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Abstract

The ion-sensitive field effect transistor (ISEET) is a chemical sensor that was first
presented by P. Bergveld in 1970, The main.point is used Metal Oxide Silicon Field Effect
Transistor (MOSFET) principium. The ISEET.Is different with MOSFET on the metal gate of
MOSFET which was replaced by an ien-sensitive layer, buffer solutions, and an additional
reference electrode. The electrical characteristics of ISFETs will vary with the interface
reactions of sensing layer and electrolyte solution.

In this study, four CMOS fabrication compatible membranes were used to be the sensing
layers on ISFETs. All processes of the devices were completed in the clean room (class
10000) of NDL and NFC in NCTU. All measuring processes was in a dark box using
HP4156A semiconductor parameter analyzer. The devices were soaked in buffer solutions to
get the Io_Ve curves with varied temperatures and pHs. The sensitivities were defined by the
disparities of Io_Vec curves. In order to seek the optimum stabilization conditions, a gate
voltage stress modulation was used to find the relations of reliability and acid ion.

In this thesis, we will describe details on fabrication process flow and measurement

conditions. In this study, there are four researches in sensitivities of varies temperature, the



effects of gate voltage stress modulation, hysteresis of temperature, and repeatable use.
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Chapter 1

Introduction

1.1 Motivation of this work

The most often mentioned advantages of ISFET are very fast response, high sensitivity,
batch processing capability, micro size and the potential for on-chip circuit integration.

Ion-sensitive field effect transistors (ISFETs) exist some instable characteristics, such as
ambient temperature changed and temperature hysteresis influence and time drift versus gate
voltage stress modulation influence. In this work, we choose ZrO2, Ta20s, Thermal Oxide,
and PE Oxide as sensing films and study the sensing characteristic and figure out the
feasibility of CMOS process fabrication:

In this work, some theoretical analysis of.the: ISFETs characteristics is studied. It is
mainly based on a site-binding ‘model and MOSFET theory. According the experiment result

that can easily find proper explanations for optimum reliability characteristics for ISFETs.

1.2 Introduction the ISFET

The ISFET was that published by P. Bergveld in 1970 [1]. It have developed into a new
type of chemical sensing electrode. The main part of an ISFET is the ordinary metal oxide
silicon field effect transistor (MOSFET) with the gate electrode replaced by chemically
sensing layers, and the sensing layers are exposed to the solution directly. The fundamental
principles of ISFET will be developed from these MOSFET theories. Many theoretical and
experimental studies have been published describing the behavior of this chemical sensing
electronic device [2].

At first, Bergveld and Sibbald as an expression for the drain current in the linear region.

Therefore changes in the drain current are attributed to changes in the electrostatic only.
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Afterwards, Yates et al. [3] introduced the site-binding model in colloid chemistry to describe
the properties of an oxide-aqueous electrolyte interface. This model was later adapted to
describe the insulator-electrolyte interface of an ISFET. Compare with conventional
pH-meter using glass electrode, the ISFET’s advantage as below: (1) High input impedance
and low output impedance result and high SNR. (2) Bio-sensor or other micro-sensors can be
applied. (3).Easy to achieve mass production and low cost and MOSFET process compatible.

(4)Only need little media exposed and can be miniaturization.

1.3 Introduction the pH

The measurement of pH is the most widely employed test for (bio-)chemical lab. Since
the first use of glass electrode to.detect pH, the technology and methods have broaden the
scope of pH detection. Why is-the.pH important.to us? Because the pH is one of the most
common laboratory measurements because-so, many chemical and biological process are
dependent on pH. The detail reason deseribe.as below:

(1) Measuring pH is essential in finding the chemical characteristics of a substance.
Both the solubility of many chemicals or biomolecules in solution and the speed or rate of
(bio-)chemical reactions are dependent on pH. In order to optimize the desired reaction and
to prevent unwanted reactions, controlling the pH of solutions is very important.

(2) The body fluid of living organisms usually has specific pH range. The pH values of
lakes, rivers, and oceans differ and depend on the kinds of animals and plants living there.
The wastewater from factories and households may cause the pH changes of water and brings
the environmental impact on the local or even remote inhabitants.

(3) As pH measurement is essential for control of chemical reactions, it is carried out in
nearly all industries that deal with water: from the drinking water, the food and the drugs to

the paper, plastics, semiconductors, cements, glass or textiles.



1.4 The pH Detect Technique

In tradition, the measuring methods for pH values fall roughly into four categories:
indictor reagents, pH test strips, metal electrode methods and glass electrode methods. The
glass electrode is most widely used for pH measurement due to ideal Nernstian response
independent of redox interferences, short balancing time of electrical potential, high
reproducibility and long lifetime. However, glass electrode has several drawbacks for many
industrial applications. Firstly, they are unstable in alkaline or HF solutions or at
temperatures higher 100°C. Also, they exhibit a sluggish response and are difficult to
miniaturize. Moreover, they cannot be used in food or in in vivo applications due to their
brittle nature. There is an increasing need to for alternative pH electrodes.

The new techniques for pH detection which include: (1) Optical-fiber-based pH sensors.
(2) Mass-sensitive pH sensor.=(3).Metal oxide pH: sensors. (4) Conducting polymer pH
sensors. (5) Nano-constructed cantiléver-based.pH sensors. (6) ISFET-based pH sensors. (7)
pH-image sensor.

The problems in practical applications about reliability of ISFETs are continuing to be

investigated in this study.



Chapter 2
Theories for the Investigation of ISFET’s Temperature and Drift

Characteristics

2.1 Basic Principles of ISFET

An anisotropic ion accumulation exists at the contact interface between an
electrochemically active surface and a liquid electrolyte (Figure 2-1). Due to their different
size and charge, the ions from a well-confined electric double layer close to the surface and
outer charges exists between the Helmholtz planes and the neutral bulk of the solution.

Since the first report of the ISEET by Beérgveld, research on new material and
fabrication process to improve-the sensitivity and stability has been continuously proposed
[4-6]. At the same time, the niechanism-of the pH response of pH ISFET has also been
studied extensively [5-10].The followings are the theoretical foundations which are mostly

adopted to characterize the ISFET.

2.1.1 From MOSFET to ISFET

The operation of an ISFET can best be described by comparing it with its purely
electronic analogue. Figure 2-2 illustrates the similarities and differences between these two
devices: The metal gate of the MOSFET of Figure 2-2(a) is replaced by the metal of a
reference bare gate insulator ISFET in Figure 2-2(b). Mounting of the chips is of course
different: a MOSFET can be completely encapsulated, whereas for an ISFET source and

drain leads as well as chip edges have to be encapsulated carefully, meanwhile leaving the



gate area open for the contact with liquid.

For both devices the following equation is valid for the non-saturated region:

Cox W 1
ID :%{(VGS _VT)_EVDS}VDS (2-1)

with Coy is the oxide capacitance per unit area, u the electron mobility in the channel , # and
L the width and the length of the channel.

In addition, the fabrication process for MOSFET devices are so well under control that
Vr is also a constant, which manifests itself only as a certain threshold voltage, hence its
name, it was initially debated whether the observed ion sensitivity should be described as an
additional input variable in terms of a modification of Vgs or a modification of V7 Therefore,

the second important MOSFET equation is that of the threshold voltage:
_ Dy =P Qo +O0s+ 0y

q ox

v, +2¢, (2-2)

where the first term reflects thedifference in work function between the gate meta (®,) and
silicon (®si), the second ternt is due 6 accumulated charge in the oxide (Qoy), at the
oxide-silicon interface (QOss) and the depletion charge in the silicon(Qp), whereas the last term
determines the onset of inversion depending on the doping level of the silicon. All terms are
purely physical in nature.

