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We demonstrate that three conductance features, 0.5 and 0.7G0 plateaus and a dip at 0.5G0, observed in
quantum point contacts �QPCs� can be consistently explained by the Rashba interaction in the nonuniform
electric field created by the side gates along the transport direction. A quantity � is defined which depends on
the extent of this nonuniformity and the electron density. A short QPC tends to have a small �. Only when �
is large will the Rashba interaction produce a potential well deep enough to localize the electron. This provides
the bound state that forms the Kondo resonance with the tunneling electrons. We propose to compare the
medium/long QPC to small/large quantum dots, which are governed by the Kondo physics and the Coulomb
blockade, respectively. The relation between 0.7 anomaly and the side-gate voltage, length of QPC, and
temperature can all be determined to agree qualitatively with the experiments.
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The puzzle of 0.7 anomaly in the quantum point contacts
�QPCs� has attracted much attention,1 but there is no consen-
sus on its physical origin yet. One model,2,3 taking the hint
from the zero-bias anomaly �ZBA� observed experimentally,
linked it to the Kondo model with the necessary local mo-
ment coming out of the spin-density-functional theory2

�SDFT�. Another competing model proposed by Pepper and
co-workers4,5 ascribed it to the spontaneous spin polarization
because the 0.7G0 plateau was observed to evolve smoothly
to 0.5G0 as the magnetic field is applied. The reason why
they did not believe the Kondo model was perhaps that6 the
assumption and calculations involved in SDFT were not in-
tuitive, not to mention the alternative assumption of planting
a magnetic impurity within a QPC. In this work, we propose
a more direct mechanism via the Rashba coupling to gener-
ate the necessary moment for the Kondo model, which is
being carried by the intrinsic rather than the impurity elec-
tron trapped in the naturally formed potential well within a
QPC. However, this requires a dilute electron density or a
highly nonuniform electric field7 from the side gates, which
shall be measured by a quantity �. Roughly, a short QPC
tends to have a small �. Only when � is large will the well be
deep enough to localize the electron and provide the mag-
netic moment that forms the Kondo resonance with tunneling
electrons. We propose to compare the medium/long QPC to
small/large quantum dots8 �QDs�, which are governed by the
Kondo physics and the Coulomb blockade �CB�, respec-
tively. Once this contrast is established, the conductance can
be calculated2 by including the Coulomb interaction, ex-
change energy, and other many-body effects.

There is an intrinsic uniform electric field E� in the z di-
rection perpendicular to the two-dimensional electron-gas
�2DEG� plane in the GaAs/AlGaAs heterostructures. We can
apply a top gate to manipulate Ez and control the strength of
the Rashba interaction �RI� which is proportional9,10 to Ez. In
a QPC device, Ez within the side gates will be larger than the
top gates because the geometry of the former attracts more
charges. We shall first demonstrate that the nonuniform Ez
within a QPC will form an effective potential well due to the

Rashba interaction ��� · P� �E� �x�, where �� represents a vector

of the Pauli matrices and P� is the momentum operator. The
Hamiltonian consists of

H =
Px

2

2meff
− �

�y

2
�Px,Ez�x�� +

Py
2

2meff
+ V + ��xPyEz�x� ,

�1�

where meff is the effective mass of the charge carriers.
In Eq. �1�, we assume that V�x ,y�=meff�y

2�x�y2 /2 is
the potential of the QPC confinement2 where �y�x�
�eVg /� cosh2��x� and ��1 /L with Vg denoting the side-
gate voltage and L denoting the length of the QPC. The RI
with an x-dependent Ez�x� can be controlled by Vg. We de-
note the first two terms in Eq. �1� by Hx and the remaining by
Hy. Appealing to the separation of variables, the eigenfunc-
tion can be expressed as ��x ,y�=�n	n�x�
nx�y� with compo-
nents satisfying

�Hx + �nx�	n�x� = �	n�x� , �2�

Hy
nx�y� = �nx
nx�y� . �3�

The y component in Eq. �3� is calculated to give

�nx = �n +
1

2
���y�x� −

meff

2
��Ez�x��x�2, �4�

where n=0,1 ,2 , . . . are channels due to the confinement in
the y direction which result in the integer-G0 plateaus of the
QPC.11 Substituting Eq. �4� into Eq. �2� gives

