This article was downloaded by: [National Chiao Tung University BI3Z 5B AZ2]

On: 25 April 2014, At: 06:48

Publisher: Routledge

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer
House, 37-41 Mortimer Street, London W1T 3JH, UK

: — Quantitative Finance
QU iwrlll‘lifk]:!:'ll‘ Publication details, including instructions for authors and subscription information:

http://www.tandfonline.com/loi/rquf20

Efficient option pricing on stocks paying discrete or
path-dependent dividends with the stair tree

Tian-Shyr Dai ®

% Department of Information and Finance Management and Institute of Finance ,
National Chiao-Tung University , 1001 Ta Hsueh Road, Hsinchu, Taiwan 300, ROC
Published online: 12 Oct 2009.

To cite this article: Tian-Shyr Dai (2009) Efficient option pricing on stocks paying discrete or path-dependent dividends
with the stair tree, Quantitative Finance, 9:7, 827-838, DOI: 10.1080/14697680902814217

To link to this article: http://dx.doi.org/10.1080/14697680902814217

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of
the Content. Any opinions and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied
upon and should be independently verified with primary sources of information. Taylor and Francis shall

not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other
liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or
arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any

form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions



http://www.tandfonline.com/loi/rquf20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/14697680902814217
http://dx.doi.org/10.1080/14697680902814217
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Downloaded by [National Chiao Tung University | at 06:48 25 April 2014

Quantitative Finance, Vol. 9, No. 7, October 2009, 827-838

é Routledge

Taylor & Francis Group

Efficient option pricing on stocks paying discrete or
path-dependent dividends with the stair tree

TIAN-SHYR DAI*

Department of Information and Finance Management and Institute of Finance,

National Chiao-Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan 300, ROC

(Received 23 January 2007; in final form 6 February 2009)

Pricing options on a stock that pays discrete dividends has not been satisfactorily settled
because of the conflicting demands of computational tractability and realistic modelling of the
stock price process. Many papers assume that the stock price minus the present value of future
dividends or the stock price plus the forward value of future dividends follows a lognormal
diffusion process; however, these assumptions might produce unreasonable prices for some
exotic options and American options. It is more realistic to assume that the stock price
decreases by the amount of the dividend payout at the ex-dividend date and follows
a lognormal diffusion process between adjacent ex-dividend dates, but analytical pricing
formulas and efficient numerical methods are hard to develop. This paper introduces a new
tree, the stair tree, that faithfully implements the aforementioned dividend model without
approximations. The stair tree uses extra nodes only when it needs to simulate the price jumps
due to dividend payouts and return to a more economical, simple structure at all other times.
Thus it is simple to construct, easy to understand, and efficient. Numerous numerical
calculations confirm the stair tree’s superior performance to existing methods in terms of
accuracy, speed, and/or generality. Besides, the stair tree can be extended to more general
cases when future dividends are completely determined by past stock prices and dividends,
making the stair tree able to model sophisticated dividend processes.

Keywords: Option pricing; Stair tree; Dividends

By assuming that the stock price process follows
a lognormal diffusion process, Black and Scholes (1973)
arrive at their ground-breaking option pricing formula for
non-dividend-paying stocks. Merton (1973) extends the
model to the case where the underlying stock pays a non-
stochastic continuous dividend yield. The resulting for-
mula is often called the Black—Scholes—Merton formula.
In reality, however, almost all stock dividends are paid
at discrete time points rather than continuously. Pricing
options on a stock that pays discrete dividends with
known amounts seems to be investigated first in Black
(1975). This dividend setting is called the discrete dividend
for simplicity.

The discrete-dividend option pricing problem has
drawn a lot of attention in the literature. According to
Frishling (2002), the stock price with discrete dividends
has been modelled by three following ways.

*Email: d88006@csie.ntu.edu.tw

Model 1: This model, crystallized under the discussions
of Roll (1977), Geske (1979), and Whaley (1981), assumes
that the stock price is divided into two parts: the stock
price minus the present value of future dividends over the
life of the option and the present value of future
dividends. The former part (the net-of-dividend stock
price) is assumed to follow a lognormal diffusion process,
whereas the latter part is assumed to grow at the risk-free
rate. Thus vanilla options can be computed by applying
the Black—Scholes—Merton formula with the stock price
replaced by the net-of-dividend stock price. Cox and
Rubinstein (1985) call it ‘ad hoc adjustment.’

Model 2: Musicla and Rutkowski (1997), following
Heath and Jarrow (1988), suggest that the cum-forward-
dividend stock price, defined as the stock price plus the
forward values of the dividends paid from the prevailing
time up to maturity, follows a lognormal diffusion
process. Thus vanilla options can be computed by
applying the Black—Scholes—Merton formula by replacing
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the stock price with the cum-forward-dividend stock price
and by adding the forward values of the dividends prior
to maturity to the exercise price.

Model 3: The stock price decreases by the amount of
the dividend paid at the ex-dividend date and follows
a lognormal price process between adjacent ex-dividend
dates.

Although the above three models attempt to solve the
discrete-dividend option pricing problem, Frishling
(2002) shows that they generate very different option
prices. Roughly speaking, assume the volatility input to
these three models is 0. Model 1 sets the volatility of the
net-of-dividend stock price at o, while Model 3 sets the
volatility of the stock price at o. The volatility of the stock
price in Model 1 is lower than that in Model 3 because the
volatility of the present value of future dividends,
a component of the stock price, is assumed to be 0 in
Model 1. Model 1 therefore produces lower option prices,
and the difference becomes larger as o becomes larger.
Similarly, Model 2 produces higher option prices than
Model 3 since Model 2 assigns the volatility of the
forward values of the dividends, which is not a part of
stock price, to be o.

Although Model 1 and Model 2 are widely accepted in
the literature (see Whaley 1982, Carr 1998, Chance et al.
2002) in solving the discrete-dividend problem, they suffer
from many problems. For example, Frishling (2002)
shows that Model 1 and Model 2 could incorrectly price
barrier options. Bender and Vorst (2001) show that
arbitrage opportunities exist in Model 1 if the volatility
surface is continuously interpolated around ex-dividend
dates. Bos and Vandermark (2002) show that both Model
1 and Model 2 violate a perfectly reasonable continuity
requirement.

