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ABSTRACT

Many performance evaluation issues for cellular telecommunications are related
to excess life modeling. The period when a mobile station (MS) resides in a cell (the
radio coverage of a base station)is called the MS cell residence time. The period
between when a call arrives at-the/ MS -and ‘when the MS moves out of the cell is
called the excess life of the MS-cell residence time for that MS. In performance eval-
uation of a cellular telecommunications network it is important to derive the excess
life distribution from the MS cell residence times. This distribution determines if a
connected call will be handed over to a new cell, and therefore significantly affects
the handover force-termination probability of the network. In simulation of cellular
telecommunications networks, we need to generate random numbers for the excess
life of non-exponential distributions. However, generating these random numbers
for non-exponential distributions is not a trivial task, which has not been addressed
in the literature. We show how to generate the random numbers from the excess
life distribution, and develop the excess-life random number generation procedures
for MS cell residence times with gamma, Pareto, lognormal and Weibull distribu-
tions. We use two examples to show how our excess life modeling techniques can be
effectively utilized in performance evaluation of cellular networks.

In the first example, we study the periodic location area update (PLAU) scheme,

which is utilized in cellular telecommunications networks to detect the presence of
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an MS. In 3GPP Technical Specifications (TS) 23.012 and 24.008, a fixed PLAU
scheme was proposed for Universal Mobile Telecommunications System (UMTS),
where the interval between two PLAUs is of fixed length. We observe that MS pres-
ence can also be detected through call activities and normal location area updates
(NLAUSs). Therefore we propose a dynamic PLAU scheme where the PLAU interval
is dynamically adjusted based on the call traffic and NLAU rate. An analytic model
is developed to validate against the simulation model with the excess life model-
ing technique. Then we investigate the performance of dynamic and fixed PLAU
schemes. Our study provides guidelines to select parameters for the dynamic PLAU
scheme.

In the second example, we study the new call blocking, handover force-termination,
and call incompletion probabilities for a small-scale cellular network. We show that
the handover traffic to a cell depends on the workloads of the neighboring cells.
Based on this observation, we dérive the exact. equation for the handover force-
termination probability when the MS eell residence times are exponentially dis-
tributed. Then we propose an approximate model with general MS cell residence
time distributions. We use the analytic'model to validate against the simulation
model with the excess life modeling technique. Then the analytic results are com-
pared with a previously proposed model, where the simulation results are used as
the baseline. Our comparison study indicates that the new model can capture the
handover behavior much better than the old one for small-scale cellular telecommu-

nications networks.

Key words: cellular telecommunications network, mobility management, peri-
odic location area update (PLAU), Universal Mobile Telecommunications System
(UMTS), channel assignment, handover, call holding time, MS cell residence time,

excess life
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Chapter 1

Introduction

Emerging cellular telecommunications network technologies have attracted consid-
erable attention in academic research as well as commercial deployment. A cellular
telecommunications network supports telephony services when users are in move-
ment [30]. A typical cellular phone service area is populated with several base sta-
tions (BSs). The radio coverage of a BS is referred to as a cell. Mobile users within a
cell can connect to the corresponding BS via .mobilé stations (MSs). Mobility man-
agement plays an important role in“cellular telecommunications networks, which
consists of two parts: location management and handover management. Location
management includes two tasks: location update and paging. Handover manage-
ment is the process by which a communicating MS keeps its connection alive when

it moves from one BS to another. We describe these two parts as follows.

Location management: In order to track the MSs, the cells in a cellular network
service area are grouped into several location areas (LAs). To deliver services
to an MS, the cells in the LA covering the MS will page the MS to establish
the radio link. To identify the LA of an MS, location management is required.
In location management, the MS informs the network of its location through

the LA update procedure. The update procedure is executed in two situations.

Normal location area update (NLAU) is performed when the location of

an MS has been changed. Location change of an MS is detected as follows.



The cells continuously broadcast their cell identities. The MS periodically
listens to the broadcast cell identity, and compares it with the cell identity
stored in the MS’s buffer. If the comparison indicates that the LA has

been changed, then the MS sends the LA update message to the network.

Periodic location area update (PLAU) allows an MS to periodically re-
port its “presence” to the network even if the MS does not move. A
periodic LA update timer (PLAU timer) is maintained in the MS. Corre-
sponding to the PLAU timer, an implicit detach (ID) timer is maintained
in the cellular network. When the PLAU timer expires, the MS performs
PLAU.

Note that NLAU has been intensively investigated in the literature (see [5,
30] and the references therein). Most studies on PLAU focused on mobility

database failure restoration [12, 26].

Handover management: When a call for a'mobile user occurs, one radio channel
of the BS is used for connecting the MS and the BS. If all radio channels are
in use when a new call is attempted, the call will be blocked and cleared from
the system. If the call is accepted, a radio channel will be occupied until the
call completes, or until the MS moves out of the cell. When a communicating
MS moves from one cell to another, the occupied channel in the old cell is
released, and an idle channel is acquired in the new cell. This process is
called handover. During this handover procedure, if no channel is available
in the new cell, the call is forced to terminate before its completion. When
the call is connected, the call may complete at the first cell or complete after
several successful handovers. On the other hand, the call may also be forced

to terminate due to a failed handover.

The above issues are related to excess life modeling. For example, when we
evaluate the performence of the handover management, we need to consider how long

a communicating MS would reside in a cell; that is, we need to consider the MS cell



residence times, which have significant impact on the performance of the handover
management. Usually, we assume that the MS cell residence times are independent
and identically distributed (i.i.d.) random variables with the same distribution.
However, the period between when a call arrives at an MS and when the MS moves
out of the “first” cell (where the call arrives at the MS) is actually the excess life of
the MS cell residence time. If we assume that the MS cell residence times have an
exponential distribution, the excess life distribution of the MS cell residence time
is exactly the same as the MS cell residence time distribution. However, if the
MS cell residence times follow a non-exponential distribution, then the excess life
distribution of the MS cell residence time is not the same as the original MS cell
residence time distribution, and generating random numbers for these excess life
distributions is not a trivial work in cellular network simulations. This issue has not
been addressed in the literature. Therefore, we show how to generate the random
numbers from the excess life distribution, and develop the excess-life random number
generation procedures for MS eell residence times with gamma, Pareto, lognormal
and Weibull distributions. We use two examples to show how our excess life modeling
techniques can be effectively utilized in performance evaluation of cellular networks.

In the first example, we investigate the PLAU scheme, which is utilized in cellular
networks to detect the presence of an MS. Consider the circuit-switched domain of
UMTS [2, 3]. In 3GPP TS 23.012 and 24.008, a fixed PLAU scheme was proposed for
UMTS, where the interval between two PLAUs is of fixed length. We observe that
MS presence can also be detected through call activities and NLAUs. Therefore, we
propose a dynamic PLAU scheme where the PLAU interval is dynamically adjusted
based on the call traffic and NLAU rate. An analytic model is developed in Chapter 3
to validate against the simulation model with the excess life modeling technique.
Then we investigate the performance of dynamic and fixed PLAU schemes. Our
study provides guidelines to select parameters for the dynamic PLAU scheme.

In the second example, we study the new call blocking, handover force-termination,
and call incompletion probabilities for a small-scale cellular network. We show that

the handover traffic to a cell depends on the workloads of the neighboring cells.
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Figure 1.1: The Timing Diagram for MS Movement and Call Arrival

Based on this observation, we derive the exact equation for the handover force-
termination probability when the MS cell residence times are exponentially dis-
tributed. Then we propose an approximate model with general MS cell residence
time distributions. We use the analytic model to validate against the simulation
model with the excess life modeling techmnique.: Then the analytic results are com-
pared with a previously proposed model [34], wheré the simulation results are used
as the baseline. Our comparison study indicates that the new model can capture the
handover behavior much better than the old one for small-scale cellular networks.

In the remainder of this chapter, we use the timing diagram in Fig. 1.1 (see
Section 1.1 for more details) to describe the notation used in this and latter chapters.
Then we briefly overview the contents in this dissertation. Finally, we present the
organization of this dissertation.

The notation includes

n: the MS mobility rate (i.e., 1/n is the mean MS cell residence time)

A: the call arrival rate (i.e., 1/ is the mean inter call arrival time)

Pne: the call incompletion probability

t.: the call holding time (if the call successfully completes)



e t; (i > 1): the time when the MS moves to cell i after a call is connected to it
(note that Fig. 1.1 is only an example and i can be any possible number other

than 4)

e t,1: the time interval that the MS resides in cell 1 (i.e., tm,1 1s the MS cell

residence time in cell 1; in Fig. 1.1, t,, 1 = t2 — tg)

® t,,; (i >1): the time interval that the MS resides in cell ¢ (i.e., ¢ ; is the MS
cell residence time in cell ¢; in Fig. 1.1, t,,; = t;41 — t;; note that Fig. 1.1 is

only an example, and ¢ can be any possible number other than 4)

e 7.: the remaining call holding time (i.e., 7. is the excess life of ¢.; in Fig. 1.1,

7. can be t5 — ty or t5 — t3 or t5 — t4)

e 7,,: the period between when a call arrives at an MS and when the MS moves
out of the first cell (i.e., 7, is'the excesg life of the MS cell residence time; in

Fig. 1.1, 7, = ta — t1 is the excess life of t,, 1)

1.1 Random Number Generation for Excess Life

of MS Cell Residence Time

Figure 1.1 illustrates the relationship between movement of an MS and a call session
to that MS. The MS moves to cell 1 at time t;, and then moves to cell 7 at time t;
for 2 > 1. A call for the MS arrives at time ¢;. If the call is not blocked or forced
to terminate, it completes at time t¢5 (note that this is only an example; the call
may successfully complete at any time point according to the call holding time t.).
At time ¢4, if cell 1 does not have enough radio resources to accommodate this call
(which can be a plain voice call or a multimedia call), the call is blocked. When the
MS moves to cell i, the call is handed over from cell i — 1 to cell i (for ¢ > 1). If
no radio resources are available in cell ¢ (for ¢ > 1), the call is forced to terminate.
Performance of a cellular network is typically evaluated by the new call blocking

probability (a new call attempt is blocked), the handover force-termination probability
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(a handover call is forced to terminate), and the call incompletion probability (a call
is either blocked or forced to terminate).

Many studies [7, 8, 25, 15, 45] have been devoted to evaluate these probabilities
for various radio resource allocation strategies exercised in cellular telecommunica-
tions networks. Most of them utilized analytic approaches that provide useful in-
sights to cellular network modeling. However, analytic analysis has its limitations.
For example, in Figure 1.1, if the call holding time t. = t5 — t1 is non-exponential
(which is probably true for multimedia calls) [6], then it is difficult to derive the
remaining call holding time 7. = t5 — ¢; after the MS moves into cell 7 (for 7 > 1).
Furthermore, most analytic studies made an approximate assumption that the han-
dover traffic to a cell is a fixed Poisson Process. This assumption is reasonable for
large-scale cellular networks, but may result in significant inaccuracy for small-scale
cellular networks [49, 20]. In reality, the handover traffic to a cell depends on the
workloads of the neighboring cells(i.e., the numbers of busy channels in neighboring
cells are not independent). Also, if the resource allocation policies under consider-
ation are very complicate (which is probably true:for wireless data sessions with
QoS), it is impossible to find analytic:solutions.

An alternative modeling technique to analytic analysis is discrete event sim-
ulation. There are two approaches to cellular network simulation: the MS-based
simulation and the call-based simulation. In the MS-based simulation, the number
of MSs are defined in the simulation, and the MS objects are actually simulated for
their movements (even if there are no calls destinated at these MSs). Examples of
MS-based simulation can be found in [29]. In the call-based simulation [32, 24], the
call arrival rate to the network is considered as the input that drives the simulation
progress. In this approach, after a call arrival event is processed, the corresponding
MS movement and the call termination events are generated following the timing
diagram illustrated in Figure 1.1 (details of the call-based simulation is described in
Appendix A). When the number of MSs is small in a cellular network, the MS-based
simulation will produce more accurate results than the call-based simulation. When

the number of MSs is large, both approaches produce results with similar accuracies.



On the other hand, the execution time for the MS-based simulation is much longer
than that for the call-based simulation (e.g., 100 times longer [29]). Since large MS
population is expected in most third generation systems such as UMTS (Universal
Mobile Telecommunications System) [1, 30], the call-based simulation will become
more important in advanced cellular telecommunications studies.

In cellular network modeling, several random variables are defined. Two of them
are elaborated here; others are described in Appendix A. In Figure 1.1, ¢,,, 1 = ta—1g
is the time interval that the MS resides in cell 1, and t,,; = t;41 — t; (for i > 1)
are the time intervals that the MS resides in cell i. These MS cell residence times
are typically modeled by a random variable with a specific distribution such as
gamma and mixed Erlang [32, 24, 10]. The interval 7,, = t2 — ¢; is the period
between when a call arrives and when the MS moves out of the first cell, which
is referred to as the excess life of the MS cell residence time. In the call-based
simulation, it is required to generate the random numbers for the excess life 7,
(see Appendix A). Clearly, the 7, distribution must be derived from the MS cell
residence time distribution. The call arrivals are typically assumed to be random
observers of the MS cell residence times.=I-the MS cell residence times have the
exponential distribution, then 7,, also has the same exponential distribution [42].
On the other hand, if the MS cell residence times have an arbitrary distribution,
generation of the 7,, random numbers is a non-trivial task. We describe how to
generate the 7,, random numbers from the MS cell residence time distribution. For
various MS cell residence time distributions, generation of 7,, random numbers need
separate treatments. We show how to generate the excess-life random numbers
for MS cell residence time random variables with gamma, Pareto, lognormal and
Weibull distributions. Our study indicates that the generated random numbers

closely match the true excess life distributions.



1.2 Dynamic Periodic Location Area Update

A major purpose of PLAU is to allow the network to detect if an MS is still at-
tached to the network in the normal network operation situation (i.e., the mobility
databases do not fail). To our knowledge, this aspect has not been investigated
in the literature. An important issue for PLAU is the selection of the value for
the PLAU/ID timers. In 3GPP TS 23.012 [2] and TS 24.008 [3], the value of the
PLAU/ID timers is set/changed by the network and broadcasted to every MS in
the LA through the L3-RRC SYSTEM INFORMATION BLOCK 1 message on the
Broadcast Control Channel (BCCH). In this approach, the PLAU timer value is the

same for all MSs in an LA. There are two issues regarding this fired PLAU scheme:

e How is the value of the PLAU/ID timers determined when an MS first enters
an LA?

e Is it appropriate to have afixed,value for PLAU/ID timers during the MS’s

stay in an LA?

The above two issues are addréssed. Thewvalue of the PLAU/ID timers should be
selected based on the call and movement-activities of the MS. Therefore we propose
a dynamic PLAU scheme and investigate its performance. Then we compare it with
the fixed PLAU scheme. Our study provides guidelines to select parameters for

dynamic PLAU scheme.

