
i 
 
 

 

國 立 交 通 大 學 

管理學院（資訊管理學程）碩士班 

碩 士 論 文 

 

 

應用自然語言處理於自動化資訊擷取-- 

以資訊產品規格之擷取為例 
 
 

Apply Natural Language Process in Automatic Information Extraction:  
The Example of IT Product Specification Extraction system 

 
 

 

研究生：彭俊彥 

指導教授：楊千 教授 

 
 
 
 

中 華 民 國 九十四 年 六 月



ii 
 
 

 應用自然語言處理於自動化資訊擷取-- 
以資訊產品規格之擷取為例 

 
Apply Natural Language Process in Automatic Information Extraction:  

The Example of IT Product Specification Extraction system 
 
 

 研 究 生：彭俊彥 Student: Chun-Yen Peng 
 指導教授：揚千 教授 Advisor: Professor Chyan Yang 

 

國 立 交 通 大 學 

管理學院（資訊管理學程）碩士班 

碩 士 論 文 

 

A Thesis 

Submitted to Institute of Information Management 

College of Management 

National Chiao Tung University 

In Partial Fulfillment of the Requirements 

For the Degree of 

Master of Business Administration 

in 

Information Management 

January 2005 

Hsinchu, Taiwan, the Republic of China 

 

中 華 民 國 九十四 年 六 月 



iii 
 
 

  

應用自然語言處理於自動化知訊擷取- 

以資訊產品規格之擷取為例 
 

 研 究 生：彭俊彥  指導教授：揚千 教授 
 

國立交通大學 資訊管理研究所 
 

摘    要 

經過十多年的發展，網際網路已成為一個龐大的知資載體，然而大部份的資訊

都是以自然語言的形式呈現。以自然語言所表達的資訊，雖然便於人類閱覽，但

卻無法讓電腦理解。因此如何從大量的網頁中自動擷取隱含的知識，成為目前知

識工程研究的一大課題。 

資訊擷取的相關研究主要在於取得非結構化文件中的資訊片段，並轉換為較容

易為電腦處理和分析的結構化文件格式，目前大致有 Text Mining 和 Web Mining 
兩種主要的方式。前者大多與自然語言處理(National Language Processing, NLP)技
術相結合，而後者則是將Data Mining的技術運用於網頁的資訊擷取上。 

本研究主要是試著結合自然語言處理技術和本體論(Ontology)的概念，建立一

個資訊產品規格擷取的系統，以做為自動化網頁資訊擷取的雛型研究。我們運用

自然語言處理工具對HTML文件進行適當的處理，再透過JAPE(Java Annotation 
Patterns Engine)語法規則來擷取文件中特定語法結構的資訊片段，最後再參考預先

定義的Ontology，將擷取到的資訊輸出為符合RDF(Resource Description Framework)
規範的檔案。 

我們針對HP和IBM的網頁撰寫適當的JAPE語法規則，再從這兩家公司的個人

電腦(包含Desktop和Notebook)，Unix伺服器，顯示器及印表機等四大產品線，抽

樣36個網頁進行產品規格的資訊擷取，其平均召回率(Recall)和正確率(Precision)
都超過90%以上，由此可以驗証JAPE語法規則針對特定領域的資訊擷取有相當不

錯的效能表現。 

 

關鍵字：資訊擷取、自然語言處理、本體論 



iv 
 
 

 Apply Natural Language Process in Automatic Information Extraction:  

The Example of IT Product Specification Extraction system 

 
 Student: Chun-Yen Peng  Advisor: Dr. Chyan Yang 

 
Institute of Information Management 

National Chiao Tung University 

Hsinchu, Taiwan, Republic of China 

 

Abstract 
World Wide Web (WWW) is a large repository of information that includes many 

resources, like text document, image, multimedia and so on. Most of information is 
presented in natural language and disperse in different Web sites. Natural language 
documents are for human reading but not computer. How to extract the information 
form natural language document is an important topic of knowledge engineering.  

The major task of information extraction is to extract information piece from 
unstructured document and convert to structured document for computer processing 
and analysis. There are two major methodologies for information extraction, one is test 
mining and another is web mining. The former always link to natural language 
processing technology whereas the latter applies data mining to process the web 
contents.  

Our research tries to build up a prototype system that combines the natural language 
process and the concept of ontology to extract IT product specification information 
from web page. We use NLP tools to process HTML document and extract information 
entities by JAPE grammar rule, then refer to predefined ontology to convert the 
extracted information to be DAML file that follow RDF specification.  

We develop the optimal JAPE grammar rules for IBM and HP web pages that 
describe IT product specification and download 36 IT product web pages to test the 
extraction performance. The testing result show the average recall and precision are 
over 90%. It reveals the JAPE grammar rules have good extraction performance when 
optimized for specific knowledge domain. 

Keyword: NLP, Information extraction, JAPE, grammar rule,  



v 
 
 

 誌   謝 

這篇論文得以順利完成，實應歸功於各位師長及親友的協助和勉

勵。首先要感謝的是指導教授揚千博士在研究過程中的指導和啟發，

確立整體研究方向和步驟。其次要感謝口試委員李其健博士及劉敦仁

教授在口試過程中給予的寶貴的建議，使整體論文更加完整。感謝博

士班陳良駒學長和楊耿杰學長在研究過程中提供各項重要的參考資料

及行政資源上的協助，讓論文得順利進展。 

另外也要感謝服務單位-台灣積體電路公司資訊系統建構處的同

仁，在我研修期間所給予工作上的支援與協助，使我能投入更多的時

間在究研工作上。由衷地感謝洪莉娜、齊玉仙等友人協助論文最後的

校稿和定稿等工作，使論文得順利付梓。 

最後，謹以這篇論文獻給我敬愛的父母親和家人，感謝他們在我

研修期間所付出的關懷和鼓勵，這是支持我在繁忙工作中依然能堅持

到底的最大動力。 

彭俊彥 謹致 

2005 仲夏於 

交通大學資訊管理研究所 

 
 



vi 
 
 

 Contents 

摘   要 ......................................................................................................................................................iii 

Abstract .....................................................................................................................................................iv 

誌   謝 .......................................................................................................................................................v 

1. Introduction ....................................................................................................................................1 

1.1 Background ...........................................................................................................................1 

1.2 Motivation and Objectives ....................................................................................................3 

1.3 Research Methodology and progress.....................................................................................6 

1.4 Research Scope and Limitation.............................................................................................8 

2. Literature review............................................................................................................................9 

2.1 Natural Language Processing................................................................................................9 

2.2 Information Extraction ........................................................................................................10 

2.2.1 Text Mining ...................................................................................................................12 

2.2.2 Web mining ...................................................................................................................15 

2.3 Semantic Web and Ontology...............................................................................................16 

2.3.1 Semantic Web................................................................................................................16 

2.3.2 Ontology ........................................................................................................................18 

2.3.3 Ontology Language .......................................................................................................20 

2.4 Ontology-Base knowledge management.............................................................................24 

3. System architecture and work flow ............................................................................................27 

3.1 Developing environment .....................................................................................................27 

3.1.1 System configuration .....................................................................................................27 

3.1.2 Web page collector: Teleport Pro ..................................................................................27 

3.1.3 Natural Language Processing Tools: GATE..................................................................28 

3.1.4 JAPE grammar language ...............................................................................................30 

3.2 System Architecture ............................................................................................................32 

3.3 Web page collection ............................................................................................................34 

3.4 ANNIE annotation process flow .........................................................................................34 

3.5 Ontology and JAPE extraction rule.....................................................................................37 

3.6 DAML+OIL Exporter .........................................................................................................43 

4. Analysis and Comparison ............................................................................................................45 

4.1 Extraction Result .................................................................................................................45 

4.2 Performance index ..............................................................................................................50 



vii 
 
 

 4.3 Performance index for other company: ............................................................................................... 56 

5. Conclusion and Contribution ......................................................................................................59 

6. Reference.......................................................................................................................................62 

7. Appendix .......................................................................................................................................64 

7.1 JAPE Grammar Rule for personal computer.......................................................................64 

7.2 JAPE Grammar Rule for Unix Server .................................................................................68 

7.3 JAPE Grammar Rule for Monitor .......................................................................................73 

7.4 JAPE Grammar Rule for Printer .........................................................................................77 

 



viii 
 
 

  Table List 
Table 1: Extraction result of HP and IBM Personal computer ..................................................................47 
Table 2: Extraction result of HP and IBM Unix Server.............................................................................47 
Table 3: Extraction result of HP and IBM monitor ...................................................................................48 
Table 4: Extraction result of HP and IBM printer .....................................................................................48 
Table 5: Extraction result of Sony and ASUS personal computer.............................................................49 
Table 6: Extraction result of Sun Unix Server...........................................................................................49 
Table 7: Extraction result of BenQ and Acer monitor...............................................................................49 
Table 8: Extraction result of Epson and Canon Printer .............................................................................50 
Table 9: Recall and Precision of personal computer extraction result.......................................................53 
Table 10: Recall and Precision of Unix server extraction result................................................................54 
Table 11: Recall and Precision of monitor product extraction result ........................................................54 
Table 12: Recall and Precision of personal computer extraction result.....................................................55 
Table 13: Summary table of recall and precision ......................................................................................55 
Table 14: Recall and Precision of personal computer extraction result.....................................................56 
Table 15: Recall and Precision of Unix server extraction result................................................................57 
Table 16: Recall and Precision of monitor product extraction result ........................................................57 
Table 17: Recall and Precision of personal computer extraction result.....................................................58 
Table 18: Summary table of recall and precision for other company........................................................58 
 



ix 
 
 

 Figure List 
Figure 1: Research flow and progress .........................................................................................................7 
Figure 2: Architecture for an Information-Extraction System...................................................................12 
Figure 3: The overview of IE base text mining framework.......................................................................13 
Figure 4: The process flow for text mining ...............................................................................................15 
Figure 5: Taxonomy of Web mining .........................................................................................................16 
Figure 6: The layer of Semantic Web........................................................................................................17 
Figure 7: The intended models of a logical language reflect its commitment to a conceptualization .......20 
Figure 8: The Artequakt Architecture........................................................................................................25 
Figure 9: The overview of ontology-base information retrieval................................................................26 
Figure 10: Web page collector—Teleport Pro...........................................................................................28 
Figure 11:The user interface of GATE......................................................................................................29 
Figure 12: JAPE Grammar rule example...................................................................................................31 
Figure 13: System architecture and workflow...........................................................................................32 
Figure 14: Architecture of IT product application.....................................................................................33 
Figure 15: ANNIE process pipeline in GATE 3.0.....................................................................................35 
Figure 16: Selected ANNIE processing resource ......................................................................................35 
Figure 17: ANNIE process flow in IT specification extraction system.....................................................36 
Figure 18: Ontology Example- Ontology of Personal Computer specification.........................................39 
Figure 19: Example of GATE build-in ontology developing ....................................................................40 
Figure 20: DAML example: Ontology of Personal computer ...................................................................41 
Figure 21: Example of JAPE grammar rule segment ................................................................................42 
Figure 22: Example of DAML output file.................................................................................................44 
Figure 23: Annotation result......................................................................................................................45 
Figure 24: Information Entity marked up by JAPE transducer .................................................................46 
Figure 25: Example of recall and precision rate calculation......................................................................52 

 



1 
 
 

 1. Introduction  

1.1 Background  

The economy age evolve from farm economics to industrial economics. Today, most 

people agree we are entering the knowledge economy age. Michio Kaku claims that 

“knowledge and technology” will become the only determining factor in a nation’s 

competitiveness [1] 

The concept of knowledge economic changes the management of enterprise and 

makes knowledge management become one of the main competitiveness of business. 

For business view, information technology plays a crucial role that enhances the 

performance of knowledge management, such as knowledge retrieval, knowledge store, 

especially knowledge sharing. 

With the dynamic environment and the knowledge economy coming, knowledge has 

been treated as one of the most important assets that can enhance competitive 

advantages. For a company to lead among competitors, it is important to ensure that the 

best corporate knowledge must be available and applied to the needs of the clients in 

the right places at the right times [2]. Thus, how to creating and sharing knowledge to 

keep high competition of enterprise is a critical mission of IT managers.  

The knowledge/information extraction and presentation are important process in 

knowledge management. Information Extraction (IE) is an important approach to 

automated information management. IE is the task of converting documents containing 

fragments of structured information embedded in other extraneous material into a 

structured template or database-like representation [3]. The major concern of IE is how 



2 
 
 

 to address specific pieces of data in natural language document and extracting 

structured information from unstructured text.  

World Wide Web (WWW) is a large repository of information. Include many 

resources, like text document, image, multimedia and so on. All of resources can be 

retrieved by anyone who connects to Internet. Most of information is presented by 

unstructured text document in natural language and disperse on different site. Since 

most of web documents are presented by natural language, it is unreadable for 

computer to extract knowledge from web page, we need an efficient approach to 

convert natural language document to be computer readable format.  

The traditional way to extract information form web page is through search engine 

to select related document and annotate these documents by manual, much time and 

effort is needed for information extraction. How to extract information from Internet 

efficiently is the major concern of our research.  

However, recent advances in natural language processing (NLP) open the new 

choose to perform document annotation and information extraction task. Through the 

customized and pre-defined process flow, NLP tools could extract information 

accurately form web page in specific domain [4].  

In other and, the concept of Semantic Web and Ontology provide new thinking 

model about information presentation. Semantic Web is the representation of data on 

the World Wide Web. It is a collaborative effort led by W3C with participation from a 

large number of researchers and industrial partners.  

