SRRy ST PR EY TN

Generic Interface Bridge between HCI and Applications

AR AT R AR 2 AR AR

Generic Interface Bridge between HCI and Applications

MoyoA i ELE Student : Shih-Jung Peng
I ERER I ME S RE Advisor : Dr. Deng-Jyi Chen
B = = i x &

FlRUE =
A S S G R R 20 S
ALY N

A Dissertation Submittedto
Institute of Computer Science anddnformation Engineering
College of Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
in
Computer Science and Information Science
May 2009

Hsinchu, Taiwan, Republic of China

PoE R4 L N E T

SUEEE NI LETEE LY FYL Y

Fii: Bl h¥RE BES B

R+ BFFAPEEL g 0T

&

RFTRAET B 22 BFER I/ RN B 46 408
oM ED I AR P s RE e i R AR SR
A B oA k2 fpdls R ANl ke e U 2 2 3 N B R
Brre FAH - DRV EIP o At TR F ST o AT AR
REI-R* F L FRREHAFERIFZT LA L5 Bt R
13 FREPNES A B A FRAH AR AN 2 R E AR 2R
PARS e A A GIdH A R E R SR SO ReR 0
TR RNATH S B A G AN R AT RS RS
NIRRT ARATH A B R I dIARS o 3~ TR I AR R4
o RPE R ERRET RN ORI R FWEATR LA 0 1]
FRERNREAAG IS c ot BFEAEF LY LG EEE L
Fo PR RARpE A ePTFIEEE A 4 S R 2AY o AN BT RE%R

SHERIES F PR FL O RE - BEF A FRPRE 45

T RAANGEHEEORT BAF KR @7 F R F 054 M HE
SR BN 2P A EREF I AR ERT AT RERERAES
FRAGEHEEART R AR EI R MRLT LT A6 AR
AHRE BT AR KPR EEFABAGIFIF N T R AE -
AARECET AR ARFT ORI LML F- I APRIRET
GOERAE S THRBEORE LT FIRA G 0 G- LR G
BRTRTARS P IRERTFFIZAGHEEI IR R FT
MAERTZEREERS R S4B S 2 (Square Object) » * %3 #
PRS- B LM FR ARPREIESZ PHECE PR L RS
2oREBAIT FE Rz G L EIPF LA FI I & (Generic Interface
&My,mm’iﬁéGmﬁﬁﬁﬁﬁ%i%€@’ﬁﬁﬁﬁﬁﬁﬁﬁﬁ
Al RESE o ot TR B RFTART R AL P e
T AP TSR R St APRT E 44 (Macro Command) % % &
FEbypdlht REE-ERHATVUBERGEBER A4 ot
Bt s 2R BV @A L EE SR EEY RRE A
PEMARES %2 1 APFPET PDA L S8R PCA &7
AR HMAT B AR R BRBFEPEHFITRAIHMAET 2
FHR G REAIWE SHMAET RN > ERAFROEN] T uED o

Flet A PHEFJRNZARTLE A2 TR EFRZEBNBEINNE

il

(Parser Generator) » f#174 X E F en 5 M E™ 42:% » 5d & f{HHR

M6 iR iE2 B* AALELHER L RARFFT LT FRERS

BAGIZHARST > ph I Pdr a2 24 2 545 AT 25
SR G TR EDI S BEE S SR 2P o

FTBRRBAZOPTHIF AL AR ETENY 0 APRR

LAEFFIAGEHALZART R S AT ERERPASTT L

.
o
=
o
TF
i
~mie
b

RF 2 FARNPAFOLYFRAG HE > K
#5 2 PDA S8 rHl & £ R R 6 o RRETES

FIALE R A28 2 P ehs

il

Generic Interface Bridge between HCI and Applications

Student: Shih-Jung Peng Advisor: Prof. Deng-Jyi Chen

Institute of Computer Science and Information Engineering
National Chiao-Tung University

Abstract

In a Windows environment, the commonly used traditional method, which allows
developed window application programs with Human Computer Interaction (HCI) control
ability, is directly to write the control procedures into the application programs while using
low-order designing formula te packagerprocedutes nto single application system. To apply
such devising method, the designer must possess certain knowledge about application system
designing and programming in order te .devise an application system with HCI control
functions. Particularly when the design'is completed, it is relatively difficult to revise or add
any system functions to it without the primitive code.

Three major problems may exist under such development of HCI control procedures.
First, system designers must be equipped with abundant knowledge about the design of HCI
and programming languages in order to design an application with HCI function. Second, if
we want to design an application, which lacked interaction ability before, we need to obtain
the primitive code of the particular application due to the difficulty in modifying new
programs without the code. Third, even if we have obtained the code, we need to re-analyze
the entire structure of application in order to write a suitable control program. These tasks will
leave the designer with much trouble and seemingly resulting in less flexibility and efficiency.

In this thesis we will emphasize on the research of Software Engineer Methodology to

develop a visual generic interface bridge (GIB) system. Under this GIB system, designers

v

devise the application system with speech or remote HCI control functions in a much easier
and efficient manner with the need for defining only some parameters of objects in an
application environment whereas the user are not required to write any program code.

The research on GIB system consists of two parts: “Integration of GIB and HCI,” and
“GIB-based Application Interface (GAI) generation”. Under the GIB system, we propose the
concept of GIB system in connection with HCI and applications. The GIB provides a visual
operating interface in which designers draw controllable square objects at any corresponding
position on the windows and name each square object. Subsequently, we use speech function
to operate actions for mouse and keyboards corresponding to the square object; implying that
we can easily control the application with speech as well. In order to increase the operation of
applications with more flexibility;and expandability; we may use macro command to define
and combine the control commands.- One macro command may combine with several control
commands; this implies that noise effects between long' commands can be avoided, making
the application control more flexible. Under the GAI system, we use PDA cellular phone to
control application programs en-the PC in a convenient.manner. Nonetheless this process is
not simple due to many complicated procedures in and between these systems must be written.
For this reason, we use proposed concept of GIB system and adding program parser method,
under which the PDA can easily connect with HCI and multimedia applications to achieve the
goal of controlling via simple interface operating and setting of AP’s environment.

In regards to demonstration of the feasibility and suitability of the proposed method, we
put in practice of developing a GIB system to be used as the bridge between HCI interface
and window applications. In the following examples, we literally manipulate the connection
of a generic visual interface with application program in a very simple, fast, and effective
manner. Speech or remote control HCI ability is implemented more easily and efficiently

throughout this GIB system without the need for writing any program code.

Acknowledgement

Foremost, I would like to sincerely give thanks to my advisor, Professor Deng-Jyi Chen,
who not only provided me with his creative suggestions and discussions over my studies but
also his immense assistance, support, patient and inspiration.

Particularly thanks to Chien-Chao Tseng (Prof. of NCTU) for his tremendous assistance
and support. Especially thanks to Shih-Kun Huang (associate Prof. of NCTU), Yeh-Ching
Chung (Prof. of NTHU), Koun-Tem Sun (Prof. of NUTN), Wu-Yuin Hwang (associate Prof.
of NCU), and Chorng-Shiuh Koong (assistant Prof. of NTHU), who are the members of the
oral examination committee for my doctoral dissertation. They have offered me many
valuable suggestions to help me with expand a broader scope of research and more important

applications than I had initially started with|

I would like to thank gratefully to my“friends Chin-Eng Ong and Jan Karel Ruzicka,
masters of Science in Computer S¢ience-and-Information Engineering, for their cooperation
and assistance on this dissertation which eventually transformed into applicability and
completeness. Thanks to all of my friends'who have helped me in my life with researching

and studying.

I have many thanks to my wife, Pei-Ling Chen, and my children, Yi-Ping and Yi-Han,
parents and parents-in-low for their love, patience, support and always standing by me in my

life at all time. Finally, I would like to dedicate this dissertation to my family.

vi

Table of Contents

F AN S S I T A\ O LTSRS v
ACKNOWLEDGEMENT ..ottt e sttt e s ettt s e st ae e e s s a b e e e s esbe e s e sabaeeessbbeeesssbassssabeseessrbseessbeaeesans VI
LIST OF FIGURES.ottt ettt et e e e h et e s et e e s s ab e e e e st b e e e sabea e e s sbbeessaabaesesabeaesssbbesesasbansssarenas X
LIST OF TABLES ...ttt ettt ettt e et e s sttt e s s b be e e s bt e e e s abbaeesaabassesabaaeessbbasssaseasssssbeeesssbbasesans XI1
INTRODUGCTION ...ttt ettt e e ettt e e s bt e e e s sa bt e e s eabts s e sabaae s s b baessabtassssabeaessabbesesabeasssssbenesssbbeeesanes -1-
1.1 INTRODUCGTIONoeiiuttieeeeeeeeeeittteeeeeeeeeeaateeeeeeseesaaaeeeeesseessaaeseaeseseaassaasseeeeseaassasseeeeessenssaasseeeessennssareeeeeesns -1-
1.2 MOTIVATION AND GOALS.......ciiiuttieiieeeeeeeieeeeeeeeeeeeateeeeeeeeesaaaeeeeeeeesesaaaseeeseessessaaseeeeeesensaaeeseeesseensrrenes -11-

1.3 ORGANIZATION OF THIS DISSERTATIONuvuviiieeeiiiiureeeeeeeeeeinteeeeeeseeessssessseeseessssssseeseesssmmissesseessemnsssssees -11-

2. RELATED WORK ...ttt ettt ettt ettt ettt e e s e bt e e s ab it e e s sab e e e s s bt e e e sbaae s s sabesessabbeesssraesesabenas -13-
2.1 TOUCH PANEL INTERFACEccooiouuvveeeeessna e doe 50 550 hns e eeeeeeeensaeseeeeeeesesssssesseeessssssssssssessssnssssessessssmnsssesees -13-
2.2 SPEECH RECOGNITION ENGINE ...t it iieseeeiuuiereeeeieeieussnnesthesinnneereeeeeesenssseeeeeeesessssssesssesssssssssessssssssnssssesees -14 -
2.3 SCRIPT LANGUAGEuuuuuriee i e e -15-
2.4 COMPILE GRAMMAR DEFINITION ..o e s s debdee b it e e e -16 -
2.5 MACRO COMMANDouuu e s iuueeeeeeeeeesnnssssasssdhasianssesssasensessessoheeiesieeeeeeeeeeessareeseeeseenarrereeesseensnnrenees -19-
2608’ SAPL...c R I . s -20-
3. INTEGRATION GIB WITH HC it i ettt n e ban e -22 -
3.1 RUN APPLICATION IN GIB (RAGIB) WINDOWS.......comiiermieieeeiieeieeiiieeeireessieeesseessseeesseessseesssessnsesssseesns -24-
3.1 Input MOAULE ..o e e e -24 -
3.1.1.1 SPEECh COMMEANT.......eiriiiiiiiiiiiniietertee ettt ettt et sttt s bt et s bt et s bt et e ebtetesbeeeesbeenneneeene -24 -

3.1.1.2 CompoSEd COMMEANc.eeuieiiiuiiiiiteteie ettt ettt ettt et e e st es e st e be et e b e s en e e st eneeseeseebenseneeneeneseeanens -24 -

3.1.1.3 Macro command FEZISTTALION.eiuiruiieieiieieetietertet ettt ettt e ettt st et e te e eseeseeaeseeabeebesseneeneeneeeeanens -25-

3.1.1.4 Command translation FLOWooovuiiiiiuiii ittt e e eae e e e e e e e etaeeeeaeeeseseaeeseateessnaseesnneas -25-

3 1.2 KENEl MOAUIE.coiiiiiii ettt e ettt e e et e e e e e e saateeeenaaeesenaaeessnnaeeeeas -26 -

I B B S G 1) V1) 21 () ORI -27-

3.1.2.2 SYNEAX ANALYZET ...ttt ettt ettt ettt et sttt b e e te b et en e e st e st es e et e b et en s eneeneeseeb e et e nenteneeneeteaben -27-

3.1.2.3 Command analyZer flOW.........coeiiiiiriiieieeee ettt ettt ettt eee b -28-

3.1.3 OULPUL MOAUIEvevvieiieie ettt et e e e e te et e e b e esbeessesssesteeseesseersesssesseenseensenns -29 -

B4 TACNTITIETS ..ottt ettt sttt e te et e e abeets e te e beesbeesbeessesssesseensesssesssesseenseensenns -30 -
3.1.4.1 COMMANA CIASS ..evvieeieeiiesiieetieeeeeee st eette st e et e st e teessteeteessseenseessseensaeanseenseesnseensseenseessseenseensseanseenseenn -30-

3.1.4.2 COMMANG PATAINELET ..c..veutiuiitiriieteeitente sttt ettt et et et e et e ete et e sbee bt s bt e tesbeembesbeetesbeemtesusentesbeentenbeennenteene -30 -

BT T G I 1073 T [) USSR -31-

3144 TOITNINALOTevvivieeteeteeeteteet e it et e bt et esteeteesteestesbeessesseessasseessesseessasseassesseessasseassessaessenseassessesssensesseassansanss -31-

vii

4,

5.

R I B B 013 1C) 1) ¢ O ST UP PRSP -32-
3.1.4.6 CONSLANE PATAINELETSeeuveerireetieeiieeiie ettt estte et e stte st estteebeestteeabeesuteeabeestteeabeenaeeenbeessseenseesbbesnteenseeenseenanens -32-
3.1.4.7 Selection COMIMANGSc..evueuieiieiirtertintet ettt ettt sttt ettt ettt ettt e bt sttt et es e e bt eueebeebesbe st et eneebesaenbens -33-
3.1.4.8 SEttiNg COMMEANSeeuveieeuietieiieieeitete et e e ettete et estesteebeeteestesstenseeseessesseensesseensesseenseeneensesseensesseensesseens -34-
3.1.4.9 Mouse action COMMEANGSc.eeereririirietiieieetenteet ettt ettt sttt ebtete sttt a et estebeebesaeebesbesaenteneenesaeanens -34-
3.1.4.10 Keyboard action COMMANAScecuirierieriierienieeiesteeiesteetesteeetesaeetesteeseebesaeeseseeensesneensesneensesseensesseens -35-
3.1.4.11 System action COMIMAIAScecueruieriertieiertieiesteetesteetesteeetesteeeteteettessesseensesseensesseensesseensesseensesseensesseens -36 -

3.1.5 ProOCESS AESCIIPLION.eetieiieiieriietiete et eete et e ettesteeteeseseeesetesseesseenseesseessessaenseenseensesnsesnsesseenseansenns - 36 -
3106 LAMIEATION. ..c.eteteeiteiteit ettt sttt ea et be bbbt bt ettt et e bt sb e e bt e b eae et et nee -39-
3.2 SEPARATE APPLICATION AND GIB (SAGIB) WINDOWScoouiiiiiiieieniieiieie et eee st ee e nee e -39-
321 TACIIEITIETS ..ttt ettt bbbt bt ettt sb e bbbt be et eae et e enee -41 -
3.2.1.1 CommMANG CIASSeviiiiiiiiieiiiieteeteset ettt ettt ettt et eb bt b a ettt sae b -41 -
3.2.1.2 MOUSE POSILION COMEIOL...c.uieutitieniiriieiietietesitete et etesteetesteestesteestesaeestesseensesseensesseenseseensensesseensenseansensenns -42 -
3.2.1.3 MOUSE ACHION COMEIOL..c..cuviuiiiiiiieiiiteitintct ettt ettt ettt ettt ettt ettt bt ebesbe et ebesae b -42 -
3.2.1.4 KEYDOATA CONIOL.....ctiiiieiieiiitieiteste ettt ettt ettt ettt et e bt et et e st enbesaeetesetenbeentensesseensenseensensaens -43 -
3.2.1.5 File eXecution CONLIOL.......... i ittt fe oot b ettt sttt b e st sae b -44 -

3.2.2 Process deSCIIPLION.ffiueeriesieereieereieereeeeeseee i vasinsst s e eeeenteeseeseenseessesseesseesseesesnsesssesseesseenseans -44 -
GIB-BASED APPLICATION INTERFACE (GAI) GENERATIONccccovieiiireneieenecsie e -47 -
4.1 INTERFACE ...cucoiiiinvennen gl | KRR 0 AN LB ..ottt ananes -47 -
4.2 PROCEDUREoouiiiiiiineeiithathueennenneseesutseiiesiionnensennesusioseusensenssshendieeesesnsensentensensensensesuseneensensensessensessnens -48 -
4.3 ALGORITHM.......covvevenn... TR . SN S B S Ll e, -51-
4.3.1 Algorithm of application interface 1oader ... e -51-
4.3.2 Algorithm of control interface GoMeTatOr il s e ettt s eees -55-
DEMONSTRATION. ...ttt bbbt e b b r bbb e e e b sr bt ene e enres -59 -
5.1 INTEGRATION OF GIB AND SPEECH RECOGNIZERc.cociiuiiuiiiiiiiiiiiiiiieiieiieiete e -59-
5.1.1 RUNNING AN APPLCATION ..eovvieiiiiiieiieiiieeie ettt eite ettt e eete st e tee e essesssessaesseesseenseensesnnenseenseenseans -59 -
5.1.2 Registering an apPliCAtION.ccueruiereerieriereeriterteeteeteeteeseteteesteessessaesseesseesessesnsesasesseesseenseanseans -59 -
5.1.3 RegiStering a SQUATE ODJECTecuueruierreerierreeterieerieeteeteeeeesseeteesseensesssesseesseesseesesnsesssesseesseensessenns -60 -
5.1.4 REGIStEIING GIIAS ...uviouieeiieiieiieieeie e sttt et e e et e et e st et e e st enbeessesssesseessaenseenseansesnsesseesseenseansenns -61 -
5.1.5 REZISLEIING 8 SEAZEveeeveeiieeieiieieeiesiiestteteeteeaeseesseesseesseesseansesssesssesseesseeseensesnsesnsesssasseenseensenns -62 -
5.1.6 Registering a Macro COMMANG..........c.eecuerueriereierireteeteeeenteeteeteeaessaesseesseeseesessesseesseeseenseeseans -63 -
5.1.7 Examples of application “Sol”..........coociirieiieiieieeeeietee ettt ettt et nne e e - 64 -
5.2 SEPARATE GIB AND APPLICATION WINDOWSccciuiiiiiiiiiiiiiiiiiniiiie ettt st -67-
5.2.1 APPIICALION TUNMINE ...eeuvieiieeiiesiietieie et etestestesteeteesteessesssesseesseenseansesssesssesseenseensesnsesseesseensesnsenns -67 -
5.2.2 Setting spring diStance Of MOUSE CULSOT.........ccveruieriieriereeeierteeieeteeteseesseesseensessessesseesseessesnseens -67 -
5.2.3 Jumping and moving control Of MOUSE CUISOTccuevieriieriieiieieeteeie et eseeeee e seeseee e enee e - 69 -
5.2.4 Example of application “WmPIayer”...........ccoocierieriieiiieieeieeeeete ettt see e ae e sseenseenee e -70 -

5.2.5 Example of application “WoOrd™ccoevuieiiieiieieieeeieeie sttt ee e seesseesseesseenseessenseenseens

Example of dOCUMENt TEAAINEcc.evviriiriiriieiieieicertetere ettt ettt st

5.3 GAI GENERATION

5.3.1 Example of application “VCard™cccccveruieriieiieeieeiesiieieeie e see st e e eaeseeseeesseeseenseessesseenseans

6. CONCLUSIONS AND FUTURE WORKcoiiiiiieicene et

6.1 CONCLUSIONcceeeeeeennnns

6.2 FUTURE WORKcc..ce.....

REFERENCE ...