Although Model 3 is much closer to reality than the
other two models, there is no exact pricing formula for
European options. Hull (2000) recommends an approx-
imate pricing formula by adjusting the volatility input to
Model 1 using a simple formula. However, this paper
shows that the performance of Hull’s volatility adjust-
ment is mixed. Bos and Vandermark (2002) present an
approach that is a mixture of the stock and exercise price
adjustments (in other words, Model 1 and Model 2). Bos
and Shepeleva (2002) claim that this approach results
in some inaccuracies, especially for in- and out-of-the-
money options. They suggest a different pricing formula
by adjusting the volatility input to Model 1 using
a complex formula. But their approach can not be easily
extended for pricing American options. Besides, the
numerical results in this paper also suggest that my
approach provides more accurate option values than the
aforementioned approaches for pricing European
options.

Model 3 can be implemented by the tree or the related
PDE method.t But a naive application of these methods
results in combinatorial explosion. Take the well-known

(Sd; —D)

Ex-dividend date

0 1 2 3 4

Figure 1. The bushy tree. The initial stock price is S.
The upward and the downward multiplicative factors for the
stock price are u and d, respectively. The upward and the
downward branching probabilities are p, and p,, respectively.
The black nodes in the first two time steps form a CRR tree. A
dividend D is paid out at time step 2. The values in parenthesis
at time step 2 denote the stock prices immediately after dividend
payout. Three separate trees beginning at time step 2 are
coloured in white, light grey, and dark grey, respectively.

CRR binomial tree proposed by Cox et al. (1979) as an
example. Assume that the tree starts at time step 0 and
ends at time step n. Let R stand for the gross risk-
free return per time step. When the stock does not pay
dividends, in one time step the price S becomes Su (the up
move) with probability p, and Sd (the down move) with
probability p,=1-p,, where p,=(R—d)/(u—d).
The relation ud=1 is enforced by the CRR binomial
tree. The black nodes at the first two time steps of the
bushy tree in figure 1 forms a 2-time-step CRR binomial
tree. The CRR binomial tree recombines; thus the size
of the tree is only quadratic in n. Unfortunately, the
recombination property disappears if the stock pays
discrete dividends. Assume that a dividend D is paid at
time step 2. The bushy tree splits into three trees after the
ex-dividend date. Each such tree will be split further at
each subsequent ex-dividend date. As a result, the tree size
grows exponentially with the number of ex-dividend
dates. The bushy tree implements Model 3 faithfully, but
the exponential complexity renders it impractical.

In addition to Model 1 and Model 2, efficient
numerical algorithms and simple formulas can also
result by approximating the discrete dividend with either
(1) a fixed dividend yield on each ex-dividend date or (2)
a fixed continuous dividend yield. The first approach is

tBasically, the trinomial tree is analogous to an explicit finite-difference model (see Lyuu 2002). Thus my method for handling
known dividends or path-dependent dividends can be extended to an explicit finite-difference model.
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Table 1. Sizes of the stair tree and the bushy tree.
The stair tree (Stair) and the bushy tree (Bushy) are
compared in terms of numbers of nodes. The stock
price is 100, the volatility is 30%, the risk-free interest
rate is 10%,and the time to maturity is 0.75 year.
The number of time steps for both the stair and bushy
trees is 300. The number of ex-dividend dates is in the
first column. The exdividend dates divide the 0.75-year
time span into equal-length time intervals. A 1-dollar
dividend is paid at each ex-dividend date. For example,
2 ex-dividend dates means that a 1-dollar dividend is
paid at year 0.25 and year 0.5.

# Ex-dividend dates Stair Bushy

1 46,051 1,744,201
2 46,851 53,060,451
3 47,851 1,301,124,826
4 48,960 26,604,783,451
5 51,475 466,301,626,701

followed by Geske and Shastri (1985). They replace the
discrete  dividends with fixed dividend yields.
The resulting tree hence recombines and is efficient. My
paper will show that this approach works well for
American options but poorly for European options.
Chiras and Manaster (1978), following Merton’s (1973)
idea, adopt the second approach. They transform the
discrete dividends into a fixed continuous dividend yield
and then apply the Black—Scholes—Merton formula. As
this approach is equivalent to the first approach in pricing
European options, it shares the same faults.

The major contribution of this paper is a novel tree
model, the stair tree, that faithfully implements Model 3
without combinatorial explosion. Numerical results in the
paper will show that the prices calculated by the stair tree
are extremely close to those generated by the Monte Carlo
simulation for European options and those generated by
the bushy tree for American options. The stair tree is
furthermore efficient and general. In contrast, the Monte
Carlo simulation cannot handle American options easily,
and the bushy tree grows exponentially. Table 1 compares
the sizes of the bushy tree and the stair tree. The size
difference grows with the number of ex-dividend dates.
Compared with the stair tree, existing schemes that
implement Model 3 are less accurate, less efficient, and/
or less general.

The idea behind the stair tree is straightforward.
The stair tree limits the stock prices at each time step ¢
to be of the form Pu*. Here P denotes the stock price of
some specific node at time step ¢, u denotes the upward
multiplicative factor for the stock price in the CRR
binomial tree, and k is some even integer. It therefore
preserves the CRR tree structure at each time step.
Consider a 4-time-step stair tree with a dividend payout D
at time step 1 and time step 3 as illustrated in figure 2.
The price drops due to the dividend payouts (at time
step 1 and time step 3) resemble the riser. Note that the
ex-dividend stock prices at nodes X and Y are Su — X and
Sd — X, respectively. The time interval between time step
0 and time step 1 (an ex-dividend date), and the time
interval between time step 2 and time step 3 resemble
treads. This tree is therefore called the stair tree.

Figure 2. The structure of the stair tree. The initial stock price
is S. The upward and the downward multiplicative factors for
the stock price are u and d, respectively. The grey nodes are the
nodes right after the dividend is paid. S" and S” denote the
largest stock price at time step 2 and time step 4, respectively.
The stock price for each node on the third tread is represented as
Sk = S’/e’“’m, where k is parenthesized.

Assume S’ denotes the largest stock price at time step 2.
Because the stock prices at time step 2 are restricted to be
S"u* for nonpositive even integers k, the stair tree remains
recombining at time step 3 and so on until the next ex-
dividend date. In general, the stair tree follows the CRR
tree structure between ex-dividend dates. This idea greatly
reduces the number of tree nodes. For the nodes at the
ex-dividend dates (like the grey nodes in figure 2),
trinomial branching schemes are devised to connect the
two adjacent CRR tree structures. The theoretical guar-
antee that simple and efficient branching schemes exist
constitutes a major contribution of the paper.
The adaptive mesh model proposed by Figlewski and
Gao (1999) and Gao er al. (1999) also adjusts the tree
structure by adding trinomial branches at certain points
in the tree. The adaptive mesh model focuses on
suppressing the nonlinearity error which makes the
pricing results oscillate, while the stair tree model focuses
on implementing Model 3 faithfully without combinator-
ial explosion.