Traditional Web language focus on web page presentation, most of information 

content still descript in natural language. Although WWW provide a user friendly and 



3 
 
 

 platform independent client for information exchange, it can’t meet the requirement 

for automatic process of software agent. The key point is software agent can’t 

understand the information content of web page.  

Building computer readable Web pages is one of the terminal goals of the W3C 

Semantic Web. The idea is first mentioned by Tim-Berner’s Lee at the original 

proposal of WWW at CERN when 1989. The proposal includes a figure showing how 

information about a web of relationships amongst named objects could unify a number 

of information management tasks.[5] 

An ontology is a description (like a formal specification of a program) of the 

concepts and relationships that can exist for an agent or a community of agents. An 

ontology defines the common words and concepts used to describe and represent an 

area of knowledge. This definition is consistent with the usage of ontology as 

set-of-concept-definitions, but more general. And it is certainly a different sense of the 

word than its use in philosophy [6]. 

After more than 10 years developing, WWW accumulate millions web page that 

contain very large information. How to extract the information and translate to be 

computer readable data format is a key process for Semantic Web promotion, it is also 

major concern of our research.   

1.2 Motivation and Objectives  

For most of company and individual, to collect product specification for comparison 

and evaluation is necessary before IT product purchasing. Generally, the life cycle of IT 

product is very short, the product specification always changed with new product 



4 
 
 

 release.  

Although it is easy to get IT product specification form WWW, this kind of 

information usually disperse in many different web sites. Traditionally, to collect the IT 

product specification such as desktop computer, one needs to search the related web 

pages by using search engines, either yahoo or google, then browse these web pages 

manually to collect the information we need. It takes large effort for information 

collection. 

Most of product specifications are described with specific format and embedded in 

web page. Due to browser or software agent can’t identify the production specification 

form natural language document, it cause the simple job like “product specification 

collection” can’t be automated. The advance in natural language process technology 

makes it is possible to extract specific information piece from web page that describe in 

natural language.  

In other hand, the concept of Semantic Web and ontology provide a new model for 

information presentation. Through the ontology, information could be produce, 

exchange or analysis by automatic process to enhance the efficiency of knowledge 

management. 

So that, our research try to build up a automatic process that link the natural 

language process technology and ontology concept, and apply this process to extract IT 

product specification form Web page. The objectives of research are show as following: 

1. Build up a prototype system for automatic IT product specification extraction 
that can extract information formation form web page efficiently and 
accurately 

2. Save the extracted information in ontology language to provide widely 



5 
 
 

 application and push the developing of Semantic Web.  



6 
 
 

 
1.3 Research Methodology and progress 

We build up a prototype system to research the automatic information extraction 
process that combined with natural language process and ontology concept. Our 
research steps are: 

1. Define the research topic, objective and scope: 
At first, we define the research topic, objective and scope to guide the whole 

research progress.  
2. Literature review: 

Base on research topic, objective and scope, one of major task is to build up a 
prototype to extract IT product specification information. So we must select an 
extraction methodology to meet our requirement.  

We review the literatures about knowledge management, natural language 
process, information extraction, semantic web and ontology to understand current 
status of related research and decide use text mining and grammar rule to extract 
IT product specification information. 

3. Build up prototype: 
The construction of prototype could be separated 3 tasks: 
1. NLP tools survey: Review current NLP tools to select a NLP platform 
2. Ontology Developing: Define the scope and relation of IT product 

specification that we want to extract. 
3. JAPE grammar rule developing: Develop optimal JAPE grammar rule for IT 

product specification. 
4. Analysis and evaluation: 

We select and download 36 web page for system testing and evaluate the 
extraction performance. 

5. Conclusion: 
Base on the extraction result and performance evaluation, we summarize the 
advantage and disadvantage of rule base extraction methodology. 
 
Figure 1 show the research flow and progress.  



7 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Research flow and progress 

 

Clarify Research Motivation

Define Research Topic

Define Research Objectives

Define Research Methodology and 

Literature Review

 Prototype

NLP Tools Survey

JAPE Developing

Ontology Developing

Analysis and evaluation 

Conclusion 



8 
 
 

 
1.4 Research Scope and Limitation 

To extract specification information from Web page, we have to developing 

information extraction pattern for specific domain knowledge. The IT product is a wide 

set that difficult to develop a general pattern for all IT product, so we select part of IT 

product for prototype developing. The target IT product as following: 

● Personal Computer  

● Unix Server 

● Monitor 

● Printer 

Although product specification has common format, the little difference are exist in 

different web site. To enhance the precision of information extraction, we aim HP and 

IBM web site as target template to develop optimize information extraction rule for IT 

product of HP and IBM. The information extraction rule also can apply to other Web 

site, but the precision of information extraction maybe down. We will compare and 

discuss this issue in chapter 5. 



9 
 
 

 2. Literature review  

2.1 Natural Language Processing 

Natural language processing (NLP) is the area of study that focuses on techniques 

that enable machines to work with human language. This involves not only the 

“understanding” or analysis of language, but also the generation or production of 

language [7].  

A “natural language” (NL) is any of the languages naturally used by humans, i.e. not 

an artificial or man-made language such as a programming language. The “Natural 

language processing” (NLP) is a convenient description for all attempts to use 

computers to process natural language [8]. NLP includes: 

• Speech synthesis:  

Although this may not at first sight appear very 'intelligent', the synthesis of 

natural-sounding speech is technically complex and almost certainly requires 

some 'understanding' of what is being spoken to ensure, for example, correct 

intonation.  

• Speech recognition:  

Recognize of continuous sound waves to discrete words. 

• Natural language understanding:  

Here treated as moving from isolated words (either written or determined via 

speech recognition) to 'meaning'. This may involve complete model systems or 

'front-ends', driving other programs by NL commands.  

• Natural language generation:  



10 
 
 

 Generating appropriate NL responses to unpredictable inputs.  

• Machine translation (MT):  

Translating one NL into another.  

NLP for information extraction has been started for a long time. In 1992, Tomek 

Strzalkowski and Barbara Vautheyl tried to build up a prototype of information 

retrieval system which uses advanced natural language processing techniques to 

enhance the effectiveness of traditional key-word based document retrieval [9]. The 

information retrieval system consists of a traditional statistical backbone (Harman and 

Candela, 1989) augmented with various natural language processing components that 

assist the system in database processing and translate a user's information request into 

an effective query. 

To enhance the information extraction in natural language processing, Cynthia A. 

Thompson’s research team try to apply the active learning to reduce annotation effort in 

1999. They developed a system that learns rules for information extraction. The goal of 

an IE system is to find specific pieces of information in a natural-language document 

[10].  

2.2 Information Extraction 

Information extraction is the task of converting documents containing fragments of 

structured information embedded in other extraneous material into a structured template 

or database-like representation [3]. Since WWW is a large information repository, our 

major concern is the approach to extract information for web document.  

Claire Cardie had provided a architecture for information extraction system in 1997. 

The architecture defines 5 steps to extract information from natural language document 



11 
 
 

 [11].  

1. Tokenization and Tagging:  

Each input text is first divided into sentences and words in a tokenization and 
tagging step. 

2. Sentence Analysis: 

It comprises one or more stages of syntactic analysis, or parsing, that together 
identify noun groups, verb groups, prepositional phrases, and other simple 
constructs.  

3. Extraction: 

The extraction phase is the first entirely domain specific component of the 
system. During extraction, the extraction phase identifies domain specific 
relations among relevant entities in the text. 

4. Merging: 

The main job of the merging phase is co-reference resolution, or anaphora 
resolution: The system examines each entity encountered in the text and 
determines whether it refers to an existing entity or whether it is new and must 
be added to the system's discourse-level representation of the text. 

5. Template generation: 
The template generation phase determines the number of distinct events in the 
text, maps the individually extracted pieces of information onto each event and 
produces output templates.  

The process flow is show as figure 2: 

 

 

 

 



12 
 
 

 

 

Figure 2: Architecture for an Information-Extraction System 

Generally, there are tow major approaches to extract information form WWW, one 

is text mining and another is Web mining. 

2.2.1 Text Mining 

Text mining should not be confused with the better known Internet search engine 

tools or database management capabilities. Analogous to data mining, which extracts 

useful information from any type of data with large quantities, text mining is a 

procedure applied to large volumes of free unstructured text. After a traditional search 

for documents is completed, such as in format of full text, abstracts, or indexed terms, 

text mining explores the complex relationship among documents [12]. 

Text mining is about looking for patterns in natural language text, and may be 

defined as the process of analyzing text to extract information from it for particular 

purposes. There are three major concerns about text mining [13,14,15]: 

(1) Information Retrieval, the foundational step of text mining. It is the extraction 



13 
 
 

 of relevant records from the source technical literatures or text databases for 

further processing.  

(2) Information Processing, the extraction of patterns from the retrieved data 

obtained in the previous step. According to Kostoff, it has three components: 

bibliometrics, computational linguistics and clustering techniques. This step 

typically provides ordering, classification and quantification to the formerly 

unstructured material.  

(3) Information Integration. It is the combination of the information processing 

computer output with the human cognitive processes. 

Raymond J. Mooney and Un Yong Nahm present a framework for text mining based 

on the integration of Information Extraction (IE) and Knowledge Discovery in 2002 

[16].  

 

Figure 3: The overview of IE base text mining framework 

They use the application of data mining techniques to automated discovery of useful 

or interesting information from unstructured text. Several techniques have been 

proposed for text mining, including conceptual structure, association rule mining, 

episode rule mining, decision trees, and rule induction methods.  



14 
 
 

 Claire Grover’s research team provides another methodology for test mining in 

2004. They propose a framework for text mining services that apply NLP tools to 

annotate XML document and extract information from natural language document. The 

Workflow involves four major steps: 

1. Tokenization: Identifying and marking up words and sentences in the input text.  

2. Location Tagging with a classifier: Using a trained maximum entropy classifier to 

mark up location names.  

3. Location Tagging by Lexicon: Using a lexicon of location names to mark up 

additional locations not identifier by the tagger. 

4. Gazetteer Query: Sending location names extracted from the text to a gazetteer 

resource, and presenting the query results in an application-appropriate form. 

Weiguo Fan’s research team describes a generic process model for a text mining 

application in 2005. Their process starting with a collection of documents, a text mining 

tool would retrieve a particular document and preprocess it by checking format and 

character sets. Then it would go through a text analysis phase, sometimes repeating 

techniques until information is extracted. Three text analysis techniques are shown in 

the example, but many other combinations of techniques could be used depending on 

the goals of the organization. The resulting information can be placed in a management 

information system, yielding an abundant amount of knowledge for the user of that 

system [17]. 



15 
 
 

 

 

Figure 4: The process flow for text mining 

2.2.2 Web mining 

Two important and active areas of current research are data mining and the World 

Wide Web. The web mining is the combination of these two areas, has been the focus 

of several recent research projects and papers. 

Web mining is the use of data mining techniques to automatically discovery and 

extract information from Web document and services. Web mining can be broadly 

defined as the discovery and analysis of useful information from the World Wide Web. 

This broad definition on the one hand describes the automatic search and retrieval of 

information and resources available from millions of sites and on-line databases, i.e., 

Web content mining, and on the other hand, the discovery and analysis of user access 

patterns from one or more Web servers or on-line services, i.e., Web usage mining.  

The taxonomy of Web mining along its two primary dimensions, namely Web 

content mining and Web usage mining. We also describe and categorize some of the 

recent work and the related tools or techniques in each area. This taxonomy is depicted 

in Figure 5 [18] 

 
 
 



16 
 
 

  
 
 
 
 
 
 
 

 
 
 

Figure 5: Taxonomy of Web mining 

To mining web content, agent-base tools and database mining techniques are two 

major approaches. Agent base approach to Web mining involves the development of 

sophisticated AI systems that can act autonomously or semi-autonomously on behalf of 

a particular user, to discover and organize Web-based information. The database 

approaches to Web mining have generally focused on techniques for integrating and 

organizing the heterogeneous and semi-structured data on the Web into more structured 

and high-level collections of resources, such as in relational databases, and using 

standard database querying mechanisms and data mining techniques to access and 

analyze this information.  

2.3 Semantic Web and Ontology 

2.3.1 Semantic Web 

The Semantic Web is the representation of data on the World Wide Web. It is a 

collaborative effort led by W3C with participation from a large number of researchers 

and industrial partners. It is based on the Resource Description Framework (RDF), 

Web Mining 

Web Content Mining Web Usage Mining 

Agent Based Approach Database Approach 

• Intelligent search agents 
• Information Filtering/Categorization 
• Personalized Web Agents  

 

•Multilevel Databases 
•Web Query Systems 

• Preprocess  
• Transaction identification 
• Pattern Discovery Tools  
• Pattern Analysis Tools  

 



17 
 
 

 which integrates a variety of applications using XML for syntax and URIs for 

naming.  

Semantic Web tries to build a universal schema to unify the different knowledge 

schemas on the web. Semantic Web proposes an architecture that consists of multiple 

layers to construct a universal schema framework. The figure 6 shows the layer 

structure of Semantic Web. 

 

 

 

 

 

 

 

 

 

Figure 6: The layer of Semantic Web 

The basis of the architecture is RDF. It provides a special format for every semantic 

statement on the web: (Subject, Predicate, Object). It is the basic syntax for the whole 

web; that is, all programs can recognize this format.  