1.3 Modeling Channel Assignment of Small-Scale
Cellular Networks

For billing and network planning purposes, the handover behavior and the probabil-
ity of call completion need to be analyzed. Several analytic studies have contributed
to cellular network performance evaluation [34, 10, 7, 48, 19, 13, 36, 39]. Most stud-

ies assume that the handover traffic to a cell is a fixed-rate Poisson process. This
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Figure 1.3: A Three-Cell Cellular System

assumption is reasonable for large-scale cellular networks, or when the networks ex-
perience light load traffic [9]. In reality, the handover traffic to a cell depends on
the workloads of the neighboring cells. This fact has significant impact on modeling
of small-scale cellular networks. Fig. 1.2 plots the call incompletion probability p,.
against the MS mobility rate  and the call arrival rate A where the number of
radio channels in a cell is 9. The “o” curve is generated from a previous analytic
model that assumes fixed-rate handover traffic [34]. The “0” curve is generated

from simulation of a 64-cell mesh configuration, and the “x” curve is generated from

simulation of a 3-cell configuration (illustrated in Fig. 1.3). Fig. 1.2 indicates that



the fixed-rate assumption is acceptable when the number of cells is reasonably large,
but is inaccurate for small-scale cellular networks. We derive the exact equation for
the handover force-termination probability when the MS cell residence times are
exponentially distributed. Then we propose an approximate model with general MS
cell residence times. We use the analytic model to validate against the simulation
model with the excess life modeling technique. Then the analytic results are com-
pared with the previously proposed model [34], where the simulation results are used
as the baseline. Our comparison study indicates that the new model can capture

the handover behavior much better than the old one for small-scale cellular networks.

This dissertation is organized as follows. Chapter 2 presents excess-life random
number generation in cellular network simulation. Chapter 3 describes the first
example: fixed and dynamic PLAU schemes in cellular networks. An analytic model
is proposed to validate against the simulation model with the excess life modeling
technique. Then the two PLAU schemes are .compared. In Chapter 4, we describe
the second example: channel assignment modeling-of small-scale cellular networks.

Chapter 5 concludes this dissertation and-describes the future work.
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Chapter 2

Random Number Generation for
Excess life of MS Cell Residence

Time

A cellular telecommunications network is populated:with several base stations (BSs).
Mobile users receive cellular telecommunications services by using mobile stations
(MSs; or mobile terminals) confiecting to the BSs. When an MS moves from the
radio coverage (called cell) of a BS to the radio coverage of another BS, the MS is
disconnected from the old BS and re-connected to the new BS. This process is called

handover. The notation used in this chapter is listed below.

e «: the shape parameter of a gamma distribution

[: the scale parameter of a gamma distribution

a: the shape parameter of a Pareto distribution

b: the scale parameter of a Pareto distribution

(0,0): the parameters of a lognormal distribution

v: the shape parameter of a Weibull distribution

¢: the scale parameter of a Weibull distribution

11



t.: the call holding time (if the call successfully completes)

t; (¢ > 1): the time when the MS moves to cell 7 after a call is connected to it
(note that Fig. 2.1 is only an example and 7 can be any possible number other

than 4)

tm,1: the time interval that the MS resides in cell 1 (i.e., t,,1 is the MS cell

residence time in cell 1; in Fig. 2.1, ¢, 1 = t2 — to)

tmi (¢ > 1): the time interval that the MS resides in cell i (i.e., t,,, is the MS
cell residence time in cell ¢; in Fig. 1.1, t,,; = t;11 — t;; note that Fig. 1.1 is

only an example, and i can be any possible number other than 4)

tm: an arbitrary MS cell residence time with the density function f,,(t.), the

distribution function F,,(¢,,) and the mean u

fm(tm): the density functien of an-MS cell'residence time ¢,

F,.(tm): the distribution-function of ‘an MS cell residence time ¢,,

w: the mean of the MS cell residence time t;, (i.e., w= [ tmfm(tm)dtm)

7.: the remaining call holding time (i.e., 7. is the excess life of ¢.; in Fig. 2.1,

T, can be t5 — ty or t5 — t3 or t5 — t4)

Tm: the period between when a call arrives at an MS and when the MS moves
out of the first cell (i.e., 7, is the excess life of the MS cell residence time
tm with the density function function 7,,(7,,) and the distribution function

R,.(Tm); in Fig. 2.1, 7, = t3 — t; is the excess life of ¢,, 1)
Pm(Tm): the density function of the excess life of an MS cell residence time t,,

R, (7m): the distribution function of the excess life of an MS cell residence

time t,,

_ tfm(t)

T: a random variable with the density function fr(t), where fr(t) =
v

12
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Figure 2.1: The Timing Diagram for MS Movement and Call Arrival (Redraw of
Fig. 1.1)

e U: a uniform random variable over the interval (0,1)
o fwmr(u,t): the joint density function 6f,.U and T

W. W=UxT

fw(w): the density function of W

Figure 2.1 illustrates the relationship between movement of an MS and a call session
to that MS. The MS moves to cell 1 at time ¢y, and then moves to cell ¢ at time
t; for 2 > 1. A call for the MS arrives at time ¢;. If the call is not blocked or
forced to terminate, it completes at time t5. At time t, if cell 1 does not have
enough radio resources to accommodate this call (which can be a plain voice call
or a multimedia call), the call is blocked. When the MS moves to cell i, the call
is handed over from cell ¢ — 1 to cell :. If no radio resources are available in cell
1, the call is forced to terminate. Performance of a cellular telecommunications
network is typically evaluated by the new call blocking probability (a new call attempt
is blocked), handover force-termination probability (a handover call is forced to
terminate), and the call incompletion probability (a call is either blocked or forced

to terminate).
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Many studies [7, 8, 25, 15, 45] have been devoted to evaluate these probabilities
for various radio resource allocation strategies exercised in cellular telecommunica-
tions networks. Most of them utilized analytic approaches that provide useful in-
sights to cellular network modeling. However, analytic analysis has its limitations.
For example, in Figure 2.1, if the call holding time t. = t5 — t1 is non-exponential
(which is probably true for multimedia calls) [6], then it is difficult to derive the
remaining call holding time 7. = t5 — ¢; after the MS moves into cell 7 (for 7 > 1).
Furthermore, most analytic studies made an approximate assumption that the han-
dover traffic to a cell is a fixed Poisson Process. This assumption is reasonable for
large-scale cellular telecommunications networks, but may result in significant in-
accuracy for small-scale networks [49, 20]. Also, if the resource allocation policies
under consideration are very complicate (which is probably true for wireless data
sessions with QoS), it is impossible to find analytic solutions.

An alternative modeling techmique to analytic analysis is discrete event simula-
tion. There are two approaches to cellular telecommunications network simulation:
the MS-based simulation and the call-baséd simulation. In the MS-based simulation,
the number of MSs are defined in: the ‘'simulation,"and the MS objects are actually
simulated for their movements (even' if there are no calls destinated at these MSs).
Examples of MS-based simulation can be found in [29]. In the call-based simula-
tion [32, 24], the call arrival rate to the network is considered as the input that drives
the simulation progress. In this approach, after a call arrival event is processed, the
corresponding MS movement and the call termination events are generated following
the timing diagram illustrated in Figure 2.1 (details of the call-based simulation is
described in Appendix A). When the number of MSs is small in a cellular telecom-
munications network, the MS-based simulation will produce more accurate results
than the call-based simulation. When the number of MSs is large, both approaches
produce results with similar accuracies. On the other hand, the execution time for
the MS-based simulation is much longer than that for the call-based simulation (e.g.,
100 times longer [29]). Since large MS population is expected in most third genera-

tion systems such as UMTS (Universal Mobile Telecommunications System) [1, 30],
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the call-based simulation will become more important in advanced cellular telecom-
munications studies.

In cellular telecommunications network modeling, several random variables are
defined. Two of them are elaborated here; others are described in Appendix A. In
Figure 2.1, t,,1 = ta — ¢y is the time interval that the MS resides in cell 1, and
tmi = tiy1 —t; (for i > 1) are the time intervals that the MS resides in cell ¢. These
MS' cell residence times are typically modeled by a random variable with a specific
distribution such as gamma and mixed Erlang [32, 24, 10]. The interval 7,,, = to —t;
is the period between when a call arrives and when the MS moves out of the first
cell, which is referred to as the excess life of the MS cell residence time. In the call-
based simulation, it is required to generate the random numbers for the excess life
Tm (see Appendix A). Clearly, the 7, distribution must be derived from the MS cell
residence time distribution. The call arrivals are typically assumed to be random
observers of the MS cell residence times. If the MS cell residence times have the
exponential distribution, then -7, also has the.same exponential distribution [42].
On the other hand, if the MS-cell residénce times:have an arbitrary distribution,
generation of the 7,, random numbers is“a“non-trivial task. In this chapter, we
describe how to generate the 7, randomaumbers from the MS cell residence time
distribution. For various MS cell residence time distributions, generation of 7,
random numbers need separate treatments. We show how to generate the excess-life
random numbers for MS cell residence time random variables with gamma, Pareto,
lognormal and Weibull distributions. Our study indicates that the generated random

numbers closely match the true excess-life distributions.

2.1 Derivation of Excess Life Distribution

In Figure 2.1, the MS cell residence times ¢,,; (¢ > 1) of an MS are assumed to
be i.i.d. random variables. Therefore, we use t,, to represent an arbitrary MS cell
residence time with the density function f,,(t,.), the distribution function F,,(¢,,)

and the mean p. Let 7,, be the excess life of ¢,, with the density function 7,,(7,,)
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and the distribution function R,,(7,,). Since the call arrivals form a Poisson process,
a call arrival is a random observer of the MS cell residence times. From the excess
life theorem [42], we have

1 — Fou(Tim)
— (2.1)

It is difficult to generate the random numbers for the excess life of an MS cell

Tm(Tm) =

residence time random variable using Equation (2.1) because this equation involves
the distribution function F,,(7,,). To efficiently generate the random numbers 7,,,
we shall utilize a variation of f,,(7.,). We will prove that r,,(7,,) can be derived

from the following function

tfm ()
W

/tzo ltﬁ;( )] g — (%) /t:tfm(t)dt _ % 1

it is obvious that fr(t) can be a.density.function: Let 7" be a random variable with

fr(t) = (2.2)

Since

the density function fr(¢). We-have the following Theorem:

Theorem 2.1. Let 7,, be the excesslife 6f ;7 Let- random variable U be uniformly

distributed over the interval‘(0;1). Let-77 be random variable with the density
tfm(t)
o

function fr(t) = ,and U and T are independent. Then the distribution

of 7, 1s the same as the distribution of U x T

Proof: The joint density function of U and 7T is

t t
fm—(), forO<u<landt>0
fom(u,t) = H
0 otherwise
Let W =U x T. Then
PrW <w] = [U><T<w]

:/ / Fwmy (u, t)dtdu

— /M/t i) (2.3)
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From (2.3), the density function fy(w) of W can be derived as

fw(w) = —dPr[I;I;g )

= [ ) [0 e (5
= (4) [, () o 24

Let y = Y. Then (2.4) can be rewritten as
u
1 oo
fww) = = [ fuly)dy

B Jy=w

1— F,(w)
0
= Tm(w)

which means that W = U x T has the same distribution as 7,,.
Q.E.D.

Theorem 2.1 allows us to genetate a 7,,-tandom number using f,,(-) as follows: We
first generate a random number‘u forthe uniform random variable U in (0,1). Then
we generate a random number ¢ for theitandom variable 7" with the density function
fr(t) (see (2.2)). Then we multiply ¢ by u to obtain the random number for the
excess life 7,,. Derivation of fr(t) is not a trivial task, and some fr(t) functions
cannot not be derived from the corresponding f,,(t) functions. In the next section,

we show how to derive fr(t) for some popular distributions.

2.2 Excess-Life Random Number Generation: Some
Examples

This section derives the 7' distributions for MS cell residence times with distributions
such as gamma, Pareto, lognormal and Weibull. Then we show how to generate the

excess-life random numbers using Theorem 2.1 and the 7' distributions.
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2.2.1 The Gamma Distribution

Suppose that ¢,, has a gamma distribution with the shape parameter o and the scale

parameter 3. Then the mean value is u = af and the density function f,,(¢.,) is

t

e_metf;L_l
AT ()

We have the following theorem:

Theorem 2.2. If t,, has a gamma distribution with the parameters («,3), then T

has a gamma distribution with the parameters (o + 1, 3).

Proof: From (2.2) and (2.5), we have

fr(t) = % for t>0
B Be e T(a+1)
- Lﬁaﬂrml) S 29)

Since I'(a 4+ 1) = al'(a) and 4 = af; (2.6) is re-written as
B e 5o

u IBa+1I‘(a =+ 1)
From (2.7), it is clear that/T.has the gamma distribution with parameters

(a+1,0).

fr(®) for t>0 (2.7)

Q.E.D.

Generation of an excess-life random number for gamma residence time with the
parameters (a, 5) includes the following steps: We first generate a uniform random
number u in (0,1). Then according to Theorem 2.2, we generate a random number ¢
for the gamma random variable 7" with the parameters (e + 1, ). By multiplying u
and ¢, we obtain a random number for the excess life 7,,,. Figure 2.2 plots the 7,,(7,,)
function for gamma excess life. In this figure, the symbols “¢” and “e” represent the
values obtained from the random number generation. The solid and dashed curves
are directly computed from Equation (2.1). The figure indicates that our random
number generation procedure accurately generates the excess-life random numbers

for the gamma MS cell residence times.
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0.9 solid curve: p = 1,var = 1/3 (equation)
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Figure 2.2: The r,,(7,,) Function for Gamma Excess Life
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2.2.2 The Pareto Distribution

Suppose that ¢,, has a Pareto distribution with the parameters (a, b), where a is the

shape parameter and b is the scale parameter. Then the mean is

ab
, ifa>1
H=19 a—1 (2.8)
0, f0<a<l
and the density function is
_ > b 0, and b>0 2.9
fm(tm) = t‘fnﬁ’ where t, >b, a>0, an > (2.9)

We have the following theorem.

Theorem 2.3. Suppose that t,, has a Pareto distribution with the parameters

(a,b), where a > 1. Then T.+has a Pareto distribution with the parameters

(a —1,b).
Proof: From (2.2), (2.8) and (2.9), we have

tab® a—1
(AL — X
fr(?) (t‘”‘l) ( ab )
(a— 1)t

= (2.10)

Equation (2.10) is a Pareto density function with the parameters (a — 1,b).
Q.E.D.

By utilizing Theorems 2.1 and 2.3, the 7,, random number generation procedure for
Pareto MS cell residence times is similar to that for gamma MS cell residence times.
Figure 2.3 plots the 7,,(7,) function for Pareto excess life. The figure indicates
that our random number generation procedure accurately generates the excess-life

random numbers for the Pareto MS cell residence times.
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Figure 2.3: The r,,(7,,) Function for Pareto Excess Life
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2.2.3 The Lognormal Distribution

Suppose that t,, has a lognormal distribution with the parameters (¢,c). Then the

0+

{72 . . .
mean value is ¢ = ¢°77 and the density function fp,(t.,) is

]_ n trm—6)2
f(tm) = (7> e ETT for ty, >0 (2.11)
otV 27

We have the following theorem.

Theorem 2.4. Suppose that t,, has a lognormal distribution with the parameters
(6,0). Let Y =InT. Then Y has a normal distribution with the mean p + o>

and the standard deviation o.

Proof: From (2.2) and (2.11),

1 (In t—6)2
t) = e 2.2 where ¢t >0
0 = (o) :

]_ nt—6)2
_ (0“7> . (2.12)
T

2O\ 27T

Since Y = InT, we haveld = e¥. Accordingto the Jacobian of the transfor-

mation [35], the density function of Y™ is expressed as

dt

fr(y) = fr(e¥) @

= fr(e?) x ¥ (2.13)

where —oo < y < co. Substitute (2.12) into (2.13) to yield

1 _ (=82
fry) = | ———=|¢e 27 xe’ where—00<y< o0
e T oV 2n

_ ( 1 >e_[y—(«;:oz)]2 (2.14)

o\ 2

From (2.14), Y is a normal random variable with the mean 6 + o2 and the

standard deviation o.
Q.E.D.