Pricing options whose underlying stock pays stochastic
dividends is discussed in Cox and Rubinstein (1985),
Miltersen and Schwartz (1998), and Chance et al. (2002).
This setting is important since the dividend payout is
in practice not perfectly predictable, especially when the
ex-dividend dates are far into the future. For example,
even the so-called widow-and-orphan AT&T stock valued
for its stable dividend payouts cut its quarterly dividend
from 22 cents per share to 3.75cents per share in the 4th
quarter of 2000. Miltersen and Schwartz (1998) discuss
pricing options on commodity futures with stochastic
convenience yields. Chance er al. (2002) show that the
Black—Scholes—Merton model is upheld by assuming that
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the discretely stochastic dividends are uncorrelated with
the stock price. Cox and Rubinstein (1985) argue that
pricing options on dividend-paying stocks can be handled
by the arbitrage-based pricing theory when the future
dividends are known exogenously or completely deter-
mined by past stock prices and dividends. 1 call their
setting the path-dependent dividends as the dividends
depend solely on the past history of the stock price path. In
this setting, the dividend paid at time t could be written as
a function of stock prices and the dividends prior to time .
This is more general and realistic than the discrete
dividend setting in many ways. First, it can solve
the negative stock price problem that occurred under the
discrete-dividend setting. This problem happens as the
stock price drop due to the discrete dividend payment is
larger than the cum-dividend stock price at the
ex-dividend date. The problem can be avoided by choosing
a proper dividend-paying function so that the dividend
payment is always less than the cum-dividend stock price.
Second, the path-dependent dividends setting can fit the
real world phenomenon by choosing a proper dividend
function from empirical studies. Although it is well known
that dividends can be explained by a variety of factors such
as the net operating profits and long-run sustainable (or
permanent) earnings, a dividend function that fits the
path-dependent dividends setting can still be constructed if
the stock prices and the dividends paid previously serve as
good proxies of these factors. I will review one of such
dividend models proposed by Marsh and Merton (1987).
The stair tree can incorporate such dividend models by
adding extra states to keep the information necessary for
computing future dividends. A simple numerical example
will be given to explain how that is done.

The paper is organized as follows. The mathematical
model is briefly covered in section 1. The stair tree for the
dividend-paying stock is discussed in section 2. A sample
stair tree is given in section 3 to convey the main ideas.
Experimental results given in section 4 verify the super-
iority of the stair tree to other models. In section 3,
I will first introduce the path-dependent dividends settings
before going on to review Marsh and Merton’s dividend
model and show how the stair tree incorporate their
dividend model. Section 6 concludes the paper.

1. The models

In Model 3, the stock price under the risk-neutral
probability is assumed to follow the lognormal diffusion
process:

S(l 4 1,) — S(l‘)e(r—O.5(72)r+zm)Iy (1)

where S(7) denotes the stock price at year ¢, r denotes the
annual risk-free interest rate, o denotes the volatility, and
w, denotes the standard Brownian motion. In the discrete-
time tree model, it is assumed that there are n equal time
steps between year 0 and year 7. The length of each
time step Af is equal to 7/n. Thus, time step i in the
discrete-time model corresponds to year iAfr in the

Dai

continuous-time model. The upward and downward
multiplicative factors u and d for the stock price equal
VAl and e—oVA , respectively, for the CRR and stair trees.
S; denotes the stock price at year iAt (or, equivalently,
time step i/ for a tree). The stock is assumed to pay m
dividends D,,D,,...,D,,, where D, is paid out at time
step ¢;. I further assume ¢, <1, < --- <t, for conve-
nience. Under the discrete dividend assumption, any
arbitrary dividend D, is already known at time step 0. In
general, D, can be determined by a function of stock prices
and/or the dividends paid up to time step ¢; under the path-
dependent dividends assumption. The stock price simul-
taneously falls by the amount «D,,. For simplicity, « is
assumed to be 1 throughout the paper, but a general o
poses no difficulties to the stair tree. When the ex-dividend
stock price becomes negative, it is assumed to stay at
zero from that point onward. Harvey and Whaley (1992),
in contrast, assume that the dividend is not paid if its
amount exceeds the prevailing stock price. The stair tree
can easily incorporate their assumption, too.

The option is assumed to start at time step 0 and
mature at time step n. The exercise price for this option
is K. Define (4)" to denote max(4,0) for simplicity.
The payoff for a European option at maturity is

(Sn - K)+>
(K—S»",

f 11
final payoff = { oracall
for a put.

An American option gives the holder the right to exercise
the option before maturity. The exercise value for an
American option at a non-dividend-paying time step 7 is
S, — K,
K- Sia

) for a call,
exercise value =
for a put.

The exercise strategy for an American option at an
ex-dividend date is only slightly more complicated. It is
never optimal to exercise an American call immediately
after the underlying stock pays a dividend because it is
dominated by the strategy of exercising the call immedi-
ately before. Similarly, it is never optimal to exercise a put
before the stock pays a dividend. Consequently, the
exercise value for an option at a dividend-paying time
step i is

St K.
K- Sia

for a call,

(@)

exercise value =
for a put,

where ST and S; denote the cum-dividend stock price and
the net-of-dividend stock price at time step i, respectively.
An option will be exercised early by the owner if the
option’s continuation value (i.e. the value to hold the
option) is smaller than its exercise value.

2. Construction of the stair tree

I illustrate the main ideas by the 4-time-step tree in
figure 2. This 4-time-step stair tree contains two
ex-dividend dates: one at time step 1 and the other at
time step 3. For simplicity, the same D-dollar dividend is
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paid at each ex-dividend date. The price drop due to the
dividend payout is represented by a riser. Each tread
covers a time interval between two adjacent ex-dividend
dates except the first tread, which covers the time interval
between time step 0 and the first ex-dividend date.
The branches follow the CRR tree structure except those
from the nodes at the ex-dividend dates. For example, the
stock price at the root node is S. The stock prices for its
two successor nodes are Su and Sd, where ud=1. Because
of the CRR tree structure, the stock prices at the same
time step are Puf, where P is the stock price of some
specific node at that time step and k is an even integer.
For example, the stock price for each node at time step 4
can be represented as S”u*, where S” denotes the largest
stock price at time step 4 and k is parenthesized.
Technically, any node’s stock price can be picked for P
because the stock prices at the same time step are part of
the geometric sequence

oo Put PuT P PV, PU, L

Note that the first tread contains a single, complete CRR
tree. The tree structure on each subsequent tread is
composed of a CRR binomial tree with the initial section
truncated.