RDF is the first step (and hence the basis) of the Semantic Web architecture. But, 

constructing a universal schema for the web is not easy. RDF itself can’t be the 

universal schema because the semantics of data encoded in it are not specified yet. 

Hence there are RDF Schema, Ontology, and Rules Layers that help to specify the 



18 
 
 

 meanings of the subjects, predicates, and objects used in RDF statements. Together 

they can precisely define the semantics of RDF statements. Finally the Logic 

Framework Layer is needed to define the working mechanism of machines and these 

portions. Search on Semantic Web should follow this mechanism. Using Semantic 

Web’s approach, all machines can understand data on the web by first recognizing RDF 

statements, and finding the semantic definitions in the specified URIs (they may be 

linked to RDF Schema documents, ontology documents, or documents about rules), 

then the machines can perform search or provide services more smoothly since they can 

really recognize all the data on the web. There will be only one schema on the web 

then.  

2.3.2 Ontology 

Ontology is an explicit formal specification of how to represent the objects, concepts, 

and other entities that are assumed to exist in some area of interest and the relationships 

that hold among them. An ontology define the common words and concepts that used to 

describe and represent an area of knowledge. Ontology models the vocabulary and 

meaning of domains of interests in a computer-usable form that computer can 

understand and share domain knowledge for each other.  

We can now clarify the role of an ontology that considered as a set of logical axioms 

designed to account for the intended meaning of a vocabulary. Given a language L with 

ontological commitment K, an ontology for L is a set of axioms designed in a way such 

that the set of its models approximates as best as possible the set of intended models of 

L according to K (see figure 7). In general, it is not easy to find the right set of axioms, 

so that an ontology will admit other models besides the intended ones. Therefore, an 

ontology can “specify” a conceptualization only in a very indirect way, since  



19 
 
 

 (i) It can only approximate a set of intended models;  

(ii) Such a set of intended models is only a weak characterization of 

a conceptualization.  

We shall say that an ontology O for a language L approximates a conceptualization C 

if there exists an ontological commitment K = <C, ℑ> , where C = <D, W, ℜ> is a 

conceptualization and  ℑ: V→D∪ℜ  is a function assigning elements of D to 

vocabulary V, and elements of ℜ to predicate vocabulary V. The symbol D is a domain 

and W is a set of relevant states of affairs of such domain and Â is a set of conceptual 

relations on <D, W>. Such that the intended models of L according to K are included in 

the models of O .  

An ontology commits to C if:  

(iii) It has been designed with the purpose of characterizing C, and  

(iv) It approximates C.  

A language L commits to an ontology O if it commits to some conceptualization C 

such that O agrees on C. With these clarifications, we come up to the following 

definition, which refines Gruber’s definition by making clear the difference between an 

ontology and a conceptualization [19]: 

 



20 
 
 

 

 

Figure 7: The intended models of a logical language reflect its commitment to a 

conceptualization  

An ontology is a logical theory accounting for the intended meaning of a formal 

vocabulary, i.e. its ontological commitment to a particular conceptualization of the 

world. The intended models of a logical language using such a vocabulary are 

constrained by its ontological commitment. An ontology indirectly reflects this 

commitment (and the underlying conceptualization) by approximating these intended 

models.  

The relationships between vocabulary, conceptualization, ontological commitment 

and ontology are illustrated in Figure 2. It is important to stress that an ontology is 

language-dependent, while a conceptualization is language-independent. 

 

2.3.3 Ontology Language 

Several ontology languages have been developed during the last few years, and they 



21 
 
 

 will surely become ontology languages in the context of the Semantic Web. Some of 

them are based on XML syntax, such as Ontology Exchange Language (XOL), SHOE 

(which was previously based on HTML), and Ontology Markup Language (OML), 

whereas Resource Description Framework (RDF) and RDF Schema are languages 

created by Word Wide Web Consortium (W3C) working groups. Finally, two 

additional languages are being built on top of RDF(S), the union of RDF and RDF 

Schema to improve its features: Ontology Inference Layer (OIL) and DAML+OIL. 

Other languages have also been used, traditionally, for building ontologies, but that 

analysis is out of the scope of this article. 

● XML-based Ontology Exchange Language (XOL) 

The US bioinformatics community designed XOL for the exchange of ontology 

definitions among a heterogeneous set of software systems in their domain. Researchers 

created it after studying the representational needs of experts in bioinformatics. They 

selected Ontolingua and OML as the basis for creating XOL, merging the high 

expressiveness of OKBC-Lite, a subset of the Open Knowledge Based Connectivity 

protocol, and the syntax of OML, based on XML. There are no tools that allow the 

development of ontologies using XOL. However, since XOL files use XML syntax, we 

can use an XML editor to author XOL files 

● Simple HTML Ontology Extension (SHOE) 

SHOE, developed at the University on Maryland and used to develop OML, was 

created as an extension of HTML, incorporating machine-readable semantic knowledge 

in HTML documents or other Web documents [20]. Recently, the University of 

Maryland has adapted the SHOE syntax to XML. SHOE makes it possible for agents to 



22 
 
 

 gather meaningful information about Web pages and documents, improving search 

mechanisms, and knowledge gathering. This process consists of three phases: Define an 

ontology, annotate HTML pages with ontological information to describe themselves 

and other pages, and have an agent semantically retrieve information by searching all 

the existing pages and keeping information updated. The Knowledge Annotator 

annotates ontological information in HTML pages.  

● Ontology Markup Language (OML) 

OML, developed at the University of Washington, is partially based on SHOE. In 

fact, it was first considered an XML serialization of SHOE. Hence, OML and SHOE 

share many features. 

Four different levels of OML exist: OML Core is related to logical aspects of the 

language and is included by the rest of the layers; Simple OML maps directly to 

RDF(S); Abbreviated OML includes conceptual graphs features; and Standard OML is 

the most expressive version of OML. We selected Simple OML, because the higher 

layers don’t provide more components than the ones identified in our framework. These 

higher layers are tightly related to the representation of conceptual graphs. 

There are no other tools for authoring OML ontologies other than existing 

general-purpose XML edition tools  

● Resource Description Framework (RDF) and RDF Schema (RDFS) 

RDF, developed by the W3C for describing Web resources, allows the specification 

of the semantics of data based on XML in a standardized, interoperable manner. It also 

provides mechanisms to explicitly represent services, processes, and business models, 

while allowing recognition of non-explicit information. 



23 
 
 

 The RDF data model is equivalent to the semantic networks formalism. It consists 

of three object types: resources are described by RDF expressions and are always 

named by URIs plus optional anchor IDs; properties define specific aspects, 

characteristics, attributes, or relations used to describe a resource; and statements assign 

a value for a property in a specific resource. 

The RDF data model does not provide mechanisms for defining the relationships 

between properties (attributes) and resources. This is the role of RDFS. RDFS offers 

primitives for defining knowledge models that are closer to frame-based approaches. 

RDF(S) is widely used as a representation format in many tools and projects, such as 

Amaya, Protégé, Mozilla, SilRI, and so on. 

● Ontology Interchange Language (OIL) 

OIL, developed in the OntoKnowledge project (www.ontoknowledge.org/OIL), 

permits semantic interoperability between Web resources. Its syntax and semantics are 

based on existing proposals (OKBC, XOL, and RDF(S)), providing modeling 

primitives commonly used in frame-based approaches to ontological engineering 

(concepts, taxonomies of concepts, relations, and so on), and formal semantics and 

reasoning support found in description logic approaches (a subset of first order logic 

that maintains a high expressive power, together with decidability and an efficient 

inference mechanism). 

OIL, built on top of RDF(S), has the following layers: Core OIL groups the OIL 

primitives that have a direct mapping to RDF(S) primitives; Standard OIL is the 

complete OIL model, using more primitives than the ones defined in RDF(S); Instance 

OIL adds instances of concepts and roles to the previous model; and Heavy OIL is the 



24 
 
 

 layer for future extensions of OIL. 

OILEd, Protégé2000, and WebODE can be used to author OIL ontologies. OIL’s 

syntax is not only expressed in XML but can also be presented in ASCII. 

● DARPA Agent Markup Language (DAML) + OIL 

DAML+OIL has been developed by a joint committee from the US and the 

European Union (IST) in the context of DAML, a DARPA project for allowing 

semantic interoperability in XML [21]. Hence, DAML+OIL shares the same objective 

as OIL. 

DAML+OIL is built on RDF(S). Its name implicitly suggests that there is a tight 

relationship with OIL. It replaces the initial specification, which was called 

DAML-ONT, and was also based on the OIL language. OILEd, OntoEdit, Protégé2000, 

and WebODE are tools that can author DAML+OIL ontologies. 

2.4 Ontology-Base knowledge management 

About ontology base knowledge extraction process, Harith Alani’s research team 

takes Artequakt project which seeks to automatically extract knowledge about artists 

from web, populate a knowledge base, and use it to generate personalized narrative 

biographies [22]. The system architecture of Artequakt system is composed by three 

key sub-systems that include “knowledge extraction”, “Information management” and 

“Narrative Generation”.  Figure 8 shows the architecture of Artequakt system.  



25 
 
 

 

 

Figure 8: The Artequakt Architecture  

The system use ontology and lexical tools to identifying knowledge fragment from 

web page. The fragments of information are passed to the ontology server along with 

metadata derived from the vocabulary of the ontology. Artequakt system stores the 

information by the ontology server and consolidated into a knowledge base that can be 

queried via an inference engine. The final sub-system is the narrative generation. The 

Artequakt server takes requests from simple Web interface and generates biography of 

artist base on user’s requirement.  

David Vallet, Miriam Fernández, and Pablo Castells also provided an 

Ontology-Based Information Retrieval Model in 2004. They propose an ontology-based 

retrieval model for the exploitation of full-fledged domain ontology and knowledge 

bases, to support semantic search in document repositories. In David’s research team 

view, semantic retrieval problem is very close to the latest proposals in knowledge 

information management. While KIM focuses on automatic population and annotation 



26 
 
 

 of documents, their work focuses on the ranking algorithms for semantic search. [23] 

The approach of ontology-based information retrieval can be seen as an evolution of 

classic keyword-based retrieval techniques.  The keyword-based index is replaced by 

a semantic knowledge base. The overall retrieval process is illustrated in figure 9. 

 

Figure 9: The overview of ontology-base information retrieval  

The system takes as input a formal RDQL query. This query could be generated 

from a keyword query, as in e.g. a natural language query. The RDQL query is 

executed against the knowledge base, which returns a list of instance that meet the 

query. Finally, the documents that are annotated with these instances are retrieved, 

ranked, and presented to the user. 



27 
 
 

 3. System architecture and work flow 

3.1 Developing environment 

3.1.1 System configuration 

We developed IT specification extraction system under Microsoft platform. The 

hardware and software environment are show as following: 

Hardware: 
CPU: AMD Athlon 1G  
Memory: 256 MB DRAM 
Hard disk: 80GB  

OS: Windows 2000 
Software Tools:  

Web page collector: Teleport Pro Ver. 1.29  
NLP developing platform: GATE 3.0 build 1846 
Ontology Editor: SemTalk Ver 1.2.5 
 

 NLP tools (GATE 3.0) need much computing resource for natural language 

processing, especially the memory size. Our hardware configuration just allow a corpus 

that includes 9~11 web documents, depend on total tokens amount, for processing at 

same time. It is an unexpected limitation. Due to documents limitation of corpus, we 

separate IT specification extraction system into 4 applications. Please refer to chapter 

3.2 for detail system architecture. 

3.1.2 Web page collector: Teleport Pro 

Teleport Pro is an offline browsing tool for getting data from the Internet. Input the 

URL, teleport can download all component of web page and save into local hard disk.  



28 
 
 

 

 

Figure 10: Web page collector—Teleport Pro 

3.1.3 Natural Language Processing Tools: GATE 

GATE is famous NLP tool that has been built over the past eight years in the 

Sheffield University NLP group. It comprises an architecture, framework (or SDK) and 

graphical development environment. The system has been used for many natural 

language processing projects, in particular for Information Extraction. The system 

supports the full lifecycle of language processing components, from corpus collection 

and annotation through system evaluation. 

GATE as an architecture suggests that the elements of software systems that process 

natural language can usefully be broken down into various types of component. 

Components are reusable software chunks with well-defined interfaces (see figure 11), 

and are a popular architectural form, used in Sun’s Java Beans and Microsoft’s .Net, for 

example. GATE components are specialized types of Java Bean, and come in three 

Resources [24]:  

˙Language Resources (LRs) represent entities such as lexicons, corpora or ontologies;  

˙Processing Resources (PRs) represent entities that are primarily algorithmic, such as 

parsers, generators or ngram modellers;  



29 
 
 

 ˙Visual Resources (VRs) represent visualisation and editing components that 

participate in GUIs. 

When using GATE to develop language process functionality for an application, the 

developer uses the development environment and the framework to construct resources 

of the three types. This may involve programming, or the development of Language 

Resources such as grammars that are used by existing Processing Resources, or a 

mixture of both. The development environment is used for visualization of the data 

structures produced and consumed during processing, and for debugging, performance 

measurement and so on. 

 

Figure 11:The user interface of GATE 

GATE can be used for many things, but one of the most typical uses is to annotate 

pages with it. This means that we have a collection of pages and a number of concepts 

(Annotation Schema) that supposedly occur in these pages. GATE provides an easy to 

use interface for indicating which pieces of text denote which of your concepts. GATE 

also can annotate all HTML tags that find in text page.  