In case of the ISFET, the same fabrication process is used, resulting in the same constant
physical part of the threshold voltage (Eq. (2-2)). However, in addition to this, two more
contributions manifest themselves: the constant potential of the reference electrode, E,.r, and
the interfacial potential E,.+ )(ml at the solution/oxide interface of which ¥ is the chemical
input parameter, shown to be a function of the solution pH and »*” is the surface dipole
potential of the solvent and thus having a constant value. The term ¥ representing the
surface potential at the oxide-electrolyte interface is the key element that makes ISFET
pH-sensitive.

The resulting equation for the threshold voltage of an ISFET is thus given by:



D
VT :Emf +Xsol _TO _ Si QOX +QSS +QB +2¢F (2_3)

(0.4

2.1.2 The Oxide-Electrolyte Interface of pH Response

The surface of any metal oxide always contains hydroxyl groups, in the case of silicon
dioxide SiOH groups. These group may donate or accept a proton from solution, leaving a
negatively charged or a positively charged surface group respectively. In the case of silicon
dioxide SiOH groups. It is indicated that equilibrium reactions can occur between protons in
the solution and the hydroxyl at the SiO2 solution interface. The oxide surface charge can be
described by the site-binding model, as schematically represented by Figure 2-3 which
describes the equilibrium between the_so-called amphoteric SiOH surface sited and the H"

-ions in the solution. These reactions, can’be expressed by

H; + SiOH <% SiOH} (2-4)
SiOH <« SiO" + H (2-5)

where H represents the protons at the surface of the oxide.

The generally expression for the pH sensitivity of an ISFET, this response is given by:

Mo _ 535 with (2-6)
OpH q
1
“=3IC, 7
—a, Tl
q ﬁint

the parameter o is a dimensionless sensitivity parameter what varies between 0 and 1,
depending on the intrinsic buffer capacity [Sin, of the oxide surface and the differential
double-layer capacitance Cuifr. If a=1, the theoretical maximum sensitivity of -59.2mV/pH at

room temperature can be obtained.



2.2 Introduction the Temperature Phenomenon

Because an ISFET is a chemical sensor based on MOSFET, ISFET’s temperature
characteristics are similar to a conventional MOSFET. According to the equation of the linear
region in MOSFET, we concluded that only the mobility and the threshold voltage are
temperature dependent. These two factors have a negative T.C. It implies which a zero T.C.
point exits in the Ip-Vg characteristics. We concluded a series of experiments on the
temperature characteristics in different solutions, the operation currents of the zero T.C. are
changed in different solutions. This results indicate that the operation conditions for zero T.C.
will change along with the change in solutions.

On the operating conditions for a zero T.C., a differential configuration was used to
investigate the membrane/electrolyte interface ‘temperature coefficient. The differential
configuration used dual FET’s structures, one-FET was a MOSFET, the other was an ISFET.
A typical example of the linearregion-of-the.dual FET’s structures in different temperatures
is shown in Figure 2-4. This figure indicates that the operation currents for the MOSFET and
the ISFET at different currents will yield a different T.C. Although the two FET’s have the
same tendency, the T.C. of the membrane/electrolyte interface can be estimated from the
following equation:

T.C.asreT) — T.C.(MOSFET) = T.C.(membrane/ clectrolyte interface) (2-8)

Operated in the nonsaturation region in different temperatures of IDS-VGS curves for the
MOSFET were obtained. Part of the Ip-Vg curves are shown in Figure 2-5. A deviation in the
IDS-VGS characteristics occurred as the temperature changed and it is easily to see the
isothermal point clearly. In our previous study, an ISFET with different sensing film was
developed based on the MOSFET theory. Operated in the nonsaturation region in pH = 2, 4,
6, 7, 8, 10 and 12 in temperatures from 5 to 65°C with a step of 10°C, a family of Ips-VGS

curves for the gate ISFET were obtained. Part of the Ip-Vg curves are shown in Figure 2-6. A
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deviation in the IDs-VGS characteristics occurred as the temperature changed and it is easily
to see the isothermal point clearly too. The Ip-Vg curve at a specific pH declined with an
increase in temperature. Accordingly, and isothermal point, near zero temperature coefficient,
it is indicates that a well-chosen operating point can eliminate the temperature influence in
nonsaturation region because the threshold voltage is approach constant. In this study, the
temperature effects on several sensing film ISFET characteristics operated in the
nonsaturation and saturation regions were investigated. The threshold voltage( V7 ) and

drain-source current( /Ds ) versus temperature characteristics will be discussed [11-12].

2.3 Introduction the Drift Phenomenon

Threshold voltage instability;: commonly known as drift, has seriously limited the
commercial viability of ISFET-based sensors-by imposing special requirements for burn-in,
packaging or compensation. Drift is itypically-characterized by a relatively slow, monotonic,
temporal change in the threshold veltage of the ISFET, which is not caused by variations in
the electrolyte composition. General explanations proposed for drift phenomenon include
electric field enhanced ion migration within the gate insulator as well as electrochemical
non-equilibrium conditions at the insulator -solution interface, injection of electrons from the
electrolyte at strong anodic polarizations, creating negative space charge inside the insulator
films, and slow surface effect. The drift is thought to be caused by the slow conversion of the
surface to a hydrated during contact with the solution. The following models, which are
classified according to the location where the mechanism of pH-sensitivity is presumed to

occur, will help us to have a further understanding of the transport of mobile ions.



2.3.1 Physical Model for Drift

The model presented in this work quantitatively explains drift in terms of hydration
[13-16]. In particular, the time dependence of drift is derived by considering the correlation
between the rate of hydration and the hopping and /or trap-limited transport of water-related
species. The gate voltage drift in pH ISFET’s is a relatively slow process which occurs over a
period of several hours, it is reasonable to hypothesize that this phenomenon is associated
with transport in the insulator. In particular, the motion within this gate insulator is expected
to be characterized by relatively long transit time.

It is well known that the surface is slowly converted to a hydrated sensing layer as result
of exposure to an aqueous electrolyte. The chemical modification of the insulator surface
implies that the dielectric constant:of the hydration layer will differ from that of the insulator
bulk. Therefore, the overall insulator capacitance, which is determined by the series
combination of the capacitance of ithe_hydration layer, it will exhibit a relatively slow,
temporal change as hydration proceeds. The' rate of hydration which has recently been
accurately modeled by a hopping transport mechanism, known as dispersive transport. In
amorphous solid, dispersive transport arising from a hopping motion via localized states,

result in a characteristic power-law time decay of diffusivity given by:
D(t) = Dy, (w )" (2-9)

where Dy is a temperature-dependent diffusion coefficient which obeys an Arrhenius
relationship, @y is the hopping attempt frequency, and f is the dispersion parameter satisfying
0<p<1. Physically, the time-dependent transport properties result from the dispersion in the
separation distances between nearest-neighbor localized sites and/or the dispersion in trap
energy levels. Dispersive transport leads to a decay in the density of sites/traps occupied by

the species undergoing transport. This decay is described by the stretched-exponential time



dependence given by
AN,7(1) = AN, (0)exp[ (- /7)" ] (2-10)

where ANg/(?) is the area density (units of cm™?) of sites/traps occupied, 7 is the time constant
associated with structural relaxation, and /£ is the dispersion parameter characterizing

dispersive transport.

