
國 立 交 通 大 學

電機資訊學院 資訊學程

碩士論文

空間資料庫有效索引改善方式及應用

An Efficient Enhanced Method for Indexing with

Implementation in Spatial Database

研 究 生：李韋毅

指導教授：李素瑛 教授

中 華 民 國 九 十 五 年 八 月

 i

空間資料庫有效索引改善方式及應用

An Efficient Enhanced Method for Indexing with

Implementation in Spatial Database

研 究 生：李韋毅 Student： WEI-YI LEE

指導教授：李素瑛 Advisor：Dr. SUH-YIN LEE

國 立 交 通 大 學

電機資訊學院 資訊學程

碩 士 論 文

A Thesis

Submitted to Degree Program of Electrical Engineering and Computer Science
College of Electrical Engineering and Computer Science

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of
Master of Science

In
Computer Science

August 2006
Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 五 年 八 月

 i

空間資料庫有效索引改善方式及應用

學生: 李韋毅 指導教授:李素瑛博士

國立交通大學電機資訊學院 資訊學程﹙研究所﹚碩士班

An Efficient Enhanced Method for Indexing with

Implementation in Spatial Database

Student: WEI-YI LEE Advisor: Dr. SUH-YIN LEE

Degree Program of Electrical Engineering Computer Science
 National Chiao Tung University

 ii

中文摘要

在本論文中我們探討在空間資料庫搜尋大量物件資料所面臨耗

時與效率的問題. 因此運用新式的儲存與索引架構透過有效提

高索引的方法以及經驗與實驗為根據藉此能夠提升搜尋時的效

能. 論文中演算法提供了一種利用 R-Tree與雜湊法(Hashing)相

結合的精簡方式來導引空間資料的搜尋並且探討如何利用這方

法來強化存取大型空間資料庫. R-Tree 運用方形邊界範圍來決

定是否要進行搜尋其中的節點. 透過這方式絕大部分樹的節點

在搜尋時會過濾,也正因為如此 R-Tree適合在資料庫中運用分開

索引與資料方式來處理運作. 同時我們也審視和分析現今常用

樹狀結構的演算法並且也確實察覺論文中提出的新方式能夠在

大型資料庫中利用現有的架構來縮短搜尋時間. 我們採用了大

量載入(bulk-loading)與雜湊(Hashing)資料的方式並且在實驗

中證明新的觀點能夠在空間資料庫做搜尋時更省時更有效率.

 iii

Abstract

In this thesis we assess the efficiency issue when retrieving sets of

objects from a very large spatial database. Thus enhanced performance

will be empirically shown here through the new storing and indexing

structure. The algorithm provides a condensed method to guide a spatial

search and to enhance large data access operations by integrating hashing

and R-Tree together. R-tree uses the bounding boxes to decide whether or

not to search inside of a child node. In this way most of the nodes in the

tree are proved during a search which makes R-trees become more

suitable for database operations. We analyze current tree-based

algorithms and verify that the new approach in the thesis improves the

efficiency in the current architecture. To accomplish this, we use the bulk

loading data with hashing into database together with experiments

showing that the new algorithm supports spatial queries on spatial

database efficiently.

 iv

誌 謝

能夠順利完成論文，首先要謝謝指導教授 李素瑛老師，在研習過程

中給予我各方面的教導和容忍學生繁重的工作所帶來諸多的不方

便。謝謝擔任口試委員的 許芳榮 教授與 陳正 教授教授於口試期間

給予詳盡的指導, 讓這份論文亦趨嚴謹更完整的呈現。還要感謝我的

女朋友佩慧犧牲了很多時間靜靜的在我身旁鼓勵我, 忍受我新竹台

北兩地奔波, 就算舟車勞頓也願意陪在我身邊一起堅持下去, 以及

我的家人背後默默的打氣和支持。 還要感謝那群一起奮鬥的專班同

學在患難中有著革命真情一起為著希望共同打拼。當初考上在職專班

由於剛好工作轉換的關係並沒有直接銜續課業, 反而因為新職務的

需要允諾主管延後一年學業。曾經在多方壓力和時間配合不易下想要

放棄, 但是一直到今天一切的努力和汗水都是值得的 – 而且我以

成為交大的一份子為榮。要感謝的人太多, 無法一一答謝, 對於所有

一路走來幫助我的家人, 師長和朋友致上十二萬分的感謝。

中 華 民 國 九 十 五 年 八 月

 v

Table of Contents

中文摘要 ... iii
英文摘要 ..iv
誌 謝 ...v
Table of Contents ..vi
List of Figures...1
Chapter 1 Introduction..2
Chapter 2 Problem Definition...5

2.1 Motivation..5
2.2 Possible problems ..6

Chapter 3 Overview of previous indexing approaches.....................................7
3.1 R-Tree ..8

3.1.1 R-Tree: Search ..11
3.1.2 R-Tree: Insert and Delete..14

3.2 R*-Tree ..18
3.3 R+-Tree...20
3.4 Variants of R-Tree ...24
3.5 Structure of implementation in Oracle10g Spatial database..................27

Chapter 4 A new indexing method in spatial database31
4.1 Introduction..31
4.2 Methodology and approaches ..33

4.2.1 Original Operation ..33
4.2.2 New approach ...38

4.3 Collision and overflow...43
Chapter 5 Implementation ..45

5.1 Environment setup ...45
5.2 Indexing and Querying ..49

Chapter 6 Conclusion ..51
References ...52

 vi

List of Figures
Figure 1. R-Tree with data set..9
Figure 2. R-Tree with same data in Figure 1. ..9
Figure 3. An R-Tree illustrates as MBR ..12
Figure 4. Search in the R-Tree...13
Figure 5. A bad example on split ...16
Figure 6. Query window ..18
Figure 7. R*-Tree example for range query...19
Figure 8. Query Window W...22
Figure 9. Search Window ..22
Figure 10. Revised using R+-Tree ...23
Figure 11.R+-Tree..23
Figure 12. Example on spatial objects ...34
Figure 13. Linear Hash with k, r =3..42
Figure 14. My project demo...47
Figure 15. MapViewer with spatial data ..47
Figure 16. Result – Hashed R-Tree v.s. non-hashed R-Tree........................50
Figure 17. Project demo – final stage on US sample data.50

 1

Chapter 1 Introduction

With the rapid progress of modern information technology, recent studies

of indexing in spatial database present new challenges due to the

complexity, large size of data type which may determine the access

methods of query processing on the different architecture. Most

commercial databases consider the searching and indexing the requisite

data structure of design. And they are providing a way of storing and

retrieving the collections of objects which allows efficient access,

insertion and deletion by key value. Various search methods have been

defined for indexing in spatial database in past years.

Of course one methodology does not fit all of spatial data. Therefore, the

growing need for computational power and storage capacity caused by

the construction and operation of data makes the use different structure as

appropriate choice. However, classic architectures of spatial database fail

to improve performance significantly when it comes to scenarios with

numerous simultaneously insertion with unbalanced structure because it

will generate a skew tree and re-construct the whole tree several time. So

in my approach, we use the R-Tree [1] to illustrate original query result

and present the performance difference after applying the new

methodology here. Commercial database widely deployed with R-Tree [1]

for diagnosing the operation of indexing in spatial database. These

databases also defined different level of objects to reflect the behavior on

 2

storing the objects for minimum boundary rectangle that enclosed the

face for the geometries and boundaries. Most databases pre-defined

spatial objects to retrieve more efficient during queries. In our approach

we enhance the existed methodology and create the hashing with

bulk-loading to prove and refer the differentiation in the algorithm with

original design.