[1] REFERRED JOURNAL PAPER

[2] REFERRED CONFERENCE PAPERccciuumemuneasnnt bosueeshnnasnboessiessansianeennneesueesuseessseesseessseesseessseesseessseesnes

[3] PATENT....cccvviieiiieeeiieeea

X

List of Figures

FIGURE 1-1 GENERAL DEVELOPING METHOD OF SPEECH CONTROLcccccuvieeiirieeererreeennreeesnireeeesssessssssseesssseeens -1-
FIGURE 1-2 OS INTEGRATION APPROACHuviiiiiiiieeiiiieeesiiteeestseeeasesseessssesessseesassssessssssssessssesssssssessssssseesssssees -3-
FIGURE 1-3 ARCHITECTURE OF GIB CONTROL SYSTEMccutttiiuitiiieeiieeiieeiteeieeettesnteesseesbeesseesbeesseesnseesseesns -5-
FIGURE 1-4 GENERAL DEVELOPING METHOD OF HANDHELD DEVICE CONTROLcccvvtiiiiiieeeiiieeeeieeeeeeveeesenenns -6-
FIGURE 1-5 RAJICON SYSTEM ARCHITECTUREceiittietteeiteeeniteetteenieeenbteeseesbeeestesseessseesbeesnseesnseesseesnseessseesns -7-
FIGURE 1-6 PUC SYSTEM ARCHITECTURE ...c.uuttirttteitteeiteeitteeniteetteesitesnbeeeseesbaeestessaessseesseesnseesnsessseesnseessseesns -8-
FIGURE 1-7 SAMPLE GROUP DECISION TREE FOR A SHELF STEREQceceiiuiieeiiirieeesereeeesnreeessireeessssessssssseesssseeens -8-
FIGURE 1-8 ARCHITECTURE OF PROPOSED HANDHELD DEVICE CONTROL SYSTEM.......cccccutieeiirireeenireeeeereeeeneveenns -10-
FIGURE 2-1 TOUCH PANEL INTERFACEceoutttrteeitteeieesteeeieesteesteesbeeeteesbaessseesnbaeenseesaseeenseesnseeenseessaeenseesnes -13-
FIGURE 2-2 CLICK-THROUGH BUTTONS. ...c.uttttttestterteestteeteesttesueessaeeseesssaesseesbeesnseesaseesnseesssesesseessseeenseesnnes -14 -
FIGURE 2-3 RECOGNITION TRAINING STEPS OF MS SPEECH RECOGNIZER V5.1cooiiiiiiiiiiiiiiee e, -15-
FIGURE 2-4 SPEECH COMMAND INPUT FORMATceeutiiuiieeieeeteeeieesteeeteesbeesseesbeeenseesnseesseesnseeenseesnseesnseesnes -16 -
FIGURE 2-5 SCRIPT LANGUAGE SYNTAX TREE OF COMMAND “DRAGSQUARE”.......ccvttierriieeirieeeeirieensireeeseveeens -16 -
FIGURE 2-6 MICROSOFT SPEECH SDK ... i et ettt ettt et - 18-
FIGURE 2-7 MICROSOFT GRAMMAR COMPILERSccotiertee steasstiiihe eeeeeeieeesueesnbeeenueesseesnseesnseeesseessseesnseesnnes -19-
FIGURE 3-1 SYSTEM ARCHITECTURE OF GlB i i et stiein et iee st etee st e et ee st e e beesebeesabeesaes -22-
FIGURE 3-2 RUN APPLICATION UNDER GIB SYSTEM i.tieiiue i e iiieiiinn e Bttt ettt -23-
FIGURE 3-3 FORMAT OF FILE GRAMMAR XML ... cuueeifleeilteesueesneeloneesss baaneteesueeenueesueeenueesnseeenseesnseeenseesnseeenseesnnes -24 -
FIGURE 3-4 FORMAT OF COMPOSED COMM AN D S ... o0 et e a s e et eteeebeeeteesbteebeeebeeenaeesbaeeaeeeanee -25-
FIGURE 3-5 MACRO COMMAND REGISTRATION . cueeste et it h et Bttt et -25-
FIGURE 3-6 TRANSLATION FLOW OF SPEECH COMMANDctiiftess ilfeureeeueenieeenieesnieeenueesnseessseesnseeesseesnseeenseesnes -26-
FIGURE 3-7 COMMAND PROCESSING FLOW ... [0 ful e teetut st feeouteenseeenneesseeenseesnseeenseessseeanseesnseesnseesnsesenseesnseeenseesnnes -26-
FIGURE 3-8 LEXICAL TRANSLATING ...ceeuttetutterteesttenteesteeeteesseesueesaseesseesseesseessesanseesseesnseesnsesesseessseeenseesnnes -27-
FIGURE 3-9 GRAMMATICAL RULES IN FILE “GRAMMAR.XML”c.uttiiiteriieenieeriieenteeenieeenueesnbeeeaeessseesnseesnseesnnees -28-
FIGURE 3-10 GRAMMATICAL RULE FLOW IN FILE “GRAMMAR.XML”ccccttiiiiiuiiieiiiieeennieeeesveeeesereeessesesesnseens -28-
FIGURE 3-11 EVENT DELEGATION.......ceetttittertteitteeieestteeteesbeesteesbeeeseesbaessseesabeeaseesnbaesseesbeeenseesseeenseesses -29-
FIGURE 3-12 FILE HIERARCHICAL ORGANIZATIONuttiutteeieeeteeeueestteenteesteesseesbeeeseesseesnsessnseeenseesnseesnseesnnes -30-
FIGURE 3-13 OPERATING FLOW CHART OF GIB SYSTEM ...cccttiiiiiiiiiiiiieiteeiteeee ettt -38-
FIGURE 3-14 RULE COMPOSITION FLOWuttiitteittenieestteeteesteesueesaseeeseesbeesseesnseesnseesseesnsessnsesesseesseeenseesnes -40 -
FIGURE 3-15 MOUSE ACTION ENVIRONMENTSuuttttteitteettestteeueesteeeseesbeeeseesbeeenseesseesnseesnseeesseesnseesnseesnes -40 -
FIGURE 3-16 OPERATING FLOW CHART OF MODIFIED GIB SYSTEM.......cciiiiiiiiiiiiiiiiieiteeiieeiee ettt -46 -
FIGURE 4-1 FRAMEWORK OF TRADITIONAL CELLULAR PHONE INTERFACE SYSTEM.......cccvvteeirieeennireeeeereeeeeveenns -47 -
FIGURE 4-2 FRAMEWORK OF PROPOSED CELLULAR PHONE CONTROL INTERFACE SYSTEMccceeuvieeenreeeeenennnn -48 -
FIGURE 4-3 SAMPLE OF SPECIFICATION FILE OF AP “VCARD”ccciiiiiiiiiieiiieeiee ettt s -49 -
FIGURE 4-4 CELLULAR PHONE INTERFACE MODULESeeiitttitteeieertteenteesieeeteesbeeeseessseesnseesnseeenseessseesnseesnnes -50-
FIGURE 4-5 CELLULAR PHONE INTERFACE GENERATED PROCEDURES..........ccceiiuiteeeiiireesereeeesrreeesereeesssseeessneeens -51-
FIGURE 5-1 OPERATION STEPS OF RUNNING APPLICATIONccccuteriueeeitieeieesieeenieesieeeueesseeenseesnseeenseesnseesnseesnes -59-

FIGURE 5-2 OPERATION STEPS OF REGISTERING AN APPLICATION
FIGURE 5-3 OPERATION STEPS OF REGISTERING A SQUARE
FIGURE 5-4 OPERATION STEPS OF REGISTERING GRIDSceeeeuvveennnes
FIGURE 5-5 OPERATION STEPS OF REGISTERING A STAGE........cccoevvennnne.
FIGURE 5-6 OPERATION STEPS OF REGISTERING A MACRO COMMAND ..
FIGURE 5-7 DEFINED CONTROL OBJECTS OF APPLICATION “SOL”..........

FIGURE 5-8 OPERATION IN APPLICATION “SOL”ccovvviiiiiiiiiiieiiiiieieenens

FIGURE 5-9 SET COMMAND STREAM “OPEN MY DOCUMENT”” IN MACRO DESIGNED FOLDERcccvvvvvvevvvvennnns

FIGURE 5-10 MOUSE CURSOR ONE-STEP MOVING DISTANCE SETTING ...
FIGURE 5-11 MOUSE CURSOR ONE-STEP MOVING CONTROL..................
FIGURE 5-12 MOUSE CURSOR JUMPING CONTROLcccvveeerrieeennereeanns
FIGURE 5-13 MOUSE CURSOR MOVING CONTROL.....cccceerruierirerieeneeenns
FIGURE 5-14 EXECUTING STEPS OF APPLICATION “MEDIA PLAYER™.....

FIGURE 5-15 WRITING ENGLISH OR CHINESE ALPHABET WITH SPEECH

COMMANDS......cotiiiiiiiiiiiicci i

FIGURE 5-16 USING SPEECH COMMAND TO HELP USER READING DOCUMENTcccvvviiiiiiiiiiirerereeeeeeeeeeseeeeserseenens

FIGURE 5-17 EXECUTING APPLICATION PROGRAM “VCARD” .1...........
FIGURE 5-18 LOADING AND RUNNING JAVA AP ON THE SYSTEM5%.
FIGURE 5-19 FLOW OF GENERATING. CONTROL TABLE OF. AP “VCARD”

FIGURE 5-20 FLOW OF GENERATING MIDLET CODE OF AP ““VCARD”’ :.

X1

List of Tables

TABLE 1-1 REMOTE CONTROL FUNCTIONS WITH CELLULAR PHONE KEYPAD MAPPING. -7-

TABLE 5-1 SAMPLE MACRO COMMAND OF CONTROL APPLICATION “SOL”

Xii

Introduction

1.1 Introduction

In a typical window-base interface system, users control application programs containing
the HCI (Human Computer Interaction) control functions in speech or handheld device such
as PDA or cellular phone directly and conveniently. The commonly used traditional method
which allows developed window application programs with speech or wireless remote HCI
control ability to follow the control commands for achieving the goal of operating application
programs, will directly integrate the HCI control function and API procedures of speech or
handheld device into the application programs by using low-order designing formula to
package procedures into single application program through a direct and intense method.
Under such devising method, the designers must be €quipped with certain knowledge about
application system designing and programming in order to devise an application system with
speech or remote HCI control functions. Even if the design is completed, it is relatively

difficult to revise or add thesinterface funetions-without the primitive code, as shown in figure

1-1.

user HCI application program
A control signa === =
speec analyzing program mod. :
oy e | mod2),
(PDA) v repl v el
; - commanes fcommands | 1
: comparin rocess [modnli
gesture paring P mod.nji)

Figure 1-1 General developing method of speech control

Three major problems exist in such development of speech or remote HCI control
procedures: first, system designer are required to possess abundant knowledge about system
design for control interface and programming language in order to design an application with

-1-

speech or remote HCI control functions. Second, if we want to obtain an application program
with speech or remote HCI control functions lacking previous interface control ability, we
must obtain the primitive code for that application program due to the difficulty in designing
without the code. Third, even if the code is attainable, we are still required to reanalyze the
entire structure of application in order to write a suitable interface control program. These
tasks will leave the designer with much difficulty and seemingly resulting in less flexibility
and efficiency.

To overcome these issues, in this thesis we emphasize on the research of Software
Engineer Methodology to develop a visual generic interface bridge (GIB) system and
introducing this system into two parts: First, the “Integration of GIB and Speech HCI,” and
secondly, “GIB-based Application Interface (GAl) generation,” in which a wireless handheld
device is taken as an example: Under the GIB system, designers devise the application system
with speech or wireless remote: HCI control functions in an easier and more efficient manner
with the only requirement«for defining’some parameters-of square objects in a application
environment where users do het need o write any program code.

In part one, most of voice control robots employ such development method in designing
their voice control interface, such is in the case of AT&T’s Speech-Actuated Manipulator
(SAM) [1], whereas the voice commands via telephone are comprehended and then performed
with respective actions. Under such means of intense design, we discover that if there is any
need for modification in speech control function, the primitive source code of application
system must be acquired and comprehended before using the low level design method to write
application control functions, while the entire program must be recompiled and executed.
Such design manner does not offer extreme efficiency, moreover it is hard to design, increase

or revise the control function without the original source code of the application.

database

!

abstract/real commands setting Tnterface
command translator)

A

control abstract real

signhal commands commands |application
user |7 » HCI » PP
programs

(a) IVOS system architecture

(b) IVOS system

Figure 1-2 OS integration approach

An OS integration approach allowing one speech recognizer to be intact with the domain
of applications such as Vspeech 4.0 [2], Voxx 5.0 [3] and IVOS [4], utilizes the appearance of
windows interface, designs some fixed pronunciation operation functions and establishes the
name of relative operation instructions. Different instruction names are used to control the
same operating function such as “open file” to <Alt>-F and “file open” to <Alt>-F, and then

using the designed file name of speech command to achieve the goal of controlling the

-3

application system with speech commands, as shown in figure 1-2.

However such development method of speech control system contains two problems:
first, the current approach leaves no flexibility for future modifications about control
functions. The control functions were already designed steadily in the HCI system and unable
to be increase or revise. If some functions we use to control application were not defined, we
must get the primitive source code of the application and redesign it. This will increase
difficulty and loading on the work. Second, the current approach may only control application
functions with hot-key commands. Due to the system only defines the control functions of
keyboard, therefore only keyboard actions can be controlled. Nonetheless there are still many
applications with control functions of mouse actions, the current approach will not be able to
fully handle theses applications.

Based on the reasons states above, we develop a visual generic interface bridge (GIB)
system between speech HCI and window-base application programs. The GIB provides visual
operating interface, under which | designers draw recognizing square object at any
corresponding position on the;windows and name eachsquare object. Subsequently, we can
easily use speech command to control mouse and keyboard actions corresponding to the
position of square object. By increasing the operation of application with more flexibility and
expandability, we use macro command to define and combine the control commands. One
macro command may be combined with several control commands; this will avoid noise
effect between long commands and make the application control more flexible with grammar
analysis technology.

Through this process we can make any application program which did not have speech
HCI control ability previously, and to control easily with speech commands simply after
defining simple square object and sets of macro commands without the need for writing any

program code, as shown in figure 1-3.

analyzer

GIB

|
: grammar
| process
|
|
|

B

database

command requdst *T command
store abstract commands | string
abstract/real command setting

«—- syntactic
o -»{Interface # analysis
A |
cqn‘tr?l ubs'rr'aij’r real g
sigha commanas commanas a “Cﬂﬁl}ﬂ
USer feeeneens PP
¥ HCL > programs

Figure 1-3 Architecture of GIB control system

In part two, due to remote control methods have been discussed in recent years; in 2001,
it was proposed that cellular phone to be used in controlling remote HCI running on the PC.
Cellular phone is a mobile device containing a small screen without showing the same GUI
(Graphical User Interface) as on the PC screen. Therefore we must analyze the GUI and
develop some function programs for the cellular phone based on its use in the remote control
interaction with GUI on the PC. However-along with progressing existing techniques and
increasing functions of communication equipments for family use, operation and interaction
styles between people and devices have increased in complexity. Most of the multimedia
contents can be run and displayed on different kinds of platforms without containing remote
control ability originally. Consequently people may believe that if they can simply use some
simple instruments, such as cellular phone or PDA, to remotely control the multimedia
application module running on the PC or digital TV, subsequently the control will become
more vivid and interesting. However due to the variation in control instruments, display
devices, and different kinds of methods, it is not easy to make a specified device with remote
control ability. To achieve this, we must repeat the design process: (1) Write control
command protocols and HTTP wireless protocols into the applications running on the PC; (2)

-5-

Write interface program and wireless control protocols into cellular phone, as shown in figure
1-4, for every application system in successive sequence. Despite this designing process is a
difficult work in nature; we must write many complex procedures even for simply adding or
modifying a new control functions. In addition, there is still one major problem remaining if
we lack the original source code of application system, as it becomes impossible to make the
specified device with remote control ability. Such repeated design procedures would increase
developing application systems a financial burden, waste of time, inflexibility and

inefficiency.