Generation of an excess-life random number for lognormal MS cell residence time

with the parameters (6, 0) includes the following steps: We first generate a random
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number u from the uniform random variable U in (0,1). Then according to Theo-
rem 2.4, we generate a random number y for the normal random variable Y with
the mean # + o2 and the standard deviation o. By multiplying u and €Y, we obtain
a random number for the excess life 7,,. Details of the lognormal residence time

curves will not be presented in this chapter.

2.2.4 The Weibull Distribution

Suppose that t,, has a Weibull distribution with the shape parameter «v and the scale

parameter ¢. Then the mean value is p = qS%F (1 + }7) and the density function

fm(tm) is

(7) t;’n_le_%, if t,, > 0,

fn(tm) = (2.15)

0, ift, <0

We have the following theorem.

Theorem 2.5. Suppose that #,, has a-Weibull distribution with the parameters

(7,¢). Let Y = T7. Then ¥ has a gamma distribution with the parameters
1
(1+7.9).
Proof: From (2.2) and (2.15), we have

¥ 1 -1
fr(t) = (%) e lgbVF (1 + %)] where t >0 (2.16)

Let Y = 77. Then T = V7. According to the Jacobian of the transforma-

tion [35], the density function of Y is

1\ | dt 1 y%_l
fy(y) = fr (yr) d_y = fr (yv) X (T) where y >0 (2.17)
Substitute (2.16) into (2.17) to yield
bt
>
fr(y) = ye where y >0 (2.18)

()

From (2.18), Y has a gamma distribution with the parameters (1 + %, ¢)
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Q.E.D.

Generation of an excess-life random number for Weibull MS cell residence time with
the parameters (7, ¢) includes the following steps: We first generate a random num-
ber u form the uniform random variable U in (0, 1). Then according to Theorem 2.5,
we generate a random number y for the gamma random variable Y with the pa-
rameters (1 + ;17, qS) By multiplying v and y%, we obtain a random number for the
excess life 7,,. Details of the Weibull residence time curves will not be presented in

this chapter.

2.3 Conclusions

In performance evaluation of a cellular telecommunications network, it is impor-
tant to derive the excess life distribution:from the MS cell residence times. This
distribution determines if a connected callwill be handed over to a new cell, and
therefore significantly affects the call dropping probability of the network. In cellular
telecommunications network simulation, ‘generating the excess-life random numbers
is not a trivial task, which has not.been addressed in the literature. This chapter
showed how to derive the excess life distribution and to generate the random num-
bers from the excess life distribution. We then developed the excess-life random
number generation procedures for cell residence times with gamma, Pareto, log-
normal and Weibull distributions. Our study indicates that the generated random
numbers closely match the true excess-life distribution (i.e., Equation (2.1)). Com-
pared with the traditional approach [30], the procedures described in this chapter
reduce excution time of simulation from several hours to several minutes. Therefore
our procedures can be utilized to efficiently generate excess-life random numbers in

cellular telecommunications network simulation.
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Chapter 3

Dynamic Periodic Location Area

Update

Cellular telecommunications networks have;been evolved from the second generation
(e.g., GSM) to the 2.5 generation (e.gssGPRS)j-and then to the third generation
(e.g., Universal Mobile Telecommunications System or UMTS) [30]. In this evo-
lution, the concept of mobility*management has remained the same. Consider the
circuit-switched domain of UMTS |2, 3]. In order to track the mobile stations (MSs),
the cells (the radio coverages of base stations) in UMTS service area are grouped
into several location areas (LAs). To deliver services to an MS, the cells in the
group covering the MS will page the MS to establish the radio link. To identify the
LA of an MS, mobility management is required. In mobility management, the MS
informs the network of its location through the LA update procedure. The update

procedure is executed in two situations.

Normal location area update (NLAU) is performed when the location of an MS
has been changed. Location change of an MS is detected as follows. The cells
continuously broadcast their cell identities. The MS periodically listens to
the broadcast cell identity, and compares it with the cell identity stored in
the MS’s buffer. If the comparison indicates that the location area has been

changed, then the MS sends the location area update message to the network.
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Periodic location area update (PLAU) allows an MS to periodically report its
“presence” to the network even if the MS does not move. A periodic LA update
timer (PLAU timer or T3212 in [3]) is maintained in the MS. Corresponding to
the PLAU timer, an implicit detach (ID) timer is maintained in the network.

When the PLAU timer expires, the MS performs PLAU.

Normal location update has been intensively investigated in the literature (see [5, 30]
and the references therein). Most studies on PLAU focused on mobility database
failure restoration [12, 26]. However, a major purpose of PLAU is to allow the
network to detect if an MS is still attached to the network in the normal network
operation situation (i.e., the mobility databases do not fail). To our knowledge, this
aspect has not been investigated in the literature. Before we explain an important

issue for PLAU, we first introduce the notation used in this chapter as follows.

e 4;: the incoming (MS terminated) call atrival rate to an MS

e (i, the outgoing (MS originated) ‘call arrival rate plus the NLAU rate to an
MS

e s the net arrival rate to an'MS; i.e., w=1, + 1;
e o: the ratio of the incoming (MS terminated) call arrival rate to the net arrival

B
K i+ o

rate; i.e., a =

e m: the network stores the m most recent inter checkpoint event arrival time

samples in dynamic PLAU scheme

e N: the number of PLAUs occurring between two checkpoint events (incoming

calls, outgoing calls or NLAUs) when the MS is attached
® Ngm: the N value for dynamic PLAU
e Ny: the N value for fixed PLAU

e [3: the probability that when an MS is abnormally detached, no failure call

setup for mobile termination occurs
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Bam: the 8 value for dynamic PLAU
B¢: the B value for fixed PLAU
v(t): the probability that there is no MS termination occurring in a period ¢

t: the period between when the previous checkpoint event or PLAU occurs

and when the abnormal MS detach occurs (in Fig. 3.3)

t: the period between when the abnormal MS detach occurs and when the

next PLAU occurs (in Fig. 3.3)
fsm(+): the density function of both ¢ and ¢

A: the event that no checkpoint event or PLAU occurs in period ¢ (refer to

Fig. 3.3)
B: the event that no MS call termination occurs in period t (refer to Fig. 3.3)
tp: the period for the PLAU/ID timers

fpm(tp): the density function of:t,

*

~m(s): the Laplace transform of the ¢, distribution

1

- c
c: a selected value which is related to ¢, and px, where t, = —and 1 <c < —

Q

(see Equation 3.3)

t;: the inter checkpoint event arrival time between the jth previous checkpoint

event and the 7 4+ 1st previous checkpoint event, where 1 < j <m
To: T =tp1+tpo+ ... +tpn, forn>0 (refer to Fig. 3.2)
k (used in the simulation flow chart): the total number of PLAU events

kO (used in the simulation flow chart): the total number of CKPNT intervals

where no PLAU occurs

K (used in the simulation flow chart): the total number of CKPNT intervals
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e n (used in the simulation flow chart): the total number of events that no call

setup failure occurs after abnormal detaches

o N (used in the simulation flow chart): the total number of AB_.DETACH

events

e M: in the simulation experiments, the abnormal MS detach occurs after an
attach period exponentially distributed with mean that is M times of an inter

checkpoint arrival time interval

An important issue for PLAU is the selection of the period ¢, for the PLAU/ID
timers. In 3GPP TS 23.012 [2] and TS 24.008 [3], the t, value is set/changed by
the network and broadcasted to every MS in the LA through the L3-RRC SYSTEM
INFORMATION BLOCK 1 message on the Broadcast Control Channel (BCCH).
In this approach, the ¢, value is the sameifor,all MSs in an LA. There are two issues

regarding this fized PLAU scheme:
e How is the ¢, value determined when an MS first enters an LA?
e [s it appropriate to have a‘fixed ¢, value during the MS’s stay in an LA?

This chapter addresses the above two issues. As we will discuss in the following
section, the ¢, value should be selected based on the call and movement activities
of the MS. Therefore we propose a dynamic PLAU scheme in this chapter. We
investigate the performance of this scheme and compare it with the fixed PLAU

scheme. Our study provides guidelines to select parameters for dynamic PLAU.

3.1 Dynamic PLAU Scheme

Before we describe our solution for PLAU, we first introduces the concept of attach.
In UMTS, the attach procedure allows an MS to be “known” by the network. For
example, after the MS is powered on, the attach procedure must be executed before

the MS can obtain access to the UMTS services. In a cellular telecommunications
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network, four events can be utilized by the network to detect the presence of an MS

attached to the network:
e MS call origination (the MS makes an outgoing call),
e MS call termination (the MS receives an incoming call),
e periodic location area update (PLAU), and
e normal location area update (NLAU).

Note that we consider NLAU as the fourth event although the main purpose of
NLAU is to detect the movement of an MS.

When an MS is detached (disconnected) from the network due to abnormal rea-
sons (e.g., battery removal, subscriber moving out of the service area, and so on),
the MS will not originate a call. The,network detects abnormal MS detach in one

of the following two cases:

Case 1. The next PLAU occurs before the arrival of the next MS call termination.
In this case, the network detects‘expiration‘of the ID timer, and considers the

MS detached. The next MS"call terminations will not be delivered.

Case 2. The next MS call termination occurs before the ID timer expires. In this
case, the network attempts to deliver the next incoming call to the MS but
fails. After failure of call setup, the network considers that the MS is detached
and will disable future MS call terminations and PLAU timer.

In the call termination procedure, the network resources (trunks and so on) are
reserved. In Case 2, these network resources are not released until the network
detects that call setup fails. In other words, failure call setup wastes network re-
sources, which should be avoided. To reduce the possibility of Case 2, one may
shorten the interval ¢, of PLAU. On the other hand, short ¢, may result in large
network signaling overhead. Therefore, ¢, should be carefully selected. A perfect

PLAU mechanism will satisfy the following criteria:
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Criterion 3.1. When the MS is attached, the presence of the MS is detected
through call activities (either incoming or outgoing) or NLAUs, and PLAU

is never performed.

Criterion 3.2. When the MS is abnormally detached, the network detects the sit-
uation through periodic update mechanism (i.e., Case 1 holds), and failure call

setup (i.e., Case 2) never occurs.

If Criterion 3.1 is satisfied, the PLAU cost is zero when the MS is attached. If
Criterion 3.2 is satisfied, then the network resources will not be wasted due to call
setup failure. We show how to select the t, value with attempt to satisfy both
Criteria 1 and 2. Suppose that the outgoing (MS originated) call arrival rate plus
the NLAU rate to an MS is y, and the incoming (MS terminated) call arrival rate

is p;. Then the net arrival rate is g = p, + ;. Let

S Lo — i
W — —_SEs
K H’iluo

Statistics from mobile operaters [30] indicate that 40% of the call activities are
incoming calls to an MS. Therefore; @ <-0:4 can'be observed in a typical cellular
network. When the MS is attached to the network, we expect to see a call (either
incoming or outgoing) or an NLAU for every 1/u interval. If we select ¢, = ﬁ (where
¢ > 1) and after every call arrival, ¢, is reset to ﬁ, then there is a good chance that
Criterion 3.1 is satisfied. Consider the example in Figure 3.1 (a) where call arrivals
at 7y, 72, and 73. For the discussion purpose, we define presence checkpoint or
checkpoint as the action to inform the network of the status of an MS (whether the
MS is attached or not). We also define checkpoint event as an incoming call, an
outgoing call or an NLAU. Such an event results in checkpoint action. When the
MS is attached, a checkpoint is triggered by an checkpoint event or PLAU. When
the MS is abnormally detached, a checkpoint is triggered by expiration of ID timer
or failure setup for MS call termination. In Figure 3.1 (a) a checkpoint occurs at

7, and the PLAU timer is reset to t, (i.e., the next PLAU is expected to occur at

time 7 +t,,). If ¢, is sufficiently large so that 75 < 74 +t,,, then the next checkpoint
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abnormal MS detach MS call termination

checkpoint checkpoint checkpoint checkpoint periodic LA update
L i L L or PLAU
T T, T3 - T4 Ts T T -

o ) o (b) An example where Criterion 2 is satisfied
(a) An example where Criterion 1 is satisfied

Figure 3.1: Examples where Criteria 1 and 2 are Satisfied

occurs at 75 and the PLAU timer is reset to ¢, again. In this scenario, the PLAU is
never performed and all checkpoints are triggered by call arrivals or NLAUs. If we
select t, so that

ty = >

(3.1)

then there is good opportunity that Criférion 3.1.is satisfied. However, if ¢, is too

p:

=l o
==

large, Criterion 3.2 is likely to be violated. Figure 3:1 (b) illustrates a scenario when
Criterion 3.2 is satisfied. In this figure; the MS is abnormally detached between two
checkpoints. The previous checkpoint occurs at 7. The abnormal MS detach occurs
at 75 > 74. After MS detach, the next periodic LA update occurs at 75 = 74 + £,,.
The next call termination occurs at 77. If 77 > 74, then PLAU timer expires before
the next call termination arrives, and Criterion 3.2 is satisfied. Since the MS call
termination rate is p;, to have a good chance to satisfies Criterion 3.2, we suggest
that c is selected such that

1 1

< = — 3.2
M ap (8:2)

From (3.1) and (3.2), if u, > 0, it seems appropriate to select ¢ so that

t, =

Tlo

1<e< (3.3)

Q|+

Based on the above discussion, we propose a dynamic PLAU scheme that dy-

namically selects ¢, according to the call and NLAU activities of an MS.

Dynamic PLAU Scheme
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Step 0. Initially a default ¢, value is given.

Step 1. When a checkpoint event arrives, the following steps are executed in the

network; specifically, the Visitor Location Register (VLR) [30]:

Step 1.1. The interval t; between this checkpoint event and the previous
checkpoint event is computed and stored in a storage. The network stores

the m most recent inter checkpoint event arrival time samples.
Step 1.2. The «a statistics is updated.

Step 1.3. Let ¢; be the inter checkpoint event arrival time between the jth
previous checkpoint event and the 7 + 1st previous checkpoint event. The

value £, is computed as

(tl +t2+ ‘l’tm)
t,=c

b m

(3.4)

where c is selected following tlie'guideline (3.3).

Step 1.4. The ID timer-in the network is reset with the value ¢,. The MS is

informed to reset its:PL AU timer:

Step 2. When the network receives the PLAU message from the MS, the ID timer

is reset with the previously selected t,,.

In the fired PLAU scheme proposed in 3GPP TS 23.012 and TS 24.008, Step 2
is always executed, and Step 1 is never executed. Also note that in the dynamic
PLAU, the MS is informed to reset its PLAU timer by the network. In the standard
GSM/UMTS procedures, when an MS requests for call origination, NLAU or PLAU,
the network always acknowledges the request. The new ¢, value is included in
GSM/UMTS acknowledgement messages issued by the network. In call termination,
the network includes the new ¢, value in the call setup message. Therefore, no extra
signaling messages are introduced by the dynamic PLAU scheme at the cost that the
acknowledgement and call setup messages are slightly modified. Note that in 3GPP
TS 24.008, the t, value is broadcasted to all MSs through the L3-RRC SYSTEM
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INFORMATION BLOCK 1 message on the BCCH, which cannot be used in our
approach.

