repeated blocks whose distance values are lower than a threshold, as

shown in Fig. 67(e) with blue rectangles.

8. Select repeated regions when they are overlapped with any repeated block and the

overlapped size is greater than a pre-defined percentage, say, 60%, of the region size.

In the example of Fig. 67, among 124 blocks detected as candidate blocks, 113 blocks

are matched as repeated ones. All plate candidates extracted by the BOPE algorithm
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would be rejected because they are all repeated regions. Note that the license plate has

already been extracted from one of the previous frames.

(a)

(b)

(c)

(d)

(e)

Figure 67: An example of the repeated block matching mechanism: (a) Left: the frame
at time t − 1, Right: the frame at time t, (b) the plate candidates extracted by BOPE
algorithm, (c) the candidate regions, (d) the candidate blocks, and (e) the repeated blocks
of the frame at time t.
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6.3.4 Improvement of Computation Speed

To detect repeated regions, the tangent vectors should be calculated for each input can-

didate block. Undoubtedly, the calculation cost involved in repeated region detection will

increase when there are more candidate blocks. To reduce the computational load, we

match the similarity between the two input patterns, P and E, by the one-sided tangent

distance from P to E and vice versa. Since we match the similarity by the one-sided

tangent distance, 50 percent of computational load would be reduced; that is, only one

tangent vector of the candidate block is calculated for every two frames, as shown in

Fig. 68(a).

(a) (b) (c)

Figure 68: Schematic diagram of the acceleration mechanism for the calculations of tan-
gent vectors. (a) For the worst case, tangent vectors are re-calculated at every two frames
since the input region varies continuously. (b) For the generic case, tangent vectors are
re-calculated at the next time after identifying the input region is identified as a non-
repeated region. (c) For the best case, tangent vectors are calculated only once because
the same patterns occur continuously.

However, for a sequence of images with repeated blocks, we still have to compute the

same tangent vectors n times if the same blocks exist for 2n frames. Since a repeated block

means that the block in the current frame is closed to the one in the preceding frame in

tangent distances, we could keep the block and its tangent vectors for matching the blocks

in the following frames. In other words, the tangent vectors of a candidate block have only

to be re-calculated for a non-repeated one. For example, in Fig. 68(b), the tangent vectors

are only calculated at time instances 2, 6, and 8. The mechanism provides a significant

reduction in computations since repeated patterns exist in surveillance applications very

commonly. In the best case illustrated in Fig. 68(c), the tangent vectors would only be

calculated once no matter how long the sequence is.
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6.4 Experimental Results and Discussion

This section presents the performance of the BOPE and repeated region detection to

extract license plates in different sequences. The system proposed in this study was im-

plemented in C language and tested on a standard Intel Pentium 4, 3 GHz personal com-

puter. To evaluate the system performance, the ground truth for each frame is obtained

by segmenting the images with manual classification of license plates and background

regions. Five parameters of the test sequences collected outdoors are listed in Table 6.1.

In the table, the dimensions are given in column “Dim”, while the ranges of plate heights

by pixels in column “PH”. Moreover, the numbers of license plates, the number of frames

without license plates, and total number of frames are listed in columns “PN”, “BIN”,

and “TIN”, respectively.

Table 6.1: The sequences used in the benchmark
Dataset Highway Campus Entrance Gate

Type outdoor outdoor outdoor
Dim 640 × 480 640 × 480 640 × 240
PH 30–41 36-50 24–40
PN 620 648 1400
BIN 6720 0 7510
TIN 7540 360 8910

6.4.1 Performance of Spatial SSR

The comparison between OPE and BOPE has been set up with four indexes: numbers

of detected plates (TPCN), numbers of non-plate candidates (NPCN), average pixels of

plate candidates per frame (APf ), and plate region fitness (PRF ). For the first index,

the number of plate regions is counted when two criteria are confirmed: (1) The plate

region is overlapped with some plate candidates extracted by BOPE. (2) The differences
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Table 6.2: The comparisons between the OPE and the BOPE algorithms
Dataset Highway Campus Entrance Gate

