B B AR3E AT § i R

1R AR B L b

Apply Natural Language ProcessiinAutomatic Information Extraction:
The Example of IT Product Specification Extraction system

TS EE R 2

PoE R R4t £ 2

B pIRFET RILA P B T AR
UFERE R L B

Apply Natural Language Process in Automatic Information Extraction:
The Example of IT Product Specification Extraction system

Boyo2 lERp Student: Chun-Yen Peng
hERR Y R Advisor: Professor Chyan Yang

FRFR (TR mea) Ml

oL oo

A Thesis
Submitted to Institute of Information Management
College of Management
National Chiao Tung University
In Partial Fulfillment of the Requirements
For the Degree of
Master of Business Administration
in
Information Management
January 2005
Hsinchu, Taiwan, the Republic of China

PoE A J 4Ly £ 2 0

il

Be® B AR AL T LB
A SRR P S B
B4 HER URS SRR A

M2+ § FEmey et

i# &

FEL S EOFE > RREREEC S5 - BRADETIM RA AT
WAL RFT AN ER L p RFT AL OTIA O BRRTAGFRET &
Fra E BT PTLfR o TP drim A Beanie P P p B e 2 5 B om AT
WA - xR e

”"%#;lﬁ»mﬁg BATE AR AWB AR 2 Y hE Y B T LR

a
b5 R MRl o s i it 2 B R P ek kg Text Mining f= Web Mining
G3 TR i 'g 5 v1ma X3 52 (National Language Processing, NLP)$:
wAR S & 0 @ 18 R A Datd Miningehpiiesd * = e T A ugRe b oo

AT AR FFRE P AR T AIEP oA B (Ontology)shpe & » & % -
BE A r%iﬁ.fézjﬂfﬁ’»m fRL o MRE R BT TR AT Y o A PE
BRI T L1 EHHTML Y 238 (7§ 4 a2 » £ % iBJAPE(Java Annotation
Patterns Englne)ﬁ? BRI RFPY B B CFRRROTALE AL £ A
T_%& h0ntology » BB~ 1| 1 F 2 @?] It 5 % & RDF(Resource Description Framework)
R inphk o

i £ HPeIBM ende | 4E B if F JAPEE 2 D] 0 £ KEES R P B A
T %a(¢ % DesktopfrNotebook) » Unix PR E » B+ B2 P4 v < & 5 -
W36B T Ei7ASREDOFTAHEE > L T35 v 5 (Recall)fr i 72 5 (Precision)
FAZEI0% 1L L o A T LR IEJAPESE 2 AR £ UL TR ARy A
& ey AR e

MAtF @ TP~ p RF T RIL A HH

iii

Apply Natural Language Process in Automatic Information Extraction:

The Example of IT Product Specification Extraction system

Student: Chun-Yen Peng Advisor: Dr. Chyan Yang

Institute of Information Management
National Chiao Tung University

Hsinchu, Taiwan, Republic of China

Abstract
World Wide Web (WWW) is a large repository of information that includes many

resources, like text document, image, multimedia and so on. Most of information is
presented in natural language and disperse in different Web sites. Natural language
documents are for human reading but, not.computer. How to extract the information

form natural language document is’an important topic of knowledge engineering.

The major task of information extraction is to. extract information piece from
unstructured document and convert to structured document for computer processing
and analysis. There are two majer methodologies for information extraction, one is test
mining and another is web mining.. The former always link to natural language
processing technology whereas the latter applies data mining to process the web

contents.

Our research tries to build up a prototype system that combines the natural language
process and the concept of ontology to extract IT product specification information
from web page. We use NLP tools to process HTML document and extract information
entities by JAPE grammar rule, then refer to predefined ontology to convert the
extracted information to be DAML file that follow RDF specification.

We develop the optimal JAPE grammar rules for IBM and HP web pages that
describe IT product specification and download 36 IT product web pages to test the
extraction performance. The testing result show the average recall and precision are
over 90%. It reveals the JAPE grammar rules have good extraction performance when

optimized for specific knowledge domain.

Keyword: NLP, Information extraction, JAPE, grammar rule,

g

Bl b efr L 2 R
Boo AR B den Ll B L
£ A

E
LRI 2 3 'f‘—"‘H} ,ﬁ
EoE: e

7~

B m]‘»ﬁ |2 ’ft’ﬁ:’

35 ALY o EfeRs
”\"g}ir}r' éiﬁ
C Pé}@ﬂ%_‘:‘ AR m%%

HpEy Lz
guE ik o @
JFMARHE LR AL R AT ERY R E LB LR
2

£

Al

Ti=
JE
Fy /};ﬂ 3 m‘I'%E’jJ ’ ’g

Wi e [e o B P

g 1] i
¥oehy ‘Q },E, \:‘E:J—Pl’ijg‘ﬁ lﬂ' r' /éf'

g T
EE e
BT B S F TR AEHERDE
A H RS 1R et s g A
Bl g A1 et o d PORHORRREE TS R 3. 1)
Rfafrefod 1 iv > %
B {5

A FRER T Y B (S

SO I i A
e R e A e

Fig e e IR R e iR
I ReB kB4 o

%

2

A 3B 'frﬁ/i) R BB e AS
FaE=F s

A1 (e kARG R4
A
2005 # § *%
A E T

Contents

B iii

Abstract iv
= B v
1. Introduction 1
1.1 BacKGIrOUNG ..ot sttt st 1

1.2 Motivation and ODJECLIVESccueuiriiriiiieiteetieieieie ettt ettt te sttt sae st e enseseenee e 3

1.3 Research Methodology and Progress.........coerereieeieeeieieese et 6

1.4 Research Scope and Limitation..........cc.eceviiiiiieniieiiiieceeie ettt eeee e sre e sene e 8

2. Literature review 9
2.1 Natural Language PrOCESSINGcceeieuirieieieiiee ettt sttt e 9
2.2 Information EXtractioncccueviiiiiiiiiiieieiiee e 10
2.2.1 TEXE IMIINIIIE .ottt ettt e a e b et et st s b e s be e bt e et emteeaeeeaeens 12

222 WeED MINING ..o it e ettt s 15

23 Semantic Web and Ontolo@yccsweabhews il il 16
23.1 Semantic WEb......... 05 5 i e es e raifisn e . i et eeeee e eteeteeeeeteeseententeneestesaesteeneeneeneens 16

232 (0751707 (oA SRR O o OO 18

233 Ontology Language .5 . .. i i i e 20

24 Ontology-Base knowledge management it i . ..ccoveierierereiieieeteeeeeee e 24

3. System architecture and work flow 27
3.1 Developing enVIFONMENTcc.eeuiiiiiierieieeteee ettt ettt st sbee b e beeaeenees 27
3.1.1 SYStEM CONTIZUIATIONeeuieiiiiiieiiierieete ettt et st s e e et e eae 27

3.1.2 Web page collector: Teleport Proccocooiiiiiiiiieeeee e 27

3.13 Natural Language Processing Tools: GATE........ccccooiiiiiiiniiniiieeeeeee e 28

3.14 JAPE grammar [aNGUAZEceeeuierieieiieetieieeie ettt sttt ettt sbe e ne e enean 30

32 SYStEM ATCRITECLUIEo.viitieiieiiieiieet ettt et et sbte s b bt et e saee e 32

33 WED PAZE COLLECLION ...ttt e ae ettt sbe e enean 34
34 ANNIE annotation process flOWcceecviiiiiieiiiniieie ettt 34
3.5 Ontology and JAPE eXtraction TUIE..........ceirieieieieieriesese e 37
3.6 DAMLAOIL EXPOTTET ..uvieeiieiieeeiieeiieeetieeteeeteesteesseesseessseesssaessseessseesssessssessssesssseenseens 43

4. Analysis and Comparison 45
4.1 EXtraction RESULL........coouiiiiiiiii et 45
4.2 Performance INAEXccuerieieiiiiei ettt ettt ettt et et et e eeeenean 50

4.3 Performance index for other COMPANY:ccuoiiiiiiiiiiieeee et 56

5. Conclusion and Contribution 59
6. Reference 62
7. Appendix 64
7.1 JAPE Grammar Rule for personal COMPULET..........ceeecveeiiiieeiiieiiieeieesieesree e esveesveeseee e 64
7.2 JAPE Grammar Rule fOr UniX SEIVETc.ooiiiiuiiiiiieee ettt 68
7.3 JAPE Grammar Rule for MONItOTvvvviiiiiiiiiiiiic e 73
7.4 JAPE Grammar Rule fOr PrINtErcccvvvviiiiiiiiieiiiee e 77

vii

Table List

Table 1: Extraction result of HP and IBM Personal COMPULETcc.covvevieriieiieieeienieeie e 47
Table 2: Extraction result of HP and IBM UniX SeIVeT.........ccocciiieiiieieierieie et 47
Table 3: Extraction result of HP and IBM MONTLOTcccueiiiiiiiiiieiiieieeee e 48
Table 4: Extraction result of HP and IBM PIiNter........c..ccevieviieiiieiiiieieeiecie ettt sve v 48
Table 5: Extraction result of Sony and ASUS personal COmMpPUter...........cccoereririrerieiienee e 49
Table 6: Extraction result of Sun UniX SEIVET........ccoiiieiiiiiiiii it 49
Table 7: Extraction result of BenQ and ACEr MONILOTccoviiiuieeeeeieieeetee e eetee et eetee e e eveeeneea 49
Table 8: Extraction result of Epson and Canon Printerc..ccvevieierieriiiiicieceeceee e 50
Table 9: Recall and Precision of personal computer extraction result............cccoevevievrieciieienieneenieeneennn. 53
Table 10: Recall and Precision of Unix server exXtraction reSult.............ccoeeerieieienieiierienese e 54
Table 11: Recall and Precision of monitor product extraction resultccoeevveveiiviinieniieciieieeeereennens 54
Table 12: Recall and Precision of personal computer extraction result...........ccoeeveeeerieneeeneeieieesieeneennn. 55
Table 13: Summary table of recall and PreCiSIONcceieierieriiieieeei et 55
Table 14: Recall and Precision of personal computer extraction result...........ccoeeveveerievieecneeieieeseeneennn. 56
Table 15: Recall and Precision of Unix server,extraction result.............coocoveririeienienienerese e 57
Table 16: Recall and Precision of monitefiproduct extractionTesultcocoeieieiieiieiiniie e 57
Table 17: Recall and Precision of personal computerextractionTesult.............ocoeveriririeeienieneneseseen 58
Table 18: Summary table of recall and precision forother companycccceeeeoeereienercenieneeceeeeeene 58

viii

Figure List

Figure 1: Research flow and PIrOGIESSceouerieriiriiriiietieiieiete ettt ettt te st et ese bt et enteneesbesaeeeeas 7
Figure 2: Architecture for an Information-Extraction System............cceceeeeieiiniiieie i 12
Figure 3: The overview of IE base text mining frameworki...........ccccoocverieiiniiiiiieneneeeeeee 13
Figure 4: The process flow fOr teXt MININEcceeiiieiieieiieeie ettt sbe e eneene 15
Figure 5: Taxonomy 0f Web MININGcccueeiiriiiiiiieiieeee ettt ettt sttt 16
Figure 6: The layer of Semantic Web..........cocoiiiiiiiiiieeeee et 17
Figure 7: The intended models of a logical language reflect its commitment to a conceptualization 20
Figure 8: The Artequakt ATCRItECIUTE.c.oiuiiiitiieieeieiee ettt see e sbe e enene 25
Figure 9: The overview of ontology-base information retrieval.............ccocooeiirieieieiierieee e 26
Figure 10: Web page collector—Teleport Pro..........cccoieieiiiiiiieeeeee et 28
Figure 11:The user interface 0f GATEc..oooiiiiiiiiieiee ettt 29
Figure 12: JAPE Grammar 1ule eXample.........cocoiiiiiiiiiiiiiieeeeiee et 31
Figure 13: System architecture and WOrKfIOWcccooieieiiiiiiiiiieeee e 32
Figure 14: Architecture of IT product application............cooeriiiiieieieee et 33
Figure 15: ANNIE process pipeline in GATE 3300000 R v ceeeeieiieiiieeceeee e 35
Figure 16: Selected ANNIE PrOCESSING EESOUICE .xsus sunsr ot asbatieessererseeseeneersensessessessesseeeensessessessesseseseens 35
Figure 17: ANNIE process flow in IT specification extraction System..............cceceeeeiereerieneneseseneeens 36
Figure 18: Ontology Example- Ontology of Personal Computer specification............cccecuerenenerenennene 39
Figure 19: Example of GATE build-in-0ntol 0@y @eVEIOPINE . .- .c.veveueeeereeeieeiieiieieie e 40
Figure 20: DAML example: Ontology of Personal cOomputers.............cccooereririeieieiieiesee e 41
Figure 21: Example of JAPE grammar rule SEZmeNntcooiiiriiiieiiieieie e 42
Figure 22: Example of DAML output file.......c.coviiiiiiiiiiiieieeeeeee e 44
Figure 23: ANNotation TESUIL.........cc.iiiiiiiiieiieieee ettt et st sbe e b et et 45
Figure 24: Information Entity marked up by JAPE transducerccccooiviiiiiiiiieiiiee e 46
Figure 25: Example of recall and precision rate calculation.............cooeeieieriereniieneeieieee e 52

1. Introduction

1.1 Background

The economy age evolve from farm economics to industrial economics. Today, most
people agree we are entering the knowledge economy age. Michio Kaku claims that
“knowledge and technology” will become the only determining factor in a nation’s

competitiveness [1]

The concept of knowledge economic changes the management of enterprise and
makes knowledge management become one of the main competitiveness of business.
For business view, information technology plays a crucial role that enhances the
performance of knowledge management, such as knowledge retrieval, knowledge store,

especially knowledge sharing.

