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數 位 相 機 彩 色 濾 鏡 陣 列 影 像 雜 訊 消 除 方 法 

學生：唐學用                               指導教授：林昇甫 博士 

國 立 交 通 大 學   電 機 學 院   電 機 與 控 制 學 程 碩 士 班 

摘 要       

當今時下，數位相機已幾乎完全取代傳統底片相機，舊有的底片也有

產品將之翻拍成數位照片，這個趨勢已如潮水般滾滾而來，不只是數位相

機，舉凡能數位化的產品都逃不過數位化的命運，只因數位資訊便於處理、

儲存以及傳遞。 

數位相機中的影像處理是經過了很多道的程序而成，幾乎所有的程序都

會增強雜訊的作用，所以降低雜訊的影響最好的辦法就是在任何影像處理

的程序之前就先將影像來源本身具有的雜訊濾除掉，而影像雜訊濾除最困

難的就是在濾除雜訊的同時也保存了影像的輪廓和高頻訊號。本篇論文提

出了另一種消除影像雜訊的架構，由三個想法所組成，一個是在影像區塊

中將正在處理的像素歸類給某一預設圖樣，既然可被歸類給某一圖樣，就

可以對這圖樣中的元素平均以降低雜訊，另一個是獲取校正過後的相機雜

訊特性，掃瞄出其雜訊特性並以標準差來表示，以便於用來判別正在處理

的影像區塊是否可以判定為均勻影像，進而做出最強的濾除效果。最後一

個是運用肉眼視覺系統不易察覺到那些藏在多紋路、高反差區域的影像雜

訊，所以不去濾除那些不易被察覺的雜訊以保存更多的影像輪廓訊號。 
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ABSTRACT 

Nowadays, traditional film camera has almost been replaced by digital 

camera in commercial market. This trend is not only on camera, but also on any 

product in which the signal can be digitalized, since digital information would 

be much convenience to be processed, stored, and transmitted. 

Image processing in digital camera consists of many processes. Almost all 

of the processes would enhance noise added in images. The best way to make 

noise strength be minimized is to reduce noise in front of any image processing. 

The difficulty of image denoising is always to preserve edge information, and 

filters out noise in flat area simultaneously. In this paper, we have presented a 

denoising method which consists of three ideas. One is to filter noisy pixel based 

on nearest pattern to keep edge information, another one is to use camera noise 

characteristic to judge the uniformity of current processed area and the last one 

is to make use of the property of spatial masking to keep edge information again 

on the highly texture area. 
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Chapter 1 

Introduction 

Nowadays, traditional film camera has almost been replaced by digital camera in 

commercial market. This trend is not only on camera, but also on any product in which the 

signal can be digitalized, since digital information would be more convenient to be processed, 

stored, and transmitted. The forecast volume of digital camera will be more than 130 million 

in year 2008 by statistical investigation. In general, once the camera has a good image quality 

under high ISO condition, it will have a big sale, since the high ISO performance is one of the 

important terms to attract user to buy it. The phenomenon is more obvious for high-end model. 

Nonetheless, once users buy it and take picture with high ISO condition, usually a lot of 

random noise can be seen all over the photo even though the camera had been claimed as a 

high ISO camera. 

 

1.1 Motivation and Contribution  

The trend of image resolution of digital camera is increasing nonstop and whereas the 

camera size tends to slim-down, so that the area of CCD photodiode is getting smaller. In this 

case, the sensitivity of CCD is getting down and down in consequence. That is to say, low 

SNR CCD has been made use of producing high ISO camera. Nonetheless, users won’t accept 

grainy image when taking a high ISO picture. To tackle this difficult problem, an advanced 

denoising method of digital image is required.  

 

Bosco and Mancuso [1]-[3] provided an adaptive filtering for image denoising in front of 

image interpolation. Their paper and patents provided a good denoising method. They 

invented a local feature detector to compute texture degree of the area so that it is feasible to 
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determine the strength of the filter. If the area under processing is highly textured then the 

filtering strength has to be low, whereas the filtering strength is high when the area is almost 

uniform. However, we have found Bosco and Mancuso’s method [1]-[3] didn’t filter out noise 

as we expected when we have implemented their algorithm.  

 

According to above situation we mentioned, it’s valuable to develop a new denoising 

method which is to reduce more random noise and preserve more edge information of image 

simultaneously.  

 

1.2 Outline 

This thesis is structured as following: An overview of related works about random noise 

reduction would be given in Chapter 2. Chapter 3 would introduce proposed method 

represented in system block diagram and algorithms. Based on the proposed method, we 

would like to discuss experimental results in Chapter 4. At the end of this work, we draw a 

conclusion in Chapter 5.  
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Chapter 2 

Review of Related Works 

Image acquisition devices made up of many kinds of different ways. In this chapter, 

some specific prior works related to this proposed denoising method will be reviewed. In 

Section 2.1, we would like to explain why Color Filter Array (CFA) is necessary and what 

kind of CFA we have taken. In Section 2.2, two of HVS models which have been used in the 

proposed denoising method would be reviewed. Then, Two kinds of image denoising methods 

in spatial domain such as bilinear, texture detection based denoising algorithm would be 

brought up in Section 2.3 and 2.4 respectively since we used them to compare the 

performance. Finally, what we would like to review are the methods of image quality 

assessment. They are PSNR and Structural Similarity (SSIM) stated in Section 2.5 and 2.6 

respectively. 

 

2.1 Color Filter Array 

In general, there are two types of images sensing structure for commercial digital camera. 

One is to use 3 or 4 image sensors to capture image of a scene as shown in Fig. 1. In order to 

make this structure work, optical paths, optical filters and image sensors for each color 

channel have to be separated to sense the image of a scene. Once image sensors got R, G and 

B color information, what we need to reproduce color is just picking up R, G and B color 

information for each corresponding coordinate without doing color interpolation. It works 

well! However, it’s a very expensive approach, so that only professional digital cameras use 

this structure.  
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Fig. 1.  Capture an image by three image sensors structure. 

 

The other one, a single image sensor is used to capture image of a scene as shown in Fig. 

2. The structure is much simple so as to reduce camera cost. In order to make this structure 

work, a color filter with mosaic pattern in front of image sensor to separate color information 

is necessary. So definitely, the resolution is reduced. To reproduce original color and 

resolution, interpolation is needed accordingly. At the right hand side of Fig. 2, each small 

square is representing a pixel. Basically, the pixels beneath color filters are light sensitive 

cells to respond the intensity of light falling on them. Color filter is aligned to sub-sample 

color information of a scene.  There are many kinds of CFA. In digital camera, Bayer pattern 

CFA [4] with 3 primary colors R, G and B (as known as Bayer pattern) is widely used. As 

mention before, this thesis is going to discuss noise reduction method mainly based on this 

Bayer pattern domain. 

 

 

 

 

 

 

Fig. 2.  Capture an image by one image sensor structure. 

R CCD 

G CCD

B CCD 
Lens Filter Scene 

Scene Lens Filter Image Sensor
Bayer pattern 
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2.2 Bilinear Method 

Bilinear is widely used in smoothing edge, typically in the application of re-scaling 

image size. Also, it can be used in denoising application. The method is described as 

following equation, 

)1(),,(*)1)(1()1,(*)1(
),1(*)1()1,1(*),(

vuCdvduvuCdvdu
vuCdvduvuCdudvdvvduuC

−−++−+
+−+++=++

 

and illustrated as Fig. 3. 

 

 

 

 

 

 

Fig. 3.  Reproduced an unknown value C ),( dvvduu ++  from its neighboring pixels by 
using bilinear method. 

 

2.3 Human Visual System 

Human Visual System (HVS) is complex and not fully understood yet. It’s difficult to 

use a mathematical function to represent it. It would be more realistic to get some useful 

information by experiments. There are two important observations on monochrome image 

which can be used for noise reduction. The first one is Just Noticeable Difference (JND) 

which is the minimum amount of stimulus intensity must be changed to cause a noticeable 

difference in sensory experience. 

 

Ernst Weber (1795~1878), an experimental psychologist in 19th century, observed that 

the size of the JND threshold is related to initial stimulus magnitude. This relationship, had 

been simplified as Weber's Law by Gustav Theodor Fechner(1801~1887), can be expressed as 

C(u,v) C(u+1,v) 

C(u+1,v+1) C (u,v+1) 

du
dv

C ),( dvvduu ++  
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Easier to detect noise 

Noise is less detectable 

along this edge 

Noise is almost 

undetectable here 

It’s difficult to detect 

noise along this edge 

ΔI/I = k. where ΔI represents JND threshold, I represents the initial stimulus intensity and k 

stands for the proportional constant. In other words, Weber's Law states that the size of the 

JND (i.e., ΔI) is a constant which is proportional to the original stimulus value. 

  

The second one is spatial masking. Natural images contain large changes in luminance, 

and these changes suppress the ability of the eyes to detect distortions spatially adjacent to 

them, this is so-called spatial masking. As a result of masking, noises in images are less 

detectable along strong edges and in highly textured areas, than in smooth areas of the image 

as illustrated in Fig. 4.  

 

 

 

 

 

 

 

 

 

Fig. 4. Spatial Masking effect. 

 

2.4 Bosco-and-Mancuso Filter for Image Denoising 

Bosco and Mancuso [1]-[3] invented an adaptive image filter which is used to reduce the 

amount of noise in images captured by sensors in Bayer pattern format. The concept of this 

filter acts mainly on smoothing the high spatial frequency components which are hardly 

perceived by the HVS. 
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In Bosco and Mancuso’s paper [1] and patent [2],[3], they made use of the Weber’s Law 

to determine the JND, ΔI, which could be differentiated between intensity I and I+ΔI. Bosco 

and Mancuso’s HVS model assume that the uniform areas are the ones with details amplitude 

under JND. Having these considerations in mind they designed an algorithm that can 

distinguish if the current processed area is uniform area or not. Once the current processed 

area is not uniform, the algorithm will go to detect how textural the area is and adapts its 

filtering strength for the noisy pixel. 