2.3.2 Drift Expression

One means of operating an ISFET is in the feedback mode, where a constant drain
current is maintained by applying a compensating feedback voltage to the solution side of the
gate voltage ( e.g., a reference electrode)., Therefore, the temporal change is the overall
insulator capacitance resulting from hydration leads to a drift in compensating feedback
voltage. In other words, when drift phenomenon occurs at the surface of an actively-biased
ISFET, the gate voltage will simultaneously-exhibit a change to keep a constant drain current.
The change in the gate voltage can be ‘written as
AV () =V (1) =V5(0) (2-11)

Since the voltage drop inside of the semiconductor is kept constant in the feedback mode,
AV(f) becomes

AV (@) = Vs () = Vi (O] + [V, () =V, (0)] (2-12)

where Vg and Vs represent the flatband voltage and the voltage drop across the insulator,

respectively. The flatband voltage is given by

oD
Vg = Emf +Z‘ml -, - Si_ Qox +Dss (2-13)
q Cox

The voltage drop across the insulator, V7, is given by

- (QB + Qinv) (2_14)

ms COX
where O, 1s the inversion charge. If the temperature, pH, and the ionic strength of the
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solution are held constant, the variations in E, ;{s"l, ¥, and @g; can be neglected. so the drift

can be rewritten as

AVo(6) =—(Qpy + 05 +0y + Qinv){c%m— - 1(0)} (2-15)

The gate oxide of the fabricated ISFET was composed of two layers in this study, a lower
layer of thermally-grown SiO, of thickness, x;, and an upper layer of PECVD SiO, of
thickness, xy. C/0) is the effective insulator capacitance given by the series combination of
the thermally-grown SiO, capacitance, ¢;/x;, and the PECVD Si0, capacitance, ey/xy. Cq(f) is
analogous to C{(0), but an additional hydrated layer of capacitance, &pz/xpm;, at the
oxide-electrolyte interface must be took into consideration, and the PECVD SiO; capacitance
is now given by ey/[xy—xpz]. The series combinations of the capacitances are illustrated in

Figure 2-7. The simplified expression for drift 1s; therefore, given by [17]

AV () = ~(Qpy +Ogs + 0y +Qinv){mjxm ) (2-16)

UgHL
As is evident from From this equation(2-16),drift is directly proportional to the thickness of
the modified surface layer. Therefore, the time dependence of drift is identical to that
associated with the growth of this layer. By considering the time dependence of the diffusion
coefficient associated with dispersive transport, an expression for xyz(?) is given by
Xy (6) = X, () I —expl= (¢/7)" || 2-17)

where xp;(0) is given by

Dooa)oﬂ_lANS/T (0)
ADﬂNhydr

(2-18)

Xpp (00) =

where Ap represents the cross-sectional area, and Ny,q, is the average density of the hydrating
species per unit volume of hydration layer. The overall expression for the gate voltage drift is

given by
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AV (1) = ~(Qpy +Oss + 0, + QM(EU ‘jﬂ jx,ﬂ (o) i—expl-(t/0) ]} (2-19)

U HL

We can expect that if the time of gate oxide immersing in the test-solution is long enough
(determined by the constant 7 ), the gate voltage drift will approach a constant value which

is greatly dependent on the hydration depth, x;(o0).
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Chapter 3

Procedures of the Experiment

To investigate the properties of membrane as the pH-sensing layers, the ISFET were
fabricated. All processes were done in NDL (National Nano Device Laboratory)
and Nano Facility center. The schematic diagrams of ISFET is presented and corresponding

graph is shown in Figure 3-1.

3.1 ISFET Fabrication Process Flow

(a) RCA clean
Wet-oxidation, 6000A, temperature = 1050°C. for65 minutes
(b) Defining of Source/Drain (mask 1)
BOE wet-etching of Si02
(c) Screening dry oxidation thickness=300A, temperature=1050°C for 12 minutes
Source/Drain ion implantation
Source/Drain annealing, 950°C, 60 minutes
(d) PECVD SiO; for passiveness, lum
(e) To define contact hole and gate region (mask 2)
BOE wet-etching of Si02
(f) Dry oxide thickness=100A, temperature=850°C for 60 minutes
(g) Sensing layer 1, 300A
Defining of sensing region (mask 3)
HF wet-etching of Si02

(h) Sensing layer 2, 300A (mask 4)

13



(i) Al evaporation, 5000A (mask 5)

3.2 Experiment details

3.2.1 Gate Region Formation

RCA clean is usually performed at wafer starting to reduce the effect of diffusion ions,
particles and native oxide. RCA clean will ensure the integrity of device electricity. In order
to create a Source/Drain region, the next step 600A thickness wet oxide is deposited as
blocking layer for Source/Drain implant. The density and the energy of Source/Drain implant
is 5E15 (1/cm”) and 25Kev with phosphorus dopant, respectively. In our experiment, p-type
wafer is used. After Source/Drain implanting following a 950°C 30minutes N anneal
performed to activate the dopants.

We do not need to deposit-PE-oxide-with-thickness 1um in standard MOSFET, but it is
necessary to do which protect the strueture of @ pH-ISFET, when the ISFET’s will operating
in a long period, during this period, we need to avoid ion’s diffusion in the structure and
affect the electrical characteristics [18]. In order to avoid this influence, a thick PE-oxide
deposition can eliminate this effect. After PE-oxide depositing, 100A thickness dry oxide was

grown as gate oxide.

3.2.2 Sensing Layer Deposition

Methods of deposited sensing membrane as gate material are different which is the
most important part in our experiment. The drift, hysteresis and sensitivity will improve
by different layers [19]. For comparing these sensing layers, several deposition techniques

were performed. Low- pressure nitride (LP- nitride) and PE-oxide are deposited as sensing
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layers. We adopted LPCVD to obtain low stress nitride and high sensitivity, so it is good
sensing layer. There are so many researches on it [20]. However, PE-oxide drift and
sensitivity are unstable in different electrolytes. In CMOS process, tungsten and tantalum are
popularly used. By using different barriers, drift lowing for a long period of tome and

compatible with CMOS can be accomplished.

3.3 Measurement System

3.3.1 Preparation Before Measuring

To define the characteristics of the device, we use HP4156A to measure the I-V curve of
ISFET. The measurement system:1s showed in Figure 3-2. Otherwise, light will produce
serious influence on the ISFET so'that we measurement in the dark box to prevent light
influence.

After device being made, we glue a container on the wafer. Entire sensing layer region
must be included in the opening under the container. The material of the container is made by
silica gel and the bottom has to be small enough to avoid touching other devices. However,
the opening on the top has to be big enough for insert reference electrode.

The pH-solution that we use is made from Riedel-deHzen and pH-value is 1, 3, 5, 7
buffer solutions. The electric potential of the pH-solution is always floating. The disturbance
from the environment would induce the electric potential variance of the solution. By

eliminating this variance, a reference electrode is needed to put into the pH-solution.

15



3.3.2 Measurement Set-Up

In the beginning of the measurement, the reference electrode is suspended on the air
over the container. The pH-solution is filled in the container. It is noticed that the pH-solution
must touch the sensing layer entirely because of the small opening.

In the setup of HP-4156A semiconductor parameter analyzer system, substrate is
grounded and the reference electrode is sweeping to different voltage. In the measurement of
sensitivity, the response of the pH-ISFET is the function of time and at the first, we check the
Ip-Vb curve to make sure the ISFET device is work as a MOSFET. On the other hand, we
also should decide the drain bias from Ip-Vp to ensure the both IFET are operating in linear
region while Ip-V measurement.

The ISFET held at Vo = 1V,.2V; 3V, 4V, and.5V. The typical set of Ip-Vb curves for the
7102, Ta205, Thermal Oxide, and PE Oxide gate ISFET are shown in Figure 3-3, Figure 3-4,
Figure 3-5, Figure 3-6.

The pH-solution in the container. is about several milliliters. In order to control the
accuracy of the result, the container has to be washed by the next pH-solution after

measuring previous pH-solution.