In a real GSM/UMTS network, the dynamic PLAU scheme can be implemented
in the VLR as a micro-procedure. This implementation can be vendor specific,

which does not change any GSM/UMTS message flows. The message flows between

the VLR and the MS follow the standard GSM/UMTS procedures.

3.2 Analytic Modeling

This section investigates the performance of dynamic PLAU and compares it with
fixed PLAU proposed in 3GPP TS 23.012 and TS 24.008. Two performance mea-

sures are considered.

e Let N be the number of PLAUs occurring between two checkpoint events
(incoming calls, outgoing «calls orsNLAUs) when the MS is attached. The
smaller the N value, the*lower the network signaling overhead caused by the
PLAU mechanism. Critetion 3.1-is'satisfied when N = 0. Let Ng4,, and Ny be
the N values for dynamic PLAU and fixed PLAU, respectively. We will derive
the expected values E[N,,,] and E[Ny].

e Let 8 be the probability that when an MS is abnormally detached, no failure
call setup for mobile termination occurs (i.e., Case 1 holds). It is clear that the
bigger the 3 value, the better the PLAU mechanism. Specifically, Criterion
3.2 is satisfied when 8 = 1. Let 34, and [y be the 8 values for dynamic
PLAU and fixed PLAU, respectively.

Telecommunications network operations suggest that incoming and outgoing call
arrivals are Poisson streams [30], and the aggregate arrivals of the incoming and out-
going calls together with the NLAUs can be approximated as a Poisson stream. Fol-
lowing the above statement, we assume Poisson checkpoint arrivals as in many other

studies [40, 18, 12]. Therefore t1,ts, ..., t,, in (3.4) are exponentially distributed, and
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t, has an Erlang-m density function f,,,(t,) with mean % That is,

mp t'm—l (mp
fom(tp) = | — lh] e=(5) (3.5)
c
The Laplace transform of the t, distribution is
my
@)= [ fonrgt gt e | = (M) )
m\S) = =0 p,m\lp)€ e E. = sc + my .
Ll =

\ ¢
Figure 3.2 shows the scenario when the MS is'attached to the network and there
are n PLAUs between two checkpoint events in dynamic PLAU. For n > 0, let
T, =tp1+tp2+..+1t,, Then

Pr[Nym =n] = Pr[T, <t < Ty
n+1

Thiy1
/ / / / [H fp’m(tp,j)] pe M dtdty pyy - - - dipodty,y
tp1= =0 tp 2= 0 tp nt1= =0 j=1

n+1

/ / . / H fpm(tps) [e_“Tn - e_”T"Jrl} dtpng1 - - dtyodt,q
tpl 0 tpz 0 tpn+1 0 3 ! ? ’ ’ ;

J=1

= [fimW)]" [1 = frm(w)]

For n =0,

tp1
PI'[Nd’m = 0] = PI‘[t < tp 1 / /P fpm P, 1 _l‘tdtdtp’l
tp1=0 Ji=

= 1= [ fmltp)e ity = 1= f,0)  (38)

p,1=
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From (3.7), the expected number of Ny, is

BlNan] = 35 n Pl = 0] = [1 = 0] { S 0]} = 2

n=1

Substitute (3.6) in (3.9) to yield

sl = () D ()T

Now we derive E[Ny]. Consider Figure 3.2 again. This figure illustrates an example

when the MS is attached to the network and there are n PLAUs between two

checkpoint events in fixed PLAU. In this example, for 1 <: < n+1, 1,; = ﬁ is a

fixed value, and the inter checkpoint event time t is expressed ast = n (ﬁ) +t*. For
n > 1, the probability that N; = n is derived as

c

PI‘[Nf = n] = " Iu,e_”[n(ﬁ)'i-t*]dt*
#=0
= (1—efe™ (3.11)
For n =0,
Pr[N; = 0] =Pr[t <tpi) = /F pe Hdt =1 —e° (3.12)
t=0

From (3.11), the expected number.of N; is

E[Nf] = f: n(l—e*)e™ = (3.13)

n=1

E[N¢] can also be derived from (3.10). Consider the case when m — oo and s = p.

Equation (3.6) is re-written as

. . L m m e
Jim 50 = Jim (7)" = (8-14)

From (3.6), (3.8) and (3.12), we have Pr[N; = 0] > Pr[N,,,, = 0]. Also, from (3.8)
and (3.14), we have

Pr[N; =0] = lim Pr[Ng, =0]=1—¢€¢"° (3.15)

m—oo

Equation (3.15) is the same as (3.12). From (3.10) and (3.14), we have

—C

€

l1—ec

E[Nyg] = lim E[Ngu] = (3.16)
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Equation (3.16) is the same as (3.13).
Probability B4, is derived as follows. Consider Figure 3.3. Suppose that the
previous checkpoint or PLAU occurs at time 7y, the abnormal MS detach occurs at

7o, and the next PLAU occurs at 73. Define two events as follows:
Event A. No checkpoint event or PLAU occurs in period t = 75 — 7y.
Event B. No MS call termination occurs in period t = 73 — 7o.

It is apparent that Criterion 3.2/is satisfied if and only if event B occurs under
the condition that event A occurs. That'is B4, = Pr[B|A]. If the occurrence of
abnormal MS detach is a random observer, then from residual life theorem and

reverse residual life theorem [43]; both ¢ and ¢ have the same density function f;,,

0= 1= (2) [ ot = () [ (22 (4) )

p= j=0
(3.17)
Furthermore, events A and B are independent of each other and
PrlBN A Pr[B]| Pr[A
Bam = Pr[BlA] = DB OAL_ PrBIPHA] (3.18)

Pr[A]  Pr[4]
Let y(t) be the probability that there is no MS termination occurring in a period t.
Since MS termination calls are a Poisson stream with rate p; = au, v(t) is expressed
as [43]

y(t) = e (3.19)

From (3.18), (3.19) and (3.17),

Bam = /t:fp,m(tW(t)dt:E{(g) [ (e (%) e—[(%)w]tdt}

J=0
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7=0
Now we derive 3. Consider Figure 3.3 again. For fixed PLAU, ¢, = I% is a constant.
Since occurrence of abnormal MS detach is a random observer, ¢t has a uniform

distribution in interval [0, ﬂ From (3.19), By is derived as

c

By = /:0 (ﬁ) y(t)dt = t-e ™ (3.21)

C ac

We can also derive ¢ from (3.20) and (3.14):

Bf = lim B4, = (i) [1 _ lim ( m )m] _1—ee

m—0o0 oc m— 00 m + ac oc

The above analytic model is validated against the simulation experiments. We
use a C program to implement the simulation model that consists of three types
of events: (1) Checkpoint (CKPNT);(2) PLAU; and (3) MS abnormal detach
(AB_.DETACH). The next CKPNT and AB.DETACH event arrival times are gen-
erated by the exponential random number generator, and all events are processed
according to their timestamps: The simulation flewchart is shown in Figure 3.4.
For a CKPNT event, steps 6-9 ‘are executed. For a PLAU event, steps 10-11 are
executed. For an AB_DETACH event, steps 12-16 are executed. In the simulation
experiments, the abnormal MS detach occurs after an attach period exponentially
distributed with mean that is M times of an inter checkpoint arrival time interval.
For M > 100, the simulation results are not sensitive to the M values. In our simu-
lation experiments, the confidence intervals of the 99% confidence levels are within
3% of the mean values in most cases. Figure 3.5 shows that analytic analysis and
simulation experiments are consistent for the [ values. The comparison results for

other performance measures are similar and will not be presented in this chapter.

3.3 Numerical Examples

Based on the analysis in the previous section, we use numerical examples to inves-

tigate the performance of dynamic PLAU and compare it with fixed PLAU.
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o,
o

0,
o

®,
o

K: total number of CKPNT intervals;
k: total number of PLAU events;

kO: total number of CKPNT intervals where no PLAU

occurs;
N: total number of AB_DETACH events;

n: total number of events that no call setup failure

occurs after abnormal detaches;
Bam=n/N;

E[Nd,m]=k/K;

Pr[N, =0]=k0/K;

(1) Set initial values;
(2) Generate the next CKPNT event
and insert it into the event queue;

<

4

(3) Generate the next AB_DETACH
event and insert it into the event
queue;

v
_|(4) Execute the next event in the

event queue;

CKPNT ‘ AB_DETACH
<(5) Event type?

(6) Generate the (12) Compute the
next CKPNT PLAU next PLAU time, x;
event and insert (13) Compute the
it into the event (10) Generate the next incoming
queue; next PLAU call arrival time, y;

event occurring

(7) Generate the before the next
next PLAU event CKPNT event
occurring before and insert it into
the next CKPNT the event
event and insert queue;
it into the event ‘ (15) n = n+1; ‘
queues [ () k=k+1;

(8) Compute tp; (16) N = N+1;

(9) Update K and kO;

l 4

(18) Compute B, .,

PriN, ,=0];

(17) N<10,000?

Figure 3.4: The Simulation Flowchart

38




ﬂd,m

X:a=02;0:a=04;e:a=0.6
Solid: analytic analysis

Dashed: Simulation

1.2 13 14 15 16 1.7 18

1.9

Figure 3.5: Comparing Analytic Analysis with Simulation Experiments (m

Pr[Ngm = 0]

1.0

20)

0.9

0.8 5

VR

0.7

0.6 5

*

*
e

Ponsint
ﬁﬁ

//Ki:i:;l;o:czl.f)

e:c=19%x:¢c=23

0.5

2 6 10 14 18 22

Figure 3.6: The Pr[Ng,, = 0] Performance

39

26

30



0.9- x:c=11
o:c=1.5

0.8 e:c=19
*

E[Ngm]

p

4

S
[ ]

p

2 6 10 14 18 22 26 30

Figure 3.7:. The E[Ng ] Performance

By using (3.8), Figure 3.6 plots Pr[Ny.-= 0] as a function of m. The figure
indicates that even we choose a smallies(e:g:, ¢ = 1.1 or 1.5), Criterion 3.1 can be
satisfied with probability higher than 0.5. In this figure, the Pr[N; = 0] values are
0.66713, 0.77687, 0.85043 and 0.89974 for ¢ =1.1, 1.5, 1.9 and 2.3 respectively.

Based on (3.10), Figure 3.7 plots E[N,,,] against m, where 1.1 < ¢ < 2.3. The
figure indicates that E[Ng,,] is a decreasing function of m. When m is small (i.e.,
m < 6), if dynamic PLAU measures one more inter checkpoint arrival time sample
(i.e,. m is incremented by one), the E[Ny,,| performance is significantly improved.
On the other hand, when m is large (m > 20), measuring more inter checkpoint
arrival time samples will not improve the E[Ng,,| performance. In Figure 3.7, the
E[Ny] values are 0.49896, 0.28722, 0.17588 and 0.11142 for ¢ =1.1, 1.5, 1.9 and 2.3
respectively.

Based on (3.20), Figure 3.8 plots f34,, against m, where a = 0.2,0.4 and 0.6, and

c=1.1,1.5, and 1.9. For m > 10, 34, is not sensitive to the change of m. Suppose
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that m = 20 is selected. When oo = 0.2, 0.82 < 35, < 0.9 for 1.1 < ¢ < 1.9. When
a=04,0.6 < Bgm <08 When o = 0.6, 0.58 < Bgm < 0.72. Therefore, the Bym
performance is significantly affected by « (i.e., the frequency of incoming calls to the
MS). As we mentioned before, & = 0.4 is observed in cellular network operations,
and good 4., performance can be expected. In this figure, the 3 values are shown
below. For a = 0.2, the 3; values are 0.89764, 0.86394 and 0.83194 for ¢ = 1.1, 1.5
and 1.9 repectively; for a = 0.4, the ; values are 0.80901, 0.75198 and 0.70044 for
c = 1.1, 1.5 and 1.9 repectively; for a = 0.6, the 5 values are 0.73204, 0.65937 and
0.59665 for ¢ = 1.1, 1.5 and 1.9 repectively.

Note that the Pr[N; = 0], E[Ny|, and §f values corresponding to Figures 5, 6,
7 are “optimal”. That is, such good performance can only be achieved when the
“optimal fixed t, values” are found. In reality, it is very difficult (if not possible) to
guess such “optimal” values in advance. In Figures 5, 6, 7, we demonstrate that by
the adaptive mechanism, the dynamic PLAU scheme can achieve good performance
close to the optimal fixed PLAU scheme.

The results in Figures 3.7 and 3.8 indicate that E[N,,,] and 4., have conflicting
goals. In other words, it is impossible:to‘choose the c values that minimize F [Nd,m]
and maximize [34,, at the same time. However, by choosing appropriate c values,
dynamic PLAU can satisfy both E[N,,,| and (4, restrictions, if such solutions do
exist. For example, consider o = 0.4. If the system requires that E[N4,,] < 0.6 and
Bam > 0.7, then a c value such as 1.1 satisfies the requirement (with m = 20).

Note that if the frequency of checkpoint events (call activities and NLAUs)
changes from time to time, dynamic PLAU can automatically adapt to the change.
Consider the scenario where p = pq for a long time (the first period), and then
changes to 10u; (the second period). Assume that the intervals for both the first
and the second periods are the same. For dynamic PLAU, the ¢, period is adjusted
as u changes so that the ¢ value is kept as a constant (except for the short period for
transition from g to 10x;). On the other hand, the period ¢, is fixed in fixed PLAU.
Therefore, ¢ = t,u in the first period and ¢ = 10¢,u; in the second period. In other

words, the ¢ value in the second period is 10 times that in the first period. After the
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checkpoint rate changes, the fixed PLAU'may only slightly improve the N; perfor-
mance at the cost of significantly degrading the 3; performance. The consequence is
that the average performance of fixed'PLAU for the above mixed checkpoint traffic
is worse than that for dynamic PLAU. Figure 3.9 plots E[N] against  for dynamic
PLAU and fixed PLAU, where m = 20, and a = 0.2,0.4, and 0.6. Note that [ is
a function of m, a, and ¢, while E[N] is a function of m and ¢. Therefore, when
we choose a specific set of (m,a,c), the corresponding 5 and E[N] values can be
computed. Then we use these computed (3, E[N]) sets to plot this figure. The
figure indicates that to achieve the same [ performance for the mixed checkpoint

traffic patterns, much less network signaling overhead for LA updates is expected in

dynamic PLAU as compared with that in fixed PLAU.

3.4 Conclusions

In cellular telecommunications networks, periodic location area update (PLAU) is

utilized to detect presence of a mobile station (MS). In 3GPP Technical Specifica-
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tions 23.012 and 24.008, a fixed PLAU scheme was proposed for UMTS where the
interval between two PLAUs is of fixed length. We observe that MS presence can
also be detected through call and movement activities. Therefore we proposed a
dynamic PLAU scheme where the PLAU interval is dynamically adjusted based on
the call and NLAU traffic. An analytic model was developed to validate against the
simulation model with the excess life modeling technique. Then we investigated the
performance of dynamic and fixed PLAU schemes. Our study indicated that com-
pared with fixed PLAU, dynamic PLAU significantly reduces the network signaling
traffic caused by periodic location area update.