30 
 
 

 3.1.4 JAPE grammar language 

JAPE (Java Annotation Patterns Engine) provides finite state transduction over 

annotations based on regular expressions. JAPE is a version of CPSL - Common 

Pattern Specification Language. It allows you to recognize regular expressions in 

annotations on documents. Typically, regular expressions are applied to character 

strings, a simple linear sequence of items, JAPE applying them to a much more 

complex data structure. The result is that in certain cases the matching process in 

non-deterministic, for example, the results are dependent on random factors like the 

addresses at which data is stored in the virtual machine, when there is structure in the 

graph being matched that requires more than the power of a regular automaton to 

recognise, JAPE chooses an alternative arbitrarily. 

A JAPE grammar consists of a set of phases, each of which consists of a set of 

pattern/action rules. The phases run sequentially and constitute a cascade of finite state 

transducers over annotations. A JAPE rule is combined with LHS (left-hand-side) and 

RHS (right-hand-side). The LHS of the rules consist of an annotation pattern that may 

contain regular expression operators. The RHS consists of annotation manipulation 

statements. Annotations matched on the LHS of a rule may be referred to on the RHS 

by means of labels that are attached to pattern elements. 

For LHS, there are 3 main ways in which the pattern can be specified:  

˙specify a string of text,  

e.g. {Token.string == “of”}  

˙specify an annotation previously assigned from a gazetteer, tokeniser, or other 

module,  

e.g. {Lookup}  



31 
 
 

 ˙specify the attributes (and values) of an annotation),  

e.g. {Token.kind == number}  

The RHS of the rule contains information about the annotation. Information about 

the annotation is transferred from the LHS of the rule using the label just described, and 

annotated with the entity type. Finally, attributes and their corresponding values are 

added to the annotation. Alternatively, the RHS of the rule can contain Java code to 

create or manipulate annotations 

For example, a single rule is sufficient to identify an IP address, because there is 

only one basic format - a series of numbers, each set connected by a dot. The rule for 

this is given below:  

Rule: IPAddress   

(   

 {Token.kind == number}   

 {Token.string == "."}   

 {Token.kind == number}   

 {Token.string == "."}   

 {Token.kind == number}   

 {Token.string == "."}   

 {Token.kind == number}   

)   

:ipAddress -->   

 :ipAddress.Address = {kind = "ipAddress"}  

Figure 12: JAPE Grammar rule example 

 

GATE supports ontology aware grammar transduction, this allows a JAPE 

transducer to match not only those features on the left hand side of a rule that match it 

exactly, but also to match any features that are subclasses of those specified in the 



32 
 
 

 JAPE rule. For example, if the ontology specifies that a BMW is a car, and that a car 

is a vehicle, then a rule that specifies vehicle will match when it finds an instance of 

BMW or car. 

3.2 System Architecture  

The IT product specification extraction system is composed of web page collection 

tool and NLP tools. The system architecture and work flow show as figure 13:  

 

Figure 13: System architecture and workflow 

 

This system can be segmented to 4 IT applications that are “Personal Computer 

Application”, “Unix Server application”, “Monitor application” and “Printer 

application”. Each IT application is independent sub-system to extract information from 



33 
 
 

 specific knowledge domain. The application has related language resource (such as 

Web corpus, ontology) and process resource (such as “English Tokeniser”, “Sentence 

Splitter”). Every application includes 3 major processes that are “Web document 

annotation”, “JAPE transduction” and “DAML+OIL exporter”. Figure 14 shows the 

architecture of IT application.  

 

Figure 14: Architecture of IT product application 

The system collects web document base on pre-defined web list and save it into 

specific path as a corpus by different IT product. NLP tools (GATE) will load the 

corpuses to annotate these documents, than JAPE transducer will load JAPE grammar 

rule to mark up product specification. Finally, DAM+OIL exporter generate output file 

of specification in DAML document format. 



34 
 
 

 
3.3 Web page collection 

The major task of web page collector is download web document base on pre-define 

web list and save these document in specific path by different IT product. We choose 

“Teleport Pro” to be the web page collector, Teleport Pro is a widely used offline 

browsing Web-spider.  

To limit the scope, we just down load web page from IBM and HP web site, because 

IBM and HP have rich product lines to meet our requirement. We also limit the IT 

product scope to be Unix Server, Desktop, Notebook, Monitor and Printer. We 

randomly select 2~3 products from HP and IBM per product line, total 34 web pages be 

down load for prototype system developing. We load the related web documents into 

GATE as a “corpus”. Corpus is a language resource of GATE that includes several 

documents for batch process.  

3.4 ANNIE annotation process flow 

GATE provides a baseline set of reusable and extendable language processing 

components for common NLP tasks, known collectively as ANNIE (A Nearly New 

Information Extraction System). ANNIE currently produces precision and recall figures 

for named entity recognition of around 90%, depending on the text type. [25] ANNIE 

relies on finite state algorithms and the JAPE language. ANNIE components form a 

pipeline that show as figure 15: 

 

 



35 
 
 

  

 

 

 

 

 

 

 

Figure 15: ANNIE process pipeline in GATE 3.0 

ANNIE includes many companies like Unicode Tokeniser, Sentence Splitter, POS 

Tagger, ANNIE Gazetteer, Semantic Tagger, Nominal coreferencer and pronominal 

coreferencer … and so on. To enhance system performance, we just apply part of 

component in our prototype system for natural language processing. The ANNIE 

process flow of IT specification extraction system show as figure 16 and figure 17 

 

 

 

 

Figure 16: Selected ANNIE processing resource  

 



36 
 
 

  

 

 

 

 

 

Figure 17: ANNIE process flow in IT specification extraction system 

1. Document Reset: The document reset resource enables the document to be reset 

to its original state, by removing all the annotation sets and their contents, apart 

from the one containing the document format analysis (Original Markups). This 

resource is normally added to the beginning of an application, so that a 

document is reset before an application is rerun on that document.  

2. ANNIE English Tokeniser: The tokeniser splits the text into very simple tokens 

such as numbers, punctuation and words of different types. The aim is to limit 

the work of the tokeniser to maximize efficiency, and enable greater flexibility 

by processing with build-in grammar rules. The English Tokeniser should 

always be used on English texts that need to be processed afterwards by the POS 

Tagger. 

3. ANNIE Gazetteer: The gazetteer lists used are plain text files with one entry 

per line. Each list represents a set of names, such as names of cities, 

organizations, days of the week, etc. 

Web document corpus

Document Reset 

ANNIE English 

ANNIE Gazetteer 

ANNIE Sentence 

ANNIE POS Tagger 

ANNIE OrthoMatcher 



37 
 
 

 4. ANNIE Sentence Splitter: The sentence splitter is a cascade of finite-state 

transducers that segments the text into sentences. This module is required for the 

tagger. The splitter uses a gazetteer list of abbreviations to help distinguish 

sentence-marking full stops from other kinds.  

5. ANNIE POS Tagger: POS Tagger is an external program, passing gate 

documents as input, and adding some features to the existing Tokens.    

6. ANNIE OrthoMatcher: The Orthomatcher module adds identity relations 

between named entities found by the semantic tagger, in order to perform 

coreference. It does not find new named entities as such, but it may assign a 

type to an unclassified proper name, using the type of a matching name. 

In IT specification extraction system, the major task of ANNIE process is to 

separate a web document into tokens and add related attributes to these tokens. It is 

important for following process. We don’t expect ANNIE to extract IT specification 

because the default IE function of ANNIE just can identify “name”, “address”, “date”, 

“organization”. To extract information from specific domain knowledge, customization 

is necessary. Basically, There are two ways to develop customized extraction rule, one 

is adding new Gazetteer another is to employ JAPE grammar rules. Consider the 

flexibility and integration with ontology model, we choose JAPE to be the developing 

tools. 

3.5 Ontology and JAPE extraction rule 

The general disadvantage of use NLP technology to extract information is need 

customized extraction rule for specific knowledge domain. Since build-in IE system 



38 
 
 

 can’t extract information from specific know domain, we have to construct extraction 

rule for IT specification extraction.  

As the introduction of section 3.1.4, JAPE (Java Annotation Patterns Engine) 

provides powerful and flexibility annotation grammar, it also provides ontology aware 

grammar transduction. In IT product specification extraction system, JAPE transducer 

is the major process to extract information form specific IT product.  

We plan to extract the product specification show as following: 

• Personal Computer: 
Model Name 
CPU model 
CPU Speed 
Memory Type 
Memory Size 
Hard Disk Type 
Hard Disk Size 

• Unix Server 
Server Model 
CPU Model 
CPU Speed 
Cache Memory Size 
Memory Type 
Memory Size 
Max. Memory Size 
O.S version 
Hard Disk Type 

• Monitor 
Model Name 
Monitor Type 
Monitor Size 
Pixel Pitch 
Resolution Mode 



39 
 
 

 Max Resolution Mode 
Recommend Resolution Mode 
Refresh Rate 
Web Price 

• Printer 
Model Name 
Print Speed 
Print Quality 
Memory Size 

To enable the ontology aware grammar feature, we have to develop ontology for IT 

product specification. The ontology of IT product specification describes the relation 

and structure of information that we plan to extract. Figure 18 is an example about 

ontology of personal computer. In figure 18, Desktop and notebook are sub-class of 

personal computer, and “Brand”, “CPU”, “Memory” and “Hard disk” are part of 

desktop or notebook. “CPU model”, “CPU speed”…. and so on are related information 

of components.  

 

 

 

 

 

 

Figure 18: Ontology Example- Ontology of Personal Computer specification 

 

Personal_Computer

Desktop Notebook

Brand CPU Memory Hrad_Disk

PC_Model CPU_Model CPU_Speed Memory_Type Memory_Size

part_ofpart_ofpart_of

HD_Type HD_Size

part_ofpart_of part_of part_of part_of

information_of information_ofinformation_of information_ofinformation_of information_ofinformation_of



40 
 
 

 Gate provide a build-in ontology editor for ontology developing, it is a simple 

developing environment. The build-in ontology just provides “sub-class” relation 

between parent class and son class. We also tried to create ontology by SemTalk which 

provide more property and export these ontology to be DAML files. But GATE JAPE 

transducer seems can’t recognize these properties. Consider the compatibility and 

precision, we developing ontology with GATE build-in tools. Figure 19 is an example 

of personal computer ontology developing.  

 

 

 

 

 

 

Figure 19: Example of GATE build-in ontology developing  

GATE will save the ontology as DAML files. The ontology file must load into 

GATE as a language resource and refer by JAPE transducer and DAML exporter. 

Figure 20 is an example of DAML output file, it is ontology of personal computer.  

<?xml version='1.0'?> 
<rdf:RDF 
    xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#' 
    xmlns:rdfs='http://www.w3.org/2000/01/rdf-schema#' 
    xmlns:daml='http://www.daml.org/2001/03/daml+oil#'> 
    <daml:Ontology rdf:about='' 
         rdfs:label='' 
         rdfs:comment=''> 
        <daml:versionInfo>$Id: iswc.daml,v 1.0 2002/04/15 16:51:40 meh Exp $</daml:versionInfo> 
    </daml:Ontology> 
    <rdfs:Class rdf:about='file:/C:/Rick/Thesis/Ontology/Personal_Computer.daml#Memory' 
         rdfs:label='Memory' 
         rdfs:comment=''/> 
    <rdfs:Class rdf:about='file:/C:/Rick/Thesis/Ontology/Personal_Computer.daml#Memory_Size' 



41 
 
 

 
         rdfs:label='Memory_Size' 
         rdfs:comment=''> 
        
<rdfs:subClassOf>file:/C:/Rick/Thesis/Ontology/Personal_Computer.daml#Memory</rdfs:subClassOf> 
    </rdfs:Class> 
    <rdfs:Class rdf:about='file:/C:/Rick/Thesis/Ontology/Personal_Computer.daml#CPU_Model' 
         rdfs:label='CPU_Model' 
         rdfs:comment=''> 
        
<rdfs:subClassOf>file:/C:/Rick/Thesis/Ontology/Personal_Computer.daml#CPU</rdfs:subClassOf> 
    </rdfs:Class> 
    <rdfs:Class rdf:about='file:/C:/Rick/Thesis/Ontology/Personal_Computer.daml#CPU_Speed' 
         rdfs:label='CPU_Speed' 
         rdfs:comment=''> 
        
<rdfs:subClassOf>file:/C:/Rick/Thesis/Ontology/Personal_Computer.daml#CPU</rdfs:subClassOf> 
    </rdfs:Class> 
    <rdfs:Class rdf:about='file:/C:/Rick/Thesis/Ontology/Personal_Computer.daml#HD_Size' 
         rdfs:label='HD_Size' 
         rdfs:comment=''> 
        
<rdfs:subClassOf>file:/C:/Rick/Thesis/Ontology/Personal_Computer.daml#Hard_Disk</rdfs:subClassOf>
    </rdfs:Class> 
    <rdfs:Class rdf:about='file:/C:/Rick/Thesis/Ontology/Personal_Computer.daml#CPU' 
         rdfs:label='CPU' 
         rdfs:comment=''/> 
    <rdfs:Class rdf:about='file:/C:/Rick/Thesis/Ontology/Personal_Computer.daml#Memory_Type' 
         rdfs:label='Memory_Type' 
         rdfs:comment=''> 
        
<rdfs:subClassOf>file:/C:/Rick/Thesis/Ontology/Personal_Computer.daml#Memory</rdfs:subClassOf> 
    </rdfs:Class> 
    <rdfs:Class rdf:about='file:/C:/Rick/Thesis/Ontology/Personal_Computer.daml#Hard_Disk' 
         rdfs:label='Hard_Disk' 
         rdfs:comment=''/> 
    <rdfs:Class rdf:about='file:/C:/Rick/Thesis/Ontology/Personal_Computer.daml#HD_Type' 
         rdfs:label='HD_Type' 
         rdfs:comment=''> 
        
<rdfs:subClassOf>file:/C:/Rick/Thesis/Ontology/Personal_Computer.daml#Hard_Disk</rdfs:subClassOf>
    </rdfs:Class> 
    <rdfs:Class rdf:about='file:/C:/Rick/Thesis/Ontology/Personal_Computer.daml#Prod_Model' 
         rdfs:label='Prod_Model' 
         rdfs:comment=''/> 

</rdf:RDF> 

Figure 20: DAML example: Ontology of Personal computer 

For performance issue, we develop JAPE grammar rules by difference IT product 

base on section 1.4. To extract specification information correctly, the customization 

for JAPE rules to match the text format is necessary. Some times, different web site 

present same information type in different text format. For example, the CPU cache, 

IBM web documents show the CPU cache information as “Level1 cache: 4MB” or “L1 

cache: 4MB”, but HP web document show as “4MB Level1 cache” or “4MB L1 cache”, 

it need different JAPE rule to match these information. Figure 21 is an segment of 



42 
 
 

 JAPE code that extract from UNIX server JAPE grammar rule.  