 

The system block diagram they designed is illustrated in Fig. 5. As mentioned above, the 

local feature detector is to compute texture degree of the area. The estimation is based on the 

information of distances, noise level, JND and exposure condition from distance and noise 

level estimator, HVS evaluator and exposure controller respectively. Once texture degree of 

this current processed area is decided, it would be able to determine the strength of the 

filtering strength. 

 

 

 

 

 

 

Fig. 5.  System block diagram of Bosco-and-Mancuso filter. 

 

The algorithm they proposed is to use two different filter masks, depending on which 

color is current processed pixel. One mask is for green pixels exclusively, the other one is for 

red/blue pixels, but not operated simultaneously. Fig. 6 is to illustrate those two kinds of 

operating windows established from Bayer pattern through 2 masks. 

Operating 
Window 

Establisher 

Distance 
and Noise 

Level 
Estimator 

HVS 
Evaluator 
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Feature 
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Filtering 
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Fig. 6.  Two kinds of operating windows established from Bayer pattern. 

 

Definitely, green operating window is established when current pixel is green. Red and 

blue operating window will also be established once current pixel is red or blue respectively. 

The green operating window is different from red and blue, since the green channel has 

double information comparing with either red or blue channel in Bayer pattern format.  

In each case of operating window for red, green and blue, let’s define the current pixel C0 

and eight neighboring pixels C1 to C8 respectively. iC  will also represent for C1 to C8 to 

describe easier in many cases. So now we have symbol C0 to C8 or C0 and iC  to stand for 

elements of operating window such as C0 represent for G0 when current color channel is green, 

C1 represent for G1, etc., up to C8. For red and blue channel, definitely, C0 to C8 represent for 

R0 to R8 and B0 to B8 respectively.  
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C0 is the current pixel with noise needed to be filtered. As described in Bosco and 

Mancuso’s paper and patent, C0 will be filtered and replaced with a weighted average of C1 to 

C8. However, how much is the weight of C1 to C8? That will depend on how similar of them 

to C0. In the design, the higher similarity degree of neighboring pixels, the bigger weight of 

them to C0. The similarity degree is calculated based on the brightness of current processed 

pixel and takes into account of the predicted noise level NL of current area as following: 

( ) [ ] ( ) )2(,1*1*
00 max −−+= tNLKDKtNL cnnc

where, Dmax is the maximum distance derived from calculating each distance iD  of 

neighboring pixel iC  to C0 and Kn is a parameter to determine the strength of filtering. In the 

definition, Kn=1 stands for almost flat area since this area could be filtered strongly, and Kn=0 

stands for highest texture area as this area could not be filtered too much. 

 

Recall the assumption of uniform area by using Weber’s Law and refers to the Kn 

definition as above, we can assume the curve of Kn versus Dmax can be drawn as Fig. 7. That’s 

to say, filter current pixel strongly if Dmax not greater than HVS threshold ThHVS and filter 

current pixel lighter depending on how noisy the current area is. If Dmax is greater than ThHVS 

+ NL, then the area has to look as a highly texture area without strongly filter needed. 

However, they used Figs. 8 and 9 instead.  

 

 

 

 

 

 

Fig. 7.  A candidate of Kn curve. 

Kn 

Dmax 

ThHVS ThHVS + NL 

1 
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Fig. 8.  Kn curve for G channel in Bosco and Mancuso’s patents. 

 

 

 

 

 

 

Fig. 9.  Kn curve for R/B channel in Bosco and Mancuso’s patents. 

 

Kn is the overall filtering strength of current processed area. Although the filtering 

strength is given, we still need to determine the filtering strength of each neighboring pixel 

iC  to target pixel C0. Therefore, in order to evaluate similarity of each neighboring pixel iC  

to the target pixel C0, two boundary thresholds refer to Th1 and Th2 are used to stand for most 

similar and least similar according to following equations:  

( ) )3(,*1* minmax1 DKDKTh nn −+=

( ) )4(,
2

*1* minmax
max2 ⎟

⎠
⎞

⎜
⎝
⎛ +

−+=
DD

KDKTh nn

where, Dmin is the minimum distance between C0 to iC . The value of similarity iK  can be 

determined by  

Dmax 

Kn 

ThHVS + NL 

1 

Kn 

NL ThHVS + NL 
Dmax 

1 
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and Fig. 10 is the illustration for it. At the end, the result of pixel out is expressed as 

( )[ ] )6(.*1*
8
1 8

1
0∑ −+= CKCKPixelOut iii  

 

 

 

 

 

 

Fig. 10.  Similarity derived from distance iD  of neighboring pixel to C0. 

 

2.5 Peak Signal to Noise Ratio 

Generally, Peak Signal to Noise Ratio (PSNR) is the most regular way used in the metric 

of distortion level. It is defined as a ratio between possible maximum power of image 

intensity and the power of distorted difference in terms of logarithmic decibel scale. In our 

application, given an original image OM*N and processed image PM*N with dimension of M*N, 

the PSNR is defined as 
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where, Imax represents for the possible maximum power of image intensity and MSE is 

defined as 
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2.6 Structural Similarity 

In many cases, the objective metric of PSNR and MSE could not correlate well with 

subjective perception. Therefore, Wang [5] developed Structural Similarity (SSIM) which is 

based on an assumption that HVS is highly sensitive to structural information of a scene, and 

is defined as 

[ ] [ ] [ ] )9(,),(),(),(),( γβα POsPOcPOlPOSSIM ⋅⋅=

where α, β and γ are the parameters to define the relative importance of the three components. 

The equation l(O,P), c(O,P) and s(O,P) are defined as 
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where k1, k2 and k3 are small constants.  
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Chapter 3 

Proposed Image Noise Reduction System 

The proposed denoising method would be introduced in this chapter. At the beginning, 

we would like to have brief description of the image processing on digital camera and the 

noise category we encountered in Section 3.1. Section 3.2 brings up system block diagram of 

proposed denoising method. At the end, Section 3.3 explains the detail algorithms.  

 

3.1 Overview of Image Processing on Digital Camera 

In general, the image processing flow of digital camera is shown as Fig. 11. Once user 

pressed the shutter button to take an image, the scene in front of camera would be captured by 

an image sensor, and converted to digital information by analog front end. Normally, black 

level compensation must be done in front of any processing to calibrate optical black. At the 

second, lens shading compensation sometimes could be applied. Meanwhile, statistic 

information for AE, AF and AWB is calculated and stored. And then, save the raw image to 

memory. What we are going to handle is this raw image. The format of input image is Bayer 

pattern, and output format of filtered image is Bayer pattern again without any formatting 

change. 

Succeeding to the step of image denoising, color interpolation is normally applied to 

reproduce the missing color components for each pixel. Since every image sensor has a 

unique electrical response to light, color matching block is to compensate such kind of 

deviation. Then, gamma correction is to compensate the non-linearity of display device. YCC 

conversion block is to transform RGB color domain to YCbCr color domain. Usually, the Y 

channel will be used to enhance the edge of image. The final step is to perform JPEG 

compression to output JPEG image.  
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Fig. 11.  Typical block diagram of image processing in digital camera. 

 

As stated in Chapter 1 that we are interested in random noise. Fig. 12 is an example 

showing the noisy image captured by a digital camera. Gaussian noise distribution is shown in 

the histogram as Figs. 12 (b), (d), and (f). 

 

Basically, not only random noise but also fix pattern noise in digital camera need to be 

handled. However fix pattern noise is much smaller than random noise if the camera made 

used of CCD sensor to capture image. Therefore, for the noise problem of digital camera, the 

most headache thing is dealing with Gaussian random noise. 
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σ=3.31 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 

(b) 
 
Fig. 12.  Noise distribution illustration from real camera. (a), (b) Image “OECF” be taken 
under ISO 100 condition, and its noise distribution; (c), (d) Image “OECF” be taken under 
ISO 400 condition, and its noise distribution; (e), (f) Image “OECF” be taken under ISO 1600 
condition, and its noise distribution. 
 
 
 
 
 
 
 



 16

σ=4.01 

σ=6.18 
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(f) 
Fig.12.  (Continued) 
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3.2 Block Diagram of Proposed Denoising Method 

 

 

 

 

 

 

 

 

 

 

Fig. 13.  Block diagram of proposed denoising method. 

 

In the same way, the first step is to establish operating window. Since the 5x5 operating 

window as shown in Fig. 6 is very common, so that we just use it without change. Once the 

operating window is determined, a distance calculator is to calculate distance information 

based on operating window. By feeding the distance information to uniform image 

distinguisher, the current processed area can be judged as a uniform area, highly texture area 

or pattern classification needed area based on pre-loaded noise information. Once the 

processed area has been judged as a uniform area, the succeeding nine pixel mixer will be in 

charge to output final result and whereas the succeeding bypass bridge will be in charge to 

output final result while the processed area has been judged as a highly texture area without 

filtering needed. In the case of processed area is neither a uniform area nor a highly texture 

area, the succeeding nearest pattern classifier with pattern average filter will be used to output 

final result. Following Section 3.3 is going to explain the detail about how do they work.  
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  C1   

 C2  C3  

C4  C0  C5 

 C6  C7  

  C8   

C1  C2  C3 

     

C4  C0  C5 

     

C6  C7  C8 

3.3 Algorithm of Proposed Denoising Method 

The same as Chapter 2, the elements C0 ~ C8 of operating window are generically 

represented for G0 ~ G8, R0 ~ R, and B0 ~ B8 respectively depending on which color is the 

current pixel to be processed. Fig. 14 is to illustrate the two operating windows which are 

referred to C0 ~ C8. 

 

 

 

 

 

                     (a)                                 (b) 

Fig. 14.  Two kinds of operating windows. (a) Operating window when current processed 
color channel is green; (b) Operating window when current processed color channel is red or 
blue. 