1. write contrel command protocol

_.?Jav_d AP on PC
2. write HTTP wireless protocol [, 4

/ with cellular phone

Midlet Developing

environment Midlet

1. write control program download control

I
I

I

I

I

I

I

I

I

I

; I
S I
Jremote control AP :
I

I

I

I

I

I

I

I

I

2. write wireless pratocol program :

Figure 1-4 General developing method of handheld device control

As the problems reveal, Rajicon System [31] was using cellular phone to control the
remote PC, as shown in figure 1-5. It works on a specific device, so, if we want to perform
some complex operation functions, we must define a set of interactive rules. Rajicon System
uses macro commands to formulate every operating function, therefore, the more operating
functions there are, the more likely that more macro commands would be required, as

described in table 1.

cellular phone

cellular

TCP/IP

web server remote PC

phone
client

» daemon

Figure 1-5 Rajicon System Architecture

Table 1-1 remote control functions with cellular phone keypad mapping

Key [Zoom mode command

result

1 | View entire desktop ?a

Hold down Alt key until next key pressed

2 | Dec cursor height Y. > Hold down Ctrl key until next key pressed
3 |Refresh n Préssed Enter key

4 | Dec cursor width m Press left mouse button

5 | Execute macro 0 Maximize the window at the cursor

Through pressing keypad of cellular phone to input command for controlling application
running on the PC, these operation methods get complex and disorient, in addition to the
difficulties in memorizing these control commands. On the other hand, this system is

designed for a specific device when there are some control functions that need to be created or

modified; such designed procedures should be restarted repeatedly.

In 2002, Jeffery Nichols and Brad A. Myers published a paper on “Generating remote
control interfaces for complex appliances” in [32]. They proposed a method of personal
universal control (PUC) with a content describing how to create a control interface with

graphics or speech by downloading a functional specification explanation of equipment for

family use, as shown in figure 1-6.

APPLIANCE PUC DEVICES &
Stereo, alarm, clock, etc auto UI generation
ADAPTOR

publishes description +
appliance state +
controls appliance

PROTOCOL PROTOCOL
two way communication of two way communication of
specification and state specification and state
COMMUNICATION < NETWORK > COMMUNICATION
802.11, RF lite, bluetooth, etc| “yevice specification +|802-11, RF lite, bluetooth, etc
state + control

Figure 1-6 PUC System Architecture

Hence the PUC system analyzes specification document and uses decision tree
algorithm to create a specification group tree, as shown in figure 1-7. Then, establish an
appropriate control interface according to the structure of this group tree. However there are
many design factors which need to be taken into account, including: (1) Download a
functional specification explanation for a specific equipment before establishing an interface,
however it is not an easy task to establish this specification description; (2) Design a control
interface is weary because interface designed algorithm needs to take into account users’

requirement with the presentation of control device objects.

FM Presets
AM Station
= »

. H Play State |

CD Track

Figure 1-7 Sample group decision tree for a shelf stereo

Mode
i
i

-8-

In [36], because traditional remote control typically allows users to activate the
functionality of a single device, consequently qualitative and quantitative results from a study
of two promising approaches creating such a remote control are presented: end-user
programming and machine learning. In end-user programming, users manually assign the
buttons which they believe to be sufficient to accomplish their tasks of graphical “screens”.
They then work with a single, handheld remote control that can display those screens.
Machine learning also uses a single, handheld remote to display screens; however, the
learning uses the recorded history of a user’s actual remote interactions, to infer appropriate
groups of buttons for the performed tasks. Some questions arise as described in the following:
(1) the end-user programming is tooscomplicated.to carry on the design of remote control to
the device with graphical screens. User must.define the eomponents required for operation on
a screen which can control many device intetfaces remotely concurrently, and all the control
procedures require writing.a large numberof programs; (2): The ML can record the operation
of users automatically and _utilizes- the performing -algorithm to produce the operating
component. Perhaps due to the difference in deviee, it cannot completely define each function
of device component; (3) The methods of automatically producing remote control interface
are required to follow to the characteristic of the device and the preference of user, but it also
needs a large number of procedures to be written in order to design algorithm automatically.

In [38], a new widget and interaction technique known as a “Frisbee,” was described for
interacting with areas of a large display that is difficult or impossible to be accessed directly.
It consists of a local “telescope” and a remote “target”. This design meets five design
principles in: (1) minimizing physical travel, (2) supporting multiple concurrent users, (3)
minimizing visual disruption while working, (4) maintaining visual persistence of space, and
(5) application independence. However, the design requires writing many procedures for the

specific and large-scale showing device. Moreover, because of the limitation of hardware

-9.

specification and the difficulty in obtaining relevant information, it is comparatively difficult

and complicated to design the interface.

| objects
| template
Java APs .

l e - —
P{_: o -

| ke ~Java APs on PC

- Interface o
| AP objects generator “=1 remote control APs
I Statement . ||'.,1|d|e[with cellular phone

download generated
control program

Figure 1-8 Architecture of proposed.handheld device control system

Based on the issues mentioned above, our proposal for solving this issue will be to
construct an interface generating system; with it the designer can easily develop remote
control interface program into cellular phone without even having to write the program of
cellular phones. We comply with thé concepts of GIB-to develop a bridge interface for remote
signal control system, under which designer can easily transform from specified control object
of Java application system running on PC, such as control buttons and labels, and generating
remote control interface with objects, into cellular phone automatically. This will simplify the
development process of creating a control interface and makes the control system
development and modification more flexible and elastic. Through directly generating
controlling objects and functions onto the cellular phone by interface generator, we may
directly and easily control the Java application system running on the PC without having to
write complex programs into the cellular phone, as shown in figure 1-8.

This thesis emphasizes on the research of Software Engineering Methodology in order to

unfold the feasibility and the serviceability. We literally develop a GIB system by adopting a

-10 -

proposed method which is used as the bridge between HCI and window applications, and
through which the interaction of HCI and applications will become more vivid and friendly

without any requirement of writing any program code from the user.

1.2 Motivation and Goals

In general, if we want to modify HCI (Human Computer Interaction) control functions or
increase some new control functions in the application controlled by speech or handheld
device, we are required to obtain the original source code of the application system or simply
redesign the system. Despite that we might obtain the primitive source code of application
system, we might also need to spend much time on analyzing the entire system accordingly;
and then use the low level designed 'way to write and.recompile the whole application system;
such design method is very difficult and-inefficient: The objective of this thesis is to develop a
visual GIB platform as a connection bridge between HCl.and applications. We can use this
GIB system as an interaction. interface,/to operate applications without previous recognition
functions by speech command or PDA device, through:simple definition of square objects,
parameters description and setting ;of macro commands without the need of writing any

program code.

1.3 Organization of this dissertation

We have briefly introduced the problems of current approach regarding control
application with speech or PDA HCI, and have proposed GIB platform to overcome these
issues in chapter one. The rest of this dissertation is organized as follows: in chapter 2,
introduction of related works regarding proposed GIB system. This discussion contains a
touch-panel interface, speech recognition engine, script language, compile grammar definition,
Macro command and OS’s API. In chapter 3, we propose integration of GIB and speech HCI
system architecture which includes three parts: input module, kernel module and output

-11 -

module. In this chapter, the operations on how to design this bridge interface, and how to
define and set control environment of application in order to provide a successful interaction
interface between HCI and applications without writing any program code, will be described
in details. In chapter 4, applying the concept of proposed GIB system in chapter 3, we propose
GIB-based Application Interface (GAI) generation to generate control interface automatically
on the PDA through simple object descriptions, in order to control the applications on the PC
Windows. In chapter 5, we show real demonstration to explain how to operate applications
through speech command or PDA without the need for writing any program under proposed
interface generation. Finally, in the last chapter a conclusion is drawn and future work will be

described.

-12 -

2. Related Work

To develop Generic interface bridge (GIB) system, we need some support of
technologies in order to allow the system to work in a more generic, flexible, simple, and
effective manner. The corresponding technologies include: touch panel interface, speech
recognition engine, script language, compiler grammar, macro command, and OS’s API. All

these technologies would be described briefly in the following sections.

2.1 Touch panel interface

Our visual HCI interface system utilizes the concept of touch panel, as shown in figure
2-1; develops a general transparent sheet of glass between application and mouse cursor, then
executes application under thisideveloped circumstance by control mouse cursor actions
through controlling drawn and defined square objects above control application on the screen
with a name given to each bbject. That mean;s, :through th;é concept of see-through interface
[6-8], if we can use devices such as.speech 70r7PrDA to control the square objects drawn and
defined from the corresponding position of application program on the Windows, we can

control this application as well.

.. glass
Application system panel

Y

control
buttony

Figure 2-1 Touch panel interface

-13-

Applying concepts of touch panel may yield many widgets in visual interface without
requiring new offers of extra screen space and allows the control steps become easier and
friendlier to follow. An example in figure 2-2 [6] shows that many simple widgets called
click-through buttons were used to change the color of objects below them. The user positions
the nearby widget and appoints which object for coloring by clicking through buttons with the
cursor over that object, as shown in figure 2-2(b). Furthermore buttons in figure 2-2(c) can
change the outline colors of objects.

That means, we can use speech or remote control device to control application through
controlling mouse actions including mouse moving, mouse events, click, double click, drag,

drop, and keyboard press actions by using touch panel concept

A
\V

(a) (b) ’ ©

Figure 2-2 Click-through buttons. (a) Six widget objects. (b) Clicking through a green

fill-color button. (c) Clicking through a blue outline-color button.

2.2 Speech recognition engine

The pronunciation of every person may differ. Each person must do speech recognition
training before using recognizer as a controller to operate the application, resulting in a more
correct recognition. In this study, we chose Microsoft Speech Recognizer v5.1 as our system
recognition engine and the figures to complete the training steps of speech recognition as

shown in figure 2-3. After speech command was inputted and processed by speech

-14 -

recognition engine [16-17], if command was correct, the system would recognize the

commands and

transfer the

recognition

result

to

the

system function

RecoContext Recognition(). The parameters of this function are as below.

j - it
i L) BB D)
‘f.') N e zan 7 aman

@‘ﬁ?nnmm Excel Jm.
gl
gﬁ“ﬁ%ﬂ“ém’ 207w Q- O 8loem
AMCAY
:l Adobe Readar 70 a oA 9 ‘:9 "m e_, ?3
) FPRIIIR mfis [=Liiti=l T SERES EEEME

@ Mmoot Office Vimo 2003
@ naEENE
w ﬁ?nn'{:\nl:h-!m RET [-) e

XD WHE

A0 #ORRW IAD RED

l;'j Mol Ot Fowafout £ WiTE

3 @

Sl

¢ ©

mégﬁﬂ Fl l%?if"i; WM—;'-E ’Rm's}'ii.*

) <)
T g’ # TRE
R EgpEs \Ei)/ exgu d eS¢

B2uAg

BEHE zrmams

plligies co g L DIRE 2 bisil

i

*;m_5mj..&

Yoice Training - pej x

LI]

ead the text in a natural and even tone.

lcome to Microsoft's Speech Recognition training wizard. Please

Training is listening. Please read the phrase.

Training Progress
(-_ 1k)
8F—2

O

| (et]

- Alfirst, speech recognition will only get 85-90% of the

Yoice Training - psj X

Thank you for training.

Click here if you want to do some
more training right now.

words right for most users. As you do more training,
accuracy will rise to around 95%.

If you feel that too many mistakes are being made, you

can always do some more training later. The more training
you do, the better speech recognition will work. You can

tiain the same sessions more than once.
> ﬁh‘

£

Figure 2-3 Recognition training steps of MS speech recognizer V5.1

Dim WithEvents RecoContext As SpeechLib.SpSharedRecoContext

Public Sub RecoContext Recognition (

ByVal StreamNumber As Integer,

ByVal StreamPosition As Object,

ByVal RecognitionType As SpeechLib.SpeechRecognitionType,

ByVal Result As SpeechLib.ISpeechRecoResult) Handles RecoContext.Recognition)

2.3 Script language

-15-

For a more convenient and efficient control with speech commands, we apply script
language [11-15] as commands format. Script language is different from system programming
language in which it could achieve a higher level programming and a more rapid development
than the system programming language. There are some advantages in using script language:
1. it is always stored as a plain text file which users could easily edit or read with any text file
editor such as “Word” or “Notepad” application. 2. It is an excellent tool for developing
application rapidly. User could edit a simple script file to solve a simple problem with less
code and time. Using script language as command format might enable the development and
combination of control command string to be easier, rapid and flexible. The speech command

input format is as shown in figure 2-4, single command example move to apple = send for

figure 2-4-a, compound command’example move to file then click by leftclick & send for

figure 2-4-b, and script language syntaxstree of “dragsquare” is as shown in figure 2-5.

vull

<command> —» <send> <command> —> <send>

move to apple -------- » send © move to file then click by leftclick----» send
a. single command input b. compound commands input

Figure 2-4 Speech command input format

dragSquare —square x—— to —|: square y

coordinate x

— by — pattern by — distance
direction :l

Figure 2-5 Script language syntax tree of command “dragsquare”

2.4 Compile grammar definition
The designed rule of script language follows from the format of function “//Microsoft

-16 -

Speech SDK 5.1/ Microsoft Speech SDK 5.1 Help/grammar compiler/ % J[/Designing
Grammar Rules”. Consequently, we designed our speech recognizing rule of interface system
based on the designing grammar rules in “Microsoft Speech SDK 5.1 Help,” from file
“test.xml”.
<GRAMMAR>
The GRAMMAR tag is the outermost container for the XML grammar definition.
<DEFINE>
The DEFINE tag is used for declaring a set of string identifiers for numeric values.
<ID>
The ID tag is used for declaring a string identifier for numeric values.
<RULE>
The RULE tag is the corestag for defining which commands are available for recognition.
<RULEREF>
The RULEREF tag is=used for importing rules from the same grammar or another
grammar. The RULEREE.:tag is especially useful in reusing component or off-the-shelf
rules and grammars.
<L>
The L tag is used for specifying a list of phrases or transitions, and anything in it should
be spoken once but not all times.
<pP>
The P tag is used for specifying text to be recognized by the speech recognition engine, or
anything in it should be spoken.
<O>
The O tag is used for specifying optional text in a command phrase.
In regards to the help on checking grammar composition, we can use the function
“//Microsoft Speech SDK 5.1/tools/grammar compiler/Build” to check the correctness of rules.

-17-

If the compiling result is successful, it would show compile successful; else wise it would
show compile fail and depict the error reasons. The process figures of Microsoft Speech SDK

and Microsoft Grammar Compiler are shown in Figure 2-6 and 2-7.

u new r
(™) Network Print Server 4

™) ViewSonic W2201 WebCam »

™) Hewlett-Packard »

() hp Laserlet 2410 2420 2430 »

™) HTML Help Workshop » | @) Visual Basic Samples »

™) Microsoft NET Framework S i) Web Samples
icrosoft Speech SDK 5.1 » 5.'? Microsoft Speech SDK 5.1 Help

I Microsoft ¥isual Studio NET 2003 »

) Microsoft Developer Network »

@) Yahoo! »

) ERETAR »

a0 N F .

1 Adobe Reader 7.0

Microsoft Office Vi

w Microsoft Visual Stud
2003

@ Microsoft Office Po
2003

FREA® »

@ wr

Im) Ct+ Samples »
|® Tools »
I Tutorisls »

9 . &
t-H R LT 0 N

Microsoft Speech SDK @

SAPL 5.1

2
J A
Designing Grammar Rules

ST e

Egggv“;[“‘s““"g ||| Speech applications often use context-free grammars (CFG) to

C5pStieamFomat parse I;he rlecognizer output and in some instances, to act as the
Detach Method recognizer's language model. Speech recognition engines use CFGs

Eggnge:[mc!itnnu to constrain the user's words to words that it will recognize. If the
DetachTo, CSpStreamFormat CFG is augmented with semantic information (property names and
gx:lﬂi:::ﬁ"m property values as explained below), a SAPI component converts
Devean pmpa“; the recognized word string into a name/value-meaning

SpMMaudioln representation. The application then uses the meaning
D:fut“"d‘ﬂ“ representation to control its part of the conversation with the user,
Dictation Pad C/C++ . 4
DICTATION t2g The following section covers:
R CSemantic Properties or Tag
Di':::a:;xl‘-m"hm ® Separation of Dynamic and Static Content
DictationLoad Method, ISpeechD atakey . .
DictationS elState Melhad‘,’lSpeedﬂe:iEr ® Use Dynamic Rules for L anguage Flexibility
DictationUnload Method, ISpeechRecoGra .
Discard, I5pPhrase 2 @ Retrieving Semantic Tags or Properties from Recognition Results
i Mathad | hR R

= e Using Semantic Properties, Hypotheses, and "Property Pushing”
BATD) v

< | >

Figure 2-6 Microsoft Speech SDK

T HI-TECH Software
@ National Instruments
National Instraments LabVIEW 8.5

¥ Yoo FEEFET

@ Micromift Office 4
@ Nem »
(@) Network Print Server »
@) ViewSonic WI201 WebCam »
@) Hewlstt-Packard »
Gty ismomit Viswal St () hp Losenlet 2410 2420 2430 v
(@) HTML Help Workshop 4
|5F] o ote T @ oot NET Famevorkaps
f@ Micro i Spes 5.l r
(@) Microsoft Visual Stodio NET2003 »
(@) Microsoft Developer Network v
@ Yahoo! 4
i O wHETAT 4

@) Visual Basic Samples
@ Web Samples
L'? Mcmosoft Speech SDK 5.1 Help

FAEZ® b

- 18-

I Grammar Compiler - [C:\Documents and Settingshuser F—___Jﬁlgl U Grammar Compiler - [C:ADocuments and Settingsiuser... @@m

File Edit | Build Jool Help File Edit | Build Tool Help
<o IETEG; A [ora Em— =
1 1
<DEFINE> <DEFINE>
<ID NAME="NUM" VAL="1"}> <ID NAME="NUM" VAL="1"f>
<ID NAME="BOOLEAN" VAL="4"}> <ID NAME="BOOLEAN" VAL="4"f>
<ID NAME="GRIDS" VAL="5"}> <ID NAME="GRIDS" VAL="5"}>
<JDEFINE> <JDEFINE>
<RULE NAME="dragsquare" TOPLEVEL="ACTIVE""> <RAULE NAME="dragsquare" TOPLEVEL="ACTIVE">
<P>dragsquare</P> <P>dragsquare</P>
<o> <o>
<RULEREF NAME="sqrs"}{> <RULEREF NAME="sqrs"{>
<o> <o>
<p>to<ip>
<I> | <> 2
<RULEREF NAME="sqrs"}> <RULEREF NAME="sqrs"{>
<RULEREF NAME="coord"{> <RULEREF NAME="coord"}>
<> <>
<fo> i <Jo> A
Compiling CADocuments and Seﬂings&usenﬁﬁweng NCTU\il .
tor: XML parsing error: 538N o' EPHAE p' T
or: Comp T
2 3
< > < >

Figure 2-7 Microsoft Grammar Compilers

2.5 Macro command iE

1
!