OPE BOPE OPE BOPE OPE BOPE
TPCN 620 620 - 596 648 8.02% 1,400 1,400 -
NPCN 90,480 89,328 1.27% 2,892 2,858 1.18% 31,952 30,355 5.00%
APf 0.537 0.226 57.91% 0.895 0.526 41.23% 0.723 0.282 61.00%
PRFt 0.110 0.027 75.45% 0.146 0.053 63.70% 0.024 0.003 87.50%
PRFb 0.034 0.021 38.23% 0.089 0.041 53.93% 0.010 0.003 70.00%
PRFl 0.066 0.050 24.24% 0.168 0.053 68.45% 0.163 0.047 71.17%
PRFr 0.069 0.056 18.84% 0.135 0.060 55.55% 0.132 0.048 63.64%

of top or bottom boundaries between the plate region and the detected candidate are

less than a threshold (said, four pixels in our experiments) for avoiding over-detection or

under-detection. The second index NPCN is counted from the detected plate candidates

not overlapping with any true plate regions. The third index APf is presented to measure

how many pixels remained for the following procedures. This index is defined as the ratio

of the total number of pixels in the detected plate candidates to the numbers of pixels

in the input frame. The last index PRF is used to evaluate the compactness from the

differences of boundaries between the plate region and the detected candidate. For clearly

expressing the compactness for the four boundaries, the PRF is further separated into

four sub-indexes: the differences of the top PRFt, the bottom PRFb, the left PRFl, and

the right PRFr boundaries.

The experimental results after OPE and BOPE are presented in Table 6.2; the im-

provements of the BOPE for each measurement are also demonstrated. All 648 plates in

the dataset Campus were extracted by BOPE. APf is improved up to 61% because large

plate candidates would be reduced to the restricted sizes in BOPE. Several large plate

candidates were extracted by OPE because of the noisy background environments in the

outdoor area on a rainy day or in a parking space.
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6.4.2 Performance of Spatiotemporal SSR

Table 6.3: The comparisons between adopting repeated region prediction and none
Dataset Highway Campus Entrance Gate

OPE RRP OPE RRP OPE RRP
TPCN 620 620 - 596 215 63.93% 1,400 1,230 12.14%
NPCN 90,480 45,182 50.06% 2,892 1,239 57.16% 31,952 21,780 31.84%
APf 0.537 0.121 77.47% 0.895 0.226 74.75% 0.723 0.121 83.26%

After repeated region detection, performance is demonstrated by three indexes: num-

bers of detected plates (TPCN), numbers of non-plate candidates (NPCN), and average

numbers of pixels of plate candidates per frame (APf ). The experimental results with

and without repeated region detection are shown in Table 6.3; the rates of spatiotemporal

search-space reduction (SSR) after the RRP for each measurement were also demon-

strated.

When the great majority of candidate regions are extracted, TPCN or NPCN could

be reduced significantly after repeated patterns are rejected. Comparing to OPE, for the

dataset Highway, our spatiotemporal mechanism improves NPCN and APf up to 50.06%

and 77.47%, respectively, but zero to TPCN because the vehicles were constantly moving.

In other words, 87.9% of the search-space could be rejected. For other datasets, Campus

and Entrance Gate, both TPCN and NPCN are saved; meanwhile, APf would also be

improved up to 83.26% because most of the candidates are rejected.

Table 6.4: The comparisons adopting different parameters of the plate height Hp used in
OPE and BOPE
Dataset Entrance Gate
Hp 10 ∼ 30 pixels 30 ∼ 60 pixels 24 ∼ 40 pixels

OPE RRP OPE RRP OPE RRP
TPCN 1,392 1,123 - 1,400 1,230 - 1,400 1,230 -
NPCN 57,690 23,332 59.56% 35,393 21,322 39.76% 31,952 21,780 31.84%
APf 0.733 0.057 92.24% 1.308 0.330 59.48% 0.723 0.121 83.26%
PRFt 0.030 0.005 83.33% 0.024 0.007 70.83% 0.024 0.003 87.50%
PRFb 0.005 0.003 40.00% 0.006 0.003 50.00% 0.010 0.003 70.00%
PRFl 0.202 0.039 80.69% 0.170 0.071 58.24% 0.163 0.047 71.17%
PRFr 0.197 0.042 78.68% 0.176 0.053 69.89% 0.132 0.048 63.64%
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Different ranges of the parameter, plate height Hp, in OPE and BOPE were experi-

mented as shown in Table 6.4 to demonstrate the improvements in search space reduction

of our spatiotemporal SSR mechanism to detect variant license plates. Another param-

eter of the plate width Wp in OPE and BOPE was fixed to eight times of Hp. Several

phenomena were observed from the experiments. First, we could extract all compact li-

cense plate regions when the range of parameters is enlarged to cover variations in plate

heights. Second, we could extract more plate candidates when the inputs have complex

patterns such as the texture of the vehicles or the backgrounds. Third, there were differ-

ent groups of plate candidates when we adopted OPE and BOPE with varied parameters;

several plate candidates covered the same regions. In other words, some regions should

be processed repeatedly even if they were not plate regions; the dimension of the search

space increased when OPE extracted large covered regions or a great quantity of plate

candidates. For the range of plate height from 30 to 60, APf is up to 1.308, which in-

dicates that the dimension of the search space for the range is higher than dimensions

for the others. When there are more repeated candidates with covered regions, we could

reduce the search space more effectively and significantly using the same repeated blocks.