With the dynamic environment-and the knowledge economy coming, knowledge has
been treated as one of the most important assets that can enhance competitive
advantages. For a company to lead among competitors, it is important to ensure that the
best corporate knowledge must be available and applied to the needs of the clients in
the right places at the right times [2]. Thus, how to creating and sharing knowledge to

keep high competition of enterprise is a critical mission of IT managers.

The knowledge/information extraction and presentation are important process in
knowledge management. Information Extraction (IE) is an important approach to
automated information management. IE is the task of converting documents containing
fragments of structured information embedded in other extraneous material into a

structured template or database-like representation [3]. The major concern of IE is how

1

to address specific pieces of data in natural language document and extracting

structured information from unstructured text.

World Wide Web (WWW) is a large repository of information. Include many
resources, like text document, image, multimedia and so on. All of resources can be
retrieved by anyone who connects to Internet. Most of information is presented by
unstructured text document in natural language and disperse on different site. Since
most of web documents are presented by natural language, it is unreadable for
computer to extract knowledge from web page, we need an efficient approach to

convert natural language document to be computer readable format.

The traditional way to extract information form web page is through search engine
to select related document and annotate these documents by manual, much time and
effort is needed for information extraction. How to: extract information from Internet

efficiently is the major concern‘of our research.

However, recent advances in natural language processing (NLP) open the new
choose to perform document annotation and information extraction task. Through the
customized and pre-defined process flow, NLP tools could extract information

accurately form web page in specific domain [4].

In other and, the concept of Semantic Web and Ontology provide new thinking
model about information presentation. Semantic Web is the representation of data on
the World Wide Web. It is a collaborative effort led by W3C with participation from a

large number of researchers and industrial partners.

Traditional Web language focus on web page presentation, most of information

content still descript in natural language. Although WWW provide a user friendly and

platform independent client for information exchange, it can’t meet the requirement
for automatic process of software agent. The key point is software agent can’t

understand the information content of web page.

Building computer readable Web pages is one of the terminal goals of the W3C
Semantic Web. The idea is first mentioned by Tim-Berner’s Lee at the original
proposal of WWW at CERN when 1989. The proposal includes a figure showing how
information about a web of relationships amongst named objects could unify a number

of information management tasks.[5]

An ontology is a description (like a formal specification of a program) of the
concepts and relationships that can exist for an agent or a community of agents. An
ontology defines the common words’and concepts used to describe and represent an
area of knowledge. This definition is-consistent: with the usage of ontology as
set-of-concept-definitions, but more genetal. And it is certainly a different sense of the

word than its use in philosophy [6].

After more than 10 years developing, WWW accumulate millions web page that
contain very large information. How to extract the information and translate to be
computer readable data format is a key process for Semantic Web promotion, it is also

major concern of our research.

1.2 Motivation and Objectives

For most of company and individual, to collect product specification for comparison
and evaluation is necessary before IT product purchasing. Generally, the life cycle of IT

product is very short, the product specification always changed with new product

3

release.

Although it is easy to get IT product specification form WWW, this kind of
information usually disperse in many different web sites. Traditionally, to collect the IT
product specification such as desktop computer, one needs to search the related web
pages by using search engines, either yahoo or google, then browse these web pages
manually to collect the information we need. It takes large effort for information

collection.

Most of product specifications are described with specific format and embedded in
web page. Due to browser or software agent can’t identify the production specification
form natural language document, it cause the simple job like “product specification
collection” can’t be automated. The.advance in natural language process technology
makes it is possible to extract specific information ptece from web page that describe in

natural language.

In other hand, the concept of Semantic Web and ontology provide a new model for
information presentation. Through the ontology, information could be produce,
exchange or analysis by automatic process to enhance the efficiency of knowledge

management.

So that, our research try to build up a automatic process that link the natural
language process technology and ontology concept, and apply this process to extract IT

product specification form Web page. The objectives of research are show as following:

1. Build up a prototype system for automatic IT product specification extraction
that can extract information formation form web page efficiently and

accurately

2. Save the extracted information in ontology language to provide widely

4

application and push the developing of Semantic Web.

1.3 Research Methodology and progress

We build up a prototype system to research the automatic information extraction

process that combined with natural language process and ontology concept. Our

research steps are:

1.

Define the research topic, objective and scope:

At first, we define the research topic, objective and scope to guide the whole
research progress.
Literature review:

Base on research topic, objective and scope, one of major task is to build up a
prototype to extract IT product specification information. So we must select an
extraction methodology to meet our requirement.

We review the literatures about knowledge management, natural language
process, information extraction, semantic web and ontology to understand current
status of related research and decide use text mining and grammar rule to extract
IT product specification information.

Build up prototype:
The construction of prototype could:be'separated 3 tasks:
1. NLP tools survey: Review current NLP tools to select a NLP platform
2. Ontology Developing: Define the” scope and relation of IT product
specification that we want to extract.
3. JAPE grammar rule developing: Develop optimal JAPE grammar rule for IT
product specification.
Analysis and evaluation:
We select and download 36 web page for system testing and evaluate the
extraction performance.
Conclusion:
Base on the extraction result and performance evaluation, we summarize the

advantage and disadvantage of rule base extraction methodology.

Figure 1 show the research flow and progress.

Clarify Research Motivation

v

Define Research Topic

v

Define Research Objectives

v

Define Research Methodology and

v

Literature Review

v

Prototype

NLP Tools Survey

v

Ontology Developing

v

JAPE Developing

v

Analysis and evaluation

v

Conclusion

Figure 1: Research flow and progress

1.4 Research Scope and Limitation

To extract specification information from Web page, we have to developing
information extraction pattern for specific domain knowledge. The IT product is a wide
set that difficult to develop a general pattern for all IT product, so we select part of IT

product for prototype developing. The target IT product as following:
@ Personal Computer
@ Unix Server
@ Monitor

@ Printer

Although product specification has commen format, the little difference are exist in
different web site. To enhance the ptecision-ofinformation extraction, we aim HP and
IBM web site as target template to develop.optimize information extraction rule for IT
product of HP and IBM. The information extraction rule also can apply to other Web
site, but the precision of information extraction maybe down. We will compare and

discuss this issue in chapter 5.

2. Literature review

2.1 Natural Language Processing

Natural language processing (NLP) is the area of study that focuses on techniques
that enable machines to work with human language. This involves not only the
“understanding” or analysis of language, but also the generation or production of

language [7].

A “natural language” (NL) is any of the languages naturally used by humans, i.e. not
an artificial or man-made language such as a programming language. The “Natural
language processing” (NLP) is a convenient description for all attempts to use

computers to process natural language![8]. NLPincludes:
e Speech synthesis:

Although this may not at first'sight-appear very 'intelligent', the synthesis of
natural-sounding speech is" technically complex and almost certainly requires
some 'understanding' of what is being spoken to ensure, for example, correct

intonation.

e Speech recognition:
Recognize of continuous sound waves to discrete words.

e Natural language understanding:

Here treated as moving from isolated words (either written or determined via
speech recognition) to 'meaning'. This may involve complete model systems or

'front-ends', driving other programs by NL commands.

e Natural language generation:

Generating appropriate NL responses to unpredictable inputs.
e Machine translation (MT):

Translating one NL into another.

NLP for information extraction has been started for a long time. In 1992, Tomek
Strzalkowski and Barbara Vautheyl tried to build up a prototype of information
retrieval system which uses advanced natural language processing techniques to
enhance the effectiveness of traditional key-word based document retrieval [9]. The
information retrieval system consists of a traditional statistical backbone (Harman and
Candela, 1989) augmented with various natural language processing components that
assist the system in database processing and translate a user's information request into

an effective query.

To enhance the information ¢xtraction in-hatural language processing, Cynthia A.
Thompson’s research team try to apply the active learning to reduce annotation effort in
1999. They developed a system that learns'rules forinformation extraction. The goal of
an IE system is to find specific pieces of information in a natural-language document

[10].

2.2 Information Extraction

Information extraction is the task of converting documents containing fragments of
structured information embedded in other extraneous material into a structured template
or database-like representation [3]. Since WWW is a large information repository, our

major concern is the approach to extract information for web document.

Claire Cardie had provided a architecture for information extraction system in 1997.

The architecture defines 5 steps to extract information from natural language document

10

[11].

1.

Tokenization and Tagging:

Each input text is first divided into sentences and words in a tokenization and
tagging step.

Sentence Analysis:

It comprises one or more stages of syntactic analysis, or parsing, that together

identify noun groups, verb groups, prepositional phrases, and other simple

constructs.
Extraction:

The extraction phase is the first entirely domain specific component of the
system. During extraction, the extraction phase identifies domain specific

relations among relevant entities in the text.
Merging:

The main job of the meérging phase is co:reference resolution, or anaphora
resolution: The system- examines each entity encountered in the text and
determines whether it refers to an‘existing entity or whether it is new and must

be added to the system's discourse-level representation of the text.

Template generation:
The template generation phase determines the number of distinct events in the
text, maps the individually extracted pieces of information onto each event and

produces output templates.

The process flow is show as figure 2:

11

Eaidy last ovening adverbial phrase:time
4 Apr Dallas - Early last Early‘adv last/ad] atornade noun group/subject
evening a omadao swepl evening’ nowr¥time /| swepl verb group
though an area nonhwest a'det throwgh an awea prep phrase:location
of Dallas, causing farnado/noun’weather nartfrwest of Dallas adverblal phrase:location
extansive damage... swepl/verh dimughiprep .. causing verb group
axiensive damage. . noun group/object

Sentence
Analysis

Tokenization

and Tagzing

Template
Generation

Merging Extraction

arly Iast evening, a

Event: tornado Phrase Extracted information
Date: 4/3/97 ‘lp_p(m'l.t;‘,t";},rm tornado swapt -= Bvent: tornado
Time: 19:15 o yest w_. allas... fornado swept thivugh an area -= Locatlon: "area’
Witn esse £ - B .
hat 6 aa nwthwest of Dallas -= Locatlon: "northwest of Dallas
tHat i rausing extensive damage = Damage

Figure 2: Architecture for an Information-Extraction System

Generally, there are tow major approaches to extract information form WWW, one

is text mining and another is Web'mining:
2.2.1 Text Mining

Text mining should not be confused with-the better known Internet search engine
tools or database management capabilities. Analogous to data mining, which extracts
useful information from any type of data with large quantities, text mining is a
procedure applied to large volumes of free unstructured text. After a traditional search
for documents is completed, such as in format of full text, abstracts, or indexed terms,

text mining explores the complex relationship among documents [12].

Text mining is about looking for patterns in natural language text, and may be
defined as the process of analyzing text to extract information from it for particular

purposes. There are three major concerns about text mining [13,14,15]:

(1) Information Retrieval, the foundational step of text mining. It is the extraction

12

of relevant records from the source technical literatures or text databases for

further processing.

(2) Information Processing, the extraction of patterns from the retrieved data
obtained in the previous step. According to Kostoff, it has three components:
bibliometrics, computational linguistics and clustering techniques. This step
typically provides ordering, classification and quantification to the formerly

unstructured material.

(3) Information Integration. It is the combination of the information processing

computer output with the human cognitive processes.

Raymond J. Mooney and Un Yong Nahm present a framework for text mining based
on the integration of Information.Extraction (IE).and Knowledge Discovery in 2002

[16].

[nformation
Extraction

Text

Figure 3: The overview of IE base text mining framework

They use the application of data mining techniques to automated discovery of useful
or interesting information from unstructured text. Several techniques have been
proposed for text mining, including conceptual structure, association rule mining,

episode rule mining, decision trees, and rule induction methods.

13

Claire Grover’s research team provides another methodology for test mining in
2004. They propose a framework for text mining services that apply NLP tools to
annotate XML document and extract information from natural language document. The

Workflow involves four major steps:

1. Tokenization: Identifying and marking up words and sentences in the input text.

2. Location Tagging with a classifier: Using a trained maximum entropy classifier to

mark up location names.

3. Location Tagging by Lexicon: Using a lexicon of location names to mark up

additional locations not identifier by the tagger.

4. Gazetteer Query: Sending location names extracted from the text to a gazetteer

resource, and presenting the queryiresults. in an application-appropriate form.

Weiguo Fan’s research team describes'a generic: process model for a text mining
application in 2005. Their process:starting with a coellection of documents, a text mining
tool would retrieve a particular document and preprocess it by checking format and
character sets. Then it would go through a text analysis phase, sometimes repeating
techniques until information is extracted. Three text analysis techniques are shown in
the example, but many other combinations of techniques could be used depending on
the goals of the organization. The resulting information can be placed in a management
information system, yielding an abundant amount of knowledge for the user of that

system [17].

14

Analyze Text

Retrieve and
preprocess

document

il

Document
Collection

Management
Information ¥l Information
Extraction

N System Knowledge

\‘\‘_‘___._‘."

Clustering % Summarization

Figure 4: The process flow for text mining

2.2.2 Web mining

Two important and active areas of current research are data mining and the World
Wide Web. The web mining is the combination of these two areas, has been the focus

of several recent research projects and papers.

Web mining is the use of data:mining techniques to automatically discovery and
extract information from Web=document and services. Web mining can be broadly
defined as the discovery and analysis.of-useful-information from the World Wide Web.
This broad definition on the one hand-describes the automatic search and retrieval of
information and resources available from millions of sites and on-line databases, i.e.,
Web content mining, and on the other hand, the discovery and analysis of user access

patterns from one or more Web servers or on-line services, i.e., Web usage mining.