Furthermore, we start from investigating several index structures for

efficient index update and query evaluation. Also we demonstrate the

proper issues using each algorithm to see the improvement that are

referred to the following methods of the indexing.

In the chapter two, we see the possible problems if data is inserted

improper, construct without optimization, or splits with wrong direction,

put nodes in wrong rectangles... that may lead the tree to skew or

unbalanced. The possible problems will show up and many studies tried

to fix it. It creates the motivation on the approach in this chapter.

The chapter three brings a detailed description of the R-tree family. Each

of the most important members (R-Tree, R*, R+) [1] [2] [3] will be

investigated, starting from data structures, and with the algorithms for

new/insertion, retrieval and deletion and finishing with possible

efficiency problems. And also we will compare the advantage and

disadvantage of these methods that may have in special cases by

constructing the proper indexing in R-Tree.

 3

Following in the chapter four, we use bulk loading data with HASHING

to illustrate how we solve the issues with this indexing structure to

separate from “zones” and propose a filter by building up architecture

recursively with R-Tree. It can easily accommodate existing R-Tree based

algorithms with minor modification. The hashing R-tree is initiated by

indexing minimum bonding rectangles (MBR) when summarizing data in

the same cluster at coarse level. It is light-weight, easy to build and

maintain, with full capability of an R-Tree. Also with batch loading

before hashing function of the R-Tree, we can facilitate the processing of

complex spatial data in a timely manner by executing before constructing

the R-tree.

In the Chapter five, we prepare the environment of an Oracle database

and elaborate the details of our enhancement during large data operations

with our approach. We can show the simulations that considerable

improvement is possible in terms of decreased response time, if we

optimize the packing individually as proposed. The experiments and

matrixes of improvement are described in the bottom.

Finally, chapter six gives a brief summary and conclusion.

 4

Chapter 2 Problem Definition

2.1 Motivation
According to a published IDC study at Nov. 2005[22], the spatial

information management (SIM) industry has experienced sweeping

changes over the last 18 months, involving fundamental shifts in

platforms, vendors, and users. The study finds that spatial information

management has transformed from a specialist application to a

technology with broad relevance within many IT ecosystems.“IDC

Reveals Radical changes in spatial information management that will

impact most IT companies.”

The reason I choice Spatial as the subject on my approach is because

most of commercial spatial solutions implement R-Tree as its indexing

organization. R-tree [1] demonstrates easy to use, easy to construct, and

quick to manage spatial objects nowadays. R-trees [1] are very useful in

storing very large amounts of data because of high-balanced structure.

Our problem consists of computing results of time consumption when try

to insert and retrieve from R-tree [1].

 5

2.2 Possible problems

I would like to raise the potential problems that we may face during

R-Tree operations here:

1) Overlap: R-tree [1] uses Minimum Bounding Rectangles (MBR) to

associate with different nodes which may overlap. If the geometry of

the object is overlapped then we have to search all sub-trees rooted

within the node. Thus only the latter will return a qualifying rectangle

which takes a lot of time.

2) Algorithm will determine the performance: most of the R-tree

operation is revised by each one who implemented in R-tree

architecture. So the result of performance on operations will be

diverse.

3) Wrong split or wrong insertion/deletion will cause the tree to skew or

unbalanced.

4) Searching efficiency with object-oriented spatial data. Computer

world is 0 and 1 digitalize for every single components. So when we

perform the spatial query, it will rely on the spatial relationships of

entities geometrically defined and located in space without regard to

the nature of the coordinate system. Thus it will impact the

performance with a weak design of query algorithm.

 6

Chapter 3 Overview of previous
indexing approaches

First at all we introduce the concept and components of spatial database

and then move to the R-tree family to illustrate the popular studies in past

years. Let’s move to the terms of spatial objects:

Geometry: ordered sequence of vertices that are connected by straight

line segments or circular arcs etc. consisted of points, line strings

(including compound), n-point polygons, arc line strings, arc polygons

(including compound) and etc. Besides, the data objects are approximated

by simple objects, i.e. rectangles so that we can easily distinguish out the

“real” geometry and description using rectangles.

Furthermore, since we have illustrated that index structure helps to build

up on the same objects, so we can query with this mechanism and get

quick response. Data model also plays an important role in spatial

database. It is divided into elements (sets of physical data), geometry

assembled with single or multiple elements, layer (collections of

geometries), and the coordinate system to fully integrate to demonstrate

features of the spatial database.

In spatial database, we can use three methods to query the object from it:

direct query, within distance, nearest neighbor. It will use filter to sort out

smaller candidate set and then base on the sets to query with relationships,

and identify the final target with database operators (or relationships):

 7

Disjoint, Touch, Overlapbdydisjoint, Overlapbdyintersect, Equal,

Contains, Covers, Inside, Coveredby , ON, Anyinteract, or directly use

coordinates to show out the destination.

In the following sub-paragraphs, we will have a quick overview on the

indexing structures that are wildly discussed in past years. This will help

to derive the approach in this thesis.

3.1 R-Tree

Most commercial databases set the R-tree [1] as default data structure for

spatial fundamentals, so we will take some pages to describe the

operation of R-tree in details in this section

.

The R-tree is a height-balanced tree similar to the B-tree. In the R-tree,

leaf nodes contain index records of the format (Data, tuple) where tuple

uniquely determines a tuple in the database and determines a bounding

rectangle of the indexed spatial object. The actual data objects of the node

can have arbitrary shapes. Non-leaf nodes contain entries of the form

(Data, child) where child refers to the address of a lower node in the

R-tree and Data is the smallest bounding rectangle that contains the

bounding rectangles of all of its children nodes. Assuming every leaf or

non-leaf node contains between m (m = M /2) and M index records unless

it is the root. See Figure. 1 for example of (1, 3) R-tree. Figure. 2 shows

different (1, 3) R-tree on the same data set. When we have R-tree

 8

operation, it can fit into secondary storage (i.e. hard disk). Each node of

the R-tree is placed on a separate disk page. This makes the R-tree

particularly useful for applications involving very large object data where

the index is too large to fit in memory.

A
 B

D

C

E

1 2

1

A B C D E

2

Figure 1. R-Tree with data set

A
 B

D

C

E

1 2

1

A B C D E

2

Figure 2. R-Tree with same data in Figure 1.

The R-tree [1] satisfies the following properties:

• Every non-leaf node has between m and M children unless it is

the root.

• Every leaf node contains between m and M index records unless

 9

it is the root.

• The root node has at least two children unless it is a leaf.

• All leaves appear at the same level (the tree is balanced).

Andrei Radu Popescu [23] introduced a good approach to calculate the

degree of the R-tree. Assume an R-tree that indexes N spatial objects has

the following maximum number of nodes:

 HMax = ⎣ ⎦ + ⎣ ⎦ + …+ 1 (1)
N N

M2M

The justification is that the worst-case space utilization for a node (except

the root) is N/m. Hence, every node holds exactly m entries. Since there

are N indexed records, it means that in the worst case (which implies the

maximum number of nodes) the last level of the tree contains N/m leaves.

The level immediately above the leaf level has nodes containing each m

entries. All these nodes at this level have as children the N/m leaves.

Therefore, this level has

Nodes, and so forth, until the root level which contains only one node.

The height of the same R-tree (that indexes N spatial objects) is at most

Hmax, where

 HMax = ⎣logm N⎦ - 1 (2)

Here the justification follows from the one for the Eq (1). The first level

after the root has exactly m nodes. But from Eq. (1), the same level has

⎣N/mHmax⎦. Hence,

 10

An R-tree based index is completely dynamic in the sense that it allows

concurrent searches and update operations. Also, no periodic

reorganization is required.