3.3.3 Temperature Measurement Set-Up

For characterizing the temperature influence of ISFETs, we measured I-V curves for
etch film with changing the pH-solution in order of pH 1, 3, 5, 7 buffer solutions and
controlling the different ambient temperature about 25°C, 35°C, 45°C, 55°C, 65°C, 75°C, and
85°C. For each temperature value, we wait the 15 minutes then measured the Ip-Va curves
which the pH-ISFET had been covered by the pH-solution. The measurement system is

showed in Figure 3-7. Figure 3-8 illustrates the detection principle of pH. Firstly, we obtain
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the pH1 transconductance, it is purpose to get maximum gain. The second step we decide the
pH1’s VG then decide the IDS. At last, we can obtain the pH3, pHS, pH7’s VG. When we
change the different pH buffer solution, we must use the pH7 buffer solution first, then pHS,
pH3, and pHI, it is purpose to get better performance which let the pH buffer solution

concentration from low to high.
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Chapter 4

Results and Discussions

4.1 Temperature Sensitivities of Various Membranes

4.1.1 ZrO, membrane gate ISFET

Figure 4-1~4-14 are the Ip-Vg curves and sensitivities of ZrO, gate ISFET in pH=1, 3,
5, 7 buffer solutions at 25°C, 35°C, 45°C, 55°C, 65C, 75°C, and 85°C. The measuring data
are sorted in table 4-1. Figure 4-15 is temperature sensitivity correlation coefficient. The
measuring data are sorted in table 4-3: Figure 4-16 is normalize the temperature sensitivities
curve. The measuring data are sorted in table'4-2. According to the data about table 4-3, we
can find that ZrO, gat ISFET temperature sensitivity 1s increase progressively.

Figure 4-17~4-20 the Ip-Vig . curve at a §pecific pH declined with an increase in
temperature. That can fine the isothermal point as show as Figure 4-21, it is near zero
temperature coefficient, this indicates that a well-closen operating point can eliminate the

temperature influence, the measuring data are sorted in table 4-4.

4.1.2 Ta;0Os membrane gate ISFET

Figure 4-22~4-35 are sensitivities of Ta,Os gate ISFET in pH=I1, 3, 5, 7 buffer
solutions at 25°C, 35°C, 45°C, 55°C, 65°C, 75°C, and 85°C. The measuring data are sorted in
table 4-1. Figure 4-36 is temperature sensitivity correlation coefficient. The measuring data
are sorted in table 4-3. Figure 4-37 is normalize the temperature sensitivities curve. The

measuring data are sorted in table 4-2. According to the data about table 4-3, we can find that
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Ta,Os gat ISFET temperature sensitivity is decrease progressively.

Figure 4-38~4-41 the Ip-Vg curve at a specific pH declined with an increase in
temperature. That can fine the isothermal point as show as Figure 4-42, it is near zero
temperature coefficient, this indicates that a well-closen operating point can eliminate the

temperature influence, the measuring data are sorted in table 4-4.

4.1.3 Thermal Oxide membrane gate ISFET

Figure 4-43~4-56 are sensitivities of Thermal Oxide gate ISFET in pH=1, 3, 5, 7 buffer
solutions at 25°C, 35°C, 45°C, 55°C, 65°C, 75°C, and 85°C. The measuring data are sorted in
table 4-1. Figure 4-57 is temperature sensitivity correlation coefficient. The measuring data
are sorted in table 4-3. Figure 4-58 1s normalize the temperature sensitivities curve. The
measuring data are sorted in table 4-2. According to the data about table 4-3, we can find that
Thermal Oxide gat ISFET temperature sensitivity is increase progressively.

Figure 4-59~4-62 the Ip-Vg curve at-a specific pH declined with an increase in
temperature. That can fine the isothermal point as show as Figure 4-63, it is near zero
temperature coefficient, this indicates that a well-closen operating point can eliminate the

temperature influence, the measuring data are sorted in table 4-4.

4.1.4 PE Oxide membrane gate ISFET

Figure 4-64~4-77 are sensitivities of PE Oxide gate ISFET in pH=I1, 3, 5, 7 buffer
solutions at 25°C, 35°C, 45°C, 55°C, 65°C, 75°C, and 85°C. The measuring data are sorted in
table 4-1. Figure 4-78 is temperature sensitivity correlation coefficient. The measuring data
are sorted in table 4-3. Figure 4-79 is normalize the temperature sensitivities curve. The

measuring data are sorted in table 4-2. According to the data about table 4-3, we can find that
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PE Oxide gat ISFET temperature sensitivity is decrease progressively.

Figure 4-80~4-83 the Ip-V curve at a specific pH declined with an increase in
temperature. That can fine the isothermal point as show as Figure 4-84, it is near zero
temperature coefficient, this indicates that a well-closen operating point can eliminate the

temperature influence, the measuring data are sorted in table 4-4.

4.1.5 Followings are the discussions of the measurement results:

It is very interested in sensitivity measurement result. Why, there are ZrO, gate ISFET
and Thermal Oxide gate ISFET temperature sensitivity increase progressively?

Why, there are Ta,Os gat ISFET and PE Oxide gate ISFET temperature sensitivity decrease
progressively?

According to the Eq. (2-6),.the parameter ¢'1s a dimensionless sensitivity parameter
and T is temperature parameter. If T.is-multiply o and product is increase that cause
temperature sensitivity is upwardly. Otherwise; if T is multiply a and product is decrease that
cause sensitivity is downward.

Accordingly, an isothermal point of the ZrO,, Ta,Os, Thermal Oxide, and PE Oxide in
pH=1, 3, 5, 7 buffer solutions at 25°C, 35°C, 45C, 55C, 65C, 75C, and 85C, the pH

response increases monotonically as the temperature increases.
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4.2 Drift Characteristics of Gate Stress Voltages in Various Membranes

4.2.1 ZrO, membrane gate ISFET

Figure 4-85 shows the drift of ZrO, gate ISFET with time. It is obviously shows a
strong relation of gate drift and gate stress voltages. When the gate voltage is controlled as
-0.5V, the drift voltage will decrease from -57.94 mV to -3.45mV in six hours measurement.
The improvement of the drift voltage reaches 94.05%. In order to confirm that the method
works, a ZrO; film ISFET has also measured by various gate voltages. Figure 4-86 shows the

relation of drift voltages and gate stress voltages, and the data are sorted in table 4-5.

4.2.2 Ta;0Os membrane gate ISFET

Figure 4-87 shows the drift of Ta,Os-gate ISFET with time. It is obviously shows a
strong relation of gate drift and gate stress voltages. When the gate voltage is controlled as
-0.5V, the drift voltage will decrease from 40.6mV to 25.48mV in six hours measurement.
The improvement of the drift voltage reaches 37.24%. In order to confirm that the method
works, a Ta,Os film ISFET has also measured by various gate voltages. Figure 4-88 shows

the relation of drift voltages and gate stress voltages, and the data are sorted in table 4-5.

4.2.3 Thermal Oxide membrane gate ISFET

Figure 4-89 shows the drift of Thermal Oxide gate ISFET with time. It is obviously
shows a strong relation of gate drift and gate stress voltages. When the gate voltage is
controlled as -0.5V, the drift voltage will decrease from 56.12mV to 2.94mV in six hours

measurement. The improvement of the drift voltage reaches 94.76%. In order to confirm that
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the method works, a Thermal Oxide film ISFET has also measured by various gate voltages.
Figure 4-90 shows the relation of drift voltages and gate stress voltages, and the data are

sorted in table 4-5.

4.2.4 PE Oxide membrane gate ISFET

Figure 4-91 shows the drift of PE Oxide gate ISFET with time. It is obviously shows a
strong relation of gate drift and gate stress voltages. When the gate voltage is controlled as
1V, the drift voltage will decrease from 45.54mV to 0.92mV in six hours measurement. The
improvement of the drift voltage reaches 97.98%. In order to confirm that the method works,
a PE Oxide film ISFET has also measured by various gate voltages. Figure 4-92 shows the

relation of drift voltages and gate stress voltages, and the data are sorted in table 4-5.