 

Once the operating window is established, the next step is to calculate distance. Distance 

calculator is going to calculate the distances iD  of each neighboring pixel to current pixel C0 

defined as  

)13(821,0 .,,,iCCD ii L=−=

Also, Dmax and Dmin respectively represent for maximum and minimum distances which can 

be found once iD  derived.  

 

There are twelve pre-set patterns as shown in Fig. 15. Eqs. (14)-(25) are the equations to 

calculate the distance of those twelve pre-set patterns to C0 when current processed pixel is 

green. 
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             (a)                       (b)                       (c) 

 

 

 

 

             (d)                       (e)                       (f) 

 

 

 

 

             (g)                       (h)                       (i) 

 

 

 

 

             (j)                       (k)                       (l) 

Fig. 15.  Pre-set twelve patterns when current processed pixel is green. (a) Horizontal line; (b) 
Vertical line; (c) Rising line; (d) Falling line; (e) Left-Bottom corner; (f) Bottom-Left corner; 
(g) Right-Bottom corner; (h) Bottom-Right corner; (i) Right-Top corner; (j) Top-Right corner; 
(k) Left-Top corner; (l) Top-Left corner.  
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 When current pixel is red or blue, the pre-set patterns are shown in Fig. 16 and Eqs. 

(26)-(37) are the equations to calculate distance of those twelve pre-set patterns to C0. The 

reason of having 2 sets of pattern distance equation is because the index of element is 

different between green channel and either red or blue channel.  
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             (a)                       (b)                       (c) 

 

 

 

 

             (d)                       (e)                       (f) 

 

 

 

 

             (g)                       (h)                       (i) 

 

 

 

 

             (j)                       (k)                       (l) 

Fig. 16.  Pre-set twelve patterns when current processed pixel is red or blue. (a) Horizontal 
line; (b) Vertical line; (c) Rising line; (d) Falling line; (e) Left-Bottom corner; (f) Bottom-Left 
corner; (g) Right-Bottom corner; (h) Bottom-Right corner; (i) Right-Top corner; (j) Top-Right 
corner; (k) Left-Top corner; (l) Top-Left corner.  
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In each case of pattern sets, once the distances of those patterns to C0 are derived, 

DmaxPattern and DminPattern which represent for maximum and minimum distances of those 

patterns to C0 can be found at the same time.  

 

In addition to the distance information, we still need camera noise characteristic which 

can be obtained by doing noise scanning as a curve shown in Fig. 17.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17.  Curve fitting for noise characteristic in terms of standard deviation. 

 

Noise pre-loader is doing the job of loading pre-scanned noise level in terms of standard 

deviation σ which could be obtained by calculating on several flat areas from dark to bright as 

the small circles shown in Fig. 17. However we would like to use a curve fitted model which 

has the similar value to the reality noise instead of loading pre-scanned value. Curve fitting 

model expressed as  

σ 

Intensity

Curve Fitting for standard deviation

σmax 

max_σyieldI  
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where, 
max_σyieldI  is intensity of the flat area which has the maximum standard deviation there 

as shown in Fig. 17. In the sense, σmax will be different under different ISO speed. Therefore, 

σmax has to be found for each ISO speed from pre-scanned noise information.  

 

Having both distance information and camera noise characteristic information, we now 

can distinguish if the current area is uniform or not by using multiple of σ to be the threshold 

as  

( ) )39(,0CmThuniform σ∗=

where, m is a different constant depend on color channel, ISO speed, and also how much 

captured images like to be filtered. Generally, if DmaxPattern is less than Thuniform, we would 

consider current area as a uniform image so that the result of output pixel is the average of C0 

to C8. On the other hand, if both DmaxPattern and DminPattern are greater than Thuniform, the current 

area must be a highly texture area without noise reduction needed since the spatial masking of 

HVS will work fine here. While the Thuniform is between DmaxPattern and DminPattern, the value of 

DminPattern will help us to find out which pattern is the nearest pattern. By averaging the 

element in nearest pattern, the end result of output pixel can be derived. Eq. (40) can help us 

understand criteria easier. 
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Chapter 4 

Experiments 

In this chapter, we would like to discuss the experiment results. The proposed method is 

implemented in matlab language. There are 148 pieces of test images downloaded from USC, 

and have been classified to miscellaneous, texture and aerial images. Some of them are 

monochrome, and some are colored. Those color images have been separated into R, G and B 

raw information. Hence, 254 pieces of images we have tested in total. Also, the testing images 

have been classified to miscellaneous, texture and aerial images. Section 4.1 is going to 

discuss the test results of those images. As for Bayer pattern test images, they were captured 

by real camera, model: K1003, from market, and will be discussed in Section 4.2.  

 

4.1 Test Results of the Images with Additive Noise: 

Tables 1~6 show the noise filtering results for those images with additive Gaussian, 

Rayleigh, Gamma, Exponential, Uniform and Pepper-and-Salt noises. As shown in the tables, 

we use 3.125, 7.1875 and 18.75 instead of 5, 10 and 20 of the standard deviation to be the 

additive random noise. That is because the real camera K1003 we tested has a corresponding 

relation of ISO 100, 400 and 1600 induce standard deviation σ=3.125, 7.1875 and 18.75 

Gaussian noise respectively. It will be more convenient to compare test results of downloaded 

images and Bayer pattern images by using the same standard deviation. 

 

In order to compare the testing result easier, once the testing result is the maximum value 

in its own comparing block, the word will be shown in blue. For example, the proposed filter 

has the better SSIM and PSNR for the miscellaneous images with additive σ=3.125 Gaussian 

noise, so that 0.95522 and 38.8279 have been shown in blue in Table 1. 
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Table 1. 

Proposed SSIM and PSNR compare with other filters for the images with additive Gaussian 

random noise. 

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)
Original Image 1 0 1 0 1 0
Noisy Image 0.9345215 2635.3187 38.078523 0.7602482 13063.999 31.117336 0.4132095 85827.13 22.940767

Bilinear Filter 0.9458909 8751.3833 35.985395 0.8668262 12459.015 32.961046 0.598386 37903.299 26.78399

BoscoMancuso 0.94303 3211.7889 37.512465 0.8396472 9438.6921 32.709541 0.7069787 25403.612 28.47603

Proposed Filter 0.955219 2369.0048 38.82792 0.877256 7998.7579 33.55646 0.721585 26745.156 28.351483

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 1 0 1 0

Noisy Image 0.977307 2692.0342 37.94795 0.9054758 13256.236 31.02415 0.68008 86799.959 22.86681

Bilinear Filter 0.9511116 19645.974 32.04139 0.921281 23277.948 30.299642 0.789722 48656.289 25.76058

BoscoMancuso 0.96658 7787.917 34.328642 0.9108355 20131.951 30.055265 0.7844042 65511.752 25.445342

Proposed Filter 0.9710045 3577.3602 36.745723 0.9145903 14094.103 30.941432 0.7851884 67157.284 25.322661

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 1 0 1 0

Noisy Image 0.944267 2735.3849 37.87538 0.7844696 13493.13 30.944135 0.4271327 90031.875 22.701765

Bilinear Filter 0.9299304 6294.7093 35.401446 0.859433 9859.6851 32.759052 0.6002676 35215.982 26.819875

BoscoMancuso 0.9407586 4001.8892 36.596138 0.8356556 11066.248 32.068922 0.6667525 29015.028 28.068872

Proposed Filter 0.9442624 3093.7263 37.452481 0.8583594 9603.6531 32.76298 0.669239 30138.787 28.11235

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 1 0 1 0

Noisy Image 0.9520319 2687.5793 37.96728 0.8167312 13271.122 31.028542 0.5068074 87552.988 22.836447

Bilinear Filter 0.942311 11564.022 34.476077 0.8825132 15198.883 32.00658 0.662792 40591.856 26.454814

BoscoMancuso 0.9501229 5000.5317 36.145748 0.8620461 13545.63 31.611243 0.7193785 39976.797 27.33008

Proposed Filter 0.956829 3013.3638 37.675376 0.883402 10565.505 32.42029 0.725338 41347.076 27.262164

Noisy Image and Filtered

Image Comparing with

Original Image

Adding Gaussian Noise

 (σ=3.125)

Adding Gaussian Noise

(σ=7.1875)

Adding Gaussian Noise

(σ=18.75)

Average

Performance

of Misc

images

Average

Performance

of Texture

images

Average

Performance

of Aerial

images

Average

Performance

for above 3

categories
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Table 2. 

Proposed SSIM and PSNR compare with other filters for the images with additive Rayleigh 

random noise. 