Hx
eff =

Px
2

2meff
− �

�y

2
�2Ez�x�Px − ı��xEz�x�� + �nx. �5�

The relative magnitude of the two terms in the
square brackets of Eq. �5� is equivalent to computing

F�xEz�x� /Ez�x�, the product of Fermi wavelength 
F, and
the variation in Ez relative to its strength. We denote the
maximum value of this quantity within the QPC by �. The

F is controlled by the top gates, while the nonuniformity of
Ez is determined by the length of QPC. The ��1 corre-
sponds to the case of short QPC and small 
F because Ez is
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uniform along the channel Ez�x��Ez
0. This leads to Hx

eff

	 Px
2 /2meff−��yEz

0Px+�nx which exhibits the normal
Rashba effect which shifts the dispersion of up and down
spins uniformly along the x direction with 
F

↓ �
F
↑ . On the

other hand, ��1 suits medium/long QPC with large Vg or
large 
F for which Ez is nonuniform. In this case, the
ı��xEz�x� term is crucial to form a sharp potential well and
trap electrons in a narrow/broad region. The electron trapped
in the narrow region provides the local magnetic moment for
the Kondo effect; in contrast the broad region causes the CB
phenomenon.8 An interesting scenario occurs in a short QPC
when only 
F

↑ is big enough to render a bound state. The
remaining up-spin conduction channel then gives rise to a
0.5G0 plateau.10

Semiclassically we can use the Hamiltonian equations of

motion, �Hx
eff /�x=−Ṗx and �Hx

eff /�Px= ẋ, to derive an effec-
tive potential,

Vx
eff = �n +

1

2
���y�x� − meff�

2Ez
2�x� = Vconf�x� + VRashba�x� ,

�6�

which consists of two competing terms �see Fig. 1�. The
confining potential in the y direction tends to push the elec-
trons out of the QPC, while the RI favors trapping them
inside. Whether a deep well can be formed depends on the
strength and nonuniformity of Ez.

Now we need to calculate how Ez varies in the x direction
due to Vg. The front edges of the side gates function as a
capacitance because the 2DEG is grounded and Vg is applied
on the tips above. So the Ez from these capacitance wires can
be calculated as w� /2��
−L/2

L/2 dx / ��x−x0�2+y0
2�3/2, where w is

the thickness of 2DEG, �=Q / �L+�A��2�A�Vg /w, A is the
area of the gate, � represents the dielectric constant, and y0
and L are the width and length of the QPC. After the inte-
gration, Ez is obtained as

Ez�x� =
�A

�y0
2Vg�

L

2
− x

��L

2
− x�2

+ y0
2

+

L

2
+ x

��L

2
+ x�2

+ y0
2
 .

�7�

As we can see, high gate voltage, small QPC width, and
large QPC length all enhance the nonuniformity of Ez, which
is stronger in the middle of the QPC—the same trend as the
strength of RI.

Let us compare the magnitude of the two terms in Eq. �6�.
First, we figure out the exact Rashba coefficient near the
QPC by measuring the magnetoresistance.9 Then, by tuning
Vg we can control the strength of RI. The order of ��y can
be estimated by counting the number N of plateaus below
some specific gate voltage, which tells us that �F� �N
+0.5���y and ��y�Vg��1 meV. On the other hand, the
order of RI is about 10−12 eV m �Refs. 12 and 13� and 
F
�108 m−1. So the Rashba energy is of the order of 0.1 meV.
In particular, the Ez within a QPC tips should be much stron-
ger due to their sharp geometry so that the orders of these
two terms in Eq. �6� are expected to be comparable. Finally,
we plug Eq. �7� into Eq. �6�. The resultant Vx

eff�x ,L ,Vg� is
plotted in Fig. 2 for a medium-size QPC �L=200 nm�, from
which we can see the qualitative profile of the potential and
how it evolves with Vg.