4.2.5 Followings are the discussions.of the measurement results:

According to the table 4-5, it is a simple and cheap way to solve the drift problem is
presented which described the relation of drift and gate voltage. A constant various gate
voltages are biased in the sensing layer with reference electrode. The improvement of drift
voltages reaches higher. This may result from the gate electric field affecting the ions to
diffusive into the gate insulator. To use this method, we can change different gate voltages
which get a series of drift voltage characteristic. By this way, we can find the point about
gate voltage which let drift approach to OV for each membrane gate ISFET, it is very
important to us for ISFET application. Then we will be commercialize the ISFET with a very

low drift rate in a simple way.
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4.3 Drift Characteristics Hysteresis of Cycle Time Test in Various

Membranes

4.3.1 ZrO, membrane gate ISFET

Figure 4-93~4-94 are drift hysteresis of ZrO, gate ISFET in pH=7 buffer solution at
either 25°C or 85°C. The measuring data are sorted in table 4-6 and table 4-10. According to
table 4-11, the percentages of accuracy after second cycle time are about 1.30% at 25°C and

1.96% at 85°C.

4.3.2 Ta;0s membrane gate ISFET

Figure 4-95~4-96 are drift hysteresis of Ta,Os gat ISFET in pH=7 buffer solution at
either 25°C or 85°C. The measuring data-arc-sorted in table 4-7 and table 4-10. According to

table 4-11, the percentages of accuragy:after second cycle time are about 1.60% at 25°C, and

1.69% at 85°C.

4.3.3 Thermal Oxide membrane gate ISFET

Figure 4-97~4-98 are drift hysteresis of Thermal Oxide gat ISFET in pH=7 buffer

solution at either 25°C or 85°C. The measuring data are sorted in table 4-8 and table 4-10.

According to table 4-11, the percentages of accuracy after second cycle time are about 3.66%

at 25°C, and 4.12% at 85°C.
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4.3.4 PE Oxide membrane gate ISFET

Figure 4-99~4-100 are drift hysteresis of PE Oxide gat ISFET in pH=7 buffer solution at
either 25°C or 85°C. The measuring data are sorted in table 4-9 and table 4-10. According to
table 4-11, the percentages of accuracy after second cycle time are about 3.68% at 25°C, and

4.19% at 85°C.

4.3.5 Followings are the discussions of the measurement results:

According to the Figure 4-94, Figure 4-96, Figure 4-98, Figure 4-100, we can see that
cycle time 1 is toward gate voltage hysteresis larger then the other cycle time, it is initial drift
characteristic of ISFET. If we want to know the ISFET gate voltage drift hysteresis at
different temperatures, we must-calculate hysteresis with beginning at second cycle.

Table 4-12 shows percentages of gate-voltage drift hysteresis are smaller then 5% of all
membranes. It is indirect identification.that the.confidence of this thesis experiment results

are very high.

4.4 Conclusions

In this thesis of our experiment is to study and obtain the most suitable membrane which
is compatible with CMOS fabrication processes to be a sensing layer for ISFET. We choose
four membranes of ZrO2, Ta2Os, Thermal Oxide, and PE Oxide to be sensing films.

The first purpose is studying the temperature sensitivity characteristic. According to the
Eq. (2-6), the parameter a is a dimensionless sensitivity parameter and T is temperature
parameter. If T is multiply o and product is increase that cause temperature sensitivity is

upwardly. Otherwise, if T is multiply a and product is decrease that cause sensitivity is
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downward. There are ZrO, gate ISFET and Thermal Oxide gate ISFET temperature
sensitivity increase progressively. There are Ta,Os gat ISFET and PE Oxide gate ISFET
temperature sensitivity decrease progressively.

The second purpose is studying the temperature isothermal point of the four membranes
in pH=1, 3, 5, 7 buffer solutions at 25°C, 35°C, 45°C, 55°C, 65°C, 75°C, and 85°C, the pH
response increases monotonically as the temperature increases. In other words, the
temperature isothermal point is temperature balance point in pH=1, 3, 5, 7 buffer solutions at
25°C, 35°C, 45C, 55°C, 65C, 75°C, and 85°C. We can obtain a well-chosen operating point
that can eliminate the temperature influence in this region.

The third purpose is studying the gate voltage drift characteristic. According to the table
4-5, it is a simple and cheap way to solve the drift problem is presented which described the
relation of drift and gate voltage. ;A constant various gate voltages are biased in the sensing
layer with reference electrode. -The. improvement.of drift voltages reaches higher. This may
result from the gate electric field affécting the-ions to diffusive into the gate insulator. To use
this method, we can change different. gate-voltages which get a series of drift voltage
characteristic. By this way, we can find the point about gate voltage which let drift approach
to OV for each membrane gate ISFET, it is very important to us for ISFET application. Then
we will be commercialize the ISFET with a very low drift rate in a simple way.

The fourth purpose is studying the drift characteristics hysteresis of cycle time test in
various membranes. According to the Figure 4-94, Figure 4-96, Figure 4-98, Figure 4-100,
we can see that cycle time 1 is toward gate voltage hysteresis larger then the other cycle time,
it is initial drift characteristic of ISFET. If we want to know the ISFET gate voltage drift
hysteresis at different temperatures, we must calculate hysteresis with beginning at second
cycle.

Table 4-12 shows percentages of gate voltage drift hysteresis are smaller then 5% of all

membranes. It is indirect identification that the confidence of this thesis experiment results
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are very high.
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Chapter 5

Future Work

5.1 Temperature and Gate Voltage Stress Modulation influence

In our experiments, we investigated the ISFET’s reliability with temperature and gate
voltage stress modulation individual. Therefore, how to link these factors influence range
about temperature and gate voltage stress modulation together, and how to control the
substrate voltage to make drift voltage become zero for each membrane gate ISFET, and how
to design the circuit to realize our idea.

At present, the temperature hysteresis.of the gate ISFET is not investigate deeply, and
how to reduce it will be study miore necessary. A perfect model of gate voltage stress with

drift voltage should also be built in‘the future.
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Fig. 4-24 Ip-Vg curves of the Ta20s gate ISFET in pH=1, 3, 5, 7 buffer solutions at 35C.
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Fig. 4-30 Ip-Vg curves of the Ta20s gate ISFET in pH=1, 3, 5, 7 buffer solutions at 65C.

55



1.85

1 80 -_TazO!i 300Angstrom
175 | Ambient Temperature 65

170 [
S 165}
(4]
= 1.60
1.95
1.50
1.45
140 1 . 1 . ] . 1 . ] . ] . 1

Sensitivity = 60.26 mV/pH

pH

Fig. 4-31 Sensitivity of the*Ta2Qs gate ISEET mpH=1, 3, 5, 7 buffer solutions at 65C.
0.9

08 — pH1
0.7}

0.6 - e pH7
— 05 B
<L i
E 04t
_D B
0.3F
0.2} g
0.1} /0
0.0L -7 Ta 0, 300Angstrom
o e . . AlmbientlTempelrature 7:5“‘(;
' 0.0 0.5 1.0 1.5 2.0 2.5 3.0
v, (V)
Fig. 4-32 Ip-Vg curves of the Ta20s gate ISFET in pH=1, 3, 5, 7 buffer solutions at 75C.
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Fig. 4-33 Sensitivity of the Ta20s gate ISEET in pH=1, 3, 5, 7 buffer solutions at 75°C.