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)
Original Image 1 0 1 0 1 0
Noisy Image 0.9524053 2108.0467 39.203924 0.8195329 10084.949 32.405071 0.5185017 64174.225 24.362159

Bilinear Filter 0.9544726 8332.0962 36.322186 0.8977145 11236.724 33.56601 0.6872944 32053.961 27.608477

BoscoMancuso 0.9553635 2893.3807 38.059051 0.8745135 8262.0186 33.37031 0.7635932 23782.496 28.78649

Proposed Filter 0.967256 2026.9335 39.56338 0.914593 6627.2968 34.40967 0.776909 25925.48 28.528432

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 1 0 1 0

Noisy Image 0.982769 2329.5273 38.61549 0.9254763 11027.233 31.86248 0.7323481 69047.683 23.899324

Bilinear Filter 0.9558581 18219.152 32.364742 0.935453 19827.575 30.958405 0.83327 37271.335 26.81695

BoscoMancuso 0.9713345 7188.3697 34.694235 0.9257176 17597.343 30.623742 0.8211497 53774.549 26.181915

Proposed Filter 0.9752206 3273.8703 37.157302 0.9271713 12606.569 31.447376 0.8156782 62887.65 25.727853

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 1 0 1 0

Noisy Image 0.952311 2392.2183 38.49954 0.8129201 11556.016 31.661924 0.481988 75853.428 23.490104

Bilinear Filter 0.934878 5985.4082 35.599208 0.876497 8877.6263 33.18623 0.6493042 30406.011 27.458247

BoscoMancuso 0.9468747 3707.5422 36.90747 0.8533796 9989.9041 32.478467 0.7012338 26447.659 28.45958

Proposed Filter 0.9496021 2841.6673 37.817415 0.873894 8619.5344 33.182683 0.702278 27782.268 28.452171

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 1 0 1 0

Noisy Image 0.962495 2276.5974 38.77298 0.8526431 10889.399 31.976493 0.5776126 69691.779 23.917196

Bilinear Filter 0.9484029 10845.552 34.762045 0.9032214 13313.975 32.570213 0.7232894 33243.769 27.294557

BoscoMancuso 0.9578576 4596.4309 36.553585 0.8845369 11949.755 32.157506 0.7619922 34668.235 27.80933

Proposed Filter 0.964026 2714.157 38.179364 0.90522 9284.4666 33.01324 0.764955 38865.133 27.569485

Average

Performance

for above 3

categories

Adding Rayleigh Noise

(σ=18.75)

Average

Performance

of Misc

images

Average

Performance

of Texture

images

Average

Performance

of Aerial

images

Noisy Image and Filtered

Image Comparing with

Original Image

Adding Rayleigh Noise

(σ=3.125)

Adding Rayleigh Noise

(σ=7.1875)
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Table 3. 

Proposed SSIM and PSNR compare with other filters for the images with additive Gamma 

random noise. 

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)
Original Image 1 0 1 0 1 0
Noisy Image 0.9468771 3923.0955 36.601812 0.8055776 18585.55 29.843401 0.5023506 108338.14 22.119836

Bilinear Filter 0.9526165 9373.675 35.066067 0.8889569 17880.457 30.807949 0.6684268 71676.381 24.061314

BoscoMancuso 0.9517971 4601.662 36.09254 0.8661901 15798.758 30.695568 0.7468097 62465.894 24.86763

Proposed Filter 0.962456 3819.0176 36.86021 0.901636 15091.346 31.05836 0.750736 71338.921 24.371313

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 1 0 1 0

Noisy Image 0.980834 4048.3634 36.45442 0.9202432 18567.251 29.779769 0.7246066 104345.14 22.168423

Bilinear Filter 0.9587397 16716.207 32.455294 0.939066 19828.859 30.53282 0.834452 53357.365 25.34136

BoscoMancuso 0.971281 7982.279 34.189189 0.9263285 21341.208 29.764013 0.8317934 67193.132 25.040787
Proposed Filter 0.9739903 4980.7568 35.473742 0.9238756 20166.031 29.720223 0.8120095 99742.349 23.943844

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 1 0 1 0

Noisy Image 0.951178 3053.7849 37.50087 0.810479 14725.317 30.660279 0.4845545 94198.712 22.559213

Bilinear Filter 0.937584 6051.2398 35.561203 0.880459 10539.637 32.63553 0.6566235 44080.417 26.146491

BoscoMancuso 0.9476738 4107.58 36.572273 0.8571346 12033.662 31.883421 0.714269 38748.237 27.29767

Proposed Filter 0.949818 3454.768 37.094764 0.8747839 11548.832 32.264883 0.7111025 42946.461 27.181801

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 1 0 1 0

Noisy Image 0.9596297 3675.0813 36.85237 0.8454333 17292.706 30.094483 0.5705039 102294 22.282491

Bilinear Filter 0.9496467 10713.707 34.360854 0.902827 16082.984 31.32543 0.7198342 56371.387 25.183055

BoscoMancuso 0.9569173 5563.8403 35.618001 0.8832178 16391.209 30.781 0.764291 56135.754 25.73536

Proposed Filter 0.962088 4084.8475 36.476239 0.9000984 15602.07 31.014488 0.7579495 71342.577 25.165652

Noisy Image and Filtered

Image Comparing with

Original Image

Adding Gamma Noise

(σ=3.125)

Adding Gamma Noise

(σ=7.1875)

Adding Gamma Noise

(σ=18.75)

Average

Performance

of Misc

images

Average

Performance

of Texture

images

Average

Performance

of Aerial

images

Average

Performance

for above 3

categories
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Table 4. 

Proposed SSIM and PSNR compare with other filters for the images with additive 

Exponential random noise. 

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)
Original Image 1 0 1 0 1 0
Noisy Image 0.9538932 1916.0539 39.703041 0.8278349 9171.7644 32.892586 0.5404806 55881.464 25.003254

Bilinear Filter 0.9542979 8318.3242 36.413495 0.8999395 10783.027 33.927708 0.7056303 27208.719 28.445277

BoscoMancuso 0.9554814 2767.8087 38.328801 0.8711072 7869.327 33.648945 0.7638481 21312.695 29.324212

Proposed Filter 0.964009 1934.0347 39.82872 0.903121 6360.8482 34.60461 0.78714 21304.67 29.45893

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 1 0 1 0

Noisy Image 0.983237 2137.9798 39.01697 0.9282737 10101.145 32.27136 0.7469824 60810.245 24.473434

Bilinear Filter 0.95507 18765.966 32.283742 0.934426 20676.762 30.896156 0.838341 36237.881 27.04295

BoscoMancuso 0.971111 7228.5954 34.70439 0.9233719 17785.997 30.61 0.8138668 55504.168 26.107744

Proposed Filter 0.9748681 3110.5723 37.401785 0.9235726 12031.845 31.592684 0.815686 58407.968 26.017606

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 1 0 1 0

Noisy Image 0.952762 2328.7978 38.64061 0.8182523 11233.554 31.806479 0.5019272 69021.956 23.901791

Bilinear Filter 0.9340914 6044.9248 35.569447 0.876264 8876.268 33.19371 0.663491 27849.38 27.845443

BoscoMancuso 0.9458779 3711.0621 36.897107 0.8462719 10219.802 32.352077 0.6965737 26525.128 28.454309

Proposed Filter 0.9458406 2879.239 37.741935 0.8583505 9119.3632 32.819789 0.705502 26401.613 28.69633

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 1 0 1 0

Noisy Image 0.963298 2127.6105 39.12021 0.8581203 10168.821 32.323475 0.5964634 61904.555 24.459493

Bilinear Filter 0.9478198 11043.072 34.755561 0.903543 13445.352 32.672525 0.7358207 30431.994 27.77789

BoscoMancuso 0.9574901 4569.1554 36.643433 0.8802503 11958.375 32.203674 0.7580962 34447.33 27.962088

Proposed Filter 0.9615725 2641.282 38.324145 0.8950146 9170.6856 33.0057 0.769443 35371.417 28.05762

Noisy Image and Filtered

Image Comparing with

Original Image

Adding Exponential Noise

(σ=3.125)

Adding Exponential Noise

(σ=7.1875)

Adding Exponential Noise

(σ=18.75)

Average

Performance

of Misc

images

Average

Performance

of Texture

images

Average

Performance

of Aerial

images

Average

Performance

for above 3

categories
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Table 5. 

Proposed SSIM and PSNR compare with other filters for the images with additive Uniform 

random noise. 

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)
Original Image 1 0 1 0 1 0
Noisy Image 0.9466853 3924.5979 36.604222 0.8036968 18604.176 29.836767 0.4964588 109637.05 22.066244

Bilinear Filter 0.9526122 9375.4442 35.066494 0.8884286 17887.981 30.80699 0.6631888 72237.356 24.021099

BoscoMancuso 0.950285 4613.0272 36.065946 0.8594214 15968.515 30.635285 0.7373354 63346.948 24.77497

Proposed Filter 0.963068 3811.8075 36.87933 0.90416 15010.803 31.07655 0.748584 71594.946 24.33555

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 1 0 1 0

Noisy Image 0.980778 4049.9905 36.45284 0.9196255 18622.458 29.766729 0.7200411 105759.46 22.105561

Bilinear Filter 0.9587221 16716.134 32.455076 0.938936 19847.905 30.52765 0.831692 53892.557 25.28707

BoscoMancuso 0.9713056 7983.0211 34.189932 0.9267439 21345.365 29.766276 0.8291931 67717.684 24.973077

Proposed Filter 0.9740785 4979.8103 35.475321 0.9247218 20171.318 29.727771 0.8110182 100198.21 23.91431

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 1 0 1 0

Noisy Image 0.951126 3050.9628 37.5055 0.8089396 14727.829 30.659513 0.4789032 95197.107 22.513315

Bilinear Filter 0.9375922 6051.0579 35.563036 0.880124 10542.482 32.63464 0.6525323 44444.054 26.105319

BoscoMancuso 0.9474257 4111.8302 36.562772 0.8545456 12118.549 31.832587 0.7059513 39464.875 27.148317

Proposed Filter 0.9504938 3440.4087 37.120414 0.8776947 11453.156 32.33459 0.709854 43117.236 27.15497

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 1 0 1 0

Noisy Image 0.9595298 3675.1837 36.85419 0.8440873 17318.155 30.08767 0.5651344 103531.2 22.228373

Bilinear Filter 0.9496422 10714.212 34.361535 0.902496 16092.789 31.32309 0.7158043 56857.989 25.137828

BoscoMancuso 0.9563388 5569.2928 35.606217 0.880237 16477.477 30.744716 0.757493 56843.169 25.63212

Proposed Filter 0.962547 4077.3421 36.491687 0.9021921 15545.092 31.046305 0.7564855 71636.796 25.134943

Noisy Image and Filtered

Image Comparing with

Original Image

Adding Uniform Noise

(σ=3.125)

Adding Uniform Noise

(σ=7.1875)

Adding Uniform Noise

(σ=18.75)

Average

Performance

of Misc

images

Average

Performance

of Texture

images

Average

Performance

of Aerial

images

Average

Performance

for above 3

categories
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Table 6. 

Proposed SSIM and PSNR compare with other filters for the images with additive 

Pepper-and-Salt random noise. 

