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Chapter 1 

Introduction 

 

 

1.1 Introduction to low dimensional systems 

 

During the past decade semiconductor-based low dimensional structures have 

become crucial model systems in the investigation of electrical conduction on the short 

length scales. The unprecedented purity and the crystalline perfection of semiconductor 

materials lead to the availability of the thin layer structures with high electron mobility. 

Such layer structure, called two dimensional electron gases (2DEG), could be formed in 

Si-inversion layers or heterostructure semiconductors, where only the motion of 

electrons along the plane of thin layer is allowed. Contrary to the thin metal films, the 

desired properties are found in semiconductor-based 2DEG, e.g. tunable electron 

density by electric field, large Fermi wave length (~40 nm) and large mean free path 

(~10μm). Thus, the studies of the quantum transport could be easily arrived. 

The phase coherence properties of quantum mechanical particles are the 

characteristics of a microscopic object. The possibility of the coherent length is hold up 

to several microns, which is classified as macroscopic regime. The physics of such 

systems are called mesoscopic physics. Quasi-one dimensional configurations can be 

readily realized by the lateral confinement on 2DEG. 

The unique regime of the mesoscopic conductors is the ballistic regime, where the 

impurity scattering can be neglect. Similar to the transport in waveguides, the various 

transmission properties of transport are arrived by varying the geometries of the 

conductors. The discreteness of the propagating modes shown in Landauer-Büttiker 
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formula relates the conduction to the transmission. The physics of this regime could be 

called electron optics in the solid states. [1] 

The macroscopic behavior can not be observed as large as 2.5 mm in the quantum 

Hall regime. A magnetic field perpendicularly applied to 2DEG results in the 

quantization of the energy in a series of Landau levels. A remarkable feature of this 

regime is the quantized Hall resistance. [2] The magnetic length eBh (~10nm at 

B=5T) thus takes the role of the wavelength. Electron would transport adiabatically as 

the potential landscape is adjusted smoothly to the scale of the magnetic length. 

In this thesis, the studies of several low dimensional systems are shown. The 

motivation is not just because of the scientific interest. The decreasing scales of 

fabrication of conventional transistors lead to the break down of the theory based on the 

classical diffusive transport. The exploration of the novel transport regime in 

semiconductor nanostructures provides the development of the innovative future 

devices. In literature, some ambitious proposals envision the entire computers 

composed of arrays of quantum interference devices. [3] 

 

 

1.2 Motivation 

 

Phase coherence in solid state conductors is a property of fundamental interest. 

The prospect of solid state quantum information has also put the focus on possible 

applications based on phase coherence. With the advent of mesoscopic physics, it has 

become possible to experimentally investigate quantum phase coherent properties of 

electrons in solid state conductors in a controlled way. [4] In particular, in ballistic 

mesoscopic samples at low temperatures, electrons can propagate up to several microns 
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without loosing phase information. This opens up the possibility to investigate 

electrical analogs of various optical phenomena and experiments. An investigation of 

such analogs is of fundamental interest. On the one hand, it allows one to establish 

similarities between the properties of photons and conduction electrons, a consequence 

of the wave nature of the quantum particles. On the other hand, it also allows one to 

investigate the differences between the two types of particles arising from the different 

quantum statistical properties of fermions and bosons. For many-particle properties, 

such as light intensity correlations or correspondingly electrical current correlations, 

noise, the quantum statistical properties are important. [5, 6] Both the wave-nature of 

the particles as well as their quantum statistics are displayed in a clearcut fashion in 

interferometer structures. In the first part of this thesis, we are concerned with the 

electrical analogs of two well known optical interferometers, the single-particle 

Mach-Zehnder (MZ) interferometer and the two-particle Hanbury Brown Twiss (HBT) 

interferometer.  

The MZ-interferometer is a subject of most textbooks in optics. [7] In the 

framework of quantum optics, considering individual photons rather than classical 

beams of light, the interference arises due to the superposition of the amplitudes for 

two different possible paths of a single photon. This leads to an interference term in 

the light intensity. The MZ-interferometer is thus a prime example of a single particle 

interferometer. [8] The MZI experiments [9-11, 61] were all implemented in a 

conductor in the integer quantum Hall regime, where the electrons propagate along 

unidirectional, quantum mechanical edge states and quantum point contacts (QPCs) 

act as beam splitters. In the experiments [9-11, 61] the visibility of the conductance 

oscillations as a function of flux     were reduced below the ideal value, a 

signature of dephasing of the electrons propagating along the edges. Dephasing in the 

MZI was investigated in several theoretical works. Originally, Seelig and Büttiker [12] 
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investigated the effect of dephasing on the conductance oscillations due to Nyquist 

noise. Following the experiment in Ref. [9], where also the shot noise was measured, 

a number of works investigated the effect of dephasing on the current and the noise. 

The dephasing was introduced via fluctuating classical potentials [13-15] and by 

coupling the MZI to a quantum bath [16] as well as to a voltage probe. [13, 14, 17] 

Recently these studies were extended to the full distribution of the transferred charge, 

both for a fluctuating classical potential [15] as well as a voltage probe [18, 19] as a 

source of dephasing. 

Taken together, these theoretical investigations have provided a qualitative picture 

of the effect of dephasing on transport properties in the MZI. The experimental 

situation is however not conclusive. In the very recent work by Litvin et al. [11] the 

observed temperature and voltage dependence of the visibility of the conductance 

oscillations are in good agreement with the noninteracting theory of Ref. [17]. In 

particular, the effect of the interferometer arm asymmetry is clearly manifested. The 

overall visibility is however low, a couple of percent. In contrast, in the recent work by 

Neder et al. [10] and Roulleau et al. [61] the visibility is high, but the voltage 

dependence of the conductance visibility was found to be insensitive to arm asymmetry, 

however showing a clear lobe structure. A possible explanation for the findings of Ref. 

[10] was also suggested, invoking interactions between electrons at different edge states. 

[20] The experimental situation thus motivates further investigations of the coherent 

transport properties of the MZI. 

The HBT-interferometer [21-23] was originally invented for stellar astronomy, to 

measure the angular diameter of stars. It is an intensity, or two-particle, [8] 

interferometer. The interference arises from the superposition of the amplitudes for two 

different two-particle processes. Importantly, there is no single particle interference in 

the HBT-interferometer. Consequently, in contrast to the MZ-interferometer there is no 
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interference in the light intensity, the interference instead appears in the 

intensity-intensity correlations. Moreover, the intensity-intensity correlations also 

display the effect of quantum statistics. Photons originating from thermal sources tend 

to bunch, giving rise to positive intensity cross correlations. For the electronic analog of 

the HBT-interferometer, it was the corresponding anti-bunching of electrons that 

originally attracted interest. It was predicted [5] that the electrical current cross 

correlations in mesoscopic conductors would be manifestly negative, i.e. display 

anti-bunching, as a consequence of the fermionic statistics of the electrons. Negative 

current cross correlations were subsequently observed in two independent experiments. 

[24, 25] Recently, anti-bunching for field emitted electrons in vacuum was also 

demonstrated. [26] The two-particle interference in the HBT-experiment has received 

much less attention. We emphasize that while the bunching of the photons was 

necessary for obtaining a finite, positive cross correlation signal, it was the two-particle 

effect that was of main importance to HBT since the angular diameter of the star was 

determined from the two-particle interference pattern. In electrical conductors, 

two-particle effects in AB-interferometers were investigated theoretically in Refs. 

[27-29]. Only very recently two of the authors and Sukhorukov [30] proposed a direct 

electronic analog of the optical HBT-interferometer which permits to demonstrate 

two-particle interference in an unambiguous way. 

In the beginning of this thesis, we investigate and compare in detail the current and 

zero-frequency noise in electronic MZ and HBT interferometers. 