In the proposed systeﬁl‘, ;7ve use speech as E);le of the éontrol tools; if speech commands
are too long, the correctnes.s_ é)f recognition r@sy}? would be affected due to the pronunciation
of people or the noise of envirenment between comimand and commands. According for easy
interaction with GIB (Generic Intrerface Bridge) system, we adopt macro command method to
simplify and combine longer or complex commands into single context-free command. For
users this method is much easier and more flexible to input commands and to increase the
recognition correctness and efficiency. The command format of macro command and relative
complex or compound commands are as following.

Macro command Relative commands

Clickfile move to file then click by leftclick
; move mouse cursor to defined position named “file,” and then left click the mouse
Start menu *g02-@cm

; move mouse cursor to the position stored before, then left click the mouse. The

-19-

command “then” and “-” is used as a separator of commands.

2.6 OS’s API

Upon obtaining abstract commands from HCI, GIB translates command lexical and
analyzes the syntactic, validating those tokens and then manipulating the actions of mouse
and keyboard through calling OS’s APIL In the proceeding section, we will describe the

parameters of mouse API and keyboard API.

Dllimport (“user32.d11”)
Mouse API:
Private Shared sub mouse event (
Byval dwFlags as mouse sevent flags,
Byval dx as integer,
Byval dy as integer,
Byval dwData as integer;
Byval dwextrainfo as integer)

End

dwFlags:

MOUSEEVENTF _ABSOLUTE: Specifies that the dx and dy parameters contain
normalized absolute coordinates. If not set, those parameters will contain relative data:
the changes in position since the last reported position.

MOUSEEVENTF MOVE: Specifies that movement occurred.

MOUSEEVENTF _LEFTDOWN: Specifies that the left button is down.

MOUSEEVENTF LEFTUP: Specifies that the left button is up.

MOUSEEVENTF_RIGHTDOWN: Specifies that the right button is down.

MOUSEEVENTF RIGHTUP: Specifies that the right button is up.

=20 -

MOUSEEVENTF MIDDLEDOWN: Specifies that the middle button is down.
MOUSEEVENTF_MIDDLEUP: Specifies that the middle button is up.

dx: It specifies the absolute position of mouse along the x-axis or its amount of motion since
the last mouse event was generated, depending on the setting of
MOUSEEVENTF ABSOLUTE.

dy: It specifies the absolute position of mouse along the y-axis or its amount of motions since
the last mouse event was generated, depending on the setting of
MOUSEEVENTF _ABSOLUTE.

dwData: If dwFlags contains MOUSEEVENTF WHEEL, then dwData specifies the amount
of wheel movement. A positive value indicates that the wheel was rotated forward and
away from the user; a negative value indicates'that the wheel was rotating backward and
towards the user.

dwExtralnfo: It specifies an additional value associated with the mouse event.

Keyboard API:
Private Shared sub keybd event (
Byval bVk as byte,
Byval bScan as byte,
Byval dwFlags as long,
Byval dwExtralnfo as integer)
End sub
bVk: It specifies a virtual-key code defined in MSDN. The code value is from 1 to 254.
bScan: This parameter is not used.
dwFlags: It specifies various aspects of function operation.

dwExtralnfo: It specifies an additional value associated with the key stroke..

-21 -

3. Integration GIB with HCI

The architecture of the proposed GIB system for bridging HCI and applications is as
shown in figure 3-1. This GIB system includes three parts: input module, kernel module and
output module. The main functions of input module include the reception of controlling signal
from user into the system. When controlling signal is valid, the system would translate input
control-signal to relative abstract command string of script language from the command
database. The kernel module breaks down the abstract command string into token sets, and
makes syntactic analysis for each token set. Finally, the output module would call OS’s API,

to simulate mouse and keyboard control according to the real command request.

Input GIB Kernel Output applications
! ! s = T T
; ; - =
_________________________ iph| context command __pll input-device LT T
1" || setting and —Pr translation emulation . F
command ¢ * : :
composing ' invdkes ired .
E . lexical methods | Window's cofpmands
: E : translation manipulation []
. i _ ¢ i i *
O E SYﬂT|GCT'C environment
wdl eianal T ' analysis int fi
N speech contral signal abstrhct Y interaction
command menu ¢ cdmmdnds ¢ *
(PDA) HeT : event keyboard &
; delegation mouse API
user gesture ——

Figure 3-1 System architecture of GIB

To conveniently introduce the advantage of the GIB system, we classify GIB system

architectures into two approaches: 1. Run Application in GIB (RAGIB) Windows, 2. Separate

Application and GIB (SAGIB) Windows, as shown in figure 3-2 (a) and (b).

-22 -

generic interfacing bridge

context settingand = = ER 11|
command composing application programs

CEE

Identifiers List

-------- > HCI |

user control commands
m
[FareFroies =] Ak I s arser_as oo | s Acte [t 3 g3 =] E1one O _I”_DRBHIORB -Gt e rff’;

(a) Run application in GIB Windows

moving right
high speed
low speed
moving down
normal speed|

i - L W

(b) Sepe;ré};:é :a]'ép_li_gati-n-h'- and GIB Windows

Figure 3-2 Run application under GIB system

In RAGIB system, application must be run under the GIB system. This implies that,
every time if we want to control an application under RAGIB system, we must select the
application and execute it under the proposed GIB system. For a more convenient control, we
proposed a SAGIB system. In SAGIB, GIB system can be run behind the Windows and
would not occupy the extra working space of Windows, and consequently makes the control
of application more conveniently. That means we can control all the applications which are
executed on the Windows by controlling mouse and keyboard through control signal from

user, under the SAGIB system.

-23-

3.1 Run Application in GIB (RAGIB) Windows
3.1.1 Input module

The main functions of input module include speech command recognizer, context setting
and commands composing. We can use speech recognizer to recognize inputting speech
command, defined control objects and environment setting such as objects defining, grids

setting, macro command setting and stage registering.

3.1.1.1 Speech command

We use Microsoft’s Speech SDK V5.1 as the speech input recognizer of this GIB system,
and the speech commands must be stored under the file “grammar.xml,” as shown in figure

3-3, and if not, the commands would not be recognized,

P srammar sl - SEEA

BER &EE BAO WR0 HAEH
<!--Composed Commands -
Following are key words that when recogmized will trigger the execution of ‘macros’ hased on the
defined language--=

|<::!--DYNAI‘¢]IC‘H‘TSERTION ZONE DO NOT EDIT BELLOW THIS POINT TO PREVENT SYS
<RULE NAME="file"” TOPLEVEL="ACTIVE" =<P=file</P></EULE=

<RULE NAME="new game"” TOPLEVEL="ACTIVE"=<P=new game-</P=</RULE=
=RULE NAWMFE="close game" TOPLEVEL="ACTIVE">=<P=close game=/P-</RULE=
<RULE NAWMF="dealing" TOPLEVEL="ACTIVE" ><P>dealing=/P><RULE=

<

Figure 3-3 Format of file Grammar.xml

3.1.1.2 Composed command

The relative command string of macro commands are stored into the file “composed
command,” the file format is as shown in figure 3-4. If the command spoken valid, this

system would get the relative commands string from the database.

-4 -

P compozsedCommands - 5

BRE iREE B0 R SHEEE

file

move to file then chclk

new gale

move to file then click by leftclick then move to new then click by leftclick

close game

move to close then chick by leftchick
dealing

move to hit then click by leftelick

<

Figure 3-4 Format of composed commands

3.1.1.3 Macro command registration

For using this system in a more,cofiveniefitimanner, we develop a GUI interface for user

to register macro commands ;and- nands string to file “grammar.xml” and
“composed command” automati 3 i ‘iiterface of macro commands is as

shown in figure 3-5.

[® Macro Composex

I TOPLEVEL="ACTIVE"><P>open file |

“RULE NAME="open file"

move to file then clicE

Figure 3-5 Macro command registration

3.1.1.4 Command translation flow

_25-

For example, if the user speaks a macro command “open file,” this would be compared
with the commands set in the file “grammar.xml”. If the command is found valid, it would get
and translate relative command string “move to close then click by left click” from the file

“composed command,” as in figure 3-6.

_ recognized command
Gen filD |

............ — |Reads
: object setting J— » macro translator
i grid setting — :
: macro setting outputs command
Y . macro command fable string if found
context setting and
)D command composing —— |Reads
— »| language translator

speech recognizer outputs internal
internal language table command if found
\ databas
recognized command move to file then click by leftclick
Figure 3+6 Translation flow of Speech command

3.1.2 Kernel module

The main functions of Process module include separating command string into token sets
and analyzing its syntax. If the command is valid after analyzing, it would be executed by

calling OS’s API. The processing flow is shown in figure 3-7.

separate commands stream to translate each commands

i / ‘then’ string to token sets
commands strings by ‘then string $ salidate tokeas

input strea _) _] _]
get command commands

A

lexeme building tokenizing validating

till speak ‘send’
A next commands string until empty
valid
call Syntax Analyzer command
with valid token sets

Invalid commands

Figure 3-7 Command processing flow

=26 -

3.1.2.1 Lexical translator
The lexical translator separates command string into token sets according to the separator

command “then,” as shown in figure 3-8. Each token set represents a stand-along command

that is sent to syntax analyzer.

(‘send’ commands stream) (lexeme building)

commands strings array

ads

commands stream
move to file
click by leftclick

“move to file then

click by leftclick”
A

—
_)

next commands
string until empty

token sets array

(tokenizing and validating)

validate tokens

T 3 3 4
L move validating each tu‘]ken
t of commands string
- file
[click valid
by commands
—— leftclick

call Syntax Analyzer

i

invalid commands

with valid token sets

Figure 3-8 Lexical translating

3.1.2.2 Syntax analyzer

After receiving one token‘set at a time sent from section 3.1.2.1 lexical translator, it

would check into their syntax by following the grammatical rules defined in the file

“grammar.xml,” as in figure 3-9.

<RULE NAME="move"
TOPLEVEL="ACTIVE">
<P> move </P>
<>
<P> to </P>
<]>
<RULEREF NAME="sqrs" />
<RULEREF NAME="coord"/>
</1>
</o>
<o0> <RULEREF NAME="mse" />
<0>
<p> by </p>
<RULEREF NAME="mse" />
<fo>
</o>
<0> <RULEREF NAME="then"/> </o>
</RULE>

_27-

<RULE NAME="click"
TOPLEVEL="ACTIVE">
<P> click </P>
<p>
<P> by </P>
<RULEREF NAME="mse" />
</o>
<0> <RULEREF NAME="then"/> </o>
</RULE>

move to —|: square x
coordinate x
direction —by —distance

Figure 3-9 Grammatical rules in file “grammar.xml”

3.1.2.3 Command analyzer flow

For example, a command string “move to close then click by left click” obtained from
section 3.1.1, would be broken into token sets of “move to close” and “click by left click”
by lexical translator. After analyzing, it would be parsed into target function events and then
call the corresponding OS’s API:

1. Move cursor to square object whichinamed close,

2. Perform a left click of mouse button, as shown in figure 3-10.

move to file then click by leftclick

(" move to file)~ (click by leftclick)

Al

command £ ommand se} —| lexical translator
@nove to) (_file)) (L’click by) deffcllc@ [

l commands stream

command sets

move click —

7N\ 7\
to by

—| syntactic analyzer

file leftclick
E— analyze command

¢ ‘ into invocations

« mouse movement | «click action

«move cursor to | «perform mouse
object “file” left click

event delegating
procedures

v

interact with application
by calling API procedures

Figure 3-10 Grammatical rule flow in file “grammar.xml”

-28 -

3.1.3 Output module

The main function of this part is to execute the recognition result from the syntax
analysis by calling OS’s API. To perform the related actions of mouse and keyboard easier,
we have written functions to emulate the actions, as in shown in figure 3-11. The mouse

control functions are shown in the following: “mouse-left-click,” “mouse-right-click,”

99 ¢C 2 €6 99 ¢¢

“mouse-left-double-click,” “mouse drag,” “mouse drop,” “mouse spring,” “mouse jumping”
to pre-defined position, “mouse move” with different speed, “move stop,” and “mouse
moving speed”. Whereas the keyboard control functions include the following: single key
press (0-9, a-z, and @, #, etc), compound key (Alt-, Shift-, and Ctrl-), Chinese/English input

interchange, article input. A more detailéd illustration is discussed in next section.

Invocations Resulting
from Syntactic Analysis

Event Delegation Component

Gmulalc Left ClielXSct cursor IocatioDGmulale Right Cli%ma(e KeyBoard CIicD

1 2 3 4

QOutput From Kernel

i Interface Interaction Components

134

Input Device
Controller Transparent

_>::: Interface
E'indows Environment Handle
3

| Interactions
Data files
Interactions On Transparent Interface

Figure 3-11 Event delegation

2 Objcet
Reader

Retrieves Location of Object

The application program and information, such as defined squares, grids, locations,
macro commands, and parameters, are stored into a hierarchical directory structure, as in
figure 3-12.

-29.-

B_i n

| I
= applo
%j pplog
Applications
N |
= =
Application A - Application N

== — gridlog | actorlog | composed
;%J —rzy commands
= =

Grids Stages stagelog grammar.xml
English.xml

Grid 1------Grid N Stage 1-----Stage n

axis1axisN log axis1axisN log

Figure 3-12 File hierarchical'organization

3.1.4 Identifiers

3.1.4.1 Command class

The control commands can be classified"as some sections according to their operation
functions: “Selection commands,” “Setting commands, “Mouse action commands,”
“Keyboard action commands,” “File action commands” and “System action commands,” and

will be described in the following sections.

3.1.4.2 Command parameter

Square:
The “square” object is a graphical rectangle drawn by the user from the direction left-up to
right-down at static desired location. The variable of square is associated with locations

(integer, integer).

-30 -

Coordinate:
The “coordinate” object is a graphical rectangle grid, which is auto-generated by the
system, and drawn by the user from direction left-up to right-down at static desired
location. The variable of each grid in the “coordinate” is associated with locations (integer,
integer).
Stage:
The “stage” is a file that stores group sets of squares.
Grid:
The “grid” is a file that stores group sets of grids squares.
Number:
The “number” operand is an integer and used with commands “coordinate” or “loop.”
Text:
The “text” operand is & text string. It 1s"uSed with command “sendkey” for emulating

typing on the keyboard.:

3.1.4.3 Connector

Then:

The connector “then” is used for conjunction with statement x and statement y, and is

delimited from one statement to others.

3.1.4.4 Terminator
Times:
The terminator “times” is used as the end of loop command.
Separator
Comma:

The separator “,” separates the coordinate x and y of grid.

231 -

3.1.4.5 Operators

To:
The “to” operator is used for conjunction with the action or assignment commands. It is
strictly used for commands “move,” “dragsquare” and “dragcoordinate,” for use with right
operands of data “square x” and “coordinate X,” and for use with left operands of data
“square X and “coordinate x”.

By:
The “by” operator is used for conjunction with the assignment commands. It is strictly
used for commands “move,” “drag,” ‘“dragsquare,” “dragcoordinate,” “click,”
“clicksquare” and “clickcoordinate,” for use with right operands of data “distance” and
“clicktype,” and for use with left-operands of data “‘square x,” “coordinate x,” “direction”
and “pattern”.

Loop:
The “loop” operator is used for executing repeatedly.pre-spoken commands for “munber”

times. Its left operand is always'a command, and'its right operand is always a “number”.

3.1.4.6 Constant parameters

clickType:
The types of “clicktype” include: leftclick, rightclick and doubleclick. This “clicktype”
type is used for triggering a mouse click.

Distance:
The types of “distance” include: very short, short, normal, long and very long. This
distance type is used for restricting the moving “distance” of mouse cursor.

Direction:
The types of “direction” include: east, west, south, and north, northeast, northwest,

-32-

southeast and southwest. This “direction” type is used for setting the moving direction of

mous€ Cursor.

-— N NS

east west south north northeast northwest southeast southwest

Pattern:
The types of geometric moving “pattern” include: triangle, square, pentagon, hexagon,
octagon, curves, zigzag, and spiral. This “pattern” type is used for setting the moving

manner of mouse cursor.

<~ D OO

triangle square pentagon hexagon octagon spiral
curves zigzag
Speed:

The types of “speed” include: very slow, slow,:normal, fast and very fast. This “speed”
type is used for restricting the moving speed of mouse cursor.

Boolean:
The types of “boolean” include: true and false. This “boolean” type is used for setting the

command “setdrop”.

3.1.4.7 Selection commands

selectApplication:
The “selectApplication” command is used for selecting an application program into the
GIB system to execute.

selectStage:

-33-

The “selectStage” command is used for selecting a stage file and loading all its defined
squares into the executing application.

selectGrid:
The “selectGrid” command is used for selecting a grid file and loading all its defined grids

into the running application.