0.9
0.8
0.7 F  ------ pH3

0.5}
0.4
0.3}
0.2F .
0.1F s o

- A7 Ta,0_ 300Angstrom
0.0} e me 27s

_01 [ 1 . 1 . 1 .
0.0 0.5 1.0 1.5 2.0 2.5 3.0

V_ (V)
Fig. 4-34 Ip-Vg curves of the Ta20s gate ISFET in pH=1, 3, 5, 7 buffer solutions at 85C.
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Fig. 4-35 Sensitivity of the Ta20s gate ISEET in pH=1, 3, 5, 7 buffer solutions at 85C.
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Fig. 4-36 Temperature sensitivity and correlation coefficient dependency of the Ta20s
gate ISFET.
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Fig. 4-37 Normalize the temperature sensitivity curve of the Ta2Os gate ISFET.
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Fig. 4-38 Ip-V curves of the Ta20s gate ISFET in pH=1 buffer solution at temperatures
of 25°C, 35°C, 45°C, 55°C, 65°C, 75C, and 85C.
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Fig. 4-39 Ip-V curves of the Ta20sgate ISFET in pH=3 buffer solution at temperatures
of 25°C, 35°C, 45°C55°C,.65C,.75€, and 85C.
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Fig. 4-40 Ip-V curves of the Ta20s gate ISFET in pH=5 buffer solution at temperatures
of 25°C, 35°C, 45°C, 55°C, 65°C, 75C, and 85C.
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Fig. 4-41 Ip-V curves of the Ta20s gate: ISFET in pH=7 buffer solution at temperatures
of 25°C, 35°C, 45:C, 55°C, 65°C, 75°C ,-and 85C.
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Fig. 4-42 Iso-thermal point range of the Ta2Os gate ISFET in pH=1, 3, 5, 7 buffer solutions.
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Fig. 4-43 Ip-Vg curves of the Thermal Oxide gate ISFET in pH=1, 3, 5, 7 buffer solutions at

25C.
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Fig. 4-45 1p-V curves of the Thermal Oxide gate. ISFET in pH=1, 3, 5, 7 buffer solutions at
35C.
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Fig. 4-46 Sensitivity of the Thermal Oxide gate ISFET in pH=1, 3, 5, 7 buffer solutions at
35C.
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Fig. 4-47 1p-V curves of the Theérmal Oxide gate ISFET in pH=1, 3, 5, 7 buffer solutions at
457C.
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Fig. 4-48 Sensitivity of the Thermal Oxide gate ISFET in pH=1, 3, 5, 7 buffer solutions at
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Fig. 4-49 1p-Vg curves of the Thermal Oxide gate ISFET in pH=1, 3, 5, 7 buffer solutions at
55C.
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Fig. 4-50 Sensitivity of the Thermal Oxide gate ISFET in pH=1, 3, 5, 7 buffer solutions at
55C.
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Fig. 4-51 Ip-V curves of the Theérmal Oxide gate ISFET in pH=1, 3, 5, 7 buffer solutions at
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Fig. 4-52 Sensitivity of the Thermal Oxide gate ISFET in pH=1, 3, 5, 7 buffer solutions at
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Fig. 4-53 Ip-V curves of the Theérmal Oxide gate ISFET in pH=1, 3, 5, 7 buffer solutions at
75C.
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Fig. 4-54 Sensitivity of the Thermal Oxide gate ISFET in pH=1, 3, 5, 7 buffer solutions at
75C.
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Fig. 4-55 Ip-Vg curves of the Thermal Oxide gate ISFET in pH=1, 3, 5, 7 buffer solutions at
85C.
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Fig. 4-56 Sensitivity of the Thermal Oxide gate ISFET in pH=1, 3, 5, 7 buffer solutions at

85C.
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Fig. 4-57 Temperature sensitivity and cotrelation coefficient dependency of the Thermal
Oxide gate ISFET.
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Fig. 4-58 Normalize the temperature sensitivity curve of the Thermal Oxide gate ISFET.

69



0.65

0.60 [
055F pH=1
050F —— 257
045F - 35°C
__040F 45T
< 035f ----55C
= 030[ ----B5C
ggg I ;gg Isothermal Points
0.15F
0.10 F ,
0.05} 7 .
0.00 E " Thermal Oxide 300Angstrom
L I e e ——— T ——————_——
0.0 0.5 1.0 1.5 2.0 2.5 3.0
V. (V)

Fig. 4-59 Ip-Vg curves of the Thermal Oxide gate ISFET in pH=1 buffer solution at
temperatures of 25°C,:35°C, 450 ;55C, 65C, 75°C, and 85C.
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Fig. 4-60 Ip-V curves of the Thermal Oxide gate ISFET in pH=3 buffer solution at
temperatures of 25°C, 35°C, 45°C, 55°C, 65°C, 75°C, and 85C.
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Fig. 4-61 Ip-Vg curves of the Thermal Oxide gate ISFET in pH=5 buffer solution at
temperatures of 25°C,35°C, 450 ;55C, 65C, 75°C, and 85C
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Fig. 4-62 Ip-V curves of the Thermal Oxide gate ISFET in pH=7 buffer solution at
temperatures of 25°C, 35°C, 45°C, 55°C, 65°C, 75°C, and 85C
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Fig. 4-63 Iso-thermal point range.0f the Thermal Oxide gate ISFET in pH=1, 3, 5, 7 buffer

solutions.
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Fig. 4-64 1p-V curves of the PE Oxide gate ISFET in pH=1, 3, 5, 7 buffer solutions at
257C.
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Fig. 4-65 Sensitivity of the PE Oxide gate ISFET.in pH=1, 3, 5, 7 buffer solutions at 25C.
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Fig. 4-66 1p-V curves of the PE Oxide gate ISFET in pH=1, 3, 5, 7 buffer solutions at
35C.
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Fig. 4-67 Sensitivity of the PE Oxide gate ISFET'in pH=1, 3, 5, 7 buffer solutions at 35C.
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Fig. 4-69 Sensitivity of the PE Oxide gate ISFET.in pH=1, 3, 5, 7 buffer solutions at 45C.
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Fig. 4-70 Ip-V curves of the PE Oxide gate ISFET in pH=1, 3, 5, 7 buffer solutions at
55C.
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Fig. 4-71 Sensitivity of the PE Oxide gate ISFET in pH=1, 3, 5, 7 buffer solutions at 55°C
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Fig. 4-72 1Ip-V curves of the PE Oxide gate ISFET in pH=1, 3, 5, 7 buffer solutions at
65C.

76



| PE Oxide 300Angstrom
| Ambient Temperature 65°C =

Sensitivity = 51.75 mV/pH

1 2 3 4 ] 6 7
pH
Fig. 4-73 Sensitivity of the PE Oxide gate ISFET.in pH=1, 3, 5, 7 buffer solutions at 65C.
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Fig. 4-74 1p-V curves of the PE Oxide gate ISFET in pH=1, 3, 5, 7 buffer solutions at
75C.

77



1.60

- PE Oxide 300Angstrom .
1.55 - Ambient Temperature 75°C
1.50 |
> 145+
o R
=
1.40 |
a5 I Sensitivity = 46.91 mV/pH
1.30 F
1 2 3 4 5 6 7
pH

Fig. 4-75 Sensitivity of the PE Oxide gate ISFET in pH=1, 3, 5, 7 buffer solutions at 75C.
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Fig. 4-76 1p-V¢ curves of the PE Oxide gate ISFET in pH=1, 3, 5, 7 buffer solutions at
85C.
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Fig. 4-79 Normalize the temiperature sensitivity curve of the PE Oxide gate ISFET.
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Fig. 4-80 Ip-V curves of the PE Oxide gate ISFET in pH=1 buffer solution at
temperatures of 25°C, 35°C, 45°C, 55°C, 65°C, 75°C, and 85C.
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Fig. 4-81 Ip-Vg curves of the PE Oxide gate ISEET in pH=3 buffer solution at
temperatures of 25C, 35°C 45 C.,55'C, 65C, 75°C, and 85C.
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Fig. 4-82 Ip-V curves of the PE Oxide gate ISFET in pH=5 buffer solution at
temperatures of 25°C, 35°C, 45°C, 55°C, 65°C, 75°C, and 85C.
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Fig. 4-83 Ip-Vg curves of the PE Oxide gate ISEET in pH=7 buffer solution at
temperatures of 25C, 35°C 45 C.,55'C, 65C, 75°C, and 85C.
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Fig. 4-84 Iso-thermal point range of the PE Oxide gate ISFET in pH=1, 3, 5, 7 buffer
solutions.
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Fig. 4-85 The drift'of ZrO2 gate ISFET with time.
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Fig. 4-86 The relation of ZrO: drift voltages and gate stress voltages.
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Fig. 4-87 The drift of Ta20s gate ISFET with time.
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Fig. 4-88 The relation of Ta20s drift voltages and gate stress voltages.
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Fig. 4-90 The relation of Thermal Oxide drift voltages and gate stress voltages.
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Fig. 4-92 The relation of PE Oxide drift voltages and gate stress voltages.