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)
Original Image 1 0 1 0
Noisy Image 0.6280432 106620.26 22.010358 0.6280432 106620.26 22.010358

Bilinear Filter 0.71665 44444.204 26.06897 0.7166504 44444.204 26.068965

BoscoMancuso 0.7002945 59926.768 24.5426 0.7002945 59926.768 24.5426

Proposed Filter 0.6122379 107459.05 21.974556 0.937776 15220.672 30.73973

Method SSIM MSE(12bit) PSNR(dB) SSIMMSE(12bit) PSNR(dB)

Original Image 1 0 1 0

Noisy Image 0.7812048 103674.45 22.1105 0.7812048 103674.45 22.1105

Bilinear Filter 0.82964 54786.666 25.25988 0.8296402 54786.666 25.259881

BoscoMancuso 0.8118458 70802.997 23.869474 0.8118458 70802.997 23.869474

Proposed Filter 0.7686513 105006.78 22.053915 0.948625 23049.538 29.30574

Method SSIM MSE(12bit) PSNR(dB) SSIMMSE(12bit) PSNR(dB)

Original Image 1 0 1 0

Noisy Image 0.6385427 98627.618 22.32257 0.6385427 98627.618 22.32257

Bilinear Filter 0.71295 38241.843 26.46561 0.7129502 38241.843 26.46561

BoscoMancuso 0.6858612 58501.829 24.594154 0.6858612 58501.829 24.594154

Proposed Filter 0.6100298 100111.22 22.256986 0.915285 13365.4 31.08356

Method SSIMMSE(12bit) PSNR(dB) SSIMMSE(12bit) PSNR(dB)

Original Image 1 0 1 0

Noisy Image 0.6825969 102974.11 22.147809 0.6825969 102974.11 22.147809

Bilinear Filter 0.75308 45824.237 25.93149 0.7530802 45824.237 25.931485

BoscoMancuso 0.7326672 63077.198 24.335409 0.7326672 63077.198 24.335409

Proposed Filter 0.6636397 104192.35 22.095152 0.933895 17211.87 30.37634

Average

Performance

of Aerial

images

Average

Performance

for above 3

categories

Noisy Image and Filtered

Image Comparing with

Original Image

Adding Pepper-and-Salt Noise

ISO 100 and ISO 400

(didn't handle singular point)

Average

Performance

of Misc

images

Average

Performance

of Texture

images

Adding Pepper-and-Salt Noise

ISO 1600

(handle singular point)
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In general, the proposed filter has better SSIM and PSNR than Bosco-and-Mancuso filter 

as the test results shown in the row named “Average Performance for above 3 Categories” in 

Tables 1~6. However, there are some special cases such as noisy images have better SSIM 

and PSNR than filtered images as the results shown in the row named “Average Performance 

of Texture Images” and “Average Performance of Aerial Images” in Tables 1~5, bilinear filter 

has better SSIM than proposed filter as the results shown in the row named “Average 

Performance of Texture Images” and “ Average Performance of Aerial Images” in Tables 1~5, 

proposed filter has worse PSNR even if it has better SSIM than others as the results shown in 

the row named “Average Performance of Misc Images” in Tables 1, 2, 3, and 5, proposed 

filter has worst SSIM on texture images under high Gamma and Uniform noise condition as 

the results shown in the row named “Average Performance of Texture Images” in Tables 3 and 

5, proposed filter is not able to filter out Pepper-and-Salt noise under ISO 100 and 400 

conditions as the results shown in the column named “Adding Pepper-and-Salt Noise for ISO 

100 and ISO 400 (didn't handle singular point)” in Table 6, and proposed filter performs not 

badly in each kind of test patterns as shown in Tables 9~14. The phenomena mentioned as 

above have been brought up for case study as following: 

 

Case 1: Noisy images have better SSIM and PSNR than filtered images: 

The reason of noisy images have better SSIM and PSNR than filtered images is because 

original images themselves have had much random noise scattered on themselves already 

without additive noise. We have chosen a worst case for an example as shown in Fig. 18. The 

original image “1.3.08-Water” is shown in Fig. 18(a) and its 400% enlarged sub-image is 

shown in Fig. 18(b). By calculating a block in the sub-image, that σ=7 random noise at flat 

area has been found as shown in Fig. 18(b). No wonder that Fig. 18(c) which is the image 

“1.3.08-Water” with additive σ=3.125 Gaussian noise looks very similar to the original image 

by our eyes’ perception. As for filtered images shown in Figs. 18(d)-(f), not only additive 
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noise have been filtered, but also a lot of original images have been handled as noisy signals, 

so that filtered images are not so similar as noisy images to the original images. In the 

category of aerial images, it has the same situation as texture images so that noisy images 

have better SSIM and PSNR than filtered images. Fig. 19 is another example which is an 

aerial image to explain this phenomenon, and the situation of this image is totally the same as 

Fig. 18. So it could be understood by consulting the above analysis for this example.  

 

Case 2: Bilinear filter has better SSIM than proposed filter: 

In our evaluation, the bilinear filter is implemented as  

)41(.
2

4
)(

0
5472 CCCCC

PixelOut
+

+++

=

Therefore the filtering strength of bilinear filter is less than Bosco-and-Mancuso filter and 

proposed filter, when Bosco and Mancuso’s algorithm and proposed algorithm handle the 

current image block as a uniform area.  

 

The worst case happen on this case is still the image named “1.3.08-Water”. So we use 

2nd worst case, image “1.5.06-BrickWall”, for an example as shown in Fig. 20. The original 

image is shown in Fig. 20(a) and its 400% enlarged sub-image is shown in Fig. 20(b). It’s not 

difficult to observe that the original image is very noisy already. The standard deviation of 

each brick is around 6.5. Fig. 20(c) shows the image “1.5.06-BrickWall” with additional 

σ=7.1875 Gaussian noise. Also, the filtered images have been shown in Figs. 20(d)-(f). From 

subjective observation, we would say, the image filtered by bilinear filter as shown in Fig. 

20(d) has the highest similarity to the original images, the same as objective metric. It’s a 

reasonable result since original image is very noisy already, so that denoising filter with less 

filtering strength will output better SSIM images.  
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                  (a)                                   (b) 
 
 
  
 
 
 
 
 
 
 
 
                  (c)                                   (d) 
 
 
 
 
 
 
 
 
 
 
 
                  (e)                                   (f) 
Fig. 18.  An example illustrated that noisy texture image has better SSIM and PSNR than 
filtered images. (a) Original image “1.3.08-Water”; (b) 400% enlarged; (c) Adding σ=3.125 
Gaussian noise; (d) Filtered by Bilinear filter; (e) Filtered by Bosco-and-Mancuso filter; (f) 
Filtered by Proposed filter. 

σ=7 
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                  (a)                                   (b)  
 
 
 
 
 
 
 
 
 
 
 

(c)                                    (d) 
 
 
 
 
 
 
 
 
 
 
 

(e)                                   (f)  
Fig. 19.  Another example illustrated that noisy aerial image has better SSIM and PSNR than 
filtered images. (a) Original image “2.2.06-SanFran-cisco(BayBridge)B”; (b) 400% enlarged; 
(c) Adding σ=3.125 Gaussian noise; (d) Filtered by Bilinear filter; (e) Filtered by 
Bosco-and-Mancuso filter; (f) Filtered by proposed filter. 
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(a)                                   (b)  
 
 
 
 
 
 
 
 
 
 
 

(c)                                 (d)  
 
 
 
 
 
 
 
 
 
 
 

(e)                                   (f)  
Fig. 20.  An example illustrated that bilinear filter has better SSIM than proposed filter. (a) 
Original image “1.5.06-BrickWall”; (b) 400% enlarged; (c) Adding σ=7.1875 Gaussian noise; 
(d) Filtered by Bilinear filter; (e) Filtered by Bosco-and-Mancuso filter; (f) Filtered by 
Proposed filter. 
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Case 3: Proposed filter has worse PSNR even if it has better SSIM than others: 

Basically, case 3 illustrates the reason why Wang developed SSIM for image assessment 

[5]-[7]. In some cases, images look very un-acceptable even if those images have the same 

PSNR as acceptable images [5]-[8]. So in general, case 3 is not a special case needed to bring 

up for a discussion, since proposed filter keep more structural information such as edge 

information.  

 

However, when we surveyed the worst case of images, there is a drawback found in the 

proposed algorithm. That is proposed algorithm will yield contour seriously if the image has 

been added too much random noise such as σ=18.75 shown in Fig. 21. The original image 

“4.1.08-JellybeansG” is shown in Fig. 21(a) and its 400% enlarged sub-image is shown in Fig. 

21(b). Besides, the image with additive σ=18.75 Gaussian noise is shown in Fig. 21(c) and its 

400% enlarged sub-image is shown in Fig. 21(d). The reason to yield contour under big noise 

condition is because current processed pixel will handle the neighboring pixels as noisy pixel 

when pixel signal is under transient position either from bright to dark or dark to bright, so 

that current processed pixel will chose a nearest pattern to be its filtering elements instead of 

applying spatial masking on those transient pixels. By choosing nearest pattern to filter noisy 

pixel, the value of processed pixel will close to the nearest pattern. In the case of transient 

pixels changed slowly so that they consist of many pixels. Then the value of one side of them 

will join bright area and whereas the other side of them will join dark area. Therefore contour 

effect is enhanced as shown in Figs. 21(i)-(j). Comparing with Figs. 21(e)-(h) which are the 

images outputted from bilinear filter and Bosco-and-Mancuso filter respectively, they have no 

this kind of contour problem. This is the case that the proposed algorithm doesn’t like to see, 

and unable to filter this kind of transient pixels well under big noise condition. Nevertheless, 

once the additive noise is not big enough to cause proposed algorithm handle neighboring 

pixels as noisy pixel in transient area, the proposed algorithm performs well as shown in Figs. 
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22, 23 and Table 7. Figs. 22(a) and 23(a) show the image “4.1.08-JellybeansG” with additive 

Gaussian noise and that Figs. 22(b) and 23(b) show their 400% enlarged sub-image. Both two 

sets of Figs. 22(c)-(e) and 23(c)-(e) show the images outputted from bilinear filter, 

Bosco-and-Mancuso filter, and proposed filter respectively. As subjective observation, 

bilinear filter looks too blue and whereas proposed filter has strongest edge information. Table 

7 is also to illustrate that proposed filter has best filtering result on flat area. 