3.1.4.8 Setting commands

setDragSpeed:
The “setdragspeed” command is used for setting the mouse cursor to move speed
according to the parameter “speed”.

setDistance:
The “setDistance” command is-used for setting the mouse cursor moving distance
according to the parameter, “distance”.

setDrop:
The “setDrop” command’is used for disabling the drep of drag command according to the
parameter “boolean”.

showGrid:
The “showGrid” command is used to show or hide defined grids according to the

parameter “boolean”.

3.1.4.9 Mouse action commands

Move:
The “Move” command is used for controlling the mouse cursor moving to the specified
location, according to the parameters “direction” and “distance”. If the “distance” is
omitted, it would follow the setting parameter via command “setDistance”

Drag:

-34 -

The “Drag” command is used for dragging the mouse cursor moving to the specified
location, according to the parameters “direction” and “distance”.

dragSquare:
The “dragsquare” command is used for dragging the specified square x moving to the
specified location square y or coordinate X, according to the parameters
“direction” ,”distance” and “pattern”.

dragCoordinate:
The “dragCoordinate” command is used for dragging the specified coordinate x moving to
the specified location coordinate y or square x, according to the parameters “direction,”
“distance” and “pattern”.

Click:
The “Click” command is used for triggering. a mouse click under the current mouse
position, according to the parameter “clicktype”.

clickSquare:
The “clickSquare” command is used for moving.cursor to the specified square location
first and then triggering a mouse click’ under the current position according to the
parameter “clicktype”.

clickCoordinate:
The “clickCoordinate” command is first used for moving cursor to the specified
coordinate location and secondly triggering a mouse click under the current coordinate

position according to the parameter “clicktype”.

3.1.4.10 Keyboard action commands
sendKey:
The “sendKey” command is used for emulating keyboard stroke, and is limited to the

combination of number 0 to 9 and character “a” to “z”.

-35-

clearText:
The “clearText” command is used for emulating keyboard <Backspace> stroke once.
3.1.4.11 System action commands
Send:
The “Send” command is a stand-along command and used for sending all the spoken
commands to lexical translator, in order to analyze and process spoken commands.
clearConsole:
The “clearConsole” command is a stand-along command, and used for clearing all the
spoken commands in the input command buffer.
undoPhrase:
The “undoPhrase” command,‘is ‘a stand-along. command and used for deleting the
preceding spoken command stored-in the input command buffer.
storeCursor:
The “storeCursor” command is a stand-along.command and used for storing the current
cursor position into position buffer.
recoverCursor:
The “recoverCursor” command is a stand-along command and used for moving cursor to
the previous stored position of mouse cursor from position buffer.
capturelt:
The “capturelt” command is a stand-along command and used for capturing the most front

application program windows into the GIB interface system.

3.1.5 Process description

The process description of GIB system is illustrated in the following:
Step1. Waiting for control commands input

Step2. Recognizing inputted commands

-36 -

Step3. Analyzing whether the inputted commands are valid and defined in the macro
composer
Select Case (inputted command)
Case (the command is macro)
Translate inputted commands according to command table
Store translated command to command buffer, go to Step1
Case “system action command”
Examples:
“Send”; store speech commands to command buffer, then go to Step4
Case (the command is invalid)
Discard inputted speech command, and then go to Stepl.
End Select
Step4. Lexical translation:
Parsing command string to token set according to separator “then”
Store translated token:sets toscommand string.array
Step5. Syntactic analysis:
pointer = 0
Do while (commands string array [pointer] <> empty)
Select case (command string)
Case “mouse action command”
Examples:
“Move to file”’; move mouse cursor to defined square object “file”
Case “keyboard control”
Examples:
“SendKey hello”; press keys “hello”
Case “selection commands”

-37 -

Examples:

“SelectApplication mspaint”; selecting application “mspaint” into system to

run
Case “setting commands”

Examples:

“SetDragSpeed slow”; set mouse cursor drag moving speed slow

Case else

Commands are un-defined; discard it and clear command buffer

End select
pointer = pointer + 1
End do

Step6. Repeat Step1, until system end.

The corresponding operation flow chart of GIB system,is described in figure 3-13.

Waiting for
speech input

Y

command translation
and store translated
commands to buffer

Is macro
command?

Yes| Jexical translation
& syntactic analysis

Is command
defined?

Is command
‘send’?

invoke interface
method and
window’s API

v

clear commands chrating device till
<
buffer commands end

h 4 A 4 ¢

Figure 3-13 Operating flow chart of GIB system

store command to
commands buffer

Is command
valid?

discard it

-38 -

3.1.6 Limitation

In the method of “Run Application in GIB Windows,” we can easily control the
application which has no prior speech recognition control ability, via speech commands under
the RAGIB system. But even so, there are still some limitations under this system:

1. Application programs must be executed under the proposed RAGIB environment.

2. The input commands would be analyzed after command “send” has been spoken.

3. User would be unable control mouse moving to undefined position with speech

command.

4. The label name of defined square objects would affect the action control of mouse

cursor.

3.2 Separate Application and GIB(SAGIB)-Windows

For solving problems:mentioned in séction 3.1, we will make some modification to the
GIB system and separate application-from' the- GIB Windows. It implies that GIB would be
executed behind the Windows and applications.need not to be executed under the SAGIB
system. The speech command would be sent to the SAGIB system after the validation of
automatic recognition, without have to wait for the speech command “send”. This would
increase the correctness of recognition without disturbance from the noise of the environment
during time space of input commands and command “send,” while in turn this process would

also make the system control more user-friendly.

invalid

System
acr‘o CO and

-39.-

(lexeme building) (tokenizing and validating)
commands strings array token sets array

commands stream 11 Syntax Analyzer
) *g()] > * > call by Y
“#g01-@dc " I: & with valid token sets
@dc g
01
I
dc

Figure 3-14 Rule composition flow

For accelerating movement control of mouse cursor, we virtually cut the Windows into
3*3 big grid space and 10*8 small grid space, and pre-define each center coordinate of small

grid space a name (X, y), x: 1~10 and y: 1~8, such as (2, 4), and named the grids of big space

99 ¢ 29 ¢ 99 ¢ 29 ¢ 29 <6

as “left-up,” “center-left,” “left-down,” “center-up,” “center-axis,” “center-down,” “right-up,”

+ 15 a3,
“center-right,” and “right-dow&fg%f;_r;l;‘e- pre

whole screen as working S vith “pixel reference. The flow of rule

ouse cursor movement, we define the

composition is shown in

3-15.

Figure 3-15 Mouse action environments

- 40 -

3.2.1 Identifiers

3.2.1.1 Command class
We have classified the speech commands into sections: “mouse position control,”
“mouse action control,” “keyboard control” and “file execution control,” as shown in the

following.

speech commands class

mouse control

L * : mouse position control

store current mouse cursor position

get stored mouse cursor position and set
current mouse cursor to that

b @ : mouse action control

mouse clicking control

mouse moving control

mouse spring control

— mouse jumping control

keyboard control

[~ : single key press control
ex. a~z, 0~9,., etc

| # : compound key or special key press control
ex. Alt-a, Ctrl-a, Shift-a, <F1>, , .., etc

| : sentence writing control
ex. sentence input with Chinese or English code

L file execution control

L | : executing setting file with path

Command input format:
<command1> - <command2> - - - <commandn>

: The connector

[

is used as a separator with statement x and statement y in composed

commands, and is delimited from one statement to the others.

-41 -

3.2.1.2 Mouse position control
Mouse position control includes:
1. Store position of current mouse cursor as an object,

2. Set current mouse cursor to that gotten position stored before

*Sn ; S: store current mouse cursor position
*an ; g get stored mouse cursor position before and set current mouse

cursor position to the gotten position

; n: 01~99, number of stored position (or defined) in program

3.2.1.3 Mouse action control

Mouse action control includes:

1. Mouse clicking control: control mouse button action via commands “click mouse,”
“right click,” “double clicky” “drag™ and “release,”

2. Mouse moving control: control meuse-cursor moving continuously or stop with
different speed via one command,

3. Mouse spring control: control mouse cursor spring once to the directions, “up,”
“down,” “left,” and “right” with distance via system default or set by the user,

4. Mouse jumping control: control mouse cursor jumping to the default locations, “right

up,” “center down,” (2, 3), etc, pre-defined by the system.

Mouse clicking control:

Example:
@cm ; click mouse left button once
@dc ; double click mouse left button

Mouse moving control:

Example:

-42 -

@ms ; control mouse cursor moving stop
@mu ; MOUSEe Cursor moving up

Mouse spring control:

Example:
@su ; mouse spring up
@v01 ; set Vertical spring distance y1, jumpstepx=[y2-y1|

@v02 ; set Vertical spring distance y2, jumpstepx=|y2-y1|
Mouse jumping control:

Example:

@ru ; mouse jumping to the pre-defined location “right up”

move to 2,5 send ; mouse jumping to the pre-defined object coordinate “2, 5”

3.2.1.4 Keyboard control
Keyboard control includes the_follows:
1. Single key press conttol: control single keyboard pressed actions
2. Compound key press control: control:compound keyboard pressed action
3. Special key press control: control special command keyboard pressed action
4. Sentence writing control: sentence writing with English or Chinese code
Single key press control:
~<char> ; manipulating single key pressed, <char>: a~z, 0~9
Ex. “~f” means “f” key pressed, etc.
Compound key press control:
Example:
#a<char> ; manipulating compound keys <Alt>-<char> pressed, <char>: a~z, 0~9
Special key press control: control special command keyboard pressed
Example:

-43 -

#f<num> ; manipulating function key pressed, <num>: 1~12

Sentence writing control: control sentence writing with English or Chinese code

#il ; compound key “ ” pressed, “change language”
#ii ; compound key “ ” pressed, “change input”

|<En char string>]<CH char string>:
#ie ; set parameter emode=1, “english code”

#ic ; set parameter emode=0, “chinese code”

3.2.1.5 File execution control

File execution control: executing file by setting application file path in macro.
File execution control:

I[file path] ; execute file stored in the system for path=[file path]

; Ex. “le:\program files\microsoft office\officel1\execel.exe”

3.2.2 Process description

The process description ‘of SAGIB system 1s illustrated in the following:
Step1. Waiting for speech commands input
Step2. Recognizing control commands
Step3. Analyzing whether the inputting commands are valid and defined in the macro
composer
If (inputted command is invalid) then
Discard inputted command and clear commands bufter, then go to Step 1.
Else
Translate inputted commands according to command table
Store translated command to command buffer
End If
Step4. Lexical translation:

-44 -

(13

Parsing command string to token set according to separator
Store translated token sets to command string array
Step5. Syntactic analysis:
pointer = 0
Do while (commands string [pointer] <> empty)
Select case (command string)
Case “mouse position control”
Examples:
“*sn”; store current cursor position to database record n;
“*gn”; set mouse current cursor to the position n stored before.
Case “mouse action control”
Examples:
“@dc”; double click mouse left button,
“(@mu”; mouse cursor meving up continuously
Case “keyboard control”
Examples:
“~niceday”; press keyboards “niceday” continuously.
“H#aa”; press @ simultaneously
Case “sentence writing control”, commands format is as “|***|###”
If (variable enmode=0) then
write out characters “***” with Chinese mode;
Else if (enmode=1) then
write out characters “###” with English mode
End if
Case “file execution control”
Ex. “Ic:\program files\microsoft office\officel1\execel.exe”

- 45 -

Case else
Commands are un-defined; discard it and clear command buffer
End select
pointer = pointer + 1
End do
Step6. Repeat Step1, until system end.
The corresponding operation flow chart of modified GIB system is described in figure

3-16.

waiting for
speech command input

(7=

Yes

\

discard command
and clear input
commands buffer

macro command
translation

v

store command string to
commands buffer

v

lexical translation &
syntactic analysis

Is command valid?

Yes

invoke interface method
and window's APT

v

operating device till
commands end

Figure 3-16 Operating flow chart of modified GIB system

- 46 -

4. GIB-based Application Interface (GAI) Generation

4.1 interface

On the traditional developing of remote control functions into the cellular phone, the
designer needed to write the complex Midlet program into cellular phone at first, and then
write the JAVA AP controlling interaction statement between PC and the cellular phone. It
must redesign and recompile the whole application while adding or deleting functions. This
designed process was a hard job, which wasted much time and was highly inefficient, as

shown in figure 4-1.

e

1. write control command protocol

?‘Juv_d AP on PC
2. write HTTP wireless protocol |, 4

/ with cellular phone

Midlet Developing

environment Midlet

1. write control program download control

|
|

|

|

|

|

|

|

|

|

. |

S |
/remote control AP :
|

|

|

|

|

|

|

|

|

2. write wireless protocol program :

Figure 4-1 Framework of traditional cellular phone interface system

Our proposed solution for solving this problem is to construct an interface generating
system; with which the designer can easily develop remote control interface program into
cellular phone without the need to write any program code of cellular phones. Finally, using
this cellular phone as a remote controller, users may interact with the JAVA application
running on the PC directly and easily. The framework of remote control interface system is as

shown in figure 4-2.

-47 -

s
B e
&8 i GAL generator
" UI control: E
brogram | loader
parser
itarget device
i emulator
analyzer
verif
L generator
translator .
control object

e eeeeeee e seeeeee oo specification
remote control interfacing system

Figure 4-2 Framework of proposed cellular phone control interface system

4.2 Procedure

The GAI generation .modules includes’ JAVA -contents, AP interface loader, parser,
analyzer, interface generator, and translates;-as-shoewn in figure 4-2. Module “JAVA content”
refers to the JAVA applications' tunning on the PC controlled with cellular phone. Module AP
interface loader includes “AP loader,” which loads JAVA AP specification file and UI into
the generation system, while “packs remote control statement,” and “Ul command parser”
process the interface control command of cellular phone. Finally, module “interface
generator” includes “code template parser,” which analyzes abstract classes of AP, and
according to these classes to generate operating script file and control command table, and
“remote control statement,” which processes HTTP linking and transfer control command and
“code generation” to generate Midlet of cellular phone automatically according to the
operating script file. Finally, it executes the Wireless ToolKit (WTK) compiler and packs
program into jar file, then the designer downloads this jar file into the cellular phone. The

sample of specification file of AP includes attributes and values of control objects on the AP,

- 48 -

as described in figure 4-3.

[P AP AbstractFile of YCard txt - S35

WEO® REE HE0 R SHEd
import javax.swing.=; ~
ublic abstract class UCardTemplateAbs extends JinternalFrame 1
rﬁrntected String play_btn1 § '#" ;
protected String play_btn2 u
protected String play_btn3
protected String play_btni4
protected String play_btn5
protected String play_btné
protected String play_btn7
protected String play_btn8
protected String play_btn?
protected String play_btn18
protected String play_btni1
protected String btmn1_Icon
protected String btn2_Icon
protected String btn3_Icon
protected String btn4_Icon
protected String btn5_Icon
protected String btné_Icon
protected String btn7_Icon
protected String btn8_Icon
protected String btn9_Icon
protected String btmn18_Icon |=
protected String btmn11_Icon =
protected String btmn1_Label l=

I

|

I

|

I
g s |
ey o: |
JC:\\HyWeb\\uCard_BHP\\1new.jpg" |
"C:\\MyWeb\\uvCard_BHP\\2new.jpg" ;
"C :\\MyWeb\\vCard_BHMP\\3new.jpg™ !
‘C:\\MyWeb\\uCard_BMP\\4new.jpg" t
!

;

i

]'c:\\MyWeb\\ucard BMP\\5new.jpg"
¢ :\\Hyweb\\uCard_BHP\\6new.jpg"
Tc:\\ﬂyweb\\ucard BMP\\7new.jpg"
!
|
|

‘Cz\\MyWeb\\uvCard_BHP\\8new.jpg"
"C:\\MyWeb\\uCard_BMP\\%neuw.jpg"
*C:\\MyWeb\\uCard_BHP\\18new.jpg

B L | TR Ry | R T S

protected String btn2_Label | j === ; | 2
. A 2
attributes values

IR
Figure 4-3, sample of sp%:c@ﬁchtion file of AP “VCard”

In the figure 4-4, it sflqws the-interface jﬁiodulés of cellular phone. We describe its
process procedures as the follows:
AP interface loader:

Load AP Ul

1. loading JAVA AP Ul into system

2. loading specification file of AP

Ul command parser

3. parsing HTTP command

4. process control command of Ul
AP interface generator:

Code template parsing module

1. analyzing abstract classes of AP

-49 -

2. parsing code template
3. generating operation script file and control table
Remote control statement module
1. processing HTTP link
2. transferring control command
Code generating module
1. generating remote control table
2. generating Midlet program
3. executing WTK compiler
Deploy Java Midlet application:

Download PACK JAR into cellular phone

Interface generator AP interface loader JAVA contents

code template | | i load APUI || | IAVAAP
parser | | 2. J2SDK
lg—
remote control | | | | Ul command |
statement : : parser :
code : ____________
generation | |

Figure 4-4 Cellular phone interface modules

Figure 4-5 shows the interface generated procedures of cellular phone. We describe its
process procedures as the follows:

1. Input AP control object specification file

2. Generate target code for cellular phone

3. Verify target code by running in the emulator

4. Port verified target code to cellular phone

-50 -

5. Use cellular phone to control AP running on remote host

Tce}l}lular‘ JAVA APs
| pone GAT generator

| .

[‘3;4)' target code

1 " AP control object

\>/ specification §

SRR - P
\

=
generated code |~ AZ" ap2

e

Figure 4-5 Cellular phone interface generated procedures

4.3 Algorithm

Control interface systematic framework is composed of application program interface
loader, cellular phone interface generator, and a Java application program. Application
program interface loader is a graphic user interface (GUI) for designers, which faciliates
loading JAVA applications running on the PC into interface generator. It is a JAVA server
procedure; whereas system user makes JAVA application program template and provides this
template to the interface loader. After loading application interface program, it links and
transforms operation objects, such as Javax.swing.JButton and Javax.swing.JReadButton, into
commands ID, such as “001#” for play btn 1 and “002#” for play btn 2. In the following

section, we will describe algorithms of these modules respectively.