Next, we propose to investigate the properties of the currents and the shot noises 

in a pump driven MZI. In contrast to previous work, both experimental and theoretical, 

all electronic reservoirs are kept at the same potential. The current is instead created 

via the quantum pump effect, [31-35] by varying periodically the transparencies of the 

two QPCs. Working in the adiabatic, low pump frequency limit, the system is kept 
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close to equilibrium. This minimizes the effect of inelastic dephasing and hence 

allows for a more detailed investigation of the coherence properties. 

Theoretically, a large number of investigations of various aspects of quantum 

pumping have been carried out, a representative collection can be found in Refs. 

[31-50]. However, only a few experiments aimed at investigating quantum pumping of 

electrical currents have been performed. [51, 52] In the MZI the current is a true 

quantum interference effect. In addition, the elementary structure of the MZI and the 

fact that the potential applied at the QPC control both the pump effect and the scattering 

properties of the QPCs makes the MZI a promising candidate for a quantum pump. 

Previous studies of pumping in mesoscopic interferometers have concerned 

Aharonov-Bohm, [45, 53, 54] double slit-quantum dot [44] and two-particle [55] 

interferometers, however, to the best of our knowledge, not MZIs.  

Original proposal of QCP, in the adiabatic regime, was due to Thouless. [31] He 

considered the current generated by a slowly varying traveling wave in an isolated 

one-dimensional system. The number of electrons transported per period was found to 

be quantized if the Fermi energy lies in a gap of the spectrum of the instantaneous 

Hamiltonian. Aiming at this quantized pumped charge nature of the adiabatic pumping, 

Niu proposed various one-dimensional periodic potentials for the adiabatic quantum 

pumping (AQP), [49] and pointed out the importance of the quantized charge pumping 

in utilizing it for a direct-current standard. [49] 

An experimental effort in generating AQP involves surface acoustic wave (SAW). 

[56-60] Generated by an interdigitated SAW transducer located deep on an end-region 

of a narrow channel, the SAW propagates to the other end-region of the narrow 

channel while inducing a wave of electrostatic potential inside the channel. Electrons 

trapped in the potential minima are thus transported along the narrow channel. Both 

Mott-Hubbard electron-electron repulsion in each such trap and the adiabaticity in the 
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transport are needed to give rise to quantization in the pumped current. [57] As such, 

the channel has to be operated in the pinch-off regime. [58] 

In the last part of this thesis, we propose to study another experimental 

configuration for QCP in a narrow channel. The proposed configuration consists of a 

pair of finite finger gate array (FGA), with the number  N   of finger gates (FG's) in 

each FGA being kept to a small number. In contrast to the SAW configuration, the FGA 

pair sits on top of the narrow channel, rather than locating at a distance far away from it; 

and the most significant QCP occurs in regimes other than the pinch-off regime. 

Pumping potential can be generated by ac biasing the FGA pairs with the same 

frequency but maintaining a phase difference     between them. Since the wave of 

electrostatic potential induced in the narrow channel is directly from the FG's, rather 

than via the SAW, our proposed structure has the obvious advantage that the working 

frequency is not restricted to the frequency of the SAW,  S  2vS/d  . Here  vS   

is the phase velocity of the SAW, and  d   is the pitch in the FGA. Furthermore, when 

the working frequency is different from  S  , the contribution from SAW to the 

pumped current will be negligible. As the number of the FG's larger than two, the 

dominated mechanism is due to the time-dependent Bragg reflection, not the 

photon-assisted interferences. 

 

 

1.3 Thesis Outline 

 

The outline of the thesis is as follows. 

 

    Chapter 1 introduces the low dimensional systems, their applications and the 

motivation of this thesis.  
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    Chapter 2 is shown the analysis and the comparison of the voltage driven 

electronic MZ and HBT interferometers in detail. The characteristics of currents and 

the shot noises are studied as a function of the voltage, the temperature and the 

dephasing rate. 

 

    Chapter 3 presents the investigation of the quantum pump driven electronic MZ 

interferometers. Instead of the conventional driving source, the quantum pumping 

effects are used to drive the electronic MZ interferometer. The pumped currents and 

the shot noises are studied subject to the pump frequency, the temperature and the 

effects of decoherence. 

 

    Chapter 4 shows another experimental achievable configuration, a finger gate 

array pump. The arrays of the time-dependent oscillations of gate potentials generate 

the pump currents which are related to the mechanism of the time dependent Bragg 

reflection. In contrast, for a pump modulated by two gates the mechanism is as a 

result of the photon-assisted interferences. 

    

In Chapter 5, we make the conclusions of the thesis. 
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Chapter 2 

Visibility of current and shot noise in electrical 

Mach-Zehnder and Hanbury Brown Twiss interferometers 

 

 

2.1 Introduction of electrical Mach-Zehnder and Hanbury Brown 

Twiss interferometers 

 

The progress of mesoscopic physics gives rise to the phase coherence length of 

electrons in a solid state conductor up to several microns. Thus, the possibility of the 

electrical analog of optics is allowed. Two well-known interferometers, 

Mach-Zehnder (MZ) and Hanbury Brown Twiss (HBT) interferometers, are explored 

in this chapter. 

A schematic of the MZ-interferometer is shown in Fig. 2.1. An incident beam of 

light from source  1   is divided in two parts at the semitransparent beam splitter  

A  . The two partial beams are reflected at mirrors and later joined at the second beam 

splitter B. Beams of light going out from  B  are detected in  3   and  4  . The 

amplitude of the light in an outgoing beam is the sum of the amplitudes for the two 

partial beams,  )(exp)(exp 2211 φφ iAiAA +=  . This gives an intensity  

{ }])[exp(Re2|||||| 2121
2

2
2

1
2 φφ −++= ∗ iAAAAA . The interference term  

{ }])[exp(Re2 2121 φφ −∗ iAA   thus contains the difference between the geometrical 

phases,  1 − 2  . Importantly, the four terminal geometry together with the 

reflectionless beam splitters lead to that the incident beam traverses the interferometer 

only once. This is a defining property of the MZ-interferometer.  
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We then turn to the electric analog of the MZ-interferometer, shown in Fig. 2.2. 

As pointed out in chapter 1, several results for the current and noise are available in 

the literature. [1-6] Here we analyze the most general situation possible, with finite 

voltage, temperature and interferometer arm asymmetry as well as different beam 

splitters  A   and  B   with arbitrary transparency. When we consider limiting 

cases for e.g. small temperature, bias or asymmetry, known results are recovered. This 

detailed analysis of the MZ-interferometer is of importance when comparing to the 

HBT-interferometer below. 

The HBT-interferometer is less well known than the MZ-interferometer and 

deserves some additional comments. [7] The HBT-interferometer was invented as a 

tool to measure the angular diameter of stars. The first measurement [8] was carried 

out on a radio star in 1954. Compared to existing schemes based on Michelson 

interferometers, the HBT-interferometer proved to be less sensitive to atmospheric 

scintillations, which allowed for a more accurate determination of the angular 

diameter. After having demonstrated a table-top version of the interferometer in the 

visual range, [9] the angular diameter of the visual star Sirius was determined. [10] 

The experimental results, both the two-particle interference and the positive 

intensity cross correlations, were successfully explained within a semi-classical 

framework. Soon after the experiments, it was however shown by Purcell [11] that the 

positive cross correlations could be explained in terms of bunching of individual 

photons, emerging from the star, a thermal source of light. This bunching was also 

demonstrated explicitly in subsequent photon counting experiments. [12, 13] The 

HBT experiment thus laid the foundations for quantum statistical methods in quantum 

optics. [14] The HBT approach has also been of importance in experimental particle 

physics. [15] It is interesting to note that positive intensity cross correlations between 

beams of light emerging from a thermal source, according to some contemporary [16, 
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17] ``would call for a major revision of some fundamental concepts in quantum 

mechanics''. Purcell, [11] however, providing an elegant explanation of the bunching 

phenomena, pointed out that ``the Hanbury Brown Twiss effect, far from requiring a 

revision of quantum mechanics, is an instructive illustration of its elementary 

principles''. 

An optical table-top version [18, 19] of the HBT-interferometer is shown in Fig. 