The taxonomy of Web mining along its two primary dimensions, namely Web
content mining and Web usage mining. We also describe and categorize some of the
recent work and the related tools or techniques in each area. This taxonomy is depicted

in Figure 5 [18]

15

Web Mining

Web Content Mining

Agent Based Approach

« Intelligent search agents
* Information Filtering/Categorization
* Personalized Web Agents

Web Usage Mining

Database Approach

*Multilevel Databases
*Web Query Systems

* Preprocess

* Transaction identification
« Pattern Discovery Tools

« Pattern Analysis Tools

Figure 5: Taxonomy of Web mining

To mining web content, agent-base tools and database mining techniques are two
major approaches. Agent base approachito Web mining involves the development of
sophisticated Al systems that can act autonomously-or semi-autonomously on behalf of
a particular user, to discover:and organize Web-based information. The database
approaches to Web mining have. generally focused on techniques for integrating and
organizing the heterogeneous and semi-structured data on the Web into more structured
and high-level collections of resources, such as in relational databases, and using

standard database querying mechanisms and data mining techniques to access and

analyze this information.

2.3 Semantic Web and Ontology

2.3.1 Semantic Web

The Semantic Web is the representation of data on the World Wide Web. It is a
collaborative effort led by W3C with participation from a large number of researchers

and industrial partners. It is based on the Resource Description Framework (RDF),

16

which integrates a variety of applications using XML for syntax and URIs for

naming.

Semantic Web tries to build a universal schema to unify the different knowledge
schemas on the web. Semantic Web proposes an architecture that consists of multiple
layers to construct a universal schema framework. The figure 6 shows the layer

structure of Semantic Web.

Trust
Rules
Il FProof
Data @
Il Logic E
Data =
[=
Salf- Ontology vocabuary | 5,
describing — =
document Fesource Description
Framewaork + RDF Schema

XML + Name space + XML Schema

Universal resource

Unicode indicator

The Semantic Web “layer cake™

Figure 6: The layer of Semantic Web

The basis of the architecture is RDF. It provides a special format for every semantic
statement on the web: (Subject, Predicate, Object). It is the basic syntax for the whole

web; that is, all programs can recognize this format.

RDF is the first step (and hence the basis) of the Semantic Web architecture. But,
constructing a universal schema for the web is not easy. RDF itself can’t be the
universal schema because the semantics of data encoded in it are not specified yet.

Hence there are RDF Schema, Ontology, and Rules Layers that help to specify the

17

meanings of the subjects, predicates, and objects used in RDF statements. Together
they can precisely define the semantics of RDF statements. Finally the Logic
Framework Layer is needed to define the working mechanism of machines and these
portions. Search on Semantic Web should follow this mechanism. Using Semantic
Web’s approach, all machines can understand data on the web by first recognizing RDF
statements, and finding the semantic definitions in the specified URIs (they may be
linked to RDF Schema documents, ontology documents, or documents about rules),
then the machines can perform search or provide services more smoothly since they can
really recognize all the data on the web. There will be only one schema on the web

then.

2.3.2 Ontology

Ontology is an explicit formal specification of how to represent the objects, concepts,
and other entities that are assumed to exist in some area of interest and the relationships
that hold among them. An ontology define the common words and concepts that used to
describe and represent an area of knowledge. Ontology models the vocabulary and
meaning of domains of interests in a computer-usable form that computer can

understand and share domain knowledge for each other.

We can now clarify the role of an ontology that considered as a set of logical axioms
designed to account for the intended meaning of a vocabulary. Given a language L with
ontological commitment K, an ontology for L is a set of axioms designed in a way such
that the set of its models approximates as best as possible the set of intended models of
L according to K (see figure 7). In general, it is not easy to find the right set of axioms,
so that an ontology will admit other models besides the intended ones. Therefore, an

ontology can “specify” a conceptualization only in a very indirect way, since

18

(1) It can only approximate a set of intended models;

(i) Such a set of intended models is only a weak characterization of

a conceptualization.

We shall say that an ontology O for a language L approximates a conceptualization C
if there exists an ontological commitment K = <C, 3>, where C = <D, W, R>is a
conceptualization and 3JI: V->DUNR is a function assigning elements of D to
vocabulary V, and elements of R to predicate vocabulary V. The symbol D is a domain
and W is a set of relevant states of affairs of such domain and A is a set of conceptual
relations on <D, W>. Such that the intended models of L according to K are included in

the models of O .
An ontology commits to C if:
(11) It has beén designed with the purpose of characterizing C, and
(iv) Itapproximates C.

A language L commits to an ontology O if it commits to some conceptualization C
such that O agrees on C. With these clarifications, we come up to the following
definition, which refines Gruber’s definition by making clear the difference between an

ontology and a conceptualization [19]:

19

Conceptualization C

commitment K = =C, 3>
Language L

l Models ML)

Ontology

[ntended models I (L)

Figure 7: The intended models of a logical language reflect its commitment to a

conceptualization

An ontology is a logical theory accounting for.the intended meaning of a formal
vocabulary, i.e. its ontological commitment to a particular conceptualization of the
world. The intended models of a~logical-langliage using such a vocabulary are
constrained by its ontological commitment. An ontology indirectly reflects this
commitment (and the underlying conceptualization) by approximating these intended

models.

The relationships between vocabulary, conceptualization, ontological commitment
and ontology are illustrated in Figure 2. It is important to stress that an ontology is

language-dependent, while a conceptualization is language-independent.

2.3.3 Ontology Language

Several ontology languages have been developed during the last few years, and they

20

will surely become ontology languages in the context of the Semantic Web. Some of
them are based on XML syntax, such as Ontology Exchange Language (XOL), SHOE
(which was previously based on HTML), and Ontology Markup Language (OML),
whereas Resource Description Framework (RDF) and RDF Schema are languages
created by Word Wide Web Consortium (W3C) working groups. Finally, two
additional languages are being built on top of RDF(S), the union of RDF and RDF
Schema to improve its features: Ontology Inference Layer (OIL) and DAML+OIL.
Other languages have also been used, traditionally, for building ontologies, but that

analysis is out of the scope of this article.

@ XML-based Ontology Exchange Language (XOL)

The US bioinformatics community designed XOL for the exchange of ontology
definitions among a heterogeneous set of softwate systems in their domain. Researchers
created it after studying the representational needs of experts in bioinformatics. They
selected Ontolingua and OML “as the basis for creating XOL, merging the high
expressiveness of OKBC-Lite, a subset of the Open Knowledge Based Connectivity
protocol, and the syntax of OML, based on XML. There are no tools that allow the
development of ontologies using XOL. However, since XOL files use XML syntax, we

can use an XML editor to author XOL files

@ Simple HTML Ontology Extension (SHOE)

SHOE, developed at the University on Maryland and used to develop OML, was
created as an extension of HTML, incorporating machine-readable semantic knowledge
in HTML documents or other Web documents [20]. Recently, the University of

Maryland has adapted the SHOE syntax to XML. SHOE makes it possible for agents to

21

gather meaningful information about Web pages and documents, improving search
mechanisms, and knowledge gathering. This process consists of three phases: Define an
ontology, annotate HTML pages with ontological information to describe themselves
and other pages, and have an agent semantically retrieve information by searching all
the existing pages and keeping information updated. The Knowledge Annotator

annotates ontological information in HTML pages.

@ Ontology Markup Language (OML)

OML, developed at the University of Washington, is partially based on SHOE. In
fact, it was first considered an XML serialization of SHOE. Hence, OML and SHOE

share many features.

Four different levels of OML exist: OML Cote is related to logical aspects of the
language and is included by the.rest of the layers; Simple OML maps directly to
RDF(S); Abbreviated OML includesiconceptual graphs features; and Standard OML is
the most expressive version of OML:; We selected Simple OML, because the higher
layers don’t provide more components than the ones identified in our framework. These

higher layers are tightly related to the representation of conceptual graphs.

There are no other tools for authoring OML ontologies other than existing

general-purpose XML edition tools

@ Resource Description Framework (RDF) and RDF Schema (RDFS)

RDF, developed by the W3C for describing Web resources, allows the specification
of the semantics of data based on XML in a standardized, interoperable manner. It also
provides mechanisms to explicitly represent services, processes, and business models,

while allowing recognition of non-explicit information.

22

The RDF data model is equivalent to the semantic networks formalism. It consists
of three object types: resources are described by RDF expressions and are always
named by URIs plus optional anchor IDs; properties define specific aspects,
characteristics, attributes, or relations used to describe a resource; and statements assign

a value for a property in a specific resource.

The RDF data model does not provide mechanisms for defining the relationships
between properties (attributes) and resources. This is the role of RDFS. RDFS offers
primitives for defining knowledge models that are closer to frame-based approaches.
RDF(S) is widely used as a representation format in many tools and projects, such as

Amaya, Protégé, Mozilla, SilRI, and so on.

@ Ontology Interchange Language!(OIL)

OIL, developed in the OntoKnowledge-project (www.ontoknowledge.org/OIL),
permits semantic interoperability between Web.resources. Its syntax and semantics are
based on existing proposals (OKBEC, XOL,"and RDF(S)), providing modeling
primitives commonly used in frame-based approaches to ontological engineering
(concepts, taxonomies of concepts, relations, and so on), and formal semantics and
reasoning support found in description logic approaches (a subset of first order logic
that maintains a high expressive power, together with decidability and an efficient

inference mechanism).

OIL, built on top of RDF(S), has the following layers: Core OIL groups the OIL
primitives that have a direct mapping to RDF(S) primitives; Standard OIL is the
complete OIL model, using more primitives than the ones defined in RDF(S); Instance

OIL adds instances of concepts and roles to the previous model; and Heavy OIL is the

23

layer for future extensions of OIL.

OILEd, Protégé2000, and WebODE can be used to author OIL ontologies. OIL’s

syntax is not only expressed in XML but can also be presented in ASCII.

@ DARPA Agent Markup Language (DAML) + OIL

DAMLAOIL has been developed by a joint committee from the US and the
European Union (IST) in the context of DAML, a DARPA project for allowing
semantic interoperability in XML [21]. Hence, DAML+OIL shares the same objective

as OIL.

DAMLAOIL is built on RDF(S). Its name implicitly suggests that there is a tight
relationship with OIL. It replaces _the, initial specification, which was called
DAML-ONT, and was also based'on the Ol language. OILEd, OntoEdit, Protégé2000,

and WebODE are tools that can-author DAML+OIL ontologies.

2.4 Ontology-Base knowledge management

About ontology base knowledge extraction process, Harith Alani’s research team
takes Artequakt project which seeks to automatically extract knowledge about artists
from web, populate a knowledge base, and use it to generate personalized narrative
biographies [22]. The system architecture of Artequakt system is composed by three
key sub-systems that include “knowledge extraction”, “Information management” and

“Narrative Generation”. Figure 8 shows the architecture of Artequakt system.

24

Narrative Generaton

Figure 8: The Artequakt Architecture

The system use ontology and lexical tools to identifying knowledge fragment from
web page. The fragments of information are.passed-to the ontology server along with
metadata derived from the vocabulary-of-the-ontology. Artequakt system stores the
information by the ontology server and.consolidated into a knowledge base that can be
queried via an inference engine. The final sub-system is the narrative generation. The
Artequakt server takes requests from simple Web interface and generates biography of

artist base on user’s requirement.

David Vallet, Miriam Ferndndez, and Pablo Castells also provided an
Ontology-Based Information Retrieval Model in 2004. They propose an ontology-based
retrieval model for the exploitation of full-fledged domain ontology and knowledge
bases, to support semantic search in document repositories. In David’s research team
view, semantic retrieval problem is very close to the latest proposals in knowledge

information management. While KIM focuses on automatic population and annotation

25

of documents, their work focuses on the ranking algorithms for semantic search. [23]

The approach of ontology-based information retrieval can be seen as an evolution of
classic keyword-based retrieval techniques. The keyword-based index is replaced by

a semantic knowledge base. The overall retrieval process is illustrated in figure 9.

@ Ranked @
Documents

ROGL % Unordaned
Quary D D Documents

Docurmen
Retrigwvar

F 3 List of instancas
_ _ Weighted Decumearnt
annotation fnks Basza
ROF KB

Figure 9: The overview of ontology-base information retrieval

The system takes as input a formal'RDQL query. This query could be generated
from a keyword query, as in e.g. a natural language query. The RDQL query is
executed against the knowledge base, which returns a list of instance that meet the
query. Finally, the documents that are annotated with these instances are retrieved,

ranked, and presented to the user.

26

3. System architecture and work flow

3.1 Developing environment

3.1.1 System configuration

We developed IT specification extraction system under Microsoft platform. The

hardware and software environment are show as following:

Hardware:
CPU: AMD Athlon 1G
Memory: 256 MB DRAM
Hard disk: 80GB
OS: Windows 2000
Software Tools:
Web page collector: Teleport Pro, Ver. 1.29
NLP developing platform: GATE 3.0 build 1846
Ontology Editor: SemTalk Ver 1.2.5

NLP tools (GATE 3.0) need much ‘computing resource for natural language
processing, especially the memory size. Our hardware configuration just allow a corpus
that includes 9~11 web documents, depend on total tokens amount, for processing at
same time. It is an unexpected limitation. Due to documents limitation of corpus, we
separate IT specification extraction system into 4 applications. Please refer to chapter

3.2 for detail system architecture.

3.1.2 Web page collector: Teleport Pro

Teleport Pro is an offline browsing tool for getting data from the Internet. Input the

URL, teleport can download all component of web page and save into local hard disk.