 
 
 
 
 
 
 
 
 
 
 

    (a)                                     (b) 
 
 
 
 
 
 
 
 
 
 
 

(c) (d) 
Fig. 21.  Proposed filter has worse PSNR even if it has better SSIM than others. (a) Original 
image “4.1.08-JellybeansG”; (b) 400% enlarged; (c) adding σ=18.75 Gaussian noise; (d) 
400% enlarged; (e) Filtered by Bilinear filter; (f) 400% enlarged; (g) Filtered by 
Bosco-and-Mancuso filter; (h) 400% enlarged; (i) Filtered by proposed filter; (j) 400% 
enlarged. 
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 (e)                                     (f) 
 
 
 
 
 
 
 
 
 
 
 

(g)                                    (h) 
 
 
 
 
 
 
 
 
 
 
 

(i)                                   (j) 
Fig. 21.  (Continued) 
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   (a)                                     (b) 
 
 
 
 
 
 
 
 
 
 
 

   (c)                                     (d) 
 
 
 
 
 
 
 
 
 
 
 

   (e)  
Fig. 22.  Proposed filter has better filtering result under σ=7.1875 Gaussian noise. (a) Adding 
σ=7.1875 Gaussian noise; (b) 400% enlarged; (c) Filtered by Bilinear filter; (d) Filtered by 
Bosco-and-Mancuso filter; (e) Filtered by proposed filter. 
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                  (a)                                     (b)   
 
 
 
 
 
 
 
 
 
 
 

  (c)                                    (d)  
 
 
 
 
 
 
 
 
 
 
 

   (e) 
Fig. 23.  Proposed filter has better filtering result under σ=3.125 Gaussian noise. (a) Adding 
σ=3.125 Gaussian noise; (b) 400% enlarged; (c) Filtered by Bilinear filter; (d) Filtered by 
Bosco-and-Mancuso filter; (e) Filtered by proposed filter. 
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Table 7. 
Test result of filtering image “4.1.08-jellybeansg” with additive σ=7.1875 and σ=3.125 

Gaussian noise.  

 

 

 

 

 

Case 4: Proposed filter has worst SSIM on texture images under high Gamma and Uniform 

noise condition: 

Since there is a similar analysis result for filtering Gamma noise and Uniform noise in 

this case, we just use Gamma noise condition to explain this particular case. To explain the 

phenomenon, let’s bring up the image “1.2.03-Straw” for discussion. Proposed filter performs 

better with this image under σ=18.75 Gaussian noise, but performs worst under σ=18.75 

Gamma noise condition. Table 8 is the test result of this image.  

Table 8. 
Use image “1.2.03-straw” as an example to explain the proposed filter has worst SSIM on 

texture images under high Gamma noise condition 

Gaussian Gamma 
σ=18.75 

SSIM PSNR SSIM PSNR 

Bosco-and-Mancuso 0.85456 20.0698 0.90466 20.8664 

Proposed 0.89005 20.4736 0.88052 18.5804 

 

By comparing texture images under σ=18.75 Gamma noise and Gaussian noise 

conditions. We found the histogram of image was expanded a lot by high Gamma noise, so 

that many noisy pixels fewer than zero or over saturated value to become edge information as 

shown in Figs. 24(a)-(c). Fig. 24(a) shows original image “1.2.03-straw” as well as its 

histogram. Figs. 24(b)-(c) show the image with additive σ=18.75 Gamma noise as well as its 

histogram and image with additive σ=18.75 Gaussian noise as well as its histogram 

respectively. As mentioned before, proposed algorithm filters noisy pixels based on nearest 

Standard deviation of noisy image 

and filtered image on the flat area 
σ=7.1875 σ=3.125 

Noisy image 8.32 5.48 

Bilinear 5.83 4.84 

Bosco-and-Mancuso 6.26 5.14 

Proposed 4.78 4.61 
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pattern, so that it will keep edge information in most of cases as the histogram result shown in 

Fig. 24(e). On the contrary, Bosco-and-Mancuso filter won’t keep edge information as much 

as proposed filter, so that it can recover damaged pixels as the histogram result shown in Fig. 

24(d). 

 

 

 

 

 

 

 

 

 

(a)  

 

 

 

 

 

 

 

(b)  

Fig. 24.  σ=18.75 Gamma noise yielded too much edge information which is not able to be 
recovered by proposed filter. (a) Original image “1.2.03-Straw” and its histogram; (b) Image 
“1.2.03-Straw” with σ=18.75 Gaussian noise and its histogram; (c) Image “1.2.03-Straw” with 
σ=18.75 Gamma noise and its histogram; (d) Image “1.2.03-Straw” with σ=18.75 Gamma 
noise filtered by Bosco-and-Mancuso filter and its histogram; (e) Image “1.2.03-Straw” with 
σ=18.75 Gamma noise filtered by proposed filter and its histogram. 

8207 pixels 
under zero 

8247 pixels over 
saturated value 
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(c)  

 

 

 

 

 

 

 

(d)  

 

 

 

 

 

 

 

(e)  

Fig. 24.  (Continued) 

37756 pixels 
under zero 

26989 pixels over 
saturated value 

614 pixels 
under zero 

127 pixels over 
saturated value 

32453 pixels 
under zero 

8210 pixels over 
saturated value 
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Case 5: Proposed filter is not able to filter out Pepper-and-Salt noise: 

In order to keep as much edge information as possible, proposed denoising method has 

been designed to not handle singular point such as Pepper-and-Salt noise, unless the image is 

captured under ISO 1600 condition. The reason that proposed denoising method handle 

Singular point under ISO 1600 condition is because standard deviation under such kind of 

condition is very huge, up to σ=18.75. In order to filter out most of noise, we also use 4σ to be 

the threshold to judge if current processed area is uniform or not. However, it still has 

0.00633% possibility that noisy pixel in flat region won’t be handled as uniform area. These 

un-handled pixels they all have big distance from neighboring pixels, so that they will look 

like Pepper-and-Salt noise very much. Image with Pepper-and-Salt-like noise is very 

unacceptable. This is the reason why the proposed denoising method pays attention to keep 

any edge information but ISO 1600 condition. This is also the reason why the testing result 

shown in the column named “Adding Pepper-and-Salt Noise for ISO 100 and ISO 400 (didn't 

handle singular point)” in Table 6 so bad. Fig. 25(a) shows the original image “testpat” with 

additive Pepper-and-Salt noise and Fig. 25(b) shows its 400% enlarged sub-image. Fig. 25(c) 

is used to illustrate that proposed filter is not able to filter out Pepper-and-Salt noise under 

ISO 100 condition as well ISO 400 condition. On the other hand, Fig. 25(d) is used to 

illustrate that proposed filter will filter out Pepper-and-Salt noise as well as any singular point 

in test image under ISO 1600 condition. 

 

Case 6: Test patterns:  

There are 4 kinds of step wedge patterns in USC web site, as shown in Fig. 26. The 

proposed filter on those patterns performs not badly except filtering Pepper-and-Salt noise as 

the testing results shown in Tables 9~14.  
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                  (a)                                    (b) 

 

 

 

 

 

 

 

 

                  (c)                                    (d) 

 
Fig. 25.  Proposed filter is not able to filter Pepper-and-Salt noise. (a) Image “testpat” with 
additive Pepper-and-Salt noise; (b) 400% enlarged; (c) Filtered by proposed filter; (d) Image 
“testpat” with additive σ=18.75 Gaussian noise filtered by proposed filter. The detail is gone. 

 

 

Detail 
is gone 
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   (a)                                     (b) 

 

 

 

 

 

 

 

 

   (c)                                    (d)  

 
Fig. 26.  4 kinds of step wedge test pattern in USC web site. (a) Test pattern: “gray21”; (b) 
Test pattern: “testpat”; (c) Test pattern: “texmos2.s512-USC”; (d) Test pattern: 
“texmos3.s512-USC”. 
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Table 9. 

Proposed SSIM and PSNR compare with other filters for the pattern images with additive 

Gaussian noise. 

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)
Original Image 1 0 Inf 1 0 Inf 1 0 Inf
Noisy Image 0.86169 2581.1482 38.1269 0.56981 12639.548 31.2278 0.18943 81271.003 23.1457

Bilinear Filter 0.94226 1365.9309 40.8908 0.794 4793.8503 35.4382 0.4082 28548.825 27.6892

BoscoMancuso 0.90577 1687.4743 39.9727 0.75005 5717.8466 34.6728 0.63608 13198.406 31.0399

Proposed Filter 0.95675 810.0874 43.1598 0.85495 3421.6767 36.9027 0.67809 11678.162 31.5713

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 Inf 1 0 Inf 1 0 Inf

Noisy Image 0.89196 2491.5535 38.2804 0.66265 12195.812 31.383 0.34891 79343.124 23.25

Bilinear Filter 0.92933 78857.258 23.2767 0.81169 84246.344 22.9896 0.50223 113163.23 21.708

BoscoMancuso 0.92384 4023.4569 36.1991 0.7991 8449.1149 32.977 0.69747 20102.204 29.2126

Proposed Filter 0.96842 877.6523 42.8119 0.89474 3594.5876 36.6886 0.72138 48793.78 25.3614

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 Inf 1 0 Inf 1 0 Inf

Noisy Image 0.89677 2490.1966 38.2827 0.6558 12492.351 31.2786 0.3015 82135.833 23.0998

Bilinear Filter 0.95839 4434.5423 35.7766 0.8424 7912.047 33.2622 0.50788 32417.001 27.1373

BoscoMancuso 0.93261 2012.5697 39.2076 0.80868 6716.9773 33.9733 0.7007 20050.254 29.2239

Proposed Filter 0.9782 692.3014 43.8421 0.90685 3204.0857 37.188 0.73498 15370.955 30.3781

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 Inf 1 0 Inf 1 0 Inf

Noisy Image 0.88374 2514.2197 38.241 0.61683 12607.146 31.2389 0.24088 83343.038 23.0364

Bilinear Filter 0.95547 3001.1416 37.4722 0.8257 6473.6508 34.1336 0.45923 30800.013 27.3596

BoscoMancuso 0.92485 1704.4474 39.9292 0.78819 5839.4434 34.5814 0.67857 15203.374 30.4257

Proposed Filter 0.97471 685.4412 43.8854 0.89252 3184.7793 37.2143 0.70546 14647.196 30.5875
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Table 10. 