I next construct the branches out of the grey nodes at
an ex-dividend date to complete the stair tree. Figure 3
illustrates what happens at an ex-dividend date by
zooming in the first three time steps of the stair tree in
figure 2. Nodes X and Y are from the first ex-dividend
date. The ex-dividend stock price at node X is
Sy =Su—D. The two branches from X follow the
CRR tree structure. ', the stock price for the top node
at time step 2, therefore equals Syu. Define the V-log-
price of stock price V' as In(V'/V); a V-log-price of z
implies a stock price of Ve’. Since the stock price for each
node on the second tread can be expressed in terms of
S'uF for some even integer k, the S'-log-prices for nodes at
time step 2 in figure 3 are integral multiples of 20+/At.

The branches from node Y are constructed as follows.
Let the ex-dividend stock price for node Y be Sy. At least
three branches are required for node Y so it has enough
degrees of freedom to match the first two moments of the
logarithmic stock price process and to satisfy the
constraint that the sum of branching probabilities is 1.
Three nodes at time step 2 follow node Y. By the log-
normality of the stock price, the mean and the variance of
the Sy-log-prices of these nodes (under the risk-neutral
probability) equal

w=(r—o’/2) At
Var = oAl

which can be obtained by substituting At for t into
equation (1). Note that the distance between two adjacent
nodes’ Sy-log-prices at time step 2 is 20+/A¢. Thus there
exists a unique node Z at time step 2 whose Sy-log-price [i
lies in the interval

[M NI a@). 3)

S'u

S'd

s'd’

S'd’

0 1 2 3

Figure 3. Branching scheme at the ex-dividend date. Nodes X
and Y are at the first ex-dividend date (time step 1). Both nodes
are represented by dotted ellipses. The cum-dividend stock
prices at X and Y are Su and Sd, respectively, whereas the net-
of-dividend stock prices at X and Y are Sy(= Su— D) and
Sy(= Sd — D), respectively. The stock price for the top node at
time step 2 is S’ (= Syu). The integer k in parentheses for each
node at time step 2 means the stock price equals ' ekov/Ar,
The cross right above Z denotes the point with Sy-log-price u at
time step 2. The three branches of Y are marked with thick solid
lines. p%, p™, and p¢ denote the probabilities for the upper,
middle, and lower branches from node Y, respectively.

In other words, the Sy-log-price of node Z, i.e. a1, is
closest to i among the Sy-log-prices of the nodes at time
step 2. I call 4 the mean tracker of node Y. The middle
branch from node Y will be connected to node Z. Figure 3
illustrates the case where i = In(S’'/Sy) — 40+/At (or, two
nodes below ).

In general, the Sy-log-prices of the two nodes
connected by the upper and lower branches from node
Y can be expressed as i 4 £,0/At and i — g0/ At for
some even positive integers ¢, and £, It is clear that the
jump sizes ¢, and ¢, should be as small as possible to
minimize the size of the stair tree. And ¢,, and ¢, should
also be properly selected to make the branching
probabilities of node Y valid. Let p%, p%, and p$
denote the risk-neutral probabilities for the upper,
middle, and lower branches from node Y, respectively.
Define B, «, and y as the Sy-log-prices minus the mean u
of the nodes connected by the middle, the upper, and the
lower branches as follows:

B=i—p,
o=+ L,0VAL,
y=p- EdU«/A_l.
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0 1 2 3
e 150.082
/ \ 80.082
X 1116183 ]\
46.183 129.177
| s \ 60.905
100 \ 111.183 111.183
31.893 \ 42597 41.183
AN
e 95.696
-~ 27.425
86.071
[ 16447 \\ / 82.367
I ] 12.367
v 5/ 7
81.071 70.894
\ [16447 X~ = T 6593
» \ /
Probabili
2 ~- \ 61.019
Others Y \ 0.000
Upper 0.5466 0.49299 52.519
0.000
Middle 0.50698
45204
Lower 0.4534  |0.00002 0.000

Figure 4. A 3-time-step tree for pricing an American vanilla call. The number at the upper cell of a node denotes the stock price at
that node. The number at the lower cell denotes the call value. The grey cell denotes that the American call is exercised early.
The two branches of X are marked with thick solid lines, whereas the three branches of Y are marked with thick dotted lines.

The branching probabilities are listed in the lower-left table.

Note that the first equation implies that ge
[-ov/ At,0+4/At). Note also that « > > y. The prob-
abilities can be derived by solving

o+ pyB+piy =0, 4
Py + ppBt + ply? = Var, Q)
Py +py+py =1 (6)

Equations (4) and (5) match the first two moments of
the logarithmic stock price, and equation (6) ensures
that p4%, p%, p% as probabilities sum to one. The three
equations do not automatically guarantee 0 < p¥,
P, p% < 1. A proof to show that they actually do with
£, =€, =2 1is given in Appendix A. The stair tree hence
does not lead to branches with huge jump sizes. This
finding is essential to the efficiency of the algorithm.
The same procedure can be repeated for nodes below Y.t
To handle multiple dividends, just apply the procedure
to each ex-dividend date.

Because the first and the second moments are matched
via Equations (4)—(6), the stair tree converges to Model 3.

Unlike the bushy tree illustrated in figure 1, the stair tree
faithfully implements Model 3 without combinational
explosion.

3. A sample stair tree

Consider an American vanilla call with an exercise price of
70 that initiates at year 0 and matures at year 0.75. A
3-time-step stair tree is constructed in figure 4 to price this
call. Thus the length of each time step At is 0.25 year.
The initial stock price is 100, the risk-free interest rate
is r=10%, and the volatility of the stock price is
o = 30%. The multiplicative factors for the CRR binomial
tree are u = e3V025 & 1,162 and d = e 03*V025 ~ (.861.
The branching probabilities are p, = (R —d)/(u — d) =
0.5466 and p; =1 —p, ~ 0.4534, where R =e"!1*x025 ~
1.02532 denotes the gross risk-free return per time step. In
the figure, the number at the upper cell of a node denotes
the stock price at that node, whereas the number at the
lower cell denotes the call option price.