27

Untitled tpp - Teleport Fro = ||:| |i|

File Progct Yiew Help

= M?wl
(8] 1245464287 -8030 1. html
moniter_script. s

@ hpweb_1-2 prnt_icn.gif
CONLVersion_script.js
configuration_baseline.js
& hpweb_1-2_topnav_buy. gif
configuration_us-smb-psg-left_nav.js
[E] d325family. jpg

[H] de7000family. ipg

o|s|a| 44

2l

Thread 1: Connecting to thUlU.wwwl.hp.co|Updating |1 files quened |22 4

Figure 10: Web page collector—Teleport Pro

3.1.3 Natural Language Processing Tools: GATE

GATE is famous NLP tool that has been built over the past eight years in the
Sheffield University NLP group. It comprises an architecture, framework (or SDK) and
graphical development environment. The system has been used for many natural
language processing projects, «n particular for Information Extraction. The system
supports the full lifecycle of language ‘processing components, from corpus collection

and annotation through system evaluation.

GATE as an architecture suggests that the elements of software systems that process
natural language can usefully be broken down into various types of component.
Components are reusable software chunks with well-defined interfaces (see figure 11),
and are a popular architectural form, used in Sun’s Java Beans and Microsoft’s .Net, for
example. GATE components are specialized types of Java Bean, and come in three

Resources [24]:

e Language Resources (LRs) represent entities such as lexicons, corpora or ontologies;
 Processing Resources (PRs) represent entities that are primarily algorithmic, such as

parsers, generators or ngram modellers;

28

e Visual Resources (VRs) represent visualisation and editing components that

participate in GUIs.

When using GATE to develop language process functionality for an application, the
developer uses the development environment and the framework to construct resources
of the three types. This may involve programming, or the development of Language
Resources such as grammars that are used by existing Processing Resources, or a
mixture of both. The development environment is used for visualization of the data
structures produced and consumed during processing, and for debugging, performance

measurement and so on.

@Guu 3.0-alpha build 1667
File Options Tools Helo

A0, caw Massages =] Hindl |
= @8 Applicatons Annatations
* ANMIE_D0IDC |_‘§ ik ="
= (@ Language Resourcas h w Original markups
o I LNE
[-
= gl Processing Resourtes atarat Lo 5'
& arinie oanowatcner_o | T g
B ANNIE ME Transducer, e [TRTSTREAM
B4 AMMIE FOS Tagger_0L T
9 ANNIE Sentence Spit: ™ 2
B4 ANNIE Gazetbees_D03C T %
B AMMIE English Tokinis
=)
£ Document Reset PR_C nrfely
(I8 pata stores
sl
ot
i
Food =
Twpa | Sat | stani] End| Fastures|
| = ORG [Onginal markups| 230, 248)() | =
ORG | Original markups| 1363)1380)()
pasmaTyoe =] fouterat i | 1363 |
— ORG | Ouigingl markups| 1467 3802)() |
foate Sourceum =] finicone ORG | Onginal markups| 3467 3505)() |
=] ORG | Cuigingl markups| 1620 3853)()

ORG [Diginal markups|
ORG |Criginal markups| 2 |
ORG | Oilginal markups, 2

ORG | Criginal markups| 556 S

5 Annatations (0 selecte) _new |

Annatations

1 [| = | Document Editer [Iniialzation Parameiers | GLD Documan Eaior]
| ——

Figure 11:The user interface of GATE

GATE can be used for many things, but one of the most typical uses is to annotate
pages with it. This means that we have a collection of pages and a number of concepts
(Annotation Schema) that supposedly occur in these pages. GATE provides an easy to
use interface for indicating which pieces of text denote which of your concepts. GATE

also can annotate all HTML tags that find in text page.

29

3.1.4 JAPE grammar language

JAPE (Java Annotation Patterns Engine) provides finite state transduction over
annotations based on regular expressions. JAPE is a version of CPSL - Common
Pattern Specification Language. It allows you to recognize regular expressions in
annotations on documents. Typically, regular expressions are applied to character
strings, a simple linear sequence of items, JAPE applying them to a much more
complex data structure. The result is that in certain cases the matching process in
non-deterministic, for example, the results are dependent on random factors like the
addresses at which data is stored in the virtual machine, when there is structure in the
graph being matched that requires more than the power of a regular automaton to

recognise, JAPE chooses an alternative arbitrarily.

A JAPE grammar consists of a set of phases, €ach of which consists of a set of
pattern/action rules. The phases:run sequentially and constitute a cascade of finite state
transducers over annotations. A JAPE rule is combined with LHS (left-hand-side) and
RHS (right-hand-side). The LHS of the rules consist of an annotation pattern that may
contain regular expression operators. The RHS consists of annotation manipulation
statements. Annotations matched on the LHS of a rule may be referred to on the RHS

by means of labels that are attached to pattern elements.

For LHS, there are 3 main ways in which the pattern can be specified:
* specify a string of text,
e.g. {Token.string == “of ™’}
e specify an annotation previously assigned from a gazetteer, tokeniser, or other
module,

e.g. {Lookup)
30

e specify the attributes (and values) of an annotation),

e.g. {Token.kind == number}

The RHS of the rule contains information about the annotation. Information about

the annotation is transferred from the LHS of the rule using the label just described, and

annotated with the entity type. Finally, attributes and their corresponding values are

added to the annotation. Alternatively, the RHS of the rule can contain Java code to

create or manipulate annotations

For example, a single rule is sufficient to identify an IP address, because there is

only one basic format - a series of numbers, each set connected by a dot. The rule for

this is given below:

Rule: IPAddress

(
{Token.kind == number}
{Token.string ==""."}
{Token.kind == number}
{Token.string == "."}
{Token.kind == number}
{Token.string == "."}
{Token.kind == number}

)

:ipAddress —-->

:ipAddress.Address =

{kind = "ipAddress"}

Figure 12: JAPE Grammar rule example

GATE supports ontology aware grammar transduction, this allows a JAPE

transducer to match not only those features on the left hand side of a rule that match it

exactly, but also to match any features that are subclasses of those specified in the

31

JAPE rule. For example, if the ontology specifies that a BMW is a car, and that a car

is a vehicle, then a rule that specifies vehicle will match when it finds an instance of

BMW or car.

3.2 System Architecture

The IT product specification extraction system is composed of web page collection

tool and NLP tools. The system architecture and work flow show as figure 13:

| ! ! |

Pn:nduct Inﬂ:\rmah.t:m l"-.
D -
Web pagzs list Web page collector
o
Persomal conpater Urmx Server ‘ Monitor Prter ‘
Weh compus Web corpas Web corpus Web corpas

Persomal Computer Unix 5 erver Momitor Prnter

Applhication Application A pplication Application

k2 h 2 h 4 ¥

=

DAML dorument

Persomal Compater

DA ML document
Of Of
Printer

of

Momtor

DAML document

Figure 13: System architecture and workflow

This system can be segmented to 4 IT applications that are “Personal Computer

Application”,

“Unix Server application”, “Monitor application”

and

“Printer

application”. Each IT application is independent sub-system to extract information from

32

specific knowledge domain. The application has related language resource (such as
Web corpus, ontology) and process resource (such as “English Tokeniser”, “Sentence
Splitter”). Every application includes 3 major processes that are “Web document
annotation”, “JAPE transduction” and “DAML+OIL exporter”. Figure 14 shows the

architecture of IT application.

IT Product
Webh corpas

ANHIE
annotation process

mmmm———-

|

JAPE G mnenar JAFE
Rule forIT product » Tramsduction

Pl

Cntology of » D ML+ OIL
product specification Exporter

DAL domument

of
product specification

Figure 14: Architecture of IT product application

The system collects web document base on pre-defined web list and save it into
specific path as a corpus by different IT product. NLP tools (GATE) will load the
corpuses to annotate these documents, than JAPE transducer will load JAPE grammar
rule to mark up product specification. Finally, DAM+OIL exporter generate output file

of specification in DAML document format.

33

3.3 Web page collection

The major task of web page collector is download web document base on pre-define
web list and save these document in specific path by different IT product. We choose
“Teleport Pro” to be the web page collector, Teleport Pro is a widely used offline

browsing Web-spider.

To limit the scope, we just down load web page from IBM and HP web site, because
IBM and HP have rich product lines to meet our requirement. We also limit the IT
product scope to be Unix Server, Desktop, Notebook, Monitor and Printer. We
randomly select 2~3 products from HP and IBM per product line, total 34 web pages be
down load for prototype system deyeloping. We load the related web documents into
GATE as a “corpus”. Corpus is a language ‘resource of GATE that includes several

documents for batch process.

3.4 ANNIE annotation process flow

GATE provides a baseline set of reusable and extendable language processing
components for common NLP tasks, known collectively as ANNIE (A Nearly New
Information Extraction System). ANNIE currently produces precision and recall figures
for named entity recognition of around 90%, depending on the text type. [25] ANNIE
relies on finite state algorithms and the JAPE language. ANNIE components form a

pipeline that show as figure 15:

34

(oo B,] ANNIE, LaSIE
IE modules

Trupat: GATE
UEL or text Daocument

JAFE NE

Character Semmantic

Unicade Grarmmar
. Class Zequence
Tokims&r Rulgs Taglgﬂ’ Cascade
NOTE: square boxes are
: Matne q
- Flex Lexical mded

EATITIA Pprocesses, 1o ones are
L tiser Analysis Grammar J Matcher data.

Buchari AV Prolog
3 Gazetteer .
Lackup 4—[Lists] Parser * Grammar

l l

XI/Prolog
Sentence JAPE Sentence DisTat - W
Splitter Patterns Fxtraction Fules

!

I‘_ll_lpHep Brill Rules GATE Document
agger Lexi L d f
i Output: NE/TE/TRAST Anamtations

Figure 15: ANNIE process:pipeline in GATE 3.0

ANNIE includes many companies like Unicode Tokeniser, Sentence Splitter, POS
Tagger, ANNIE Gazetteer, Semantic-Tagger,-Nominal coreferencer and pronominal
coreferencer ... and so on. To enhance systemr performance, we just apply part of
component in our prototype system for natural language processing. The ANNIE
process flow of IT specification extraction system show as figure 16 and figure 17

Selected Processing resources

Mame | Type
ES Docurnent Rezet PR_000SE Document Reset PR
", AMMIE English Takenizer_000.. |AMNMIE English Tokenis..
é-ANNIE Gazetteer 00053 AMMIE Gazetteer

@ AMMIE Sentence Spliter_ 00057 [ANMIE Sentence Splitter
@ AMMIE POS Tagger_ 000&C AMMIE POS Tagger
1 ARMIE Othobdatcher Q0073 AMMIE Ortholdatcher

OO
—

ntreal Trans
[] g- Hazh Gazetteer_0007A Hazh Gazetteer
?Q OntoGazetteer_ 00079 OntoGazetteer
?[:‘;'ML DAML+OIL exporter_OD0AG (DAML+OIL exporter

Figure 16: Selected ANNIE processing resource

35

1.

Web document corpus

v

Document Reset —P ANNIE Sentence
ANNIE English ANNIE POS Tagger
ANNIE Gazetteer ANNIE OrthoMatcher

Figure 17: ANNIE process flow in IT specification extraction system

Document Reset: The document reset resource enables the document to be reset
to its original state, by removing all the annotation sets and their contents, apart
from the one containing the document-format analysis (Original Markups). This
resource is normally added to the beginning of an application, so that a

document is reset before an application-is rerun on that document.

ANNIE English Tokeniser: The tokeniser splits the text into very simple tokens
such as numbers, punctuation and words of different types. The aim is to limit
the work of the tokeniser to maximize efficiency, and enable greater flexibility
by processing with build-in grammar rules. The English Tokeniser should
always be used on English texts that need to be processed afterwards by the POS

Tagger.

ANNIE Gazetteer: The gazetteer lists used are plain text files with one entry
per line. Each list represents a set of names, such as names of cities,

organizations, days of the week, etc.

36

4. ANNIE Sentence Splitter: The sentence splitter is a cascade of finite-state
transducers that segments the text into sentences. This module is required for the
tagger. The splitter uses a gazetteer list of abbreviations to help distinguish

sentence-marking full stops from other kinds.

5. ANNIE POS Tagger: POS Tagger is an external program, passing gate

documents as input, and adding some features to the existing Tokens.

6. ANNIE OrthoMatcher: The Orthomatcher module adds identity relations

between named entities found by the semantic tagger, in order to perform
coreference. It does not find new named entities as such, but it may assign a

type to an unclassified proper name, using the type of a matching name.

In IT specification extraction:'system, the major task of ANNIE process is to
separate a web document into tokens and add related attributes to these tokens. It is
important for following process.. We don t.expect: ANNIE to extract IT specification
because the default IE function of ANNIE just can identify “name”, “address”, “date”,
“organization”. To extract information from specific domain knowledge, customization
is necessary. Basically, There are two ways to develop customized extraction rule, one
is adding new Gazetteer another is to employ JAPE grammar rules. Consider the
flexibility and integration with ontology model, we choose JAPE to be the developing

tools.

3.5 Ontology and JAPE extraction rule

The general disadvantage of use NLP technology to extract information is need

customized extraction rule for specific knowledge domain. Since build-in IE system

37

can’t extract information from specific know domain, we have to construct extraction

rule for IT specification extraction.

As the introduction of section 3.1.4, JAPE (Java Annotation Patterns Engine)
provides powerful and flexibility annotation grammar, it also provides ontology aware
grammar transduction. In IT product specification extraction system, JAPE transducer

is the major process to extract information form specific IT product.