Proposed SSIM and PSNR compare with other filters for the pattern images with additive 

Rayleigh noise. 

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)
Original Image 1 0 Inf 1 0 Inf 1 0 Inf
Noisy Image 0.91361 2238.071 38.7463 0.69756 10375.783 32.0849 0.31715 61014.651 24.3907

Bilinear Filter 0.96808 1544.6401 40.3568 0.86727 5411.3963 34.912 0.54072 28367.354 27.7169

BoscoMancuso 0.94185 1687.5055 39.9726 0.83042 6086.5879 34.4013 0.72437 18668.392 29.534

Proposed Filter 0.98795 891.6189 42.7433 0.94725 3534.5486 36.7617 0.77221 17656.987 29.7759

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 Inf 1 0 Inf 1 0 Inf

Noisy Image 0.92969 2007.004 39.2196 0.75724 9207.7902 32.6035 0.45216 56297.669 24.7402

Bilinear Filter 0.9492 77626.061 23.345 0.87071 81157.093 23.1518 0.61144 102436.71 22.1405

BoscoMancuso 0.95011 4474.9716 35.7372 0.8609 8484.9208 32.9586 0.776 20737.724 29.0775

Proposed Filter 0.98943 818.7609 43.1135 0.95944 3009.4023 37.4603 0.81788 16502.128 30.0697

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 Inf 1 0 Inf 1 0 Inf

Noisy Image 0.92824 2052.4968 39.1223 0.74454 9907.8039 32.2853 0.39556 62924.589 24.2569

Bilinear Filter 0.96951 4244.3173 35.967 0.88764 7515.0727 33.4857 0.60906 30626.527 27.3841

BoscoMancuso 0.95163 1827.0844 39.6275 0.85882 6400.0638 34.1832 0.7719 23168.566 28.5961

Proposed Filter 0.99256 694.9146 43.8258 0.96315 3032.9956 37.4264 0.81861 19282.503 29.3934

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 Inf 1 0 Inf 1 0 Inf

Noisy Image 0.92215 2019.8463 39.1919 0.72111 9742.0132 32.3586 0.34582 61163.715 24.3801

Bilinear Filter 0.96902 2955.0478 37.5394 0.87957 6276.1618 34.2681 0.57787 28990.273 27.6226

BoscoMancuso 0.94865 1541.1599 40.3666 0.84884 5598.4131 34.7644 0.7632 19307.198 29.3879

Proposed Filter 0.992 679.7585 43.9215 0.96045 2918.4346 37.5936 0.80989 17778.75 29.7461
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Table 11. 

Proposed SSIM and PSNR compare with other filters for the pattern images with additive 

Gamma noise. 

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)
Original Image 1 0 Inf 1 0 Inf 1 0 Inf
Noisy Image 0.89513 5945.2439 34.5034 0.65784 25668.281 28.1511 0.31751 125246.05 21.2674

Bilinear Filter 0.949 5195.2567 35.089 0.81937 20774.858 29.0697 0.51109 96290.129 22.4093

BoscoMancuso 0.92476 5371.009 34.9445 0.78959 21391.241 28.9427 0.67148 88370.86 22.782

Proposed Filter 0.96782 4633.2458 35.5862 0.89436 19198.495 29.4124 0.71314 87603.682 22.8199

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 Inf 1 0 Inf 1 0 Inf

Noisy Image 0.92551 4447.078 35.7643 0.73343 20334.955 29.1626 0.4484 103479.42 22.0965

Bilinear Filter 0.94504 79472.553 23.2429 0.84361 91026.462 22.6534 0.59156 148609.87 20.5246

BoscoMancuso 0.9433 15450.724 30.3556 0.83609 25017.668 28.2626 0.74418 72470.676 23.6435

Proposed Filter 0.98404 3294.6763 37.067 0.92675 14500.26 30.6313 0.78001 67367.289 23.9606

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 Inf 1 0 Inf 1 0 Inf

Noisy Image 0.92651 4839.1627 35.3974 0.73261 24107.841 28.4235 0.38041 124239.45 21.3025

Bilinear Filter 0.96743 6479.376 34.1297 0.87053 20366.476 29.1559 0.55788 92469.871 22.5851

BoscoMancuso 0.95101 4589.5552 35.6274 0.8478 20358.403 29.1576 0.69587 87669.907 22.8166

Proposed Filter 0.98932 3515.7801 36.7849 0.93934 17648.791 29.7779 0.73268 86594.175 22.8702

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 Inf 1 0 Inf 1 0 Inf

Noisy Image 0.92085 4708.5954 35.5162 0.70991 23605.885 28.5149 0.33295 124563.88 21.2912

Bilinear Filter 0.96699 5398.7012 34.9222 0.86319 19532.364 29.3375 0.52744 94326.465 22.4987

BoscoMancuso 0.9485 4172.4869 36.0411 0.83877 19227.176 29.4059 0.68552 87006.945 22.8495

Proposed Filter 0.9891 3404.3442 36.9247 0.93848 17116.827 29.9108 0.72268 86800.768 22.8598

texmos3.s

512-

USC.raw

Adding Gamma Noise

(σ=18.75)

gray21.ra

w

testpat.raw

texmos2.s

512-

USC.raw

Noisy Image and

Filtered Image

Comparing with Original

Image

Adding Gamma Noise

(σ=3.125)

Adding Gamma Noise

(σ=7.1875)

 

 



 50

Table 12. 

Proposed SSIM and PSNR compare with other filters for the pattern images with additive 

Exponential noise. 

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)
Original Image 1 0 Inf 1 0 Inf 1 0 Inf
Noisy Image 0.91702 1847.8236 39.5785 0.71914 8504.4393 32.9486 0.35558 49761.755 25.2761

Bilinear Filter 0.9693 1192.7866 41.4795 0.87887 3764.3945 36.4881 0.58632 19288.884 29.392

BoscoMancuso 0.94269 1324.6821 41.024 0.82942 4823.1974 35.4117 0.74667 11748.592 31.5452

Proposed Filter 0.98067 663.1393 44.029 0.93411 2461.9199 38.3323 0.80734 9532.1628 32.4532

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 Inf 1 0 Inf 1 0 Inf

Noisy Image 0.93144 1739.3328 39.8413 0.76952 7950.1568 33.2413 0.47606 48446.51 25.3925

Bilinear Filter 0.94942 77526.464 23.3506 0.87571 80363.355 23.1945 0.63797 96713.559 22.3902

BoscoMancuso 0.94983 4904.7123 35.3389 0.85594 8215.4593 33.0988 0.77913 16931.361 29.9582

Proposed Filter 0.98255 701.0975 43.7873 0.94427 2468.8725 38.3201 0.83954 10677.424 31.9604

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 Inf 1 0 Inf 1 0 Inf

Noisy Image 0.93244 1756.3942 39.7989 0.75637 8610.7713 32.8947 0.43219 50687.111 25.1961

Bilinear Filter 0.97061 4115.3352 36.101 0.89166 6558.7002 34.0769 0.64289 22049.092 28.8112

BoscoMancuso 0.95321 1565.0766 40.2997 0.85394 5672.8048 34.7071 0.7826 16902.492 29.9656

Proposed Filter 0.98578 597.2347 44.4836 0.94637 2417.7251 38.411 0.84091 11053.546 31.8101

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 Inf 1 0 Inf 1 0 Inf

Noisy Image 0.92642 1731.0555 39.862 0.73449 8413.8305 32.9951 0.38092 50148.344 25.2425

Bilinear Filter 0.9703 2760.3671 37.8354 0.88474 5181.9574 35.1001 0.61081 20640.077 29.098

BoscoMancuso 0.9502 1298.6756 41.1101 0.84314 4770.9046 35.4591 0.76952 13270.307 31.0163

Proposed Filter 0.98485 579.6294 44.6136 0.94326 2267.023 38.6905 0.83028 10211.132 32.1543
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Table 13. 

Proposed SSIM and PSNR compare with other filters for the pattern images with additive 

Uniform noise. 