Rule: CPU_Cache1 
( 
  ( 
    {Token.string =~ "[Ll]evel?" } | 
    {Token.string =~ "[Ll]?" } 
  ) 
  {Token.kind == number} 
  ( 
     {Token.string == "("} 
     {Token.kind == word}  
     {Token.kind == number}  
     {Token.string == ")"} 
  )?  
  {Token.string =~ "[Cc]ache?" } 
  ( 
    {Token.kind == punctuation}| 
    {Token.kind == word} | 
    {Token.kind == number} 
  ) ? 
 
  {Token.kind == number} 
  ( 
    {Token.string == "."} 
    {Token.kind == number} 
  ) ? 
  ( 
    {Token.string == "KB"}   | 
    {Token.string == "MB"} 
  ) 
) 
:CPU 
--> 
:CPU.CPU_Cache = {kind = CPU, rule = CPU_Cache1} 
 
Rule: CPU_Cache2 
( 
  {Token.kind == number} 
  ( 
    {Token.string == "."} 
    {Token.kind == number} 
  ) ? 
  ( 
    {Token.string == "KB"}   | 
    {Token.string == "MB"} 
  ) 
  ( 
    {Token.string == "shared"} | 
    {Token.string == "combined"} 
  ) ? 
  ( 
    {Token.string =~ "[Ll]evel?" } | 
    {Token.string =~ "[Ll]?" } 
  ) 
  {Token.kind == number} 
  {Token.string =~ "[Cc]ache?" } 
) 
:CPU 
--> 

:CPU.CPU_Cache = {kind = CPU, rule = CPU_Cache2} 

Figure 21: Example of JAPE grammar rule segment 

The JAPE example uses 2 JAPE rules to extract the information of CPU cache 

memory. The rule “CPU_cache1” is designed for IBM web document that can match 



43 
 
 

 the text format like “Level1 cache: 4MB” or “L1 cache: 4MB”. And the rule 

“CPU_cache2” is designed for HP web document that can match the text format like 

“4MB Level1 cache” or “4MB L1 cache”.  

To develop JAPE code for specific web page will enhance the extraction precision, 

but lost the common usage. We don’t expect the JAPE rule CPU_cache1 and 

CPU_cache2 can extract cache information for the web page of Dell computer. With 

the extension of web source, the fine tune for JAPE rule to meet new text format is 

necessary. 

3.6 DAML+OIL Exporter 

The DAML+OIL Export is a GATE process resource that allows the information 

segment found in documents to be exported as instances of a specified ontology in 

DAML+OIL format. When a corpus is processed with ANNIE and JAPE transducer, 

GATE will mark up the information that we want to extract. When the DAML+OIL 

exporter processes the corpus, for each information segment found that is of some type 

(such as CPU_type), if a corresponding concept with the same name as the information 

type (such as CPU_type) exists in the ontology then a new DAML instance will be 

generated in the export file. Figure 22 shows the example of DAML output file: 

<?xml version='1.0'?> 

<rdf:RDF 

    xmlns:gate='file:/C:/Rick/Thesis/Ontology/Personal_Computer.daml#' 

    xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#' 

    xmlns:daml='http://www.daml.org/2001/03/daml+oil#'> 

    <daml:Ontology rdf:about='' 

         daml:versionInfo='1.0'> 

        <daml:comment>autogenerated from GATE RDFFormatExporter </daml:comment> 



44 
 
 

 
    </daml:Ontology> 

    <daml:Property rdf:about='http://www.daml.org/2001/03/daml+oil#versionInfo'/> 

    <daml:Property rdf:about='http://www.daml.org/2001/03/daml+oil#comment'/> 

    <gate:Memory_Size rdf:about='512MB'/> 

    <gate:HD_Type rdf:about='Enhanced IDE'/> 

    <gate:Memory_Size rdf:about='1024MB'/> 

    <gate:CPU_Model rdf:about='Pentium簧 M'/> 

    <gate:Memory_Size rdf:about='2048MB'/> 

    <gate:HD_Size rdf:about='100GB'/> 

    <gate:Memory_Type rdf:about='DDR SDRAM'/> 

    <gate:Prod_Model rdf:about='Pavilion dv4040us'/> 

    <gate:CPU_Speed rdf:about='1.73GHz'/> 

</rdf:RDF> 

Figure 22: Example of DAML output file 



45 
 
 

 4. Analysis and Comparison 

4.1 Extraction Result 

After annotate processing, web corpus are separated into thousands tokens. Every 

token has attribute like token type, length, position … and so on. Figure 23 shows the 

annotation result 

   

Figure 23: Annotation result 

Then, JAPE transducer tries to match information entity, which may be composed 

by several tokens, base on JAPE grammar rule. Figure 24 show the process screen that 

JAPE transducer mark information entity up when the text format is matched with the 

JAPE grammar rule.  

 



46 
 
 

 

  

Figure 24: Information Entity marked up by JAPE transducer 

An information entity is one of product specification that may be composed by 

several tokens, like the monitor resolution mode used to present as “1024x768 

@75Mhz”. The goal of IT specification extraction system is to extract these 

information entities from selected web page. We collect total 32 web pages from IBM 

and HP web site for system test, the extraction result show as following. The extraction 

results show that JAPE grammar rule can extract finite information entities form these 

tokens.  



47 
 
 

 • Personal computer corpus (include desktop and notebook): 

Table 1: Extraction result of HP and IBM Personal computer 

Web 
Site 

Product Name Total 
tokens 

Extracted 
information entities 

HP Pavilion dv4030us Notebook 5190 11 
HP Pavilion zv6010us Notebook 4900 10 
HP Media Center zd8110us Notebook 5215 12 
HP Pavilion a1040n Desktop 5104 9 
HP Media Center m7070n Photosmart PC 5103 10 
IBM ThinkPad T42 Notebook 2128 11 
IBM ThinkPad X41Tablet 1806 10 
IBM ThinkPad R50e Notebook 1812 10 
IBM ThinkCentre S50 Desktop 1816 10 
IBM ThinkCentre M51 Desktop 1851 10 

• Unix server corpus 

Table 2: Extraction result of HP and IBM Unix Server 

Web Site Product Name Total 
tokens 

Extracted 
Information entities 

HP RX8620 892 18 
HP RX7620 860 16 
HP RX4640 1079 25 
HP RP8420 1120 16 
HP RP7420 1230 18 
IBM p5 590 1016 13 
IBM p5 570 1080 18 
IBM p5 550 1017 11 
IBM p5 520 1031 11 
IBM p5 510 772 11 

 

 



48 
 
 

 • Monitor corpus 

Table 3: Extraction result of HP and IBM monitor 

Web Site Product Name Total tokens Extracted 
Information entities 

HP vs1717 Flat-Panel LCD 
Monitor 

4932 11 

HP f1905 19 LCD Flat-Panel 
Monitor 

4928 11 

HP Pavilion mx704 17 
Flat-Screen CRT Monitor 

4903 11 

HP s7540 CRT Monitor 527 11 
IBM ThinkVision L170p Monitor 1117 27 
IBM ThinkVision L150 Monito 1050 19 
IBM E74M 17 inch CRT Monitor 1108 25 
IBM E54 15'' Monitor MPRII 809 10 

•  

• Printer corpus  

Table 4: Extraction result of HP and IBM printer 

Web Site Product Name Total 
tokens 

Extracted 
information entities 

IBM Infoprint Color 1357 Printer 782 5 
IBM Infoprint 1412 Printer 807 9 
IBM Infoprint 1352 Printer 889 8 
HP Inkjet 1200dn printer 3766 19 
HP Deskjet 3845 Printer 4905 4 
HP Color LaserJet 2600n Printer 3431 10 

We also collect 24 web pages from other company such Sony, ASU, SUN… to 

compare the extraction result of JAPE rules. The extraction result show as following 

tables 



49 
 
 

 Table 5: Extraction result of Sony and ASUS personal computer 

Web 
Site 

Product Name Total 
tokens 

Extracted 
information entities 

Sony Sony VGN-T370P-L Notebooks 3775 10 
Sony Sony VGN-FS675P-H Notebook 3649 8 
Sony Sony  VAIO V167G TV-PC Desktop 3534 12 
ASUS ASUS W5A Notebook 549 6 
ASUS ASUS W3V Notebook 663 6 
ASUS ASUS V6V Notebook 531 6 

• Unix server corpus 

Table 6: Extraction result of Sun Unix Server 

Web 
Site 

Product Name Total 
tokens 

Extracted 
Information entities 

SUN Sun Fire V890 Server 1234 2 
SUN Sun Fire V40z Server 1087 10 
SUN Sun Fire V240 Server 1172 5 
SUN Sun Fire V1280 950 4 
SUN Sun Fire E4900 Server 1285 0 
SUN Sun Fire E20K Server 1209 0 

• Monitor corpus 

Table 7: Extraction result of BenQ and Acer monitor 

Web Site Product Name Total tokens Extracted 
Information entities 

BenQ BenQ USA - FP531 LCD monitor 480 5 
BenQ BenQ FP71V LCD monitor 521 5 
BenQ BenQ FP71E LCD monitor 419 5 
BenQ BenQ FP537s LCD Monitor 467 5 
Acer Acer AF715 CRT monitor 217 4 
Acer Acer AC501 CRT monitor 190 4 

•  



50 
 
 

 • Printer corpus  

Table 8: Extraction result of Epson and Canon Printer 

Web Site Product Name Total 
tokens 

Extracted 
information entities 

Epson Epson PictureMate 1458 1 
Epson Epson Stylus Photo R300

Printer 1721 2 

Epson Epson Stylus C66 Printer 1369 3 
Canon CanonPIXMA iP3000 printer 1033 1 
Canon Canon Printers - i80 Printer 1022 2 
Canon Canon PIXMA iP90 Printer 1128 1 

 

4.2 Performance index 

Although IT product specification extraction system has the ability to extract 

information from web pages, we also need some indexes to evaluate the extraction 

performance. Evaluation of information extraction methods is a very important. There 

is a general consensus that evaluation is either quantitative or qualitative. Quantitative 

evaluation measures the performance of the various software algorithms that constitute 

the extraction tool. Qualitative evaluation assesses the adequacy of information 

extraction method for specific knowledge domain.[26] 

 Two evaluation stages are typically performed when evaluating an information 

extraction method. First, term level evaluation assesses the performance of extracting 

domain relevant terms from the corpus. Second, an extraction quality evaluation stage 

assesses the quality of the extracted entities. 

To measure the performance of information extraction system, usually consider two 

performance index, precision and recall, that is define as following [27,16]: 



51 
 
 

 For one web document:  

Definition:  

1. Information entity: An IT product specification that may be formed be one or 
several lexical token. 

2. Target information entity: An IT product specification that meets our 
information extraction scope and hide in selected web document 

3. Information entity extracted: A lexical construction that is extracted by JAPE 
grammar rule. 

4. Correct information entity extracted: A correct IT product specification that 
is extracted by JAPE grammar rule and. 

Base on above definition, the recall and precision rate be defined as: 

 

 

 

 

 

We use the following step to evaluate the performance of IT product specification 

extraction system [28]. 

Step 1. Manually annotation: 

We annotate all selected web documents manually to mark up all target 

information entities. It is baseline of performance evaluate. 

Step 2. Automatic annotation by JAPE grammar rule:  

Recall = 
Number of correct information entities extracted 

Number of target information entities  

Precision = 
Number of information entities extracted 

Number of correct information entities extracted 



52 
 
 

 We run all application of IT product specification extraction system, to mark 

up and extract information entities from selected web page by automatic 

process.  

Step 3. Compare and calculate the recall and precision: 

Compare the information entities that mark up by manual and extract by 

automatic process to calculate the recall and precision values. 

Figure 25 is an example to explain the calculation of recall and precision. It is a web 

page segment that describes the print quality of printer. Annotate the text segment by 

manually, we know the black and color printer quality both are 600x600 dpi, so there 

are 2 target information entities show be extracted. But JAPE grammar rule extracts 3 

information entities, two are correct and one is missed.  