Assume a five-dollar dividend per share is paid at year
0.25 (time step 1). Note that nodes X and Y (marked by

TThe aforementioned method can also be done by first adding CRR binomial branches to the bottom node (like node Y), and then
inserting trinomial branches to other nodes without efficiency and accuracy penalties.
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Table 2. Pricing European call options with single discrete dividend. The initial stock price is 100, the risk-free rate is 3%, the time
to maturity is 1 year, and a 5-dollar-dividend is paid at year 0.6. The volatilities of the stock price are shown in the first row.
The exercise prices are listed in the first column. FDY denotes the fixed dividend yield approach of Geske and Shastri (1985).
Modell and Model2 denote the option prices generated by Model 1 and Model 2, respectively. Hull denotes volatility adjustment
approach of Hull (2000). Stair denotes the stair tree model in this paper. Mode13 denotes the prices generated by Model 3 that
based on Monte Carlo simulation with 100,000 trials. Option prices that deviate from Model3 by 0.3 are marked by asterisks.

0.4 0.5
X FDY Modell Hull Model2 Stair Model3 FDY Modell Hull Model2 Stair Model3
95 *16.263  *16.336 17.090 17.112 16.821 16.933 *19.890 *19.969  20.901 20.937 20.570 20.843
100 *14.214 *14.270 15.044 15.048 14.758 14.754  *17.964 *18.003 *18.959 *18.971 18.591 18.584
105  *12.400 *12.439 *13.222 *13.206 12.924 12989  *16.194 *16.222 17.194 17.182 16.829 16.929

dotted ellipses) are at time step 1. The stock prices at X
and Y before the dividend is paid are 100 x u ~ 116.183
and 100 x d ~ 86.071, respectively. The ex-dividend
prices at X and Y are therefore 111.183 and 81.071,
respectively. The stock price for the top node at time
step 2 is then 111.183 x u ~ 129.177. The stock prices at
time step 2 can be represented as 129.177 x u* for
nonpositive even integers k.

Let us move on to the branching scheme of node Y.
Node Z at time step 2 has a stock price of 70.894. Hence
the Sy-log-price of node Z equals In(70.894/81.071) ~
—0.13414. It is the mean tracker (i.e. 1) of Y because

—0.13414 € [ 11 — o/ AL 11 + av/AD),

where = (r—0?/2)At=(0.1-0.32/2) x 0.25=0.01375
and o+/A1=0.3 x +/0.25=0.15. Thus the S,-log-prices
of the nodes at time step 2 that will be connected to Y
are 1 + 20/ At~ 0.1659, i ~ —0.1341, and i — 20/ At ~
—0.4341. To compute the branching probabilities
from node Y, I substitute 0.1659 — u, —0.1341 — 1, and
—0.4341 —p  into  «,B, and y, respectively, in
Equations (4)—(6). The branching probabilities are illu-
strated in the lower-left table of the figure. The value of the
vanilla call is obtained by backward induction on the tree.
For example, the continuation option value at node Y is

e 01%025 5(0.49299 x 27.425 + 0.50698 x 6.593
+0.00002 x 0) ~ 16.447,

and the continuation option value at node X is
e 01X025 5 (0.5466 x 60.905 + 0.4534 x 27.425) ~ 44.597.

Note that an American call will be exercised early only at
an ex-dividend date. Note also that it is more beneficial
for an option holder to exercise a call immediately before
the underlying stock pays a dividend than immediately
after (see equation (2)). The call will be exercised early at
node X since the exercise value 46.183 (=116.183 — 70) is
larger than the continuation value 44.597. The call value
computed by the stair tree is 31.893.

4. Numerical evaluations

I first compare Geske and Shastri’s fixed dividend yield
model, Hull’s volatility adjustment model, the stair tree

model, Model 1, Model 2, and Model 3 for pricing
European options. Geske and Shastri (1985) use fixed
dividend yields to approximate discrete dividends.
The fixed dividend yield is defined as the discrete dividend
amount divided by the initial stock price. For example,
the dividend yield is 5% if the initial stock price is 100
and the discrete dividend is 5. I use FDY to denote their
approach. Note that Chiras and Manaster (1978)
approximate the discrete-dividend problem by transform-
ing the discrete dividends into a fixed continuous dividend
yield. This approach is equivalent to the FDY model in
pricing a European option. Frishling (2002) argues that
Model 1 generates lower option prices than Model 3. To
remove this difference, Hull (2000) recommends that the
volatility of the net-of-dividend stock price be adjusted
by the volatility of the stock price multiplied by S(0)/
(S(0) — D), where D denotes the present value of future
dividends over the life of the option. I use Hul1l to denote
Hull’s volatility adjustment approach. Besides, 1 use
Modell and Model2 to denote the option prices
generated by Model 1 and Model 2, respectively. Stair
denotes the prices generated by the stair tree model.
Model 3 denotes the prices generated by Model 3 that
based on the Monte Carlo simulation with 100, 000 trials.

The numerical results for these models are listed in
tables 2 and 3, where table 2 focuses on the single-
discrete-dividend case and table 3 focuses on the two-
discrete-dividend case. All the prices that deviate from
Model3 by 0.3 are marked by asterisks. Frishling (2002)
claims that Model 1, Model 2, and Model 3 generate very
different option prices. This can be verified in tables 2 and
3 that the option prices generated by Model 2 are higher
than the prices generated by Model 3. On the other hand,
Model 1 generates lower option prices than Model 3.
The difference among these three models becomes larger
as volatility increases. FDY does not approximate Model 3
well as it produces lower option prices than Model 1.
The option prices generated by Hull’s volatility adjust-
ment approach do not approximate the prices generated
by Model 3 well. It can be observed that only the stair tree
model produces options prices that are close to Model 3.

Note that Model 3 seems to produce lower option price
(generated by the Monte Carlo simulation) in each two-
discrete-dividend case (except one case) in table 3 than
that in the corresponding case in table 2. The stair tree
model successfully captures this trend, but all other
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Table 3. Pricing European call options with two discrete dividends. The numerical settings are the same as those settings in table 2
except that a 2.5-dollar-dividend is paid at year 0.4 and year 0.8. Option prices that deviate from Model3 by 0.3 are marked
by asterisks.