2.7. A beam of light is emitted from each one of the sources  2   and  3  , 

completely uncorrelated with each other. The beams are split in two partial beams at 

the semitransparent beam splitters  C   and  D  respectively. The partial beams 

acquire phases  1   to  4   before scattering at the second pair of beam splitters  

A   and  B . The resulting beams are collected in detectors at ports  5   to  8  . 

Importantly, there is no interference pattern in the intensities at the detectors  5   

to  8  , instead the interference occurs only in the cross correlations between 

intensities at  5, 6   and  7,8  . The intensity cross correlations are sensitive to the 

two-particle amplitudes: the interference is thus between two different two-particle 

scattering events, e.g. (i) one particle from  2   scatters to  5   and one particle 

from  3   scatters to  8  , with an amplitude  ])[(exp 211 φφ +iA   and (ii) one 

particle from  2   scatters to  8   and one particle from  3   scatters to  5  , with 

an amplitude  ])[(exp 432 φφ +iA . The amplitude to detect one particle in  5   and 

one in  8   is then the sum of the two two-particle amplitudes. This is the case since 

both scattering processes have the same initial and final states and can not be 

distinguished. The (reducible) cross correlation between intensities in  5   and  8   

is directly related to the corresponding two-particle probability   . The interference 

term  { }])[exp(Re2 432121 φφφφ −−+∗ iAA   contains the four geometrical phases  1   
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to  4  . The HBT-interferometer is thus, in contrast to the MZ-interferometer, a 

two-particle interferometer. 

The electrical analog of the HBT-interferometer, presented in Ref. [33], is shown 

in Fig. 2.8. It consists of a (rectangular) conductor with a hole in the middle, a 

Corbino geometry. Similar to the MZ-interferometer, the electrons propagate along 

single edge states. Scattering between the edge states takes place only at the beam 

splitters  A   to  D .  

In this chapter, the investigation and the comparison of the current and 

zero-frequency noise in electronic MZ and HBT interferometers are shown in detail. 

We consider interferometers implemented in mesoscopic conductors in the integer 

Quantum Hall regime, where the transport takes place along single edge states and 

Quantum Point Contacts (QPC's) serve as controllable beam splitters. The effect of 

finite temperature, applied bias and asymmetry, i.e. unequal length of the 

interferometer arms, is investigated. The strength of the interference contribution is 

quantified via the visibility of the phase oscillations. The dependence of the visibility 

on the beam splitter transparencies as well as on the temperature, voltage and 

asymmetry is discussed in detail. Of interest is the comparison of visibility of the 

shot-noise correlation of the MZ-interferometer and the HBT-intensity interferometer. 

Shot noise correlations in the MZ-interferometer exhibit two contributions, one with 

the fundamental period of  h/e   and a second harmonic with period  h/2e  . The 

shot noise correlations in the HBT-interferometer, even though they are due to two 

particle processes, are periodic with period  h/e  . Thus the Aharonov-Bohm period 

can not be used to identify the two particle processes which give rise to the HBT 

effect. It is therefore interesting to ask whether the HBT two-particle processes have 

any other signature, for instance in the temperature or voltage dependence of the 

visibility of the shot-noise correlation. We find that this is not the case. To the contrary, 
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we find that the shot noise correlations in the HBT intensity interferometer behave 

qualitatively similar to the  h/e   shot noise correlation in the MZ-interferometer. In 

contrast the  h/2e   contribution in the shot noise of the MZ-interferometer 

decreases more rapidly with increasing temperature, voltage or dephasing rate than 

the  h/e   oscillation in the MZ- or HBT-interferometer. 

We investigate dephasing of the electrons propagating along the edge states by 

connecting one of the interferometer arms to a fictitious, dephasing voltage probe. In 

all cases, the current and noise of the MZ-interferometer as well as the noise in the 

HBT-interferometer, the effect of the voltage probe is equivalent to the effect of a 

slowly fluctuating phase. 

 

 

2.2 Model and Theory  
 

2.2.1 Optical analogs in the Quantum Hall regime 
 

In this chapter we consider implementations of the MZ and HBT interferometers 

in mesoscopic conductors is considered in strong magnetic fields, in the integer 

Quantum Hall regime. [20] The typical system is a two-dimensional electron gas in a 

semiconductor heterostructure, with the lateral confinement of the electron gas 

controllable via electrostatic gating. The transport between reservoirs [21] connected 

to the conductor takes place along edge states. [22] The edge states, quantum analogs 

of classical skipping orbits, are chiral. The transport along an edge state is 

unidirectional. Scattering between edge states is suppressed everywhere in the 

conductor except at electrostatically controllable constrictions, QPC's. [23, 24] For a 

magnetic field that does not break the spin degeneracy of the edge states, each edge 

state supplies two conduction modes, one per spin. 
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These properties make conductors in the integer quantum Hall regime ideal for 

realizing analogs of optical experiments. First, the edge states correspond to single 

mode waveguides for the light. The unidirectional motion along the edge states allows 

for ``beams'' of electrons to be realized. Second, the QPC's work as electronic beam 

splitters with controllable transparency. Moreover, due to chirality the beamsplitters 

are reflectionless, a property essential for the MZ and HBT interferometers but 

difficult to achieve for beam splitters in conductors in weak (or zero) magnetic fields. 

[25, 26] These properties of conductors in the quantum Hall regime have been 

demonstrated experimentally in a number of works, see e.g. [27], [28] and [29]. 

Theoretically, several works have been concerned with the conductance and 

noise properties of beam splitters and interferometers in Quantum Hall systems, for 

recent reviews see e.g. Refs. [30] and [31]. Recently, it was proposed to use these 

appealing properties of edge states in the context of orbital [32] quasi-particle 

entanglement in static [33-35] and dynamic [36, 37] systems as well as for quantum 

state transfer. [38] 

It is interesting to note that the edge state description also hold for conductors at 

even higher magnetic fields, in the fractional Quantum Hall regime. As examples, the 

fractional charge has been determined in shot-noise experiments [39, 40] and the 

quantum statistical properties of the fractionally charged quasi-particles have been 

investigated theoretically in beam-splitter [41] and HBT [42] geometries. Various 

interferometer structures have also been considered. [43-45] Very recently, a 

MZ-interferometer in the fractional Quantum Hall regime was proposed. [46] Here we 

however consider only the integer Quantum Hall effect, where the quasi-particles are 

noninteracting and the electrical analogs to optical experiments can be directly 

realized.  
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2.2.2 Scattering approach to current and noise 
 

This discussion leads us to consider single mode, multi-terminal conductors with 

noninteracting electrons. The principal aim of this chapter is a comparison of the MZ 

and HBT-interferometers. In reality in both interferometers interactions (screening) 

play a role both for the voltage and temperature dependence. A non-interacting 

scattering approach is not gauge invariant but requires a treatment of screening. [47] 

However, these effects are expected to be similar in the two interferometers and will 

not affect the main conclusions of this chapter. Therefore, below we treat 

non-interacting quasi-particle interferometers. The conductors are connected to 

several electronic reservoirs, biased at a voltage  eV   or grounded. The current [48] 

and the noise [49, 50] are calculated within the scattering approach for multi-terminal 

conductors. We first introduce the creation and annihilation operators for ingoing,  

â E   and  âE  , and outgoing,  b̂ E   and  b̂E  , particles, at energy  

E   in terminal    . For simplicity we suppress spin notation. Considering a 

conductor with  N   terminals, the in- and out-going annihilation operators are 

related via the  N  N   scattering matrix, as  

                   ),(ˆ)()(ˆ
1

EaEsEb
N

βαβ
β

α ∑
=

=                  (2.1) 

where  sE   is the amplitude to scatter from terminal     to terminal    . 