We plan to extract the product specification show as following:

+ Personal Computer:
Model Name
CPU model
CPU Speed
Memory Type
Memory Size
Hard Disk Type
Hard Disk Size

Unix Server
Server Model
CPU Model
CPU Speed
Cache Memory Size
Memory Type
Memory Size
Max. Memory Size
O.S version
Hard Disk Type

* Monitor
Model Name
Monitor Type
Monitor Size
Pixel Pitch

Resolution Mode

38

Max Resolution Mode

Recommend Resolution Mode
Refresh Rate
Web Price

* Printer
Model Name
Print Speed
Print Quality
Memory Size
To enable the ontology aware grammar feature, we have to develop ontology for IT
product specification. The ontology of IT product specification describes the relation
and structure of information that we plan to extract. Figure 18 is an example about
ontology of personal computer. In figure 18, Desktop and notebook are sub-class of
personal computer, and “Brand”, CPU”“Memory” and “Hard disk” are part of
desktop or notebook. “CPU model”, “CPU speed”..:. and so on are related information

of components.

Personal_Computer

Desktop Notebook

information_of informatioinformation_of informatiorinformation_of informatioinformation_of

(PC_MOdel) GPU_ModeD GPU_Spee(D @emow_Tpr @emory_SizD CHD_Type) CHD_Size)

Figure 18: Ontology Example- Ontology of Personal Computer specification

39

Gate provide a build-in ontology editor for ontology developing, it is a simple
developing environment. The build-in ontology just provides ‘“‘sub-class” relation
between parent class and son class. We also tried to create ontology by SemTalk which
provide more property and export these ontology to be DAML files. But GATE JAPE
transducer seems can’t recognize these properties. Consider the compatibility and
precision, we developing ontology with GATE build-in tools. Figure 19 is an example

of personal computer ontology developing.

File Wiew Help

Citology
_APC_Ontalogy

SHC GPU

':% CPU_Madel
CPU_Speed

[=HC) Hard_Disk

':% HD_Size
HD_Type

[—]—@ Perzsonal Computer

':% Dezltop
Motebool:

EFC)Memow

hlemary_Size
hlemany_Type

LT} Prad_Model

Figure 19: Example of GATE build-in ontology developing

GATE will save the ontology as DAML files. The ontology file must load into
GATE as a language resource and refer by JAPE transducer and DAML exporter.

Figure 20 is an example of DAML output file, it is ontology of personal computer.

<?xml version='1l.0'?>
<rdf:RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#'
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#’
xmlns:daml="http://www.daml.org/2001/03/daml+oil# ">
<daml:Ontology rdf:about=""
rdfs:label=""
rdfs:comment="">
<daml:versionInfo>$Id: iswc.daml,v 1.0 2002/04/15 16:51:40 meh Exp $</daml:versionInfo>
</daml:Ontology>
<rdfs:Class rdf:about='file:/C:/Rick/Thesis/Ontology/Personal Computer.daml#Memory'
rdfs:label="Memory"
rdfs:comment=""/>
<rdfs:Class rdf:about='file:/C:/Rick/Thesis/Ontology/Personal Computer.daml#Memory Size'

40

rdfs:label="'Memory Size'
rdfs:comment="">

<rdfs:subClassOf>file:/C:/Rick/Thesis/Ontology/Personal Computer.daml#Memory</rdfs:subClassOf>
</rdfs:Class>
<rdfs:Class rdf:about='file:/C:/Rick/Thesis/Ontology/Personal Computer.daml#CPU Model'
rdfs:label="'CPU Model'
rdfs:comment="">

<rdfs:subClassOf>file:/C:/Rick/Thesis/Ontology/Personal Computer.daml#CPU</rdfs:subClassOf>
</rdfs:Class>
<rdfs:Class rdf:about='file:/C:/Rick/Thesis/Ontology/Personal Computer.daml#CPU_Speed'
rdfs:label="'CPU_Speed'
rdfs:comment="">

<rdfs:subClassOf>file:/C:/Rick/Thesis/Ontology/Personal Computer.daml#CPU</rdfs:subClassOf>
</rdfs:Class>
<rdfs:Class rdf:about='file:/C:/Rick/Thesis/Ontology/Personal Computer.daml#HD Size'
rdfs:label="HD Size'
rdfs:comment="">

<rdfs:subClassOf>file:/C:/Rick/Thesis/Ontology/Personal Computer.daml#Hard Disk</rdfs:subClassOf>

</rdfs:Class>

<rdfs:Class rdf:about='file:/C:/Rick/Thesis/Ontology/Personal Computer.daml#CPU'
rdfs:label="'CPU'
rdfs:comment=""/>

<rdfs:Class rdf:about='file:/C:/Rick/Thesis/Ontology/Personal Computer.daml#Memory Type'
rdfs:label="'Memory Type'
rdfs:comment="">

<rdfs:subClassOf>file:/C:/Rick/Thesis/Ontology/Peéfsonal Computer.daml#Memory</rdfs:subClassOf>

</rdfs:Class> '

<rdfs:Class rdf:about='file:/C:/Rigk/Thesis/Ontology/Personal Computer.daml#Hard Disk'
rdfs:label="'Hard Disk' :
rdfs:comment=""/>

<rdfs:Class rdf:about='file:/C:/Rick/Thesis/Ontology/Personal Computer.daml#HD Type'
rdfs:label="HD Type'
rdfs:comment="">

<rdfs:subClassOf>file:/C:/Rick/Thesis/@ntology/Personal Computer.daml#Hard Disk</rdfs:subClassOf>
</rdfs:Class>
<rdfs:Class rdf:about='file:/C:/Rick/Thesis/Ontology/Personal Computer.daml#Prod Model'
rdfs:label="'Prod Model'
rdfs:comment=""/>
</rdf :RDF>

Figure 20: DAML example: Ontology of Personal computer

For performance issue, we develop JAPE grammar rules by difference IT product
base on section 1.4. To extract specification information correctly, the customization
for JAPE rules to match the text format is necessary. Some times, different web site
present same information type in different text format. For example, the CPU cache,
IBM web documents show the CPU cache information as “Levell cache: 4MB” or “L1
cache: 4MB”, but HP web document show as “4MB Levell cache” or “4MB L1 cache”,

it need different JAPE rule to match these information. Figure 21 is an segment of

41

JAPE code that extract from UNIX server JAPE grammar rule.

Rule: CPU_Cachel
(
(
{Token.string =~ "[Ll]evel?" } |
{Token.string =~ "[L1]?" }
)
{Token.kind == number}
(
{Token.string == " ("}
{Token.kind == word}
{Token.kind == number}
{Token.string == ")"}
)2

{Token.string =~ "[Cclache?" }

(
{Token.kind == punctuation}|
{Token.kind == word} |
{Token.kind == number}

) 2

{Token.kind == number}

(

{Token.string == "."

{Token.kind == number}
) 2
(
{Token.string == "KB"}
{Token.string == "MB"}
)
)
:CPU

-—>
:CPU.CPU_Cache = {kind = CPU, gxule =-CPU: Cachely

Rule: CPU_Cache2
(

{Token.kind == number}

(
{Token.string == "."}
{Token.kind == number}

) 2

(
{Token.string == "KB"}
{Token.string == "MB"}

)

(
{Token.string == "shared"} |
{Token.string == "combined"}

) 2

{Token.string =~ "[Ll]evel?" } |
{Token.string =~ "[L1]?" }
)

{Token.kind == number}
{Token.string =~ "[Cclache?" }
)
:CPU
-—>
:CPU.CPU Cache = {kind = CPU, rule = CPU Cache2}

Figure 21: Example of JAPE grammar rule segment

The JAPE example uses 2 JAPE rules to extract the information of CPU cache

memory. The rule “CPU_cachel” is designed for IBM web document that can match

42

the text format like “Levell cache: 4MB” or “L1 cache: 4MB”. And the rule
“CPU_cache2” is designed for HP web document that can match the text format like

“4MB Levell cache” or “4MB L1 cache”.

To develop JAPE code for specific web page will enhance the extraction precision,
but lost the common usage. We don’t expect the JAPE rule CPU cachel and
CPU_cache2 can extract cache information for the web page of Dell computer. With
the extension of web source, the fine tune for JAPE rule to meet new text format is

necessary.

3.6 DAML+OIL Exporter

The DAMLAOIL Export is a GATE process‘tesource that allows the information
segment found in documents to be'exported: as instances of a specified ontology in
DAMLAOIL format. When a corpus.is-processed with ANNIE and JAPE transducer,
GATE will mark up the information that we-want to extract. When the DAML+OIL
exporter processes the corpus, for each information segment found that is of some type
(such as CPU type), if a corresponding concept with the same name as the information
type (such as CPU type) exists in the ontology then a new DAML instance will be

generated in the export file. Figure 22 shows the example of DAML output file:

<?xml version='1.0'"?>

<rdf:RDF
xmlns:gate="'file:/C:/Rick/Thesis/Ontology/Personal Computer.daml#'
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#'
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"'>
<daml:0Ontology rdf:about=""

daml:versionInfo='1.0">

<daml:comment>autogenerated from GATE RDFFormatExporter </daml:comment>

43

</daml:Ontology>

<daml:Property rdf:about='http://www.daml.org/2001/03/daml+oil#versionInfo'/>
<daml:Property rdf:about='http://www.daml.org/2001/03/daml+oil#comment'/>
<gate:Memory Size rdf:about='512MB'/>

<gate:HD Type rdf:about='Enhanced IDE'/>

<gate:Memory Size rdf:about='1024MB'/>

<gate:CPU_Model rdf:about='Pentium# M'/>

<gate:Memory Size rdf:about='2048MB'/>

<gate:HD Size rdf:about='100GB'/>

<gate:Memory Type rdf:about='DDR SDRAM'/>

<gate:Prod Model rdf:about='Pavilion dv4040us'/>

<gate:CPU Speed rdf:about='1.73GHz'/>

</rdf :RDF>

Figure 22: Example of DAML output file

44

4. Analysis and Comparison

4.1 Extraction Result

After annotate processing, web corpus are separated into thousands tokens. Every

token has attribute like token type, length, position ... and so on. Figure 23 shows the

annotation result

IAnnDtation Setsz IAnnotations Co-reference Editorl IText
————

Typelﬂl Startl Endl Features I Lookup ;I
Taken 16800/ 16808 {cate gary=NMF, kind=word, length=8, oth=mixed(~] I™ Maney
16308168058 |{cate gory=5%M, kind=symbal, length=1, string==} ™ Organization
o |‘1l._._|1._ Dffcategorny kind=word, length=31, orth= G [T Person
Token 1684016841 |{category=., kind=punctuation, length=1, ztring=.} [T Sentence
Token 1684116842 |{category=CD, kind=number, length=1, string=0} O B
lolken 1684216843 |{categony=CC, kind:plunctuation, length=1, string_'zlll I Spiit
D00 Annotationspselected) [T Temp
= [T TempYear
:I [T Title
ﬂToken
[Unknown
[UrlPre
P Original markups
P Personal_Computer =
LI Mewy |

Figure 23: Annotation result

Then, JAPE transducer tries to match information entity, which may be composed

by several tokens, base on JAPE grammar rule. Figure 24 show the process screen that

JAPE transducer mark information entity up when the text format is matched with the

JAPE grammar rule.

45

Annotation Setz | Annotations Co-reference Editorl Text

Type | Set Start| End Features

CPU_Speed |Perzonal_Computer [15526(1553232|{kind=CPL, rule=CPU_Speed}

2]

tdemory_Size |Perzonal_Computer |15520|15625 {kind=ftemory, rule=tlemony_Size}

hdemary_Type|Personal_Computer 1562615635 {kind=hermary, rule=hdemory_Type}

I

hlemary_Size |Personal_Computer 1264115846 |{kind=Memory, rule=Memory_Size}

J

12 Annotations (1zelected)

tdemory_Size |Perzonal_Computer |15674|15630 {kind=htemory, rule=tlemony_Size} -
| »

Processor ﬂ

Inteld processor T30, , 533MHz with 2MB cache
Operating system

Windows XP Home with 3ervice Pack 2
Memoxy

(2 x 3 at 266MHz; maximum memory (2 x
1

Graphics card

Integrated Intel Graphics Media Accelerator 900 iy
Hard drive

LO0GE [gigabyte iz defined as 1,000,000,000 bytes, acceszihle LI

AN A ww

I
v

Original markups
Personal_Computer
CPU_Model
CPU_Speed

HD_Size

HD_Type

Memony_Size
Memory_Type
Prod_hodel

Q=

Figure 24: Information Entity marked up by JAPE transducer

An information entity is one of ‘product specification that may be composed by

several tokens, like the monitor resolution—mode used to present as “1024x768

@75Mhz”. The goal of IT spécification extraction system is to extract these

information entities from selected web page. We collect total 32 web pages from IBM

and HP web site for system test, the extraction result show as following. The extraction

results show that JAPE grammar rule can extract finite information entities form these

tokens.