A search in an R-tree starts at the root and descends the tree in a manner

similar to a search in a B-tree. Due to the non-zero size of the query

window, and possible overlap between bounding rectangles at each level

of the tree, multiple paths from the root downwards may need to be

traversed. The R-tree can be updated dynamically, by insertion or deletion

of data objects at the leaves. The most typical example of a search is the

one where the user asks for all objects overlapping a certain area. Since

the MBRs stored in the index entries are allowed to overlap, the R-tree

cannot guarantee that only one search path needs to be traversed. The

challenge is to build up bounding boxes dynamically and then in a way

that will minimize the number of paths needed for solving a search. Next

section will give the introduction of searching in R-tree.

3.1.1 R-Tree: Search

Searching an R-tree is done generally by finding all index records whose

MBRs overlap a search rectangle. The algorithm will start with the root

and will follow recursively all entries in the current node whose MBRs

overlap the search rectangle. At the end of each path, a leaf node is

processed and the MBRs of all entries in that leaf are tested against the

search pattern. The indexes with overlapping rectangles are stored as a

list of result candidates.

 11

A search that uses an R-tree index is a two-step process. The search

algorithm described above is actually the filter step. The set of qualifying

index will be further processed in order to determine the exact result.

Let’s use an example in [1] to describe the behavior:

Figure 3. An R-Tree illustrates as MBR

 12

R15

R1

R3

R8

R2

R6
R16

R12

R9

R10

R4
R11

R5
R13

R14

R7
R18

R17
R19

S

Figure 4. Search in the R-Tree

Suppose we will search for proper nodes. The process would start from

the root Node7. During the process, a query could attempt to retrieve all

objects that intersect the search rectangle S (as shown overlapped here).

We find that S lies inside R1 and is disjoint with regard to R2. As a

consequence, only the path rooted by the entry holding R1 will be

followed. Next, the node Node3 will be searched. The first entry holds

the MBR R3 which overlaps S. The algorithm follows the path rooted by

this entry and descends to the node Node1 which is a leaf. A search in

this leaf will retrieve the two entries holding the MBRs R9 and R10. Next,

 13

the algorithm backs up from the recursion to node Node3 and determines

that R4 also contains S. Therefore, it descents to the leaf Node2 and finds

that none of the entries contain MBRs that intersect S. Once again, the

algorithm returns back to Node3 and since R5 and S are disjoint, it stops

and produces the result set {R9, R10}.

3.1.2 R-Tree: Insert and Delete

The insertion algorithm in R-Tree is similar to insertion in the B-Tree. It

creates the new index to the nodes or leaves that overflow which are split

and the generated changes propagate up the tree. The first operation is to

select a leaf where to place the new record. From the definition of the

insertion in R-Tree:

1. Find position for new record

 Use the method to choose leaves to select a leaf node L in which to

 place New record

2. Add record to leaf node

 If L has room for another entry, install new record. Otherwise Split

 Node to obtain L and LL containing new record and all the old

 entries of L

3. Propagate changes upward

 Adjust R-Tree on L, also passing LL if a split was performed.

4. Grow tree taller

 If node split propagation caused the root to split, create a new root

 whose children are the two resulting nodes.

This will decide whether or not the MBR of all entries in the node overlap

 14

the search area. Therefore, the criterion used to decide where to place an

entry consists of finding a distribution for the entries that will minimize

their bounding rectangle. The leaf selection will start from the root and

will follow the path denoted by the entries whose MBRs need least

enlargement in order to contain the MBR of the new record.

For the insertion of the R-Tree algorithm, it adds new index records to the

leaves, nodes that overflow are split and the generated changes propagate

up the tree. The first operation is to select a leaf to place the new record.

This is done by the Choose Leaf algorithm. During a search, the decision

whether to visit a node depends on whether the MBR of all entries in the

node overlap the search area or not. Therefore, the criterion used to

decide where to place an entry (as well as how to split a node) consists of

finding a distribution for the entries that will minimize their bounding

rectangle. The leaf selection will start from the root and will follow the

path denoted by the entries. Their MBRs need to have least enlargement

in order to contain the MBR of the new record. The next operation is to

add the record to the chosen leaf. If the leaf node already has M entries,

then it needs to be split into two new nodes that contain M+1 entries. It is

desirable that the distribution of entries will be made such that subsequent

searches do not need to examine both nodes. The criterion used here is

similar to the one used by the Choose Leaf algorithm: minimize the area

of the enclosing rectangle with the nodes inside of it.

An exhaustive method would try all possible groupings of entries and

pick the one that generates the smallest bounding rectangles. However,

 15

the cost of such a method is of the order of 2M-1, so it cannot be used in

practice. The founder of R-Tree [1] proposes two versions of the node

splitting algorithm that will try to approximate the best result: LinearSplit

and QuadraticSplit. These algorithms have a linear (O(M)) and quadratic

(O(M2)) cost with respect to the maximum number of entries in a node.

Both methods have been found to yield the same retrieval performance.

The R-tree algorithm may generate certain problems: after the first

assignment, one of the two groups has a MBR larger than the other.

Hence, it is easy to become that lesser area to accommodate the next

entry is required, so it will be enlarged again. Over time, this will create a

very uneven distribution, with most entries in one node. Also, when one

of the groups becomes full, the rest of M-m+1 entries are assigned to the

second group without any geometric considerations. For an example of a

bad split where the MBR of one group is preferred over the other, see

Figure 5. The seeds are marked with a gray filling pattern.

Figure 5. A bad example on split

 16

The insertion algorithm will end with the propagation of the changes up

the tree. If a new entry was added to a node, the MBR of all entries stored

in the parent node, will need to be adjusted. If a node was split, a new

entry will be added to the parent. If the parent is full, it will be split, and

so on.

The algorithms for deleting an index entry roughly follow the same logic.

First, the leaf containing the entry is identified and then the entry is

removed. If the leaf becomes under-populated (number of entries < m),

all remaining entries are saved in a list and the node is removed first. The

changes are propagated up the tree by updating the corresponding

covering rectangles and removing the nodes that become unproductively.

The result of the deletion algorithm is a list of orphan entries that will be

reintroduced in the tree using the insertion procedure. The entries should

be inserted at the same level of the tree where they originally belonged. [1]

Guttman argues in his paper that this way of dealing with orphan entries

(compared to the B-tree method of merging with sibling nodes) is better

suited to the purpose of R-trees. Reinsertion refines the spatial structure

of the tree, by correcting some possible initial misplacement or by simply

creating over time a better distribution of the entries. Also, if the index is

disk resident, the efficiency of the algorithm does not suffer since usually

the pages that are needed for the insertion of the orphan entries are

already buffered after the preceding search. So R-tree is still widely used

in modern spatial database.

 17

3.2 R*-Tree
Among various multi-dimensional access methods, the R*-tree, a

variation of the original R-tree, published by N. Beckman and H.P.

Kriegel, R. Schneider, B. Seeger [2] has been widely accepted by

industry and research community. The R*-tree is a multi-dimensional

extension of a B+-tree. Figure 6 illustrates an R*-tree indexing a set of

points {a, b, c,…} (corner of the rectangles) of assuming a capacity of

three entries per node. Points close in space (e.g., e, f, g) are clustered in

the same leaf node (R6) represented as a minimum bounding rectangle

(MBR). Nodes are then recursively grouped together following the same

principle until the top level, which consists of a single root.

Query window q

R4

R5
R6

R7

R8

R3

b

d

c

e

f
g h

i

j

k

a

R2

R1

Figure 6. Query window

 18

R1 R2 R3

R7 R8 R4 R5 R6

a b c d e f g h i j k

Figure 7. R*-Tree example for range query

R*-trees can efficiently answer various types of multidimensional queries,

especially range query. Given a query window q (gray shadow in Figure

6), a range query retrieves all objects inside or intersecting q. Range

queries can be processed using the original algorithm from R-Tree.