0.4 0.5
X FDY Modell Hull Model2 Stair Model3 FDY Modell Hull Model2 Stair Model3
95  *16.303 *16.336  17.090 17.112  16.806  16.836  *19.931 *19.969 *20.901 *20.937 20.568  20.549
100 *14.250 *14.270 *15.044 *15.048 14.733  14.733  *18.001 *18.003 *18.959 *18.971 18.583  18.621
105 *12.433  *12.439 *13.222 *13.206 12904 12.883  *16.228 *16.222 *17.194 *17.182 16.826  16.829
Table 4. Pricing European call options with single discrete Table 5. Pricing European call options with two

dividend. The numerical settings are the same as those settings in
table 2. Mix denotes the mixture approach of Bos and
Vandermark (2002). Vol denotes the volatility adjustment
approach of Bos and Shepeleva (2002). Model3 denotes the
prices generated by Model 3 that based on Monte Carlo
simulation with 100,000 trials. RMSE denotes the root mean
squared error. MAE denotes the maximum absolute error.

o X Mix Vol Stair Model3

0.4 95 16.802 16.792 16.821 16.933
100 14.737 14.732 14.758 14.754
105 12.899 12.899 12.924 12.989

0.5 95 20.550 20.537 20.570 20.843
100 18.584 18.578 18.591 18.584
105 16.798 16.798 16.829 16.929

RMSE 0.147 0.152 0.130

MAE 0.293 0.306 0.272

models fail. Note that both Model 1 and the Hull’s
volatility adjustment approach produce similar option
prices in the single-discrete-dividend case and the two-
discrete-dividend case. This is because the net-of-dividend
stock price in the single-discrete-dividend case (=100—
5e7003x06) i5 almost equal to that in the two-discrete-
dividend case (=100 — 2.5¢7003x04 _ ) 5¢-0-03x0.8)
Model 2 also produces similar option prices in both
cases since the cum-forward-dividend stock prices for
both cases are almost equal.

To derive approximation analytical formulas for
Model 3, Bos and Vandermark (2002) present an
approach (denoted as Mix) that is a mixture between
the stock and the exercise price adjustment or, in other
words, Model 1 and Model 2. Bos and Shepeleva (2002)
suggest that the volatility of the net-of-dividend stock
price can be adjusted by a complex formula. I use Vol to
denote their approach. These two approaches and the
stair tree approach are compared in tables 4 and 5. I use
the Monte Carlo simulation that prices Model 3 (denoted
as Model3) to serve as a benchmark to compute the root
mean squared error and the maximum absolute error.
Since both these two errors of the stair tree model are
lower than the errors of Mix and Vol, I conclude that the
stair tree provides more accurate values than these two
approaches. Note that Model 3 seems to produce lower
option price in each two-discrete-dividend case in table 5
than that in the corresponding case in table 4 as
I mentioned before. Bos and Vandermark’s approach

discrete dividends. The numerical settings are the same as
those in table 3.

o X Mix Vol Stair Model3

0.4 95 16.801 16.795 16.806 16.836
100 14.736 14.734 14.733 14.733
105 12.898 12.901 12.904 12.883

0.5 95 20.548 20.541 20.568 20.549
100 18.583 18.581 18.583 18.621
105 16.797 16.800 16.826 16.829

RMSE 0.026 0.027 0.023

MAE 0.038 0.041 0.038

successfully catches this trend, but Bos and Shepeleva’s
approach fails.

For American calls with discrete dividends, I compare
the stair tree with the popular analytical pricing formula
of Roll (1977), Geske (1979), and Whaley (1981)
(abbreviated as RGW), and the FDY model of Geske and
Shastri (1985) in table 6. The parameters are from Cox
et al. (1979). The benchmark option prices (B) are from
Geske and Shastri (1985). Note that RGW is based on
Model 1 and thus underprices the options. RGW focuses
on single-dividend cases. Welch and Chen (1988) and
Stephan and Whaley (1990) extend RGW for two-dividend
cases. But it is hard to extend RGW for three or more
dividends because this would have required RGW to
evaluate a multivariate cumulative normal density
function, whose deterministic computational cost is
prohibitive. This phenomenon is known as the curse of
dimensionality (see Lyuu 2002). Of course, even if the
multivariate integral can be computed efficiently, there is
no guarantee that the price is numerically accurate. Geske
and Shastri (1985) claim that the FDY model performs
well for pricing American calls. Numerical results in
table 6 show that the stair tree outperforms the FDY
model.

The delta of a call with respect to the stock price is
illustrated in figure 5. I use a 140-time-step stair tree to
evaluate a call option with 7 months to maturity, and the
length of each time step is 0.004167(=(7/12)/140) year.
301 tree evaluations are performed by setting the initial
stock price as 20 4+ 0.1x, where 0 < x < 300. The resulting
delta curve is very smooth. The stair tree’s quick
convergence is verified in table 7, where the prices
remain unchanged up to pennies when the number of
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Table 6. Pricing American call options. The initial stock price is 40, the risk-free interest rate is 5%, and the volatility is 30%.

The ex-dividend dates for the stock are 0.5, 3.5, and 6.5 months. The dividends to be paid at each ex-dividend date are shown in the

first row. The exercise prices X are listed in the first column. The times to maturity 7" (in months) are in the second column.

The values of American calls priced by the FDY model and the benchmark value are from Geske and Shastri (1985). RGW denotes the

analytical pricing formula of Roll (1977), Geske (1979), and Whaley (1981) (for single-dividend cases) and the extended formula of

Stephan and Whaley (1990) (for two-dividend cases). Stair denotes the stair tree model with 140 time steps. Option prices which
deviate from the benchmark values by 0.02 are marked by asterisks.