As a final remark, in dynamic PLAU, storage and the mechanism maintaining
m = 20 or 30 inter checkpoint arrival time samples for an MS can be practically
implemented in the UMTS network (specifically, in the VLR). The value t, can be

efficiently computed using the window averaging technique [30].
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Chapter 4

Modeling Channel Assignment of
Small-Scale Cellular Networks

Emerging cellular telecommunications metwork technologies have attracted consid-
erable attention in academic research as.wellsas commercial deployment. A cellular
network supports telephony services when users.are in movement [30]. The cellular
phone service area is populated with base stations:(BSs). The radio coverage of a
BS is referred to as a cell. Customerswithin a cell’can connect to the corresponding
BS via mobile stations (MSs) or mobile phones. When a call for a customer occurs,
one radio channel of the BS is used for connecting the MS and the BS. If all radio
channels are in use when a new call is attempted, the call will be blocked and cleared
from the system. If the call is accepted, a radio channel will be occupied until the
call is completed, or until the MS moves out of the cell. When a communicating MS
moves from one cell to another, the occupied channel in the old cell is released, and
an idle channel is acquired in the new cell. During this handover procedure, if no
channel is available in the new cell, the call is forced to terminate before its comple-
tion. When the call is connected, the call may be completed after several successful
handovers, or may be forced to terminate due to a failed handover. The duration of
a call connection (if the call is completed) is referred to as the call holding time.

For billing and network planning purposes, the handover behavior and the prob-
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ability of call completion need to be analyzed. Several analytic studies have con-
tributed to cellular network performance evaluation [34, 10, 7, 48, 19, 13, 36, 39].
Most studies assume that the handover traffic to a cell is a fixed-rate Poisson pro-
cess. This assumption is reasonable for large-scale cellular networks, or when the
networks experience light load traffic [9]. In reality, the handover traffic to a cell
depends on the workloads of the neighboring cells. This fact has significant impact
on modeling of small-scale cellular networks. Before we investigate the impact, we

first introduce the notation used in this chapter as follows.

e n: the number of cells in the cellular system under consideration

c: the number of channels in each cell in the cellular system under consideration
e S;: the index set of cell ¢’s neighbors, for 1 <i <n

e |S;|: the number of cell i’s neighbors, for’l <i<n

e s: we assume that |S;| =4S} =sfor < i, j<n

e )\: the new call arrival rate to acell;ythe new call arrivals are a Poisson stream,

and the new call arrivals to ‘each cell are independent

e 1/u: the mean call holding time; the call holding times have an exponential

distribution

e 1/n: the mean MS cell residence time (i.e., 7 is the MS mobility rate); the MS

cell residence times are independent and identically distributed (i.i.d.)
e NN,: arandom variable for the number of busy channels in cell 7, for 1 <: <n

e p;: the new call blocking probability; i.e., the number of new call blockings

divided by the number of new calls

e ps: the handover force-termination probability; i.e., the number of forced ter-

minations divided by the number of handovers
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Pne: the call incompletion probability (the probability that a call is either
blocked or forced to terminate); i.e., the sum of the numbers of new call

blockings and forced terminations divided by the number of new calls (note

that DPne 7£ Py + pf)

A;: the event that a call is handed over into cell ¢, where 1 <: < n

By: the event that a call is handed over out of a cell with & busy channels,

where 1 < k <c
C: the event that a handover occurs in the cellular system under consideration
D,,: the event that a call is handed over out of cell m, where 1 <m <n

E; 1. the event that a call is handed over out of a specific cell j with £ busy

channels, where 1 < 7 < n and_ 1<k c
fx(s): the Laplace transform[of the MS cell residence time distribution

¢€: a pre-defined value for the threshold.in our algorithm which approximates
the general MS cell residence time distribution by an exponential distribution

to compute the probabilities p;, pf, and p,. (¢ = 0.001 in our example)

t1: the call holding time in Figure 4.1 (note that the definition of ¢; in Fig. 4.1
is different from that in Fig. 1.1 and Fig. 2.1)

to: the MS cell residual time at cell 1 (i.e., the interval between when the call
arrives and when the MS moves out of cell 1) in Figure 4.1 (note that the

definition of ¢, in Fig. 4.1 is different from that in Fig. 1.1 and Fig. 2.1)

t3;: the remaining call holding time if the call is successfully handed over to

cell 7+ for ¢ = 2,3,... in Figure 4.1

ts;: the MS cell residence time at cell ¢ (i.e., the interval between when the

MS enters cell i and when it moves out of cell ¢) for i = 2,3,... in Figure 4.1
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Figure 4.1: The Timing Diagram (Note That the Notation Used in This Figure May
Have Different Definition from That in Fig. 1.}.and Fig. 2.1)

e a;: a; = Pr[t; > t5], which is the probability that a new call is not completed

before the MS moves out.of the first cell

e oo ap = Pr[ts,; > t4;], which'is:the-probability that a handover is not com-

pleted before the MS moves out of cell ¢, where 1 = 2,3, ...

e X: arandom variable for the number of call completions for a connected call;

note that the value of X is either one or zero

e Y: a random variable for the number of handovers for a connected call

B[X]

o 9: 9=
E[X +Y]

e 7n*: the mobility rate for the approximate exponential distribution which ap-

proximates the general MS cell residence time distribution

e Q: the Markov process state transition rate matrix in the approximate algo-
rithm for the general MS cell residence time distribution (refer to Appendix B

for more details)
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ki: the number of busy channels in cell ¢ for 1 <7 < nand 0 < k; < ¢ (refer
to Appendix B for more details)

(k1, ko, -, kn): a state in the Markov process (refer to Appendix B for more

det aﬂs)

® Ty ka k. the steady state probability for state (ki, ko, -, k,) (refer to Ap-

pendix B for more details)

II: the stationary probability distribution vector; i.e., Il = [Wkl,kzr",kn]lx(c+1)n

(refer to Appendix B for more details)

Figure 4.2 plots the call incompletion probability p,. against the user mobility 7
and the call arrival rate A where the number of radio channels in a cell is 9. The
“eo” curve is generated from a previous analytic model that assumes fixed-rate han-
dover traffic [34]. The “0” curvelis generated.from simulation of a 64-cell mesh
configuration, and the “x” curve is generated.from simulation of a 3-cell configu-
ration (illustrated in Fig. 1.3). The simulation model [31] actually simulates the
MS movement in mesh or hexagonal networks of cells. The figure indicates that the
fixed-rate assumption is acceptable'when the number of cells is reasonably large, but
is inaccurate for small-scale cellular networks. In this chapter, we derive the exact
equation for the handover force-termination probability when the MS cell residence
times are exponentially distributed. Then we propose an approximate model with
general MS cell residence times. We use the analytic model to validate against the
simulation model with the excess life modeling technique. Then the analytic results
are compared with the previously proposed model [34], where the simulation results
are used as the baseline. Our comparison study indicates that the new model can
capture the handover behavior much better than the old one for small-scale cellular

networks.
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Figure 4.2: Effect of Network Size on the Call Incompletion Probability (x = 0.3})

4.1 Exact AnalyticModel for Exponential MS Cell

Residence Times

This section describes an exact analytic solution: for exponential MS cell residence
times. Consider a cellular system with 7 cells. For 1 < ¢ < n, let S; be the index
set of cell i’s neighbors. That is, cell j is a neighbor of cell ¢ if j € S;. Let |S;
be the number of cell i’s neighbors. For the illustration purpose, we consider a

homogeneous system conforming to the following requirements:
Capacity: Each cell has ¢ channels.

Movement: The routing probabilities to the neighboring cells are the same. That
is, for an MS at cell ¢, it moves to each of cell ¢’s neighbors with probability
1/]S;i|. We further assume that |S;| = |S;| = s for 1 < 4,5 < n. The MS cell

residence time distributions are the same for all cells.

Call traffic: The new call arrival rates to all cells are the same. The call holding

time distributions are the same for all calls.
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The following input parameters are considered in our model.

e )\: the new call arrival rate to a cell. The new call arrivals are a Poisson

stream [22], and the new call arrivals to each cell are independent.

e 1/p: the mean call holding time. The call holding times have an exponential

distribution.

e 1/n: the mean MS cell residence time. The MS cell residence times are inde-
pendent and identically distributed (i.i.d.). This section assumes exponential
MS cell residence times. In the next section, we will consider general MS cell

residence time distributions.

We assume that the call holding time and the MS cell residence time are independent
of each other. Let random variable N; be the number of busy channels in cell ¢

(1 <i<mn). The following output measures’are evaluated in our study.

e p; (the new call blocking probability): The number of new call blockings di-
vided by the number of new calls. Since the system is homogeneous, p, for all

cells are the same and for.a cell 7, py can be expressed as

py = Pr[A new call is blocked | this new call occurs at cell 1]

= Pr[N; =] (4.1)

e ps (the handover force-termination probability): The number of forced termi-

nations divided by the number of handovers.

e p,. (the call incompletion probability; i.e., the probability that a call is either
blocked or forced to terminate): The sum of the numbers of new call blockings

and forced terminations divided by the number of new calls. Note that p,. #

Dy + Dy
To derive py, we first define five events:

Event A;. A call is handed over into cell 7. For 1 < i < n, A; are mutually exclusive

events.
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Event Bj. A call is handed over out of a cell with & busy channels. For 1 < k < ¢,

By, are mutually exclusive events.

Event C'. A handover occurs in the cellular system. The relationship among C', A;

and By, is

C = U A = B (4.2)
=1 k=1

Event D,,. A call is handed over out of cell m. For 1 < m < n, D,, are mutually

exclusive events, and

¢ =) Dn. (4.3)

Event E;;. A call is handed over out of a specific cell ;7 with £ busy channels. For
1<j<nand1<k<c F;; are mutually exclusive events. Note that

c

D?n — U Em,k
k=1

= U WUE.
e

B =Sl F (4.4)
7=1

Since the system is homogeneous, p forall'cells are the same, which can be expressed

as
pr = Pr [{Nl = C} N A1|A1] . (45)
Since A; = A; N (Ui—; Br), (4.5) can be re-written as

pszrl{Nizc}ﬂAiﬂ (U Bk)

k=1

A,-] . (4.6)

Equation (4.6) says that to compute py, we need to consider how the flow-in handover
traffic behaves. For example, there is no flow-in handover traffic into cell ¢ if £ =0
for all cell i’s neighbors (i.e., there is no busy channel in any of cell i’s neighbors).

Since By, By, - - -, B, are mutually exclusive events, from [41], (4.6) can be expressed
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as

pr = Z Pr [{Nl = C} N Al N Bk|Al]
k=1
° Pr [{Nz = C} N Bk N Az]

- ¥

k=1 Pr[A;]
_ i Pr[{N;=c} N B, NA] Pr[B,NA]
ot Pr[B), N A;] Pr[A;]
— S PN, = ¢} N By 1 Ai| By 1 A x Pr[Bi| Al (4.7)
k=1
In (4.7), let
p1r = Pr[{N;, = ¢} N B N A;| B, N A}, (4.8)

which is the probability that all channels in cell 7 are busy given that a call is handed

over from a cell with k& busy channels to cell i. From (4.4), (4.8) can be re-written

as
Prr = Pr {Nz = C} & Bk. Q) A,‘ 0 ( U El,k) Bk N A;| . (49)
=1
Since Eyy, Eay, -+, B, are mutually exclusive evénts, from [41], (4.9) can be ex-
pressed as
P1ik = ZPI‘[{NZ = C} N Bk @ Ai N El,k|Bk N Al]
=1

. zn: PI‘[{NZ = C} N El,k N Bk N Az]

= Pr[B;, N A;]

. i PI‘[{Nl = C} N El,k N Bk N Az] % PI‘[E[_‘]C N Bk N Az]

N =1 PI‘[El’k N Bk N Az] PI‘[Bk N Az]

Il
NE

PI‘[NZ = C|El,k N Bk N Az] X PI‘[El’k N Bk N Az|Bk N Az] (410)

~
Il
—

From (4.4), we have E;j, N By = E;; and (4.10) is re-written as
Pl,k = Z Pr [Nz = C|El,k M Az] X PI‘[El’k N A1|Bk N A,L] (411)
=1
In (4.11), Pr[El,k NA;| BN A;] represents the routing probability that a call is handed
over from cell [ with k& busy channels to cell i, given that the call is handed over from

a cell with k£ busy channels to cell 7. Since we consider homogeneous topology and
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routing pattern, the MS can only move into cell ¢ from any one of cell i’s neighbors

with probability 1/s. Therefore,

1/8, if l € 5;,
PI‘[El,k N A,|Bk N Az] = (412)
0, otherwise.
Substitute (4.12) into (4.11) to yield
1
Pir = Z PI‘[NZ = C|El,k N Az] X —. (413)
s

leS;

Due to homogeneous assumptions, (4.13) can be re-written as

P = Pr[N;=c|Ej;NA]
= Pr[N; = ¢[{A call is handed over from cell [ to cell i}
N{N, = k}], (4.14)

where 1 < k < c. It is clear that-Events{iV;.= c}-and Event {A call is handed over
from cell [ to cell i} are conditionally independent given Event {N; = k}, where

1 <k < c. Therefore, from [41},.(4.14)"can be expressed as

px = Pr[Ni=elNp=k]
PI‘[{NZ = C} N {Nl = k}]

Pr[N; = k]
_ Pr[Nl = k|Nz = C] X PI‘[NZ = C]’ (415)
Pr[N, = K]
where 1 <k <c. In (4.7), let
p2. = Pr[Byi|A;]. (4.16)

Given that a call is handed over into cell ¢, po; is the probability that the call is
handed over out of a cell with £ busy channels. From (4.3) and By, = B, N (U2, Dy),
(4.16) can be re-written as

pg,k = PI‘ [Bk N (U Dl>

=1

A,-] : (4.17)
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Since Dy, Ds, -+, D, are mutually exclusive events, from [41], (4.17) can be ex-

pressed as

D2k = Z Pr[By, N Dy|A;]
=1
. 2": PI‘[Bk N Dl N Az]
=1 Pr[A"]
n PI‘[Bk N Dl N Al] PI‘[Dl N Al]

= X hinAl X Pl

=1

=1

In (4.18), Pr[D;|A;] is the probability that under the condition that a call is handed
over into cell 7, it came from cell [. Because of homogeneous topology and routing
pattern, the handover call is from any of cell :’s neighbors with the same probability.

Therefore,

Lfssn if 1 €S,
Pr{Di| AL (4.19)

0, otherwise.