Processing starts from the root level of the R*-tree. For any entry whose

MBR intersects the query window, its sub-tree is recursively explored. If

a leaf entry is encountered, all objects whose bounding rectangle

intersects the query window are examined. Entries not intersecting the

query window (e.g., R3) are not examined.

As shown in the figure 6 we can find R*-tree utilized forced reinsertion to

improve the original R-Tree by reducing the MBR area and keep the

shape of the MBR close to a square and using range query for the data. It

can be arranged dynamically and proper fits to the disk-based and

balanced tree structure. The root node corresponds to the largest MBR

which contains the spatial extent of all objects. At one level down the

MBR of every child of the root contains the spatial extent of all objects in

 19

the sub-tree and so on. R*-Tree attempts to reduce the coverage and

minimize the overlap by using a combination of a revised node split

algorithm and the concept of forced reinsertion at node overflow. This is

based on the observation that R-tree structures are highly impacted to the

order in which their entries are inserted, so a step-by-step insertion

structure is to be sub-trees. Deletion and reinsertion of entries gives to

find a node in the tree that may be more appropriate than their original

location and more efficiently.

Take the overflow of nodes for example, a portion of its entries are

removed from the node and reinserted into the tree to avoid the

indefinite cascade of reinsertions caused by subset node overflow, the

reinsertion routine may be called in each level of the tree once a time for

new entry.

3.3 R+-Tree
R+-Tree, the relatives from R-Tree, announced by Timos Sellis, Nick

Roussopoulos and Christos Faloutsos at 1987 [3], avoids overlapping of

internal nodes by inserting an object into multiple leaves if necessary. An

R+-Tree satisfies the following special properties:

* (p, RECT): An intermediate node is of the form where p is a pointer to a

lower level node of the tree and RECT is a representation of the rectangle

that encloses.

• For each entry (p, RECT) in an intermediate node, the subtree

rooted at the node pointed to by p contains a rectangle R if and

 20

only if R is covered by RECT. The only exception is when R is a

rectangle at a leaf node; in that case R must just overlap with

RECT.

• For any two entries (p1, RECT1) and (p2, RECT2) of an

intermediate node, the overlap between RECT1 , and p2, RECT2 is

zero.

• The root has at least two children unless it is a leaf.

• All leaves are at the same level.

All leaves are located on the same level and the tree is still

height-balanced. There are no constraints regarding the number of entries

in a node which can be anything between one and the maximum node

capacity. The only exception concerns the root that must have at least two

children unless it is a leaf. Comparing R+-Tree and R-Tree the first one

would nodes are not guaranteed to be at least half filled and the entries of

any internal node do not overlap. Besides, the object ID may be stored in

more than one leaf node to ensure the construction could point query

performance benefits since all spatial regions are covered by at most one

node. In R+-Tree, the path of searching a tuple may have shorter path and

fewer nodes to visit than with the R-Tree. Let me take the example here:

Give the diagram with R-Tree and try to find window W as below:

 21

D
E

F
G

K

I

J
H

N
L

M

A

B

C

W

Figure 8. Query Window W

A B C

D E F G H I J K L M N

* Search Window W will have to go through A and B

Figure 9. Search Window

 22

D
E

F
G

K

I

J
H

N
L

M

A

B

C

P

Figure 10. Revised using R+-Tree

Figure 11.R+-Tree

So in this demonstration it shows the performance improvement

comparing to R-Tree that it has to go over both A and B to find out the

searching window W. In R+-Tree, we can accomplish this by using split

the cell with non-overlapped structure for the enhancement. Since

rectangles that we refer inr R+-Tree may be duplicated so it can be larger

than original R-Tree built on the same data set. And in the meantime it is

more complex to insert and delete for the operations. We will introduce

the search and deletion briefly here.

PCBA

D E F G I J K L M N H G

 23

To search R+-Tree is similar to R-Tree. The idea is to first decompose the

search space into disjoint sub-regions and each of those descend until the

actual data objects are found in the leaves. The major difference with

R-trees is that in the latter sub-regions can overlap, thus leading to more

expensive searching. Deletion is similar to KDB Trees [4] that subtrees

should be periodically re-organized to achieve better performance. In [1],

it also suggests a similar procedure where under-utilized nodes are

emptied and become as orphan rectangles. They are re-inserted at the top

of the tree. Besides, it uses the partition and pack algorithm recursively to

traverse the entries of each level of the tree so that it can have better

performance on searching. R+-Tree results of the comparison agree

completely with the intuition: R-trees suffer in the case of few, large data

objects, which force re-insertion during the search. R+-trees handle these

cases easily, because they describe these large data objects into smaller

ones.

3.4 Variants of R-Tree
After these major R-tree structures we do believe developing efficient

index structures is an important research for spatial databases. From the

study, multi-dimensional spatial index structures can be used for indexing

the positions of objects. Numerous index structures have been proposed

for indexing multidimensional data. In [5] Ravi Kanth et Al. have

published a paper to discuss Quadtree and R-tree indexes in commercial

database and indicate that R-trees are generally better than Quadtrees.

 24

Most commercial spatial databases now recommend using R-tree only.

Although traditional spatial index structures can be used, they are not

efficient for indexing the positions of spatial objects because of frequent

and numerous update operations in moving environments. Because some

new index structures have been proposed for indexing objects recently.

These index structures can be divided into the two categories: (1) the

histories and (2) the current positions of objects as below:

In the first category, object in a d-dimensional space is converted into a

trajectory in a (d+1) dimensional space when time is treated as a

dimension. Examples of approaches are the Spatio-Temporal R-tree

(STR-tree) [6] and Trajectory-Bundle tree (TB-tree) proposed [7] to

fulfill the histories that may effect the object allocation. The authors

showed that these two structures work better than traditional spatial index

structures for queries related to trajectories. In [8], Tao and Papadias have

proposed the Multi- version 3D R-tree (MV3R-tree), which combines

multi-version B-trees and 3D-Rtrees to help on spatial database with

multi-dimension. Also most of recent studies will implement the Hilbert

Tree[19] and SR-Tree[20] for better performance improvement [18].

In the second category, most approaches describe an indexing in the

spatial database by a linear function, and only when the parameters of the

function change during database updated. The time-parameterized R-tree

(TPR-tree) has been proposed in by Saltenis [9]. In this scheme, the

position of a object is represented by a reference position and a

corresponding velocity vector. When splitting nodes, the TPR-tree [9]

 25

considers both the positions of the spatial points. All these techniques rely

upon a good representation of the future spatial objects. In many

applications, the spatial objects is complicated and non-linear. In such

situations, the approaches based on a linear function cannot work

efficiently – the function changes too often. However, simple indexing

cannot efficiently handle the rapid new queries. Also there are some

research papers using hybrid and combination of the Quad-tree and R-tree

together to leverage the advantage of each one – Quad-tree is good when

updating the index, but its query performance is worse than that of the

R*tree. R-Tree gives good query performance but poor index update

performance. So Yuni Xia et al. [10] submitted the Q+RTree achieves a

better performance for both index updating and query evaluation by

handling different types of objects separately.

Most of the approaches of indexing in the spatial database will leverage

the R–tree structure to filter out the best path when searching with index

so that it can sort out rapidly. And also the MBRs (Minimum Boundary

Rectangle) should be small and their shapes should be close to squares so

that MBRs can have higher quality for indexing. Recent research has

been developed among the input and re-constructs the data structure to

provide the improvement in the structure.