$1.0 $2.0 $3.0 $4.0

X T RGW FDY Stair B RGW FDY Stair B RGW FDY Stair B RGW FDY Stair B
35 1 *507 509 509 509 *5.05 5.09 509 508 *5.05 5.08 5.09  5.08 *5.05 5.08 5.09  5.08
4 *538 5.41 540 540 515 519 518  5.17 *5.08 5.12 512 511 *507 5.10 510  5.10
7 = *5.79 577 576 = *529 526 524 - *5.15 514 512 - 5.11 511  5.10
40 1 *1.14 1.17 .17 1.17 *1.03 1.08 1.08 1.07 1.03 1.04 1.04 1.04 *0.93 1.02 1.3 1.02
4 *236 2.38 240 239 *1.89 1091 193 192 1.57 1.60 1.60  1.58 *1.35 1.39 1.40  1.38
7 = 3.05 3.08  3.06 = 2.31 233 232 - 1.83 1.83 181 = *1.51  *1.51 148
45 1 008 0.09 009 0.09 004 0.05 006 0.05 004 004 0.04 004 0.02 003 003 0.03
4 087 0.87 0.88 0.88 0.62 0.62 0.64 0.64 *043 0.44 046 046 031 0.31 0.33  0.32
7 = *1.47 151  1.50 = *0.99 1.03 1.02 - *0.66 0.70 0.69 - *0.43 046 046
Delta time steps is at least 140. These experiments confirm the

reliability of the stair tree.

The discrete dividend assumption is not so realistic
since the dividend might not be perfectly predictable
especially when the ex-dividend date is far into the future.
A more realistic and generalized assumption, the path-
dependent dividends assumption, is discussed in the next
section. I will also show how the stair tree model can
incorporate this assumption.

/
/
/

0
20 25 30 35 40 45 Stock Price

5. Path-dependent dividends

Figure 5. Delta: the x-axis denotes the initial stock price, and 1t {s more general and realistic to assume that a stock pays
.the Jy-axis Qenotes t.h e delta of the vanilla call. T.h © GXCICISC PIICE , otochastic dividend rather than a dividend with known
is 35, the risk-free interest rate is 5%, the volatility is 30%, and .
the time to maturity is 7 months. A 4-dollar dividend is paid at amounts at a future ex-dividend date. However, the
months 0.5, 3.5, and 6.5. option can only be hedged if the dividend is known
exogenously or completely determined by the stock price
process prior to the ex-dividend date as argued in Cox
and Rubinstein (1985) unless one adds nonstandard
derivatives such as the forward contracts on dividends
in Chance et al. (2002). 1 call Cox and Rubinstein’s
assumption the path-dependent dividends assumption

Table 7. Convergence of delta. The settings
are identical to those in figure 5 except that
the initial stock price is 40. The number of
time steps n is selected to be a multiple of 14
so that each ex-dividend date coincides with

a time step in the stair tree. Price and

Delta denote the option price and the delta

computed by the stair tree, respectively.

The numerical values remain unchanged (up
to pennies) for n > 140.

n Price Delta
56 5.13 0.97
70 5.13 0.97
84 5.13 0.96
98 5.12 0.97

112 5.12 0.97

126 5.12 0.97

140 5.11 0.97

154 5.11 0.97

since the future dividend, says D,, completely depends on
the stock prices and the dividends prior to time step ¢,
To be more precise, D, can be expressed as

Dt,' Ef(SO7 SlaS23 s an,’D[,-,th,-,za .. ')

for some function f. In reality, dividends can be explained
by a variety of factors such as the net operating profits,
long-run sustainable (or permanent) earnings, and so on.
If the stock prices and the dividends paid previously serve
as good proxies for these factors, a dividend function that
fits the path-dependent dividends assumption can be
constructed. Indeed, some empirical dividend models can
fit path-dependent dividends assumptions with slight
modifications. I will first review one of such dividend
models proposed by Marsh and Merton (1987).
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Then I will show how the stair tree can incorporate their
dividend model.

Marsh and Merton (1987) derive a dividend model by
following Linter’s (1962) stylized facts established by
Linter in a classic set of interviews with managers about
their dividend policies. Their dividend model can be
expressed by a regression formula of the permanent
earnings and the dividends paid previously. They argue
that their formula can not be directly estimated because
management assessments of changes in a firm’s perma-
nent earnings are not observable. Thus they assume that
the permanent earning to cum-dividend stock price ratio
is a positive constant. Under this assumption, a future
dividend in their dividend model can be expressed by
a regression formula in terms of stock prices and
dividends prior to the ex-dividend date. To illustrate
how the stair tree incorporates the Marsh and Merton’s
dividend model, I express their dividend formula by
a discrete time model and assume that the length between
two ex-dividend dates is two time steps:

D[+2 D[ S{ +Dr
1 = 1
og[ D, i|+St—2 ap + a; og[ S5 i|

+a210g[ D ] +ut+2), (7
Si—2
where the dividends are paid at time step ¢ and 742,
D, denotes the dividend amounts paid at time step t, S,
denotes the net-of-dividend stock price at time step t, and
u(t + 2) denotes the disturbance term at time step ¢+ 2.
By assuming that the disturbance term u(z+2) =0,
equation (7) can be rewritten as

ap+a log |:’g5+D’i|+u2 log[ Dy :|7 ‘D’ﬁJrlog D,
Dyir =10 = ST (g

Note that D,,, can be expressed as a function of S;_», S,,
and D, One of their empirical studies focuses on the
value-weighted NYSE index over the period 1926-81
and they estimate that ay = —0.101, a; = 0.437, and
ar» = —0.042 by ordinary least squares method. A simple
numerical example is then given to demonstrate how the
stair tree can incorporate the dividend model in equation
(8) with aforementioned numerical settings.

A 4-time-step stair tree that prices a European vanilla
call option with an exercise price of 50 is illustrated in
figure 6. The underlying stock price at time step 0 is 100,
the length of each time step of the stair tree is 0.25 year,
the risk-free interest rate is 10%, and the volatility of the
stock price is 30% . Note that the upward multiplication
factor u=e3*¥025 ~ 1162 and the downward one
d = e 03035 ~ 0.861. I further assume that the histor-
ical net-of-dividend stock prices S_; and S_3, and the
historical dividend D_; to be 110, 80, and 5, respectively.
The underlying stock is assumed to pay two dividends
(Dy and Ds) at time steps 1 and 3, respectively. The top
cell of each node denotes the stock price (at a non-
dividend paying date) or the cum-dividend stock price
(at an ex-dividend date) of that node. Each node contains
at least one state (denoted by the cell following the top
cell) to keep the option price. The nodes enclosed by

170.429
150.733 . 120.429
c| 91922
129.737] L——=
78.226
— 126.257
[ 111.666 76.257
116.183 ,
| D, 58.849
61.426, 96.112
100 44.602
93.533
46.804
82.724 43.553
86.071 ,
29.917
71.201
69.291
19.291
61.283
52.747
51.332
1332
45.340
38.028
0
28.172
0
0 1 2 3 4

Figure 6. A 4-time-step stair tree that incorporates the Marsh
and Merton dividend model. The number at the top cell of each
node denotes the stock price (at a non-dividend paying date) or
the cum-dividend stock price (at a ex-dividend date) of that
node. The number at the following cell(s) denotes the option
price(s). Additional states are added to the nodes enclosed by
dotted ellipses to keep the required information for computing
D;. The net-of-dividend stock prices and the branching
probabilities for all the states at ex-dividend dates are in table 8.

dotted ellipses contain two states to keep required
information for computing D3 by equation (8) (to be
discussed later). Note that the net-of-dividend stock prices
and the branching probabilities for the states at
ex-dividend dates (time step 1 and time step 3) are
illustrated in table 8.