4.3.1 Algorithm of application interface loader

Algorithm 1-1 Loading AP Ul
1. Initializing JAVA swing GUI component, such as JFrame, JSplitPane, JScrollPane,
JMenuBar, JMenu, JRadioButtonMenultem and JDesktopPane.

-51-

2.

Create look and feel properties by calling setLookandFee (String) function.

3. Add all kinds of GUI components into JFrame by calling JFrame.add (Component).

4.

5.

Set default size and look&feel of JFrame.

Waiting for launching Java Application Program.

. Initializing Java Application Program.

. Loading the JInternalFrame of the target Java Application Program.

If (ActionListener of JMenu Received JMenultem ActionEvent)

{
Switch (ActionEvent)
{
Case “Launch Java AP X% /IX:1~N
LoadAP (Java AP :X);
b
b

. Parsing the code template (abstract class)of the target Java Application Program by calling

BufferedReader (FileReader) and FileReader (abstract class name: String).
BufferedReader br = new BufferedReader (new FileReader (“JavaAPName”));
While (br.ready ())
{
String s=br.readLine ();
Parsing s and retrieve the String Token;
Switch (String Token)
{
Case “play btnN”: //N:1~n
Get the command ID value of play btnN; //ex: play btnl = “001#”

-52-

Case “btnN_Icon™:

Get the Icon path of play btnN; /lex: btnl_Icon = “Inew.jpg”;

}
9. Generating the Operation File “AP_ ControlTable.txt” by calling BufferedWriter

(FileWriter), FileWriter (AP_ControlTable.txt: String).
BufferedWriter bw = new BufferedWriter (new FileWriter “AP_ControlTable.txt”));
While (br.ready ())
{
String s=br.readLine ();
If (s.startsWith (“protected String™))
{
st=new StringTokenizer (s, *”);
ValueOfCmd=st.nextToken ();
bw.write (Command ID+“"+ ValueOfCmd);

bw.newLine ();

}

b
10. Load the JTable of the target Java Application Program.

br = new BufferedReader (newFileReader (“AP_ControlTable.txt”))
While (br.ready ())

{

String content = st.nextToken ();

Switch (content)

{

-53-

Case “TYPE”:
Assign content to CurrentTableData[X] [0]; //X:0~n
Case “ICON” | “LABEL”:

Assign content to CurrentTableData[X] [1];

}

According to system framework of this paper, each Java application operating screen can
be loaded in by application program interface loader, which is designed by adopting JAVA
swing groupware. From line 1 to line 4, before loading applications, we first initialize
actuating devices of interface lodder which is similar to a vessel containing application
interfaces, such as Menu, Menu Bary Radio Button, Split Pane, and Scroll Pane. When
application is loaded on, we parse program code -and find.out all command IDs of actuating
devices on this application .at ling 8;.then record the:searching results into file AP _

ControlTable.txt as at line 9.

Algorithm 1-2 Parsing Ul Command
1. Waiting for HTTP URL request from the MIDlet Program in mobile phone.
2. Parsing the HTTP parameters to retrieve the command ID.

response.setContentType (“text/html”);

PrintWriter out = response.getWriter ();

String command = request.getParameter (“message”);
3. Retrieve command value in JTable by calling getValueAt (row index, column index);
4. Compare HTTP command ID and value in JTable by String.equals (String).

For (int i=0, i<row count, i++)

{

-54 -

If (command.equals (JTable.getValueAt (i, column index)))

rc_setXXXActionPerformed (command);

}

5. If command is identical, calls control functions “rc_setXXXActionPerformed”.

In fact, interface loader precisely plays a server role. Upon recording all operating
project and command ID, interface loader then waits for a HTTP connection from remote
cellular phone procedures. From line 1 to 4, it illustrates that while interface loader received
HTTP command, it would compare with the field value in JTable to find what kind of remote
control command was delivered. This was named as rc_setXXXActionPerformed which

supplied programmer with ability to define and write its functions, as at line 5.

4.3.2 Algorithm of control interfaceigenerator

Algorithm 2-1 Code Generation
1. Generate the Remote Displayable Form:
Import javax.microeditiortledui.*;
Import java.io.*;
Public class RemoteDisplayable extends Form implements CommandListener
2. Generate MIDlet class.
Public class remoteMIDlet extends MIDlet
{
static remoteMIDlet instance;
RemoteDisplayable displayable = new RemoteDisplayable2 ();
Display display;
b
3. Decide the Component Types (ex: Button/RadioBtn) in the command table.

4. Generate the Main List included possible list items of Component Types.

-55-

If (parsing the command types in table = BUTTON|RADIOBTN|COMBOBOX)
{
String Component Array [] =new String [] {“Button”, “RadioBtn”, “ComboBox”};
mainList = new List (“main menu”, List. EXCLUSIVE, Component _Array, null);
mainList.addCommand (mainList OK cmd);
mainList.addCommand (mainList EXIT cmd);
mainList.setCommandListener (this);
b
5. Generate the operation items in operation list; a main list may include several operation
lists- Button/RadioBtn/Combobox).
For (int i=0; i<NumOfButton; it+)
{
form btn_form[i] = new form ();
ChoiceGroup choiceGroup[i] = new ChoiceGroup ();
For (NumOfOperations "IN- ith ‘Button)
choiceGroup[i].add (“the i-th. Button-Operations”);
form[i].append (choiceGroup[i]);
form[i].addCommand (opForm OK cmd);
form[i].addCommand (opForm_ EXIT cmd);
form[i].setCommandListener (this);
add choiceGroup([i] into the i-th button operation form - form[i];
add all button operation forms into mainList;
b
6. Send HTTP Commands according to the command table.
Protected void sendCommand (String command)

{

-56-

set url = “http://140.113.208.118:8080/MyWeb/ResponseTest?message="";
set url = url + command;

call readyConnect ();

}

Public void readyConnect ()

{

connectThread = new Thread (this);

Try
{
call the HTTP connection thread and execute run () method;
connectThread.start ()3

}

Catch (Exception ex);

}

Public void run ()
{
Try
{

send HTTP connection request with a command by calling connect (url);

}

Catch (Exception ex);

}

After computing mathematical process of algorithms 1-1 and 1-2, we fully understand
the sample version and class definition of Java application program. Consequently users are

-57-

not required to develop remote control program on cellular phone, as they can easily and
directly get remote MIDlet procedures of cellular phone by analyzing program code through
interface generator. In algorithm 2-1, MIDIlet procedure inherits Form class and
CommandListener in order to control the entire mobile interface. Line 1 and 2 take charge of
loading relative groupware, such as Button, Radio Button, and ComboBox, and analyzes the
kinds of operation projects used in application program. At line 4, it would then generate a
main list which belongs to cellular phone interface, such as Button, Radio Button, and
ComboBox, producing sub-project on cellular phone screen at line 5. Finally, we need HTTP
connection procedure to send remote control commands from cellular phone to GUI system,

which is performed at line 6.

-58 -

5. Demonstration

5.1 Integration of GIB and speech recognizer
5.1.1 Running an Application

The operation steps for executing application under GIB system are described as the
follows and are labeled in figure 5-1:

1. choosing target language for English

2. selecting an application program

3. pressing button “run” to execute program selected under developing environment

4. selecting pre-defined stage file

EEEE 4

I™ Labels Visibie T
= V' Scuares Vishle M_WI |th:-| ngL

2 SOI Identifiers List

g9 {Sqares 4 4| ¥

select language 1

Identifiers List

Stages | sqres | 44|

{3

N i | = | S
. = L
e]

Figure 5-1 Operation steps of running application

5.1.2 Registering an application

This developing system allows choosing multiple applications running under this
interface environment, and for convenience, user may load the desired applications into our

proposed system. The operation steps of registering application into interface bridge system

-59.-

are as described in the following and labeled in figure 5-2:

[u—

pressing button “Add App” to open folder

2. selecting a file to register

3. pressing the button “F';FJ’?T’ to confirm the file selection
4. giving a relative name to the chosen application program

5. pressing the button “submit” to submit selected file into system

Applcation (7 WMQISE‘MMF“D*’“"" =] Rn ;Lubehvisibre Sopiara Fandar l Wl Select Application
¥ Squares Visible

Select Application Executable [13[E3] 4
- O Identifiers List
FHD: [sysemi2 = e & B Hfe= |scusrs | 2L
makecab exe Drntesveexe Snbtstatexe
73 MCPXHostexe [Frringo e [nddecpirexe
FREEBI | G MCPXUser exe SIMRTexe [FWexoCheck exe
Fr T mem exe Dlmsdescntexe Tnetl exe
T migpud exe & Dmsdte exe Fnetexe
S iy e exe [Fmsgexe [Fnetdde exe
\ @ MM Trayexe W shearts exe Ejlnetsstup exe
[- - Fnetshee
BB | mobsyne exe netitat exe
S [MImountvol exe (3 mid i pan exe
%! 7 mplay32 exe Enipalam exe
HEVEE | TJmpnotity.exe [Fnisveloc exe
I [=mgbkup exe S [Mnlstunc exe
.§ [o exe P [0 notepad exe
MG LOFH | o >
WEW: [mepoint exe - Eo] =
AT |Exe-files (*exe) ~l B
2 Seuare Stage
3 1 I
Stage Selector ~
Add Stage
I™ UP Ck Enabled
™ R Ciick ON/OFF
[V L Click ONIOFF
I Dragging ON/OFF

[Actor Profie <™ Auto ™ Using Actor _Add Actor Profile |_ New Actor | [Select Gria < | Show Grid_[~|_DaWGHal_[cwWNDOWS\system3Zmspaint e | HNE LN =

Figure 5-2 Operation steps of registering an application

5.1.3 Registering a square object

To easily move the mouse cursor to the desired position in order to perform a button
pressed action, we may draw square objects as the reference zones of application. The
operation steps of registering a square object are as the follows and labeled in figure 5-3.

1. Click the button “square handler”

2. Move mouse cursor to label2, then drag mouse cursor to label3.

- Store position label2 as coordinatel, (x1, y1)

- 60 -

3. Stop and drop mouse cursor when mouse cursor has arrived to label3
- Store position label3 as coordinate2, (x2, y2)
4. Give drawn square object a name “elephant”
- Give square object a name from coordinatel to coordinate2
5. Click the button “submit”
a. Repeat step 2 until square objects setting is done.
b. Go to step 6
6. Click the button “exit handler” to complete the objects setting steps
After all steps are completed, system will draw a square from coordinate (x1, y1) to (x2,
yl) to (x2, y2) to (x1, y2) and back to (x1, y1), then store coordinate (x, y) as square object

control point, where x = x1 + ()(_2--‘-){1-) . }'/1+(y2-yl)/2.

square object
(x1,y1)

@ conftriol point

(x2.y2)
control point:
x=x1+(x2-x1)/2
Y=yl+(y2-y1)/2

Figure 5-3 Operation steps of registering a square

5.1.4 Registering grids

In section 5.1.3, we can register a square object one step at a time. For convenience, we
draw a big square on the Window screen, the system will automatically cut it into many small

grids, and each grid has a coordinate name (X, y) given by the system. The operation steps of

-6l -

registering grids are as described in the following and labeled in figure 5-4.
1. Click the button “draw grid”
2. Give grids object a name “position”
3. Click the button “submit” to submit the name of drawn grids into system
4. Click the button “square handler”
5. Moving mouse cursor to label5, and then drag mouse cursor to label6.
- Store position label5 as coordinatel, (x1, y1)
6. Stop and drop mouse cursor when mouse cursor has arrived to label6
- Store position label6 as coordinate2, (x2, y2)
7. Click the button “exit handler” to complete the action steps

After square drawn, system wﬂl' draw a big 'sc‘-iﬁa.re from coordinate (x1, y1) to (x2, yl) to
i ".'
(x2, y2) to (x1, y2) and back 10_,(x1 yl) f.ult this blg squa.re into many small square grids, and
= = 1 I =t . -_

the area is pre-defined in sy’stém as 40 * 40 plx,el'fi F1nally, ﬁystem would set each grid a name

g

(X, y) according to their coordmate,_ sucI_fas (2,,,1),. b ;ljl

R W ——

Figure 5-4 Operation steps of registering grids

5.1.5 Registering a stage

Application may have many control layers on the screen. When we draw and set many

squares and grids on the application screen, and for an easy usage next time, we could store

-62 -

these setting into a stage which can be named by the user. The operation steps of registering a

stage are as demonstrated in the following and labeled in figure 5-5.

'—,ﬂﬂl“‘l
o] e g Ak dctr o |t et | [Goimroni =] S 0me_[| QL EvaG e [l o]

Figure 5-5 Operatllon ste_ps of registering a stage

1. Click the button “add-:stgge s

2. Give setting env1roﬂmént as a stage

3. Click the button “su'Bmit” Hﬁ-- L | =

. 1895
- Store setting stage.pamé-a -‘.‘%GlLi')'l“_"_ ___..- -.:.

'J*;l

5.1.6 Registering a macro ebmmand_ ¥

L%

= r -

i r'n"
_

For easy and convenient interaction with interface bridge system, we design macro
commands procedure in the specification program. The operation steps of registering a macro

commands are demonstrated in the following and labeled in figure 5-6.

- [V Labels Visiole
ll I3 sas\flsb\

Figure 5-6 Operation steps of registering a macro command

-63 -

1. Click the button “composer”
2. Give composed commands a macro named “open file”
- Macro name would be translated into system format simultaneously
3. Key in related command stream “move to file then click”
4. Click the button “submit” to submit defined macro command into system
a. Store macro into database, repeat step 2 till macro setting is done.
b. Go to step 6
5. Click the button “exit composer” to exit macro defined system
A. Clear
- Clear un-submit information
B. Delete
- Delete the chosen macro command
When a macro command is submitted, the MacrosCommand Composer stores this
structure into the speech “grammar- definition. After the users spoke a command, the
human-interface will recognize“and sent these to the macro interpreter to translate and get

relative commands.

5.1.7 Examples of application “Sol”

In the past, we could not operate the application “sol.exe” with speech commands,
because it was not equipped with speech recognition control ability. Under our GIB system,

we pre-defined some square objects through a simple way as described from section 5.1.3 to

99 ¢c b 1Y b 1Y

section 5.1.6, which named “apple,” “banana,” “cat,” “dog,” “elephant,” “fox,” “goose,”

99 ¢

“clubs,” “spades,” “hearts,” “diamonds,” “hit,” “dropped,” “file,” “new,” “help,” “close,”
accordingly as labeled in figure 5-7, while some sample macro commands are described in

table 5-1 below.

- 64 -

Table 5-1 sample macro command of control application “Sol”

Macro commands Relative commands
dealing move to hit then click by leftclick
apple to banana dragsquare apple to banana
banana to apple dragsquare banana to apple
open apple move to apple then click by leftclick
open banana move to banana then click by leftclick
apple doubleclick move to apple then click by doubleclick
banana doubleclick move to banana then click by doubleclick
clubs to diamonds dragsquare clubs to diamonds
no sendkey n
yes sendkey'y » . .
File i move to file then dlick
close game - ;.:’_ y/ mox%é!t;oi éh)se .t-f:leg_l chck by leftclick
new game i _: ~ |move tc_)._ fij,é'fflenf click l-)ly leftclick then

W . By

Figure 5-7 Defined control objects of application “sol”

After a simple defining and setting of the control environment of application, we will

-65-

make a game with speech recognizing ability and operate this application with speech
commands easily. First, we speak a macro command, “elephant to dog,” the composed
command defined in table 5-1 is “dragsquare elephant to dog,” following this procedure, we
speak command “send” to send the macro command spoken earlier to the system. After that,
the system receives and recognizes the macro command, translates it into relative commands
as define in table 5-1, then allows the system to analyze it to delegate API events if the
command is valid. It will first move the mouse cursor to the location of square object named
“elephant,” and then drags the object “elephant” and moves it to the location of square object
named “dog,” after those procedures, then drops the object “elephant” at the location of object
“dog,” as shown in figure 5-8. If there are some wrong or unwanted commands in the
command console, we may use spee_éh--cé)mma;;c-l' ‘ﬁc'lea_r console” to clear it.

. 1
elephant to dog Ekf;.,ﬂl e wrTTw — o

IV Squeres visitle

“““““ stages Saveres | a4 [0

actor prories_w]| Auto [Using Actor_Add Acter Profle | New actor | [postion <] ¥ Show Grid [] DREWOHE] [CVWRDOWSsystenaZiol exe |

Figure 5-8 Operation in application “sol”

Finally, if the game is over or we want to play a new game, we may speak a macro
command “new game,” and the composed command defined in table 5-1 is “move to file then
click by leftclick then move to new then click by leftclick”. Following that, we speak
command “send” to send the macro command spoken earlier to the system. After that, the

- 66 -

system recognizes and analyzes the command, and will delegate API events if the command is
valid. The corresponding steps of system process are: first, moving the mouse cursor to the
location of square object named “file”. Second, click mouse left button. Third, move the
mouse cursor to the location of square object named “new”. Finally, click mouse left button to

replay a new game.

5.2 Separate GIB and Application Windows
5.2.1 Application running

The operation steps of executing the application separated from GIB system are

described in the following and shown in figure 5-9:

1. running GIB system platform

2. .::'=,:"'."-!_L'I"m Lr
3.

A.