 26

3.5 Structure of implementation in Oracle10g

Spatial database

Oracle has been widely implemented in the commercial environment and

spatial is the option for Oracle10g Enterprise Edition. Spatial is the

fundamental primitive in the traditional database such as GIS, CAD/CAM,

telecommunication, multimedia and location-based applications. So

Oracle also provided Spatial features and recently in 10g it introduced a

GeoRaster [13] datatype to store and manage image and gridded raster

data and metadata, network and topology data models, geo-coding and

routing engines, and spatial analysis and mining functions. Oracle also

provided the Java API [14] for quick deployment named eLocation so

that the developer can come out the design on object-oriented program to

support different scale program and data so that can establish the scope of

the objects in spatial database. From the Oracle10g Spatial official

documents [11] [12][13][14] we can easily develop and display our own

spatial objects quickly.

The reason that I am using Oracle in my thesis because the Oracle

provided a lot pre-defined objects to handle VLOB(Very Large Object)

For instance, by default when you create a spatial index without

specifying any quadtree-specific parameters, and R-tree index is created.

For the ease of operations and query efficient, Oracle recommends R-tree

as default and listed in user guide [11] saying not to use Quad-tree for

indexing. For example, the following statement creates a spatial R-tree

 27

index named territory_idx using default values for parameters that apply

to R-tree index:

CREATE INDEX territory_idx ON territories (territory_geom)

INDEXTYPE IS MDSYS.SPATIAL_INDEX;

R-tree indexes can be built on two, three or four dimensions of data. The

default number of dimensions is two, but if the data has more than two

dimensions, you can use the SDO_INDX_DIMS parameter keyword to

specify the number of dimensions on which to build the index. However,

if a spatial index has been built on more than two dimensions of a layer,

the only spatial operator that can be used against that layer is

SDO_FILTER (the primary filter or index-only query), which considers

all dimensions. The SDO_RELATE, SDO_NN (for neighbors), and

SDO_WITHIN_DISTANCE operators are disabled if the index has been

built on more than two dimensions.

In Oracle10g Spatial database, we can also create the index for query

efficiency just like the relational database. Once the index is determined

and generated, the data will be loaded and grows rapidly and the

performance will be decreased with spatial data. It will be impacted

during data query. To solve this, Oracle also provided the enhancement

for indexing in Oracle10g database:

1) Indexing Geodetic Data to ensure the entire index in Geodetic R-tree.

Geodetic data consists of geometries that have geodetic SDO_SRID

 28

values, reflecting the fact that they are based on a geodetic coordinate

system (such as using longitude and latitude) as opposed to a flat or

projected plane coordinate system.

2) Constraining Data to a Geometry Type: When you create or rebuild a

spatial index, you can ensure that all geometries that are in the table or

that are inserted later are of a specified geometry type. To constrain

the data to a geometry type in this way, use the layer_gtype keyword

in the PARAMETERS clause of the CREATE INDEX or ALTER

INDEX REBUILD statement, and specify a value from the Geometry

Type column. i.e.

 CREATE INDEX area_spatial_idx

 ON area_markets(shape)

 INDEXTYPE IS MDSYS.SPATIAL_INDEX

 PARAMETERS ('layer_gtype=POLYGON');

3) Using Partitioned Spatial Indexes:

A partitioned spatial index can provide the following benefits:

‧ Reduce response time for long-running queries, because

partitioning reduces disk I/O operations

‧ Reduce response time for concurrent queries, because I/O

operations run concurrently on each partition

‧ Easier index maintenance, because of partition-level create and

rebuild operations

‧ Index on partitions can be rebuilt without affecting the queries on

other partitions, and storage parameters for each local index can

be changed independent of other partitions.

‧ Parallel query on multiple partition searching

 29

‧ The degree of parallelism is the value from the DEGREE column

in the row for the index in the USER_INDEXES view (that is, the

value specified or defaulted for the PARALLEL keyword with the

CREATE INDEX, ALTER INDEX, or ALTER INDEX REBUILD

statement).

‧ Improve query processing in multiprocessor system environments

In a multiprocessor system environment, if a spatial operator is

invoked on a table with partitioned spatial index and if multiple

partitions are involved in the query, multiple processors can be used

to evaluate the query. The number of processors used is determined

by the degree of parallelism and the number of partitions used in

evaluating the query. The following restrictions apply to spatial index

partitioning:

‧ � The partition key for spatial tables must be a scalar value, and

must not be a spatial column.

‧ � Only range partitioning is supported on the underlying table.

Hash and composite partitioning are not currently supported for

partitioned spatial indexes.

‧ To create a partitioned spatial index, you must specify the LOCAL

keyword. For example:

CREATE INDEX counties_idx ON counties(geometry)

INDEXTYPE IS MDSYS.SPATIAL_INDEX LOCAL;

In summary of this section, Oracle10g Database Spatial provides several

methodologies to increase the performance of the indexing in spatial

database, but it still can be improved from the fundamental structure of

R-tree and Quad-Tree through the methodology implemented here.

 30

Chapter 4 A new indexing method in
spatial database

4.1 Introduction
Although most of spatial database used several indexing algorithms on

the structure and improve the efficiency by variety of works, we still can

find some approach to enhance current latest version of Oracle10g Spatial

database. In this thesis, I am going to use bulk loading of data to insert

the data objects into database and then linear hash will improve the query

processing by partitions. Also the indexing performance is better

comparing to the original R-tree structure. And we also implement

bulk-loading[15] into this approach for additional enhancement together.

The bulk-loading framework can be issued like this:

INSERT INTO <TABLE> (sub-query)

When use with (sub-query) in SQL statement, it will calculate and

execute sub-query first. Any data resulting from the sub-query are

grouped into 64K-memory-size batches and inserted into the spatial

indexes. In addition to the above array-insert interface through

sub-queries in an insert SQL statement, Oracle Spatial provides the

following defered-indexing model for performing bulk insertions:

1. User alters the index to be deferred.

2. Subsequent inserts into the index and they are stored in a separate

deferred table associated with the index.

 31

3. User alters the index to synchronize. An optional batch size is also

specified by the user. This operation retrieves all insertions in the

“deferred” table and inserts them in batches of specified size into the

index. Optionally, a quad-code could be computed for the centers of

the MBRs of these geometry data and can be used to order the data

being fetched and inserted in batches into the spatial index.

The batch size for bulk insertion in the deferred indexing model is

controlled by the user. In contrast, for the SQL array insert it depends on

internal memory chunk-size parameters set for the database.

Once we can use the bulk loading of data into database to enhance the

original sequential insertion, now we start to think the improvement in the

spatial database. Every time the data inserted into database will be

divided into 64K memory size and consolidate recursively until all data

has been proceeded. From [15] indicates that uses bulk loading reduced

the numbers of traversals of R-Tree and also improves the quality of the

constructed R-tree index by reorganizing overlapping sub-trees. Ideally

the bulk loading will enhance 50~90% comparing to one by one loading.

Now move forward to see what we can improve during bulk loading data.

Originally we will see the data aggregated with 64K-memory-size, so

every time we load batch dataset then we start to break the loading

sequence and so on. Once we tune with bulk loading data in range query,

we can see the improvement on bulk loading efficiency. But this will

increase the I/O consumption during operation. But we still can identify

 32

this is good approach during loading a great amount of data but maybe

invalid when small transaction is in place. So ideally we need to think

about from the structure to build up a proper framework so that we can

leverage the current spatial database to prevent the extra misleading of

data construction. Now we shall move to the combination of bulk-loading

and hash together to create the performance gains in new approach in

spatial database.

