# 國立交通大學

# 電機學院 電機與控制學程

# 碩士論文

數位相機彩色濾鏡陣列影像雜訊消除方法 Color Filter Array Denoising Method for Digital Cameras

研究生:唐學用

指導教授:林昇甫 博士

## 中華民國九十七年一月

## 數位相機彩色濾鏡陣列影像雜訊消除方法

## Color Filter Array Denoising Method for Digital Cameras

| 研 究 生:唐學用   | Student : Hsueh-Yung Tang |
|-------------|---------------------------|
| 指導教授:林昇甫 博士 | Advisor:Dr. S. F. Lin     |



Submitted to College of Electrical and Computer Engineering National Chiao Tung University in partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical and Control Engineering January 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年一月

數 位 相 機 彩 色 濾 鏡 陣 列 影 像 雜 訊 消 除 方 法

學生:唐學用 指導教授:林昇甫 博士

國立交通大學 電機學院 電機與控制學程碩士班

#### 摘 要

當今時下,數位相機已幾乎完全取代傳統底片相機,舊有的底片也有 產品將之翻拍成數位照片,這個趨勢已如潮水般滾滾而來,不只是數位相 機,舉凡能數位化的產品都逃不過數位化的命運,只因數位資訊便於處理、 儲存以及傳遞。

數位相機中的影像處理是經過了很多道的程序而成,幾乎所有的程序都 會增強雜訊的作用,所以降低雜訊的影響最好的辦法就是在任何影像處理 的程序之前就先將影像來源本身具有的雜訊濾除掉,而影像雜訊濾除最困 難的就是在濾除雜訊的同時也保存了影像的輪廓和高頻訊號。本篇論文提 出了另一種消除影像雜訊的架構,由三個想法所組成,一個是在影像區塊 中將正在處理的像素歸類給某一預設圖樣,既然可被歸類給某一圖樣,就 可以對這圖樣中的元素平均以降低雜訊,另一個是獲取校正過後的相機雜 訊特性,掃瞄出其雜訊特性並以標準差來表示,以便於用來判別正在處理 的影像區塊是否可以判定為均勻影像,進而做出最強的濾除效果。最後一 個是運用肉眼視覺系統不易察覺到那些藏在多紋路、高反差區域的影像雜 訊,所以不去濾除那些不易被察覺的雜訊以保存更多的影像輪廓訊號。

i

#### Color Filter Array Denoising Method for Digital Cameras

Student: Hsueh-Yung Tang

Advisors: Dr. S. F. Lin

## Degree Program of Electrical and Computer Engineering

## National Chiao Tung University

#### ABSTRACT

Nowadays, traditional film camera has almost been replaced by digital camera in commercial market. This trend is not only on camera, but also on any product in which the signal can be digitalized, since digital information would be much convenience to be processed, stored, and transmitted.

Image processing in digital camera consists of many processes. Almost all of the processes would enhance noise added in images. The best way to make noise strength be minimized is to reduce noise in front of any image processing. The difficulty of image denoising is always to preserve edge information, and filters out noise in flat area simultaneously. In this paper, we have presented a denoising method which consists of three ideas. One is to filter noisy pixel based on nearest pattern to keep edge information, another one is to use camera noise characteristic to judge the uniformity of current processed area and the last one is to make use of the property of spatial masking to keep edge information again on the highly texture area. 這篇論文的完成要感謝的人很多,有些是實質在論文上的指導,有些則是精神上的 體貼和關心。首先最要感謝的是幫助我很多的指導教授 林昇甫博士,感謝林教授的多 方幫助,包含論文的研究、生活處事哲理上的一切耐心教導,讓我受用無窮,有了林教 授的體諒和鼓勵,我們這些學生們才有辦法工作、家庭與學業兼顧,並完成此論文。也 深深感受到口試委員廖德誠教授、潘晴財教授、張翔教授等口試委員的用心和一絲不筍 的作論文態度,他們訂正了我許多地方,所提供的寶貴意見讓我受益良多。

感謝亞洲光學集團-世界宏景主管的體諒,同意讓我繼續進修,感謝同仁們分擔掉我 的工作量,特別感謝同仁林璟憲修改了相機的程式,讓我可以運用真實相機方便的比較 不同的濾雜訊方法。能進到數位相機這領域也要感謝前一家公司華晶科技,華晶科技提 供的舞台讓我和數位相機結下不解之緣,也感謝學長彭永薰和呂龍騰,由於他們的引進 才讓我可以進入這行。還有多位同仁彼此間多年下來建立出來的信任和情感,無形中也 成為我的精神支柱,感謝他們。

感謝我的父母、大哥、大嫂及家人們的關心和幫忙,也感謝恩師王瑞材教授多年來 一再的關心和噓寒問暖,每次接到王教授的電話都會有暖上心房的感覺。最後要感謝我 的太太,五年前她幫我偷偷買了簡章,在不知情的情況下,幫我把大部分的報考資料準 備好了,雖然一路上在工作、家庭和學業都要兼顧很辛苦,但她總會在需要時給我一整 段的時間讓我好好準備課業,才有完成學業的可能!

要感謝的親朋好友很多,不及備載,儘致上最深的謝意,謝謝您們!

iii

## Contents

| Abstract in Chinesei                                                    |
|-------------------------------------------------------------------------|
| Abstract in Englishii                                                   |
| Acknowledgements in Chineseiii                                          |
| Contentsiv                                                              |
| List of Tablesv                                                         |
| List of Figuresvi                                                       |
| Chapter 1 Introduction1                                                 |
| 1.1 Motivation and Contribution1                                        |
| 1.2 Outline                                                             |
| Chapter 2 Review of Related Works                                       |
| Chapter 2 Review of Related Works    3      2.1 Color Filter Array    3 |
| 2.2 Bilinear Method                                                     |
| 2.3 Human Visual System                                                 |
| 2.4 Bosco-and-Mancuso Filter for Image Denoising                        |
| 2.5 Peak Signal to Noise Ratio                                          |
| 2.6 Structural Similarity                                               |
| Chapter 3 Proposed Image Noise Reduction System                         |
| 3.1 Overview of Image Processing on Digital Camera                      |
| 3.2 Block Diagram of Proposed Denoising Method17                        |
| 3.3 Algorithm of Proposed Denoising Method                              |
| Chapter 4 Experiments                                                   |
| 4.1 Test Results of the Images with Additive Noise:                     |
| 4.2 Test Results of the CFA Raw Images:                                 |
| Chapter 5 Conclusions                                                   |
| References                                                              |

# List of Tables

| Table 1 Proposed SSIM and PSNR compare with other filters for the images with additive         |
|------------------------------------------------------------------------------------------------|
| Gaussian random noise                                                                          |
| Table         2 Proposed SSIM and PSNR compare with other filters for the images with additive |
| Rayleigh random noise                                                                          |
| Table 3 Proposed SSIM and PSNR compare with other filters for the images with additive         |
| Gamma random noise27                                                                           |
| Table         4 Proposed SSIM and PSNR compare with other filters for the images with additive |
| Exponential random noise                                                                       |
| Table         5 Proposed SSIM and PSNR compare with other filters for the images with additive |
| Uniform random noise                                                                           |
| Table         6 Proposed SSIM and PSNR compare with other filters for the images with additive |
| Pepper-and-Salt random noise                                                                   |
| Table 7 Test result of filtering image "4.1.08-jellybeansg" with additive $\sigma$ =7.1875 and |
| σ=3.125 Gaussian noise41                                                                       |
| Table 8 Use image "1.2.03-straw" as an example to explain the proposed filter has worst        |
| SSIM on texture images under high Gamma noise condition41                                      |
| Table         9 Proposed SSIM and PSNR compare with other filters for the pattern images with  |
| additive Gaussian noise47                                                                      |
| Table 10 Proposed SSIM and PSNR compare with other filters for the pattern images with         |
| additive Rayleigh noise48                                                                      |
| Table 11 Proposed SSIM and PSNR compare with other filters for the pattern images with         |
| additive Gamma noise49                                                                         |
| Table 12 Proposed SSIM and PSNR compare with other filters for the pattern images with         |
| additive Exponential noise                                                                     |
| Table 13 Proposed SSIM and PSNR compare with other filters for the pattern images with         |
| additive Uniform noise51                                                                       |
| Table 14 Proposed SSIM and PSNR compare with other filters for the pattern images with         |
| additive Pepper-and-Salt noise                                                                 |

# List of Figures

| Fig. 1             | Capture an image by three image sensors structure                                     |
|--------------------|---------------------------------------------------------------------------------------|
| Fig. 2             | Capture an image by one image sensor structure                                        |
| Fig. 3             | Reproduced an unknown value $C(u + du, v + dv)$ from its neighboring pixels by        |
|                    | using bilinear method                                                                 |
| Fig. 4             | Spatial Masking effect                                                                |
| Fig. 5             | System block diagram of Bosco-and-Mancuso filter7                                     |
| Fig. 6             | Two kinds of operating windows established from Bayer pattern                         |
| Fig. 7             | A candidate of $K_n$ curve                                                            |
| Fig. 8             | $K_{\rm n}$ curve for G channel in Bosco and Mancuso's patents10                      |
| Fig. 9             | $K_{\rm n}$ curve for R/B channel in Bosco and Mancuso's patents10                    |
| Fig. 10            | Similarity derived from distance $D_i$ of neighboring pixel to $C_0$                  |
| Fig. 11            | Typical block diagram of image processing in digital camera                           |
| Fig. 12            | Noise distribution illustration from real camera                                      |
| Fig. 13            | Block diagram of proposed denoising method                                            |
| Fig. 14            | Two kinds of operating windows                                                        |
| Fig. 15            | Pre-set twelve patterns when current processed pixel is green                         |
| Fig. 16            | Pre-set twelve patterns when current processed pixel is red or blue                   |
| Fig. 17            | Curve fitting for noise characteristic in terms of standard deviation                 |
| Fig. 18            | An example illustrated that noisy texture image has better SSIM and PSNR than         |
|                    | filtered images                                                                       |
| Fig. 19            | Another example illustrated that noisy aerial image has better SSIM and PSNR than     |
|                    | filtered images                                                                       |
| Fig. 20            | An example illustrated that bilinear filter has better SSIM than proposed filter35    |
| Fig. 21            | Proposed filter has worse PSNR even if it has better SSIM than others                 |
| Fig. 22            | Proposed filter has better filtering result under $\sigma$ =7.1875 Gaussian noise     |
| Fig. 23            | Proposed filter has better filtering result under $\sigma$ =3.125 Gaussian noise40    |
| Fig. 24            | $\sigma$ =18.75 Gamma noise yielded too much edge information which is not able to be |
|                    | recovered by proposed filter                                                          |
| Fig. 25            | Proposed filter is not able to filter Pepper-and-Salt noise45                         |
| Fig. 26            | 4 kinds of step wedge test pattern in USC web site                                    |
| Fig. 27            | CFA image captured by K1003 under ISO 100 condition54                                 |
| Fig. 28            | CFA image captured by K1003 under ISO 400 condition                                   |
| Fig. 29<br>Fig. 30 | CFA image captured by K1003 under ISO 1600 condition                                  |
| 1 15. 50           | mages with the tube parameter00                                                       |

# Chapter 1 Introduction

Nowadays, traditional film camera has almost been replaced by digital camera in commercial market. This trend is not only on camera, but also on any product in which the signal can be digitalized, since digital information would be more convenient to be processed, stored, and transmitted. The forecast volume of digital camera will be more than 130 million in year 2008 by statistical investigation. In general, once the camera has a good image quality under high ISO condition, it will have a big sale, since the high ISO performance is one of the important terms to attract user to buy it. The phenomenon is more obvious for high-end model. Nonetheless, once users buy it and take picture with high ISO condition, usually a lot of random noise can be seen all over the photo even though the camera had been claimed as a high ISO camera.



#### **1.1 Motivation and Contribution**

The trend of image resolution of digital camera is increasing nonstop and whereas the camera size tends to slim-down, so that the area of CCD photodiode is getting smaller. In this case, the sensitivity of CCD is getting down and down in consequence. That is to say, low SNR CCD has been made use of producing high ISO camera. Nonetheless, users won't accept grainy image when taking a high ISO picture. To tackle this difficult problem, an advanced denoising method of digital image is required.

Bosco and Mancuso [1]-[3] provided an adaptive filtering for image denoising in front of image interpolation. Their paper and patents provided a good denoising method. They invented a *local feature detector* to compute texture degree of the area so that it is feasible to

determine the strength of the filter. If the area under processing is highly textured then the filtering strength has to be low, whereas the filtering strength is high when the area is almost uniform. However, we have found Bosco and Mancuso's method [1]-[3] didn't filter out noise as we expected when we have implemented their algorithm.

According to above situation we mentioned, it's valuable to develop a new denoising method which is to reduce more random noise and preserve more edge information of image simultaneously.

#### 1.2 Outline

This thesis is structured as following: An overview of related works about random noise reduction would be given in Chapter 2. Chapter 3 would introduce proposed method represented in system block diagram and algorithms. Based on the proposed method, we would like to discuss experimental results in Chapter 4. At the end of this work, we draw a conclusion in Chapter 5.

# Chapter 2 Review of Related Works

Image acquisition devices made up of many kinds of different ways. In this chapter, some specific prior works related to this proposed denoising method will be reviewed. In Section 2.1, we would like to explain why Color Filter Array (CFA) is necessary and what kind of CFA we have taken. In Section 2.2, two of HVS models which have been used in the proposed denoising method would be reviewed. Then, Two kinds of image denoising methods in spatial domain such as bilinear, texture detection based denoising algorithm would be brought up in Section 2.3 and 2.4 respectively since we used them to compare the performance. Finally, what we would like to review are the methods of image quality assessment. They are PSNR and Structural Similarity (SSIM) stated in Section 2.5 and 2.6 respectively.



#### 2.1 Color Filter Array

In general, there are two types of images sensing structure for commercial digital camera. One is to use 3 or 4 image sensors to capture image of a scene as shown in Fig. 1. In order to make this structure work, optical paths, optical filters and image sensors for each color channel have to be separated to sense the image of a scene. Once image sensors got R, G and B color information, what we need to reproduce color is just picking up R, G and B color information for each corresponding coordinate without doing color interpolation. It works well! However, it's a very expensive approach, so that only professional digital cameras use this structure.

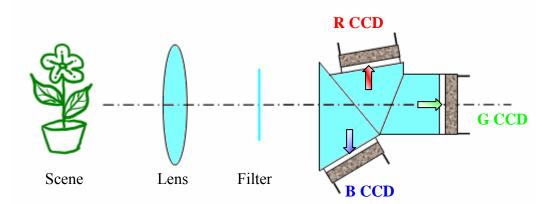



Fig. 1. Capture an image by three image sensors structure.

The other one, a single image sensor is used to capture image of a scene as shown in Fig. 2. The structure is much simple so as to reduce camera cost. In order to make this structure work, a color filter with mosaic pattern in front of image sensor to separate color information is necessary. So definitely, the resolution is reduced. To reproduce original color and resolution, interpolation is needed accordingly. At the right hand side of Fig. 2, each small square is representing a pixel. Basically, the pixels beneath color filters are light sensitive cells to respond the intensity of light falling on them. Color filter is aligned to sub-sample color information of a scene. There are many kinds of CFA. In digital camera, Bayer pattern CFA [4] with 3 primary colors R, G and B (as known as Bayer pattern) is widely used. As mention before, this thesis is going to discuss noise reduction method mainly based on this Bayer pattern domain.

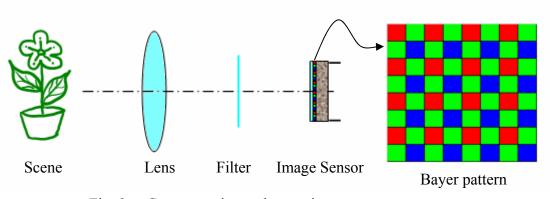



Fig. 2. Capture an image by one image sensor structure.

#### 2.2 Bilinear Method

Bilinear is widely used in smoothing edge, typically in the application of re-scaling image size. Also, it can be used in denoising application. The method is described as following equation,

$$C(u + du, v + dv) = dudv * C(u + 1, v + 1) + du(1 - dv) * C(u + 1, v) + (1 - du)dv * C(u, v + 1) + (1 - du)(1 - dv) * C(u, v),$$
(1)

and illustrated as Fig. 3.

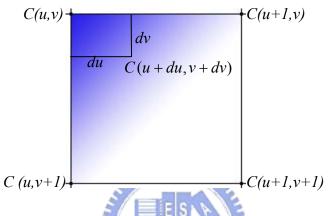



Fig. 3. Reproduced an unknown value C(u + du, v + dv) from its neighboring pixels by using bilinear method.

#### 2.3 Human Visual System

Human Visual System (HVS) is complex and not fully understood yet. It's difficult to use a mathematical function to represent it. It would be more realistic to get some useful information by experiments. There are two important observations on monochrome image which can be used for noise reduction. The first one is Just Noticeable Difference (JND) which is the minimum amount of stimulus intensity must be changed to cause a noticeable difference in sensory experience.

Ernst Weber (1795~1878), an experimental psychologist in 19th century, observed that the size of the JND threshold is related to initial stimulus magnitude. This relationship, had been simplified as Weber's Law by Gustav Theodor Fechner(1801~1887), can be expressed as  $\Delta I/I = k$ . where  $\Delta I$  represents JND threshold, *I* represents the initial stimulus intensity and *k* stands for the proportional constant. In other words, Weber's Law states that the size of the JND (i.e.,  $\Delta I$ ) is a constant which is proportional to the original stimulus value.

The second one is spatial masking. Natural images contain large changes in luminance, and these changes suppress the ability of the eyes to detect distortions spatially adjacent to them, this is so-called spatial masking. As a result of masking, noises in images are less detectable along strong edges and in highly textured areas, than in smooth areas of the image as illustrated in Fig. 4.

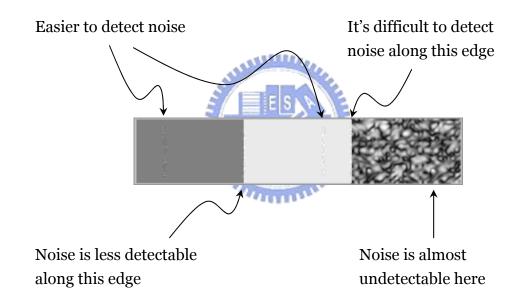



Fig. 4. Spatial Masking effect.

#### 2.4 Bosco-and-Mancuso Filter for Image Denoising

Bosco and Mancuso [1]-[3] invented an adaptive image filter which is used to reduce the amount of noise in images captured by sensors in Bayer pattern format. The concept of this filter acts mainly on smoothing the high spatial frequency components which are hardly perceived by the HVS.

In Bosco and Mancuso's paper [1] and patent [2],[3], they made use of the Weber's Law to determine the JND,  $\Delta I$ , which could be differentiated between intensity I and  $I+\Delta I$ . Bosco and Mancuso's HVS model assume that the uniform areas are the ones with details amplitude under JND. Having these considerations in mind they designed an algorithm that can distinguish if the current processed area is uniform area or not. Once the current processed area is not uniform, the algorithm will go to detect how textural the area is and adapts its filtering strength for the noisy pixel.

The system block diagram they designed is illustrated in Fig. 5. As mentioned above, the *local feature detector* is to compute texture degree of the area. The estimation is based on the information of distances, noise level, JND and exposure condition from distance and noise level estimator, HVS evaluator and exposure controller respectively. Once texture degree of this current processed area is decided, it would be able to determine the strength of the filtering strength.