Figure 5-9 Set command stream “open my document” in macro designed folder

5.2.2 Setting spring distance of mouse cursor

For a more flexible way to control mouse cursor spring to right, left, up or down with

-67 -

regular distance, we can use speech commands “h previous” and “h next” to define this
regular distance of spring right and left, and use commands “v previous” and “v next” to
define this regular distance of spring up and down. First, we use speech command “h
previous” to obtain the reference coordinate (x1, yl) of current mouse cursor position, and
move mouse cursor to another position. Second, we use speech command “h next” to get the
reference coordinate (x2, y2) of current mouse cursor position. We can use the same operating
procedures with speech commands “v previous” and “v next” to obtain the reference
coordinates (x3, y3) and (x4, y4) of mouse cursor position moving to the up and down. The
operating steps are shown in figures 5-10 and 5-11.

After these operations, the spring distance of mouse cursor springing to the right or left

AR &
would be Ax, and the spring dis;aﬂbE of rrrous-e.qﬁ___i;'sgg springing to the up or down would be

Ay, as described below:

h previous | [N
moving right| B
moving stop | [N
h next

v previous
moving up
moving stop
v next

Figure 5-10 mouse cursor one-step moving distance setting

- 68 -

spring right
spring right
spring down
spring down
spring left
spring up

Figure 5-11 mouse cursor one-step moving control

5.2.3 Jumping and moving control of mouse cursor
For a more convenient way to control mouse cursor moving next to a wanted position,

99 ¢ 99 ¢ 99 ¢¢

we can use speech commands “left up,” “left down,” “right up,” “right down,” “center up,”

.;,.-Q:'-?"""F o] “-"'-EJ.r
“center down,” “center left,” *“center right,” ﬁ&f{)@nter axis” to control mouse cursor
o R N,

position, as s ﬂ%:neSlZ
j

| ST '..hh el _..-.
ﬁ‘ “mo OEf;he top of control object, we use
)

jumping to the pre-defined

To control mouse cu

?ﬁgr_e pre

speech commands “movin ﬁcft 7 me
! '.'-_'.Z-"

ey

. o A5
control mouse cursor’s movin ction, and with Hﬁ;‘i‘hmands ‘low speed,” “normal speed,”
Ly 5
e T
and “high speed” to control mouse cursor’s g speed, as shown in figure 5-13.

left up ol
center down| 3

1 “?(@‘Vlng up,” and “moving down” to

O

Figure 5-12 mouse cursor jumping control

- 69 -

moving right | (S
high speed
low speed
moving down
normal speed)| [B=8

Figure 5-13 mouse cursor moving control

After these operations are completed, if the current mouse cursor position is (x1, y1) and

the second position after mouse cu(_sm’ lnbvfng #s (x2 y2), then the parameters of mouse

-a Fa
cursor moving with different d-]I-BthOl’l and peed.hecmife.

1‘-l'

Moving right: x2 = xl iAx W= }l_ i ""“ "‘

Moving left: x2 = Xl AX y2'=y ,-'l.ﬁ-AX>O '-F-. .u
 : .q

B 'l". .74;

Moving up: x2 =x1 -y..2'-— y.l;_._,.%iz Ay->0; -",:. g
,_ 4 _.-"'. T
Moving down: x2 = x1 y2 5 yI_-—-.F Ay, Ay > 05 4

%

T {

g r-|'|5
X R R

High speed: Ax=Axl,
Normal speed: Ax=Ax2,

Low speed: Ax=Ax3; in that, Ax1>Ax2>Ax3

5.2.4 Example of application “Wmplayer”

In Figure 5-14 (a) - (d), we can use the macro commands to control application “media
player”. The operation steps are:

1. Users can control mouse cursor moving to the top of component object by speech

99 ¢ 29 ¢ 29 ¢

commands “moving up,” “moving down,” “moving right,” “moving left” and “moving stop,”

controlling mouse cursor’s moving direction; and use “low speed,” “normal speed” and “high

-70 -

speed” to control mouse cursor moving speed.

2. Using command “set start menu” to set position of current mouse cursor with a name
“start menu”.

3. Using “go start menu” to move mouse cursor jumping to the stored position named
“start menu”.

4. We can also do the work and get the same result with a macro command “start,” which
is equivalent to the interface command “#as” and submitted as a short command .

29 ¢

5. Finally, using commands “up,” “down,” “right,” “left,” “enter” to manipulate the 2"
or multi-layer button commands, we can run the application system “Media Player” simply

with speech commands. The corresponding steps are listed below:

(b) Using “go start menu” command to move cursor to “start button” and click it

-71 -

) Micesaon Vissl St WET 2003
) PC-Docee for Wisdows

CCETTM 3 Wimicrvs b

B (6 mmme

(d) Control , , , @La}hd _b:y{bgrithiéﬁds.ﬂeft,?_ “up,” “down,” “right” and “enter”
For 5 oy TR

oy * 5l

e]]

(e) Running application system “Media Player”

Figure 5-14 Executing steps of application “Media Player”

5.2.5 Example of application “Word”

-72 -

In Figure 5-15 (a), (b), we can use macro command “this is a book™ and “enter” to write
alphabet, word, and sentence in “WORD” system. Furthermore, through speech commands,
such as “change input,” interface code #ci; “English code,” interface code #ie; “Chinese
code,” interface code #ic, we switch the environment input method and we will get different
output results in “this is a book” in English input method and “iﬁfg— EX %} ” in Chinese input

method individually through using the same speech command “This is a book™.

B,i.l Key Press Yoice Command.doc - Microsoft Word

this is a book
enter

parable RN = RENRE WA A W e A RO e
enter i AI3C - HiiHEEE - 12 < B I U -abeAl|= ==
i P mac 8B sl Al cns @ B

|1||-§.1:zw3x4-5-s-7-a-:z-wIn|1;:-131|4:|5|1:;x17|ua-19A

Thisi1s-a-book.

Unity-ig-strength.

:

Wy ¢ v 20 2 0 10

9
z
(]
¥
z[E]= @< >
Peoe s o3 o 1?2 [f ([# % & kXO0®[0O®+ —
"B Bl 1 % 38em 73 1 3 [--F- 2

= El . e B J
(a) Writing wo'{;_i “This is-a book’and “parable” by speech command

-'-' --.I
Press Yo d Wo -

change input K ommand do a
chinese code ||: %@ #®EE #RA® WBAD #30Q IAD KO ASW HB® x

thisisabook|l: y =g 34 4 /8- =5 0 @ #9105 -

eﬂTegl : Pz - HEE -2 - B I U-dAlSE|E=S

arable e 5

Emer H ey H\FIE-IF-_H_E#ﬂ:Arﬂl'&‘.Esk-E*IﬂE!ﬁ-
Dllgl1I?Inl‘dIEI‘SI7|ISI8I|PIﬂI|I2I|3\II4l|5I1.S\17i|.8l|9‘

Thig1s-a-book.
Unity-isstrengthe

P43 02 0 1o

EE—AE 3

R IR .
=eEzw < > ’
GlEl s s 2 B ¢ Lt ex X000t -
Bl #1 11 ; ‘ thz

(b) Change input code by commands “change input” and “chinese code”

Figure 5-15 Writing English or Chinese alphabet with speech commands

Example of document reading

-73 -

In Figure 5-16 (a), (b), (c), we can use GIB system to facilitate people with reading more
easily and friendly. Step 1, we can use macro speech command “open magnify” to execute
application “magnify.exe” which will magnify the text under the mouse cursor. Step 2, using
speech commands “v previous” and “v next,” users can set the vertical spring distance of
mouse cursor as shown in figure 5-16 (a). Step 3, we can use command “moving right” to
control mouse cursor’s moving direction to the right continuously as shown in figure 5-16 (b).
Step 4, we can use command “spring down” to control mouse cursor jumping to the next line

according to the distance set in step 2 as shown in figure 5-16 (¢).

[Under the Windows environment, t Lj‘llcler the Windows Jenvironment, the traditional com

SRR KRS RN OEBAOEIND | L e BAD e [TEXD MO S0 WAD HXQ) IAD MGW 8B MM QARENEONE o
ISIEA EVEE I IENE. CAc 41 B0 BB AR MU 2 -0 i) = T RN T A - I ERIE Y e T=1=1] W P AT e |
L AR R e O CEE T R LI W) | Sigan, et - < n 2y AAA B EEE) EEEE Y ARG

ST T S T F T T T T T T T T I T T T TR T T TR P TFNE T T TRT T o T TR TR TTR TR T T T TR TT TTR
g 1_ Open mqgm fy Student: Shil-Jung Peng .-ul\1xo|‘: Prof. Deng-Jyi Chen- : Seadent: Shib-Jung Peng :hl\lm': Prof. Deng-Jyi Chen.

. Institute of Computer Science and Information Engineering. i =] W stitute of Computer Science and Information Engineering.

National Chiao-Tung University.

. o |- National Chino-Tung University.
- . . . R |- o
212, set spring distance . all |0 .

s Bl
2.0 v previous Abstract. i iha i
: P ok 3. moving right Abstract,

BN -

: \ . '
: f Inder the Windows environment, the traditional commonly sed method, to let . flmm the Windowsguvironment, the traditional commionly used method. to let
N developed window application programs having speech or Wireless remote HCT — ddeloped window application progams having speech or wireless remote HCT
. =
- ‘ 2 b tﬂuman Computer Tnteraction) control ability and following the confrol commands to [. - (Human Computer Interaction) control ability and following the control commands to
|2 B €.V nex .
d | achieve the goal of operating application programs, i duectly wiiting the contiol ¥ N achieve the goal of operating application programs, is directly writing the confrol a
e
" . ; o :
£ procedures of speech or wireless confroller into the application programs, then using : N procedures of speech or wireless controller into the application progams, then using @
1* '
saf@rwe¢ L LI O ¥
1---::!arl((ama-xoouo+-x~<>=sun;-|--x|u| ;..\;:g?([;(u&anxoouo-f—x-<>=$¥ct-u=-izul
v mi @2 #10%m 13 ML = e0 0F Brvm @2 K 0%m 13 M =om OF

a) Execute application “magnify.exe” (b) control mouse cursor's moving to right
pp gnity g g

developed window applifation programs having speech

T 5% OM4-98-v20 doc - Microsoft Word

| EED UMD BN BAD GO TAD BEG SBW) NRD O REN SR - x
[IRWER EERERE e NEN) -2 - B0 oo pe 0B MG F s -6 umel
MR« TewderRonm =02 o)B Z U AN [MESBEE SEEEY A HOR
e R R R T T T T T T T T TR T TR T TRNE TR T T T

Student: Shih-Jung Peng Advisor: Prof. Deng-Jyi Chen-

Institute of Computer Science and Information Engineering.
- National Chino-Tang University.

4. spring down Abstract.

o
o
B Under the Windows-environment, the traditional commonly used method. to let
- developed \\-umow(:\ijanou programs having speech or wireless remote HCT
.

(Human Computer Inteddction) control ability and following the control commands to

i achieve the goal of operating application programs, is directly writing the control &
» .
M procedures of speech or wireless controller into the application programs, then using °
u ol >
P s i3 V2 LB ([®%&aX00D®t—x+ <>=3%¢crCmamyu«l

AV W1 €120 B 10%m f713 M1 el ox

(c) Spring mouse cursor to next text line

Figure 5-16 Using speech command to help user reading document

-74 -

5.3 GAI generation
5.3.1 Example of application “VCard”
If there is a JAVA program “VCard” running on the PC environment, we can use mouse
and keyboard to control the operating functions of this program; the main function of this

program is to edit the name card format with different background, logo, and card format.

And the operating procedures are as labeled in figure 5-17.

st naw appbcation ook & Fesl Tabile Mods Gones ste Opermion il Genes s Comrol Tatie

rmew |

Figure 52_17 Exeeﬁﬁng aiopﬁéation program “VCard”

In this case, we intend to use a cellular phone which has GUI function generated

automatically by proposed interface generator system, as a remote controller to control the

JAVA AP on the PC environment through HTTP wireless network. The interface generator

procedures are separated into multiple steps as depicted in figure 5-18, 5-19, and 5-20:

Step 1: Loading Target Application Description

The first step of loading a JAVA application into an interface generator system is to
choose a desired application for the proposed system by file selection menu. After that, the

target application can be executed under the interface generator environment and placed on

top of the application’s GUI, which is labeled as step 1 and 2 in figure 5-18.

-75 -

Applicabion Linking Inis :1'_

+ >

Mobile Card Media Ecard
MF Player service Template service Interaction servic
¥
-
2

Figure 5-18 Loading and running JAVA AP on the system

Step 2: Generate JAVA Midlet file_

'. L

The second step is to autgir'lai-rcally generateL-M?d.let program of control interface from

': .i
the control button of chosen JAVA eﬁlhclatmn -.lnt'o bellular phone. After loading the

i .- =) :.
application into system, 1ntérfac'e des1gner car-i‘ _}USt _,press command button “generate operation

By

- .-_..-"

ks b
file,” as step 4 of figure 5- 19 and the SﬁmreMC Operatlon file of application.

= i i
5 LE b

iy TRt i

-
s
]

5 Application Linking Interface

TN e (=13

nerate Control Table 3

5 Generate control code
' 4 Generate control functions

v

I

'] 3-1 specification file $3-2 button icons | $5-1 con‘\'r'ol UI table
I .
| [S EN [y — : 0 Icon Label |
I ' 3 I play_btn1

20 #80 €30 #A0 BSD 1=
: inport.javas_sving.x; A I | : play_btn2

blic abstract class Ecardinteractiongbs extends JinternalFrane { == =+ lay_btn3 _
: ?ntutm String play btnt = "§* ; _ : s‘a;-hmd
utected String play bin2 H — —

| [Fne i e v 2 7 ! aL5¥S :{
| [protected String play H . 5 | play_bin

protected String play b —
: protected String play bt —1:| ‘—l : E::z‘:::;

5 T A

! 4+ 1 ey : > payoing
] | play_btn10
I ; - FWAWIC—) EmNRIT I play_btn11 HERR
: prlected Strin play i = ¥ ; e e : play_radiobtni | BREA—
| T — | T
: pratected String play_btnts : play_radiobtn3 | BREA=

protected String btnd_I \\Myleb\\ECard_CIF\\actTcon. jpg ; T lay_comboBoxitern1 NCTU
: protected String btn2_I “\\Myleb\\ECard_EIF\vactlcon2. jpg” ; p Lo : z\az_combaﬂorilem:f Ben@
: MUY I play_comboBoxitem3 Mio

Figure 5-19 Flow of generating control table of AP “VCard”

-76 -

Generate Midlet Source Code,

Application Save Control Table Import new application Look & Feel Table Mode Generate OperationFile Generate Control T:

[Operaion | keon |
|play_btn1 |

ElvcardTomplta -~ .~ .~ ;.

play_bin2

= 6 Genera’re Mlclle‘f 'source code

TKZZMpps\Mle

emoteAP\sr'c\

‘|play_btng
A|play_bing

Inlay_bin1D _

: play_btn11 TERE

; nlay_radiobini BAEE—
“|play_radiobin2 LR
“|play_radiobtn3 RREA=

[P omboBaxitern! NCTU

L’{ ymboBoxitem?2 Ben@

Imav,cnmhnEm{itema Mio

Figure 5-20 Flow of Generating Midlet code of AP “VCard”

Similarly, designer can press command button “create control table,” as step 5 of figure
5-19, and the system will create a control table of application as step 5-1 of figure 5-19.
Finally, designers press command button “generate Midlet source code,” and the system
generates Midlet source code of Gontr;l interfelc-e of application VCard on the cellular phone,

as the step 6 - 8 labeled in figure 57-20. =
:7 il

Step 3: Download executed file into cellular phone -
After downloading the‘executed file-into cellular phorlle and run it, the control interface

of application VCard on tl-le_ cellulaf.phon.e under: different objects view such as “Main

Menu,” “Button,” “Radio,” and “ComboBox’ are shown as in figure 5-21.

Main Menu Button Radio ComboBox

Figure 5-21 Generated control interface of “VCard” to cellular phon

-77 -

Step 4: Control AP program on the PC with cellular phone

Finally, this cellular phone would become a remote controller; we can use it to remotely
control the application program running on the PC through HTTP wireless network by
directly touching the command objects, as we have seen, on the control interface of cellular
phone, while we need not to memorize complex compound commands or complex operating

procedures.

-78 -

6. Conclusions and Future work

6.1 Conclusion

In this research we have overcome some obstacles and developed a visual Generic
interface bridge (GIB) to make applications without prior recognition control ability to have
recognition control ability of speech or cellular phone by employing several techniques such
as the “Touch-Panel Interface,” object oriented design pattern, and incorporated into a script
language definition together with a parsing technique through a simple and easy way without
the need to write any program code.

This research includes two parts: first, “Integration GIB with HCI” with the use of
speech to control applications on the PC, second, “GIB-based Application Interface (GAI)
generation” with the use of cellular phone to control applications running on the PC through
internet. In part one, we propose a flexible and effective visual platform as an interface for the
target application by defining reference positions and giving each position a name on a virtual
transparent interface environment. Onece-the-pesition objects are defined on the Window
screen and the macro commands are set completely, users can manipulate the application
simply with speech commands through processing input commands and calling the mouse and
keyboard API events according to the analyzed result. In part two, with the same analyzing
concepts of GIB, we develop an interface generation system to bridge a wireless control
system of cellular phone with applications running on PC. This system can automatically
generate a human control interface into cellular phone for a controlled PC application through
simple objects specification of application. Finally it produces and compiles the Midlet
program and wraps the result of jar file into cellular phone.

The major contributions of this research include: first, we proposed a visual GIB
between HCI and applications under which the users can control applications more easily

after defining simple object. Second, the GIB system offers a simple, easy and effective way

-79 -

for users to control applications without the need to write any program code. Third, users can
increase, delete or modify the commands of HCI, and give defined object a name during run
time without the need to access, write or re-compile any source code of the application.
Fourth, under GIB systems, users can easily define speech commands with macro command
in order to simplify commands input and increase recognition correctness. Fifth, users can

completely control mouse and keyboard combined actions under proposed GIB system.