4.2 Methodology and approaches

Here is the new approach in each

1) Hash the original data objects into hash buckets

2) Solve the collision and overflow (if any)

3) Use bulk loading to partition separate regions recursively with data

segment during insertion of hashing

4) CREATE INDEX within the R-Tree structure

5) Comparing performance of query to the original operation with R-tree.

4.2.1 Original Operation

I would like to demonstrate the original operation on spatial database.

Spatial data can be divided into 3 categories: Point feature, Line feature

and Polygon/Area feature and also consisted with attribute data to

describe the content of the object data. For example, the most common

referenced utility to describe is included coordinates (X, Y) and location,

 33

shape, besides we can use attribute data to illustrate name of the road,

width of the road, numbers of lanes, traffic and etc.

Let’s discuss about the metadata first. Assume we are using the geo

sample data from TIGER to make sure the comprehensive data was

inserted in our way. Before applying the algorithm, we need to define the

data structure to construct the fundamentals. For example, we have some

sample data:

Figure 12. Example on spatial objects

We may need to construct the metadata for the data. (1) Creates a table

(AREAS) to hold the spatial data (2) Inserts rows for four areas of

interest (AREA_A, AREA_B, AREA_C, AREA_D) (3) Updates the

USER_SDO_GEOM_METADATA view to reflect the dimensional

information for the areas Creates a spatial index (AREA_SPATIAL_IDX)

 34

(4) then performs some spatial queries.

In step (1), we create a table for area (A, B, C, D) in a given geography

(such as city or state). Each row will be an area of product for a specific

area (for example, where the area is most preferred by residents, where

the manufacturer believes the area has growth potential, and so on).

CREATE TABLE area_markets (

 mkt_id NUMBER PRIMARY KEY,

 name VARCHAR2(32),

 shape SDO_GEOMETRY);

The next INSERT statement creates an area of product for AREA A. This

area happens to be a rectangle. The area could represent any user-defined

criterion: for example, where AREA A is the preferred product, where

AREA A is under competitive pressure, where AREA A has strong growth

potential, and so on.

INSERT INTO area_markets VALUES(

 1,

 'AREA_A',

 SDO_GEOMETRY(

 2003,

 NULL,

 NULL,

 SDO_ELEM_INFO_ARRAY(1,1003,3),

 SDO_ORDINATE_ARRAY (1,1, 5,7)

 35

)

);

The next INSERT statements demonstrate how to create areas of interest

for AREA B and AREA C. These areas are simple polygons (but not

rectangles).

INSERT INTO area_markets VALUES(

 2,

 'AREA_B',

 SDO_GEOMETRY(

 2003,

 NULL,

 NULL,

 SDO_ELEM_INFO_ARRAY(1,1003,1),

 SDO_ORDINATE_ARRAY(5,1, 8,1, 8,6, 5,7, 5,1)

)

);

INSERT INTO area_markets VALUES(

 3,

 'AREA_C',

 SDO_GEOMETRY(

 2003,

 NULL,

 NULL,

 SDO_ELEM_INFO_ARRAY(1,1003,1),

 SDO_ORDINATE_ARRAY(3,3, 6,3, 6,5, 4,5, 3,3)

 36

)

);

Now insert an area of interest for AREA D. This is a circle with a radius

of 2. It is completely outside the first three areas of interest.

INSERT INTO area_markets VALUES(

 4,

 'AREA_D',

 SDO_GEOMETRY(

 2003,

 NULL,

 NULL,

 SDO_ELEM_INFO_ARRAY(1,1003,4),

 SDO_ORDINATE_ARRAY(8,7, 10,9, 8,11)

)

);

Thus we are going to create the index
CREATE INDEX area_spatial_idx
 ON area_markets(shape)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX;

Above statement will create an R-tree index with these objects. I will

treat this as experimental group for original sequential loading and R-tree

construction.

 37

4.2.2 New approach

In order to have comprehensive plan on this approach, first we will start

to load bulk data by segment with a high balanced hash table. Next we

will construct the dataset with unique identifier and content of the data.

 CREATE TABLE hash_data (

 obj_id NUMBER PRIMARY KEY,

 name VARCHAR2(32),

 shape SDO_GEOMETRY);

Once the object table is been created and we will start to think about the

approach on how to increase the performance with hash function. There

are several methods of hashing that can describe in the study. We will use

the linearly growing and shrinking method to continuous address the

space of memory allocation because the database will allocate in the SGA

(server global area), Share Pool Area and operation system will take the

consideration too.

Here is the pseudo procedure of the approach:

DECLARE

 geom SDO_geometry :=

 SDO_geometry (2003, null, null, SDO_elem_info_array

 (1,1003,3), SDO_ordinate_array (-109,37,-102,40));

 BEGIN

 INSERT_GEOM(geom)

 BEGIN

 38

 SELECT A.Feature_ID FROM TARGET A

 WHERE sdo_filter(A.shape, DO_geometry

 (2003,NULL,NULL,

 SDO_elem_info_array(1,1003,3),

 SDO_ordinate_array(x1,y1, x2,y2))

) = 'TRUE';

 partition by LINEAR HASH(geom);

 CREATE INDEX hash_idx ON GEOM(geom)

 INDEXTYPE IS MDSYS.SPATIAL_INDEX;

 END

COMMIT;

END;

Let me use this as an example. Assume we have 10 data object will be

inserted into Hash table before indexing into R-tree. We can set these

parameters to ensure the data is been enclosed as the method above:

• n: numbers of buckets

• h: height of the hash buckets (collision/overflow control)

• k: k = ⎣log2 n ⎦, we will start to place data from middle of the

hash table

• r: r = n – 2k

• H: Hash function

• H(x): Generate the pseudokey to determine the location of

buckets to be placed.

An address space of n buckets is divided into two areas of sizes 2k and r =

n – 2k buckets, where k = ⎣log2 n ⎦. A randomizing hash function H is first

 39

applied to the access key (x), producing a so-called pseudokey, H(x). The

final address is extracted from the tail of H(x) as follows:

Calculate a = H(x) mod 2k; if a < r, recalculate a = H(x) mod 2k+1.

It is easy to see that the range of a is [0 . . . 2k + r – 1], as required. A

simple interpretation of the situation is that the first r buckets have been

split on the basis of the (k+ 1) ‘st bit (from the rear) in the pseudokeys:

objects with a 0-bit have remained in their original bucket (p), but those

with a l-bit have been moved to bucket 2k + p.

Once we retrieve from the table and obtain the coordinates from

SDO_Geometry, we can easily calculate point-to-point relatively and

choice the best strategy onto the hash buckets. Of course it is possible to

come out of the same destination after hash function, we called the

symptom “splitting”. There are two main criteria for splitting:

1) when a bucket overflow occurs

2) when the overall load exceeds a given threshold.

The latter is better in the sense that it can be used also in deciding about

the opposite operation, joining of buckets, when the load drops below

another threshold. Splits are performed in a strict linear order, and the

bucket causing an overflow does not usually get split at once. Therefore,

linear hashing regularly requires overflow buckets. In splitting a bucket,

the related overflow records are naturally taken along, too. To save space,

overflow buckets can be shared by several home buckets.

When splitting proceeds to the (2k - 1)’st bucket, all leading 2k buckets

have been split. Then k is increased by one, and r reset to zero.

 40

Now We will try to load data from the dataset we defined previously. We

will start to aggregate the total amount by count (*) of the table for this

example and assign to the parameter n. Two approaches to determine n if

we are adapting the linear hashing:

1) Prime number that closed to the amount of dataset – which can reduce

collision but may take a lot of space. In the other hand, it is more

efficient for indexing and searching.