86



1.90

1.85
1.80

S 17 '

e 1.70
165
160
1.55
1501

Fig. 4-93 Va vs Cycle time test.of the ZrO2 gate ISFET in pH=7 buffer solution at either

156
154
152
150
148
146
144
142
140
138

AV, (mV)

B n . 250(:
o Zr0O2 300Angstrom 85%
B AV 1
R
n : r . T
n AV 2 AV_3 AV 4 AV 5
i r 1
L ] - o .FI
1 2 3 4 5
Cycle time

25C or 85C.

- N —m— ZrO, 300Angstrom
- |
"-.._l__q_‘--‘—-.
_' \.______,__-—.
1 2 3 4 5
Cycle time

Fig. 4-94 /A Va vs Cycle time test of the ZrO2 gate ISFET in pH=7 buffer solution at either
25C or 85C.

87



1.95

1.90]
1.85]
1.80
2 175]
170 |
165
1.60 |
155 |
150 L

Fig. 4-95 VG vs Cycle time test of the Ta20s gate ISFET in pH=7 buffer solution at either

. 25°C
|

Ta, O, 300Angstrom 85

AV _1
¥
L
AV 2
: AV3| AV AV_5
. .
1 2 3 4 5
Cycle time

25C or 85C.

140

135
130

AV, (mV)

110
105
100

125
120
115

—m—Ta, O, 300Angstrom

u N | H -
1 2 3 4 5
Cycle time

Fig. 4-96 /A Va vs Cycle time test of the Ta2Os gate ISFET in pH=7 buffer solution at either
25C or 85C.
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Fig. 4-97 Vc vs Cycle time test of the Thermal Oxide gate ISFET in pH=7 buffer solution
at either 25°C or 85°C.
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Fig. 4-98 /AVa vs Cycle time test of the Thermal Oxide gate ISFET in pH=7 buffer
solution at either 25°C or 85°C
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Fig. 4-99 VG vs Cycle time test of the PE.Oxide gate ISFET in pH=7 buffer solution at
either 25°C or 85°C.
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Fig. 4-100 A Va vs Cycle time test of the PE Oxide gate ISFET in pH=7 buffer solution
at either 25°C or 85°C.
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Sensitivity (mV/pH) | Sensitivity (mV/pH) | Sensitivity (mV/pH) | Sensitivity (mV/pH)
pH=1,3,5,7 pH=13,5,7 pH=13,5,7 pH=13,5,7
ZrO2 Thermal Oxide Ta20s PE Oxide
(300A) (300A) (300A) (300A)
W/L =400/20 W/L = 400/20 W/L =400/20 W/L =400/20
Ambient Temperature
25 55.27 (mV/pH) 25.82 (mV/pH) 64.47 (mV/pH) 74.24 (mV/pH)
Ambient Temperature
357 56.28 (mV/pH) 27.37 (mV/pH) 62.71 (mV/pH) 71.59 (mV/pH)
Ambient Temperature
45°C 56.73 (mV/pH) 27.72 (mV/pH) 62.20 (mV/pH) 67.77 (mV/pH)
Ambient Temperature
557 63.68 (mV/pH) 28195 (mV/pH) 60.55 (mV/pH) 58.77 (mV/pH)
Ambient Temperature
65°C 69.47 (mV/pH) 30:76 (mV/pH) 60.26 (mV/pH) 51.75 (mV/pH)
Ambient Temperature
757 70.16 (mV/pH) 3111 (mV/pH) 59.73 (mV/pH) 46.91 (mV/pH)
Ambient Temperature
85°C 71.20 (mV/pH) 32.00 (mV/pH) 58.77 (mV/pH) 45.89 (mV/pH)

Table 4-1 Sensitivity of the ZrO2, Thermal Oxide, Ta20s, and PE Oxide gate ISFET in pH=1,
3, 5, 7 buffer solutions at temperatures of 25°C, 35°C, 45°C, 55°C, 65°C, 75°C, and

85C.
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Sensitivity (%)

Sensitivity (%)

Sensitivity (%)

Sensitivity (%)

pH=13,5,7 pH=13,57 pH=13,57 pH=13,5,7
V4(0); Thermal Oxide Ta20s PE Oxide
(300A) (300A) (300A) (300A)
W/L =400/20 W/L =400/20 W/L = 400/20 W/L =400/20
Ambient Temperature 77.63 % 80.69 % 100 % 100 %
25C
Ambient Temperature 79.04 % 85.53 % 97.27 % 96.43 %
35C
Ambient Temperature 79.68 % 86.63 % 96.48 % 91.29 %
45°C
Ambient Temperature 89.44 % 90.47 % 93.92% 79.16 %
55C
Ambient Temperature 97.57 % 96.13 % 93.47 % 69.71 %
65C
Ambient Temperature 98.54 % 97.22 % 92.65 % 63.19 %
75°C
Ambient Temperature 100 % 100 % 91.16 % 61.81 %
85°C

Table 4-2 Normalize the temperature sensitivity of the ZrO2, Thermal Oxide, Ta20s, and PE
Oxide gate ISFET in pH=1, 3, 5, 7 buffer solutions at temperatures of 25°C, 35°C,
45°C, 55°C, 65C,75C,and 85C.

Sensitivity Sensitivity Sensitivity Sensitivity
pH=13.5,7 pH=135,7 pH=13,5,7 pH=1,3,5,7
ZrO2 Thermal Oxide Ta20s PE Oxide
(300A) (300A) (300A) (300A)
W/L = 400/20 W/L = 400/20 W/L = 400/20 W/L = 400/20
Ambient Temperature
25°C,35°C,45°C,55C | 0319 mVpH/C |0.104mVpH/C |-0.093mV pH/C | -0.556mV pH/C

65C,75C, 85C

Table 4-3 Temperature sensitivity correlation coefficient of the ZrO2, Thermal Oxide, Ta20s,
and PE Oxide gate ISFET in pH=1, 3, 5, 7 buffer solutions at temperatures of 25°C,

35°C,45C,55C,65C,75C, and 85C.
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Iso-thermal point VG | Iso-thermal point | Iso-thermal point | Iso-thermal point VG
range at VG range at VG range at range at
pH=1 pH=3 pH=5 pH=7

ZrO2 (300A) 2541.5 +/-22.5 2412 +/-47.5 2303 +/- 103 1987.5 +/- 143.5
WI/L = 400/20 (mV) (mV) (mV) (mV)
Ta205 (300A) 1646.5 +/- 32.5 2054 +/- 34 2127.5 +/-39.5 2133.5 +/-24.5
W/L =400/20 (mV) (mV) (mV) (mV)
Thermal Oxide (300A) 1868 +/- 32 1412 +/- 48 1392 +/- 27 1269 +/- 52.5
W/L =400/20 (mV) (mV) (mV) (mV)
PE Oxide (300A) 1150- +/- 16 1449 +/- 24 .5 1913 +/- 53.5 1988 +/- 71
W/L =400/20 (mV) (mV) (mV) (mV)

Table 4-4 Iso-thermal point VG range of the ZrOz, Ta20s, Thermal Oxide, and PE Oxide gate
ISFET in pH=1, 3, 5, 7 buffer solutions.