 

Figure 25: Example of recall and precision rate calculation 

So we get following result: 

Target information entity = 2 



53 
 
 

 Information entity extracted = 3 

Correct information entity extracted = 2 

Recall = 2 / 2 = 100% 

Precision = 2 / 3 = 66.6% 

We run all application and calculate recall and precision rate for application, the 

result show as following table: 

Personal Computer Application 

Table 9: Recall and Precision of personal computer extraction result 

Number of 
target 

information 
entities 

Number of 
information 

entities 
extracted 

Number of 
correct 

information 
entities extracted

Recall Precision
Product name 

(A) (B) (C) (C/A) (C/B)
HP Pavilion dv4030us 
Notebook 10 11 10 100% 90.9% 
HP Pavilion zv6010us 
Notebook 10 10 10 100% 100% 
HP Media Center 
zd8110us Notebook 8 9 8 100% 88.9% 
HP Pavilion a1040n 
Desktop 10 12 10 100% 83.3% 
HP Media Center 
m7070n Photosmart PC 9 10 9 100% 90% 
IBM ThinkPad T42 
Notebook 10 11 10 100% 90.9% 
IBM ThinkPad 
X41Tablet 10 10 10 100% 100% 
IBM ThinkPad R50e 
Notebook 9 10 9 100% 90% 
IBM ThinkCentre S50 
Desktop 9 10 9 100% 90% 
IBM ThinkCentre M51 
Desktop 9 10 9 100% 90% 
Sum/Average 94 103 94 100% 91.3% 

•  

•  

•  



54 
 
 

 • Unix server Application 

Table 10: Recall and Precision of Unix server extraction result 

Product name 
Number of target

information 
entities 

Number of 
information 

entities 
extracted 

Number of 
correct 

information 
entities extracted

Recall Precision

 (A) (B) (C) (C/A) (C/B)
HP RX8620 18 18 18 100% 100% 
HP RX7620 16 16 16 100% 100% 
HP RX4640 25 25 25 100% 100% 
HP RP8420 19 16 16 84.2% 100% 
HP RP7420 18 15 15 83.3% 100% 
IBM p5 590 14 13 13 92.9% 100% 
IBM p5 570 18 18 16 88.9% 88.9% 
IBM p5 550 10 11 10 100% 90.9% 
IBM p5 520 10 11 10 100% 90.9% 
IBM p5 510 10 11 10 100% 90.9% 
Sum/Average 158 154 149 95% 96.2% 

• Monitor Application 

Table 11: Recall and Precision of monitor product extraction result 

Product name 
Number of 

target 
information 

entities 

Number of 
information 

entities 
extracted 

Number of 
correct 

information 
entities extracted 

Recall Precision

 (A) (B) (C) (C/A) (C/B) 
HP vs1717 Flat-Panel LCD 
Monitor 10 11 10 100% 90.9% 

HP f1905 19 LCD Flat-Panel 
Monitor 11 11 11 100% 100% 

HP Pavilion mx704 17 
Flat-Screen CRT Monitor 12 11 11 91.7% 100% 

HP s7540 CRT Monitor 13 11 11 84.6% 100% 

IBM ThinkVision L170p 
Monitor 25 27 24 96% 88.9% 

IBM ThinkVision L150 
Monitor 20 19 19 95% 100% 

IBM E74M 17 inch CRT 
Monitor 21 25 21 100 84% 

IBM E54 15'' Monitor MPRII 11 10 10 90.9% 100% 
SUN/Average 123 125 117 95.1% 93.6% 

•  



55 
 
 

 • Printer Application 

Table 12: Recall and Precision of personal computer extraction result 

Product name 
Number of 

target 
information 

entities 

Number of 
information 

entities 
extracted 

Number of 
correct 

information 
entities extracted

Recall Precision

 (A) (B) (C) (C/A) (C/B) 
IBM Infoprint Color 1357 
Printer 6 5 5 83.3% 100% 
IBM Infoprint 1412 Printer 10 9 9 90% 100% 
IBM Infoprint 1352 Printer 9 8 8 88.9% 100% 
HP Inkjet 1200dn printer 17 21 17 100% 81% 
HP Deskjet 3845 Printer 6 6 6 100% 100% 
HP Color LaserJet 2600n 
Printer 10 11 10 100% 90.9% 
SUM/Average 58 60 55 94.8% 91.7% 

The following is performance summary table of IT specification extraction system: 

• Summary Table of recall and precision: 

Table 13: Summary table of recall and precision 

Product name 
Number of 

target 
information 

entities 

Number of 
information 

entities 
extracted 

Number of 
correct 

information 
entities extracted

Recall Precision

 (A) (B) (C) (C/A) (C/B) 

Personal Computer 94 103 94 100% 91.3% 
Unix Server 158 154 149 95% 96.2% 
Monitor 123 125 117 95.1% 93.6% 
Printer 58 60 55 94.8% 91.7% 
SUM/Average 433 442 418 96.5% 94.6% 

 

The above tables show that JAPE grammar rules have high recall and precision 

value to extract information entities form IBM and HP web pages.  



56 
 
 

 
4.3 Performance index for other company: 

Since our JAPE rules are optimized for IBM and HP web pages, the high extraction 

performance just meets our expectation. Our major concern is the extraction 

performance for web pages of other company. The recall and precision values are show 

as following tables:  

 

• Personal Computer Application 

Table 14: Recall and Precision of personal computer extraction result 

Number of 
target 

information 
entities 

Number of 
information 

entities 
extracted 

Number of 
correct 

information 
entities extracted

Recall Precision
Product name 

(A) (B) (C) (C/A) (C/B)

Sony VGN-T370P-L 

Notebooks 
9 10 7 78% 70.0% 

Sony VGN-FS675P-H 

Notebook 
9 8 6 67% 75.0% 

Sony VAIO V167G 

TV-PC Desktop 
14 12 10 71% 83.3% 

ASUS W5A Notebook 10 6 5 50% 83.3% 
ASUS W3V Notebook 9 6 5 56% 83.3% 
ASUS V6V Notebook 10 6 5 50% 83.3% 
Sum/Average 61 48 38 62% 79.2% 

•  

•  

•  



57 
 
 

 • Unix server Application 

Table 15: Recall and Precision of Unix server extraction result 

Product name 
Number of target

information 
entities 

Number of 
information 

entities 
extracted 

Number of 
correct 

information 
entities extracted

Recall Precision

 (A) (B) (C) (C/A) (C/B)

Sun Fire V890 Server 13 2 2 15.4% 100% 
Sun Fire V40z Server 15 10 8 53.3% 80% 
Sun Fire V240 Server 13 5 5 38.5% 100% 
Sun Fire V1280 16 4 4 25.0% 100% 
Sun Fire E4900 Server 12 0 0 0% -- 
Sun Fire E20K Server 13 0 0 0% -- 
Sum/Average 82 21 19 23.2% 90.5% 

•  
•  
• Monitor Application 

Table 16: Recall and Precision of monitor product extraction result 

Product name 
Number of 

target 
information 

entities 

Number of 
information 

entities 
extracted 

Number of 
correct 

information 
entities extracted 

Recall Precision

 (A) (B) (C) (C/A) (C/B) 

BenQ USA - FP531 LCD 

monitor 
5 5 3 60% 60% 

BenQ FP71V LCD monitor 6 5 3 50% 60% 

BenQ FP71E LCD monitor 5 5 3 60% 60% 

BenQ FP537s LCD Monitor 6 5 3 50% 75% 

Acer AF715 CRT monitor 6 4 3 50% 75% 

Acer AC501 CRT monitor 7 4 3 43% 75% 

Average 35 28 18 51% 64.3% 

 
•  

 
 

•  



58 
 
 

 • Printer Application 

Table 17: Recall and Precision of personal computer extraction result 

Product name 
Number of 

target 
information 

entities 

Number of 
information 

entities 
extracted 

Number of 
correct 

information 
entities extracted

Recall Precision

 (A) (B) (C) (C/A) (C/B) 

Epson PictureMate 3 1 1 33.3% 100% 
Epson Stylus Photo R300 

Printer 
3 2 2 66.7% 100% 

Epson Stylus C66 Printer 4 3 3 75.0% 100% 
CanonPIXMA iP3000 printer 6 1 1 16.7% 100% 
Canon Printers - i80 Printer 9 2 2 22.2% 100% 
Canon PIXMA iP90 Printer 6 1 1 16.67% 100% 
SUM/Average 31 10 10 32.3% 100% 

•  

• Summary Table of recall and precision: 

Table 18: Summary table of recall and precision for other company 

Product name 
Number of 

target 
information 

entities 

Number of 
information 

entities 
extracted 

Number of 
correct 

information 
entities extracted

Recall Precision

 (A) (B) (C) (C/A) (C/B) 

Personal computer 61 48 38 62% 79.2% 
Unix Server 82 21 19 23.2% 90.5% 
Monitor 35 28 18 51% 64.3% 

Printer 31 10 10 32.3% 100% 
SUM/Average 209 107 85 41% 79.4% 

From above tables, we see the average precision is above 79.5% but the average 

recall value is down to 41%. It shows that the recall obviously reduces and precision 

still keeps acceptable level as the extension of web site scope. This result implies that 

JAPE grammar rules get either correct information entity or nothing.  



59 
 
 

 5. Conclusion and Contribution 

Information extraction is an important process in knowledge management domain. 

In this paper we present an approach that combine natural language processing and 

ontology concept to extract information for unstructured web documents, and build up a 

prototype of IT product specification extraction system with simple JAPE grammar rule 

to test the recall and precision rate.  

The major challenge of information extraction methodology is how to enhance both 

recall and precision values. From the extraction result, we see the JAPE grammar rule 

has good performance for specific knowledge domain. Both of recall and precision 

value are higher than 85%, even 100% for some documents.  

JAPE could be treated as one kind of pattern match methodology, but provide more 

flexibility than traditional way. JAPE grammar rule is very suitable to extract following 

information entity: 

1. The information entity has specific text structure, like monitor resolution 

mode. Generally, a monitor provide several different resolution modes, like 

“1024x768 @ 60Hz”, “800x600 @70Hz” …and so on. It is difficult to extract 

this kind of information by other extraction method. But the monitor 

resolution mode has a common text structure as: 

{number} {x} {number} ({@ | at}) {number} {Hz} 

It is easy to identify the resolution mode accurately form web document by 

JAPE grammar rule.  

2. The information entity is composed by several tokens, like CPU cache. CPU 



60 
 
 

 cache usually present as “Level1 cache: 6MB”. It will be separated several 

tokens as “Level”, “1”, “cache”, “:”, “6”, “MB”. Any one is common token in 

web document, no special keyword in this strings, it is not easy to extract the 

full information entity accurately by other text mining methodology. But we 

can descript the CPU cache as : 

 {Level} {nember} {cache} {:} {number} {MB} 

Only the text string fully match this grammar rule will be extracted, it 

substantially enhance the precision rate of information extraction. 

On other hand, the JAPE grammar rule is developed to extract information entities 

from certain web site or knowledge domain. It is difficult to widely apply the same 

JAPE rule to different web sites. The recall and precision rate maybe down as the 

extension of web sites.  

This approach not only provides an information extraction methodology, it also 

links with ontology concept and presents the extraction result with ontology language. 

It means that the extracted information entities not only a single item, it includes the 

relation or property. These extraction results maybe become the resource of 

post-process, such as semantic web agent or ontology-based knowledge management 

system.  

The major contributions of our research are show as following: 

1. Build up an automatic information extraction process and prototype to enhance 

the performance of IT product specification extraction. This process link NLP 

technology and Ontology concept to provide high extraction performance.  



61 
 
 

 2. Convert information entities that hide in current html document to be DAML 

document that follow RDF (Resource Description Framework) specification. It 

is important to push Semantic Web popularization.  



62 
 
 

 6. Reference 

[1] Michio Kaku, “Visions: How Science will Revolutionize the Twentyfirst Century”, 
Oxford, New York, Oxford University Press, 1998. 

[2] Harith Alani, Sanghee Kim, David E. Millard, Mark J. Weal, Wendy Hall, Paul H. 
Lewis, Nigel R. Shadbolt, “Automatic Ontology-based knowledge Extraction and 
Tailored Biography Generation from the Web”, IEEE 2003 

[3] David Masterson, Nicholas Kushmerick, “Information extraction form MDT”, 
ECML-2003 Workshop on Adaptive Text Extraction & Mining 

[4] Khaled Khelif, Rose Dieng-Kuntz, “Ontology-base semantic annotation for biochip 
domain”, KMOM Workshop ECAI2004, 2004 

[5] Tim Berner’s Lee, “Information Management: A Proposal”, CERN, March 
1989,May 1990 

[6] “What is an Ontology?”, http://www-ksl.stanford.edu/kst/what-is-an-ontology.html 
[7] Adelaide, Australia. D. Mollá and B. Hutchinson, “Natural Language Processing in 

the Undergraduate Curriculum”, Proc.Fifth Australasian Computing Education 
Conference (ACE2003),  

[8] “An Introduction to NLP” 
http://www.cs.bham.ac.uk/~pxc/nlpa/2002/AI-HO-IntroNLP.html 

[9] Tomek Strzalkowski, Barbara Vauthey, “Information Retrieval using Robust 
Natural Language Processing”, ACL 1992: 104-111 

[10] Thompson CA,Califf ME,Mooney R J, “Active Learning for Natural Language 
Parsingand Information Extraction”, Proc. of the Sixteenth Intl. Machine Learning, 
June 1999 

[11] Claire Cardie, “Empirical Methods in Information Extraction”, AI Magazine, 18:4, 
65-79 1997 

[12] Marti Hearst, “What is Text Mining? “, October 17, 2003, SIMS,UC Berkeley 
http://www.sims.berkeley.edu/~hearst/text-mining.html 

[13] “Office of Naval Research (ONR) Science & Technology” 
http://www.onr.navy.mil/sci_tech/special/technowatch/default.htm 

[14] Kostoff RN, “Text Mining for Global Technology Watch”, available on [13] 
[15] Kostoff RN, “Information Extraction From Scientific Literature with Text 

Mining” , 2001. (available on [13]) 
[16] Raymond J. Mooney , Un Yong Nahm, “Text Mining with Information 

Extraction”, In Proceed-. ings of the AAAI 2002 Spring Symposium on Mining 
Answers from Texts and. Knowledge Bases, 2002. 