2) Find out the 2k, and the buckets will divide into 2k and r = n – 2k

buckets, where k = ⎣log2 n ⎦. The benefit of this will use the space less

comparing to 1) and can generate the hash table quickly with existed

mathematics functions so I will demonstrate my approach with this

one.

Although it takes spaces for the computing but we can prevent the

collision that we need to handle during this example. We will have further

discussion on collision at the next section in details.

We generate the parameters:

n = 11,

k = ⎣log2 10 ⎦ = 3,

r = 11 – 23 = 3,

a = H(x) mod 2k; if a < r, recalculate a = H(x) mod 2k+1

Then we can have the

 41

0

1

2

3

2k

2k-1

2k+r -1

x mod 2 k+1 < r

x mod 2 k ≥ r

x mod 2 k+1 ≥ r

Main buckets
Overflow buckets

1

Figure 13. Linear Hash with k, r =3

Once the structure is been built up, we can simple obtain the whole hash

tables and insert into corresponding dataspace with the sequential of this

at the same time as following:

INSERT INTO hash_data VALUES(

 Object_number, //Object number (3,3)

(4,5)

(6,3)

(6,5)

 'Object_Name', //Object Name

 SDO_GEOMETRY(

 2003,

 NULL,

 NULL,

 SDO_ELEM_INFO_ARRAY(1,1003,1),

 SDO_ORDINATE_ARRAY(3,3, 6,3, 6,5, 4,5, 3,3)

)

);

 42

Once the table has been inserted with data, we can move forward to

creating the index by Oracle Spatial function:

CREATE INDEX hash_idx ON territories (hash_data)INDEXTYPE IS

MDSYS.SPATIAL_INDEX;

I do not specify the SDO_INDEX_TYPE (which contains a VARCHAR2

variable, QTREE means a quadtree index, RTREE indicates for an R-tree

index as default) so that this command will create the R-tree index by

default. And I also disable the operators SDO_RELATE, SDO_NN, and

SDO_WITHIN_DISTANCE because the index was not been built on

more than two dimensions.

Once this is done, we can create 2 tablespaces for different operation on 1)

original indexing with regular R-tree, 2) New approach in this thesis that

the details of the operation will be included in the next section.

4.3 Collision and overflow

In the small number of cases, where multiple keys map to the same

integer, then elements with different keys may be stored in the same

"slot" of the hash table. It is clear that when the hash function is used to

locate a potential match, it will be necessary to compare the key of that

element with the search key. But there may be more than one element

which should be stored in a single slot of the table. Various techniques are

used to manage this problem: chaining, overflow areas, re-hashing, using

 43

neighboring slots (linear probing), quadratic probing, ...

1) Chaining: One simple scheme is to chain all collisions in lists

attached to the appropriate slot. This allows an unlimited number of

collisions to be handled and doesn't require a prior knowledge of how

many elements are contained in the collection. The tradeoff is the

same as with linked lists versus array implementations of collections:

linked list overhead in space and, to a lesser extent, in time.

2) Re-hashing: Re-hashing schemes use a second hashing operation

when there is a collision. If there is a further collision, we re-hash until

an empty "slot" in the table is found. The re-hashing function can

either be a new function or a re-application of the original one. As

long as the functions are applied to a key in the same order, then a

sought key can always be located.

3) Linear probing: A simple re-hashing scheme in which the next slot in

the table is checked on a collision.

4) Quadratic probing: A re-hashing scheme in which a higher (usually

2nd) order function of the hash index is used to calculate the address.

In my case I will use the linear probing for the operation so that every

time when there is a collision, we will insert the object into next available

slot of the hash table. Quick and save a lot of time but still could be

harmful because the slot may have collision again which will increase the

time and affect the performance. But from the pseudo code of the

procedure, I don’t see a serious impact from the data and can solve the

problem in time.

 44

Chapter 5 Implementation

5.1 Environment setup
Now we shall move forward to the environmental setup of the approach.

In this set of experiments, we install Oracle10g Enterprise Edition (with

spatial feature) by defining characterset in AL32UTF8 which is a unicode

variable width multibyte characterset on a server of Dual Processor Intel

Xeon 2.8GHz; 4 GB DDRII memory with SCSI Hard disk 120GB in my

LAB. Besides, we also use datasets provided by Oracle website with

minor modification and try to store that in the MDSYS tablespace by

creating the same format as above.

Before the preparation, we have to run a SQL command

 SQL> SET TIMING ON

to measure the length of operation of each command to compare the

difference between original designs to the new approach with hash

function. This will help to track all the time consumption in 00:00:00.00

format. We also prepare the store procedure to operate for the behavior

we mentioned in previous section.

A set of experiments with varying workloads were performed in order to

compare the relative performance of the R-tree in Oracle10g. I am using

the sample data from OTN (Oracle Technology Network) with

Hillsborough County, New Hampshire road network data that is

converted from US Census Tiger Data. Oracle Spatial Network Data

Model (abbreviated to NDM) has been used which is one of the many

 45

features provided with Oracle Spatial 10g. A network or graph captures

relationships between objects using connectivity. NDM supports both

directed and undirected networks, which can be either spatial or logical.

Spatial networks contain both connectivity information and geometric

information. Logical Networks contain connectivity information but no

geometric information. NDM consists of two components: a network

database schema, and a Java API. The network schema contains network

metadata and tables for nodes and links. The Java API enables network

representation and network analysis. I am using the Java API to

demonstrate in my approach with the PL/SQL and store procedure in the

Oracle10g database so that it is very simple to manage the process and

approach of this. And at the same time I use the Oracle10g Mapviewer to

query the specific data retrieving from Oracle10g Spatial Database and

display this with Oracle10g Application Server (OC4J) so that we can

obtain the whole picture on details.

 46

Figure 14. My project demo

Figure 15. MapViewer with spatial data

 47

Next we shall move on the approach of the thesis. Every time when we

load data we will run simulations on the server. The CPU time involved

in various methods is as follows. Depending on the data dimensionality, it

took about 1 to 3 minutes of CPU time to construct the leaf level of the

R-tree for 5000 data objects for whole table scanning. The current

implementation of the proposed iterative method required from 2 minutes

to 5 minutes of CPU time, depending on the improvement achieved

during iteration. If we construct the data by original data and original

method in Oracle10g Spatial database, and create the index without

specifying any different data structure, we will prompt out the first

indicator as “Experimental Group”, using SQL to query a specific

location with county, city, states, interstates and territories. On the other

hand, I create the metadata for the tables by using definitions from

Oracle10g Spatial database, and divide into several regions as States,

Cities…etc. in (USER_SDO_GEOM_METADATA) and create the

details with a view by leveraging previous objects.

I use DECLARE store procedure and spatial object types to create the

hash table and views for operation. Basically Oracle has provided the

hash functions but I need to rewrite new PL/SQL store procedure

hash_table so that we can use the formula from ANSI SQL-92 e.g. log2(),

floor(), mod() into operations to send to correct address of hash table by

bulk-loading (Enter the data in subset of one operation and it will run as

recursive into the data structure. The store procedure is attached in

appendix.

 48

5.2 Indexing and Querying
After construct the table and we can create the index without specifying

any odd parameters. All data entered in the table will take over two

minutes to do fully table scan because it has several table joined together.

Once we have done everything, we set a target to query in the tables and

views. Testing group shows in Red line that go with regular R-Tree

structure. The control group is using our approach with hashed data

structure. We set the query and get the run time back with the size of table

(10, 500, 2000, 5000):

Select SDO_gcdr.geocode(‘mvdemo’, SDO_keywordArray(‘100 VAN

NESS AVE’, ‘San Francisco, CA’), ‘US’, ‘DEFAULT’) from dual;

Apparently when I manually insert the data into hash-functioned table, it

takes more time to buildup the SDO object and may waste the spaces so it

takes extra 67% after querying out one specific object. Following on the

incremental of data entered into tables, we can see it improved and more

close and superior than default R-tree type on spatial database. This

shows 24% enhancement in 5000 records in the hashed R-tree table.