When Vg is weak, both n=0,1 surfaces in Fig. 2 exhibit
a saddlelike profile with no bound state, consistent with
the experimental observation.14 As Vg gets stronger, a poten-
tial well starts to appear in the middle of the QPC which
can sustain bound states. This provides the direct evidence
for the feasibility of the Kondo model to explain the
0.7 anomaly.2 The characteristic energy scale of the
Kondo model is the Kondo temperature15 TK��E
�exp�−��e2 /h� /G�EC /�E�, where �E��2 / �meffR

2� denotes
the level spacing, R and EC represent the linear size and
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Vconf�x� FIG. 1. �Color online� The three curves in

both panels represent L=1, 2, and 5 ��100 nm�,
respectively, from the innermost. The Vconf in the
left panel is higher in the middle of the QPC
due to the y-direction confinement. In contrast,
VRashba in the right panel is lower due to a stron-
ger Ez. These two terms compete, and the forma-
tion of a sharp potential well to sustain bound
states occurs when ��1.
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FIG. 2. �Color online� Effective potential under the semiclassi-
cal approximation for a medium QPC of length L=200 nm. The x
axis represents the spatial coordinate along the QPC, while the y
axis denotes Vg and the z axis is the effective potential. The upper/
lower surfaces represent the n=1 /0 channels. The higher the Vg, the
deeper the well. This potential well and its ability to trap electrons
are essential to the Kondo model for the 0.7 anomaly.
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charging energy of the QD, and EC /�E roughly equals to the
ratio of R and the effective Bohr radius. The conductance
of the dot-lead junction G=GL+GR consists of the left-
and right-going parts, which can be derived from the Land-
auer formula16 GL=GR= �2e2 /h�� tn

�tn, where tn is the
transmission coefficient of the nth conducting channel.
By the WKB approximation,17 t0=4 / �2�+1 /2��2, where �

=exp�
dx�2meff�Veff
�n=0��x�−EF� /�� and Veff

�n=0��x� is the n=0
potential profile in Fig. 2. We estimate TK to be of the order
of a few hundred millikelvins, and it decreases as the gate
voltage increases. These are in line with the experimental
observation.3

We may now proceed to discuss how the length of the
QPC affects the bound-state formation. Figure 3 shows
Vx

eff�x ,L ,Vg� for fixed Vg=0.5 V. If QPC is too short and 
F
is too small, there is no potential well. As QPC increases in
size or for a larger 
F, a potential well emerges and becomes
deeper and broader. Bound states can occur in high channels
�n�1� for the long QPC, as can be seen in Fig. 3. We be-
lieve this is responsible for the rare 1.7 or 2.7G0 shoulder
that appeared in some experiment.10 They are more difficult
to form than in the n=0 channel.

We can compare Fig. 4 qualitatively with the
experiments10 which reported the evolution of plateaus. The
bottom surface is for a long QPC �L=500 nm� which corre-
sponds to Fig. 3 of Ref. 10, while the middle one for a
medium QPC �L=200 nm� is contrasted with Fig. 2 of Ref.
10. The top surface is for a short QPC �L=100 nm�. The
deciding parameter � measures how dramatic the electric
field varies within a QPC. ��1 in the first two cases com-
pares to ��1 in the last case. In Fig. 2 of Ref. 10, the 0.7G0
�the rightmost� evolves continuously to 0.55G0 �the leftmost�
with increasing electron density or kF. This has the same
effect on � as shortening the QPC, as exemplified by the
transition from the middle to the top surfaces in Fig. 4. Ac-
cording to the top surface in Fig. 4, there is no bound state at
small Vg. However, if the 
F

↑ is large enough to make �

sizable, its bound state might render the up-spin conduction
channel ineffective. This corresponds to the leftmost line in
Fig. 2 of Ref. 10 that indeed only shows a plain plateau
around 0.5G0. The middle surface in Fig. 4 corresponds to
the rightmost line in Fig. 2 of Ref. 10 for a dilute carrier
density because both satisfy ��1. Note that it may look
confusing why the short QPC in Fig. 1 of Ref. 10 gives rise
to 0.7G0 instead of 0.5. The reason is that its 
F is relatively
large which compensates the shortness of L and still renders
��1. We believe the 0.5 plateau will emerge if they10 fur-
ther decrease 
F.

In Fig. 3 of Ref. 10, a long QPC was used and a dip
instead of a shoulder showed up near 0.5G0. We believe this
corresponds to the bottom surface in Fig. 4. The bound elec-
tron is localized in a larger region than that of the middle
surface. This resembles the confinement of a big QD �Ref. 8�
where the dip can be linked18 to the characteristic behavior
of the CB. This is in contrast to the narrow confinement in
the middle surface of Fig. 4, mimicking a small QD, which
provides a localized moment for the Kondo resonance and
leads to the 0.7 structure and ZBA.