The current operator in the lead     has the form [48]  

                  

Ît  e
h ∑



 dEdE ′iE − E ′t/

 A
 E,E ′â EâE ′,                (2.2) 

with the notation  

                  A
 E,E ′   − s∗ EsE ′.              (2.3) 

The average current is given by [48]  
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〈I    dEjE,

                        (2.4) 

where the spectral current density is  

                       
jE  1

e ∑


GEfE.
                (2.5) 

Here  fE  1/1  expE − eV/kBT   is the Fermi Dirac distribution of 

terminal    , with  V   the corresponding applied voltage. The spectral 

conductance  GE   is given by  

                     
GE  e2

h A
 E,E.

                     (2.6) 

The zero frequency correlator between current fluctuations in terminals     and     

is defined as  

                
S   dt〈ΔÎ0ΔÎt  ΔÎtΔÎ0,

            (2.7) 

where  ΔÎt  Ît − 〈Ît.   The current correlator is given by [49, 50]  

                        ),(EdESS αβαβ ∫=                         (2.8) 

where  

SE  2e2

h ∑


A
 E,EA

 E,E

 fE1 − fE              (2.9) 

is the spectral current correlator. 

 

 

2.2.3 Dephasing voltage probe model 
 

There are several physical mechanisms that might lead to dephasing of the 

electrons propagating along the edge states (see e.g. the discussion in Ref. [27]). In 

this work we are not interested in any particular mechanism for dephasing but 
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consider instead a phenomenological model, a dephasing voltage probe. The idea of 

using a voltage probe to induce dephasing was introduced in Refs. [51] and [52]. A 

voltage probe connected to a mesoscopic sample was considered, leading to a 

suppression of coherent transport due to inelastic scattering. The probe model, 

originally considered for the average current, was extended to treat the effect of 

inelastic scattering on shot noise by Büttiker and Beenakker [53] by considering a 

conservation of current fluctuations at the probe as well. Later De Jong and 

Beenakker [54] extended the voltage probe concept and introduced a (fictitious) 

voltage probe which breaks phase but does not dissipate energy. Scattering in the 

voltage probe is (quasi-)elastic. This is achieved with the help of a distribution 

function in the voltage probe which conserves not only total current like a real voltage 

probe, but conserves current in every small energy interval. Such a probe provides a 

model of pure dephasing. The different probe models have been used as qualitative 

models in a number of works, see Refs. [30] and [55] for a review. For an application 

to quantum Hall systems, see Ref. [56]. 

In this chapter we consider the dephasing voltage probe model, which conserves 

the current at each energy. The model is based on the assumption that the current is 

conserved on a time scale  C  , much shorter than the time of the measurement but 

much longer than the time between injections of individual electrons, here of the order 

of  /eV  . One could however consider a more general voltage probe model that 

takes into account a more complicated dynamics of the probe. A detailed discussion of 

such a general model in the light of recent work [3, 4, 57, 58] is however deferred to a 

later work. [65,66] Here we only note that below we find that the voltage probe in 

both the MZ and HBT-interferometers only gives rise to a suppression of the phase 

dependent terms in conductance and noise, just as one would naively expect to be the 

effect of pure dephasing. 
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The condition of zero current into the fictitious probe     at each energy is 

fulfilled by considering a time dependent distribution function of the probe  

fE, t  ̄fE  fE, t,                  (2.10) 

where  fE, t   fluctuates to conserve current on the timescale  C  . As a 

consequence, the spectral current density at each energy in lead     fluctuates in 

time as  

jE, t  jE  ΔjE, t,                  (2.11) 

where the fluctuations  ΔjE, t  jE, t  1/eGEfE, t   consist of two 

parts, the intrinsic fluctuations  jE, t   and the additional fluctuations due to  

fE, t  . The requirement of zero average current into the probe,  0)( =Ejγ  , 

leads to the averaged distribution function at the probe reservoir      

f̄E  −∑
≠

GE
GE

fE.
               (2.12) 

The average spectral current density  )(Ej dp
α   is then found from Eq. (2.5). 

The fluctuating part of the distribution function,  fE, t,   is obtained from 

the requirement of zero current fluctuations into the probe, 

ΔjE, t  jE, t  1/eGEfE, t  0. The total current density fluctuation 

is then given by  

ΔjE, t  jE, t − GE
GE

jE, t.
          (2.13) 

As a result, in the presence of dephasing the total spectral current correlation  

S
dpE   is  
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S
dpE  SE −

GE
GE

SE −
GE
GE

SE


GEGE

G
2 E

SE,  

     (2.14) 

where  SE   is the correlation function between the intrinsic current fluctuations,  

j   and  j  , of contact     and    , given by Eq. (2.9), and  GE   is 

the conductance, given by Eq. (2.6).  

  

2.3 Mach-Zehnder interferometers 
 

The discussion of a fully coherent MZ interferometer is first shown; the effect of 

dephasing is investigated below. An electric potential  eV   is applied at terminal 1, 

all other terminals are kept at zero potential. The injected electrons propagate along 

single edge states. Scattering between the edge states can take place only at the two 

QPC's, acting as beam splitters with controllable transparency. The beam splitters  

BAj ,=   are characterized by the scattering matrices 

i Rj T j

T j i Rj
,

                   (2.15) 

where  T j   and  Rj  1 − T j   are the transmission and reflection probabilities, 

respectively. We note that any additional phases of the beam splitters just give rise to a 

constant phase shift of the oscillations in the interference terms and are therefore not 

considered. In a typical system, where Fermi energy is not small, the energy 

dependence of transport amplitude would not give significant influence and could be 

neglect. 

Propagating along the edge states, the electrons pick up geometrical phases  1   

and  2   as well as phases  1   and  2   due to the AB-flux     through 
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the center of the interferometer. For example, the amplitude for scattering from 

terminal 1 to 4 is given by   

s41  i TBRA ei11  i TARB ei2−2  .        (2.16) 

For the geometrical phases, to be specific we consider the case when the potential 

landscape  eUx,y   of the conductor in Fig. 2.2 is varying smoothly on the scale of 

the magnetic length  lB  /e|B|1/2  , with  Bẑ   the applied magnetic field 

perpendicular to the plane in Fig. 2.2 (the effect of self-consistency of the potential 

[59] is neglected). This allows for a semi-classical treatment. [60] In a high magnetic 

field the edge states at Fermi energy  EF   follow equipotential lines determined by  

eUx,y  EF − cn  1/2   where  c  eB/m   is the cyclotron frequency and  

m   the effective electron mass. We are concerned here with the case where there is 

only one edge state and thus  n  0 . Suppose the  x  -axis is a line intersecting 

QPC's  A   and  B  in Fig. 2.2. Excluding self-intersections we can express the 

edge state in terms of functions  )(1 xy   and  )(2 xy   for the left and right path of 

the interferometer. Working in the symmetric gauge, the geometric phases can be 

written [60]   i  −lB
−2 

xA

xB dxyix  , where  xA   and  xB   are the locations of 

the QPC's. Importantly,  1 − 2   corresponds to the total area  A   enclosed by 

these two paths divided by the magnetic length squared, or  1 − 2  2BA/0   

where  BA   is the total flux through the enclosed area and  0  h/e   the 

elementary flux quantum. Note that the Aharonov-Bohm flux     adds an 

additional phase  1   and  2  , with  1  2  2/0  , to each of the 

paths. 

For the discussion of the temperature and voltage dependence of the current and 

the noise, we also need to know the energy dependence of the phases. First, instead of 

parameterizing the edge state through  x   we introduce the parameter  s   which 
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measures directly the path length, i.e.  xs  ,  )(sy  . In addition at  s   we 

introduce local coordinates  s∥   along and  s   perpendicular to the equipotential 

line. In these coordinates, an edge state that follows the equipotential line at a small 

energy  E   away from  EF   acquires the additional phase  Δ  −lB
−2  dsΔs   

with  edU/dsΔs  E  . The potential gradient  dU/ds   determines the local 

electric field  Fs  −dU/ds   at  s  . But  eFslB  vDs   where  

vDs  Fs/B   is the drift velocity of the guiding center of the cyclotron orbit at 

point  s   of the edge state. Thus a small increase in energy leads to a phase 

increment given by  Δ i   ds1/vDsiE  . A rough estimate using a drift velocity 

which is constant along the edge gives  Δ i ≈ Li/vDE   with  Li   the length of 

the edge state  i  . For the phase-difference of the two interfering paths we have  

1E − 2E  ΔEF  E/Ec              (2.17) 

with  ΔEF  1EF − 2EF   the equilibrium phase difference. Formally, 

higher order terms in energy can be neglected for characteristic energies  TkB   and  

eV   much smaller than  dU/ds2/d2U/ds2  . The asymmetry of the two edges 

thus gives rise to an energy scale  Ec   ds1/vDs1 −  ds1/v Ds2−1   

which is due to the mismatch of the edge state path lengths, i.e.  Ec ≈ vD/ΔL   

with  ΔL  L1 − L2  . In principle, for a completely symmetric interferometer one 

has  Ec →   . 