 49

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

10 500 2000 5000

With Hash Without Hash

Data Size Response Time

 10 500 2000 5000

With Hash 0.00504 0.00874 0.0129 0.0282

Without Hash 0.00162 0.00481 0.0157 0.0374

Figure 16. Result – Hashed R-Tree v.s. non-hashed R-Tree

Figure 17. Project demo – final stage on US sample data.

 50

Chapter 6 Conclusion

In this thesis, we propose an efficient method to implement a new

enhanced algorithm in spatial databases. This approach is not only based

on an original architecture design implementation in the database but also

improves the query time by avoiding the tree recreation and by

preventing the skew tree. By our performance analysis, hashing before

R-Tree creation on the database could improve the quality of the index

thereby adversely affecting subsequent query performance, since in

R-Tree splitting balanced tree is guaranteed during database insertion,

deletion and most of operations in spatial database. This strategy also

improves the quality of the constructed R-tree index by reorganizing

overlapping subtrees. The experiments using real datasets show an

improvement in insertion performance by 20%-70% using my approach

in comparison to original data index creation for querying. Query

performance also improves. This paper explored the idea of identifying

and storing objects by hashing to tune the performance. The merit of the

technique is that it can be applied for database engines at the same time.

If the query plan operation is realized after hash operations, it will cost

less operation on constructing the R-tree structure.

 51

References

[1] A. Guttman: “R-trees: A dynamic index structure for spatial searching”, Proc. ACM SIG-MOD,

pp. 47 – 57, 1984.

[2] N. Beckman and H.P. Kriegel: “The R* tree: An efficient and robust access method for points

and rectangles", Proc. ACM SIGMOD, pp. 322 –s 331, 1990.

[3] Timos Sellis, Nick Roussopoulos and Christos Faloutsos: “The R+-Tree: A Dynamic Index for

multi-dimensional objects”, 13th VLDB Conference, 1987

[4] Lepouchard, Y.; Orlandic, R.; Pfaltz, J.L.: “Performance of KDB-trees with query-based

splitting”, Proceedings of International Conference on Information Technology: Coding and

Computing, pp. 218 – 222, April 2002

[5] Ravi Kanth V Kothuri, Siva Ravada, and Daniel Abugov: “Quadtree and r-tree indexes in oracle

spatial: a comparison using gis data.” Proceedings of ACM SIGMOD Conference, 2002.

[6] S. Saltenis, C.S. Jensen, “Indexing of Now-Relative Spatio-Bitemporal Data”, The VLDB

Journal, pp.1-16, 2002

[7] Saltenis, C. Jensen, S. Leutenegger, and M. Lopez. “Indexing the position of continuously

moving object Trajectories.” Proceedings of ACM SIGMOD Conference, 2000.

[8] Y. Tao and D. Papadias. Mv3r-tree: a spatio-temporal access method for timestamp and interval

queries. Proc. of 27th Int’l Conf. on Very Large Data Bases, 2001.

[9] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the positions of

continuously moving objects. In SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD

international conference on Management of data, pp. 331–342, New York, USA, 2000.

[10] Yuni Xia, Sunil Prabhakar: “Q+Rtree- efficient indexing for moving object databases”,

Proceedings of the Eighth International Conference on Database Systems for Advanced

Applications (DASFAA’03) 2003

[11] Oracle Corporation, Oracle10g Spatial Release 2, B14255-01, “Spatial User's Guide and

Reference”, 2005 http://www.oracle.com/technology/documentation/spatial.html

[12] Oracle Corporation, Oracle10g Spatial Release 2, B14256-01 “Oracle Spatial Topology and

Network Data Models”, 2005 http://download.oracle.com/docs/html/B14256_01/toc.htm

[13] Oracle Corporation, Oracle10g Spatial Release 2, B14254-01 “Oracle Spatial GeoRaster”, 2005

http://download.oracle.com/docs/html/B14254_01/toc.htm

[14] Oracle Corporation, Oracle10g Spatial Release 2, B14373-01” Oracle Spatial Java API

Reference”, 2005 http://download.oracle.com/docs/html/B14373_01/toc.htm

[15] Ning An, Ravi Kanth V Kothuri, Siva Ravada, “Improving Performance with Bulk-inserts in

Oracle R-Trees”, Proceedings of the 29th VLDB Conference, 2003

[16] Jeremy Kubica, Joseph Masiero, Andrew Moore, Robert Jedicke, Andrew Connolly, “Variable

KD-Tree Algorithms for Efficient Spatial Pattern Search”, Proceedings of Neural Information

 52

http://www.oracle.com/technology/documentation/spatial.html
http://download.oracle.com/docs/html/B14256_01/toc.htm
http://download.oracle.com/docs/html/B14254_01/toc.htm
http://download.oracle.com/docs/html/B14373_01/toc.htm

Processing Systems - NIPS05, pp. 1-3, 2005, Whistler, CANADA

[17] Egemen Tanin, Aaron Harwood, Hanna Samet:”Indexing distributed complex data for complex

queries”, Proceedings of the National Conference on Digital Government Research - DGO, pp.

 81-90, 2004, Seattle, WA. US

[18] Ricardo Ciferri, Ana Salgado, Mario A. Nascimento, Geovane Magalhaes: “A performance

comparison among the traditional R-trees, the Hilbert R-tree and the SR-tree”, Proceedings of the

XXIII International Conference of the Chilean Computer Science Society, 2003

[19] Kamel, I., and Faloutsos, C. “Hilbert R-tree: An Improved R-tree using Fractals”. In Proc. VLDB

Conference, pp. 500-509, 1994.

[20] Katayama, N., and Satoh, S. “The SR-tree: An Index Structure for High-Dimensional Nearest

Neighbor Queries. In Proc. SIGMOD Conference, pp. 369-380, 1997.

[21] Jukka Teuhola, “Effective Clustering of Objects Stored by Linear Hashing”, Conference on

Information and Knowledge Management – CIKM ’95, Baltimore MD USA, ACM 1995

[22] David Sonnen, Henry D. Morris, Dan Vesset, “Worldwide Spatial Information management

2005-2009 Forecast and 2004 Vendor Shares, International Data Centre (IDC) Market Analysis,

Doc# 34321, Nov 2005.

[23] Andrei Radu Popescu, “A Study of R-tree Based Spatial Access Methods”, UNIVERSITY OF

HELSINKI, pp. 14-17, 2004

 53

	 中文摘要
	 Abstract
	 誌 謝
	 Table of Contents
	List of Figures
	Chapter 1 Introduction
	 Chapter 2 Problem Definition
	2.1 Motivation
	 2.2 Possible problems
	
	 Chapter 3 Overview of previous indexing approaches
	3.1 R-Tree
	3.1.1 R-Tree: Search
	
	3.1.2 R-Tree: Insert and Delete

	3.2 R*-Tree
	3.3 R+-Tree
	3.4 Variants of R-Tree
	 3.5 Structure of implementation in Oracle10g Spatial database

	Chapter 4 A new indexing method in spatial database
	
	4.1 Introduction
	4.2 Methodology and approaches
	4.2.1 Original Operation
	 4.2.2 New approach

	4.3 Collision and overflow

	Chapter 5 Implementation
	5.1 Environment setup
	5.2 Indexing and Querying

	 Chapter 6 Conclusion
	 References
	