Above results indicate that the spatiotemporal SSR mechanism would perform well when

we provide a precise range of Hp. Also, the mechanism could detect smaller license plates

when we provide a larger range of Hp.
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Chapter 7 Conclusion and Future Work

7.1 Achievements

In this dissertation, we have presented a cascaded framework for a plate recognition

system that minimizes the computation time while achieving a high frame rate and a

high accuracy rate. The framework is used to develop a plate recognition system that

operates only with information presented in a single gray-level image and at a rate of over

30 fps. Without scaling the input image, the proposed system performs well even if the

plates have different sizes. Moreover, this study has combined spatial plate detection and

temporal repeated region detection into a spatiotemporal license plate detection system.

By eliminating non-interesting regions (said, non-plate, non-character, and repeated ones),

the proposed mechanisms significantly reduces the search space required for further plate

classification, character segmentation, and character recognition.

This study combines low-level image processing and high-level statistical analyses,

which are very generic and may have broader applications in computer vision. The first

contribution of this study is to propose new techniques for directly extracting compact

plate regions in various plates and environments by using the OPE or BOPE. By eliminat-

ing the need to compute a multiscale image pyramid, the BOPE algorithm significantly

reduces the initial image processing effort required for plate detection. Moreover, the

BOPE algorithm can reduce large spatial search-space and tightly bound the top and

bottom of license plates for compact plate regions.

The second contribution is the repeated region representation (said, backgrounds or

classified patterns) and the detection technique with invariant matching measures. The

tangent distance is introduced to measure the similarity with respect to certain sensing
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variations of positions, sizes, slight rotations, or brightness. By representing each frame

as several block candidates in the tangent space, the matching problem is reduced to

finding the distance between subspaces under arbitrary and parameterized transforma-

tions. Without any explicit background modeling or tracking of the plates, the proposed

mechanism could be expected to be more robust in cases where background modeling and

tracking are difficult. In the cases of many repeated patterns, the algorithm of repeated

region detection performs well to reject repeated ones, including the backgrounds and

license plates. On the other hand, in the case of few repeated patterns, the mechanism

may increase the computational load when we monitor constantly changed scenes, such

as the sequence captured from a high speed moving camera. Fortunately, the situation

seldom appears in the surveillance applications because we do not need to compare many

candidate regions for moving vehicles.

The third contribution of this study is a simple and efficient segmentation technique

developed from computationally efficient features using peak-valley selection for the deter-

mination of dominant thresholds. This segmentation method is computationally efficient

since only a small number of candidates must be evaluated by the computation-required

procedure, OCR.

The fourth contribution of this study is a rejection-based cascade framework for

constructing a cascade of rejecters, which dramatically reduces the computation time

while maintaining very high detection accuracy. The initial rejecters of the cascade are

designed to reject a majority of the input regions in order to focus the successive processing

on promising regions. The advantage of this framework is that it allows tradeoffs between

the processing time and the system performance. This framework is clearly effective for

the plate recognition and we are confident that it will also be effective in other domains

such as sign or text detection.

Finally, this dissertation presents the co-design of plate detection and character seg-
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mentation using the same summed area tables to avoid recalculating the procedures.

Skewed Haar-like features are also proposed to represent skewed plate images in a better

manner. We tested the mechanisms with a large number of frames captured in different

environments from real applications.
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7.2 Future Works

A cascade framework has been presented and a real-time statistical license plate recogni-

tion system is developed based on spatial and temporal rejection mechanisms. Alternative

sources of information, such as color filter or motion detection could also be integrated

into our system to achieve higher frame rates or deal with special cases.

The computational resource demand of the learning procedure is currently the main

drawback, taking several days the processing of about one thousand positives on a Pentium

IV PC, at 3.0GHz in the conditions of the experiments reported.
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