46

Personal computer corpus (include desktop and notebook):

Table 1: Extraction result of HP and IBM Personal computer

Web Product Name Total Extracted
Site tokens |information entities
HP Pavilion dv4030us Notebook 5190 11
HP Pavilion zv6010us Notebook 4900 10
HP Media Center zd8110us Notebook 5215 12
HP Pavilion a1040n Desktop 5104 9
HP Media Center m7070n Photosmart PC 5103 10
IBM |ThinkPad T42 Notebook 2128 11
IBM |ThinkPad X41Tablet 1806 10
IBM |ThinkPad R50¢ Notebook 1812 10
IBM |ThinkCentre S50 Desktop 1816 10
IBM |ThinkCentre M51 Desktop 1851 10

Unix server corpus

Table 2: Extraction result of HP and IBM Unix Server

Web Site Product Name Total Extracted
tokens |Information entities
HP RX8620 892 18
HP RX7620 860 16
HP RX4640 1079 25
HP RP8420 1120 16
HP RP7420 1230 18
IBM p5 590 1016 13
IBM p5 570 1080 18
IBM pS 550 1017 11
IBM p5 520 1031 11
IBM pS 510 772 11

47

* Monitor corpus

Table 3: Extraction result of HP and IBM monitor

Web Site Product Name Total tokens Extracted
Information entities

HP vs1717 Flat-Panel LCD 4932 11
Monitor

HP £1905 19 LCD Flat-Panel 4928 11
Monitor

HP Pavilion mx704 17 4903 11
Flat-Screen CRT Monitor

HP $7540 CRT Monitor 527 11

IBM ThinkVision L170p Monitor 1117 27

IBM ThinkVision L150 Monito 1050 19

IBM E74M 17 inch CRT Monitor 1108 25

IBM E54 15" Monitor MPRII 809 10

Printer corpus

Table 4: Extraction result of HP and IBM printer

Web Site Product Name Total Extracted
tokens | information entities
IBM Infoprint Color 1357 Printer 782 5
IBM Infoprint 1412 Printer 807 9
IBM Infoprint 1352 Printer 889 8
HP Inkjet 1200dn printer 3766 19
HP Deskjet 3845 Printer 4905 4
HP Color LaserJet 2600n Printer 3431 10

We also collect 24 web pages from other company such Sony, ASU, SUN... to
compare the extraction result of JAPE rules. The extraction result show as following

tables

48

Table 5: Extraction result of Sony and ASUS personal computer

Web Product Name Total Extracted
Site tokens |information entities
Sony [Sony VGN-T370P-L Notebooks 3775 10
Sony [Sony VGN-FS675P-H Notebook 3649 8
Sony |[Sony VAIO V167G TV-PC Desktop | 3534 12
ASUS |ASUS W5A Notebook 549
ASUS |ASUS W3V Notebook 663
ASUS |ASUS V6V Notebook 531
Unix server corpus
Table 6: Extraction result of Sun Unix Server
Web Product Name Total Extracted
Site tokens |Information entities
SUN |Sun Fire V890 Server 1234 2
SUN |Sun Fire V40z Server 1087 10
SUN [Sun Fire V240 Server 1172 5
SUN |Sun Fire V1280 950 4
SUN |Sun Fire E4900 Server 1285 0
SUN [Sun Fire E20K Server 1209 0

Monitor corpus

Table 7: Extraction result of BenQ and Acer monitor

Web Site Product Name Total tokens Extracted
Information entities
BenQ BenQ USA - FP531 LCD monitor 480 5
BenQ BenQ FP71V LCD monitor 521 5
BenQ [BenQ FP71E LCD monitor 419 5
BenQ BenQ FP537s LCD Monitor 467 5
Acer Acer AF715 CRT monitor 217 4
Acer Acer AC501 CRT monitor 190 4

49

+ Printer corpus

Table 8: Extraction result of Epson and Canon Printer

Web Site Product Name Total Extracted
tokens | information entities
Epson Epson PictureMate 1458 1
Epson Eﬁ?ﬁ; Stylus Photo R300 1721)
Epson |Epson Stylus C66 Printer 1369 3
Canon |CanonPIXMA iP3000 printer 1033 1
Canon |Canon Printers - 180 Printer 1022 2
Canon |Canon PIXMA iP90 Printer 1128 1

4.2 Performance index

Although IT product specification}extraction system has the ability to extract
information from web pages, we also need some indexes to evaluate the extraction
performance. Evaluation of information extraction methods is a very important. There
is a general consensus that evaluation 1s either quantitative or qualitative. Quantitative
evaluation measures the performance of the various software algorithms that constitute
the extraction tool. Qualitative evaluation assesses the adequacy of information

extraction method for specific knowledge domain.[26]

Two evaluation stages are typically performed when evaluating an information
extraction method. First, term level evaluation assesses the performance of extracting
domain relevant terms from the corpus. Second, an extraction quality evaluation stage

assesses the quality of the extracted entities.

To measure the performance of information extraction system, usually consider two

performance index, precision and recall, that is define as following [27,16]:
50

For one web document:

Definition:

1. Information entity: An IT product specification that may be formed be one or

several lexical token.

2. Target information entity: An IT product specification that meets our

information extraction scope and hide in selected web document

3. Information entity extracted: A lexical construction that is extracted by JAPE

grammar rule.

4. Correct information entity extracted: A correct IT product specification that

is extracted by JAPE grammar rule and.

Base on above definition, the recall and precision rate be defined as:

Number of correct information“entities extracted

Recall =
Number of target information entities

Number of correct information entities extracted

Precision =
Number of information entities extracted

We use the following step to evaluate the performance of IT product specification

extraction system [28].

Step 1. Manually annotation:

We annotate all selected web documents manually to mark up all target

information entities. It is baseline of performance evaluate.

Step 2. Automatic annotation by JAPE grammar rule:

51

We run all application of IT product specification extraction system, to mark
up and extract information entities from selected web page by automatic

process.
Step 3. Compare and calculate the recall and precision:

Compare the information entities that mark up by manual and extract by

automatic process to calculate the recall and precision values.

Figure 25 is an example to explain the calculation of recall and precision. It is a web
page segment that describes the print quality of printer. Annotate the text segment by
manually, we know the black and color printer quality both are 600x600 dpi, so there
are 2 target information entities show be extracted. But JAPE grammar rule extracts 3

information entities, two are correct-and one is missed.
, o R

Twpe | Set | Start| End Features [2
| Print_Quality|Printer| 7350|7363 {kind=Memory, rule=Print_ | P Original markups

|F'rirlt_':!l.ualit_-.-'|F'rir'|ter| 7382 |?-—'1l1:1'1 |-[I-::iru:|=l'-.-'1er'-' ory, rule=Print_(QIK i =Fefn e
Print_Quality| Printer| 7408 7422 {kind=Memaony, rule=Print_{ I~ Memon_Size

kT 2 —

(3 Annotations {1 zelected) ™ Print_Speed
;I [T Printer_Model

Frint gquality, black
LT vith HP Inage REf

Frint qu_l_:a.lit.j:.-' color
AU with HP Image REt 2400

'y

LI Mew

—» Corrected information extracted
— TUnecorrected information extracted

Figure 25: Example of recall and precision rate calculation

So we get following result:

Target information entity = 2

52

Information entity extracted = 3
Correct information entity extracted = 2
Recall=2/2=100%

Precision=2/3=66.6%

We run all application and calculate recall and precision rate for application, the

result show as following table:

Personal Computer Application

Table 9: Recall and Precision of personal computer extraction result

Number of Number of Number of
target information correct Recall |Precisi
Product name information entities information S recision
entities extracted |entities extracted

(A) (B) © (C/A) (C/B)
HP Pavilion dv4030us
Notebook 10 11 10 100% 90.9%
HP Pavilion zv6010us
Notebook 10 10 10 100% 100%
HP Media Center
zd8110us Notebook 8 9 8 100% 88.9%
HP Pavilion a1040n
Desktop 10 12 10 100% 83.3%
HP Media Center
m7070n Photosmart PC 9 10 9 100% 90%
IBM ThinkPad T42
Notebook 10 11 10 100% 90.9%
IBM ThinkPad
X41Tablet 10 10 10 100% 100%
T IhinicPad R30¢ 9 10 9 100% | 90%
gBelz/i;l(;lrl)inkCentre S50 9 10 9 100% 90%
gfﬁ(;l(;l;inkCentre Ms1 9 10 9 100% 90%
Sum/Average 94 103 94 100% 91.3%

53

+ Unix server Application

Table 10: Recall and Precision of Unix server extraction result

N e 'Nurnber.of Number of
Product name information 1nforrpgt10n Sorrect Recall |Precision
.- entities information
entities extracted |entities extracted
A) B) © (C/A) (C/B)
HP RX8620 18 18 18 100% 100%
HP RX7620 16 16 16 100% 100%
HP RX4640 25 25 25 100% 100%
HP RP8420 19 16 16 84.2% 100%
HP RP7420 18 15 15 83.3% 100%
IBM p5 590 14 13 13 92.9% 100%
IBM p5 570 18 18 16 88.9% 88.9%
IBM p5 550 10 11 10 100% 90.9%
IBM p5 520 10 11 10 100% 90.9%
IBM p5 510 10 11 10 100% 90.9%
Sum/Average 158 154 149 95% 96.2%
Monitor Application

Table 11: Recall and Precision of monitor-product extraction result

Number of | Number of Number of
target information correct 8g
Product name information entities information Recall | Precision
entities extracted |entities extracted
(A) B) © (C/A) (C/B)

ﬁirﬁg” Flat-Panel LCD 10 1 10 100% | 90.9%
ﬁl; rfiltz(r)S 19 LCD Flat-Panel 1 1 1 100% 100%
HP Pavilion mx704 17 o o
Flat-Screen CRT Monitor 12 1 1 91L.7% 100%
HP s7540 CRT Monitor 13 11 11 84.6% 100%
ﬁé\gig‘nkvw“’n L170p 25 27 2 96% | 88.9%
gggig‘“k\“smn L150 20 19 19 95% | 100%
IBM‘E74M 17 inch CRT 1 25 21 100 84%
Monitor
IBM E54 15" Monitor MPRII 11 10 10 90.9% 100%
SUN/Average 123 125 117 95.1% 93.6%

54

+ Printer Application

Table 12: Recall and Precision of personal computer extraction result

Number of | Number of Number of
target information correct 80
Product name information entities information Recall | Precision
entities extracted |entities extracted
(A) (B) © (C/A) (C/B)
;BM Infoprlnt COlOI‘ 1357 6 83.3% 100%
rinter
IBM Infoprint 1412 Printer 10 9 9 90% 100%
IBM Infoprint 1352 Printer 9 8 8 88.9% 100%
HP Inkjet 1200dn printer 17 21 17 100% 81%
HP Deskjet 3845 Printer 6 6 6 100% 100%
EP Color LaserJet 2600n 10 11 10 100% 90.9%
rinter
SUM/Average 58 60 55 94.8% | 91.7%

The following is performance summary table of IT specification extraction system:

* Summary Table of recall and precision:

Table 13: Summary table of recall and precision

Number of | Number of Number of
Product name inf;arrrr%zttion int;(;rg:?:son inf(z) (I)‘Ir;iliiton Recall | Precision
entities extracted |entities extracted
(A) (B) © (C/A) (C/B)
Personal Computer 94 103 94 100% 91.3%
Unix Server 158 154 149 95% 96.2%
Monitor 123 125 117 95.1% | 93.6%
Printer 58 60 55 94.8% | 91.7%
SUM/Average 433 442 418 96.5% | 94.6%

The above tables show that JAPE grammar rules have high recall and precision

value to extract information entities form IBM and HP web pages.

55

4.3 Performance index for other company:

Since our JAPE rules are optimized for IBM and HP web pages, the high extraction

performance just meets our expectation. Our major concern is the extraction

performance for web pages of other company. The recall and precision values are show

as following tables:

+ Personal Computer Application

Table 14: Recall and Precision of personal computer extraction result

Number of Number of Number of
target information correct Recall |Precisi
Product name information entities information S G RO
entities extracted |entities extracted
(A) (B) © (C/A) (C/B)
Sony VGN-T370P-L
9 10 7 78% 70.0%
Notebooks
Sony VGN-FS675P-H
9 8 6 67% 75.0%
Notebook
Sony VAIO V167G
14 12 10 71% 83.3%
TV-PC Desktop
ASUS W5A Notebook 10 5 50% 83.3%
ASUS W3V Notebook 9 5 56% 83.3%
ASUS V6V Notebook 10 50% 83.3%
Sum/Average 61 48 38 62% 79.2%

56

+ Unix server Application

Table 15: Recall and Precision of Unix server extraction result

Number of Number of
Number of target information correct e
Product name inforg_ation entities information Recall |Precision
Centites extracted |entities extracted
(A) B) © (C/A) (C/B)

Sun Fire V890 Server 13 2 2 15.4% 100%
Sun Fire V40z Server 15 10 8 53.3% 80%
Sun Fire V240 Server 13 5 5 38.5% 100%
Sun Fire V1280 16 4 4 25.0% 100%
Sun Fire E4900 Server 12 0 0 0% --
Sun Fire E20K Server 13 0 0% --
Sum/Average 82 21 19 23.2% | 90.5%

Monitor Application

Table 16: Recall and Precision of monitor:product extraction result

Number of | Number of Number of
target information correct g
Product name information entities information Recall | Precision
entities extracted |entities extracted
(A) B) © (C/A) (C/B)
BenQ USA - FP531 LCD
5 5 3 60% 60%

monitor
BenQ FP71V LCD monitor 6 5 3 50% 60%
BenQ FP71E LCD monitor 5 5 3 60% 60%
BenQ FP537s LCD Monitor 6 5 3 50% 75%
Acer AF715 CRT monitor 6 4 3 50% 75%
Acer AC501 CRT monitor 7 4 3 43% 75%
Average 35 28 18 51% 64.3%

57

+ Printer Application

Table 17: Recall and Precision of personal computer extraction result

Number of | Number of Number of
target information correct 8g
Product name information entities information Recall | Precision
entities extracted |entities extracted
(A) (B) © (C/A) (C/B)
Epson PictureMate 3 1 1 33.3% 100%
Epson Stylus Photo R300
) 3 2 2 66.7% 100%

Printer
Epson Stylus C66 Printer 4 3 3 75.0% 100%
CanonPIXMA iP3000 printer 6 1 1 16.7% 100%
Canon Printers - 180 Printer 9 2 2 22.2% 100%
Canon PIXMA iP90 Printer 6 1 1 16.67% 100%
SUM/Average 31 10 10 32.3% 100%

+ Summary Table of recall and precision:

Table 18: Summary-table of recall and precision for other company

Number of Number of Number of
Product name inff)mrrr%::ion ing;rtrﬁ?eﬁson inf(z) (;Ir:;iiton Recall | Precision
entities extracted |entities extracted
(A) B) © (C/A) (C/B)
Personal computer 61 48 38 62% 79.2%
Unix Server 82 21 19 23.2% | 90.5%
Monitor 35 28 18 51% 64.3%
Printer 31 10 10 32.3% 100%
SUM/Average 209 107 85 41% 79.4%

From above tables, we see the average precision is above 79.5% but the average
recall value is down to 41%. It shows that the recall obviously reduces and precision
still keeps acceptable level as the extension of web site scope. This result implies that

JAPE grammar rules get either correct information entity or nothing.