VG Stress= -1V

VG StrESS==0.5V

VG STRESS=0V

VG StrESs= 0.5V

VG Stress= 1V

pH=7 pH=7 pH=7 pH=7 pH=7
ZrO2 (300A) Vg Dirift = Vg Dirift = Va Drift = Va Drift = Vg Drift =
W/L =400/20 0.76 (mV) -3.45 (mV) -7.66 (mV) -19.28 (mV) -57.94 (mV)
Ta20s5 (300A) Va Drift = Va Drift = Va Drift = Va Drift = Ve Drift =
W/L =400/20 40.6 (mV) 25.48 (mV) -5.82 (mV) -9.37 (mV) -11.99 (mV)
Thermal Vg Drift = Vg Drift = Vg Drift = Vg Drift = Va Drift =
Oxide (300A) 56.12 (mV) 2.94 (mV) -1.79 (mV) -16.56 (mV) -32.74 (mV)
W/L =400/20
PE Oxide Vg Drift = Vg Drift = Vg Drift = Vg Drift = Va Drift =
(300A) 45.54 (mV) 40.69 (mV) 13.34 (mV) 5.73 (mV) 0.92 (mV)
W/L =400/20

Table 4-5 The relation of the ZrO2, Ta2Os, Thermal Oxide, and PE Oxide drift voltages and

gate stress voltages.
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Cycle time=1 | Cycle time=2 | Cycle time=3 | Cycle time=4 | Cycle time=5
pH=7 pH=7 pH=7 pH=7 pH=7
ZrO2 ZrO2 ZrO2 ZrO2 ZrO2
(300A) (300A) (300A) (300A) (300A)
W/L =400/20 | W/L=400/20 | W/L =400/20 | W/L=400/20 | W/L =400/20
Ambient Temperature | VGi=1.8851 V | VG2=1.6871V | V63=1.6849 V | VG4=1.6699 V | VG5=1.6654 V
25C
Ambient Temperature | Vci1=1.7312 V | VG2=1.5452 V | V63=1.5368 V | V64=1.5307 V | VG5=1.5256 V
85C

Table 4-6 VG vs Cycle time test of the ZrO2 gate ISFET in pH=7 buffer solution at either
25°C or 85C.

Cycle time=1 | Cycle time=2 | Cycle time=3 | Cycle time=4 | Cycle time=5
pH=7 pH=7 pH=7 pH=7 pH=7
Ta20s Ta20s Ta20s Ta20s Ta20s
(300A) (300A) (300A) (300A) (300A)
W/L=400/20 | W/L = 400/20 | W/L =400/20 | W/L=400/20 | W/L =400/20
Ambient Temperature | V6=1.9522 V [ VG=1.6962 V. '| V6=1.6849V | Vc=1.6756 V | VG=1.6695 V
25C
Ambient Temperature | V6=1.8321 V ["N6=1.5766V--'| V6=1.5647V | V6=1.5559V | VG=1.5504 V
85C

Table 4-7 Vg vs Cycle time test of the Ta20s gate ISFET in pH=7 buffer solution at either
25°C or 85C.

Cycle time=1 | Cycle time=2 | Cycle time=3 | Cycle time=4 | Cycle time=5
pH=7 pH=7 pH=7 pH=7 pH=7
Thermal Thermal Thermal Thermal Thermal
Oxide Oxide Oxide Oxide Oxide
(300A) (300A) (300A) (300A) (300A)
W/L =400/20 | W/L=400/20 | W/L=400/20 | W/L=400/20 | W/L=400/20
Ambient Temperature | V6=1.3510V | V6=1.0800V | V6=1.0639V | V6=1.0511V | VG=1.0419 V
25C
Ambient Temperature | V6=1.3260 V | V6=1.0400 V | V6=1.0227V | V6=1.0092 V | VG=0.9988 V
85C

Table 4-8 VG vs Cycle time test of the Thermal Oxide gate ISFET in pH=7 buffer solution at
either 25°C or 85C.
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Cycle time=1 | Cycle time=2 | Cycle time=3 | Cycle time=4 | Cycle time=5
pH=7 pH=7 pH=7 pH=7 pH=7
PE Oxide PE Oxide PE Oxide PE Oxide PE Oxide
(300A) (300A) (300A) (300A) (300A)
W/L =400/20 | W/L=400/20 | W/L =400/20 | W/L=400/20 | W/L =400/20
Ambient Temperature | Vé=1.7421 V | Va=1.4301V | V6=1.4099V | V6=1.3937V | VG=1.3794 V
25C
Ambient Temperature | Vc=1.6263 V | V6=1.2943V | V6=1.2712V | V6=1.2558 V | VG=1.2423 V
85C

Table 4-9 Vc vs Cycle time test of the PE Oxide gate ISFET in pH=7 buffer solution at either

25C or 85C.

AVai ANVG2 AVG3 A\VaGa /A\VaGs

ZrO2 (300A) 153.9(mV) 141.9 (mV) 140.8 (mV) 139.2 (mV) 139.8 (mV)
W/L =400/20
Ta20s5 (300A) 120.1 (mV) 119.6 (mV) 120.2 (mV) 119.7 (mV) 119.1 (mV)
W/L =400/20
Thermal 25 (mV) 40 (mV) 41.2 (mV) 41.9 (mV) 43.1 (mV)
Oxide (300A)
W/L =400/20

PE Oxide 115.8 (mV) 135.8 (mV) 138.7 (mV) 137.9 (mV) 137.1 (mV)

(300A)

W/L =400/20

Note: AVar =257 (Cycle time 1) - 85°C (Cycle time 1)
/AVa2 =25 (Cycle time 2) - 85°C (Cycle time 2)
AVas =25C (Cycle time 3) - 85°C (Cycle time 3)
/A\Vaa =25C (Cycle time 4) - 85°C (Cycle time 4)
/A\Vas =25C (Cycle time 5) - 85°C (Cycle time 5)

Table 4-10 /AVac vs Cycle time test of the ZrO2, Ta20Os, Thermal Oxide, and PE Oxide gate
ISFET in pH=7 buffer solution at either 25°C or 85C.
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Cycle time Cycle time Cycle time Cycle time
error rate(%) error rate(%) error rate(%) error rate(%)
pH=7 pH=7 pH=7 pH=7
7rO2 Ta20s Thermal Oxide PE Oxide
(3004) (3004A) (3004) (300A)
W/L =400/20 W/L =400/20 W/L =400/20 W/L =400/20
Ambient Temperature error rate(%)= error rate(%)= error rate(%)= error rate(%)=
25°C 1.30 % 1.60 % 3.66 % 3.68 %
Ambient Temperature error rate(%)= error rate(%)= error rate(%)= error rate(%)=
85C 1.96 % 1.69 % 412 % 419 %

Table 4-11 Cycle time error rate of the ZrOz2, Ta20s, Thermal Oxide, and PE Oxide gate ISFET

in pH=7 buffer solution at either 25°C or 85C.

Cycle time Cyole time Cycle time Cycle time
error rate(%) errorate(%) error rate(%) error rate(%)
pH =7 pH= 7 pH=7 pH=7
7102 Ta20s Thermal Oxide PE Oxide
(3004) (300A) (300A) (300A)
W/L =400/20 W/L.=400/20 W/L =400/20 W/L =400/20
AVG error rate(%)= error rate(%)= error rate(%)= error rate(%)=
1.50 % 0.42 % 2.69 % 2.14%

Table 4-12 /A Vacycle time error rate of the ZrO2, Ta20s, Thermal Oxide, and PE Oxide gate

ISFET in pH=7 buffer solution.
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