Given the scattering amplitudes  s  , the spectral current density is found 

from Eqs. (2.3), (2.5) and (2.6). For e.g. terminal 4, one gets  

j4E  e/hfE − f0ETARB  TBRA

2 TATBRARB cosE/Ec  Θ ,
          (2.18) 
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where we introduce the total, energy independent phase  Θ  ΔEF  2/0  . 

Here  )(0 Ef   is the distribution functions of the grounded terminals 2, 3 and 4 and  

)()( 0 eVEfEf −=   is the distribution function of terminal 1. The current is then 

given from Eq. (2.4), as  

I4  e
h TARB  TBRA eV  TATBRARB

 4kBTcsch kBT
Ec

sin eV
2Ec

cos eV
2Ec

 Θ .

     (2.19) 

Current conservation gives  I3  e2/hV − I4  . The current consists of two 

physically distinct parts. The first term in Eq. (2.19) is the phase independent, 

incoherent part, the current in the absence of interference, while the second, phase 

dependent term is the interference contribution. We note that a bias  eV   of the 

order of the asymmetry energy  Ec   leads to the phase shifts of the oscillation. The 

strength of the interference can conveniently be quantified via the visibility as  

I 
Imax − Imin
Imax  Imin


ampI
〈I ,

                 (2.20) 

which gives for the current in the MZ-interferometer  

I,MZ 
TATBRARB

TARB  TBRA

 4kBT
eV csch kBT

Ec
sin eV

2Ec
.

         (2.21) 

The visibility is a product of a term containing the QPC scattering probabilities and a 

function depending on the energy scales  kBT,    eV   and  Ec  . The scattering 

probability term is maximum for identical QPC's,  TA  TB .   The energy scale 

dependence is shown in Fig. 2.3 where the visibility for identical point contacts is 

plotted as a function of the normalized temperature,  kBT/Ec  . We note several 

interesting features from Fig. 2.3 and Eq. (2.21). (i) The visibility shows decaying 
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oscillations as a function of voltage  ( ) eVEeV cMZI /2/sin, ∝ν   for arbitrary 

temperature. (ii) A symmetric MZ-interferometer,  Ec  kBT,    eV  , has unity 

visibility (for  TA  TB  ), i.e. shows perfect interference. (iii) The visibility decays 

monotonically with increasing temperature. For large temperatures,  kBT  Ec  , the 

visibility decays exponentially with the temperature as  I,MZ  kBT exp−kBT/Ec.    

It is interesting to compare the calculated visibility to the experimentally 

measured one in Ref. [27]. As already shown in Ref. [27], the measured scattering 

probability dependence of  I,MZ   is well reproduced by Eq. (2.21). For the energy 

scale dependence, no information about the drift velocity  vD   or the asymmetry  

ΔL   needed to determine  Ec   is provided in Ref. [27]. However, to obtain the 

order of magnitude of  Ec  , considering as a rough estimate a typical drift velocity 

[61]  vD  104   m/s at a magnetic field  TB 1∼   and an asymmetry  

ΔL  0.1  m gives an  Ec   corresponding to an applied bias  Vμ10∼   or a 

temperature   100mK  . These values are typically of the same order of magnitude 

as the ones considered in the experiment. As a first approximation, one would thus 

expect asymmetry effects to be of importance. The observed temperature dependence, 

a strong decrease of the visibility for increased temperature, is also qualitatively 

described by Eq. (2.21) with an  Ec/kB  50  mK. This is however not the case 

with the voltage dependence. Ji et al. find a differential visibility, i.e. the visibility of  

dIV/dV  , which decays strongly with applied voltage, while Eq. (2.19) predicts a 

constant, voltage independent differential visibility. There are several possible 

explanations to why the voltage dependence in contrast to the temperature 

dependence is not reproduced by the theory. Ji et al. themselves point out two voltage 

dependent dephasing mechanisms: low frequency noise of  f/1   type    due to 

moving impurities, induced by a higher current and fast fluctuations of the potential 
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landscape (and hence of the phase via the enclosed area) caused by screening of the 

additional charges injected at higher current. Screening might also, for the nonlinear 

current-voltage characteristics predicted by Eq. (2.19), lead to a voltage dependent 

renormalization of the transmission probabilities, introducing a voltage dependence in 

the differential visibility. [47, 62] We note that in the model of Ref. [5], inducing 

dephasing by coupling the MZ-interferometer to a quantum bath, gives a dephasing 

rate that increases with increasing voltage. Latter MZI experiments in Ref. [63- 65, 67] 

give no conclusive results for the theoretical predictions. Clearly, further 

investigations are needed to clarify the origin of the dephasing.  

Turning to the noise, we focus on the cross correlator between currents flowing 

in terminals 3 and 4 (the auto-correlator can be obtained analogously). This allows for 

a straightforward comparison to the result of the HBT-interferometer, for which the 

cross correlator was investigated in Ref. [33]. From Eqs. (2.8) and (2.9) and the 

expressions for the scattering amplitudes, we arrive at the noise spectral density  
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with coefficients  

c0  TARA  TBRB − 6TARATBRB ,
cΘ  2TA − RA TB − RB  TATBRARB ,

c2Θ  2TATBRARB .           (2.23) 

Performing the energy integrals in Eq. (2.8) we find for the cross correlator  

S34  − 2e2

h c0 S̄0  cΘS̄Θ cos eV
2Ec

 Θ

c2ΘS̄2Θ cos 2 eV
2Ec

 Θ
         (2.24) 
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where we introduce the functions  

S̄0  eV coth eV
2kBT − 2kBT,

                 (2.25) 

 and  
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          (2.26) 

containing the dependence on the energy scales  eV,    TkB   and  Ec  . 

Just as the current in Eq. (2.19), the noise consists of a phase independent, 

incoherent part and a phase dependent, interference part. However, in contrast to the 

current, the phase  dependent part of the noise contains two terms with different 

periods  in  Θ  , corresponding to oscillations periodic in  h/e   and   h/2e  . 

These terms result from two-particle scattering processes which enclose the AB-flux 

one and two times respectively. Similarly to the current, the phases of the oscillations 

are shifted for a bias   eV   of the order of the asymmetry energy  Ec  . 

It is important to note that in the MZ (in contrast to the HBT) interferometer, two 

particle and higher order scattering processes are just products of single particle 

scattering processes. The full distribution of current fluctuations [6] is thus a function 

of single particle scattering probabilities only. In particular, the noise spectral density  

S34E   in Eq. (2.22) is proportional to  −|s41 |2 |s31 |2  , i.e. partition noise [50] with 

phase dependent scattering probabilities. As a consequence, the phase independent, 

incoherent part of the noise can not be understood as partition noise from incoherent 

single particle processes, i.e.  〈|s41 |2inc〈|s31 |2inc ≠ 〈|s41 |2 |s31 |2inc  . This is formally 

clear since the term proportional to  cos2Θ  1  cos2Θ/2  , from two coherent 

scattering processes; it obviously contributes to the phase independent part of the 

noise. As a consequence, as shown by Marquardt and Bruder, [3, 4] a model [30] with 
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a filled stream of classical particles injected from reservoir  1   correctly reproduce 

the incoherent part of the current but fails to reproduce the incoherent part of the noise. 