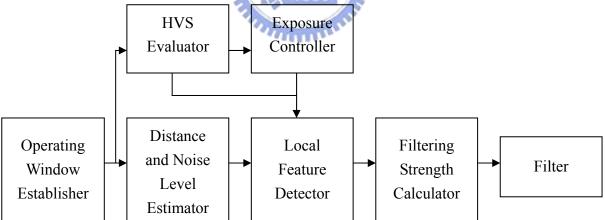



Fig. 5. System block diagram of Bosco-and-Mancuso filter.

The algorithm they proposed is to use two different filter masks, depending on which color is current processed pixel. One mask is for green pixels exclusively, the other one is for red/blue pixels, but not operated simultaneously. Fig. 6 is to illustrate those two kinds of operating windows established from Bayer pattern through 2 masks.

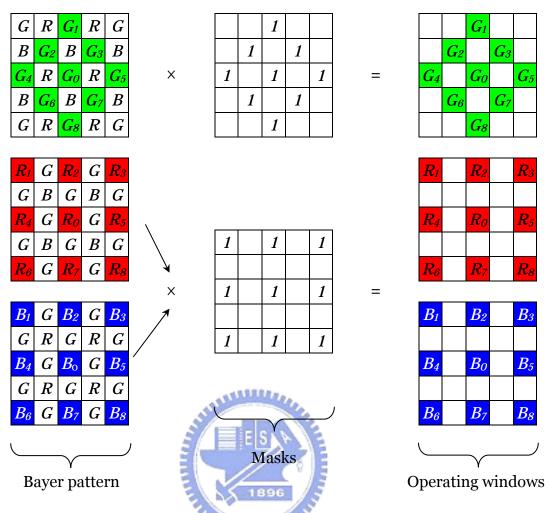



Fig. 6. Two kinds of operating windows established from Bayer pattern.

Definitely, green operating window is established when current pixel is green. Red and blue operating window will also be established once current pixel is red or blue respectively. The green operating window is different from red and blue, since the green channel has double information comparing with either red or blue channel in Bayer pattern format.

In each case of operating window for red, green and blue, let's define the current pixel  $C_0$ and eight neighboring pixels  $C_1$  to  $C_8$  respectively.  $C_i$  will also represent for  $C_1$  to  $C_8$  to describe easier in many cases. So now we have symbol  $C_0$  to  $C_8$  or  $C_0$  and  $C_i$  to stand for elements of operating window such as  $C_0$  represent for  $G_0$  when current color channel is green,  $C_1$  represent for  $G_1$ , etc., up to  $C_8$ . For red and blue channel, definitely,  $C_0$  to  $C_8$  represent for  $R_0$  to  $R_8$  and  $B_0$  to  $B_8$  respectively.  $C_0$  is the current pixel with noise needed to be filtered. As described in Bosco and Mancuso's paper and patent,  $C_0$  will be filtered and replaced with a weighted average of  $C_1$  to  $C_8$ . However, how much is the weight of  $C_1$  to  $C_8$ ? That will depend on how similar of them to  $C_0$ . In the design, the higher similarity degree of neighboring pixels, the bigger weight of them to  $C_0$ . The similarity degree is calculated based on the brightness of current processed pixel and takes into account of the predicted noise level *NL* of current area as following:

$$NL_{c_0}(t) = K_n * D_{\max} + [1 - K_n] * NL_{c_0}(t - 1),$$
(2)

where,  $D_{\text{max}}$  is the maximum distance derived from calculating each distance  $D_i$  of neighboring pixel  $C_i$  to  $C_0$  and  $K_n$  is a parameter to determine the strength of filtering. In the definition,  $K_n=1$  stands for almost flat area since this area could be filtered strongly, and  $K_n=0$ stands for highest texture area as this area could not be filtered too much.

Recall the assumption of uniform area by using Weber's Law and refers to the  $K_n$  definition as above, we can assume the curve of  $K_n$  versus  $D_{max}$  can be drawn as Fig. 7. That's to say, filter current pixel strongly if  $D_{max}$  not greater than HVS threshold  $Th_{HVS}$  and filter current pixel lighter depending on how noisy the current area is. If  $D_{max}$  is greater than  $Th_{HVS}$  + NL, then the area has to look as a highly texture area without strongly filter needed. However, they used Figs. 8 and 9 instead.

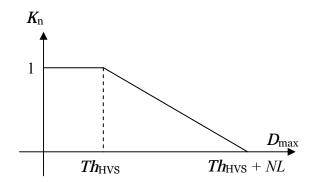



Fig. 7. A candidate of  $K_n$  curve.

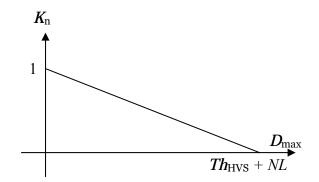
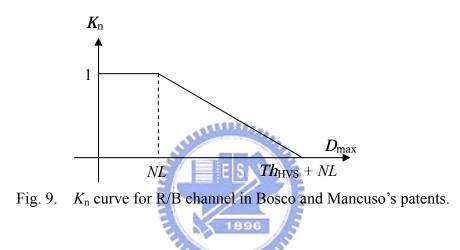
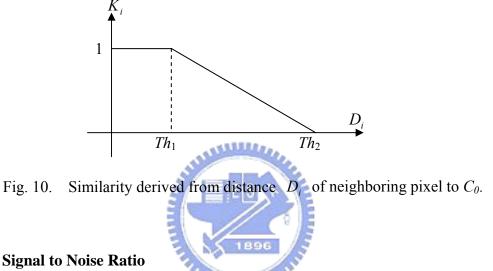




Fig. 8. K<sub>n</sub> curve for G channel in Bosco and Mancuso's patents.



 $K_n$  is the overall filtering strength of current processed area. Although the filtering strength is given, we still need to determine the filtering strength of each neighboring pixel  $C_i$  to target pixel  $C_0$ . Therefore, in order to evaluate similarity of each neighboring pixel  $C_i$  to the target pixel  $C_0$ , two boundary thresholds refer to  $Th_1$  and  $Th_2$  are used to stand for most similar and least similar according to following equations:

$$Th_{1} = K_{n} * D_{\max} + (1 - K_{n}) * D_{\min},$$
(3)


$$Th_{2} = K_{n} * D_{\max} + (1 - K_{n}) * \left(\frac{D_{\max} + D_{\min}}{2}\right),$$
(4)

where,  $D_{\min}$  is the minimum distance between  $C_0$  to  $C_i$ . The value of similarity  $K_i$  can be determined by

$$K_{i} = \begin{cases} 1, & \text{if } D_{i} \leq Th_{1}, \\ 0, & \text{if } D_{i} \geq Th_{2}, \\ \frac{Th_{2} - D_{i}}{Th_{2} - Th_{1}}, & \text{for } Th_{1} < D_{i} < Th_{2}, \end{cases}$$
(5)

and Fig. 10 is the illustration for it. At the end, the result of pixel out is expressed as

$$PixelOut = \frac{1}{8} \sum_{i=1}^{8} \left[ K_i * C_i + (1 - K_i) * C_0 \right].$$
(6)



#### 2.5 Peak Signal to Noise Ratio

Generally, Peak Signal to Noise Ratio (PSNR) is the most regular way used in the metric of distortion level. It is defined as a ratio between possible maximum power of image intensity and the power of distorted difference in terms of logarithmic decibel scale. In our application, given an original image  $O_{M^*N}$  and processed image  $P_{M^*N}$  with dimension of  $M^*N$ , the PSNR is defined as

$$PSNR = 10\log_{10}\left(\frac{I_{\text{max}}^{2}}{MSE}\right),\tag{7}$$

where,  $I_{max}$  represents for the possible maximum power of image intensity and MSE is defined as

$$MSE = \frac{\sum_{n=1}^{N} \sum_{m=1}^{M} [P(m,n) - O(m,n)]^2}{M * N}.$$
(8)

#### 2.6 Structural Similarity

In many cases, the objective metric of PSNR and MSE could not correlate well with subjective perception. Therefore, Wang [5] developed Structural Similarity (SSIM) which is based on an assumption that HVS is highly sensitive to structural information of a scene, and is defined as

$$SSIM(O,P) = [l(O,P)]^{\alpha} \cdot [c(O,P)]^{\beta} \cdot [s(O,P)]^{\gamma},$$
(9)

where  $\alpha$ ,  $\beta$  and  $\gamma$  are the parameters to define the relative importance of the three components. The equation l(O,P), c(O,P) and s(O,P) are defined as

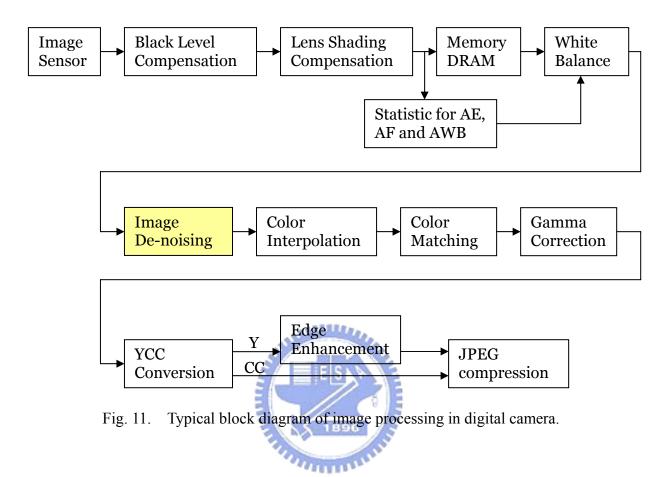
$$l(O,P) = \frac{2\mu_O \mu_P + k_1}{{\mu_O}^2 + {\mu_P}^2 + k_1},$$
(10)

$$c(O,P) = \frac{2\sigma_o \sigma_P + k_2}{\sigma_o^2 + \sigma_P^2 + k_2},$$
(11)

$$s(O, P) = \frac{\sigma_{OP} + k_3}{\sigma_O \sigma_P + k_3},$$
(12)  
re  $k_1, k_2$  and  $k_3$  are small constants.

where  $k_1$ ,  $k_2$  and  $k_3$  are small consta

## **Chapter 3**


# **Proposed Image Noise Reduction System**

The proposed denoising method would be introduced in this chapter. At the beginning, we would like to have brief description of the image processing on digital camera and the noise category we encountered in Section 3.1. Section 3.2 brings up system block diagram of proposed denoising method. At the end, Section 3.3 explains the detail algorithms.

#### 3.1 Overview of Image Processing on Digital Camera

In general, the image processing flow of digital camera is shown as Fig. 11. Once user pressed the shutter button to take an image, the scene in front of camera would be captured by an image sensor, and converted to digital information by analog front end. Normally, black level compensation must be done in front of any processing to calibrate optical black. At the second, lens shading compensation sometimes could be applied. Meanwhile, statistic information for AE, AF and AWB is calculated and stored. And then, save the raw image to memory. What we are going to handle is this raw image. The format of input image is Bayer pattern, and output format of filtered image is Bayer pattern again without any formatting change.

Succeeding to the step of image denoising, color interpolation is normally applied to reproduce the missing color components for each pixel. Since every image sensor has a unique electrical response to light, color matching block is to compensate such kind of deviation. Then, gamma correction is to compensate the non-linearity of display device. YCC conversion block is to transform RGB color domain to YCbCr color domain. Usually, the Y channel will be used to enhance the edge of image. The final step is to perform JPEG compression to output JPEG image.



As stated in Chapter 1 that we are interested in random noise. Fig. 12 is an example showing the noisy image captured by a digital camera. Gaussian noise distribution is shown in the histogram as Figs. 12 (b), (d), and (f).

Basically, not only random noise but also fix pattern noise in digital camera need to be handled. However fix pattern noise is much smaller than random noise if the camera made used of CCD sensor to capture image. Therefore, for the noise problem of digital camera, the most headache thing is dealing with Gaussian random noise.

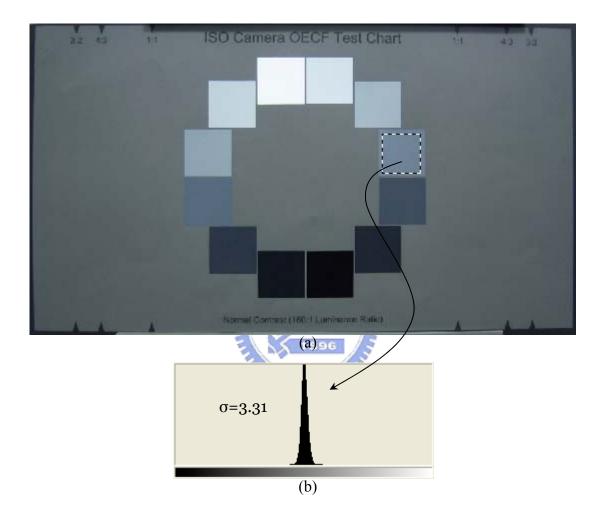
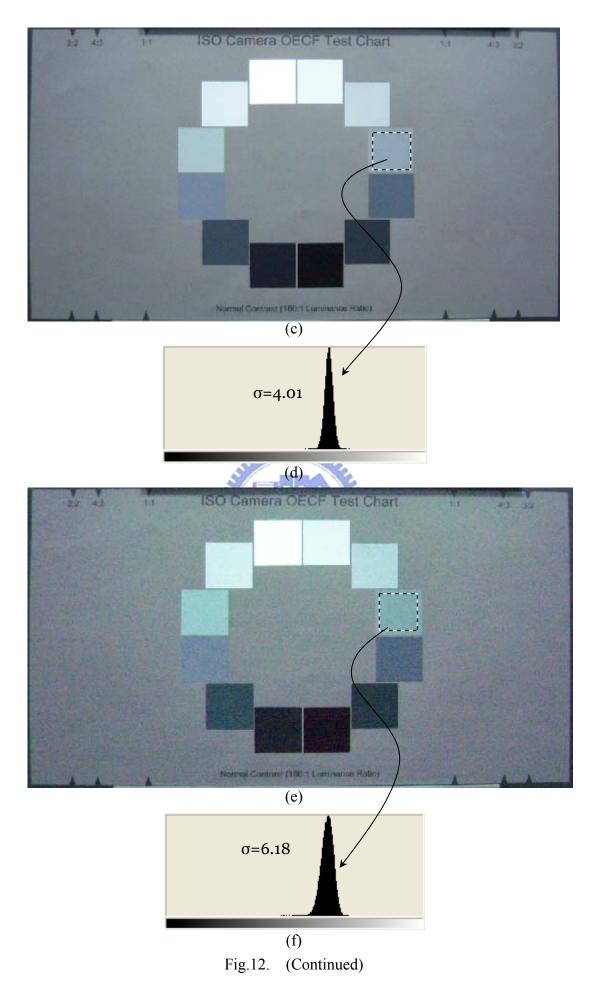




Fig. 12. Noise distribution illustration from real camera. (a), (b) Image "OECF" be taken under ISO 100 condition, and its noise distribution; (c), (d) Image "OECF" be taken under ISO 400 condition, and its noise distribution; (e), (f) Image "OECF" be taken under ISO 1600 condition, and its noise distribution.



#### 3.2 Block Diagram of Proposed Denoising Method

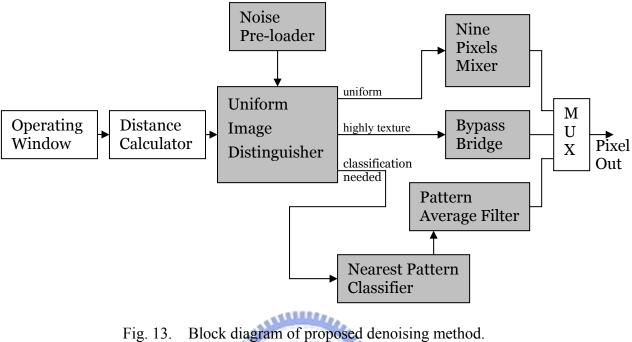



Fig. 13.

In the same way, the first step is to establish operating window. Since the 5x5 operating window as shown in Fig. 6 is very common, so that we just use it without change. Once the operating window is determined, a distance calculator is to calculate distance information based on operating window. By feeding the distance information to uniform image distinguisher, the current processed area can be judged as a uniform area, highly texture area or pattern classification needed area based on pre-loaded noise information. Once the processed area has been judged as a uniform area, the succeeding nine pixel mixer will be in charge to output final result and whereas the succeeding bypass bridge will be in charge to output final result while the processed area has been judged as a highly texture area without filtering needed. In the case of processed area is neither a uniform area nor a highly texture area, the succeeding nearest pattern classifier with pattern average filter will be used to output final result. Following Section 3.3 is going to explain the detail about how do they work.

#### 3.3 Algorithm of Proposed Denoising Method

The same as Chapter 2, the elements  $C_0 \sim C_8$  of operating window are generically represented for  $G_0 \sim G_8$ ,  $R_0 \sim R$ , and  $B_0 \sim B_8$  respectively depending on which color is the current pixel to be processed. Fig. 14 is to illustrate the two operating windows which are referred to  $C_0 \sim C_8$ .

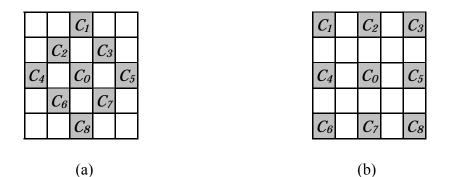



Fig. 14. Two kinds of operating windows. (a) Operating window when current processed color channel is green; (b) Operating window when current processed color channel is red or blue.

Once the operating window is established, the next step is to calculate distance. Distance calculator is going to calculate the distances  $D_i$  of each neighboring pixel to current pixel  $C_0$  defined as

$$D_i = C_i - C_0, \ i = 1, 2, \cdots, 8.$$
 (13)

Also,  $D_{\text{max}}$  and  $D_{\text{min}}$  respectively represent for maximum and minimum distances which can be found once  $D_i$  derived.

There are twelve pre-set patterns as shown in Fig. 15. Eqs. (14)-(25) are the equations to calculate the distance of those twelve pre-set patterns to  $C_0$  when current processed pixel is green.