Let us now turn to the recent experiment by Sfigakis et
al.18 who suggested that a weakly bound state might have
been formed in a clean QPC because it shared many charac-
teristics with their open quantum dots. We agree with their
interpretation for the dip feature when �Vg=0 due to the CB
from the wide confinement resembling a big QD. However,
the fact that the first dip occurs around 0.5G0 and the 1.7
structure, as in the case of long QPC,10 is more naturally
explained by our picture. Namely, the former comes from the
CB, while the latter arises from the Kondo resonance with
the bound state in n=1 channel. Sfigakis et al.18 found two
temperature �T� dependences for the dip around 0.5G0: �1� it
disappeared while the conductance increases as they lowered
T and �2� it evolved into a 0.7 shoulder when T was in-
creased. They thus concluded that the quantum dot Kondo
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FIG. 3. �Color online� The y axis denotes the length of the QPC,
while the notations for x and z axes are the same as in Fig. 2. The
Vg is set at 0.5 V. The top/bottom surfaces represent n=1 /0 chan-
nels, respectively. A short QPC does not favor the formation of
bound state. On the other hand, higher channels for a long QPC
may exhibit bound states, which we propose to be responsible for
the 1.7 shoulder.
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FIG. 4. �Color online� From top to bottom, the potential is plot-
ted for short, medium, and long QPCs, respectively, as a function of
gate voltage in the y axis. The notations for x and z axes are the
same as in Fig. 2. In the top surface there is no bound state. The
potential profile in the middle surface resembles that of a small QD,
for which the 0.7 plateau arises from the Kondo effect. Finally, the
lowest surface for the long QPC is equivalent to a big QD where an
interesting dip shows up at 0.5G0 due to the CB.
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model, which fit their low-T data, played no part in the mak-
ing of the 0.7 shoulder at high T. After a closer look at their
data, we found that a 0.7 shoulder at low T in their Fig. 2�b�
could not be excluded, which was more outstanding in our
view than the 0.7 shoulder they claimed to see at high T in
their Fig. 2�c� —possibly misled by the crossing of different-
temperature lines. We can also explain another feature in the
data of Sfigakis et al.18 which they did not emphasize, which
is the evolution of the 1.7 shoulder to the 2G0 plateau in their
Fig. 2�a� as T is lowered. In our theory, the 1.7 shoulder is
not different from the 0.7 anomaly such that both are caused
by the bound state and its resulting Kondo resonance. So its
evolution with T can be understood in the same way as the
similar evolution of the 0.7 shoulder to 1G0 in their Fig. 1�a�
for �Vg�0 and another experiment on QPC.3 The explana-
tion based on the Kondo model can be found in Ref. 2. In the
geometric structure Sfigakis et al.18 designed, the conduc-
tance of the dot-lead junction G is suppressed as Vg in-
creases, which leads to a lower TK. This is consistent with
their observation18 that the 1.7G0 shoulder evolved into a dip
at 0.5G0 as Vg increased. The former was kept alive by the
high TK at low Vg, while the CB replaces and dominates the
Kondo physics at high Vg.

In conclusion, we propose that a bound state can be
formed within a QPC if RI is taken into account with a
nonuniform Ez produced by the side gates. Such a bound
state provides evidence to the feasibility of the Kondo sce-
nario to explain the 0.7 structure. Whether bound states can
exist relies partially on the degree of nonuniformity of Ez

which depends sensitively on the gate voltage, QPC length,
and the Fermi wavelength. A semiclassical approximation is
used to help us visualize the bound states as a function of Vg
and L. We are able to provide a coherent theory that covers
three main features: a 0.5 plateau, a 0.7 structure, and a dip at
0.5G0. The origin of the rare 1.7G0 plateau is also discussed,
and the temperature dependence of each feature is well ac-
counted for. According to our survey, the 0.7 anomaly indeed
was more distinct in p-type GaAs �Ref. 19� and In1−xGaxAs
�Ref. 20� than in Si/SiGe.21 However, cautions are required
when making such a comparison since a high mobility and
large � are also indispensable.
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