Substitute (4.19) into (4.18) to,yield

1
P2k = Z PI‘[Bk|Dl N Al] X —
leS; s

1
= Z PI‘[N[ = k|Dl N Az] X =, (420)
lES; $

where 1 < k < c. Due to network homogeneity, » Pr[N; = k|D;NA;] = s x Pr[N, =
IES;
k|D; N A;]. Thus, (4.20) is re-written as

1
P2xr = SX PI‘[N[ = k|Dl ﬂAl] X =
s
= PI‘[{N[ = k} N Dl N A,|Dl N Ai], (421)
where 1 < k < ¢. In (4.21), Event D; N A, represents the event that a call is handed

over from cell [ to cell i, and Event { N, = k} N D; N A; means that a call is handed

over from cell [ with k£ busy channels to cell 7. Note that the mobility rate of an
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MS is 1. Because of homogeneous topology and routing pattern, if a busy channel
in cell [ will be released due to MS movement to cell i, then the channel is released

at rate n/s, and (4.21) can be re-written as

Pr[N, = k] x k x (Z) kPN

D2k = ¢ (4.22)
> Pr[N, = k] x k x <Q> BN
k=1 S
Substituting (4.15) and (4.22) into (4.7), we have
Py = Zpl,k X D2k
k=1
_ i Pr[N; = k|N; = ¢] x Pr[N; = (] « k Pr[N; = k]
N k=1 Pr[N; = k] E[N]
Pr[N; = c]} { <
= —_— kPI‘[Nl:k|Nl:C]
{ E[N] kzz:l
E[NI|NZ = C]
= —  _s%3 4.2
Py X E[Nl] ( 3)
The probability p,. was defived in [34]; which is expressed as follows.
T py) [1 =
e = g =P 25 ()] Py (4.24)

p =1 = py) fr. ()]

where f (s) is the Laplace transform of the'MS cell residence time distribution. For

exponential MS cell residence time distributions, £ (u) = Z , and (4.24) can be
BT

expressed as

) n(1—ps) (%) P
DPnc = Do+ . ll —(1 —pf/; (%)]

Ups + NPy
® =+ nps

(4.25)

Pr[N; = ¢], E[N;] and E[N;|N; = c] in (4.1) and (4.23) are derived in Appendix B
by solving an n-dimensional Markov process, which are then used to compute p,..
We note that our approach is similar to the one proposed in [37], where the model
can be extended for heterogeneous network modeling (e.g., the numbers of channels

in cells are different).
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4.2 Approximate Model for General MS Cell Res-
idence Times

This section proposes an approximate solution for modeling general MS cell residence
times. The idea is to adjust the exact analytic solution developed in the previous
section. Specifically, we approximate the general MS cell residence time by an
exponential distribution with the adjusted rate n*.

Consider the timing diagram in Fig. 4.1. In this figure, a call arrives when the
MS resides in cell 1. The call holding time is t;. The MS cell residual time at cell 1
(i.e., the interval between when the call arrives and when the MS moves out of cell
1) is to. For i = 2,3,..., if the call is successfully handed over to cell ¢, then the
remaining call holding time is ?3;. For ¢ = 2,3,..., the MS cell residence time at
cell i (i.e., the interval between when the MS enters cell ¢ and when it moves out of
cell 7) is tq,;. Since the call holding times are exponentially distributed, ¢; and t3,
have the same exponential distribution.” Let randem variable X be the number of
call completions for a connected call. Note that the'value of X is either one or zero,
depending on whether the call 1s eventually completed or forced to terminate. Let
random variable Y be the number of handeovers for a connected call. We derive E[X]
and E[Y] as follows. In Fig. 4.1, let oy = Pr[t; > t3] be the probability that a new
call is not completed before the MS moves out of the first cell, and oy = Prlts; > t4;]
be the probability that a handover call is not completed before the MS moves out

of cell 4, where i = 2,3,... From [27], we have

a; = (Z) [1 — f;l(,u)] and ag = f (1) (4.26)
With (4.26), E[X] is derived as follows.

E[X] = 1 x Pr|[A connected call is completed]

+0 x Pr[A connected call is forced to terminate]

_ (1—al)—I—ki_o:l{al[(l—pf)az]k’_l(l—pf)(l—ag)}. (4.27)

In the right hand side of (4.27), (1—a;) is the probability that a new call is completed
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before the MS moves out of the cell, and {al [(1—ppaa] (1 —ps)(1 - a2)} is the
probability that a call is successfully handed over for k times and is completed at

the k + 1-st cell, where k£ > 1. From (4.27), we have

ai(1—ps)(1 - 042).

EX]=(01—-a1)+ = (1-pm (4.28)
Substitute (4.26) into (4.28) to yield
_ = faw)ley
= e sl 29
Similarly, E[Y] is derived as
BY] = kol =pod (0 -p)1 = o) tard}  (450)
Sl (4.31)

In the right hand side of (4.30), {al (1= pf)az]k_l (1 —pf)(1—a2)+ pf]} is the
probability that a call is successfully handed over'for k£ times before it is completed,
or is successfully handed overfor & — 1 tumes and-forced to terminate at the k-th

handover. Substitute (4.26) into (4:31) to yield

Sl )]
B =0 ) £ (] (432
Define 0 as
E[X]

Although X and Y are dependent random variables, we have [14]
EX +Y]|=E[X]|+ E[Y]. (4.34)

From (4.34), (4.33) is re-written as

_ _ BIX]
= BIX] + BY] (4.35)
From (4.29) and (4.32), (4.35) can be expressed as
0 =1 [l — f:;L(/‘)] (4.36)

el a-mgo+ (2) () - ]|
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N
w+

For the exponential MS cell residence time distribution, f(x) =

, and (4.36)
n
can be simplified as
[ ———— (4.37)
pA+n

To approximate the general MS cell residence time distribution by an exponential
distribution, we define n* as the mobility rate for the approximate exponential dis-

tribution. From (4.37), the approximate mobility rate is

« M
n = i - (4.38)
By substituting (4.36) into (4.38), we have

= [l — fr(p)] ) (4.39)

1= (= 28300 = (1) 1= 2]

Therefore, for MS cell residence time distribution with Laplace transform f7 (s), this
distribution can be approximatedby an exponential distribution with mobility rate
n* (expressed in (4.39)) for the’channel assignment model. The probabilities p;, py,

and p,. are computed as follows (refer to-Appendix B for more details).
Input parameters: X, u, n, cj.and £ (1)

Output measures: 0, p,, ps, and p,.

Step 1. Select an initial value for py.

Step 2. pfoa  ps. Compute n* by using (4.39).

Step 3. Construct the state transition rate matrix Q, where 7 in Fig. B.1 is replaced

by n*. Then the II vectoris solved from IIQ = Oand > Y -+ > Thy kokn =
k=0 ko=0  kn=0
1. Finally, the II vector is used to compute p, and ps by using (4.1), (4.23),

(B.1), (B.2), and (B.3).

Step 4. Let € be a pre-defined value (¢ = 0.001 in our example). If |pf — ps .| > €,
then go to Step 2. Otherwise, go to Step 5.

Step 5. The values for 6, p;, and py converge. Compute p,. by using (4.24).
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4.3 Numerical Examples

This section uses numerical examples to compare the analytic model in Sections 4.1
and 4.2 (called the “new model”) with the model we proposed in [34] (called the “old
model”). For the demonstration purpose, we consider a three-cell cellular system
(i.e., n = 3; see Fig. 1.3), where each cell has nine channels (i.e.,, ¢ = 9) and two
neighbors (i.e., s = 2). Such systems have been manufactured and deployed in
Asia [47]. For other small-scale cell configurations, similar results are observed,
which will not be presented in this chapter.

Fig. 4.3 plots the blocking probabilities against the mobility rate 7 for the expo-
nential MS cell residence time model, where the call holding times are exponentially
distributed with rate ; = 0.3A. The figure indicates that both p, and p; decrease
as 7 increases. Since the number of handovers increases as 7 increases, p,. increases
as 7 increases. Same phenomena were found,in [7, 28], and the reader is referred
to these pervious studies for more details. We.observe that the new analytic results
almost match the simulation results, while the errors between the old analytic model
and the simulation experiments can'bé-up-to-18%. The figure suggests that the new
analytic model is more accurate than the old-one. Fig. 4.3 also indicates that the
higher the mobility, the more the inconsistency between the old analytic and the
simulation results. Therefore, the advantage of the new analytic model becomes
significant when the mobility is high. The old analytic model is not as accurate as

the new one because it assumes p; = p, while in the new analytic model, we have

E[Ni|N; = ] e
proven that py = py x ——————— # p;, (see (4.23)). When the mobility is low, the
E[N]

value of E[N,|N; = c| is close to E[N;]. Consequently, ps ~ p, and the old analytic
model works well.

For a general MS cell residence time distribution, its variance v may have signifi-
cant impact on the output measures. For Gamma MS cell residence times, Table 4.1
shows the call incompletion probability p,. values and their errors between analytic

and simulation models, where the MS cell residence time variances are v = 0.01/7?,
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n (Unit: \)
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e Solid: Simulation
e Short-dashed: New Analytic Model
e Long-dashed: Old Analytic Model

Figure 4.3: Results for Exponential MS Cell Residence Time Model (u = 0.3})
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Table 4.1: The p,. Values and Errors: Analytic Models vs. Simulation (7 = 0.5))
v (Unit: 1/9%) | 001 | 01 | 1
p=0.1X

Simulation 39.429% | 39.5817% | 39.1805%
Old Analytic Model | 40.915% | 40.7124% | 40.4659%
New Analytic Model | 39.4335% | 39.4122% | 39.2026%
w= 0.2\
Simulation 8.3426% | 8.4134% | 8.2144%
Old Analytic Model | 9.2013% | 9.1963% | 9.1491%
New Analytic Model | 8.2463% | 8.2428% | 8.2131%
= 0.3\
Simulation 1.2036% .1.1719% | 1.1532%
Old Analytic Model | 1:12674%:. | 1.2673% | 1.2659%
New Analytic Models| 1.1665% |+ 1:1665% | 1.1655%
(2) Pac
v (Unit: 1/7%) 77001 | 01 | 1
pw=0.1A
Old Analytic Model | 3.77% | 2.86% | 3.28%
New Analytic Model | 0.01% | 0.43% | 0.06%
uw=0.2)\

Old Analytic Model | 10.29% | 9.31% | 11.38%
New Analytic Model | 1.15% | 2.03% | 0.02%
w= 0.3\

Old Analytic Model | 5.3% | 8.14% | 9.77%
New Analytic Model | 3.08% | 0.46% | 1.07%

(b) Errors of py.
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0.1/n%, and 1/n*. In this table, the mobility rate is = 0.5\ and the call completion
rates are u = 0.1\, 0.2, and 0.3\ respectively. The results suggest that for various
v, the p,. values of the new analytic model are much closer to the simulation results

than that of the old analytic model.

4.4 Conclusions

Most analytic modeling studies for cellular networks assume that the handover traffic
to a cell is a fixed-rate Poisson process. This assumption may introduce significant
inaccuracy for modeling small-scale cellular networks. This chapter showed that
the handover traffic to a cell depends on the workloads of the neighboring cells.
We derived the exact equation for the handover force-termination probability when
the MS cell residence times are exponentially distributed. Then we proposed an
approximate model for general MS ¢ell residenice time distributions. We used the
analytic model to validate against the simulation model with the excess life modeling
technique. Then the analytic results were compared with a previously proposed
model, which indicated that the new model can’ capture the handover behavior

much better than the old one for small=scale cellular networks.
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Chapter 5

Conclusions and Future Work

This dissertation emphasizes the issues related to the mobile user mobility, espe-
cially the MS cell residence times and the excess life of a mobile user in a cell or an
LA. We explored excess-life random number generation, fixed and dynamic PLAU
schemes, and performance modeling for small-scale cellular telecommunications net-
works. This chapter summarizés our studies, and briefly discusses directions of the

future work.

5.1 Summary

In performance evaluation of a cellular telecommunications network, it is impor-
tant to derive the excess life distribution from the MS cell residence times. This
distribution determines if a connected call will be handed over to a new cell, and
therefore significantly affects the handover force-termination probability of the net-
work. Since we use simulation results to validate against the analytical results, we
need to generate the excess-life random numbers in the simulation model. How-
ever, generating the excess-life random numbers is not a trivial task, which has not
been addressed in the literature. Chapter 2 showed how to derive the excess life
distribution and to generate the random numbers from the excess life distribution.
We then developed the excess-life random number generation procedures for MS

cell residence times with gamma, Pareto, lognormal and Weibull distributions. Our
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study indicated that the generated random numbers closely match the true excess-
life distribution (i.e., Equation (2.1)). Therefore, our procedures can be utilized to
efficiently generate excess-life random numbers in cellular telecommunications net-
work simulations. These procedures were used in the subsequent research topics
addressed in this dissertation, as described below.

The first example was shown in Chapter 3. In cellular communications networks,
PLAU is utilized to detect the presence of an MS. In 3GPP Technical Specifications
23.012 and 24.008, a fixed PLAU scheme was proposed for UMTS where the in-
terval between two PLAUs is of fixed length. We observed that MS presence can
also be detected through call and movement activities. Therefore we proposed a
dynamic PLAU scheme where the PLAU interval is dynamically adjusted based on
the call and NLAU traffic. An analytic model was developed to validate against
the simulation model with the excess life modeling technique. Then we investigated
the performance of dynamic andfixed PLAU schemes. Our study indicated that
compared with fixed PLAU, dynamie PLAU significantly reduces the network sig-
naling traffic caused by PLAU. As a final remark,-in dynamic PLAU, storage and
the mechanism maintaining m = 20 or 30“inter checkpoint arrival time samples for
an MS can be practically implementeéd in the UMTS network (specifically, in the
VLR). The PLAU/ID timer value can be efficiently computed using the window
averaging technique [30].

The second example was shown in Chapter 4. Most analytic modeling studies for
cellular telecommunications networks assume that the handover traffic to a cell is
a fixed-rate Poisson process. This assumption may introduce significant inaccuracy
for modeling small-scale cellular telecommunications networks. This chapter showed
that the handover traffic to a cell depends on the workloads of the neighboring cells.
We derived the exact equation for the handover force-termination probability when
the MS cell residence times were exponentially distributed. Then we proposed an
approximate model for general MS cell residence time distributions. We used the
analytic model to validate against the simulation model with the excess life modeling

technique. Then the analytic results were compared with a previously proposed
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model, which indicated that the new model can capture the handover behavior

much better than the old one for small-scale cellular telecommunications networks.

5.2 Future Work

In performance modeling, Laplace transforms play an important role in analytic
models (e.g., equations (3.7), (3.8) and (3.9) in Chapter 3, and equations (4.24) and
(4.39) in Chapter 4). However, while some distributions have closed-form Laplace
transforms (e.g., exponential distribution, Erlang distribution, gamma distribution,
etc.), some other heavy-tailed distributions (e.g., Pareto distribution, lognormal
distribution, and Weibull distribution with the value of the shape parameter being
within the range (0,1)) do not have closed-form Laplace transforms, which intro-
duce significant complexity to the derivation of the analytical formulas. We will
investigate a special Laplace transform approximation technique called Transform

Approzimation Method (TAM) as our future work (see Appendix C for more details).
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Appendix A

The Call-based Simulation

This appendix describes the basic call-based discrete event simulation for mobile
telecommunications network. Several random variables are defined: the inter call
arrival time (the call arrivals are typically, modeled as a Poisson process), the call
holding time, the MS cell residenece time.and.thetexcess life of the MS cell residence
time. Three basic event types are considered: the arrival event (a call arrival),
the move event (an MS movement), and the complete event (a call completion).
Every event is associated with a timestamp representing the time when the event
occurs. All unprocessed events are inserted'in an event list and are processed in the

non-decreasing timestamp order. The notation used in this appendix is listed below.
e t.: the call holding time
e 7.: the remaining call holding time
e t,,: the MS cell residence time
e 7,,: the excess life of the MS cell residence time
Details of the call-based simulation are described in the following steps:

Step 1 (Initialization): Generate the first arrival event and insert it in the event

list.
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Step 2. Remove the next event from the event list. If the event type is arrival then
go to Step 3. If the type is move then go to Step 5. If the type is complete
then go to Step 6.

Step 3 (arrival). Check if the cell can accommodate this call based on some wire-
less resource allocation policy. If not, reject the call, update the call statistics,
and go to Step 4. Otherwise, generate the random numbers for the excess life

Tn Of the MS cell residence time and the call holding time ..