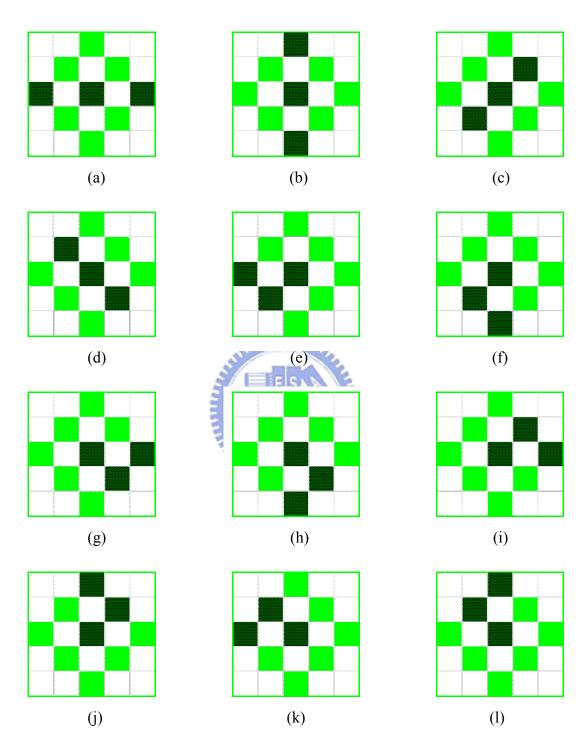



Fig. 15. Pre-set twelve patterns when current processed pixel is green. (a) Horizontal line; (b) Vertical line; (c) Rising line; (d) Falling line; (e) Left-Bottom corner; (f) Bottom-Left corner; (g) Right-Bottom corner; (h) Bottom-Right corner; (i) Right-Top corner; (j) Top-Right corner; (k) Left-Top corner; (l) Top-Left corner.

$$\begin{split} D_{HL} &= D_4 + D_5 + |C_4 - C_5|, \qquad (14) \\ D_{VL} &= D_1 + D_8 + |C_1 - C_8|, \qquad (15) \\ D_{FL} &= D_2 + D_7 + |C_2 - C_7|, \qquad (16) \\ D_{RL} &= D_3 + D_6 + |C_3 - C_6|, \qquad (17) \\ D_{LB} &= D_4 + D_6 + |C_4 - C_6|, \qquad (18) \\ D_{BL} &= D_8 + D_6 + |C_8 - C_6|, \qquad (19) \\ D_{BR} &= D_8 + D_7 + |C_8 - C_7|, \qquad (20) \\ D_{RB} &= D_5 + D_7 + |C_5 - C_7|, \qquad (21) \\ D_{RT} &= D_5 + D_3 + |C_5 - C_3|, \qquad (22) \\ D_{TR} &= D_1 + D_3 + |C_1 - C_3|, \qquad (23) \\ D_{TL} &= D_1 + D_2 + |C_1 - C_2|, \qquad (24) \\ D_{LT} &= D_4 + D_2 + |C_4 - C_2|. \qquad (25) \end{split}$$

When current pixel is red or blue, the pre-set patterns are shown in Fig. 16 and Eqs. (26)-(37) are the equations to calculate distance of those twelve pre-set patterns to  $C_0$ . The reason of having 2 sets of pattern distance equation is because the index of element is different between green channel and either red or blue channel.

$$D_{HL} = D_4 + D_5 + |C_4 - C_5|,$$

$$D_{VL} = D_2 + D_7 + |C_2 - C_7|,$$

$$D_{FL} = D_1 + D_8 + |C_1 - C_8|,$$

$$D_{RL} = D_3 + D_6 + |C_3 - C_6|,$$

$$D_{LB} = D_4 + D_6 + |C_4 - C_6|,$$

$$D_{BL} = D_7 + D_6 + |C_7 - C_6|,$$

$$D_{BR} = D_7 + D_8 + |C_7 - C_8|,$$

$$D_{RB} = D_5 + D_8 + |C_5 - C_8|,$$

$$D_{RT} = D_5 + D_3 + |C_5 - C_3|,$$

$$D_{TR} = D_2 + D_3 + |C_2 - C_3|,$$

$$D_{TL} = D_2 + D_1 + |C_2 - C_1|,$$

$$(26)$$

$$(27)$$

$$(27)$$

$$(27)$$

$$(27)$$

$$(27)$$

$$(29)$$

$$(29)$$

$$(29)$$

$$(30)$$

$$(31)$$

$$(31)$$

$$(32)$$

$$(34)$$

$$(32)$$

$$(34)$$

$$(35)$$

$$(35)$$

$$(36)$$

$$D_{LT} = D_4 + D_1 + |C_4 - C_1|.$$
(37)

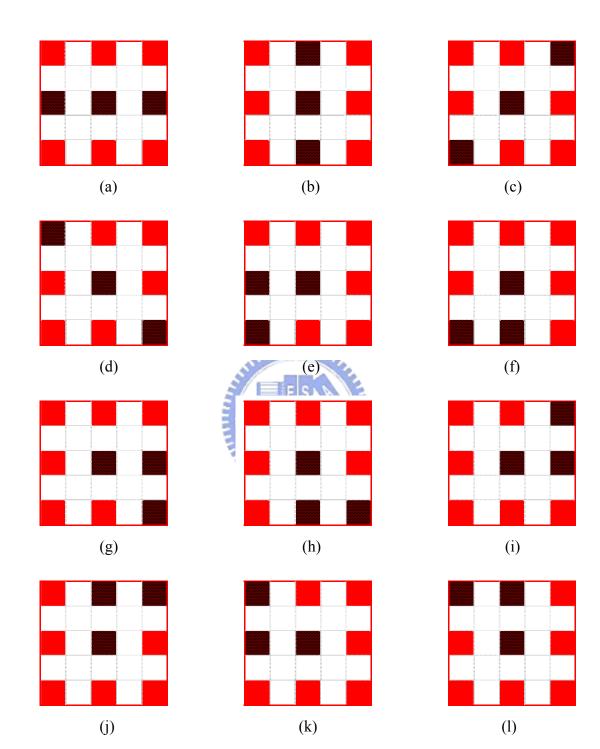



Fig. 16. Pre-set twelve patterns when current processed pixel is red or blue. (a) Horizontal line; (b) Vertical line; (c) Rising line; (d) Falling line; (e) Left-Bottom corner; (f) Bottom-Left corner; (g) Right-Bottom corner; (h) Bottom-Right corner; (i) Right-Top corner; (j) Top-Right corner; (k) Left-Top corner; (l) Top-Left corner.

In each case of pattern sets, once the distances of those patterns to  $C_0$  are derived,  $D_{\text{maxPattern}}$  and  $D_{\text{minPattern}}$  which represent for maximum and minimum distances of those patterns to  $C_0$  can be found at the same time.

In addition to the distance information, we still need camera noise characteristic which can be obtained by doing noise scanning as a curve shown in Fig. 17.

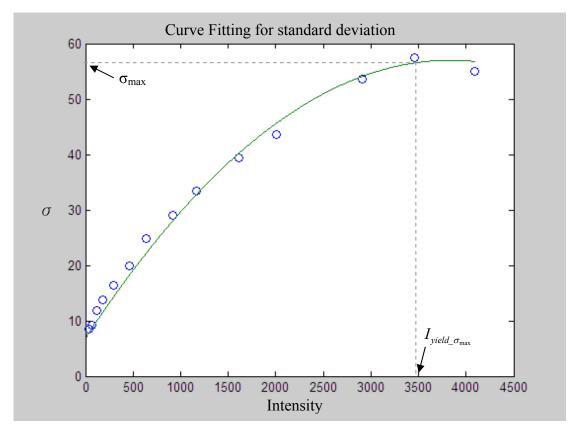



Fig. 17. Curve fitting for noise characteristic in terms of standard deviation.

Noise pre-loader is doing the job of loading pre-scanned noise level in terms of standard deviation  $\sigma$  which could be obtained by calculating on several flat areas from dark to bright as the small circles shown in Fig. 17. However we would like to use a curve fitted model which has the similar value to the reality noise instead of loading pre-scanned value. Curve fitting model expressed as

$$\sigma(C_0) = \left\{ 1 - \left[ \frac{(C_0 - I_{yield_\sigma_{max}})}{4096} \right]^2 \right\} * \sigma_{max}, \qquad (38)$$

where,  $I_{yield_{\sigma_{max}}}$  is intensity of the flat area which has the maximum standard deviation there as shown in Fig. 17. In the sense,  $\sigma_{max}$  will be different under different ISO speed. Therefore,  $\sigma_{max}$  has to be found for each ISO speed from pre-scanned noise information.

Having both distance information and camera noise characteristic information, we now can distinguish if the current area is uniform or not by using multiple of  $\sigma$  to be the threshold as

$$Th_{uniform} = m * \sigma(C_0), \tag{39}$$

where, *m* is a different constant depend on color channel, ISO speed, and also how much captured images like to be filtered. Generally, if  $D_{maxPattern}$  is less than  $Th_{uniform}$ , we would consider current area as a uniform image so that the result of output pixel is the average of  $C_0$  to  $C_8$ . On the other hand, if both  $D_{maxPattern}$  and  $D_{minPattern}$  are greater than  $Th_{uniform}$ , the current area must be a highly texture area without noise reduction needed since the spatial masking of HVS will work fine here. While the  $Th_{uniform}$  is between  $D_{maxPattern}$  and  $D_{minPattern}$ , the value of  $D_{minPattern}$  will help us to find out which pattern is the nearest pattern. By averaging the element in nearest pattern, the end result of output pixel can be derived. Eq. (40) can help us understand criteria easier.

$$PixelOut = \begin{cases} \frac{1}{9} \cdot \sum_{n=1}^{9} C_n, & \text{if } D_{\max Pattern} \leq Th_{uniform}, \\ C_0, & \text{if } D_{\max Pattern} \geq Th_{uniform} \text{ and } D_{\min Pattern} \geq Th_{uniform}, \\ \frac{1}{3} \cdot \sum_{n=1}^{3} C_n, & \text{if } D_{\max Pattern} \geq Th_{uniform} \text{ and } D_{\min Pattern} \leq Th_{uniform}. \end{cases}$$
(40)

# Chapter 4 Experiments

In this chapter, we would like to discuss the experiment results. The proposed method is implemented in matlab language. There are 148 pieces of test images downloaded from USC, and have been classified to miscellaneous, texture and aerial images. Some of them are monochrome, and some are colored. Those color images have been separated into R, G and B raw information. Hence, 254 pieces of images we have tested in total. Also, the testing images have been classified to miscellaneous, texture and aerial images. Section 4.1 is going to discuss the test results of those images. As for Bayer pattern test images, they were captured by real camera, model: K1003, from market, and will be discussed in Section 4.2.

#### 4.1 Test Results of the Images with Additive Noise:

Tables 1~6 show the noise filtering results for those images with additive Gaussian, Rayleigh, Gamma, Exponential, Uniform and Pepper-and-Salt noises. As shown in the tables, we use 3.125, 7.1875 and 18.75 instead of 5, 10 and 20 of the standard deviation to be the additive random noise. That is because the real camera K1003 we tested has a corresponding relation of ISO 100, 400 and 1600 induce standard deviation  $\sigma$ =3.125, 7.1875 and 18.75 Gaussian noise respectively. It will be more convenient to compare test results of downloaded images and Bayer pattern images by using the same standard deviation.

In order to compare the testing result easier, once the testing result is the maximum value in its own comparing block, the word will be shown in blue. For example, the proposed filter has the better SSIM and PSNR for the miscellaneous images with additive  $\sigma$ =3.125 Gaussian noise, so that 0.95522 and 38.8279 have been shown in blue in Table 1.

### Table 1.

Proposed SSIM and PSNR compare with other filters for the images with additive Gaussian

| random noise. |
|---------------|
|---------------|

| Noisy Image and Filtered<br>Image Comparing with<br>Original Image |                 | Adding Gaussian Noise<br>(σ=3.125) |            |           |           | g Gaussian<br>(σ=7.1875) |           | Adding Gaussian Noise $(\sigma = 18.75)$ |            |           |  |
|--------------------------------------------------------------------|-----------------|------------------------------------|------------|-----------|-----------|--------------------------|-----------|------------------------------------------|------------|-----------|--|
|                                                                    | Method          | SSIM                               | MSE(12bit) | PSNR(dB)  | SSIM      | MSE(12bit)               | PSNR(dB)  | SSIM                                     | MSE(12bit) | PSNR(dB)  |  |
| Average                                                            | Original Image  | 1                                  | 0          |           | 1         | 0                        |           | 1                                        | 0          |           |  |
| Performance                                                        | Noisy Image     | 0.9345215                          | 2635.3187  | 38.078523 | 0.7602482 | 13063.999                | 31.117336 | 0.4132095                                | 85827.13   | 22.940767 |  |
| of Misc                                                            | Bilinear Filter | 0.9458909                          | 8751.3833  | 35.985395 | 0.8668262 | 12459.015                | 32.961046 | 0.598386                                 | 37903.299  | 26.78399  |  |
| images                                                             | BoscoMancuso    | 0.94303                            | 3211.7889  | 37.512465 | 0.8396472 | 9438.6921                | 32.709541 | 0.7069787                                | 25403.612  | 28.47603  |  |
|                                                                    | Proposed Filte  | 0.955219                           | 2369.0048  | 38.82792  | 0.877256  | 7998.7579                | 33.55646  | 0.721585                                 | 26745.156  | 28.351483 |  |
|                                                                    | Method          | SSIM                               | MSE(12bit) | PSNR(dB)  | SSIM      | MSE(12bit)               | PSNR(dB)  | SSIM                                     | MSE(12bit) | PSNR(dB)  |  |
| Average                                                            | Original Image  | 1                                  | 0          |           | SIN       | 0                        |           | 1                                        | 0          |           |  |
| Performance                                                        | Noisy Image     | 0.977307                           | 2692.0342  | 37.94795  | 0.9054758 | 13256.236                | 31.02415  | 0.68008                                  | 86799.959  | 22.86681  |  |
| of Texture                                                         | Bilinear Filter | 0.9511116                          | 19645.974  | 32.04139  | 0.921281  | 23277.948                | 30.299642 | 0.789722                                 | 48656.289  | 25.76058  |  |
| images                                                             | BoscoMancuso    | 0.96658                            | 7787.917   | 34.328642 | 0.9108355 | 20131.951                | 30.055265 | 0.7844042                                | 65511.752  | 25.445342 |  |
|                                                                    | Proposed Filter | 0.9710045                          | 3577.3602  | 36.745723 | 0.9145903 | 14094.103                | 30.941432 | 0.7851884                                | 67157.284  | 25.322661 |  |
|                                                                    | Method          | SSIM                               | MSE(12bit) | PSNR(dB)  | SSIM      | MSE(12bit)               | PSNR(dB)  | SSIM                                     | MSE(12bit) | PSNR(dB)  |  |
| Average                                                            | Original Image  | 1                                  | 0          |           | 1         | 0                        |           | 1                                        | 0          |           |  |
| Performance                                                        | Noisy Image     |                                    | 2735.3849  | 37.87538  | 0.7844696 | 13493.13                 | 30.944135 | 0.4271327                                | 90031.875  | 22.701765 |  |
| of Aerial                                                          | Bilinear Filter | 0.9299304                          | 6294.7093  | 35.401446 | 0.859433  | 9859.6851                | 32.759052 | 0.6002676                                | 35215.982  | 26.819875 |  |
| images                                                             | BoscoMancuso    | 0.9407586                          | 4001.8892  | 36.596138 | 0.8356556 | 11066.248                | 32.068922 | 0.6667525                                | 29015.028  | 28.068872 |  |
| _                                                                  | Proposed Filte  | 0.9442624                          | 3093.7263  | 37.452481 | 0.8583594 | 9603.6531                | 32.76298  | 0.669239                                 | 30138.787  | 28.11235  |  |
|                                                                    | Method          | SSIM                               | MSE(12bit) | PSNR(dB)  | SSIM      | MSE(12bit)               | PSNR(dB)  | SSIM                                     | MSE(12bit) | PSNR(dB)  |  |
| Average                                                            | Original Image  | 1                                  | 0          |           | 1         | 0                        |           | 1                                        | 0          |           |  |
| Performance                                                        | Noisy Image     | 0.9520319                          | 2687.5793  | 37.96728  | 0.8167312 | 13271.122                | 31.028542 | 0.5068074                                | 87552.988  | 22.836447 |  |
| for above 3                                                        | Bilinear Filter |                                    |            |           | 0.8825132 |                          |           |                                          | 40591.856  |           |  |
| categories                                                         | BoscoMancuso    |                                    | 5000.5317  | 36.145748 | 0.8620461 |                          |           | 0.7193785                                | 39976.797  | 27.33008  |  |
| Ū                                                                  | Proposed Filte  |                                    |            |           |           |                          |           |                                          |            |           |  |

## Table 2.

Proposed SSIM and PSNR compare with other filters for the images with additive Rayleigh

# random noise.

| Noisy Image and Filtered<br>Image Comparing with<br>Original Image |                 | Adding Rayleigh Noise $(\sigma = 3.125)$ |            |           | Adding Rayleigh Noise $(\sigma = 7.1875)$ |                          |           | Adding Rayleigh Noise $(\sigma = 18.75)$ |            |           |  |
|--------------------------------------------------------------------|-----------------|------------------------------------------|------------|-----------|-------------------------------------------|--------------------------|-----------|------------------------------------------|------------|-----------|--|
|                                                                    | Method          | SSIM                                     | MSE(12bit) | PSNR(dB)  | SSIM                                      | MSE(12bit)               | PSNR(dB)  | SSIM                                     | MSE(12bit) | PSNR(dB)  |  |
| Average                                                            | Original Image  | 1                                        | 0          |           | 1                                         | 0                        |           | 1                                        | 0          |           |  |
| Performance                                                        | Noisy Image     | 0.9524053                                | 2108.0467  | 39.203924 | 0.8195329                                 | 10084.949                | 32.405071 | 0.5185017                                | 64174.225  | 24.362159 |  |
| of Misc                                                            | Bilinear Filter | 0.9544726                                | 8332.0962  | 36.322186 | 0.8977145                                 | 11236.724                | 33.56601  | 0.6872944                                | 32053.961  | 27.608477 |  |
| images                                                             | BoscoMancuso    | 0.9553635                                | 2893.3807  | 38.059051 | 0.8745135                                 | 8262.0186                | 33.37031  | 0.7635932                                | 23782.496  | 28.78649  |  |
|                                                                    | Proposed Filte  | 0.967256                                 | 2026.9335  | 39.56338  | 0.914593                                  | 6627.2968                | 34.40967  | 0.776909                                 | 25925.48   | 28.528432 |  |
|                                                                    | Method          | SSIM                                     | MSE(12bit) | PSNR(dB)  | SSIM                                      | MSE(12bit)               | PSNR(dB)  | SSIM                                     | MSE(12bit) | PSNR(dB)  |  |
| Average                                                            | Original Image  | 1                                        | 0          |           |                                           | 0 😒                      |           | 1                                        | 0          |           |  |
| Performance                                                        | Noisy Image     | 0.982769                                 | 2329.5273  | 38.61549  | 0.9254763                                 | 11027.233                | 31.86248  | 0.7323481                                | 69047.683  | 23.899324 |  |
| of Texture                                                         | Bilinear Filter | 0.9558581                                | 18219.152  | 32.364742 | 0.935453                                  | 19 <mark>82</mark> 7.575 | 30.958405 | 0.83327                                  | 37271.335  | 26.81695  |  |
| images                                                             | BoscoMancuso    | 0.9713345                                | 7188.3697  | 34.694235 | 0.9257176                                 | 17597.343                | 30.623742 | 0.8211497                                | 53774.549  | 26.181915 |  |
|                                                                    | Proposed Filte  | 0.9752206                                | 3273.8703  | 37.157302 | 0.9271713                                 | 12606.569                | 31.447376 | 0.8156782                                | 62887.65   | 25.727853 |  |
|                                                                    | Method          | SSIM                                     | MSE(12bit) | PSNR(dB)  | SSIM                                      | MSE(12bit)               | PSNR(dB)  | SSIM                                     | MSE(12bit) | PSNR(dB)  |  |
| Average                                                            | Original Image  | 1                                        | 0          |           | 1                                         | 0                        |           | 1                                        | 0          |           |  |
| Performance                                                        | Noisy Image     | 0.952311                                 | 2392.2183  | 38.49954  | 0.8129201                                 | 11556.016                | 31.661924 | 0.481988                                 | 75853.428  | 23.490104 |  |
| of Aerial                                                          | Bilinear Filter | 0.934878                                 | 5985.4082  | 35.599208 | 0.876497                                  | 8877.6263                | 33.18623  | 0.6493042                                | 30406.011  | 27.458247 |  |
| images                                                             | BoscoMancuso    | 0.9468747                                | 3707.5422  | 36.90747  | 0.8533796                                 | 9989.9041                | 32.478467 | 0.7012338                                | 26447.659  | 28.45958  |  |
|                                                                    | Proposed Filte  | 0.9496021                                | 2841.6673  | 37.817415 | 0.873894                                  | 8619.5344                | 33.182683 | 0.702278                                 | 27782.268  | 28.452171 |  |
|                                                                    | Method          | SSIM                                     | MSE(12bit) | PSNR(dB)  | SSIM                                      | MSE(12bit)               | PSNR(dB)  | SSIM                                     | MSE(12bit) | PSNR(dB)  |  |
| Average                                                            | Original Image  | 1                                        | 0          |           | 1                                         | 0                        |           | 1                                        | 0          |           |  |
| Performance                                                        | Noisy Image     | 0.962495                                 | 2276.5974  | 38.77298  | 0.8526431                                 | 10889.399                | 31.976493 | 0.5776126                                | 69691.779  | 23.917196 |  |
| for above 3                                                        | Bilinear Filter | 0.9484029                                | 10845.552  | 34.762045 | 0.9032214                                 | 13313.975                | 32.570213 | 0.7232894                                | 33243.769  | 27.294557 |  |
| categories                                                         | BoscoMancuso    | 0.9578576                                | 4596.4309  | 36.553585 | 0.8845369                                 | 11949.755                | 32.157506 | 0.7619922                                | 34668.235  | 27.80933  |  |
|                                                                    | Proposed Filte  | 0.964026                                 | 2714.157   | 38.179364 | 0.90522                                   | 9284.4666                | 33.01324  | 0.764955                                 | 38865.133  | 27.569485 |  |