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)
Original Image 1 0 Inf 1 0 Inf 1 0 Inf
Noisy Image 0.8952 5956.6032 34.4951 0.65441 25619.033 28.1595 0.31529 126347.02 21.2294

Bilinear Filter 0.94931 5209.3554 35.0772 0.8184 20685.768 29.0884 0.50671 96815.345 22.3856

BoscoMancuso 0.917 5530.6117 34.8173 0.76423 21953.196 28.8301 0.65714 89256.298 22.7387

Proposed Filter 0.96932 4629.4072 35.5898 0.89801 18981.989 29.4617 0.71221 87606.548 22.8197

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 Inf 1 0 Inf 1 0 Inf

Noisy Image 0.92495 4447.1449 35.7643 0.73041 20383.915 29.1522 0.44547 103871.92 22.0801

Bilinear Filter 0.94508 79432.207 23.2451 0.84265 91014.91 22.654 0.5877 148477.76 20.5285

BoscoMancuso 0.93727 13735.503 30.8666 0.81612 24197.026 28.4075 0.73208 72262.13 23.656

Proposed Filter 0.98527 3271.645 37.0974 0.93003 14437.245 30.6502 0.77934 67156.893 23.9742

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 Inf 1 0 Inf 1 0 Inf

Noisy Image 0.92627 4820.3966 35.4143 0.73086 24058.324 28.4324 0.37639 125603.2 21.2551

Bilinear Filter 0.96739 6461.7512 34.1416 0.8701 20326.11 29.1645 0.55147 93048.245 22.558

BoscoMancuso 0.94423 4656.992 35.564 0.82649 20868.826 29.0501 0.68145 88011.203 22.7997

Proposed Filter 0.99032 3478.0076 36.8318 0.9438 17424.23 29.8335 0.73027 86669.226 22.8664

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 Inf 1 0 Inf 1 0 Inf

Noisy Image 0.91993 4728.1647 35.4982 0.70841 23474.807 28.5391 0.33004 125584.08 21.2557

Bilinear Filter 0.96682 5399.4689 34.9216 0.86287 19439.865 29.3581 0.52153 94904.267 22.4722

BoscoMancuso 0.94051 4339.6822 35.8705 0.81526 19726.343 29.2946 0.66954 87882.846 22.806

Proposed Filter 0.99005 3393.9243 36.9381 0.94294 16835.479 29.9828 0.72173 86751.026 22.8623
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Table 14. 

Proposed SSIM and PSNR compare with other filters for the pattern images with additive 

Pepper-and-Salt noise. 

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)
Original Image 1 0 Inf 1 0 Inf
Noisy Image 0.50308 114175.72 21.6693 0.50308 114175.72 21.6693

Bilinear Filter 0.62531 38989.987 26.3355 0.62531 38989.987 26.3355

BoscoMancuso 0.92294 14950.934 30.4984 0.92294 14950.934 30.4984

Proposed Filter 0.50223 114197.97 21.6685 0.9609 11514.065 31.6328

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 Inf 1 0 Inf

Noisy Image 0.59009 112266.33 21.7426 0.59009 112266.33 21.7426

Bilinear Filter 0.67419 116489.57 21.5822 0.67419 116489.57 21.5822

BoscoMancuso 0.90166 69264.489 23.84 0.90166 69264.489 23.84

Proposed Filter 0.58888 112328.59 21.7402 0.94542 62281.193 24.3015

Method SSIM MSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 Inf 1 0 Inf

Noisy Image 0.55229 114588.5 21.6537 0.55229 114588.5 21.6537

Bilinear Filter 0.66482 42267.897 25.985 0.66482 42267.897 25.985

BoscoMancuso 0.91555 19041.044 29.4482 0.91555 19041.044 29.4482

Proposed Filter 0.55229 114588.5 21.6537 0.96419 12353.364 31.3272

Method SSIMMSE(12bit) PSNR(dB) SSIM MSE(12bit) PSNR(dB)

Original Image 1 0 Inf 1 0 Inf

Noisy Image 0.52099 110549.17 21.8095 0.52099 110549.17 21.8095

Bilinear Filter 0.64158 39021.718 26.332 0.64158 39021.718 26.332

BoscoMancuso 0.92496 14915.49 30.5087 0.92496 14915.49 30.5087

Proposed Filter 0.52099 110549.17 21.8095 0.9662 9754.6044 32.353
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4.2 Test Results of the CFA Raw Images: 

In this section, we would like to compare the proposed denoising method with real 

camera K1003. CFA raw images were captured by K1003. The only difference of processed 

images is denoising filter only in order to compare the testing result conveniently.  

 

Fig. 27(a) shows the image which is a scene consists of resolution chart and fluff doll 

captured by K1003 under ISO 100 condition. Fig. 27(b) shows the sub-image filtered by 

K1003 as well as standard deviation calculated on flat area. Fig. 27(c) shows the sub-image 

filtered by Bosco-and-Mancuso filter as well as standard deviation calculated on flat area and 

that Fig. 27(d) shows the sub-image filtered by proposed filter as well as standard deviation 

calculated on flat area. 

 

In the same construction, Figs. 28(a) and 29(a) show the images which used the same scene 

consists of resolution chart and fluff doll captured by K1003 under ISO 400 condition and 

ISO 1600 condition respectively. Figs. 28(b) and 29(b) show the sub-images filtered by 

K1003 as well as standard deviation calculated on flat area. Figs. 28(c) and 29(c) show the 

sub-images filtered by Bosco-and-Mancuso filter as well as standard deviation calculated on 

flat area and that Figs. 28(d) and 29(d) show the sub-images filtered by proposed filter as well 

as standard deviation calculated on flat area. 

 

By comparing the image with subjective perception, proposed denoising method slightly 

reduced the resolution. However, it gains the benefit of reducing standard deviation a lot as 

the images shown in Figs. 27(d), 28(d), and 29(d). We also found there is a discontinuous 

pattern problem as shown in Figs. 28(d) and 29(d), since the filtering strength of proposed 

denoising method didn’t change smoothly.  
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σ=2.15 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a) 

 
 
 
 
 
 
 
 
 
 
 
 
                                     (b)  
 
Fig. 27.  CFA image captured by K1003 under ISO 100 condition. (a) Resolution chart with 
fluff doll captured by K1003 under ISO 100 condition; (b) ISO 100 noise filtered by K1003 
and standard deviation of flat area; (c) ISO 100 noise filtered by Bosco-and-Mancuso filter 
and standard deviation of flat area; (d) ISO 100 noise filtered by proposed filter and standard 
deviation of flat area. 
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σ=1.44 
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Fig. 27.  (Continued) 
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σ=4.09 
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                                     (b)  
 
Fig. 28.  CFA image captured by K1003 under ISO 400 condition. (a) Resolution chart with 
fluff doll captured by K1003 under ISO 400 condition; (b) ISO 400 noise filtered by K1003 
and standard deviation of flat area; (c) ISO 400 noise filtered by Bosco-and-Mancuso filter 
and standard deviation of flat area; (d) ISO 400 noise filtered by proposed filter and standard 
deviation of flat area. 
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Fig. 28.  (Continued) 
 
 
 
 
 



 58

σ=3.57 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
Fig. 29.  CFA image captured by K1003 under ISO 1600 condition. (a) Resolution chart with 
fluff doll captured by K1003 under ISO 1600 condition; (b) ISO 1600 noise filtered by K1003 
and standard deviation of flat area; (c) ISO 1600 noise filtered by Bosco-and-Mancuso filter 
and standard deviation of flat area; (d) ISO 1600 noise filtered by proposed filter and standard 
deviation of flat area. 
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σ=2.91 

σ=4.06 
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Fig. 29.  (Continued) 
 

In order to yield better result, the parameter Thuniform of green channel has been fine 

tuned as  

( )
( )
( )

)42(,
,else

1600if
,100if

,2
,3
,1

0

0

0

=
=

⎪
⎩

⎪
⎨

⎧

∗
∗
∗

= ISO
ISO

C
C
C

Thuniform 

σ
σ
σ

 and fine tuned 

( )
( ) )43(

else,
,1600if

,2
,3

0

0 =

⎩
⎨
⎧

∗
∗

=
ISO

C
C

Thuniform σ
σ

for red/blue channel. As the images shown in Figs. 30(a)-(b), resolution preserved more 

accordingly and the standard deviation on the flat area still less than other filters. Nonetheless, 

Fig. 30(c) shows that the discontinuous pattern problem is still exist. 
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Fig. 30.  Images with fine tuned parameter. (a) ISO 100; (b) ISO 400; (c) ISO 1600. 
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Chapter 5 

Conclusions 

In this thesis, we have presented a denoising method which consists of three ideas. One 

is to filter noisy pixel based on nearest pattern to keep edge information, another one is to use 

noise characteristic of camera to judge the uniformity of current processed area and the last 

one is to make use of spatial masking to keep edge information again on the highly texture 

area.  

 

The results from above experiments indicate that proposed denoising method performs 

better under ISO 100 and ISO 400 condition, since there is a discontinuous patterns problem 

generated in few specific image areas under ISO 1600 condition. The root cause of 

discontinuous patterns problem is that filtering strength of proposed denoising method didn’t 

change smoothly, so that discontinuous patterns happened under ISO 1600 condition. Not 

only this issue is the next step we would like to overcome, but also how to judge current 

processed area is uniform without sacrificed real signal too much is the topic we will be 

interested in. In addition, a method to fine tune the filtering strength automatically under any 

ISO condition would be another valuable research to optimize noise filtering strength.  

 

 

 



 62

References 

[1]  A. Bosco and M. Mancuso, “Adaptive filtering for image denoising,” ICCE. 

International Conference on Consumer Electronics, pp. 208-209, Jun. 2001. 

[2]  A. Bosco and M. Mancuso, “Noise filter for Bayer pattern image data,” Europe Patent 

EP1289309, May 2003. 

[3]  M. Mancuso,  “Non-linear image filter for filtering noise,” United States Patent 

6108455, Aug. 2000. 

[4]  B. Bayer, “Color Imaging Array,” U. S. Patent 3 971 065, Jul. 1976. 

[5]  Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Processing 

Letters, Vol. 9, no. 3, pp. 81-84, Mar. 2002. 

[6]  Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multi-scale structural similarity for image 

quality assessment,” Invited Paper, IEEE Asilomar Conference on Signals, Systems and 

Computers, Vol. 2, pp.1398-1402, Nov. 2003.  

[7]  Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: 

From error visibility to structural similarity,” IEEE Transactions on Image Processing, 

Vol. 13, no. 4, pp. 600-612, Apr. 2004. 

[8]  G. H. Chen, C. L. Yang, L. M. Po, and S. L. Xie, “Edge-based structural similarity for 

image quality assessment,” IEEE International Conference on Acoustics, Speech and 

Signal Processing, Vol. 2, pp. 933-936, May 2006. 