Step 3.1. If 7, > t., generate a complete event with timestamp “current

time—+t,.”.

Step 3.2. If7,, < t., generate a move event with timestamp “current time+7,,”.
Note that when the move event occurs, the remaining call holding time

18 To = t, — Top.
Insert the generated eventinto the event list,

Step 4. Generate the next arrival event accordingto the Poisson process and insert

it into the event list. Go to Step 2.

Step 5 (move). The MS moves from the old cell to the new cell. Check if the new
cell can accommodate this handover call. If not, drop the call, update the call
statistics, and go to Step 2. Otherwise, generate the MS cell residence time

tm. The remaining call holding time is 7.

Step 5.1. If t,, > 7., generate a complete event with timestamp “current

time+7,”.

Step 5.2. Ift,, < 7., generate the next move event with timestamp “current
time+t,,”. Note that when the next move event occurs the remaining

call holding time is 7, + 7. — t,,.

Insert the generated event into the event list. Go to Step 2.
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Step 6 (complete). Reclaim the resources used by this call. Update the call statis-

tics, and go to Step 2.

The simulation can be terminated based on various criteria. For example, at Step 3,
we may check if some terminating conditions are satisfied (e.g., 1000,000 call arrivals

have been simulated). If so, the simulation terminates.

69



Appendix B

Solving the n-Dimensional Markov

Process

This appendix solves the n-dimensional, Markov Process for Pr[N; = ¢|, E[N;] and
E[N;|N; = c] in (4.1) and (4.23)+in Chapter.4. The notation used in this appendix

is listed below.

e N,: arandom variable for-the numberof busy channels in cell 7, for 1 <: <n

n: the number of cells in the cellular system under consideration

c: the number of channels in each cell in the cellular system under consideration

S;: the index set of cell ¢’s neighbors, for 1 <7 < n

e s: we assume that |S;| = |S;| = s for 1 < 4,5 < n, where |S;| is the number of
cell s neighbors for 1 < ¢ < n and |S;| is the number of cell j’s neighbors for

1<j<n

§;: for 1 < j <,

0, ifk; < e,
if k; = c.

5 =

J
1

Y

k;: the number of busy channels in cell i for 1 <i<nand 0 < k; <c
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the steady state probability for state (kq,ko,- -, k,), and II = [mh, gy ko]

(k1,ko,- -, kyn): astate in the Markov process

A: the transition rate from state (k1,-- -, ki, -+, ki, - -, kn) to state (ki, - -, ki+
1.+, ki, -+, k), where k; < cand 1 <1 # j < n (note that A is also the new

call arrival rate to a cell mentioned in Chapter 4)

p: the call completion rate (note that 1/u is the mean call holding time

mentioned in Chapter 4)

n: the MS mobility rate (note that 1/n is the mean MS cell residence time

mentioned in Chapter 4)

Thy ko, k. the steady state probability for state (kq, ks, -, ky)

IT: the stationary probability distribution vector; i.e., Il = [Wklakz’“‘akn]lx(c+1)"
Q: the state transition rate matrix for the Markov process

pp: the new call blocking probability;.i.e., the number of new call blockings

divided by the number of new calls

ps: the handover force-termination probability; i.e., the number of forced ter-

minations divided by the number of handovers

Pne: the call incompletion probability (the probability that a call is either
blocked or forced to terminate); i.e., the sum of the numbers of new call

blockings and forced terminations divided by the number of new calls (note

that p.. # py + py)

We assume that the call holding times and the MS cell residence times have expo-
nential distributions. The n-cell cellular system can be modeled by an n-dimensional
Markov process. A state in the Markov process is of the form (ki, ko, - - -, k), Where

k; is the number of busy channels in cell 2 for 1 < 1 < nand 0 < k; < ¢. The

total number of states for this Markov process is (¢ + 1)". Let my, g, x, denote

1x(c+1)™
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Figure B.1: The Transitions for State«(k,---, ki, -, ki, -+, kn)

denote the stationary probability, distribution vector. Fig. B.1 illustrates the state
transition diagram for state (kyg« - - jkiysspkiys - - s By ) in this Markov process, where

1 <i<nandl €S, Inthis figure;; (for 1 £ 5'< n) is defined as

0, ifk; <ec,
5 =
1, ifkj=c
The transitions for state (ki,- -, ki, -, ki, -, ky) are described as follows.

Transition 1 (New Call Arrival): When a new call arrives at cell 4, the process
moves from state (kq, -, ki, -+, Ky, -+, ky) tostate (ky, -+ ki1, koo k).
Since the transition rate is A for k; < ¢, and 0 for k; = ¢, the net transition
rate is (1 — &;)A. Transition 2 is similar to Transition 1, and the details are

omitted.
Transition 3 (Channel Release due to Call Completion or Handover to

a Fully Occupied Cell): The Markov process moves from state (k1, - - ki, - - k1, - - k)

to state (k1, -+ ,ki — 1,-- - k- -+ k) in two cases:
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1. A call is completed at cell « with rate pu.

2. The MS moves from cell 7 to a neighboring cell [ where k; = c¢. Clearly,
this call is forced to terminate. The MS moves to a neighboring cell [ with

rate 1 and the handover fails if §; = 1. Therefore, the total transition

Since there are k; busy channels (i.e., k; ongoing calls) at cell 4, the rate for

kix(,u-{— 251_77)

Transition 3 is

leS; s

Transition 4 is similar to Transition 3, and the details are omitted.

Transition 5 (Successful Handover to a Non-fully Occupied Cell): When a
call is handed over from cell i to,gell.l where k; < ¢, the process moves from

state (ki, - ,ki, -+ ki, - - kn) to states(ky,«fe ki —1,- -k +1,---,k,). Since
1-8&)n .
~———. Tran-

s
sitions 6, 7, and 8 are similar to Transition 5; and the details are omitted.

there are k; ongoing calls-at.cell ¢, the.fransition rate is k; X

Let Q denote the state transition‘rate matrix for the Markov process. We solve 11

from the equilibrium equations IIQ =0 and »_ Y -+ Y 7y 4y, = 1. Then
k1=0 k2=0  kn,=0
we derive Pr[N; = ¢], E[N|] and E[N,|N; = ¢] in (4.1) and (4.23) as follows. For

1 <1< n,

c c (5
Z Z Z Tki=c,ka, - kn for 1 = 1,

kz 0 k3=0 kn—O

Pr[N; = ] = Z Z Z ) My kimerk, fOr 1<4<n,  (B.1)

I-1_0 _1= =0 ]<‘1+1 0 k =0
Z Z Z Ty koo kn=c for 1 = n.
k1=0 ky=0 Ep_1=0

\

For 1 <[ <n,

E[Nl] = Z kl PI‘[N[ = kl]
k[=0

= > TS kT ek (B.2)

k1=0 k=0 kn=0
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For1<i<mnandl €S,

E[N1|Nl = C]
= Z l{:l PI‘[N[ = kl|NZ‘ = C]

k1=0

v Pr[{N; = ki} N {N; = c}]
N Zklx Pr[N; = ¢

- Z Y K

k2=0 —0 kn —0

Z Z Z Tky=c,kz,kn

ko= 0 k3=0 kn—O

C

DI Y T N

k2=0 k3=0 kn=0
c

c c
D2 Dl Mhimeks ok

kz 0 k3= 0 kn—O

Z Z Z kﬂrkl, “kpekn =c

knlo

Z Z Z Thy ko, kp=c

k1_0 k2=0 kn 1=0

Z Z Z Lo | Wy S

k1=0 k2=0 kp—1=0

¢ ¢ ¢
DD DL Mhikiikase

k10k90 kn10

Z Z Z Z klﬂ-kl,---,kizc,---,kn

k1= 0 ki 1_0k1+1_0 kn_O
)DRIED DI DINED DRI
k=0 kis1=0 kit1=0  ku=0

k1=0 kl 1_0k1+1_0 1 =0  kp=0

Z Z Z Z Zkﬂfh...,k,_c gy ko

YSRETED DD SIS SE A

=0 ki3=0 k=0 ku=0

IR SR ST DY A

kl—O k 1= 0k1+1 0 li‘ _0

Z 2D D ST SR

\ ki—1=0 kiy1=0 kn=0

fort=1,1<1<n,

fori=1,l =n,

fori =n,1 <l <n,

for : =n,l =1, (B.3)

forl<i<n,l=1,

for 1 <i#1<n,

forl<i<n,l=n

Substituting (B.1), (B.2) and (B.3) into (4.1) and (4.23), we obtain p, and p; re-

spectively. Substituting these p, and p; expressions into (4.25), we obtain p,.
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Appendix C

Transform Approximation

Methods (TAM)

In performance modeling, analytic solutions often contain the Laplace transforms in
their formulas [23, 4, 11, 38, 21,:33]. Seme disttibutions have closed-form Laplace
transforms, such as exponential distribution; Erlang distribution, gamma distribu-
tion, etc. However, heavy-tailed distributions, e.g.; Pareto distribution, lognormal
distribution, and Weibull distribution 'with shape parameter in the range (0, 1), often
do not have closed-form Laplace transforms, which introduce significant complexity
to the derivation of the analytical formulas. To avoid the complexity, one feasible
way is to use simulations instead of analytic solutions, which however could make
the modeling results less persuasive due to the lack of analytical analysis. To resolve
the problem, approximation methods for Laplace transforms are taken into account
in the literature. In this appendix, we focus on a previously proposed approximation
technique called Transform Approzimation Method (TAM) [16, 17, 44]. We discuss
both the previously proposed TAM techniques [16, 17, 44] and the modified TAM

techniques we investigated. The notation used in this appendix is listed below.
e «: the shape parameter of a Pareto distribution

e [3: the scale parameter of a Pareto distribution
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e a: avalue used in M2 (one of the modified TAM techniques that we proposed),
where the value is suggested to be derived by the criterion that the “TAM

distribution mean” matches the “true distribution mean”
e b: a randomly chosen value used in M3 and M4
e f(z): the density function for an arbitrary distribution
e F(z): the CDF for an arbitrary distribution
e F~!(z): the inverse function of F(z)
e f*(s): the Laplace transform for an arbitrary distribution
e f*(s): the approximate Laplace transform for f*(s)
e 7n: the number of partitions in TAM techniques
e v;: the partition interval léngth in'the SFGM TAM and M1
. 111511215)7(1 v;: the norm of the partition 1n the SEFGM TAM
e v: a value used in the SFGM TAM, where the value is suggested to be de-

rived by the criterion that the “TAM distribution mean” matches the “true

distribution mean”

The TAM technique was first presented in [16, 17] (called the “HMBF TAM”),
and then generalized in [44] (called the “SFGM TAM”). For a distribution with
CDF F(z), HMBF TAM approximates the Laplace transform

)= [T e saya= [ 1(m)=06_5“”dF($), (C.1)

by a Riemann sum

where
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Figure C.1: Integral Area Slicing Based on HMBF TAM (s = 0.1)

Figure C.1 demonstrates how the integral area is sliced into smaller slots based on
(C.2) for Pareto distribution with shape parameter a = 1.2 and scale parameters
B = 1.75 (Figure C.1(a)) and 8 = 35 (Figure C.1(b)) respectively (note that Fig-

ST curves

ures C.1(a) and C.1(b) demonstrate different slope tendencies of the e~
respectively). In this figure, the z-axis represents F'(z), which is the variable of the
integral in (C.1); and the y-axis represents the integrand e™*” in (C.1). Note that
both e™** and F'(z) are functions of . From (C.3), we have F(z;) = (i — 0.5)/n for
i =1,2,--+,n in this figure. From (C.2), the partition intervals are equally sliced

with length 1/n. In Figure C.1(a), SFGM TAM approximates the curve well when

F(z) is small, but incurs significant errors when F'(z) is large. In Figure C.1(b), we
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see the reverse results.

In [44], SFGM TAM approximates the Laplace transform f*(s) as

where
z;=F 71—, fori=1,2,---,n, and 0 < v < 1, (C.5)

and the partition intervals are

F(z1) + F(zs)

) 1: = 1’
F(z;11) — F(x;_
ﬂyi — ("L’Z+1§ 5 (xz 1)’ 7, — 2’3,'--’7.1/_ 1’ (C_6)
1-— F(xn_l);_ F(:L‘n)’ 7 =n.

Based on (C.6), Figure C.2 demonstrates how the integral area is sliced into smaller

slots for Pareto distribution withishape parameter o = 1.2 and scale parameters
B = 1.75 (Figure C.2(a)) and g = 35 (Figure:€C.2(b)) respectively. From (C.5), we

have
F(:Bi)ZI—Vi,fori:1,2,---,n, and 0 < v < 1. (C.7)

By substituting (C.7) into (C.6), we have

( 2
DL AN
1—1 1— 2
vi=4 Z (2 i S (C8)
Vn—12_|_ Vn’ P~

From (C.7) and (C.8) (ignoring the boundary exceptions “/ = 1” and “/ = n” in
(C.8)), it is clear that the larger the F(z;) value, the smaller the partition interval
(the 7, value; as illustrated in Figure C.2). The SFGM TAM [44] suggests to derive
v by the following criterion that the “TAM distribution mean” matches the “true

distribution mean”, i.e.,

— /z_ 2 f(z)de. (C.9)




e ie_SFi (1_V)\e_sxi= ‘SF_1(1—V2)‘/ -sX _ e—SF_1(1—VS)
TOT* %\
e~ SX
o} * e
F(x,)=1-v F(x,)=1-v5 F(x3)=1_v ) F(x)
f— Yy S Yy Yy
(a) Pareto CDF with o.= 1.2:and B = 1.75
0.035 -
-1
e_sx e~S%, = e—sF (1-v)
\ e 5%, = e—sF_1(1—v2)
\f eSX _e—sF"(1—v3) e » )
: *<] o = eSF (1=V)
0 % v % \

Fix)=1-v  F(x)=1-v2 Flix)=1-v° F(x) !

e Tk

(b) Pareto CDF witha=1.2and 3 =35

Figure C.2: Integral Area Slicing Based on SFGM TAM (s = 0.1)
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Also note that max . is the norm of the partition [46]. From the definition of the
1SN

definite integral as a limit of Riemann sum, we have the following theorem [46].

Theorem A.1. If lim max vi = 0, then the Riemann sum f* (s) converges to the

integral f*(s) for all s as n — oo.

From Theorem A.1l, it is desirable to derive v such that 11_1)11 111<1a<x v = 0. In

the following theorem, we show how to judge whether a derived v can guarantee

lim max ~; = 0.
n—o0 1<i<n

Theorem A.2. lim max 7; = 0 if and only if the following two requirements are

n—oo 1<i<n

satisfied.