## Table 3.

## Proposed SSIM and PSNR compare with other filters for the images with additive Gamma

### random noise.

| Noisy Image and Filtered<br>Image Comparing with<br>Original Image |                 | Adding Gamma Noise<br>(σ=3.125) |            |           |           | ng Gamma ]<br>(σ=7.1875) |           | Adding Gamma Noise<br>(σ=18.75) |            |           |  |
|--------------------------------------------------------------------|-----------------|---------------------------------|------------|-----------|-----------|--------------------------|-----------|---------------------------------|------------|-----------|--|
|                                                                    | Method          | SSIM                            | MSE(12bit) | PSNR(dB)  | SSIM      | MSE(12bit)               | PSNR(dB)  | SSIM                            | MSE(12bit) | PSNR(dB)  |  |
| Average                                                            | Original Image  | 1                               | 0          |           | 1         | 0                        |           | 1                               | 0          |           |  |
| Performance                                                        | Noisy Image     | 0.9468771                       | 3923.0955  | 36.601812 | 0.8055776 | 18585.55                 | 29.843401 | 0.5023506                       | 108338.14  | 22.119836 |  |
| of Misc                                                            | Bilinear Filter | 0.9526165                       | 9373.675   | 35.066067 | 0.8889569 | 17880.457                | 30.807949 | 0.6684268                       | 71676.381  | 24.061314 |  |
| images                                                             | BoscoMancuso    | 0.9517971                       | 4601.662   | 36.09254  | 0.8661901 | 15798.758                | 30.695568 | 0.7468097                       | 62465.894  | 24.86763  |  |
| _                                                                  | Proposed Filte  | 0.962456                        | 3819.0176  | 36.86021  | 0.901636  | 15091.346                | 31.05836  | 0.750736                        | 71338.921  | 24.371313 |  |
|                                                                    | Method          | SSIM                            | MSE(12bit) | PSNR(dB)  | SSIM      | MSE(12bit)               | PSNR(dB)  | SSIM                            | MSE(12bit) | PSNR(dB)  |  |
| Average                                                            | Original Image  | 1                               | 0          |           |           | 0                        |           | 1                               | 0          |           |  |
| Performance                                                        | Noisy Image     | 0.980834                        | 4048.3634  | 36.45442  | 0.9202432 | 18567.251                | 29.779769 | 0.7246066                       | 104345.14  | 22.168423 |  |
| 2-                                                                 | Bilinear Filter | 0.9587397                       | 16716.207  | 32.455294 | 0.939066  | 19828.859                | 30.53282  | 0.834452                        | 53357.365  | 25.34136  |  |
| images                                                             | BoscoMancuso    | 0.971281                        | 7982.279   | 34.189189 | 0.9263285 | 21341.208                | 29.764013 | 0.8317934                       | 67193.132  | 25.040787 |  |
|                                                                    | Proposed Filte  | 0.9739903                       |            |           |           | 20166.031                |           |                                 |            |           |  |
|                                                                    | Method          | SSIM                            | MSE(12bit) | PSNR(dB)  | SSIM      | MSE(12bit)               | PSNR(dB)  | SSIM                            | MSE(12bit) | PSNR(dB)  |  |
| Average                                                            | Original Image  | 1                               | 0          |           | 1         | 0                        |           | 1                               | 0          |           |  |
| Performance                                                        | Noisy Image     | 0.951178                        | 3053.7849  | 37.50087  | 0.810479  | 14725.317                | 30.660279 | 0.4845545                       | 94198.712  | 22.559213 |  |
|                                                                    | Bilinear Filter | 0.937584                        | 6051.2398  | 35.561203 | 0.880459  | 10539.637                | 32.63553  | 0.6566235                       | 44080.417  | 26.146491 |  |
| images                                                             | BoscoMancuso    | 0.9476738                       | 4107.58    | 36.572273 | 0.8571346 | 12033.662                | 31.883421 | 0.714269                        | 38748.237  | 27.29767  |  |
| C                                                                  | Proposed Filte  | 0.949818                        | 3454.768   | 37.094764 | 0.8747839 | 11548.832                | 32.264883 | 0.7111025                       | 42946.461  | 27.181801 |  |
|                                                                    | Method          | SSIM                            | MSE(12bit) | PSNR(dB)  | SSIM      | MSE(12bit)               | PSNR(dB)  | SSIM                            | MSE(12bit) | PSNR(dB)  |  |
| Average                                                            | Original Image  |                                 | 0          |           | 1         | 0                        |           | 1                               | 0          |           |  |
| Performance                                                        | Noisy Image     |                                 | 3675.0813  | 36.85237  | 0.8454333 | 17292.706                | 30.094483 | 0.5705039                       | 102294     | 22.282491 |  |
| for above 3                                                        | Bilinear Filter |                                 |            |           | 0.902827  |                          |           | 0.7198342                       |            |           |  |
|                                                                    | BoscoMancuso    |                                 |            |           |           |                          |           |                                 | 56135.754  |           |  |
|                                                                    | Proposed Filte  |                                 |            |           |           |                          |           | 0.7579495                       |            |           |  |

## Table 4.

### Proposed SSIM and PSNR compare with other filters for the images with additive

| Noisy Image and Filtered<br>Image Comparing with<br>Original Image |                 | Adding Exponential Noise $(\sigma = 3.125)$ |            |           | _         | Exponential $(\sigma = 7.1875)$ |           | Adding Exponential Noise $(\sigma = 18.75)$ |            |           |
|--------------------------------------------------------------------|-----------------|---------------------------------------------|------------|-----------|-----------|---------------------------------|-----------|---------------------------------------------|------------|-----------|
|                                                                    | Method          | SSIM                                        | MSE(12bit) | PSNR(dB)  | SSIM      | MSE(12bit)                      | PSNR(dB)  | SSIM                                        | MSE(12bit) | PSNR(dB)  |
| Average                                                            | Original Image  | 1                                           | 0          |           | 1         | 0                               |           | 1                                           | 0          |           |
| Performance                                                        | Noisy Image     | 0.9538932                                   | 1916.0539  | 39.703041 | 0.8278349 | 9171.7644                       | 32.892586 | 0.5404806                                   | 55881.464  | 25.003254 |
| of Misc                                                            | Bilinear Filter | 0.9542979                                   | 8318.3242  | 36.413495 | 0.8999395 | 10783.027                       | 33.927708 | 0.7056303                                   | 27208.719  | 28.445277 |
| images                                                             | BoscoMancuso    | 0.9554814                                   | 2767.8087  | 38.328801 | 0.8711072 | 7869.327                        | 33.648945 | 0.7638481                                   | 21312.695  | 29.324212 |
|                                                                    | Proposed Filte  | 0.964009                                    | 1934.0347  | 39.82872  | 0.903121  | 6360.8482                       | 34.60461  | 0.78714                                     | 21304.67   | 29.45893  |
|                                                                    | Method          | SSIM                                        | MSE(12bit) | PSNR(dB)  | SSIM      | MSE(12bit)                      | PSNR(dB)  | SSIM                                        | MSE(12bit) | PSNR(dB)  |
| Average                                                            | Original Image  | 1                                           | 0          |           |           | 0                               |           | 1                                           | 0          |           |
| Performance                                                        | Noisy Image     | 0.983237                                    | 2137.9798  | 39.01697  | 0.9282737 | 10101.145                       | 32.27136  | 0.7469824                                   | 60810.245  | 24.473434 |
| of Texture                                                         | Bilinear Filter | 0.95507                                     | 18765.966  | 32.283742 | 0.934426  | 20676.762                       | 30.896156 | 0.838341                                    | 36237.881  | 27.04295  |
| images                                                             | BoscoMancuso    | 0.971111                                    | 7228.5954  | 34.70439  | 0.9233719 | 17785.997                       | 30.61     | 0.8138668                                   | 55504.168  | 26.107744 |
|                                                                    | Proposed Filte  | 0.9748681                                   | 3110.5723  | 37.401785 | 0.9235726 | 12031.845                       | 31.592684 | 0.815686                                    | 58407.968  | 26.017606 |
|                                                                    | Method          | SSIM                                        | MSE(12bit) | PSNR(dB)  | SSIM      | MSE(12bit)                      | PSNR(dB)  | SSIM                                        | MSE(12bit) | PSNR(dB)  |
| Average                                                            | Original Image  | 1                                           | 0          |           | 1         | 0                               |           | 1                                           | 0          |           |
| Performance                                                        | Noisy Image     | 0.952762                                    | 2328.7978  | 38.64061  | 0.8182523 | 11233.554                       | 31.806479 | 0.5019272                                   | 69021.956  | 23.901791 |
| of Aerial                                                          | Bilinear Filter | 0.9340914                                   | 6044.9248  | 35.569447 | 0.876264  | 8876.268                        | 33.19371  | 0.663491                                    | 27849.38   | 27.845443 |
| images                                                             | BoscoMancuso    | 0.9458779                                   | 3711.0621  | 36.897107 | 0.8462719 | 10219.802                       | 32.352077 | 0.6965737                                   | 26525.128  | 28.454309 |
|                                                                    | Proposed Filte  | 0.9458406                                   | 2879.239   | 37.741935 | 0.8583505 | 9119.3632                       | 32.819789 | 0.705502                                    | 26401.613  | 28.69633  |
|                                                                    | Method          | SSIM                                        | MSE(12bit) | PSNR(dB)  | SSIM      | MSE(12bit)                      | PSNR(dB)  | SSIM                                        | MSE(12bit) | PSNR(dB)  |
| Average                                                            | Original Image  | 1                                           | 0          |           | 1         | 0                               |           | 1                                           | 0          |           |
| Performance                                                        | Noisy Image     |                                             | 2127.6105  | 39.12021  | 0.8581203 | 10168.821                       | 32.323475 | 0.5964634                                   | 61904.555  | 24.459493 |
| for above 3                                                        | Bilinear Filter | 0.9478198                                   | 11043.072  | 34.755561 | 0.903543  | 13445.352                       | 32.672525 | 0.7358207                                   | 30431.994  | 27.77789  |
| categories                                                         | BoscoMancuso    | 0.9574901                                   | 4569.1554  | 36.643433 | 0.8802503 | 11958.375                       | 32.203674 | 0.7580962                                   | 34447.33   | 27.962088 |
|                                                                    | Proposed Filte  | 0.9615725                                   | 2641.282   | 38.324145 | 0.8950146 | 9170.6856                       | 33.0057   | 0.769443                                    | 35371.417  | 28.05762  |

## Exponential random noise.

## Table 5.

Proposed SSIM and PSNR compare with other filters for the images with additive Uniform

| random | noise.  |
|--------|---------|
| ranaom | 110100. |

| Noisy Image and Filtered<br>Image Comparing with<br>Original Image |                 | Adding Uniform Noise<br>(σ=3.125) |            |           | Adding Uniform Noise $(\sigma = 7.1875)$ |            |           | Adding Uniform Noise $(\sigma = 18.75)$ |            |           |
|--------------------------------------------------------------------|-----------------|-----------------------------------|------------|-----------|------------------------------------------|------------|-----------|-----------------------------------------|------------|-----------|
|                                                                    | Method          | SSIM                              | MSE(12bit) | PSNR(dB)  | SSIM                                     | MSE(12bit) | PSNR(dB)  | SSIM                                    | MSE(12bit) | PSNR(dB)  |
| Average                                                            | Original Image  | 1                                 | 0          |           | 1                                        | 0          |           | 1                                       | 0          |           |
| Performance                                                        | Noisy Image     | 0.9466853                         | 3924.5979  | 36.604222 | 0.8036968                                | 18604.176  | 29.836767 | 0.4964588                               | 109637.05  | 22.066244 |
| of Misc                                                            | Bilinear Filter | 0.9526122                         | 9375.4442  | 35.066494 | 0.8884286                                | 17887.981  | 30.80699  | 0.6631888                               | 72237.356  | 24.021099 |
| images                                                             | BoscoMancuso    | 0.950285                          | 4613.0272  | 36.065946 | 0.8594214                                | 15968.515  | 30.635285 | 0.7373354                               | 63346.948  | 24.77497  |
|                                                                    | Proposed Filte  | 0.963068                          | 3811.8075  | 36.87933  | 0.90416                                  | 15010.803  | 31.07655  | 0.748584                                | 71594.946  | 24.33555  |
|                                                                    | Method          | SSIM                              | MSE(12bit) | PSNR(dB)  | SSIM                                     | MSE(12bit) | PSNR(dB)  | SSIM                                    | MSE(12bit  | PSNR(dB)  |
| Average                                                            | Original Image  | 1                                 | 0          |           |                                          | 0 😒        |           | 1                                       | 0          |           |
| Performance                                                        | Noisy Image     | 0.980778                          | 4049.9905  | 36.45284  | 0.9196255                                | 18622.458  | 29.766729 | 0.7200411                               | 105759.46  | 22.105561 |
| of Texture                                                         | Bilinear Filter | 0.9587221                         | 16716.134  | 32.455076 | 0.938936                                 | 19847.905  | 30.52765  | 0.831692                                | 53892.557  | 25.28707  |
| images                                                             | BoscoMancuso    | 0.9713056                         | 7983.0211  | 34.189932 | 0.9267439                                | 21345.365  | 29.766276 | 0.8291931                               | 67717.684  | 24.973077 |
|                                                                    | Proposed Filte  | 0.9740785                         | 4979.8103  | 35.475321 | 0.9247218                                | 20171.318  | 29.727771 | 0.8110182                               | 100198.21  | 23.91431  |
|                                                                    | Method          | SSIM                              | MSE(12bit) | PSNR(dB)  | SSIM                                     | MSE(12bit) | PSNR(dB)  | SSIM                                    | MSE(12bit  | PSNR(dB)  |
| Average                                                            | Original Image  | 1                                 | 0          |           | 1                                        | 0          |           | 1                                       | 0          |           |
| Performance                                                        | Noisy Image     | 0.951126                          | 3050.9628  | 37.5055   | 0.8089396                                | 14727.829  | 30.659513 | 0.4789032                               | 95197.107  | 22.513315 |
| of Aerial                                                          | Bilinear Filter | 0.9375922                         | 6051.0579  | 35.563036 | 0.880124                                 | 10542.482  | 32.63464  | 0.6525323                               | 44444.054  | 26.105319 |
| images                                                             | BoscoMancuso    | 0.9474257                         | 4111.8302  | 36.562772 | 0.8545456                                | 12118.549  | 31.832587 | 0.7059513                               | 39464.875  | 27.148317 |
|                                                                    | Proposed Filte  | 0.9504938                         | 3440.4087  | 37.120414 | 0.8776947                                | 11453.156  | 32.33459  | 0.709854                                | 43117.236  | 27.15497  |
|                                                                    | Method          | SSIM                              | MSE(12bit) | PSNR(dB)  | SSIM                                     | MSE(12bit) | PSNR(dB)  | SSIM                                    | MSE(12bit  | PSNR(dB)  |
| Average                                                            | Original Image  | 1                                 | 0          |           | 1                                        | 0          |           | 1                                       | 0          |           |
| Performance                                                        | Noisy Image     | 0.9595298                         | 3675.1837  | 36.85419  | 0.8440873                                | 17318.155  | 30.08767  | 0.5651344                               | 103531.2   | 22.228373 |
|                                                                    | Bilinear Filter |                                   |            |           |                                          |            |           |                                         |            |           |
|                                                                    | BoscoMancuso    |                                   |            |           |                                          |            |           |                                         |            |           |
|                                                                    | Proposed Filte  |                                   |            |           |                                          |            |           |                                         |            |           |

## Table 6.

Proposed SSIM and PSNR compare with other filters for the images with additive

| Image Cor   | e and Filtered<br>nparing with<br>al Image | ISO       | epper-and-S<br>100 and ISC<br>andle singul | ) 400     | Adding Pepper-and-Salt Noise<br>ISO 1600<br>(handle singular point) |            |           |  |
|-------------|--------------------------------------------|-----------|--------------------------------------------|-----------|---------------------------------------------------------------------|------------|-----------|--|
|             | Method                                     | SSIM      | MSE(12bit)                                 | PSNR(dB)  | SSIM                                                                | MSE(12bit) | PSNR(dB)  |  |
| Average     | Original Image                             | 1         | 0                                          |           | 1                                                                   | 0          |           |  |
| Performance | Noisy Image                                | 0.6280432 | 106620.26                                  | 22.010358 | 0.6280432                                                           | 106620.26  | 22.010358 |  |
| of Misc     | Bilinear Filter                            | 0.71665   | 44444.204                                  | 26.06897  | 0.7166504                                                           | 44444.204  | 26.068965 |  |
| images      | BoscoMancuso                               | 0.7002945 | 59926.768                                  | 24.5426   | 0.7002945                                                           | 59926.768  | 24.5426   |  |
|             | Proposed Filte                             | 0.6122379 | 107459.05                                  | 21.974556 | 0.937776                                                            | 15220.672  | 30.73973  |  |
|             | Method                                     | SSIM      | MSE(12bit)                                 | PSNR(dB)  | SSIM                                                                | MSE(12bit) | PSNR(dB)  |  |
| Average     | Original Image                             |           | 0                                          |           | 1                                                                   | 0          |           |  |
| Performance | Noisy Image                                | 0.7812048 | 103674.45                                  | 22.1105   | 0.7812048                                                           | 103674.45  | 22.1105   |  |
| of Texture  | Bilinear Filter                            | 0.82964   | 54786.666                                  | 25.25988  | 0.8296402                                                           | 54786.666  | 25.259881 |  |
| images      | BoscoMancuso                               | 0.8118458 | 70802.997                                  | 23.869474 | 0.8118458                                                           | 70802.997  | 23.869474 |  |
|             | Proposed Filte                             | 0.7686513 | 105006.78                                  | 22.053915 | 0.948625                                                            | 23049.538  | 29.30574  |  |
|             | Method                                     | SSIM      | MSE(12bit)                                 | PSNR(dB)  | SSIM                                                                | MSE(12bit) | PSNR(dB)  |  |
| Average     | Original Image                             | 1         | 0                                          |           | 1                                                                   | 0          |           |  |
| Performance | Noisy Image                                | 0.6385427 | 98627.618                                  | 22.32257  | 0.6385427                                                           | 98627.618  | 22.32257  |  |
| of Aerial   | Bilinear Filter                            | 0.71295   | 38241.843                                  | 26.46561  | 0.7129502                                                           | 38241.843  | 26.46561  |  |
| images      | BoscoMancuso                               | 0.6858612 | 58501.829                                  | 24.594154 | 0.6858612                                                           | 58501.829  | 24.594154 |  |
|             | Proposed Filte                             | 0.6100298 | 100111.22                                  | 22.256986 | 0.915285                                                            | 13365.4    | 31.08356  |  |
|             | Method                                     | SSIM      | MSE(12bit)                                 | PSNR(dB)  | SSIM                                                                | MSE(12bit) | PSNR(dB)  |  |
| Average     | Original Image                             | 1         | 0                                          |           | 1                                                                   | 0          |           |  |
| Performance | Noisy Image                                | 0.6825969 | 102974.11                                  | 22.147809 | 0.6825969                                                           | 102974.11  | 22.147809 |  |
| for above 3 | Bilinear Filter                            | 0.75308   | 45824.237                                  | 25.93149  | 0.7530802                                                           | 45824.237  | 25.931485 |  |
| categories  | BoscoMancuso                               | 0.7326672 | 63077.198                                  | 24.335409 | 0.7326672                                                           | 63077.198  | 24.335409 |  |
|             | Proposed Filte                             | 0.6636397 | 104192.35                                  | 22.095152 | 0.933895                                                            | 17211.87   | 30.37634  |  |

Pepper-and-Salt random noise.