58

5. Conclusion and Contribution

Information extraction is an important process in knowledge management domain.
In this paper we present an approach that combine natural language processing and
ontology concept to extract information for unstructured web documents, and build up a
prototype of IT product specification extraction system with simple JAPE grammar rule

to test the recall and precision rate.

The major challenge of information extraction methodology is how to enhance both
recall and precision values. From the extraction result, we see the JAPE grammar rule
has good performance for specific knowledge domain. Both of recall and precision

value are higher than 85%, even 100% for some documents.

JAPE could be treated as one.kind of pattetn match methodology, but provide more
flexibility than traditional way. JAPE grammar rule is very suitable to extract following

information entity:

1. The information entity has specific text structure, like monitor resolution
mode. Generally, a monitor provide several different resolution modes, like
“1024x768 @ 60Hz”, “800x600 @70Hz” ...and so on. It is difficult to extract
this kind of information by other extraction method. But the monitor

resolution mode has a common text structure as:
{number} {x} {number} ({@ | at}) {number} {Hz}

It is easy to identify the resolution mode accurately form web document by

JAPE grammar rule.

2. The information entity is composed by several tokens, like CPU cache. CPU

59

cache usually present as “Levell cache: 6MB”. It will be separated several
tokens as “Level”, “17, “cache”, “:”, “6”, “MB”. Any one is common token in
web document, no special keyword in this strings, it is not easy to extract the
full information entity accurately by other text mining methodology. But we

can descript the CPU cache as :

{Level} {nember} {cache} {:} {number} {MB}

Only the text string fully match this grammar rule will be extracted, it

substantially enhance the precision rate of information extraction.

On other hand, the JAPE grammar rule is developed to extract information entities
from certain web site or knowledge domain. It is difficult to widely apply the same
JAPE rule to different web sites;*The recall and precision rate maybe down as the

extension of web sites.

This approach not only provides an infermation extraction methodology, it also
links with ontology concept and presents the extraction result with ontology language.
It means that the extracted information entities not only a single item, it includes the
relation or property. These extraction results maybe become the resource of
post-process, such as semantic web agent or ontology-based knowledge management

system.

The major contributions of our research are show as following:

1. Build up an automatic information extraction process and prototype to enhance
the performance of IT product specification extraction. This process link NLP

technology and Ontology concept to provide high extraction performance.

60

2. Convert information entities that hide in current html document to be DAML
document that follow RDF (Resource Description Framework) specification. It

is important to push Semantic Web popularization.

61

6. Reference

[1] Michio Kaku, “Visions: How Science will Revolutionize the Twentyfirst Century”,
Oxford, New York, Oxford University Press, 1998.

[2] Harith Alani, Sanghee Kim, David E. Millard, Mark J. Weal, Wendy Hall, Paul H.
Lewis, Nigel R. Shadbolt, “Automatic Ontology-based knowledge Extraction and
Tailored Biography Generation from the Web”, IEEE 2003

[3] David Masterson, Nicholas Kushmerick, “Information extraction form MDT”,
ECML-2003 Workshop on Adaptive Text Extraction & Mining

[4] Khaled Khelif, Rose Dieng-Kuntz, “Ontology-base semantic annotation for biochip
domain”, KMOM Workshop ECAI2004, 2004

[5] Tim Berner’s Lee, “Information Management: A Proposal”, CERN, March
1989,May 1990

[6] “What is an Ontology?”, http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

[7] Adelaide, Australia. D. Molla and B. Hutchinson, “Natural Language Processing in
the Undergraduate Curriculum”, Proc.Fifth Australasian Computing Education
Conference (ACE2003),

[8] “An Introduction to NLP”
http://www.cs.bham.ac.uk/~px¢/nlpa/2002/AI-HO-IntroNLP.html

[9] Tomek Strzalkowski, Barbara Vauthey, “Information Retrieval using Robust
Natural Language Processing”’, ACL 1992:104-111

[10] Thompson CA,Califf ME ,Mooney. R J; ““Active Learning for Natural Language
Parsingand Information Extraction”, Proc. of the Sixteenth Intl. Machine Learning,
June 1999

[11] Claire Cardie, “Empirical Methods in Information Extraction”, Al Magazine, 18:4,

65-79 1997

[12] Marti Hearst, “What is Text Mining? “, October 17, 2003, SIMS,UC Berkeley

http://www.sims.berkeley.edu/~hearst/text-mining.html

[13] “Office of Naval Research (ONR) Science & Technology”

http://www.onr.navy.mil/sci_tech/special/technowatch/default.htm

[14] Kostoff RN, “Text Mining for Global Technology Watch”, available on [13]

[15] Kostoff RN, “Information Extraction From Scientific Literature with Text

Mining” , 2001. (available on [13])
[16] Raymond J. Mooney , Un Yong Nahm, “Text Mining with Information

Extraction”, In Proceed-. ings of the AAAI 2002 Spring Symposium on Mining
Answers from Texts and. Knowledge Bases, 2002.

[17] W. Fan, L. Wallace, S. Rich, Z. Zhang, “Tapping into the Power of Text Mining”,
62

Communications of ACM, forthcoming, 2005
[18] R. Cooley, B. Mobasher, J. Srivastava , “Web Mining: Information and Pattern
Discovery on the World Wide Web”, Proceedings of the 9th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI'97), November 1997.

[19] N. Guarino, Trento, “Proc. of the 1st International Conference on Formal Ontology

and Information System”, Italy, Jun. 1998.

[20] S. Luke and J. Heflin, “SHOE 1.01 Proposed Specification”, SHOE Project, Feb.
2002. http://www.cs.umd.edu/projects/plus/SHOE/spec1.01htm.

[21] I. Horrocks and F. van Harmelen, “Reference Description of the DAML+OIL
Ontology Markup Language”, draft report, 2001,
http://www.daml.org/2000/12/reference.html

[22] Harith Alani, Sanghee Kim, David E. Millard, Mark J. Weal, Wendy Hall, Paul H.
Lewis, Nigel R. Shadbolt, “Automatic Ontology-based knowledge Extraction and
Tailored Biography Generation from the Web”, IEEE 2003

[23] David Vallet, Miriam Fernandez, and Pablo Castells, “An_ Ontology-Based
Information Retrieval Model”, Universidad Autonoma de Madrid

[24] GATE Home page, http:// http://gatelac.uk/

[25] D. Maynard and H. Cunningham,“Multilingual Adaptations of a Reusable

Information Extraction Toel”, In Proceedings'of the Demo Sessions of EACL’03,

Budapest, Hungary, 2003
[26] R. Navigli, P. Velardi, A. Cucchiarelli;and F: Neri, “Quantitative and Qualitative
Evaluation of the OntoLearn Ontology Learning System”, ECAI Workshop on

Ontology Learning and Population, 2004

[27] Marta Sabou, Chris Wroe, Carole Goble, and Gilad Mishne, “Learning domain
ontology for web services description”, World Wide Web Conference (WWW
2005: 190-198), 2005

[28] Chun-Chun Tsai, “Spatial information extraction from Chinese News articles”, Jun,
2003, NTU

63

7. Appendix

7.1 JAPE Grammar Rule for personal computer

Phase: PC_Spec
Input: Lookup Token
Options: control = appelt debug = false

Macro: DDR RAM
(
(

{Token.string == DDR}

(
{Token.kind == number} |
({Token.string == II})

Rule: Prod model
(
(

{Token.string == Pavilion } |
{Token.string == Presario } |
(
{Token.string == Media }
{Token.string == Center }
) |
{Token.string == ThinkPad } |
{Token.string == ThinkCentre }
)
(
{Token.kind == word }
{Token.kind == number }
({Token.kind == word })?
)
)
:PC
-=>
:PC.Prod Model = {kind = PC, rule = Prod Model}

Rule: CPU Model
(
(

{Token.string == Pentium}
{Token.string == Celeron}
{Token.string == Athlon }
{Token.string == Athlon64} |
{Token.string == Duron }

)

({Token.type == other})?

(
{Token.kind == number} |
{Token.kind == word, Token.length == 1 }

)

) :CPU

-—>
:CPU.CPU Model = {kind = CPU, rule = CPU Model}

64

Rule: CPU_Speed
Priority:10
(
{Token.kind == number, Token.string <= 6}

(

{Token.string == "."}

{Token.kind == number}
)2
(
{Token.string == "G"} |
{Token.string == "GHz"}
)
)
:CPU
—-—>

:CPU.CPU_Speed = {kind = CPU, rule = CPU_Speed}

Rule: False CPU_Speed
Priority:20
(

(

{Token.kind == number, Token.string == 802}
{Token.string == "."}
{Token.kind == number, Token.string == 11}
({Token}) +
)
(
{Token.kind == number, Token.string <= 6}
(
{Token.string == "."} ALl ET e
{Token.kind == number} L i =
)? | =
¢ eglf HALS
{Token.string == "G"} | = L= b i
{Token.string == "GHz"} o =t =
) : N =
) :'. ‘IF:' " ‘:I
) L . ;;—V.J'jﬂ i

:CPU " _.
__> .'-" o - .
{} v

Rule: Memory Type
(

{Token.string == SDRAM } |
(
(DDR_RAM)
({Token.string == SDRAM}) ?
)
)
:Memory
-—>
:Memory.Memory Type = {kind = Memory, rule = Memory Type}

Rule: False Memory Size
Priority:20
(
(
(

{Token.kind == number}
{Token.string =~ "[xX]?"}
)
(
{Token.string == "/" }

)

65

{Token.kind == number, Token.string >= 256 }

{Token.string == MB }
)
(
{Token.kind == number, Token.string <= 6 }
(
{Token.string == "."}
{Token.kind == number}
)?
{Token.string == GB }
)
)
)
:Memory

-—>
{}

Rule: Memory Size
Priority:10
(

(

{Token.kind == number, Token.string >= 256 }
{Token.string == MB }
)
(
{Token.kind == number, Token.string <= 4 }
(
{Token.string == "."}
{Token.kind == number} ety
)? o L Ly
{Token.string == GB } _—
)) ITJ “4351' .
:Memory t =t =
o =l ¥ . E
:Memory.Memory Size = {kind = Memd;y, rules=Memory Siz&}

Rule: Max Memory Size
Priority:15

(
(
{Token.string =~ "[mM]aximum?"}
{Token.string =~ "[mM]emory?"}
)
(
(

{Token.kind == number, Token.string >= 256 }
{Token.string == MB }
)
(
{Token.kind == number, Token.string < 6 }
(
{Token.string == "."}
{Token.kind == number}
) ?
{Token.string == GB }
)
)
)
:Memory
—-—>
:Memory.Max Memory Size = {kind = Memory, rule = Max Memory Size}

Rule: HD Type
(
(

66

{Token.string == Enhanced }
{Token.string == IDE }
)
|
(
(
{Token.string =~ "[Ss]erial?" }
{Token.string == ATA }
)
I
({Token.string == SATA })
)
)
:HD
-=>
:HD.HD Type = {kind = Memory, rule = HD Type}

Rule: HD_ Size

(
{Token.kind == number, Token.string >= 20 }
{Token.string == GB }

)

:HD

-—>

:HD.HD Size = {kind = Memory, rule = HD Size}

67

7.2 JAPE Grammar Rule for Unix Server

Phase: Unix Server Spec
Input: Lookup Token
Options: control = appelt debug = false

Macro: DDR_RAM
(
(

{Token.string == DDR}

(
{Token.kind == number} |
({Token.string == II})

)?

Rule: Server model
(

(

{Token.string == p } |
{Token.string == P }
)
{Token.kind == number }
)
{Token.string == rp } |
{Token.string == rx }
)
{Token.kind == number }
(
{Token.string == "-" }
{Token.kind == number }
)?
)
:Server
—-—>
:Server.Server Model = {kind = Server, rule = Server_model}
Rule: CPU_Model
(
(
{Token.string == POWER} |
(
{Token.string == PA-} |
{Token.string == PA}
)|
(
{Token.string == Itanium}
({Token.type == other})?
)
)
({Token.string == "-"}) ?
{Token.kind == number}
)
:Server

-—>
:Server.CPU_Model = {kind = Server, rule = CPU_Model}

Rule: CPU_Speed

68

(

{Token.kind == number, Token.string <= 3}

(

{Token.string == "."}

{Token.kind == number}
) 2
(
{Token.string == "G"}
{Token.string == "GHz"}
)
) |
(
{Token.kind == number, Token.string >= 800}
(
{Token.string == "M"}
{Token.string == "MHz"}

)
)
)
:CPU
-—>
:CPU.CPU_Speed = {kind = CPU, rule = CPU_Speed}

Rule: CPU_Cachel
(
(
{Token.string =~ "[Ll]evel?" }
{Token.string =~ "[L1]?" }
) b LAREE .