Requirement A.1. lim v =1 (ie, asn — oo, v — 1).

n—r00

Requirement A.2. lim v" =0(i&jas n — oo, v" — 0).

n—oo

Proof :

<) We first prove the hypothesis-that if both Requirements A.1 and A.2 are
satisfied, then lim maxy; = 0. For2<i<n —1in (C.8), we have

n—o0 1<i<n,

V(=)

2<lm<z%1x1’yz =7 = 5 (C.10)
From Requirement A.1 and (C.10), we have
1 — 2
lim max «; = lim v(1—v) =0. (C.11)
n—00 2<1<n—1 n—00
From Requirement A.1 and (C.8), we have
1% + v
Jim 4 = lim <1 ) = 0. (C.12)
From Requirement A.2 and (C.8), we have
L 1 + "
e = fim () = 0 (C.13)

From (C.11), (C.12) and (C.13), the hypothesis holds.
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=) Now we prove the hypothesis that if lim max -; = 0, then both Require-

Q.E.D.

n—oo 1<i<n

ments A.1 and A.2 are satisfied. For i = 1 in (C.8), we have the following

inequality:

I/-|—I/2>1_I/-|-V

For i = n in (C.8), we have the following inequality:

n—1 n n n
'yn:V 2+V ZV ;V =" (C.15)

Since lim max v; = 0, we have
n—00 1<i<n

lim v =0 and lim v, = 0. (C.16)

From (C.14), (C.16) and the fact that lim v, = 0, we have lim (1 —
n—0co n—00
v) = 0, which implies that" lim % = 1 (Requirement A.1 is satisfied).
From (C.15), (C.16) and because «lim v, = 0, we have lim v" = 0
n—00 n—r00

(Requirement A.2 is satisfied).

According to Theorem A.2, we show that criterion (C.9) does not necessarily yield

appropriate v that guarantees lim max y; = 0:

n—oo 1<i<n

Theorem A.3. The v value derived from criterion (C.9) is affected by the value of

n (see (C.4)). Therefore, ¥ may not converge to 1 as n — oo, which violates

Requirement A.1.

Proof: Consider the example where v = (L) . From [46],

n+1
) ) n \" ) I \" 1
lim v = lim ( ) = lim (1— ) =e . (C.17)
n—oo n—oo \n + 1 n—00 n + 1

From (C.17), lim v = e~ ! # 1 and Requirement A.1 is violated.

Q.E.D.
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Theorem A.4. Because the v value derived from criterion (C.9) is affected by the
value of n (see (C.4)), the ™ value is not assured to converge to 0 as n — oo,

which violates Requirement A.2.

Proof: If v = —~—_ then
n—+1

lim v = lim ( n ) = lim (1— ! ) =e7h (C.18)

n—00 n—oo \ 7, + 1 n—0o0 n+1

From (C.18), lim v™ = e™' # 0 and Requirement A.2 is violated.

n—oo

Q.E.D.

From Theorems A.2-A 4, criterion (C.9) may not yield appropriate v that guarantees

lim max y; = 0. Therefore, SFGM TAM may not produce accurate result (see

n=00 1<i<n

Theorem A.1). A “tail behavior” problem caused by the lack of ¢ ?111_1)1010 max v =
0” is specifically pointed out as follows. Shertle et al. [44] claimed that _SFGM
TAM with approximation formula (C.4) captures the tail behavior of heavy-tailed
distributions, since F(z;) = 1°= v* (see {C.7)) geometrically approaches 1 when i
becomes large. However, since criterion(€:9) does not guarantee that the derived
v satisfies Requirement A.2, F(xz;) =& =w! may not approach 1 when i becomes
large. Therefore, SFGM TAM may not capture the tail behavior of heavy-tailed
distributions. Even though F(z;) = 1 — v* happens to approach 1 geometrically
when ¢ becomes large, the same goal (to capture the tail behavior) can also be
achieved if we choose z; such that z, approaches infinity at a suitable rate (which
implies that F'(z;) approaches 1 at a suitable rate). Note that we say “at a suitable
rate” in the sense that F(z;) need not “geometrically” approach 1. For example,
in HMBF TAM, the partition intervals are equally sliced with length % (see (C.2)),

and we say that F(z;) approaches 1 “at a suitable rate.” Another example (to be

1
elaborated later) is to let z; = F~* (1 + a) fori=0,1,---,n—land 0 < a< —.
n n

In this example, the partition intervals are also equally sliced with length —, and
n
we say that F'(z;) approaches 1 “at a suitable rate.” Note that v does not exist in

the z; expression in this example.
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In addition, SFGM TAM implicitly made an inappropriate assumption on the

— ST

slope of the e curve against F'(z). In general, when using the Riemann sum
f*(s) to approximate the integral f*(s), the integral area should be sliced into
smaller slots when the slope is steepened in order to capture the integral area more
accurately. On the other hand, the area can be sliced into larger slots without
introducing significant inaccuracy when the slope is less steepened. From (C.7) and
(C.8) (ignoring the boundary exceptions in (C.8)), we observe that when i is large,
7; becomes small while F(z;) = 1 — V' becomes large (see the points F(z;) and
the intervals 7; in Figure C.2), which implies that SFGM TAM assumed that the

S

slope of the e™** curve against F'(z) becomes more and more steepened when F(z;)

—ST

becomes large (see Figure C.2(a)).However, the e™** curve against F'(z) may behave
differently. The curve in Figure C.2(b) gives an example where SFGM TAM may
result in inaccurate approximation of f*(s) due to the inappropriate assumption on
the slope.

To summarize, two requirements for-accurate approximation of f*(s) are listed

below:

Requirement A.A. lim max'vy; = 0.

n—00 1<i<n

Requirement A.B. The integral area must be sliced appropriately according to

k)

the slope of the e™** curve against F'(z).

Now we elaborate the proposed modified TAM techniques in M1, M2, M3 and M4
as follows. Note that all of them use the same approximation formula (C.4) with

alternative x; expressions.

M1. We propose that
;= F(v'), fori=1,2,---,n, and0 < v < 1, (C.19)

where we use criterion (C.9) to derive v (called the “Modified TAM 1”). Note
that from (C.19), we have

F(xi):Vi, fori=1,2,---,n, and 0 < v < 1. (C.20)
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Figure C.3: Integral Area Slicing for Modified TAM 1 (s = 0.1)

In this modification, the ~; is expressed as follows.

B F(z2) + F(z1)

2 b 7::1,
Flz;,_1) — F(x;
y={ Pl = Flew) 5 oa
n 5 n—l’ i = n.

(C.21)

A demonstration of integral area slicing for this modification (based on (C.21))

is shown in Figure C.3 (note that Figures C.3(a) and C.3(b) demonstrate

different slope tendencies of the e™** curves respectively). By substituting
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(C.20) into (C.21), we have

( 2
P LA
1—1 1— 2

Vi = 4 M’ i=2,3,-,n—1, (C.22)
n—1 n
%’ Pi—n.

It is obvious that (C.22) has exactly the same form of (C.8). Therefore, Theo-
rem A.2 is applicable for this modification. We observe that this modification
has the same problem as SFGM TAM, and Requirements A.1 and A.2 may

not be satisfied.

e Criterion (C.9) does not guarantee that F(z;) = v — 1 as n — o0

(Requirement A.1 may not be satisfied).

e Neither does criterion (C.9) guarantee that F(z,) = v™ — 0 as n — o0

(Requirement A.2 may.not be satisfied).

From Theorem A.2, we conclude that-Requirement A.A may not be satisfied
by this modification. However, we can-prove that this modification satisfies
Requirement A.B for the curves behaving.as shown in Figure C.3(b) in the

following lemma.

Lemma A.1. Modified TAM 1 satisfies Requirement A.B for the e™** curves

behaving as shown in Figure C.3(b).

Proof: From (C.20) and (C.22) (ignoring the boundary exceptions in (C.22)),
we observe that when i is large, 7; becomes small while F(z;) = v/* be-
comes small too (see the points F'(z;) and the intervals v; in Figure C.3).

— ST

This characteristic assures that for the e™** curves behaving as shown in
Figure C.3(b), the integral area can be sliced appropriately according to
the slope of the e™** curve against F'(z). In other words, Modified TAM
1 satisfies Requirement A.B for the e™** curves behaving as shown in this

figure.

Q.E.D.
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M2. We propose that
1 (1 . 1
z;=F (—+a), fore=0,1,---,n—1, and 0 < a < —. (C.23)
n n

In (C.23), we use criterion (C.9) to derive the a value (called the “Modified
TAM 2”). In this modification, f*(s) is slightly modified as follows.

n—1
fr(s) = me™™, (C.24)
1=0

where v; = % fort=20,1,---,72 — 1. A demonstration of integral area slicing
for this modification (based on (C.24)) is shown in Figure C.4 (note that
Figures C.4(a) and C.4(b) demonstrate different slope tendencies of the e™**
curves respectively). In the following lemma, we prove that this modification

satisfies Requirement A.A.

Lemma A.2. Modified TAM 2 satisfies Requirement A.A.

. 1 . . .
Proof: Sincey;, = —fori=0,1,-+-;n—1,wehave lim max ;= lim — =
n n—00 0§i§n—1 n—o0 N,

0, and Requirement=A.A 1s satisfied.

Q.E.D.

Note that although Requirement A.B is not satisfied by this modification,
the area can still be captured well as n — oo. Moreover, although the form
of (C.24) with v; = 1/n is similar to that of HMBF TAM (see (C.2)), the
a value in (C.23) is supposed to make this modification outperform HMBF
TAM, because the a value can be adjusted according to different distributions

or different distribution parameters based on criterion (C.9).

M3. We propose that
T; = F_l(l — I/i), fori=1,2,---,n and 0 <v <1. (C.25)

In (C.25), we set

b

V:( r ) , where 0 < b < 1 (C.26)
n+1

86



loS%) = e—sF'1(;\ : ) T
(—s:x1 _ e—sF 1(1_/n+ 4\\‘4
. . " Jsx _ _-sF7(n-2)/n+a)
—SX : : : 1) : : 4\{\: "¢
e : : :—'sxz _ e—sF’ (2/n+a) : : : R
- - f-= - - - - - _ _sF'((n-1)/n+a]
EEEEEN \i
0 * * * : : : : * * y
Fix)=a F(x)=tin+a F(x,)=2/n+a ~ F(x) F(x_)=(-2)n+a Fx_)=(n-1)in+a
fe— 1N —ste— 1/ —>fe— 1/n —f [e= 1N e e 10 e 10
(a) Pareto CDF with av=.1.2and = 1.75
0.035
e 5%, = e—sF_1(a)
N
: o, _ e—sF"(1/n+a)
\k/

—SX

. e “Tna
: : \\k _ e-sF"((n_wma)
oL H H T .

0 Fix)=a F(x)=1/n+a F(x)=2/n+a F(x) Fix,_,)=(n-2)/n+a F(xn71)=(n—1)/n+a1

2
o= Un e U e 10— e 1/ e 1 —>fe= Un e 10—
(b) Pareto CDF with o.= 1.2 and B = 35

—SX : -1
. . -sx__ o—SF (2/n+a) 1
e : \ ‘/e 2= e, = est ((n-2)/n+a)
X X Ny

S S
n® n®

Figure C.4: Integral Area Slicing for Modified TAM 2 (s = 0.1)
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(called the “Modified TAM 3”). In this modification, v;’s are the same as (C.8)
because this modification and SFGM TAM have the same z; expression (see
(C.5) and (C.25); note that how v is derived makes no difference). Therefore,
Theorem A.2 is applicable for this modification. Also, the demonstration of
integral area slicing for this modification is similar to Figure C.2. We observe
that this modification has the same problem as SFGM TAM: the area under

s

the steepened part of e™** may not be captured well when encountering the

e™** curves as shown in Figure C.2(b); that is, Requirement A.B may not

be satisfied in the situation such as shown in this figure. Despite of this
remaining problem, we show that this modification satisfies Requirement A.A
in the following lemma.

Lemma A.3. Modified TAM 3 satisfies Requirement A.A.

Proof:

(A) We first prove sthe [hypothesis, that Modified TAM 3 satisfies Re-

quirement A.1 fi.e.;" lim »=1). From (C.26), as n — oo, we have

b b—1 b—1
n naqn 1 naqn
lim v = lim ( . ) = lim [( i ) ] = lim [(1— ) ] (C.27)

By substituting (C.17) into (C.27), (C.27) can be re-written as

lim v = lim e™ =1, (C.28)

n—oo n—oo
and the hypothesis holds.

(B) Then we prove the hypothesis that Modified TAM 3 satisfies Re-
quirement A.2 (i.e.,, lim v™ = 0). From (C.26), as n — oo, we

n—oo

have

b M b b

n nan 1 nan
lim " = lim ( - ) = lim [( - ) ] = lim [(1— ) ](0.29)
n—o0 n—00 n+1 n—00 n+1 n—o0 n+1

By substituting (C.17) into (C.29), (C.29) can be expressed as

lim v" = lim e™™ =0, (C.30)

n—oo n—oc

and the hypothesis holds.
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From Theorem A.2, since both Requirements A.1 and A.2 are satisfied,

Requirement A.A is satisfied as well.

Q.E.D.

It should be noted that the b value is not derived from criterion (C.9), but
merely randomly chosen. Otherwise, the b value is affected by the value of n

(see (C.4)), which could invalidate the proof of Lemma A.3 (see (C.28) and

Inln 2
(C.30)). For example, when b = na + 1 (b is affected by n), (C.28) can be
nn
expressed as
1 Inln 2
lim v = lime™ = lim e ™" (C.31)
n—00 n—oo n—00
1 Inln 2
- n]ggoe_(”l”") (C.32)

From the property of the logarithm, we have nEn = e, and (C.32) can be

re-written as

nin nin _1 1 1
lim v = lim e~ = lim (eel l 2) = lim 27! = lim - = = # 1.(C.33)
n— 00 n—oo n—00 n—>00 n—oco 9 2
. lnin2 .
Another example is when'b = 1 (b is affected by n), (C.30) can be ex-
nn
pressed as
. . b . lrllln2
lim »" = lim e™ = lim e™" ™" . (C.34)

n—oo n—oo n—oo

It is clear that (C.34) is the same as (C.31). Therefore, (C.34) can be derived

1
to the same result as (C.33), and we have lim v" = 3 # 0. As a consequence,

n— oo

Requirement A.A may not be satisfied if the b value is derived from criterion
(C.9). Therefore, the b value is randomly chosen instead of being derived from

criterion (C.9) (in this paper, we use “b = 0.5” as an example).
M4. We propose that
mi:F_l(yi),fori: 1,2,--+,n and O0<v <1, (C.35)

where the v expression is the same as (C.26) (called the “Modified TAM 4”).

In this modification, the <, expression is the same as (C.22) because this
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modification and Modified TAM 1 have the same z; expression (see (C.19) and
(C.35); note that how v is derived makes no difference). Therefore, Theorem
A2 is applicable for this modification. Also, the demonstration of integral area
slicing for this modification is similar to Figure C.3. In the following lemma,
we prove that this modification satisfies Requirement A.A. This modification

—S8T

also satisfies Requirement A.B if the e™** curve against F'(z) behaves as shown

in Figure C.3(b).

Lemma A.4. Modified TAM 4 satisfies Requirement A.A. If the e™*" curve
against F'(z) behaves as shown in Figure C.3(b), Modified TAM 4 also

satisfies Requirement A.B.
Proof:

(A) As we have shown in Lemma A.3, since Modified TAM 4 has the
same v expression-as that of Modified TAM 3 (see (C.26)), it satis-
fies both Requiréments A.Ljand. A.2. Therefore, from Theorem A.2,

Requirement AJA 1s also satisfied by this modification.

(B) As we have shown in'Lemma A.l, since F(z;) = v' (see (C.35)),

—ST

Requirement A.B is ‘satisfied if the e™** curve against F'(z) behaves

as shown in Figure C.3(b).

Q.E.D.

Note that with the same reason as stated in M3, the b value is randomly
chosen instead of being derived from criterion (C.9) (in this paper, we use

“b=0.5" as an example).
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