In general, the proposed filter has better SSIM and PSNR than Bosco-and-Mancuso filter as the test results shown in the row named "Average Performance for above 3 Categories" in Tables 1~6. However, there are some special cases such as noisy images have better SSIM and PSNR than filtered images as the results shown in the row named "Average Performance of Texture Images" and "Average Performance of Aerial Images" in Tables 1~5, bilinear filter has better SSIM than proposed filter as the results shown in the row named "Average Performance of Texture Images" and "Average Performance of Aerial Images" in Tables 1~5, proposed filter has worse PSNR even if it has better SSIM than others as the results shown in the row named "Average Performance of Misc Images" in Tables 1, 2, 3, and 5, proposed filter has worst SSIM on texture images under high Gamma and Uniform noise condition as the results shown in the row named "Average Performance of Texture Images" in Tables 3 and 5, proposed filter is not able to filter out Pepper-and-Salt noise under ISO 100 and 400 conditions as the results shown in the column named "Adding Pepper-and-Salt Noise for ISO 100 and ISO 400 (didn't handle singular point)" in Table 6, and proposed filter performs not badly in each kind of test patterns as shown in Tables 9~14. The phenomena mentioned as above have been brought up for case study as following:

Case 1: Noisy images have better SSIM and PSNR than filtered images:

The reason of noisy images have better SSIM and PSNR than filtered images is because original images themselves have had much random noise scattered on themselves already without additive noise. We have chosen a worst case for an example as shown in Fig. 18. The original image "1.3.08-Water" is shown in Fig. 18(a) and its 400% enlarged sub-image is shown in Fig. 18(b). By calculating a block in the sub-image, that  $\sigma$ =7 random noise at flat area has been found as shown in Fig. 18(b). No wonder that Fig. 18(c) which is the image "1.3.08-Water" with additive  $\sigma$ =3.125 Gaussian noise looks very similar to the original image by our eyes' perception. As for filtered images shown in Figs. 18(d)-(f), not only additive

noise have been filtered, but also a lot of original images have been handled as noisy signals, so that filtered images are not so similar as noisy images to the original images. In the category of aerial images, it has the same situation as texture images so that noisy images have better SSIM and PSNR than filtered images. Fig. 19 is another example which is an aerial image to explain this phenomenon, and the situation of this image is totally the same as Fig. 18. So it could be understood by consulting the above analysis for this example.

#### Case 2: Bilinear filter has better SSIM than proposed filter:

In our evaluation, the bilinear filter is implemented as

$$PixelOut = \frac{\frac{(C_2 + C_7 + C_4 + C_5)}{4} + C_0}{2}.$$
(41)

Therefore the filtering strength of bilinear filter is less than Bosco-and-Mancuso filter and proposed filter, when Bosco and Mancuso's algorithm and proposed algorithm handle the current image block as a uniform area.

The worst case happen on this case is still the image named "1.3.08-Water". So we use  $2^{nd}$  worst case, image "1.5.06-BrickWall", for an example as shown in Fig. 20. The original image is shown in Fig. 20(a) and its 400% enlarged sub-image is shown in Fig. 20(b). It's not difficult to observe that the original image is very noisy already. The standard deviation of each brick is around 6.5. Fig. 20(c) shows the image "1.5.06-BrickWall" with additional  $\sigma$ =7.1875 Gaussian noise. Also, the filtered images have been shown in Figs. 20(d)-(f). From subjective observation, we would say, the image filtered by bilinear filter as shown in Fig. 20(d) has the highest similarity to the original images, the same as objective metric. It's a reasonable result since original image is very noisy already, so that denoising filter with less filtering strength will output better SSIM images.

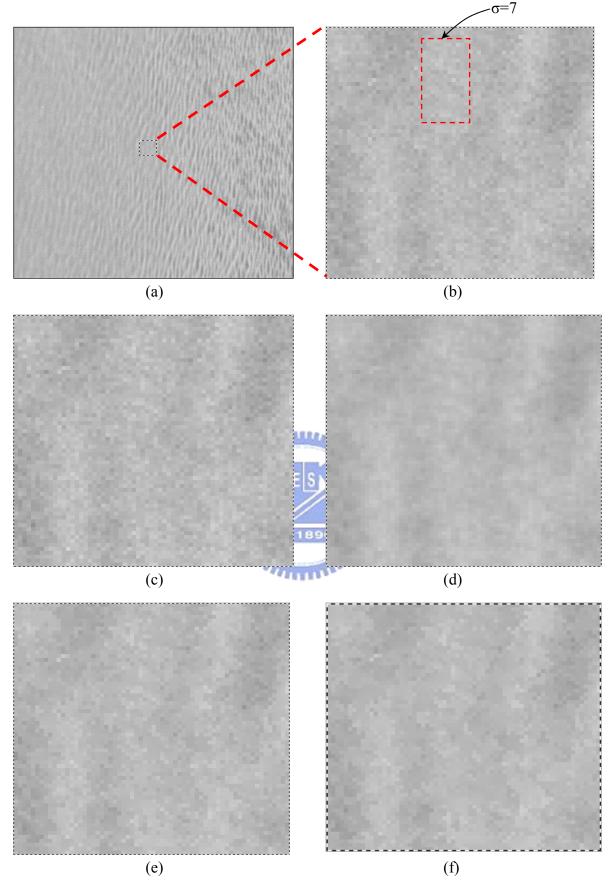



Fig. 18. An example illustrated that noisy texture image has better SSIM and PSNR than filtered images. (a) Original image "1.3.08-Water"; (b) 400% enlarged; (c) Adding  $\sigma$ =3.125 Gaussian noise; (d) Filtered by Bilinear filter; (e) Filtered by Bosco-and-Mancuso filter; (f) Filtered by Proposed filter.

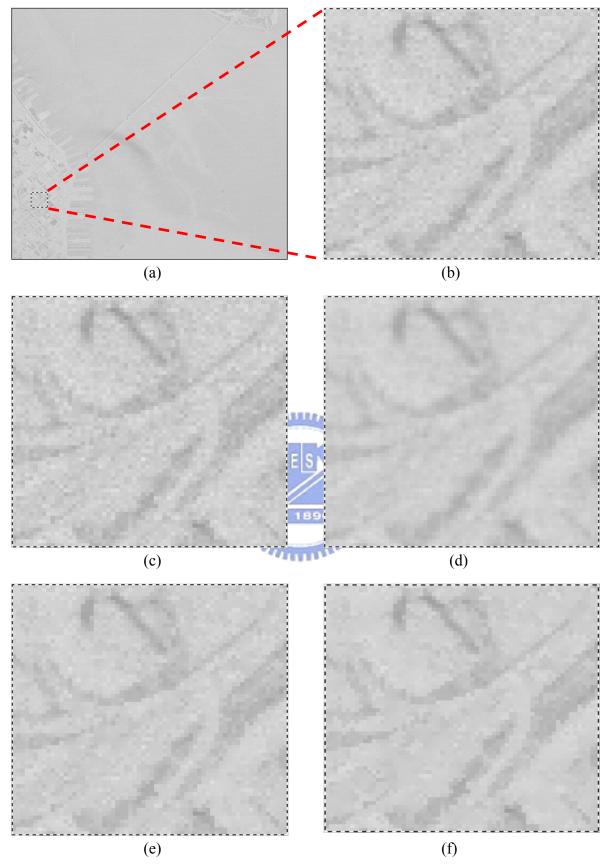



Fig. 19. Another example illustrated that noisy aerial image has better SSIM and PSNR than filtered images. (a) Original image "2.2.06-SanFran-cisco(BayBridge)B"; (b) 400% enlarged; (c) Adding  $\sigma$ =3.125 Gaussian noise; (d) Filtered by Bilinear filter; (e) Filtered by Bosco-and-Mancuso filter; (f) Filtered by proposed filter.

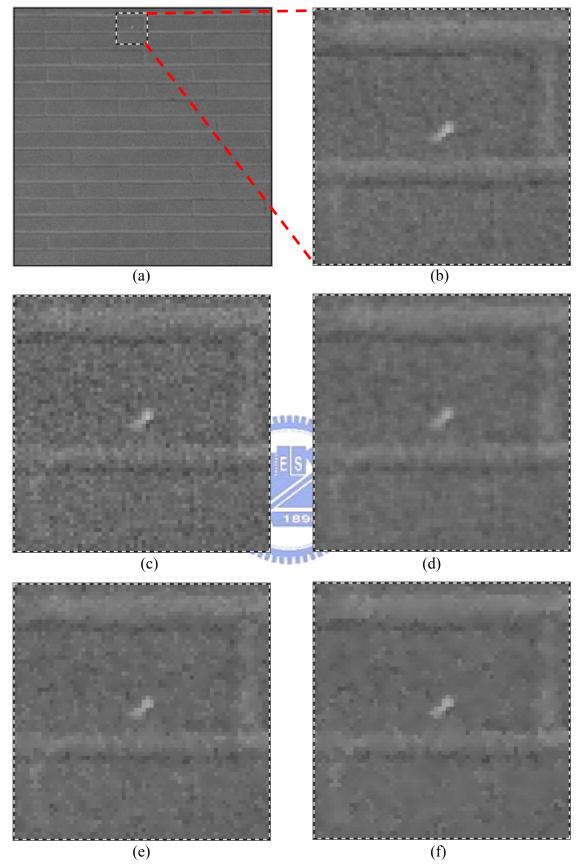



Fig. 20. An example illustrated that bilinear filter has better SSIM than proposed filter. (a) Original image "1.5.06-BrickWall"; (b) 400% enlarged; (c) Adding  $\sigma$ =7.1875 Gaussian noise; (d) Filtered by Bilinear filter; (e) Filtered by Bosco-and-Mancuso filter; (f) Filtered by Proposed filter.

Case 3: Proposed filter has worse PSNR even if it has better SSIM than others:

Basically, case 3 illustrates the reason why Wang developed SSIM for image assessment [5]-[7]. In some cases, images look very un-acceptable even if those images have the same PSNR as acceptable images [5]-[8]. So in general, case 3 is not a special case needed to bring up for a discussion, since proposed filter keep more structural information such as edge information.

However, when we surveyed the worst case of images, there is a drawback found in the proposed algorithm. That is proposed algorithm will yield contour seriously if the image has been added too much random noise such as  $\sigma$ =18.75 shown in Fig. 21. The original image "4.1.08-JellybeansG" is shown in Fig. 21(a) and its 400% enlarged sub-image is shown in Fig. 21(b). Besides, the image with additive  $\sigma$ =18.75 Gaussian noise is shown in Fig. 21(c) and its 400% enlarged sub-image is shown in Fig. 21(d). The reason to yield contour under big noise condition is because current processed pixel will handle the neighboring pixels as noisy pixel when pixel signal is under transient position either from bright to dark or dark to bright, so that current processed pixel will chose a nearest pattern to be its filtering elements instead of applying spatial masking on those transient pixels. By choosing nearest pattern to filter noisy pixel, the value of processed pixel will close to the nearest pattern. In the case of transient pixels changed slowly so that they consist of many pixels. Then the value of one side of them will join bright area and whereas the other side of them will join dark area. Therefore contour effect is enhanced as shown in Figs. 21(i)-(j). Comparing with Figs. 21(e)-(h) which are the images outputted from bilinear filter and Bosco-and-Mancuso filter respectively, they have no this kind of contour problem. This is the case that the proposed algorithm doesn't like to see, and unable to filter this kind of transient pixels well under big noise condition. Nevertheless, once the additive noise is not big enough to cause proposed algorithm handle neighboring pixels as noisy pixel in transient area, the proposed algorithm performs well as shown in Figs.

22, 23 and Table 7. Figs. 22(a) and 23(a) show the image "4.1.08-JellybeansG" with additive Gaussian noise and that Figs. 22(b) and 23(b) show their 400% enlarged sub-image. Both two sets of Figs. 22(c)-(e) and 23(c)-(e) show the images outputted from bilinear filter, Bosco-and-Mancuso filter, and proposed filter respectively. As subjective observation, bilinear filter looks too blue and whereas proposed filter has strongest edge information. Table 7 is also to illustrate that proposed filter has best filtering result on flat area.

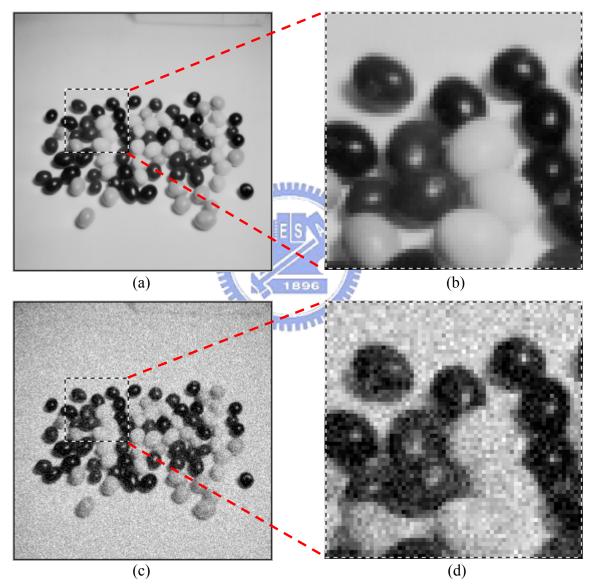
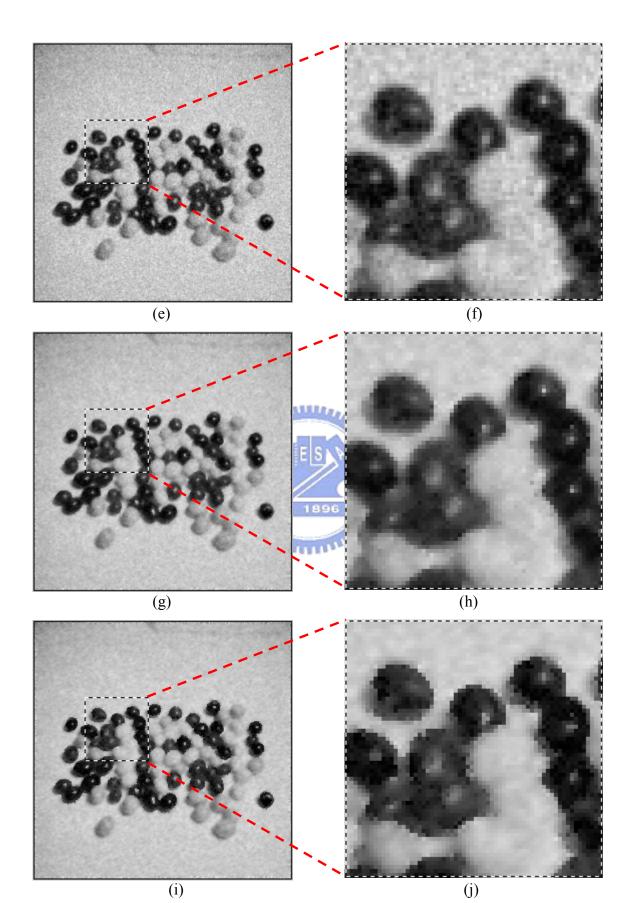
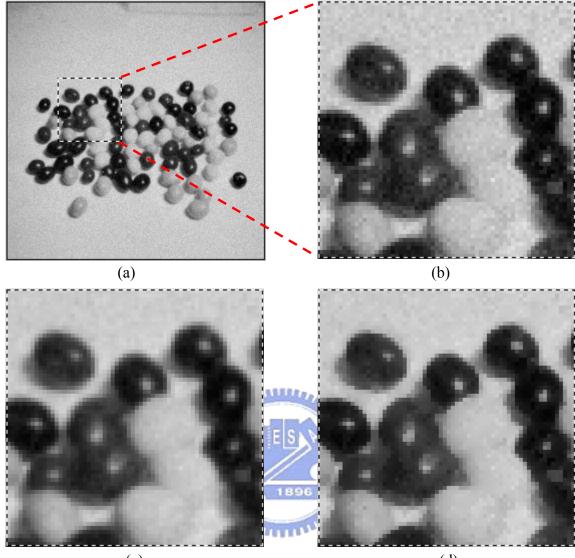





Fig. 21. Proposed filter has worse PSNR even if it has better SSIM than others. (a) Original image "4.1.08-JellybeansG"; (b) 400% enlarged; (c) adding  $\sigma$ =18.75 Gaussian noise; (d) 400% enlarged; (e) Filtered by Bilinear filter; (f) 400% enlarged; (g) Filtered by Bosco-and-Mancuso filter; (h) 400% enlarged; (i) Filtered by proposed filter; (j) 400% enlarged.