[17] W. Fan, L. Wallace, S. Rich, Z. Zhang, “Tapping into the Power of Text Mining”, 



63 
 
 

 Communications of ACM, forthcoming, 2005 
[18] R. Cooley, B. Mobasher, J. Srivastava , “Web Mining: Information and Pattern 

Discovery on the World Wide Web”, Proceedings of the 9th IEEE International 
Conference on Tools with Artificial Intelligence (ICTAI'97), November 1997. 

[19] N. Guarino, Trento, “Proc. of the 1st International Conference on Formal Ontology 
and Information System”, Italy, Jun. 1998. 

[20] S. Luke and J. Heflin, “SHOE 1.01 Proposed Specification”, SHOE Project, Feb. 
2002. http://www.cs.umd.edu/projects/plus/SHOE/spec1.01htm. 

[21] I. Horrocks and F. van Harmelen, “Reference Description of the DAML+OIL 
Ontology Markup Language”, draft report, 2001, 
http://www.daml.org/2000/12/reference.html 

[22] Harith Alani, Sanghee Kim, David E. Millard, Mark J. Weal, Wendy Hall, Paul H. 
Lewis, Nigel R. Shadbolt, “Automatic Ontology-based knowledge Extraction and 
Tailored Biography Generation from the Web”, IEEE 2003 

[23] David Vallet, Miriam Fernández, and Pablo Castells, “An Ontology-Based 
Information Retrieval Model”, Universidad Autónoma de Madrid 

[24] GATE Home page, http:// http://gate.ac.uk/ 
[25] D. Maynard and H. Cunningham, “Multilingual Adaptations of a Reusable 

Information Extraction Tool”, In Proceedings of the Demo Sessions of EACL’03, 
Budapest, Hungary, 2003. 

[26] R. Navigli, P. Velardi, A. Cucchiarelli, and F. Neri, “Quantitative and Qualitative 
Evaluation of the OntoLearn Ontology Learning System”, ECAI Workshop on 
Ontology Learning and Population, 2004 

[27] Marta Sabou, Chris Wroe, Carole Goble, and Gilad Mishne, “Learning domain 
ontology for web services description”, World Wide Web Conference (WWW 
2005: 190-198), 2005 

[28] Chun-Chun Tsai, “Spatial information extraction from Chinese News articles”, Jun, 
2003, NTU  

 
 



64 
 
 

 
7. Appendix 

7.1 JAPE Grammar Rule for personal computer 

 
Phase: PC_Spec 
Input: Lookup Token 
Options: control = appelt debug = false 
 
 
Macro: DDR_RAM 
( 
 ( 
    {Token.string == DDR} 
    ( 
      {Token.kind == number} | 
      ({Token.string == II}) 
    )? 
 )  
) 
 
//--------------------------------------------- 
 
Rule: Prod_model 
( 
    (                                  
      {Token.string == Pavilion } |    
      {Token.string == Presario } |    
      (  
        {Token.string == Media } 
 {Token.string == Center } 
      ) | 
      {Token.string == ThinkPad } |    
      {Token.string == ThinkCentre }   
    )                                  
    (                                  
        {Token.kind == word }          
        {Token.kind == number }        
        ({Token.kind == word })?       
    )                                  
   
) 
:PC 
--> 
:PC.Prod_Model = {kind = PC, rule = Prod_Model} 
 
 
Rule: CPU_Model 
( 
  (                               
    {Token.string == Pentium}  |  
    {Token.string == Celeron}  |  
    {Token.string == Athlon }  |  
    {Token.string == Athlon64} |  
    {Token.string == Duron  }     
  )                               
  ({Token.type == other})? 
  ( 
     {Token.kind == number} | 
     {Token.kind == word, Token.length == 1 } 
   ) 
):CPU 
--> 
:CPU.CPU_Model = {kind = CPU, rule = CPU_Model} 
 
 



65 
 
 

 
Rule: CPU_Speed 
Priority:10 
( 
  {Token.kind == number, Token.string <= 6} 
  ( 
    {Token.string == "."} 
    {Token.kind == number} 
  )? 
  ( 
    {Token.string == "G"}   | 
    {Token.string == "GHz"} 
  ) 
) 
:CPU 
--> 
:CPU.CPU_Speed = {kind = CPU, rule = CPU_Speed} 
 
 
Rule: False_CPU_Speed 
Priority:20 
( 
  ( 
    {Token.kind == number, Token.string == 802} 
    {Token.string == "."} 
    {Token.kind == number, Token.string == 11} 
    ({Token})+ 
  ) 
  ( 
    {Token.kind == number, Token.string <= 6} 
    ( 
      {Token.string == "."} 
      {Token.kind == number} 
    )? 
    ( 
      {Token.string == "G"}   | 
      {Token.string == "GHz"} 
    ) 
  ) 
) 
:CPU 
--> 
{} 
 
 
Rule: Memory_Type 
( 
  {Token.string == SDRAM } | 
  ( 
    (DDR_RAM) 
    ({Token.string == SDRAM})?  
  ) 
) 
:Memory 
--> 
:Memory.Memory_Type = {kind = Memory, rule = Memory_Type} 
 
 
Rule: False_Memory_Size 
Priority:20 
( 
  ( 
    ( 
      {Token.kind == number}  
      {Token.string =~ "[xX]?"}  
    ) | 
    ( 
      {Token.string == "/" } 
    ) 
  ) 
  ( 
    ( 



66 
 
 

 
      {Token.kind == number, Token.string >= 256 }  
      {Token.string == MB }  
    ) | 
    ( 
      {Token.kind == number, Token.string <= 6 }  
      ( 
        {Token.string == "."} 
        {Token.kind == number} 
      )? 
 
      {Token.string == GB }  
    ) 
  ) 
) 
:Memory 
--> 
{} 
 
 
Rule: Memory_Size 
Priority:10 
( 
  ( 
    {Token.kind == number, Token.string >= 256 }  
    {Token.string == MB }  
  ) | 
  ( 
    {Token.kind == number, Token.string <= 4 }  
    ( 
      {Token.string == "."} 
      {Token.kind == number} 
    )? 
    {Token.string == GB }  
  ) 
) 
:Memory 
--> 
:Memory.Memory_Size = {kind = Memory, rule = Memory_Size} 
 
 
Rule: Max_Memory_Size 
Priority:15 
 
( 
  ( 
    {Token.string =~ "[mM]aximum?"} 
    {Token.string =~ "[mM]emory?"} 
  ) 
  ( 
    ( 
      {Token.kind == number, Token.string >= 256 }  
      {Token.string == MB }  
    ) | 
    ( 
      {Token.kind == number, Token.string < 6 }  
      ( 
        {Token.string == "."} 
        {Token.kind == number} 
      )? 
      {Token.string == GB }  
    ) 
  ) 
) 
:Memory 
--> 
:Memory.Max_Memory_Size = {kind = Memory, rule = Max_Memory_Size} 
 
 
Rule: HD_Type 
( 
  ( 



67 
 
 

 
    {Token.string == Enhanced }  
    {Token.string == IDE }  
   )  
   | 
   (  
     ( 
       {Token.string =~ "[Ss]erial?" } 
       {Token.string == ATA } 
     ) 
     | 
     ({Token.string == SATA }) 
   ) 
) 
:HD 
--> 
:HD.HD_Type = {kind = Memory, rule = HD_Type} 
 
 
Rule: HD_Size 
( 
  {Token.kind == number, Token.string >= 20 }  
  {Token.string == GB }  
) 
:HD 
--> 
:HD.HD_Size = {kind = Memory, rule = HD_Size} 



68 
 
 

 
7.2 JAPE Grammar Rule for Unix Server 

 
Phase: Unix_Server_Spec 
Input: Lookup Token 
Options: control = appelt debug = false 
 
 
 
Macro: DDR_RAM 
( 
 ( 
    {Token.string == DDR} 
    ( 
      {Token.kind == number} | 
      ({Token.string == II}) 
    )? 
 )  
) 
 
 
//--------------------------------------------- 
 
Rule: Server_model 
( 
   (  
     ( 
       ( 
         {Token.string == p } | 
         {Token.string == P }  
       ) 
       {Token.kind == number } 
      ) | 
     {Token.string == rp } | 
     {Token.string == rx }  
   ) 
   {Token.kind == number } 
   ( 
     {Token.string == "-" } 
     {Token.kind == number } 
   )? 
) 
:Server 
--> 
:Server.Server_Model = {kind = Server, rule = Server_model} 
 
 
Rule: CPU_Model 
( 
  ( 
    {Token.string == POWER} | 
    ( 
      {Token.string == PA-} | 
      {Token.string == PA} 
    ) | 
    ( 
      {Token.string == Itanium} 
      ({Token.type == other})? 
    )  
  ) 
  ({Token.string == "-"}) ? 
  {Token.kind == number} 
) 
:Server 
--> 
:Server.CPU_Model = {kind = Server, rule = CPU_Model} 
 
 
Rule: CPU_Speed 



69 
 
 

 
( 
  ( 
    {Token.kind == number, Token.string <= 3} 
    ( 
      {Token.string == "."} 
      {Token.kind == number} 
    ) ? 
    ( 
      {Token.string == "G"}   | 
      {Token.string == "GHz"} 
    ) 
  ) | 
  ( 
    {Token.kind == number, Token.string >= 800} 
    ( 
      {Token.string == "M"}   | 
      {Token.string == "MHz"} 
    ) 
  ) 
) 
:CPU 
--> 
:CPU.CPU_Speed = {kind = CPU, rule = CPU_Speed} 
 
 
Rule: CPU_Cache1 
( 
  ( 
    {Token.string =~ "[Ll]evel?" } | 
    {Token.string =~ "[Ll]?" } 
  ) 
  {Token.kind == number} 
  ( 
     {Token.string == "("} 
     {Token.kind == word}  
     {Token.kind == number}  
     {Token.string == ")"} 
  )?  
  {Token.string =~ "[Cc]ache?" } 
  ( 
     {Token.string == "("} 
     {Token.kind == word}  
     {Token.string == ")"} 
     {Token.kind == punctuation} 
  ) ? 
  ( 
    {Token.kind == punctuation}| 
    {Token.kind == word} | 
    {Token.kind == number} 
  ) ? 
 
  {Token.kind == number} 
  ( 
    {Token.string == "."} 
    {Token.kind == number} 
  ) ? 
  ( 
    {Token.string == "KB"}   | 
    {Token.string == "MB"} 
  ) 
) 
:CPU 
--> 
:CPU.CPU_Cache = {kind = CPU, rule = CPU_Cache1} 
 
 
Rule: CPU_Cache2 
( 
  {Token.kind == number} 
  ( 
    {Token.string == "."} 



70 
 
 

 
    {Token.kind == number} 
  ) ? 
  ( 
    {Token.string == "KB"}   | 
    {Token.string == "MB"} 
  ) 
  ( 
    {Token.string == "shared"} | 
    {Token.string == "combined"} 
  ) ? 
  ( 
    {Token.string =~ "[Ll]evel?" } | 
    {Token.string =~ "[Ll]?" } 
  ) 
  {Token.kind == number} 
  {Token.string =~ "[Cc]ache?" } 
) 
:CPU 
--> 
:CPU.CPU_Cache = {kind = CPU, rule = CPU_Cache2} 
 
 
 
Rule: Memory_type 
( 
  {Token.string == SDRAM } | 
  ( 
    (DDR_RAM) 
    ({Token.string == SDRAM} )?  
  ) 
  (  
    {Token.kind == number }  
    {Token.string == MHz } 
  ) 
) 
:Memory 
--> 
:Memory.Memory_type = {kind = Memory, rule = Memory_type} 
 
 
Rule: False_Memory_Size 
Priority:20 
( 
  {Token.string == "."} 
  {Token.kind == number }  
  ( 
    {Token.string == MB } | 
    {Token.string == GB } 
  )  
) 
:Server 
--> 
{} 
 
Rule: Memory_Size1 
Priority:10 
( 
  {Token.kind == number }  
  ( 
    {Token.string == GB } | 
    {Token.string == MB }  
  ) 
  ( 
    {Token.string == to }  
    {Token.kind == number }  
    ( 
      {Token.string == GB } | 
      {Token.string == MB }  
    ) 
  )  
  ( 



71 
 
 

 
    {Token.string == of }  
    {Token.kind == number }  
    {Token.string == MHz } 
  )? 
) 
:Server 
--> 
:Server.Memory_Size = {kind = Memory, rule = Memory_Size1} 
 