In contrast, as found in Ref. [4] and further discussed below, the completely 

dephasing voltage probe model correctly reproduces the incoherent part of both the 

current and the noise. 

To quantify the strength of the oscillations we introduce two separate quantities,  

N,MZ
Θ

  and  N,MZ
2Θ

 , here simply called visibilities, which in close analogy to the 

current visibility in Eq. (2.21) are defined as the ratio of the amplitudes of the noise 

oscillations and the average noise. They become  

N,MZ
Θ 

|cΘS̄Θ |
c0 S̄0                        (2.27) 

and  

N,MZ
2Θ 

|c2ΘS̄2Θ |
c0 S̄0

.
                     (2.28) 

Similarly to the current, both visibilities are products of a term containing the 

scattering probabilities and a function of the energy scales  eV  ,  TkB   and  

Ec  . We first focus on the scattering probability dependent term by considering the 

visibility in the limit of a symmetric interferometer,  Ec  eV  ,  kBT  , where the 

energy-scale dependent terms are unity. This gives  

N,MZ
Θ 

2|TA − RA TB − RB | TATBRARB

TARA  TBRB − 6TARATBRB
 
        (2.29) 

and  

N,MZ
2Θ  2TATBRARB

TARA  TBRB − 6TARATBRB
.

             (2.30) 

The two visibilities are plotted in Fig. 2.4. Both visibilities are symmetric under the 

substitutions  TA ↔ RA   and  TB ↔ RB  . The visibility  N,MZ
Θ

  is zero for  
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TA  RA  1/2  , i.e. for a symmetric setting of any of the QPC's. The visibility 

increases for increasing QPC asymmetry, reaching a maximum for  0  TA  0.5   

and  0  TB  0.5   (unity only in the limit  TA ,TB  1  ) and then decreases 

again toward zero at  TA  0   or  TB  0  . Interestingly, the visibility  N,MZ
2Θ

  

shows an opposite behavior. It is maximum, equal to unity, at  TA  TB  1/2   and 

then decreases monotonically for increasing QPC asymmetry, reaching zero at  

TA  0   or  TB  0  . This different dependence on the scattering probabilities 

makes it possible to investigate the two oscillations independently by modulating the 

QPC transparencies. 

Turning to the energy scale behavior, we consider for simplicity  N,MZ
Θ

  in the 

limit  TA ,TB  1  and  N,MZ
2Θ

  in the limit  TA  TB  1/2   where respective 

scattering probability terms are unity. For a symmetric interferometer, i. e.  

Ec  eV,kBT  , both visibilities are unity. Considering the situation when the 

temperature is comparable to the asymmetry energy scale  Ec   but the voltage is 

small  eV  kBT,Ec  , we get the visibilities (m=1, 2) 
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The temperature dependences of the visibilities are shown in Fig. 2.5. Both 

visibilities decrease monotonically with increasing temperature. For large temperature  

kBT  Ec  , the visibilities decay exponentially as  N,MZ
Θ  kBT3−kBT/Ec   

and  N,MZ
2Θ  kBT3−2kBT/Ec   .  The visibility  N,MZ

2Θ
  is thus considerably 

more sensitivity to thermal smearing than  N,MZ
Θ

 . In the opposite limit, for a small 

temperature but a voltage comparable to  Ec  , i. e.  kBT  Ec,eV  , we instead get 

the visibilities  
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The visibilities as a function of voltage are plotted in Fig. 2.5. Both visibilities show 

an oscillating behavior, decaying as a power law   1/eV   with increasing voltage. 

The period of oscillations, in  eV  , is  2Ec   for  N,MZ
Θ

  but  Ec   for  

N,MZ
2Θ

 , half the value for  N,MZ
Θ

 . The different voltage dependence gives an 

additional possibility to investigate the two visibilities independently. 

In the experiment of Ji et al. [9] the noise was measured in the high voltage 

regime, with the interference terms in both the current and noise completely 

suppressed. The dependence of the incoherent noise on the transparencies  TA   and  

TB   was investigated ( TA   was kept at  1/2   and  TB   was varied). A good 

agreement was found with the first, incoherent term in Eq. (2.24). Taken the open 

questions on the effect of decoherence on the average current, a detailed experimental 

investigation on the phase dependent, interference part of the noise would be of great 

interest. 

 

2.3.1 Effect of dephasing 
 

Next we consider the effect of dephasing on the current and noise. As discussed 

above, dephasing is introduced by connecting one of the two arms of the 

interferometer to a fictitious, dephasing voltage probe. The interferometer with the 

probe, denoted terminal  5  , is shown in Fig. 2.6. The dephasing probe is connected 

to the edge via a contact described by a scattering matrix  

1 −  i 

i  1 − 
,

                  (2.33) 
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where the dephasing parameter     varies between  0   (no dephasing, fully 

coherent transport) and  1   (complete dephasing, fully incoherent transport). The 

presence of the dephasing probe modifies the amplitudes for scattering between t 

terminal 1, 2, 3 and 4. As an example, the scattering amplitude  s41  , given in Eq. 

(2.16) in the absence of dephasing, now becomes  

s41  i TBRA ei11

 i 1 −  TARB ei2−2.               (2.34) 

In addition, amplitudes for scattering into and out from the probe terminal 5 have 

to be considered. The current is obtained from Eqs. (2.4), (2.5) and (2.12). For the 

current in terminal 4, we find  

I4
dp  e

h TARB  TBRA eV 

 1 −  TATBRARB 4kBTcsch kBT
Ec

 sin eV
2Ec

cos eV
2Ec

 Θ .  
        (2.35) 

Comparison with the result in the absence of dephasing in Eq. (2.19) shows that the 

effect of the dephasing is to suppress the phase-dependent oscillations by multiplying 

the phase-dependent interference term with a factor  1 −   . For complete 

dephasing    1  , the phase dependent term is completely suppressed. The effect of 

dephasing can thus be simply incorporated in the visibility as  

I,MZ
dp  1 −  I,MZ,                    (2.36) 

where  I,MZ   is the visibility of the current oscillations in the absence of dephasing, 

given by Eq. (2.21). As is clear from the discussion above, to account for the 

experimental observations in Ref. [27], one would have to consider a voltage 

dependent dephasing parameter   . 

Turning to the noise, we obtain the cross correlator between currents in lead 3 

and 4 in the presence of dephasing from Eqs. (2.8) and (2.14), giving  
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S34
dp  − 2e2

h c0 S̄0  cΘS̄Θ 1 −  cos eV
2Ec

 Θ

c2ΘS̄2Θ1 − cos 2 eV
2Ec

 Θ .  
        (2.37) 

Here the terms  c0 ,    cΘ,    ΘΘ SSc   ,  , 02   and  S̄2Θ   are defined above in Eqs. 

(2.23) and (2.25). Similarly to the current, the effect of the dephasing is only to 

suppress the amplitude of the phase-dependent oscillations. That is what one would 

naively expect to be the consequence of pure dephasing. The two phase-dependent 

terms are however affected differently, the  cosΘ   term is suppressed by a factor  

1 −    while the  cos2Θ   term is suppressed by  1 −   . The  cos2Θ   

oscillations are thus more strongly suppressed. The visibilities of the two oscillations 

in the presence of dephasing can simply be written  

N,MZ
Θ,dp  1 −  N,MZ

Θ
                     (2.38) 

and  

N,MZ
2Θ,dp  1 − N,MZ

2Θ ,                     (2.39) 

where  N,MZ
Θ

  and  N,MZ
2Θ

  are the visibilities for the noise oscillations in the 

absence of dephasing, given by Eqs. (2.27) and (2.28), respectively. 

Importantly, both oscillating terms are fully suppressed for complete dephasing,  

  1  . Complete dephasing within the voltage probe model thus gives a noise 

expression that only consists of the phase independent, incoherent term in Eq. (2.22). 

We note already here that the same result is found below for the HBT-interferometer. 