(i)

Fig. 21. (Continued)



(c)

(d)

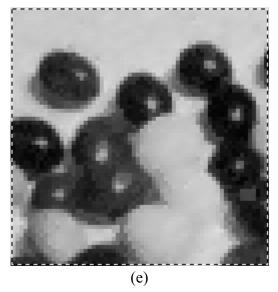
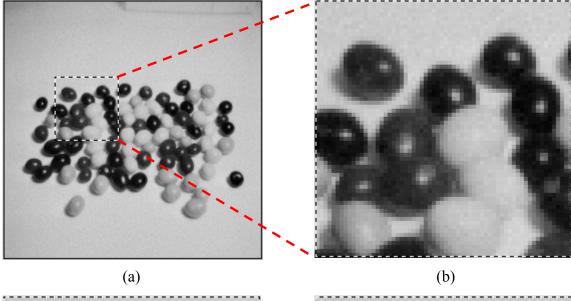
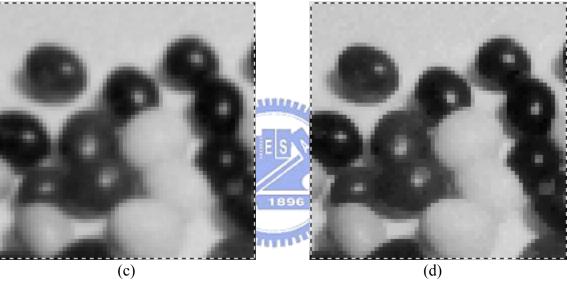





Fig. 22. Proposed filter has better filtering result under  $\sigma$ =7.1875 Gaussian noise. (a) Adding  $\sigma$ =7.1875 Gaussian noise; (b) 400% enlarged; (c) Filtered by Bilinear filter; (d) Filtered by Bosco-and-Mancuso filter; (e) Filtered by proposed filter.





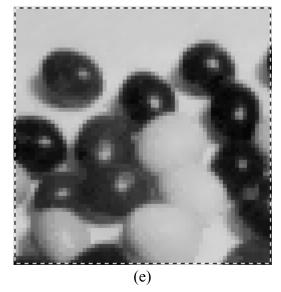



Fig. 23. Proposed filter has better filtering result under  $\sigma$ =3.125 Gaussian noise. (a) Adding  $\sigma$ =3.125 Gaussian noise; (b) 400% enlarged; (c) Filtered by Bilinear filter; (d) Filtered by Bosco-and-Mancuso filter; (e) Filtered by proposed filter.

#### Table 7.

Test result of filtering image "4.1.08-jellybeansg" with additive  $\sigma$ =7.1875 and  $\sigma$ =3.125 Gaussian noise.

| Standard deviation of noisy image<br>and filtered image on the flat area | σ=7.1875 | σ=3.125 |
|--------------------------------------------------------------------------|----------|---------|
| Noisy image                                                              | 8.32     | 5.48    |
| Bilinear                                                                 | 5.83     | 4.84    |
| Bosco-and-Mancuso                                                        | 6.26     | 5.14    |
| Proposed                                                                 | 4.78     | 4.61    |

Case 4: Proposed filter has worst SSIM on texture images under high Gamma and Uniform noise condition:

Since there is a similar analysis result for filtering Gamma noise and Uniform noise in this case, we just use Gamma noise condition to explain this particular case. To explain the phenomenon, let's bring up the image "1.2.03-Straw" for discussion. Proposed filter performs better with this image under  $\sigma$ =18.75 Gaussian noise, but performs worst under  $\sigma$ =18.75 Gamma noise condition. Table 8 is the test result of this image.

#### Table 8.

Use image "1.2.03-straw" as an example to explain the proposed filter has worst SSIM on texture images under high Gamma noise condition

| σ=18.75           | Gaı     | issian  | Gamma   |         |  |
|-------------------|---------|---------|---------|---------|--|
| 0-18.75           | SSIM    | PSNR    | SSIM    | PSNR    |  |
| Bosco-and-Mancuso | 0.85456 | 20.0698 | 0.90466 | 20.8664 |  |
| Proposed          | 0.89005 | 20.4736 | 0.88052 | 18.5804 |  |

By comparing texture images under  $\sigma$ =18.75 Gamma noise and Gaussian noise conditions. We found the histogram of image was expanded a lot by high Gamma noise, so that many noisy pixels fewer than zero or over saturated value to become edge information as shown in Figs. 24(a)-(c). Fig. 24(a) shows original image "1.2.03-straw" as well as its histogram. Figs. 24(b)-(c) show the image with additive  $\sigma$ =18.75 Gamma noise as well as its histogram and image with additive  $\sigma$ =18.75 Gaussian noise as well as its histogram and image with additive  $\sigma$ =18.75 Gaussian noise as well as its histogram.

pattern, so that it will keep edge information in most of cases as the histogram result shown in Fig. 24(e). On the contrary, Bosco-and-Mancuso filter won't keep edge information as much as proposed filter, so that it can recover damaged pixels as the histogram result shown in Fig. 24(d).

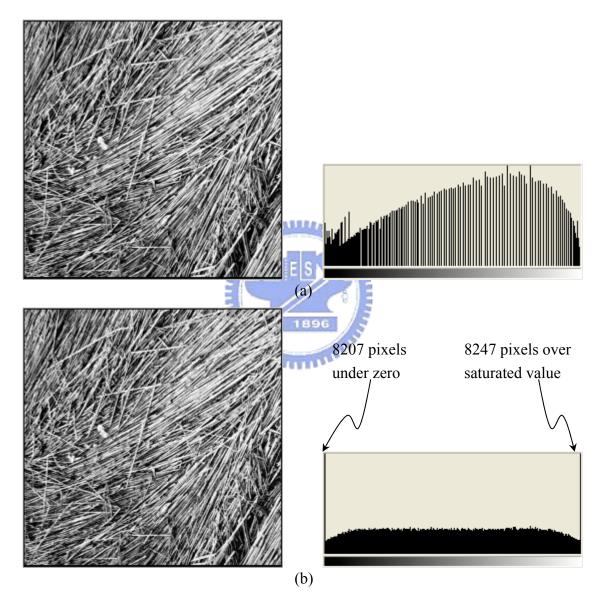



Fig. 24.  $\sigma$ =18.75 Gamma noise yielded too much edge information which is not able to be recovered by proposed filter. (a) Original image "1.2.03-Straw" and its histogram; (b) Image "1.2.03-Straw" with  $\sigma$ =18.75 Gaussian noise and its histogram; (c) Image "1.2.03-Straw" with  $\sigma$ =18.75 Gamma noise and its histogram; (d) Image "1.2.03-Straw" with  $\sigma$ =18.75 Gamma noise filtered by Bosco-and-Mancuso filter and its histogram; (e) Image "1.2.03-Straw" with  $\sigma$ =18.75 Gamma noise filtered by proposed filter and its histogram; (e) Image "1.2.03-Straw" with  $\sigma$ =18.75 Gamma noise filtered by proposed filter and its histogram.

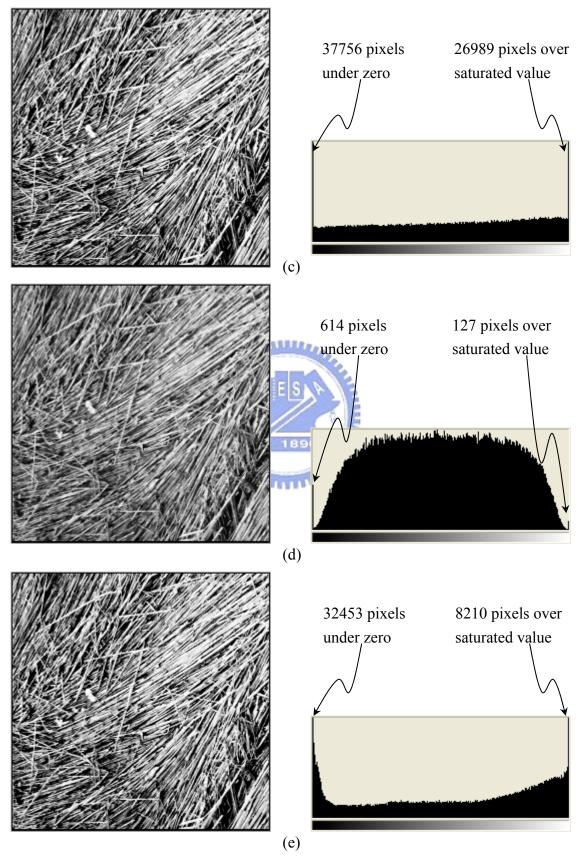



Fig. 24. (Continued)

Case 5: Proposed filter is not able to filter out Pepper-and-Salt noise:

In order to keep as much edge information as possible, proposed denoising method has been designed to not handle singular point such as Pepper-and-Salt noise, unless the image is captured under ISO 1600 condition. The reason that proposed denoising method handle Singular point under ISO 1600 condition is because standard deviation under such kind of condition is very huge, up to  $\sigma$ =18.75. In order to filter out most of noise, we also use  $4\sigma$  to be the threshold to judge if current processed area is uniform or not. However, it still has 0.00633% possibility that noisy pixel in flat region won't be handled as uniform area. These un-handled pixels they all have big distance from neighboring pixels, so that they will look like Pepper-and-Salt noise very much. Image with Pepper-and-Salt-like noise is very unacceptable. This is the reason why the proposed denoising method pays attention to keep any edge information but ISO 1600 condition. This is also the reason why the testing result shown in the column named "Adding Pepper-and-Salt Noise for ISO 100 and ISO 400 (didn't handle singular point)" in Table 6 so bad. Fig. 25(a) shows the original image "testpat" with additive Pepper-and-Salt noise and Fig. 25(b) shows its 400% enlarged sub-image. Fig. 25(c) is used to illustrate that proposed filter is not able to filter out Pepper-and-Salt noise under ISO 100 condition as well ISO 400 condition. On the other hand, Fig. 25(d) is used to illustrate that proposed filter will filter out Pepper-and-Salt noise as well as any singular point in test image under ISO 1600 condition.

Case 6: Test patterns:

There are 4 kinds of step wedge patterns in USC web site, as shown in Fig. 26. The proposed filter on those patterns performs not badly except filtering Pepper-and-Salt noise as the testing results shown in Tables 9~14.

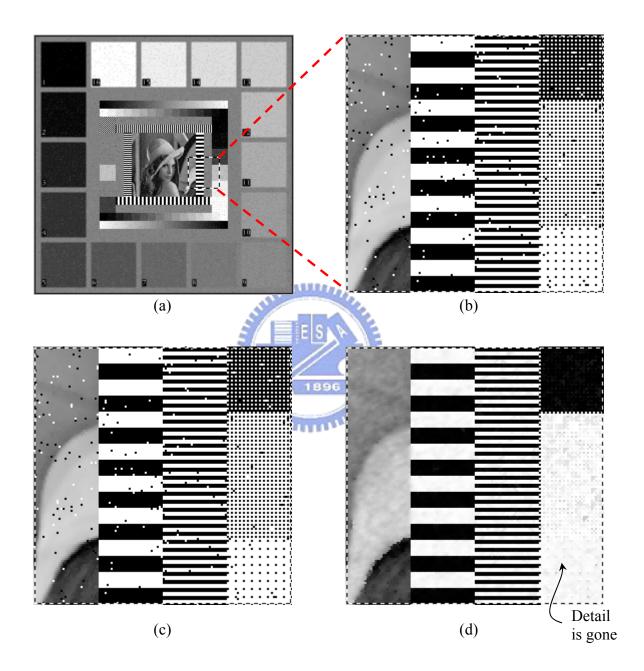



Fig. 25. Proposed filter is not able to filter Pepper-and-Salt noise. (a) Image "testpat" with additive Pepper-and-Salt noise; (b) 400% enlarged; (c) Filtered by proposed filter; (d) Image "testpat" with additive  $\sigma$ =18.75 Gaussian noise filtered by proposed filter. The detail is gone.

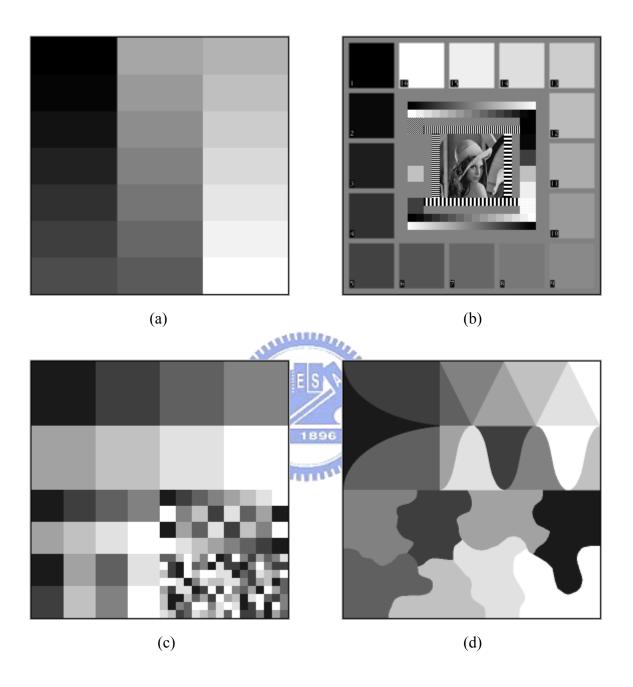



Fig. 26. 4 kinds of step wedge test pattern in USC web site. (a) Test pattern: "gray21"; (b) Test pattern: "testpat"; (c) Test pattern: "texmos2.s512-USC"; (d) Test pattern: "texmos3.s512-USC".

## Table 9.

Proposed SSIM and PSNR compare with other filters for the pattern images with additive

| Noisy       | Image and       |                    |            |          |            |                       |          |           |                       |          |  |
|-------------|-----------------|--------------------|------------|----------|------------|-----------------------|----------|-----------|-----------------------|----------|--|
| Filter      | red Image       | Addin              | g Gaussian | Noise    | Addin      | Adding Gaussian Noise |          |           | Adding Gaussian Noise |          |  |
| Comparing   | g with Original | ( <i>σ</i> =3.125) |            |          | (σ=7.1875) |                       |          | (σ=18.75) |                       |          |  |
| Ī           | mage            |                    |            |          |            |                       |          |           |                       |          |  |
|             | Method          | SSIM               | MSE(12bit) | PSNR(dB) | SSIM       | MSE(12bit)            | PSNR(dB) | SSIM      | MSE(12bit)            | PSNR(dB) |  |
|             | Original Image  | 1                  | 0          | Inf      | 1          | 0                     | Inf      | 1         | 0                     | Inf      |  |
| gray21.ra   | Noisy Image     | 0.86169            | 2581.1482  | 38.1269  | 0.56981    | 12639.548             | 31.2278  | 0.18943   | 81271.003             | 23.1457  |  |
| W           | Bilinear Filter | 0.94226            | 1365.9309  | 40.8908  | 0.794      | 4793.8503             | 35.4382  | 0.4082    | 28548.825             | 27.6892  |  |
|             | BoscoMancusc    | 0.90577            | 1687.4743  | 39.9727  | 0.75005    | 5717.8466             | 34.6728  | 0.63608   | 13198.406             | 31.0399  |  |
|             | Proposed Filter | 0.95675            | 810.0874   | 43.1598  | 0.85495    | 3421.6767             | 36.9027  | 0.67809   | 11678.162             | 31.5713  |  |
|             | Method          | SSIM               | MSE(12bit) | PSNR(dB) | SSIM       | MSE(12bit)            | PSNR(dB) | SSIM      | MSE(12bit)            | PSNR(dB) |  |
|             | Original Image  | 1                  | 0          | Inf      |            | 0                     | Inf      | 1         | 0                     | Inf      |  |
| testpat.raw | Noisy Image     | 0.89196            | 2491.5535  | 38.2804  | 0.66265    | 12195.812             | 31.383   | 0.34891   | 79343.124             | 23.25    |  |
| usipai.iaw  | Bilinear Filter | 0.92933            | 78857.258  | 23.2767  | 0.81169    | 84246.344             | 22.9896  | 0.50223   | 113163.23             | 21.708   |  |
|             | BoscoMancusc    | 0.92384            | 4023.4569  | 36.1991  | 0.7991     | 8449.1149             | 32.977   | 0.69747   | 20102.204             | 29.2126  |  |
|             | Proposed Filter | 0.96842            | 877.6523   | 42.8119  | 0.89474    | 3594.5876             | 36.6886  | 0.72138   | 48793.78              | 25.3614  |  |
|             | Method          | SSIM               | MSE(12bit) | PSNR(dB) | SSIM       | MSE(12bit)            | PSNR(dB) | SSIM      | MSE(12bit)            | PSNR(dB) |  |
| texmos2.s   | Original Image  | 1                  | 0          | Inf      | 1          | 0                     | Inf      | 1         | 0                     | Inf      |  |
| 512-        | Noisy Image     | 0.89677            | 2490.1966  | 38.2827  | 0.6558     | 12492.351             | 31.2786  | 0.3015    | 82135.833             | 23.0998  |  |
| USC.raw     | Bilinear Filter | 0.95839            | 4434.5423  | 35.7766  | 0.8424     | 7912.047              | 33.2622  | 0.50788   | 32417.001             | 27.1373  |  |
| USC.Iaw     | BoscoMancusc    | 0.93261            | 2012.5697  | 39.2076  | 0.80868    | 6716.9773             | 33.9733  | 0.7007    | 20050.254             | 29.2239  |  |
|             | Proposed Filter | 0.9782             | 692.3014   | 43.8421  | 0.90685    | 3204.0857             | 37.188   | 0.73498   | 15370.955             | 30.3781  |  |
|             | Method          | SSIM               | MSE(12bit) | PSNR(dB) | SSIM       | MSE(12bit)            | PSNR(dB) | SSIM      | MSE(12bit)            | PSNR(dB) |  |
| texmos3.s   | Original Image  | 1                  | 0          | Inf      | 1          | 0                     | Inf      | 1         | 0                     | Inf      |  |
| 512-        | Noisy Image     | 0.88374            | 2514.2197  | 38.241   | 0.61683    | 12607.146             | 31.2389  | 0.24088   | 83343.038             | 23.0364  |  |
|             | Bilinear Filter | 0.95547            | 3001.1416  | 37.4722  | 0.8257     | 6473.6508             | 34.1336  | 0.45923   | 30800.013             | 27.3596  |  |
| USC.raw     | BoscoMancusc    | 0.92485            | 1704.4474  | 39.9292  | 0.78819    | 5839.4434             | 34.5814  | 0.67857   | 15203.374             | 30.4257  |  |
|             | Proposed Filte  | 0.97471            | 685.4412   | 43.8854  | 0.89252    | 3184.7793             | 37.2143  | 0.70546   | 14647.196             | 30.5875  |  |

Gaussian noise.