 
Rule: Max_Memory_Size1 
Priority:50 
( 
  {Token.kind == number }  
  {Token.string == GB } 
  ( 
    {Token.string =~ "[Mm]ax?" } | 
    {Token.string =~ "[Mm]aximum?" }  
  ) 
) 
:Server 
--> 
:Server.Max_Memory_Size = {kind = Memory, rule = Max_Memory_Size} 
 
 
Rule: Max_Memory_Size2 
Priority:45 
( 
  ( 
    {Token.string =~ "[Uu]p?"  }  
    {Token.string == to }  
  ) 
  {Token.kind == number }  
  ( 
    {Token.string == GB } | 
    {Token.string == TB }  
  )  
  (  
    {Token.kind == number }  
    {Token.string == MHz } 
  ) 
) 
:Server 
--> 
:Server.Max_Memory_Size = {kind = Memory, rule = Max_Memory_Size2} 
 
 
Rule: OS_ver 
( 
  ( 
    {Token.string == AIX } | 
    {Token.string == HP-UX }  
  ) 
  {Token.kind == number }  
  ( 
    {Token.string == "."} 
    {Token.kind == number }  
  ) ? 
  ({Token.kind == word}) ? 
  ( 
    {Token.string =~ "[Vv]ersions?" } | 
    {Token.string =~ "[Vv]?" }  
  )? 
  ( 
    {Token.kind == number }  
    ( 
      {Token.string == "."} 
      {Token.kind == number }  
    ) ? 
    ( 
      {Token.string == "/"} 



72 
 
 

 
      {Token.kind == number }  
      {Token.string == "."} 
      {Token.kind == number }  
    )* 
  ) 
) 
:Server 
--> 
:Server.OS_Ver = {kind = OS_Ver, rule = OS_Ver} 
 
 
Rule: HD_Type 
( 
  ( 
    {Token.string == Enhanced }  
    {Token.string == IDE }  
   )| 
   (  
     ( 
       {Token.string =~ "[Ss]erial?" } 
       {Token.string == ATA } 
     ) 
     | 
     ({Token.string == SATA }) 
   ) | 
   ( 
     ( 
        {Token.string == Ultra }  
        {Token.kind == number } 
     )  
        {Token.string == SCSI } 
   )   
) 
:Server 
--> 
:Server.HD_Type = {kind = HD_Type, rule = HD_Type} 
 

 



73 
 
 

 
7.3 JAPE Grammar Rule for Monitor 

 
Phase: Monitor_Spec 
 
Input: Lookup Token  
Options: control = appelt debug = false 
//SpaceToken 
 
 
Macro: Monitor_Brand 
( 
 ( 
   {Token.string == ThinkVision  }  | 
   {Token.string == Pavilion}  | 
   {Token.string == Presario }  | 
   {Token.string == Lenovo } | 
   {Token.string == HP } 
 )  
) 
 
  
//--------------------------------------------- 
 
Rule: Monitor_model 
( 
   
  (Monitor_Brand)  
  ({Token.kind == punctuation}) ? 
  ( {Token.kind == word } ) ?   
  ( {Token.kind == word } ) ? 
  {Token.kind == word } 
  {Token.kind == number }   
  ( 
     {Token.kind == word, Token.length == 1 } 
  )?   
) 
:Monitor 
--> 
:Monitor.Monitor_Model = {kind = Monitor, rule = Monitor_Model} 
 
 
Rule: Monitor_type 
( 
   ( 
     {Token.string == TFT } | 
     {Token.string == LCD } | 
     {Token.string == CRT } | 
     {Token.string =~ "[Pp]anel?"}  
   ) 
   ( 
     {Token.string == Monitor } | 
     {Token.string == monitor } 
   ) 
) 
:Monitor 
--> 
:Monitor.Monitor_type = {kind = Monitor, rule = Monitor_type} 
 
 
Rule: Monitor_Size1 
( 
  {Token.kind == number, Token.string >= 14 , Token.string <= 20} 
  ( 
   {Token.kind == punctuation}  
   {Token.kind == number} 
  ) ?  
  (  
    {Token.kind == punctuation}  



74 
 
 

 
  ) ? 
  ( 
    {Token.string == "\""} | 
    {Token.string == inch } 
  )  
) 
:Monitor 
--> 
:Monitor.Monitor_Size = {kind = Monitor, rule = Monitor_Size1} 
 
 
Rule: Monitor_Size2 
( 
  {Token.string  =~ "[Ss]ize?" } 
  {Token.kind == number, Token.string >= 14 } 
  ( 
   {Token.kind == punctuation}  
   {Token.kind == number} 
  ) ?  
 
  {Token.kind == punctuation} 
) 
:Monitor 
--> 
:Monitor.Monitor_Size = {kind = Monitor, rule = Monitor_Size2} 
 
 
Rule: False_Monitor_Size1 
Priority:50 
( 
  {Token.kind == number, Token.string >= 14 , Token.string <= 20} 
  ( 
   {Token.kind == punctuation}  
   {Token.kind == number} 
  ) ?  
  (  
    {Token.kind == punctuation}  
  ) ? 
  ( 
    {Token.string == "\""} | 
    {Token.string == inch } 
  )  
  {Token.string =~ "[Xx]?" } 
) 
:Monitor 
--> 
{} 
 
Rule: Monitor_Price 
( 
  {Token.string =~ "[Pp]rice?" } 
  {Token.string == "$" } 
  {Token.kind == number, Token.string >= 100} 
  ( 
    {Token.string == "."}  
    {Token.kind == number} 
  ) ?  
) 
:Monitor 
--> 
:Monitor.Monitor_Price = {kind = Monitor, rule = Monitor_Price} 
 
 
Rule: Pixel_Pitch 
Priority:10 
( 
  {Token.string =~ "[Dd]ot?" } 
  {Token.string =~ "[Pp]itch?" } 
  ( {Token.string == 0 } ) ? 
  {Token.string == "." } 
  {Token.kind == number, Token.string <= 300} 



75 
 
 

 
  {Token.string == mm } 
) 
:Monitor 
--> 
:Monitor.Pixel_Pitch = {kind = Monitor, rule = Pixel_Pitch} 
 
Rule: Not_Pixel_Pitch 
Priority:20 
( 
  {Token.kind == number, Token.string > 0 }   
  {Token.string == "." } 
  {Token.kind == number, Token.string <= 300} 
  {Token.string == mm } 
) 
:Monitor 
--> 
{} 
 
 
Rule: Resolution_Mode 
( 
  {Token.kind == number, Token.string >= 300 } 
  {Token.string == "x" } 
  {Token.kind == number, Token.string >= 300 } 
  ( 
    ( 
      {Token.string == "@" } | 
      {Token.string == "at" } 
    ) ? 
 
    ( 
      {Token.kind == number} 
      {Token.kind == punctuation} 
    )* 
    {Token.kind == number} 
    {Token.string == "Hz" } 
  )? 
) 
:Monitor 
--> 
:Monitor.Resolution_Mode = {kind = Monitor, rule = Resolution_Mode} 
 
 
Rule: Max_Resolution_Mode 
( 
  {Token.string  =~ "[Mm]aximum?" } 
  {Token.string  =~ "[Rr]esolution?" } 
  {Token.kind == number, Token.string >= 300 } 
  {Token.string == "x" } 
  {Token.kind == number, Token.string >= 300 } 
  (  {Token.string == "x" } ) ? 
  ( 
    ( 
      {Token.string == "@" } | 
      {Token.string == "at" } 
    ) 
    ( 
      {Token.kind == number} 
      {Token.kind == punctuation} 
    )* 
    {Token.kind == number} 
    {Token.string == "Hz" } 
  )? 
) 
:Monitor 
--> 
:Monitor.Max_Resolution_Mode = {kind = Monitor, rule = Max_Resolution_Mode} 
 
 
Rule: Recommended_Resolution_Mode 
( 



76 
 
 

 
  {Token.string  =~ "[Rr]ecommended?" } 
  {Token.string  =~ "[Rr]esolution?" } 
  {Token.kind == number, Token.string >= 300 } 
  {Token.string == "x" } 
  {Token.kind == number, Token.string >= 300 } 
  ( 
    ( 
      {Token.string == "@" } | 
      {Token.string == "at" } 
    ) 
    ( 
      {Token.kind == number} 
      {Token.kind == punctuation} 
    )* 
    {Token.kind == number} 
    {Token.string == "Hz" } 
  )? 
) 
:Monitor 
--> 
:Monitor.Recommended_Resolution_Mode = {kind = Monitor, rule = Recommended_Resolution_Mode} 
 
 
 
Rule: Refresh_Rate 
( 
  ( 
     {Token.string == "Maximum" } | 
     {Token.string == "Minimum" } | 
     {Token.string == "Slowest" } 
  ) ? 
  ( 
     {Token.string == "Vertical" } | 
     {Token.string == "Horizontal" } 
  ) 
  ( 
     ( 
       {Token.string == "Refresh" } 
       {Token.string == "Rate" } 
     ) | 
     ( 
       {Token.string == "Frequency" } 
       {Token.string == "Range" } 
     ) 
  ) 
   
  ({Token.string == ">" }) ? 
  {Token.kind == number} 
  (  
    ( 
      {Token.string == "-" } | 
      {Token.string == "to" } 
    ) 
    {Token.kind == number} 
  ) ? 
  ( 
    {Token.string == "Hz" } | 
    {Token.string == "kHz" } | 
    {Token.string == "KHz" } 
  ) 
) 
:Monitor 
--> 

:Monitor.Refresh_Rate = {kind = Monitor, rule = Refresh_Rate} 

 



77 
 
 

 
7.4 JAPE Grammar Rule for Printer 

Phase: Printer_Spec 
 
Input: Lookup Token  
Options: control = appelt debug = false 
//SpaceToken 
 
 
 
Rule: Printer_model 
( 
  ( 
     {Token.string == "IBM" } | 
     {Token.string == "HP" } 
  ) 
  ({Token})? 
  ({Token})? 
  (  
    {Token.string =~ "[Ii]nfoprint?" } | 
    {Token.string =~ "[Ii]nkjet?" } | 
    {Token.string =~ "[Dd]eskjet?" } | 
    {Token.string == "LaserJet" }  
  ) 
  ( 
    {Token.string =~ "[Cc]olor?" }  
  )? 
  {Token.kind == number }   
  ( 
    {Token.kind == word, Token.length <= 2} 
  )? 
 
) 
:Printer 
--> 
:Printer.Printer_Model = {kind = Monitor, rule = Printer_Model} 
 
 
 
Rule: Print_Quality 
( 
  {Token.kind == number }   
  ( 
    {Token.string =~ "[Xx]?" } 
    {Token.kind == number } 
  ) ? 
  ( 
    (   
      ({Token}) ? 
      ({Token}) ? 
      {Token.string =~ "[Dd]pi?" }  
    ) | 
    ( 
       ({Token})? 
       {Token.string =~ "[Qq]uality?" }  
    ) 
  ) 
) 
:Printer 
--> 
:Printer.Print_Quality = {kind = Memory, rule = Print_Quality} 
 
 
Rule: Print_Speed1 
( 
  ( 
    {Token.string =~ "[Cc]olor?" } | 
    {Token.string =~ "[Bb]lack?" } 
  )? 



78 
 
 

 
  {Token.string =~ "[Pp]rint?" } 
  {Token.string =~ "[Ss]peed?" } 
  ({Token})? 
  ({Token})? 
  ({Token})? 
  ({Token})? 
  ({Token})? 
  ({Token})? 
  ({Token})? 
  ({Token})? 
  {Token.string =~ "[Uu]p?" } 
  {Token.string =~ "[Tt]o?" } 
  {Token.kind == number } 
  ( 
     {Token.string == "ppm" } | 
     {Token.string == "PPM" } 
  ) 
) 
:Printer 
--> 
:Printer.Print_Speed = {kind = Memory, rule = Print_Speed1} 
 
 
Rule: Print_Speed2 
( 
  {Token.string =~ "[Pp]rint?" } 
  ( 
    {Token.string =~ "[Uu]p?" }  
    {Token.string =~ "[Tt]o?" }  
  ) ? 
  {Token.kind == number } 
  {Token.string == pages} 
  {Token.string == per} 
  {Token.string == minute} 
 
) 
:Printer 
--> 
:Printer.Print_Speed = {kind = Memory, rule = Print_Speed2} 
 
 
Rule: Print_Speed3 
( 
  {Token.string =~ "[Mm]aximum?" } 
  {Token.string =~ "[Ss]peed?" } 
  ({Token})? 
  ({Token})? 
  ({Token})? 
  ({Token})? 
  ({Token})? 
  ({Token})? 
  ({Token})? 
  {Token.kind == number } 
  ( 
     {Token.string == "ppm" } | 
     {Token.string == "PPM" } 
  ) 
 
) 
:Printer 
--> 
:Printer.Print_Speed = {kind = Memory, rule = Print_Speed3} 
 
 
Rule: Memory_Size 
( 
  {Token.string =~ "[Mm]emory?" } 
  ({Token}) ? 
  ({Token}) ? 
  ({Token}) ? 
  ({Token}) ? 



79 
 
 

 
  ({Token}) ? 
  ({Token}) ? 
  ({Token.string =~ "[Bb]ase?" }) ? 
  {Token.kind == number } 
  ( 
    ({Token}) ? 
    {Token.kind == number } 
  )? 
  {Token.string == "MB" } 
 
) 
:Printer 
--> 
:Printer.Memory_Size = {kind = Memory, rule = Memory_Size} 

 