Now I proceed to show how this 4-time-step stair tree is
constructed. The cum-dividend stock prices at time step 1
are 100 x u ~ 116.183 and 100 x d =~ 86.071, respectively.
The dividend D is obtained by substituting D_; (=5), S_;
(=110), and S_5 (=80) into equation (8) to get 4.518. Thus
the net-of-dividend stock prices for states 4 and B are
116.183 —4.518 ~ 111.666 and 86.071 —4.518 ~ 81.553,
respectively. The stock price for the top node at time step
2 is then 111.666 x u ~ 129.737. Thus the stock prices at
time step 2 can be represented as 129.737 x u* for
nonpositive even integers k. The branches of state 4
follow the CRR tree structure. The mean tracker of state
B can be found by equation (3) to be In(71.201/86.071) x
(= 1) (expressed in Sp-log-price). Thus the stock prices
of the nodes connected to state B are 96.112 (with
Sp-log-price i +20+/A1), 71.201 (with Spz-log-price [),



Downloaded by [National Chiao Tung University | at 06:48 25 April 2014

Efficient option pricing on stocks 837

Table 8. The net-of-dividend stock prices and the branching probabilities for the states at ex-dividend dates in figure 6.

A B C D 15 F G H 1
Price 111.666 81.553 146.690 107.622 108.119 78.681 79.177 57.737 41.853
Upper 0.5466 0.4983 0.5466 0.0001 0.0004 0.4699 0.4905 0.4397 0.3744
Middle = 0.5017 = 0.5133 0.5280 0.5296 0.5095 0.5584 0.6165
Lower 0.4534 1.4 x107° 0.4534 0.4866 0.4715 0.0005 4.6 x 1073 0.0019 0.0091

and 52.747 (with Spz-log-price fi — 20+/At). The trinomial
branching probabilities of state B can be computed by
equations (4)—(6). The net-of-dividend stock prices and
the branch probabilities for states 4 and B are illustrated
in table 8.

To compute D53 by equation (8), S_;, Dy, and S are
required. While S_; and D; are known to be 110 and
4.518, respectively, there are two possible S; (111.666
and 81.553) in this stair tree. Additional states are added
to the nodes enclosed by dotted ellipses to keep the
information about S;. I colour all the cells and
corresponding branches from time step 1 to time step 3
in light-grey and dark-grey to denote the cases that
S1 = 111.666 and S| = 81.553, respectively. For example,
state F denotes the case that S; = 111.666 and the cum-
dividend stock price at time step 3 is 82.724, while state G
denotes the case that S| = 81.553 and the cum-dividend
stock price at time step 3 is 82.724. Note that all the
branches from the states at time step 2 follow the CRR
tree structure.

Now I focus on time step 3. The dividend paid at state
C is obtained by substituting D; = 4.518, S| = 111.666,
and S_; = 110 into equation (8) to get 4.043. Thus the
net-of-dividend stock price for state C is 150.733 —
4.043 = 146.690. Similarly, the net-of-dividend stock
prices for states D and F are 111.666 —4.043 = 107.622
and 82.724 — 4.043 = 78.681, respectively. The dividend
paid at state E is obtained by substituting D; = 4.518,
S, = 81.553, and S_; = 110 into equation (8) to get 3.547.
Thus the net-of-dividend stock price for state E is
111.666 — 3.547 = 108.119. Similarly, the net-of-dividend
stock prices for states G, H, and I are 82.724 — 3.547 =
79.177, 61.283 —3.547 = 57.737, and 45.340 — 3.547 =
41.853, respectively. The stock price for the top node at
time step 4 is 146.690 x u ~ 170.249. All the stock prices
at time step 4 can be represented as 170.249 x uX for
nonpositive even integers k. The branches for state C
follow the CRR tree structure. The trinomial branching
schemes for states D, E, F, G, H, and I are constructed by
following the method for constructing the branches for
state B. The trinomial branching probabilities for these
states are listed in table 8.

The value for the European vanilla call option can be
obtained by backward induction. Note that some nodes
have two different option prices due to different historical
stock price paths. For example, the option price for state
Fis

e 01X025 5 (43.553 x 0.4699 + 19.291 x 0.5296
+1.332 x 0.0005) ~ 29.917,

while the option price for state G is

e 0 1x0:25 5 (43.553 x 0.4905 + 19.291 x 0.5095
+1.332 x 4.6 x 1077) ~ 30.410.

The call value computed by the stair tree is 46.804.

6. Conclusions

Pricing stock options with discrete dividend payouts has
not been satisfactorily settled because of the conflicting
demands of computational tractability and realistic
modelling of the stock price process. It is realistic to
assume that the stock price jumps down at an ex-divided
date. However, pricing options under this stock price
model can not be efficiently and/or accurately implemen-
ted by analytical formulas and numerical methods. This
paper suggests a recombining tree, the stair tree, that
efficiently and faithfully implements this model.
Numerical results confirm that the stair tree is both
efficient and accurate. Moreover, the stair tree can be
extended to more general cases when future dividends are
completely determined by past stock prices and dividends.
This extension, which is called ‘path-dependent dividends
assumption’ in this paper, makes the stair tree model
more realistic and flexible.
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Py, P, ph>0. As det <0, it is sufficient to show
det,, det,,,det; < 0 instead. Finally, as a> B>y, it
suffices to show that By + Var > 0, ay + Var <0, and
aB+ Var > 0 under the premise B € [—ovAtl, o/ Al).
Indeed,
By + Var = g7 — 2o/ Al + oAt = (B — o/ A1) > 0,
ay + Var = g — 40’ At + o> At = > — 307 A1 < 0,

af+ Var = g% + 280V At 4 0> At = (B + o/ Al)* > 0,

as desired.