## Table 10.

Proposed SSIM and PSNR compare with other filters for the pattern images with additive

| Noisy Image and<br>Filtered Image<br>Comparing with Original |                 | Adding Rayleigh Noise $(\sigma = 3.125)$ |            |              | Adding Rayleigh Noise ( $\sigma$ =7.1875) |            |          | Adding Rayleigh Noise $(\sigma = 18.75)$ |            |          |
|--------------------------------------------------------------|-----------------|------------------------------------------|------------|--------------|-------------------------------------------|------------|----------|------------------------------------------|------------|----------|
| Ţ                                                            | mage            |                                          |            |              |                                           |            |          | , <i>,</i> ,                             |            |          |
|                                                              | Method          | SSIM                                     | MSE(12bit) | PSNR(dB)     | SSIM                                      | MSE(12bit) | PSNR(dB) | SSIM                                     | MSE(12bit) | PSNR(dB) |
|                                                              | Original Image  | 1                                        | 0          | Inf          | 1                                         | 0          | Inf      | 1                                        | 0          | Inf      |
| gray21.ra                                                    | Noisy Image     | 0.91361                                  | 2238.071   | 38.7463      | 0.69756                                   | 10375.783  | 32.0849  | 0.31715                                  | 61014.651  | 24.3907  |
| W                                                            | Bilinear Filter | 0.96808                                  | 1544.6401  | 40.3568      | 0.86727                                   | 5411.3963  | 34.912   | 0.54072                                  | 28367.354  | 27.7169  |
|                                                              | BoscoMancusc    | 0.94185                                  | 1687.5055  | 39.9726      | 0.83042                                   | 6086.5879  | 34.4013  | 0.72437                                  | 18668.392  | 29.534   |
|                                                              | Proposed Filter | 0.98795                                  | 891.6189   | 42.7433      | 0.94725                                   | 3534.5486  | 36.7617  | 0.77221                                  | 17656.987  | 29.7759  |
|                                                              | Method          | SSIM                                     | MSE(12bit) | PSNR(dB)     | SSIM                                      | MSE(12bit) | PSNR(dB) | SSIM                                     | MSE(12bit) | PSNR(dB) |
|                                                              | Original Image  | 1                                        | 0          | <u>S</u> Inf | 1                                         | 0          | Inf      | 1                                        | 0          | Inf      |
| tootnot row                                                  | Noisy Image     | 0.92969                                  | 2007.004   | 39.2196      | 0.75724                                   | 9207.7902  | 32.6035  | 0.45216                                  | 56297.669  | 24.7402  |
| testpat.raw                                                  | Bilinear Filter | 0.9492                                   | 77626.061  | 23.345       | 0.87071                                   | 81157.093  | 23.1518  | 0.61144                                  | 102436.71  | 22.1405  |
|                                                              | BoscoMancusc    | 0.95011                                  | 4474.9716  | 35.7372      | 0.8609                                    | 8484.9208  | 32.9586  | 0.776                                    | 20737.724  | 29.0775  |
|                                                              | Proposed Filter | 0.98943                                  | 818.7609   | 43.1135      | 0.95944                                   | 3009.4023  | 37.4603  | 0.81788                                  | 16502.128  | 30.0697  |
|                                                              | Method          | SSIM                                     | MSE(12bit) | PSNR(dB)     | SSIM                                      | MSE(12bit) | PSNR(dB) | SSIM                                     | MSE(12bit) | PSNR(dB) |
| texmos2.s                                                    | Original Image  | 1                                        | 0          | Inf          | 1                                         | 0          | Inf      | 1                                        | 0          | Inf      |
| 512-                                                         | Noisy Image     | 0.92824                                  | 2052.4968  | 39.1223      | 0.74454                                   | 9907.8039  | 32.2853  | 0.39556                                  | 62924.589  | 24.2569  |
|                                                              | Bilinear Filter | 0.96951                                  | 4244.3173  | 35.967       | 0.88764                                   | 7515.0727  | 33.4857  | 0.60906                                  | 30626.527  | 27.3841  |
| USC.raw                                                      | BoscoMancusc    | 0.95163                                  | 1827.0844  | 39.6275      | 0.85882                                   | 6400.0638  | 34.1832  | 0.7719                                   | 23168.566  | 28.5961  |
|                                                              | Proposed Filter | 0.99256                                  | 694.9146   | 43.8258      | 0.96315                                   | 3032.9956  | 37.4264  | 0.81861                                  | 19282.503  | 29.3934  |
|                                                              | Method          | SSIM                                     | MSE(12bit) | PSNR(dB)     | SSIM                                      | MSE(12bit) | PSNR(dB) | SSIM                                     | MSE(12bit) | PSNR(dB) |
| texmos3.s                                                    | Original Image  | 1                                        | 0          | Inf          | 1                                         | 0          | Inf      | 1                                        | 0          | Inf      |
| 512-                                                         | Noisy Image     | 0.92215                                  | 2019.8463  | 39.1919      | 0.72111                                   | 9742.0132  | 32.3586  | 0.34582                                  | 61163.715  | 24.3801  |
|                                                              | Bilinear Filter | 0.96902                                  | 2955.0478  | 37.5394      | 0.87957                                   | 6276.1618  | 34.2681  | 0.57787                                  | 28990.273  | 27.6226  |
| USC.raw                                                      | BoscoMancuso    | 0.94865                                  | 1541.1599  |              |                                           | 5598.4131  | 34.7644  | 0.7632                                   | 19307.198  | 29.3879  |
|                                                              | Proposed Filter | 0.992                                    | 679.7585   | 43.9215      | 0.96045                                   | 2918.4346  | 37.5936  | 0.80989                                  | 17778.75   | 29.7461  |

## Rayleigh noise.

## Table 11.

Proposed SSIM and PSNR compare with other filters for the pattern images with additive

| -           | Image and       |                    | <b>a</b>   |          |            | a          |          |                    |            |          |
|-------------|-----------------|--------------------|------------|----------|------------|------------|----------|--------------------|------------|----------|
|             | red Image       | Adding Gamma Noise |            |          |            | ng Gamma   |          | Adding Gamma Noise |            |          |
| Comparing   | g with Original | ( <i>σ</i> =3.125) |            |          | (σ=7.1875) |            |          | (σ=18.75)          |            |          |
|             | mage            |                    |            |          |            |            |          |                    |            |          |
|             | Method          | SSIM               | MSE(12bit) | PSNR(dB) | SSIM       | MSE(12bit) | PSNR(dB) | SSIM               | MSE(12bit) |          |
| 01          | Original Image  | 1                  | 0          | Inf      | 1          | 0          | Inf      | 1                  | 0          | Inf      |
| gray21.ra   | Noisy Image     |                    | 5945.2439  |          |            | 25668.281  | 28.1511  | 0.31751            |            |          |
| W           | Bilinear Filter | 0.949              | 5195.2567  | 35.089   | 0.81937    | 20774.858  | 29.0697  | 0.51109            | 96290.129  | 22.4093  |
|             | BoscoMancusc    | 0.92476            | 5371.009   | 34.9445  | 0.78959    | 21391.241  | 28.9427  | 0.67148            | 88370.86   | 22.782   |
|             | Proposed Filter | 0.96782            | 4633.2458  | 35.5862  | 0.89436    | 19198.495  | 29.4124  | 0.71314            | 87603.682  | 22.8199  |
|             | Method          | SSIM               | MSE(12bit) | PSNR(dB) | SSIM       | MSE(12bit) | PSNR(dB) | SSIM               | MSE(12bit) | PSNR(dB) |
|             | Original Image  | 1                  | 0          | Inf      | 1          | 0          | Inf      | 1                  | 0          | Inf      |
| tactnot row | Noisy Image     | 0.92551            | 4447.078   | 35.7643  | 0.73343    | 20334.955  | 29.1626  | 0.4484             | 103479.42  | 22.0965  |
| testpat.raw | Bilinear Filter | 0.94504            | 79472.553  | 23.2429  | 0.84361    | 91026.462  | 22.6534  | 0.59156            | 148609.87  | 20.5246  |
|             | BoscoMancusc    | 0.9433             | 15450.724  | 30.3556  | 0.83609    | 25017.668  | 28.2626  | 0.74418            | 72470.676  | 23.6435  |
|             | Proposed Filter | 0.98404            | 3294.6763  | 37.067   | 0.92675    | 14500.26   | 30.6313  | 0.78001            | 67367.289  | 23.9606  |
|             | Method          | SSIM               | MSE(12bit) | PSNR(dB) | SSIM       | MSE(12bit) | PSNR(dB) | SSIM               | MSE(12bit) | PSNR(dB) |
| texmos2.s   | Original Image  | 1                  | 0          | Inf      | 1          | 0          | Inf      | 1                  | 0          | Inf      |
|             | Noisy Image     | 0.92651            | 4839.1627  | 35.3974  | 0.73261    | 24107.841  | 28.4235  | 0.38041            | 124239.45  | 21.3025  |
| 512-<br>USC | Bilinear Filter | 0.96743            | 6479.376   | 34.1297  | 0.87053    | 20366.476  | 29.1559  | 0.55788            | 92469.871  | 22.5851  |
| USC.raw     | BoscoMancuso    | 0.95101            | 4589.5552  | 35.6274  | 0.8478     | 20358.403  | 29.1576  | 0.69587            | 87669.907  | 22.8166  |
|             | Proposed Filter | 0.98932            | 3515.7801  | 36.7849  | 0.93934    | 17648.791  | 29.7779  | 0.73268            | 86594.175  | 22.8702  |
|             | Method          | SSIM               | MSE(12bit) | PSNR(dB) | SSIM       | MSE(12bit) | PSNR(dB) | SSIM               | MSE(12bit) | PSNR(dB) |
| tormoo?     | Original Image  | 1                  | 0          | Inf      | 1          | 0          | Inf      | 1                  | 0          | Inf      |
| texmos3.s   | Noisy Image     | 0.92085            | 4708.5954  | 35.5162  | 0.70991    | 23605.885  | 28.5149  | 0.33295            | 124563.88  | 21.2912  |
| 512-        | Bilinear Filter | 0.96699            | 5398.7012  | 34.9222  | 0.86319    | 19532.364  | 29.3375  | 0.52744            | 94326.465  | 22.4987  |
| USC.raw     | BoscoMancusc    |                    | 4172.4869  |          |            | 19227.176  |          |                    | 87006.945  |          |
|             | Proposed Filte  |                    | 3404.3442  |          |            | 17116.827  | 29.9108  |                    | 86800.768  |          |

#### Gamma noise.

## Table 12.

Proposed SSIM and PSNR compare with other filters for the pattern images with additive

| Noisy Image and |                 |           |            |              |            |                          |          |                    |            |          |  |
|-----------------|-----------------|-----------|------------|--------------|------------|--------------------------|----------|--------------------|------------|----------|--|
| Filter          | ed Image        | Adding    | Exponentia | al Noise     | Adding     | Adding Exponential Noise |          |                    | Exponentia | al Noise |  |
| Comparing       | g with Original | (σ=3.125) |            |              | (σ=7.1875) |                          |          | ( <i>σ</i> =18.75) |            |          |  |
| Ţ               | mage            |           |            |              |            |                          |          |                    |            |          |  |
|                 | Method          | SSIM      | MSE(12bit) | PSNR(dB)     | SSIM       | MSE(12bit)               | PSNR(dB) | SSIM               | MSE(12bit) | PSNR(dB) |  |
|                 | Original Image  | 1         | 0          | Inf          | 1          | 0                        | Inf      | 1                  | 0          | Inf      |  |
| gray21.ra       | Noisy Image     | 0.91702   | 1847.8236  | 39.5785      | 0.71914    | 8504.4393                | 32.9486  | 0.35558            | 49761.755  | 25.2761  |  |
| W               | Bilinear Filter | 0.9693    | 1192.7866  | 41.4795      | 0.87887    | 3764.3945                | 36.4881  | 0.58632            | 19288.884  | 29.392   |  |
|                 | BoscoMancusc    | 0.94269   | 1324.6821  | 41.024       | 0.82942    | 4823.1974                | 35.4117  | 0.74667            | 11748.592  | 31.5452  |  |
|                 | Proposed Filter | 0.98067   | 663.1393   | 44.029       | 0.93411    | 2461.9199                | 38.3323  | 0.80734            | 9532.1628  | 32.4532  |  |
|                 | Method          | SSIM      | MSE(12bit) | PSNR(dB)     | SSIM       | MSE(12bit)               | PSNR(dB) | SSIM               | MSE(12bit) | PSNR(dB) |  |
|                 | Original Image  | 1         | 0          | <u>S</u> Inf |            | 0 🏡                      | Inf      | 1                  | 0          | Inf      |  |
| testpat.raw     | Noisy Image     | 0.93144   | 1739.3328  | 39.8413      | 0.76952    | 7950.1568                | 33.2413  | 0.47606            | 48446.51   | 25.3925  |  |
| usipai.iaw      | Bilinear Filter | 0.94942   | 77526.464  | 23.3506      | 0.87571    | 80363.355                | 23.1945  | 0.63797            | 96713.559  | 22.3902  |  |
|                 | BoscoMancusc    | 0.94983   | 4904.7123  | 35.3389      | 0.85594    | 8215.4593                | 33.0988  | 0.77913            | 16931.361  | 29.9582  |  |
|                 | Proposed Filter | 0.98255   | 701.0975   | 43.7873      | 0.94427    | 2468.8725                | 38.3201  | 0.83954            | 10677.424  | 31.9604  |  |
|                 | Method          | SSIM      | MSE(12bit) | PSNR(dB)     | SSIM       | MSE(12bit)               | PSNR(dB) | SSIM               | MSE(12bit) | PSNR(dB) |  |
| texmos2.s       | Original Image  | 1         | 0          | Inf          | 1          | 0                        | Inf      | 1                  | 0          | Inf      |  |
| 512-            | Noisy Image     | 0.93244   | 1756.3942  | 39.7989      | 0.75637    | 8610.7713                | 32.8947  | 0.43219            | 50687.111  | 25.1961  |  |
| USC.raw         | Bilinear Filter | 0.97061   | 4115.3352  | 36.101       | 0.89166    | 6558.7002                | 34.0769  | 0.64289            | 22049.092  | 28.8112  |  |
| USC.Iaw         | BoscoMancusc    | 0.95321   | 1565.0766  | 40.2997      | 0.85394    | 5672.8048                | 34.7071  | 0.7826             | 16902.492  | 29.9656  |  |
|                 | Proposed Filter | 0.98578   | 597.2347   | 44.4836      | 0.94637    | 2417.7251                | 38.411   | 0.84091            | 11053.546  | 31.8101  |  |
|                 | Method          | SSIM      | MSE(12bit) | PSNR(dB)     | SSIM       | MSE(12bit)               | PSNR(dB) | SSIM               | MSE(12bit) | PSNR(dB) |  |
| texmos3.s       | Original Image  | 1         | 0          | Inf          | 1          | 0                        | Inf      | 1                  | 0          | Inf      |  |
| 512-            | Noisy Image     | 0.92642   | 1731.0555  | 39.862       | 0.73449    | 8413.8305                | 32.9951  | 0.38092            | 50148.344  | 25.2425  |  |
|                 | Bilinear Filter | 0.9703    | 2760.3671  | 37.8354      | 0.88474    | 5181.9574                | 35.1001  | 0.61081            | 20640.077  | 29.098   |  |
| USC.raw         | BoscoMancusc    | 0.9502    | 1298.6756  | 41.1101      | 0.84314    | 4770.9046                | 35.4591  | 0.76952            | 13270.307  | 31.0163  |  |
|                 | Proposed Filte: | 0.98485   | 579.6294   | 44.6136      | 0.94326    | 2267.023                 | 38.6905  | 0.83028            | 10211.132  | 32.1543  |  |

## Exponential noise.

## Table 13.

Proposed SSIM and PSNR compare with other filters for the pattern images with additive

| -           | Image and<br>ed Image | ٨ddir                                   | a Uniform  | Noise           | ٨ddir                                    | a Uniform  | Noise    | Adding Uniform Noise |            |          |  |
|-------------|-----------------------|-----------------------------------------|------------|-----------------|------------------------------------------|------------|----------|----------------------|------------|----------|--|
|             | g with Original       | Adding Uniform Noise $(\sigma = 3.125)$ |            |                 | Adding Uniform Noise $(\sigma = 7.1875)$ |            |          | $(\sigma = 18.75)$   |            |          |  |
|             | mage                  | (0 -5.125)                              |            |                 | (0 -1.1015)                              |            |          | (0 -10.75)           |            |          |  |
|             | Method                | SSIM                                    | MSE(12bit) | PSNR(dB)        | SSIM                                     | MSE(12bit) | PSNR(dB) | SSIM                 | MSE(12bit) | PSNR(dB) |  |
|             | Original Image        | 1                                       | 0          | Inf             | 1                                        | 0          | Inf      | 1                    | 0          | Inf      |  |
| gray21.ra   | Noisy Image           | 0.8952                                  | 5956.6032  | 34.4951         | 0.65441                                  | 25619.033  | 28.1595  | 0.31529              | 126347.02  | 21.2294  |  |
| W           | Bilinear Filter       | 0.94931                                 | 5209.3554  | 35.0772         | 0.8184                                   | 20685.768  | 29.0884  | 0.50671              | 96815.345  | 22.3856  |  |
|             | BoscoMancuso          | 0.917                                   | 5530.6117  | 34.8173         | 0.76423                                  | 21953.196  | 28.8301  | 0.65714              | 89256.298  | 22.7387  |  |
|             | Proposed Filte        | 0.96932                                 | 4629.4072  | 35.5898         | 0.89801                                  | 18981.989  | 29.4617  | 0.71221              | 87606.548  | 22.8197  |  |
|             | Method                | SSIM                                    | MSE(12bit) | PSNR(dB)        | SSIM                                     | MSE(12bit) | PSNR(dB) | SSIM                 | MSE(12bit) | PSNR(dB) |  |
|             | Original Image        | 1                                       | 0          | <b>Solution</b> |                                          | 0          | Inf      | 1                    | 0          | Inf      |  |
| tootnot row | Noisy Image           | 0.92495                                 | 4447.1449  | 35.7643         | 0.73041                                  | 20383.915  | 29.1522  | 0.44547              | 103871.92  | 22.0801  |  |
| testpat.raw | Bilinear Filter       | 0.94508                                 | 79432.207  | 23.2451         | 0.84265                                  | 91014.91   | 22.654   | 0.5877               | 148477.76  | 20.5285  |  |
|             | BoscoMancusc          | 0.93727                                 | 13735.503  | 30.8666         | 0.81612                                  | 24197.026  | 28.4075  | 0.73208              | 72262.13   | 23.656   |  |
|             | Proposed Filter       | 0.98527                                 | 3271.645   | 37.0974         | 0.93003                                  | 14437.245  | 30.6502  | 0.77934              | 67156.893  | 23.9742  |  |
|             | Method                | SSIM                                    | MSE(12bit) | PSNR(dB)        | SSIM                                     | MSE(12bit) | PSNR(dB) | SSIM                 | MSE(12bit) | PSNR(dB) |  |
| texmos2.s   | Original Image        | 1                                       | 0          | Inf             | 1                                        | 0          | Inf      | 1                    | 0          | Inf      |  |
| 512-        | Noisy Image           | 0.92627                                 | 4820.3966  | 35.4143         | 0.73086                                  | 24058.324  | 28.4324  | 0.37639              | 125603.2   | 21.2551  |  |
| USC.raw     | Bilinear Filter       | 0.96739                                 | 6461.7512  | 34.1416         | 0.8701                                   | 20326.11   | 29.1645  | 0.55147              | 93048.245  | 22.558   |  |
| USC.Iaw     | BoscoMancusc          | 0.94423                                 | 4656.992   | 35.564          | 0.82649                                  | 20868.826  | 29.0501  | 0.68145              | 88011.203  | 22.7997  |  |
|             | Proposed Filte:       | 0.99032                                 | 3478.0076  | 36.8318         | 0.9438                                   | 17424.23   | 29.8335  | 0.73027              | 86669.226  | 22.8664  |  |
|             | Method                | SSIM                                    | MSE(12bit) | PSNR(dB)        | SSIM                                     | MSE(12bit) | PSNR(dB) | SSIM                 | MSE(12bit) | PSNR(dB) |  |
| texmos3.s   | Original Image        | 1                                       | 0          | Inf             | 1                                        | 0          | Inf      | 1                    | 0          | Inf      |  |
| 512-        | Noisy Image           | 0.91993                                 | 4728.1647  | 35.4982         | 0.70841                                  | 23474.807  | 28.5391  | 0.33004              | 125584.08  | 21.2557  |  |
| USC.raw     | Bilinear Filter       | 0.96682                                 | 5399.4689  | 34.9216         | 0.86287                                  | 19439.865  | 29.3581  | 0.52153              | 94904.267  | 22.4722  |  |
| UDC.IAW     | BoscoMancuso          | 0.94051                                 | 4339.6822  | 35.8705         | 0.81526                                  | 19726.343  | 29.2946  | 0.66954              | 87882.846  | 22.806   |  |
|             | Proposed Filter       | 0.99005                                 | 3393.9243  | 36.9381         | 0.94294                                  | 16835.479  | 29.9828  | 0.72173              | 86751.026  | 22.8623  |  |