Since quantum interference by definition is excluded from the model, i.e. all 

scattering phases are neglected, the completely dephasing voltage probe thus 

constitutes a classical model that correctly reproduces the incoherent part of the noise. 

As pointed out above, a more detailed discussion of the physics of the voltage probe 

and a comparison with Refs. [3], [4] and [57] is deferred to a later work [65, 66]. 
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It is interesting to note that the effect of dephasing introduced with the voltage 

probe, both for the current and the noise, is for arbitrary dephasing strength identical 

to a phase averaging. The results in Eqs. (2.38) and (2.39) can be obtained by 

averaging the fully coherent expressions in Eqs. (2.27) and (2.28) with respect to a 

Lorentzian distribution  Θ   of slow fluctuations of the phase  Θ   around the 

average value  Θ0  , as  

( ) ( )0
2/ cos)1(cos)( Θ−=ΘΘΘ∫ nnd nερ            (2.40) 

with the Lorentzian distribution  

).1(ln)2/1(,
)(

/)( 22
0

επρ −−=
+Θ−Θ

=Θ a
a

a          (2.41) 

We note that, as pointed out in Ref. [4], a Gaussian distribution of the phase 

fluctuations gives a different result, not consistent with the dephasing voltage probe 

approach for arbitrary dephasing strength. 

We emphasize that the results above are independent on to which edge the probe 

is connected. Moreover, we also point out that the effect of the voltage probes, for 

arbitrary    , is multiplicative, i.e. attaching  n   voltage probes at arbitrary places 

along the arms can be described by renormalizing  1 −  → 1 − n  . Writing  

)/(exp])1[ln(exp)1( φεε LLnn −=−=−  , with  ]1[ln/ εφ −−= dL   and  L  nd   

with  d   the distance between two probes, we can quite naturally incorporate the 

effect of a uniform distribution of probes into a dephasing length  L  . The 

suppression of the visibilities of the  h/e   and  h/2e   oscillations due to dephasing 

in Eqs. (2.38) and (2.39) are then modified as  )2/(exp)1( 2/1
φε LL−→−   and  

)/(exp)1( φε LL−→− . 
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2.4 Hanbury Brown Twiss interferometers 

 

Similar to the discussion for MZ interferometer, we first consider the fully 

coherent case, then the effects of the dephasing. The beam splitters of HBT 

interferometers are described by scattering matrices given by Eq. (2.15). In contrast to 

the MZ-interferometer, the scattering amplitudes contain the phases   i   and   i   

only via multiplicative phase factors. As an example, the amplitude to scatter from 

terminal  2   to terminal 5 is given by  

s52  TATC ei1−1.                     (2.42) 

As a consequence, the average currents which depend only on the modulus squared of 

the scattering amplitudes [see Eqs. (2.4) and (2.6)] do not contain any scattering 

phases. We get the currents at terminals 5 to 8 as  

I5  e2/hV TATC  RARD ,
I6  e2/hV TARD  RATC,
I7  e2/hV TBRC  RBTD ,
I8  e2/hV TBTD  RBRC.                (2.43) 

Turning to the current noise, the correlation between currents in terminals 5,6 and 7,8 

is given by Eq. (2.9). We find the spectral density for the correlators between 

terminals 5 and 8  

( ) [ ]
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2
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58            (2.44) 

with the coefficients  

c0,58  TARBTCRC  TBRATDRD;

c̄Θ  2 
jA,B,C,D

T jRj ,
            (2.45) 

and for the correlator between terminal 5 and 7  
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S57E  −2e2

h fE − f0E
2

 c0,57  c̄Θ cosE/Ec  Θ           (2.46) 

with the coefficient  

c0,57  TATBTCRC  RARBTDRD.            (2.47) 

Performing the energy integrals in Eq. (2.9), we obtain the correspo nding 

current cross correlators  

S58  −2e2

h c0,58 S̄0  c̄ΘS̄Θ cos eV
2Ec

 Θ
            (2.48) 

and  

S57  −2e2

h c0,57 S̄0  c̄ΘS̄Θ cos eV
2Ec

 Θ .
           (2.49) 

Here  S̄0   and  S̄Θ   are given by Eqs. (2.25) and (2.26). The other two correlators  

S67   and  S68   are given by the substitutions  S67  S58TC ↔ TD   and  

S68  S57TC ↔ TD  . Here, as for the MZ-interferometer we have  

Θ  ΔEF  2/0   with  Δ  1  2 − 3 − 4   and  

∑i1
4  i  2/0 .   

Several observations can be made from the results above, put in comparison with 

the result for the noise correlations for the MZ-interferometer in Eq. (2.24). Just as for 

the MZ-interferometer, the noise consists of an incoherent, phase independent part, 

and a coherent, interference part. The phase dependent part of the noise in Eqs. (2.48) 

and (2.49) however contains only one term. The amplitude of the oscillating term is a 

product of a scattering probability term and an energy-scale dependent function, just 

as for the MZ-interferometer. This phase dependent term has the same dependence on 

the phase  Θ  , the same voltage dependent phase shift as well as the same 

energy-scale dependence as the second term in Eq. (2.24). This is the case since they 

both arise from processes which enclose the AB-flux once. Despite the fact that in the 
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HBT interferometer the AB-effect results from two-particle processes, the periodicity 

is determined by the single electron flux quantum  h/e  . The dependence on the 

scattering probabilities is however different, a consequence of the MZ and HBT 

interferometer geometries being different. Importantly, there is no term in the noise in 

Eqs. (2.48) and (2.49) that corresponds to the last term in Eq. (2.24), describing 

processes which enclose the AB-flux twice. We note that the elementary scattering 

processes in the HBT-interferometer, in contrast to the MZ-interferometer, are 

two-particle processes. An important consequence of this is that the incoherent, phase 

independent noise term in Eqs. (2.48) and (2.49) can directly be reproduced by a 

model with filled streams of classical particles incident from reservoirs  2   and  

3  .  F 

Since there is only one phase-dependent term, the visibility of the 

phase-dependent oscillations can again be directly defined, giving for    5,6   

and    7,8    

N,HBT
Θ, 

|c̄ΘS̄Θ |
c0,S̄0

.
                     (2.50) 

Since the energy-scale dependence of the visibilities is identical to  N,MZ
Θ

  for the 

MZ-interferometer in Eq. (2.27), shown in Fig. 2.5, we focus here only on the 

scattering probability terms. We thus consider the limit of a symmetric interferometer,  

Ec  kBT,eV   for which the energy-scale dependent part is unity. Several 

symmetries exists, e.g. all visibilities  N,HBT
Θ,

  are unchanged by the substitutions  

RC ↔ TC   and  RD ↔ TD  . The visibility  N,HBT
Θ,58

  is unity for scattering 

probabilities obeying  TARBRCTC  TBRARDTD   and similar relations hold for the 

other visibilities. All visibilities go to zero for any of the transmission probabilities 
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approaching either zero or unity. Focusing on the case with  TC  TD   (or 

equivalently  TC  RD  ), the visibilities are given by  

N,HBT
Θ,58  N,HBT

Θ,67 
2 TARATBRB

TARB  TBRA               (2.51) 

and  

N,HBT
Θ,57  N,HBT

Θ,68 
2 TARATBRB

TATB  RARB
.

            (2.52) 

The two different visibilities are plotted in Fig. 2.9 as a function of  TA   for 

different  TB  . The visibility  N,HBT
Θ,58

  has a maximum equal to unity for  

TA  TB  , while  N,HBT
Θ,57

  instead has a maximum equal to unity for  TA  RB  .  

 

 

2.4.1 The effect of dephasing 
 

Just as in the MZ-interferometer, the dephasing in the HBT-interferometer is 

introduced by connecting a fictitious voltage probe to an edge between any of the two 

point contacts. The HBT-interferometer with the probe, denoted 9, is shown in Fig. 

2.10. Here the probe is connected to the edge between contacts C and A, we 

emphasize that the results discussed below do not depend on to which edge-state the 

probe is connected. 