6.2 Future work

The future work in this research includes:

1. special education application

Not all users are convenient invmotions such as hand, body, or eyes, therefore they
cannot easily have access to the computer.and.acquire acknowledge. The major complexity of
special education applications is the design of user control interface. Under GIB system, we
may consider developing some particular‘manipulating actions or control signals for those
who have inconvenience in¥.motions;. so that the most common applications may also be
manipulated by them easily.

2. multi touch technique

Traditional touch panel is a commonplace for single point of contact. Multi-touch system
allows user to interact with applications with more than one finger at a time. Thus, we may
consider integrating GIB system with multi touch techniques to change the way we interact

with computer and make the manipulation more natural and vivid.

- 80 -

[6]

[10]

Reference

Speech-Actuated Mainpulator.

Available: “http://www.research.att.com/history/89robot.html”

VSpeech 4.0, BK02 product. Available: “http://www.bk02.net/vspeech/index2.htm”
Voxx 5.0 Speech recognition project, Sourceforge product,

Available: “http://sourceforge.net/projects/voxxopensource/”

IVOS, ComunX product., Available: “http://ivos.comunx.com/”

Microsoft’s Speech Recognizer V.5.1, Microsoft product,

Available: “http://www.microsoft.com”

Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, Tony D. DeRose, “Toolglass
and Magic Lenses: The See-Through Interface,” Xetox PARC, 3333 Coyote Hill Road,
Palo Alto, CA 94304,.1993.

Available: “http://www2.parc.com/istl/projects/MagicLenses/93Siggraph.html”

Yves Boussemart, Franceis Rioux, Frank Rudzicz, Michale Wozniewski, Jeremy R.
Cooperstock “A Framework for 3D Visualization and Manipulation in an Immersive
Space Using an Untethered Bimanual Gestural Interface”; Centre For Intelligent
Machines 3480 University Street Montreal, Quebec, Canada, 2004.

Available: “http://www.cim.mcgill.ca/sre/publications/vrst.pdf”

W. LI, W. Wang, 1. Marsic, “Collaboration Transparency in the DISCIPLE Frame Work”;
In Proceedings of the ACM International Conference on Supporting Group Work
(GROUP'99) November 14-17, 1999, Phoenix, AZ.

BestWise International Computing Company. Available: “http://www.caidiy.com.tw”
Christofer R. Wren, Carson J. Reynolds, “Parsimony & Transparency in Ubiquitous

Interface Design”; Media Laboratory, Massachusetts Institute of Technology.

-81 -

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Available: “http://affect.media.mit.edu/pdfs/02.wren-reynolds-abstract.pdf”

Robert W. Sebesta, “Concepts of Programming Languages,” 7th Edition,
Addison-Wesley Publishing Company, 2002.

James Gosling, Bill Joy, Guy Steele, Gilad Bracha, “The Java Language Specification,”
Third Edition, Sun Microsystems, Inc., 2005.

C.S. Koong, J.S Tyan, S.F. Chuang, D.J. Chen, “A Component-Based Visual Scenario
Construction Language for Electronic Book,” IEEE COMPSAC 2000, the 24th Annual
International Computer Software and Applications Conference, Taipei, Taiwan, October
25-27, 2000, pp. 255-260.C.S.

Online Laborlawtalk Encyclopedia. Available: “http://encyclopedia.laborlawtalk.com/”
WinBatch Macro Scripting Language. Available: “http://www.winbatch.com/”

N. Manasse, “Speech Recognition’”’; University of Nebraska, Lincoln, 1999.

Microsoft Speech SDK, Version 5.1 Documentation, Microsoft Corporati. 2001.
Available: “http://download.microsoft.com/download/speechSDK/SDK/5.1/ WXP/
EN-US/speechsdk51.exe”

Bruce Powel Douglass, “Real‘time Design Patterns: Robust Scalable Architecture for
Real-time Systems,” Pearson Education, 2003.

Design Patterns in Java. Available: http://www.fluffycat.com/java/patterns.html
Chung-Chien Hwang, “Objected-Oriented Program Behavior Analysis Based on Control
Patterns”; PhD. dissertation, Computer Science and Information Engineering, National
Chiao-Tung University, Taiwan, 2002.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen; Object-Oriented
Modeling and Design, 1991 Prentice-Hall.

Grady Booch; Object-Oriented Analysis and Design with Applications, the
Benjamin/Cummings Publishing Company, Inc., 1994.

Robot Battle Scripting Language Functions.

-82-

Available: “http://www.duke.edu/~cc27/RobotBattleCommandManual.html”

[24] Speech-Actuated Manipulator.

Available: “http://www.research.att.com/history/89robot.html”

[25] W. C. Chen, “A Reuse-based Software Construction Paradigm for Visualized Reusable
Components and Frameworks”; PhD. dissertation, Computer Science and Information
Engineering, National Chiao-Tung University, Taiwan, 1998.

[26] Microsoft’s Windows API Reference Web-Site. Available: “http://www.mentalis.org”

[27] Programming Techniques Reference Forum. Available: “http://www.xtremevbtalk.com/”

[28] S.J. Gibbs, D.C. Tsichritzis; Multimedia Programming, Objects, Environments, and
Frameworks, Addison-Wesley Publishing Company, 1995.

[29] OMG’s CORBA Specificatien; Object Manageément Group’s Standard.

Available: “http://wwwscorba.org”

[30] H. Okada, K. Kato, T. Ikegamai, Y. Tatusmi, and T. Asahi, “Proposal of PC Remote
Control System by Mebile Deviees;\IPSJ Sig Notes (2001-HI-93), 2001(38): 1 6, 2001.

[31] Norman Makoto Su, Yutaka Sakane, Masahiko Tsukamoto, Shojiro, Nishio, “Systems
Issues: Rajicon Remote PC /GUIOperations via Constricted Mobile Interfaces,”
Proceedings of the 8th annual international conference on Mobile computing and
networking, September 2002.

[32] Jeffrey Nichols, Brad A. Myers, Michael Higgins, Joseph Hughes, Thomas K. Harris,
Roni Rosenfeld, Mathilde Pignol, “Infrastructure for Ubicomp: Generating Remote
Control Interfaces for Complex Appliances,” Proceedings of the 15th annual ACM
symposium on User interface software and technology, October 2002.

[33] Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S.M., and Shuster, J.E., “ An
Appliance-Independent XML User Interface Language,” in the Eighth International
World Wide Web Conference, 1999, Toronto, Canada.

[34] De Baar, D.J.M.J., Foley, J.D., Mullet, K.E., “Coupling Application Design and User

-83 -

Interface Design,” in Conference on Human Factors and Computing Systems, 1992
Monterey, California ACM Press, pp. 259-266.

[35] Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris, T.K., Rosenfeld, R., Shriver, S.,
“Requirements for Automatically Generating Multi-Modal Interfaces for Complex
Appliances,” in ICMI, 2002.

[36] Olufisayo Omojokun, S. Pierce, L. Isbell, Prasun Dewan , “Comparing end-user and
Intelligent Remote Control Interface Generation,” Personal and Ubiquitous Computing,
Volume 10, Issue 2, January 2006.

[37] Neil R. N. Enns, 1. Scott MacKenzie, “Touchpad-based Remote Control Devices,”
Conference on Human Factors in Computing Systems, April 1998.

[38] Azam Khan, George Fitzmautice, Don Almeida, Nicolas Burtnyk, Gordon Kurtenbach,
“A Remote Control Interface for-Large Displays,” Proceedings of the 17th annual ACM
symposium on User interface software andtechnology, October 2004.

[39] Eddie Schwalb, “Synepsis -, Books and Software«aTV Handbook: Technologies &
Standards,” Computers 1 Entertainment (CIE), Volume 2, Issue 2, April 2004.

[40] Anind K. Dey, Gregory D. Abowd, “Towards a Better Understanding of Context and
Context-Awareness,” 1999.

[41] Shih-Jung Peng, Jan Karel Ruzicka and Deng-Jyi Chen, “A Generic and Visual
Interfacing Framework for Bridging the Interface between Application Systems and
Recognizers,” Journal of Information Science and Engineering, Vol. 22, No.5,
September 2006, pp.1077-1091.

[42] Shih-Jung Peng and Deng-Jyi Chen, “A Generic Interface Methodology for Bridging
Application Systems and Speech Recognizers,” 2007 International Conference on
Information, Communications and Signal Processing, 10-13 December, 2007, in
Singapore.

[43] Deng-Jyi Chen, Shih-Jung Peng and Chin-Eng Ong, “Generate Remote Control Interface

-84 -

Automatically into Cellular Phone for Controlling Applications Running on PC,” Journal
of Information Science and Engineering, 2008.09.16. Accepted.

[44] Shih-Kun Huang, “Objected-Oriented Program Behavior Analysis Based on Control
Patterns,” PhD. dissertation, Computer Science and Information Engineering, National
Chiao-Tung University, Taiwan, 2002.

[45] Jones J., “DVB/MHP JavaTM Data Transport Mechanisms”, Proceedings of the 40th
International Conference on Tools Pacific, Objects for internet and embedded
applications, Volume 10, 2002, pp. 115-121.

[46] Microsoft Corporation. Universal plug and play forum. Available: “http://www.upnp.org/ “

[47] API specification for the Java2 Platform, Standard Edition, version 1.4.2.,

Available: “http://java.sun.com/j2se/1.4.2/docs/api/”

[48] Design Patterns in Java.tAvailable:http://www.fluffycat.com/java/patterns.html”

[49] Java TV API 1.1 (JSR-927): Available: “http://java:sun.com/javame/reference/apis/jsr927/”

[50] Jeffrey Nichols, Brad 'A. Myets; ‘Brandon Rothrock, “UNIFORM: Automatically
Generating Consistent ‘Remote«Control User Interfaces,” Proceedings of the SIGCHI
conference on Human Factors in computing systems, ACM, April 2006, pp. 611-620.

[51] T. Ha, J. Jung, and S. Oh., “Method to Analyze User Behavior in Home Environment,”
Personal and Ubiquitous Computing, 10(2--3):110--121, 2006.

[52] Jan Hess, Guy Kiistermann, Volkmar Pipek, “Premote: a User Customizable Remote
Control,” CHI '08 extended abstracts on Human factors in computing systems, ACM,
April 2008, pp. 3279-3284.

[53] Seong Joon Lee, Yong Hwan Kim, Sung Soo Kim, Kwang Seon Ahn, “A Remote
Monitoring and Control of Home Appliances on Ubiquitous Smart Homes,” Proceedings
of the Ist international conference on MOBILe Wireless MiddleWARE, Operating

Systems, and Applications, February 2008.

-85 -

Appendix

A. BNF of Control Commands

<execution_command> ::= <command_string> send | <clear-console> | <undo-phrase> |
<store-cursor> | <recover-cursor> | <capture-it>

<command_string> ::= <statement> | <statement> then <command_string>

<clear-console> ::= clearConsole

<undo-phrase> ::= undoPhrase

<store-cursor> ::= storeCursor

<recover-cursor> ::= recoverCursor

<capture-it> ::= capturelt

<statement> ::= <set-distance> [<set-dragspeed> <set-drop> | <show-grid> | <drag> |
<drag-square> ['<drag-coordinate> 1 <click> | <click-square> | <click-coordinate> |
<move> | <clear-text> I'<send-key> | <loop> | <eapture-1t> | <select-stage> |
<select-grid> | <select-application>

<set-distance> ::= setDistance to <distance>

<set-drag-speed> ::= setDragspeed <speed>

<set-drop> ::= setDrop <boolean>

<show-grid> ::= show(Grid <boolean>

<drag> ::= drag (<direction> | <pattern>) by <distance>

<drag-square> ::= dragSquare <square> (to (<square> | <coordinate>) | (by <pattern> | <direction>)
by <distance>

<drag-coordinate> ::= dragCoordinate <coordinate> (to (<square> | <coordinate>) | (by <pattern> |
<direction>) by <distance>

<click> ::= click by <clicktype>

<click-square> ::= clickSquare <square> by <clicktype>

- 86 -

<click-coordinate> ::= clickCoordinate <coordinate> by <clicktype>

<move> ::= move (to (<square> | <coordinate>) | <direction> by <distance>)
<clea-Text> ::= clearText

<send-key> ::= sendKey <string>

<loop> ::= loop <number> times

<select-stage> ::= selectStage <string>

<select-grid> ::= selectGrid <string>

<select-application> ::= selectApplication <string>

<square> ::= <string>

<coordinate> ::= <number> , <number>

<number> ::= <digital> | <digital> <Aiumber>

<string> 1= <letter> | <digitals| <letter><string> | <digital> <string>

<click-type> ::= leftclick | rightclick | doubleclick

<distance> ::= veryshort | short | normal [.leng | verylong

<speed> ::= veryslow | slow | normal I fast | veryfast

<boolean> ::= true | false

<direction> ::= east | west | south | north | northeast | northwest | southeast | southwest
<pattern> ::= triangle | square | pentagon | hexagon | octagon | curves | zigzag | spiral
<digital> :=0111213141516171819

<ltter>:=alblcl--lylzlAIBICI---1YIZ

-87 -

B. Partial Syntax Tree of Control Commands
Send:

Then>

<then
I
<command> —» <send>

Then:
[statement x | —then — --- send

setDistance:

setDistance — to — distance

setDragSpeed:
setDragSpeed — speed

setDrop:

setDrop — boolean

showGrid:

showGrid — boolean

Drag:
drag direction by — distance
L— pattern —
dragSquare:

dragSquare —square x— to —[square y
coordinate x

— by — pattern by — distance
direction :r

dragCoordinate:
dragCoordinate — coordinate x | to —|: coordinate y
square x
— by — pattern by —distance
direction :I

click:

click —by — clicktype

clickSquare:

clickSquare— square x —by — clicktype

- 88 -

clickCoordinate:

clickCoordinate — coordinate x —by — clicktype

Move:
move to —[square x
coordinate x
direction —by —distance

clearText:

clearText—then —loop —number —times

sendKey:
sendKey — fext x

loop:
loop 3 times

selectStage:
selectStage — stage x

selectGrid:
selectGrid — grid x

selectApplication:

selectApplication — application x

-89 -

Jan 20 1965

1988-1990

1992-1994

2000-2009

Field Of Study

Vita
Shih-Jung Peng
Born in Hsin-Chu, Taiwan, R.O.C.
Bachelor of Engineering
Department of Electronic Engineering
National Taiwan University of Science and Technology
Master of Engineering
Department of Computer Science and Electrical Engineering
National Central University
Ph.D. of Computer and Information Science
Department of Computer Sciénce and Engineering

National Chiao-Tung University

Multimedia Authoring Tools, E-learning, System Application

-90 -

Publications

[1] Referred Journal Paper

1.

Shih-Jung Peng, Pi-Feng Liang and Deng-Jyi Chen, “Effective Learning Model and
Activate Learning Algorithm for Improving Learning Efficiency,” Journal of Information

Science and Engineering, Vol.23, No.6, November, 2007, pp.1849-1863. (SCI)

. Shih-Jung Peng, Jan Karel Ruzicka and Deng-Jyi Chen, “A Generic and Visual

Interfacing Framework for Bridging the Interface between Application Systems and
Recognizers,” Journal of Information Science and Engineering, Vol. 22, No.5, September
2006, pp.1077-1091 .(SCI)

Deng-Jyi Chen, Shih-Jung Peng and Chin-Eng Ong, “Generate Remote Control Interface

Automatically into Cellular Phone for Controlling Applications Running on PC,” Journal

of Information Science and Engineering, (2008.09.16. accepted.)

[2] Referred Conference RPaper

1.

Shih-Jung Peng and Deng-Jyi. Chen, “A_Generic Interface Methodology for Bridging
Application Systems and . Speech Recognizers;” 2007 International Conference on
Information, Communications | and Signal . Processing (IEEE ICICS2007), 10-13
December, 2007, in Singapore.

Shih-Jung Peng, Pi-Feng Liang and Deng-Jyi Chen, “Effect Learning Curve Model and
Active Media Learning Algorithm for Improving Learning Efficiency,” Taipei ICS 2004
(International Computer Symposium), Dec. 15, 2004, pp. 1097-1102.

Pi-Feng Liang, Shih-Jung Peng, and Deng-Jyi Chen, “Probability Model and replica
Allocation Methods in a Multimedia Mobile Learning System,” Taipei ICS 2004
(International Computer Symposium), Dec. 15, 2004, pp. 613-618.

Deng-Jyi Chen, Pi-Feng Liang, Shih-Jung Peng and Li-Chiech Yu, “An Efficient
Learning Model for Mobile Environments using Graph and Probability Analysis,” Taipei
ICS 2004 (International Computer Symposium), Dec. 15, 2004, pp. 220-225.

Shih-Jung Peng, Pi-Feng Liang and Deng-Jyi Chen, “Heuristic Media Allocation

-91 -

Methods Based on User’s Mobility Moving Pattern for Multimedia Mobile System,” 2003
International Conference on Informatics, Cybernetics and Systems (ICICS2003),
December 15-16, 2003, pp. 535-544.

6. Pi-Feng Liang, Shih-Jung Peng and Deng-Jyi Chen, “Media Access Probability Model in
a Multimedia Mobile learning System,” 2003 International Conference on Informatics,

Cybernetics and Systems (ICICS2003), December 15-16, 2003.

[3] Patent

1. [@E‘Fﬂ, 4, }f}]{ﬁ[liﬁ, CATIEAR iikt;‘?%ffgf ”, patent No I 299457,

2008.08.01.~2025.12.19. For Taiwan.

Apparatus,” patent application™No 200

S -

T ERBE EAEE

#eE I 200457 W&

| A % 5 MRAR-IEARE
G o3 A RIXEAE
Ml 5 R A BRBE -BLER - Bmd

3 l) EAEBIE 4200848 A 1 8520254124190 ¢

bR 0 R A BAAE AR B Ak 2 R R RS AT

Sl A RaEs

& 1 A A

-92.