## Uniform noise.

## Table 14.

Proposed SSIM and PSNR compare with other filters for the pattern images with additive

| Filter<br>Comparing | Image and<br>ed Image<br>g with Original<br>mage | ISO     | epper-and-S<br>100 and ISC<br>andle singu | D 400    | Adding Pepper-and-Salt Noise<br>ISO 1600<br>(handle singular point) |           |          |  |
|---------------------|--------------------------------------------------|---------|-------------------------------------------|----------|---------------------------------------------------------------------|-----------|----------|--|
|                     | Method                                           | SSIM    | MSE(12bit)                                | PSNR(dB) | SSIM                                                                | MSE(12bit | PSNR(dB) |  |
|                     | Original Image                                   | 1       | 0                                         | Inf      | 1                                                                   | 0         | Inf      |  |
| gray21.ra           | Noisy Image                                      | 0.50308 | 114175.72                                 | 21.6693  | 0.50308                                                             | 114175.72 | 21.6693  |  |
| W                   | Bilinear Filter                                  | 0.62531 | 38989.987                                 | 26.3355  | 0.62531                                                             | 38989.987 | 26.3355  |  |
|                     | BoscoMancuso                                     | 0.92294 | 14950.934                                 | 30.4984  | 0.92294                                                             | 14950.934 | 30.4984  |  |
|                     | Proposed Filter                                  | 0.50223 | 114197.97                                 | 21.6685  | 0.9609                                                              | 11514.065 | 31.6328  |  |
|                     | Method                                           | SSIM    | MSE(12bit)                                | PSNR(dB) | SSIM                                                                | MSE(12bit | PSNR(dB) |  |
|                     | Original Image                                   | 1       | 0                                         | Inf      | 1                                                                   | 0         | Inf      |  |
| testpat.raw         | Noisy Image                                      | 0.59009 | 112266.33                                 | 21.7426  | 0.59009                                                             | 112266.33 | 21.7426  |  |
| usipai.1aw          | Bilinear Filter                                  | 0.67419 | 116489.57                                 | 21.5822  | 0.67419                                                             | 116489.57 | 21.5822  |  |
|                     | BoscoMancuso                                     | 0.90166 | 69264.489                                 | 23.84    | 0.90166                                                             | 69264.489 | 23.84    |  |
|                     | Proposed Filter                                  | 0.58888 | 112328.59                                 | 21.7402  | 0.94542                                                             | 62281.193 | 24.3015  |  |
|                     | Method                                           | SSIM    | MSE(12bit)                                | PSNR(dB) | SSIM                                                                | MSE(12bit | PSNR(dB) |  |
| texmos2.s           | Original Image                                   | 1       | 0                                         | Inf      | 1                                                                   | 0         | Inf      |  |
| 512 <b>-</b>        | Noisy Image                                      | 0.55229 | 114588.5                                  | 21.6537  | 0.55229                                                             | 114588.5  | 21.6537  |  |
| USC.raw             | Bilinear Filter                                  | 0.66482 | 42267.897                                 | 25.985   | 0.66482                                                             | 42267.897 | 25.985   |  |
| USC.IAW             | BoscoMancuso                                     | 0.91555 | 19041.044                                 | 29.4482  | 0.91555                                                             | 19041.044 | 29.4482  |  |
|                     | Proposed Filter                                  | 0.55229 | 114588.5                                  | 21.6537  | 0.96419                                                             | 12353.364 | 31.3272  |  |
|                     | Method                                           | SSIM    | MSE(12bit)                                | PSNR(dB) | SSIM                                                                | MSE(12bit | PSNR(dB) |  |
| texmos3.s           | Original Image                                   | 1       | 0                                         | Inf      | 1                                                                   | 0         | Inf      |  |
| 512 <b>-</b>        | Noisy Image                                      | 0.52099 | 110549.17                                 | 21.8095  | 0.52099                                                             | 110549.17 | 21.8095  |  |
| USC.raw             | Bilinear Filter                                  | 0.64158 | 39021.718                                 | 26.332   | 0.64158                                                             | 39021.718 | 26.332   |  |
| USC'IAM             | BoscoMancuso                                     | 0.92496 | 14915.49                                  | 30.5087  | 0.92496                                                             | 14915.49  | 30.5087  |  |
|                     | Proposed Filter                                  | 0.52099 | 110549.17                                 | 21.8095  | 0.9662                                                              | 9754.6044 | 32.353   |  |

Pepper-and-Salt noise.

#### 4.2 Test Results of the CFA Raw Images:

In this section, we would like to compare the proposed denoising method with real camera K1003. CFA raw images were captured by K1003. The only difference of processed images is denoising filter only in order to compare the testing result conveniently.

Fig. 27(a) shows the image which is a scene consists of resolution chart and fluff doll captured by K1003 under ISO 100 condition. Fig. 27(b) shows the sub-image filtered by K1003 as well as standard deviation calculated on flat area. Fig. 27(c) shows the sub-image filtered by Bosco-and-Mancuso filter as well as standard deviation calculated on flat area and that Fig. 27(d) shows the sub-image filtered by proposed filter as well as standard deviation calculated on flat area.

In the same construction, Figs. 28(a) and 29(a) show the images which used the same scene consists of resolution chart and fluff doll captured by K1003 under ISO 400 condition and ISO 1600 condition respectively. Figs. 28(b) and 29(b) show the sub-images filtered by K1003 as well as standard deviation calculated on flat area. Figs. 28(c) and 29(c) show the sub-images filtered by Bosco-and-Mancuso filter as well as standard deviation calculated on flat area and that Figs. 28(d) and 29(d) show the sub-images filtered by proposed filter as well as standard deviation calculated on flat area.

By comparing the image with subjective perception, proposed denoising method slightly reduced the resolution. However, it gains the benefit of reducing standard deviation a lot as the images shown in Figs. 27(d), 28(d), and 29(d). We also found there is a discontinuous pattern problem as shown in Figs. 28(d) and 29(d), since the filtering strength of proposed denoising method didn't change smoothly.

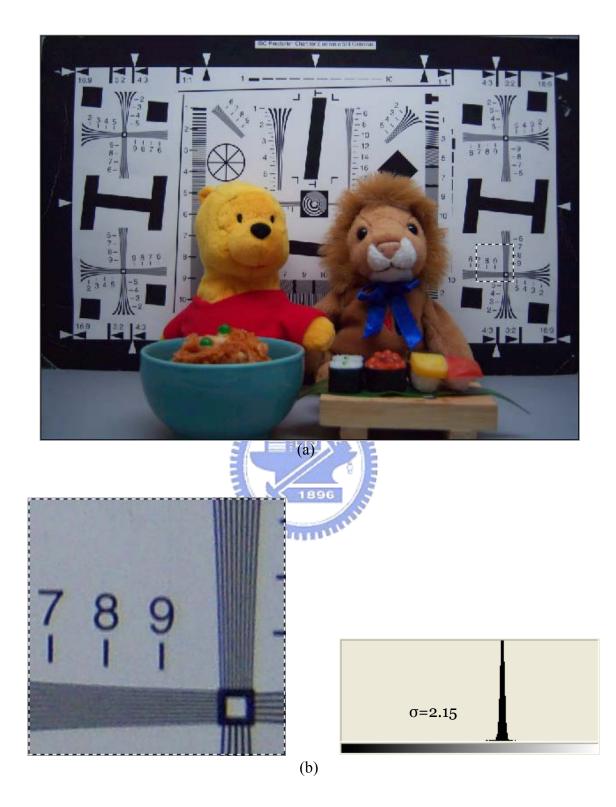



Fig. 27. CFA image captured by K1003 under ISO 100 condition. (a) Resolution chart with fluff doll captured by K1003 under ISO 100 condition; (b) ISO 100 noise filtered by K1003 and standard deviation of flat area; (c) ISO 100 noise filtered by Bosco-and-Mancuso filter and standard deviation of flat area; (d) ISO 100 noise filtered by proposed filter and standard deviation of flat area.

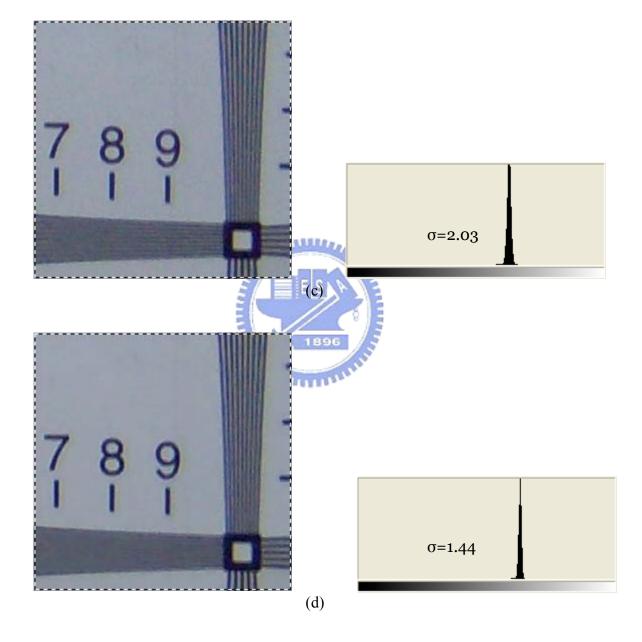



Fig. 27. (Continued)

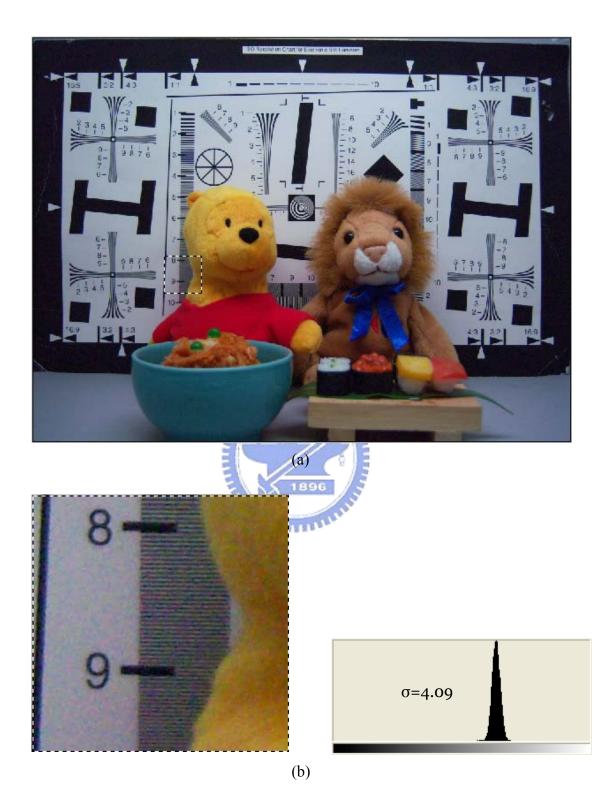



Fig. 28. CFA image captured by K1003 under ISO 400 condition. (a) Resolution chart with fluff doll captured by K1003 under ISO 400 condition; (b) ISO 400 noise filtered by K1003 and standard deviation of flat area; (c) ISO 400 noise filtered by Bosco-and-Mancuso filter and standard deviation of flat area; (d) ISO 400 noise filtered by proposed filter and standard deviation of flat area.

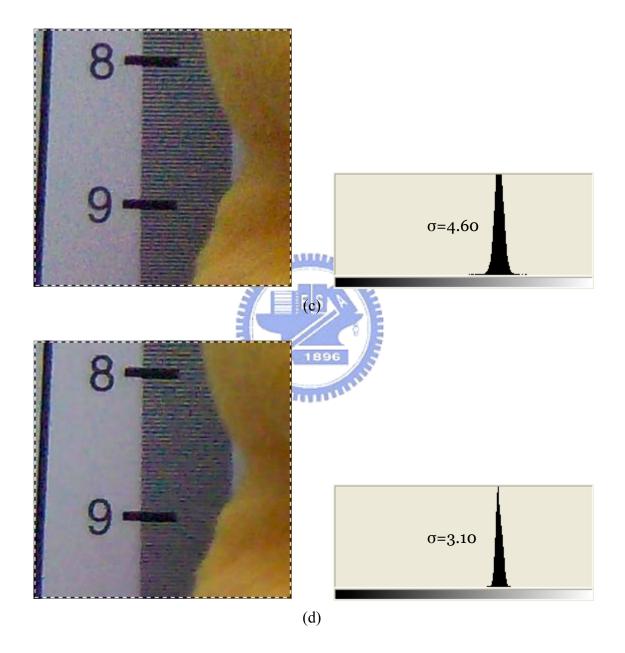



Fig. 28. (Continued)



Fig. 29. CFA image captured by K1003 under ISO 1600 condition. (a) Resolution chart with fluff doll captured by K1003 under ISO 1600 condition; (b) ISO 1600 noise filtered by K1003 and standard deviation of flat area; (c) ISO 1600 noise filtered by Bosco-and-Mancuso filter and standard deviation of flat area; (d) ISO 1600 noise filtered by proposed filter and standard deviation of flat area.

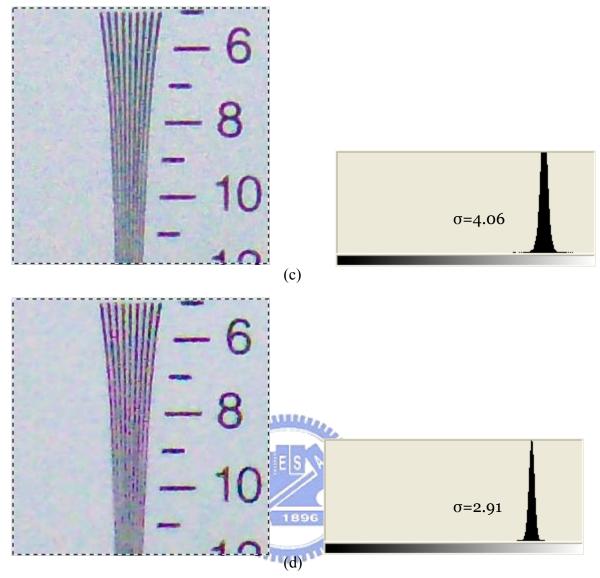



Fig. 29. (Continued)

In order to yield better result, the parameter  $Th_{uniform}$  of green channel has been fine tuned as

$$Th_{uniform} = \begin{cases} 1 * \sigma(C_0), & \text{if } ISO = 100, \\ 3 * \sigma(C_0), & \text{if } ISO = 1600, \\ 2 * \sigma(C_0), & \text{else}, \end{cases}$$
(42)

and fine tuned

$$Th_{uniform} = \begin{cases} 3 * \sigma(C_0), & \text{if } ISO = 1600, \\ 2 * \sigma(C_0), & \text{else,} \end{cases}$$
(43)

for red/blue channel. As the images shown in Figs. 30(a)-(b), resolution preserved more accordingly and the standard deviation on the flat area still less than other filters. Nonetheless, Fig. 30(c) shows that the discontinuous pattern problem is still exist.

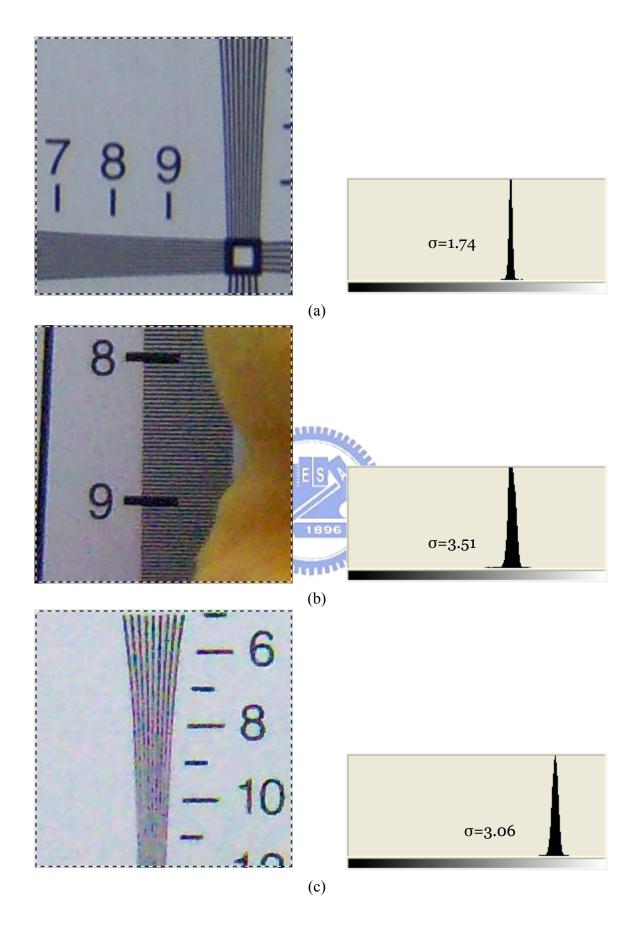



Fig. 30. Images with fine tuned parameter. (a) ISO 100; (b) ISO 400; (c) ISO 1600.

# Chapter 5 Conclusions

In this thesis, we have presented a denoising method which consists of three ideas. One is to filter noisy pixel based on nearest pattern to keep edge information, another one is to use noise characteristic of camera to judge the uniformity of current processed area and the last one is to make use of spatial masking to keep edge information again on the highly texture area.

The results from above experiments indicate that proposed denoising method performs better under ISO 100 and ISO 400 condition, since there is a discontinuous patterns problem generated in few specific image areas under ISO 1600 condition. The root cause of discontinuous patterns problem is that filtering strength of proposed denoising method didn't change smoothly, so that discontinuous patterns happened under ISO 1600 condition. Not only this issue is the next step we would like to overcome, but also how to judge current processed area is uniform without sacrificed real signal too much is the topic we will be interested in. In addition, a method to fine tune the filtering strength automatically under any ISO condition would be another valuable research to optimize noise filtering strength.

## References

- A. Bosco and M. Mancuso, "Adaptive filtering for image denoising," ICCE.
   International Conference on Consumer Electronics, pp. 208-209, Jun. 2001.
- [2] A. Bosco and M. Mancuso, "Noise filter for Bayer pattern image data," Europe Patent EP1289309, May 2003.
- [3] M. Mancuso, "Non-linear image filter for filtering noise," United States Patent 6108455, Aug. 2000.
- [4] B. Bayer, "Color Imaging Array," U. S. Patent 3 971 065, Jul. 1976.
- [5] Z. Wang and A. C. Bovik, "A universal image quality index," IEEE Signal Processing Letters, Vol. 9, no. 3, pp. 81-84, Mar. 2002.
- [6] Z. Wang, E. P. Simoncelli, and A. C. Bovik, "Multi-scale structural similarity for image quality assessment," Invited Paper, IEEE Asilomar Conference on Signals, Systems and Computers, Vol. 2, pp.1398-1402, Nov. 2003.
- [7] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Transactions on Image Processing, Vol. 13, no. 4, pp. 600-612, Apr. 2004.
- [8] G. H. Chen, C. L. Yang, L. M. Po, and S. L. Xie, "Edge-based structural similarity for image quality assessment," IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 2, pp. 933-936, May 2006.