{Token.kind == number}

(—
{Token.string == " ("} h] Fi
{Token.kind == word} ¥ P &
{Token.kind == number} = s ' B
{Token.string == ")"} - o } =

) ? == g " =]

{Token.string =~ "[Cclache?" } = . SEFETE(T =

(b , b o
{Token.string == " ("} e s
{Token.kind == word} 3 W
{Token.string == ")"}

{Token.kind == punctuation}

) 2

(

{Token.kind == punctuation} |
{Token.kind == word} |
{Token.kind == number}

) 2

{Token.kind == number}

(

{Token.string == "."}
{Token.kind == number}
) 2
(
{Token.string == "KB"} |
{Token.string == "MB"}
)
)
:CPU
-—>

:CPU.CPU_Cache = {kind = CPU, rule = CPU_Cachel}

Rule: CPU_Cache2
(

{Token.kind == number}

(
{Token.string == "."}

69

{Token.kind == number}
) ?

{Token.string == "KB"} |
{Token.string == "MB"}

)

(
{Token.string == "shared"} |
{Token.string == "combined"}

) 2

{Token.string =~ "[Ll]evel?" } |
{Token.string =~ "[L1]?" }
)

{Token.kind == number}
{Token.string =~ "[Cclache?" }
)
:CPU
—-—>
:CPU.CPU_Cache = {kind = CPU, rule = CPU_Cache2}

Rule: Memory type
(

{Token.string == SDRAM } |
(
(DDR_RAM)
({Token.string == SDRAM})?
)
(...”' R "ﬁ:v
{Token.kind == number } o
{Token.string == MHz } F -
. F HiTW\ e
:Memory -:W _:““ 4 B
—> 2 e ! ;
:Memory.Memory type = {kind = Memdyy, ruie"’Memoryitypéﬂ

18596

Rule: False Memory Size
Priority:20
(

{Token.string == "."}
{Token.kind == number }
(
{Token.string == MB } |
{Token.string == GB }
)
)
:Server
-—>

{}

Rule: Memory Sizel
Priority:10
(

{Token.kind == number }
(
{Token.string == GB } |
{Token.string == MB }
)
(
{Token.string == to }
{Token.kind == number }
(
{Token.string == GB } |
{Token.string == MB }

)

70

{Token.string == of }

{Token.kind == number }
{Token.string == MHz }
)2
)
:Server
—-——>
:Server.Memory Size = {kind = Memory, rule = Memory Sizel}

Rule: Max Memory Sizel
Priority:50
(
{Token.kind == number }
{Token.string == GB }
(
{Token.string =~ "[Mm]ax?" } |
{Token.string =~ "[Mm]aximum?" }
)
)
:Server
-=>
:Server.Max Memory Size = {kind = Memory, rule = Max Memory Size}

Rule: Max Memory Size2
Priority:45
(
(
{Token.string =~ "[Uulp?" }

{Token.string == to } b RRRE Ny

) & i ¥

{Token.kind == number } F -

(o | 0%
(Token.string == GB } | i . "Ll F Sl b
{Token.string == TB } o e B

) : Sy B

(=) -]
{Token.kind == number } l} 3 BB 5
{Token.string == MHz } E . o

\ .

) L | }

:Server

-—>

:Server.Max Memory Size = {kind = Memory, rule = Max Memory Size2}

Rule: 0OS_ver
(
(

{Token.string == AIX } |
{Token.string == HP-UX }
)
{Token.kind == number }
(
{Token.string == "."}
{Token.kind == number }
) 2
({Token.kind == word}) ?

(
{Token.string =~ "[Vv]ersions?" } |
{Token.string =~ "[Vv]?" }
)?
(
{Token.kind == number }
(
{Token.string == "."}
{Token.kind == number }
) 2
(
{Token.string == "/"}

71

{Token.kind == number }
{Token.string == "."}
{Token.kind == number }
)*
)
)
:Server

-—>
:Server.0S_Ver =

{kind = OS_Ver, rule = OS Ver}

Rule: HD Type
(
(
{Token.string == Enhanced }

{Token.string == IDE }
)|
(

(

{Token.string =~ "[Ss]erial?" }

{Token.string == ATA }
)
|
({Token.string == SATA })
)
(
(
{Token.string == Ultra }
{Token.kind == number }
)
{Token.string == SCSI }
)
)
:Server

-—>

:Server.HD Type = {kind = HD_Type

72

7.3 JAPE Grammar Rule for Monitor

Phase: Monitor Spec

Input: Lookup Token
Options: control = appelt debug = false
//SpaceToken

Macro: Monitor Brand
(
(

{Token.string == ThinkVision } |
{Token.string == Pavilion}
{Token.string == Presario }
{Token.string == Lenovo } |
{Token.string == HP }

Rule: Monitor model
(

(Monitor Brand)

({Token.kind == punctuation}) ?
({Token.kind == word }) ?
({Token.kind == word }) ?
{Token.kind == word }
{Token.kind == number }
(
{Token.kind == word, Token.length == 1 }
)?
)
:Monitor
—-—>
:Monitor.Monitor Model = {kind = Monitof, rule = Monitor Model}

Rule: Monitor type
(
(

{Token.string == TFT } |
{Token.string == LCD } |
{Token.string == CRT } |

{Token.string =~ "[Pplanel?"}
)
(

{Token.string == Monitor }
{Token.string == monitor }
)
)
:Monitor

-—>
:Monitor.Monitor type = {kind = Monitor, rule = Monitor type}

Rule: Monitor Sizel

(

{Token.kind == number, Token.string >= 14 , Token.string <= 20}
(
{Token.kind == punctuation}
{Token.kind == number}
) 2
(
{Token.kind == punctuation}

73

) 2

(
{Token.string == "\""} |

{Token.string == inch }
)
)
:Monitor
-—>
:Monitor.Monitor Size = {kind = Monitor, rule = Monitor Sizel}

Rule: Monitor Size2

(

{Token.string =~ "[Ss]ize?" }
{Token.kind == number, Token.string >= 14 }
(
{Token.kind == punctuation}
{Token.kind == number}
) 2
{Token.kind == punctuation}
)
:Monitor
—-—>
:Monitor.Monitor Size = {kind = Monitor, rule = Monitor Size2}

Rule: False Monitor Sizel
Priority:50
(

{Token.kind == number, Token.string >f,l4',"Tékeg.string <= 20}
(S Ls
{Token.kind == punctuation} " .
{Token.kind == number} S I Fi'
) 2 : ‘q.£.| T
(. ‘ _j'”]
{Token.kind == punctuation} - o } .
)y 2 == | .]
(b “..T“-,ijh, |
{Token.string == "\""} | o L
{Token.string == inch } !
) W
{Token.string =~ "[Xx]?" }
)
:Monitor
-—>

{}

Rule: Monitor Price

(

{Token.string =~ "[Pplrice?" }
{Token.string == "$" }
{Token.kind == number, Token.string >= 100}

(

{Token.string == "."}

{Token.kind == number}
) 2
)
:Monitor
-—>
:Monitor.Monitor Price = {kind = Monitor, rule = Monitor Price}

Rule: Pixel Pitch
Priority:10
(
{Token.string =~ "[Dd]ot?" }
{Token.string =~ "[Pp]litch?" }
({Token.string == 0 }) ?
{Token.string == "." }
{Token.kind == number, Token.string <= 300}

74

{Token.string == mm }
)
:Monitor
-—>
:Monitor.Pixel Pitch = {kind = Monitor, rule = Pixel Pitch}

Rule: Not Pixel Pitch
Priority:20
(

{Token.kind == number, Token.string > 0 }
{Token.string == "." }
{Token.kind == number, Token.string <= 300}
{Token.string == mm }

)

:Monitor

—-——>

{}

Rule: Resolution Mode

(

{Token.kind == number, Token.string >= 300 }
{Token.string == "x" }
{Token.kind == number, Token.string >= 300 }
(
(
{Token.string == "@" } |
{Token.string == "at" }
) 2
(b RRRE Ny
{Token.kind == number} Bl i
{Token.kind == punctuation} Ay -
)* o | '
{Token.kind == number} "Li ol Wl N &
{Token.string == "Hz" } = =t -
E =~ &l 3
) o s]
:Monitor - w % 1E06G ,
-—> ”_ ""“” —)
:Monitor.Resolution Mode = {kind = Ménitor, rule ='Re§olution7Mode}

Rule: Max Resolution Mode

(
{Token.string =~ "[Mm]aximum?" }
{Token.string =~ "[Rr]esolution?" }

{Token.kind == number, Token.string >= 300 }
{Token.string == "x" }
{Token.kind == number, Token.string >= 300 }
({Token.string == "x" }) ?
(
(
{Token.string == "@" } |
{Token.string == "at" }
)
(
{Token.kind == number}
{Token.kind == punctuation}
)*
{Token.kind == number}
{Token.string == "Hz" }
) ?
)
:Monitor
-—=>
:Monitor.Max Resolution_Mode = {kind = Monitor, rule = Max Resolution_Mode}

Rule: Recommended Resolution Mode

(

75

{Token.string =~ "[Rr]ecommended?" }
{Token.string =~ "[Rr]lesolution?" }

{Token.kind == number, Token.string >= 300 }
{Token.string == "x" }
{Token.kind == number, Token.string >= 300 }
(
(
{Token.string == "@" } |
{Token.string == "at" }
)
(
{Token.kind == number}
{Token.kind == punctuation}
)*
{Token.kind == number}
{Token.string == "Hz" }
)2
)
:Monitor
—-—>
:Monitor.Recommended Resolution Mode = {kind = Monitor, rule = Recommended Resolution Mode}

Rule: Refresh Rate
(
(

{Token.string == "Maximum" } |
{Token.string == "Minimum" } |
{Token.string == "Slowest" }
) 2
(
{Token.string == "Vertical" } | '
{Token.string == "Horizontal" }* ‘$w
) 1= A
(1
(: ‘ J
{Token.string == "Refresh" }¥ P
{Token.string == "Rate" } ¥ : n;wfgi?Tiw
) iy
(
{Token.string == "Frequency" }
{Token.string == "Range" }
)
)
({Token.string == ">" }) ?
{Token.kind == number}
(
(
{Token.string == "-" } |
{Token.string == "to" }
)
{Token.kind == number}
) 2
(
{Token.string == "Hz" } |
{Token.string == "kHz" } |
{Token.string == "KHz" }
)
)
:Monitor
-—>
:Monitor.Refresh Rate = {kind = Monitor, rule = Refresh Rate}

76

7.4 JAPE Grammar Rule for Printer

Phase: Printer Spec

Input: Lookup Token
Options: control = appelt debug = false
//SpaceToken

Rule: Printer model
(
(

{Token.string == "IBM" } |
{Token.string == "HP" }

)

({Token})?

({Token})?

(
{Token.string =~ "[Ii]lnfoprint?" } |

{Token.string =~ "[Ii]lnkjet?" } |
{Token.string =~ "[Dd]eskjet?" } |

{Token.string == "LaserJet" }
)
(
{Token.string =~ "[Cc]olor?" }
)2
{Token.kind == number }
(
{Token.kind == word, Token.length <& 2}
)2
)
:Printer
> J
:Printer.Printer Model = {kind = Ménitor, sule ='Brinte¥ Model}

Rule: Print Quality
(

{Token.kind == number }
(
{Token.string =~ "[Xx]?" }
{Token.kind == number }
) 2
(
(
({Token}) 2

({Token}) 2
{Token.string =~ "[Dd]pi?" }
)
(
({Token})?
{Token.string =~ "[Qqgluality?" }

)
)
:Printer
—-—>
:Printer.Print Quality = {kind = Memory, rule = Print Quality}

Rule: Print Speedl
(
(
{Token.string =~ "[Cc]olor?" } |
{Token.string =~ "[Bb]lack?" }
)2

77

{Token.string =~ "[Pplrint?" }
{Token.string =~ "[Ss]peed?" }
({Token})?

({Token}
({Token}
({Token}
({Token}
({Token}
({Token}
({Token})?

{Token.string =~ "[Uulp?" }
{Token.string =~ "[Tt]lo?" }

)?
)?
)?
)?
)?
)?

{Token.kind == number }
(
{Token.string == "ppm" } |
{Token.string == "PPM" }
)
)
:Printer
—-——>

:Printer.Print Speed = {kind = Memory, rule = Print Speedl}

Rule: Print Speed2
(
{Token.string =~ "[Pplrint?" }
(
{Token.string =~ "[Uulp?" }
{Token.string =~ "[Tt]o?" }
) ?

{Token.kind == number } ‘]

{Token.string == pages}

{Token.string == per} .

{Token.string == minute} Jut ?Wri“

e -

)
:Printer g
—> i | "_‘"]

:Printer.Print Speed = {kind = Memé;y, ;u;é F”Bﬁint_SpeedZ}
Rule: Print Speed3
(

{Token.string =~ "[Mm]aximum?" }
{Token.string =~ "[Ss]peed?" }

({Token})?
({Token})?
({Token})?
({Token})?
({Token})?
({Token})?
({Token})?
{Token.kind == number }
(
{Token.string == "ppm" } |
{Token.string == "PPM" }
)
)
:Printer
-—>

:Printer.Print Speed = {kind = Memory, rule = Print Speed3}

Rule: Memory Size

(
{Token.string =~ "[Mm]emory?" }
({Token}) ?
({Token})
({Token})
({Token})

(RS IRIVINAV)

78

({Token}) ?
({Token}) ?

({Token.string =~ "[Bblase?" })
{Token.kind == number }

(
({Token}) ?

?

{Token.kind == number }
)2
{Token.string == "MB" }
)
:Printer
-—>
:Printer.Memory Size = {kind = Memory, rule = Memory Size}

79