The presence of the probe modifies the amplitudes for scattering from terminals 

2, 3 to terminals 5 to 8. As an example, the scattering amplitude in Eq. (2.42) is 

modified  

s52  1 −  TATC ei1−1.                  (2.53) 
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In addition, we also have to consider amplitudes for scattering into and out from the 

probe terminal 9. The average currents in the presence of dephasing, given from Eqs. 

(2.4)-(2.6) and (2.12), turn out to be given by the same equations as in the absence of 

dephasing, i.e. Eq. (2.43). This is what one expects, i.e. that dephasing affects only the 

phase-dependent parts of the observables. 

Turning to the current correlators, given from Eqs. (2.8), (2.9) and (2.14), we 

find for the correlators between terminals 5 and 8  

S58
dp  −2e2

h c0,58 S̄0  c̄ΘS̄Θ 1 −  cos eV
2Ec

 Θ  
       (2.54) 

and for the correlators between terminals 5 and 7  

S57
dp  −2e2

h c0,57 S̄0  c̄ΘS̄Θ 1 −  cos eV
2Ec

 Θ .  
      (2.55) 

The two remaining correlators are again given by the substitutions  

S67  S58TC ↔ TD    and  S68  S57TC ↔ TD   . We see from Eqs. (2.54) and 

(2.55) that just as for the MZ-interferometer, the only effect of dephasing is to 

suppress the phase-dependent term. The suppression factor is  1 −   , just the 

same as for the  cosΘ   term in the noise for the MZ-interferometer in Eq. (2.24). 

We can thus directly write the visibilities in the presence of dephasing as  

N,HBT
Θ,,dp  1 −  N,HBT

Θ, .                   (2.56) 

This leads to the conclusion that the voltage probe for the HBT-interferometer, just as 

for the MZ-interferometer, just has the same effect as dephasing due to slow 

fluctuations of the phase  Θ  , with the distribution of the phase fluctuations obeying 

the relation in Eq. (2.40). Moreover, the voltage probes have the same multiplicative 

property as for the MZ-interferometer, allowing one to describe the effect of a 

continuum of probes along the edges (of total length  L  L1  L2  L3  L4  ) with 

a dephasing length  L  . The suppression of the visibilities of the  h/e   
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oscillations due to dephasing are then modified as  )2/(exp)1( 2/1
φε LL−→−  , just 

as for the  h/e   oscillations of the MZ-interferometer. 

 
2.5 Summary 
 

The MZ-interferometer is an amplitude interferometer: it exhibits a visibility in 

the average current with period  h/e   and exhibits a visibility in the shot noise with 

periods of both  h/e   and  h/2e  . In contrast, the HBT interferometer is an 

intensity interferometer; it exhibits no AB-effect in the current and exhibits only an  

h/e  -effect in the shot noise correlations. Interestingly, our investigation shows that 

the shot noise visibility of the HBT interferometer as a function of temperature, 

voltage and dephasing rate, is qualitatively similar to that of the  h/e  -component of 

the shot noise of the MZ-interferometer. This is contrary to the naive expectation that 

the visibility of the two particle processes which lead to the HBT effect should be 

similar to the visibility of the two particle processes in the MZ-interferometer, that is 

the  h/2e   component of the shot noise. Instead it is the number of times the 

AB-flux is enclosed which determines the behavior of the visibility. 

In this chapter we have shown the investigation and comparison in detail the 

voltage, temperature and asymmetry dependence for the current and noise visibilities 

in the MZ and HBT-interferometers. The experimental realization of the 

HBT-interferometer is of large importance since it allows for an unambiguous 

demonstration of two-particle interference effects with electrons, to date not 

demonstrated. Moreover, a successful realization of the HBT-interferometer would 

also enable a first demonstration of orbital entanglement in electrical conductors, a 

fundamentally important result. The results presented in this work should prove useful 

for the experimental work aiming to detect the HBT effect in electrical conductors. 
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Fig. 2.1 An optical Mach-Zehnder interferometer. A beam of light incident from  1   

is split in two partial beams at the semitransparent beam splitter  A  . The two partial 

beams acquire geometrical phases  1   and  2   respectively and are rejoined at 

the second beam splitter  B . The light intensity is measured in detectors  3   and  

4.   
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Fig. 2.2 The electronic analog of the MZ-interferometer, implemented by Ji et al. 

[27] in a conductor in the Quantum Hall regime. The electronic reservoir  1   is 

biased at  eV   and reservoirs  2   to  4   are kept at ground. The edge states 

(solid lines) have a direction of transport indicated by arrows. The QPC's  A   and  

B  play the role of the beam splitters in Fig. 2.1. Geometrical phases  1   and  

2   and the AB-flux     are shown. 
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Fig. 2.3 Current visibility of the Mach-Zehnder interferometer  I,MZ   versus 

normalized temperature  kBT/Ec   for  TA  TB .   
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Fig. 2.4 Noise visibility  N,MZ
Θ

  [figure (a)] of the  h/e   and  N,MZ
2Θ

  [figure 

(b)] of the  h/2e   oscillations in the shot noise of the Mach-Zehnder interferometer 

versus transmission  TA   of beam splitter  A   for  Ec  kBT,eV   for various 

transmission probabilities  TB   of beam splitter  B . 
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Fig. 2.5 Noise visibilities  N,MZ
Θ

  (for  TA ,TB  1 ) of the  h/e   and  N,MZ
2Θ

  

of the  h/2e   oscillations in the shot noise correlation of a Mach-Zehnder 

interferometer for  TA  TB  1/2   versus  kBT/Ec   for  eV  kBT,Ec   (red, 

thick curve) and versus  eV/Ec   for  kBT  Ec,    eV   (blue, thin curve). 
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Fig. 2.6 The electrical MZ-interferometer, Fig. 2.2, with a dephasing voltage probe, 

5, attached along one edge. 
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Fig. 2.7 Two-source, four-detector optical Hanbury Brown Twiss geometry proposed 

in Ref. [33]. Two beams of light incident from  2   and  3   are split in partial 

beams at the semitransparent beam splitters  C   and  D  . The partial beams 

acquire geometrical phases  1   to  4   and are rejoined in the beam splitters  

A   and  B . The light intensity is measured in detectors  5   to  8   
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Fig. 2.8 Two-source, four-detector electrical Hanbury Brown Twiss geometry 

implemented in a conductor in the Quantum Hall regime. The electronic reservoirs  

2   and  3   biased at  eV   and reservoirs  1   and  4   to  8   are kept at 

ground. The edge states (solid lines) have a direction of transport indicated by arrows. 

The QPC's  A   and  B  play the role of the beam splitters in Fig. 2.7. Geometrical 

phases  1   to  4   and the AB-flux     are shown. 
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Fig. 2.9 Noise visibilities  N,HBT
Θ,58

  and  N,HBT
Θ,57

  of shot noise correlations in the 

HBT geometry versus transmission probability  TA   for various values of  TB  . A 

symmetric geometry,  Ec  kT,eV  , and identical QPC's C and D are considered. 
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Fig. 2.10 The electrical HBT-interferometer, Fig. 2.8, with a dephasing voltage probe,  

9  , attached along one edge. 
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Chapter 3 

Quantum pump driven fermionic Mach-Zehnder 

interferometer 

 

3.1 Introduction of quantum pump effects 

 

The quantum pump effects have been caught a lot of attentions since the first 

experiment was realized by Switkes et al. [1]. The quantum pump effects indicate the 

currents are generated in a conductor without bias but perturbed by some external 

time-dependent potentials. In Ref. [1], a grounded quantum dot patterned in two 

dimensional electron gases (2DEG) by metal gates were modulated by two AC gates, 

which were kept the same frequency but differed by a constant phase φ . Thus, the 

shape of the quantum dot was alternated adiabatically by time. The generated dc 

potential drops between two reservoirs were measured instead of detecting dc currents. 

The sinusoidal behavior of the potential drops with the phase φ  was qualitatively 

similar to the prediction of theory by Brouwer [2]. 

After that, the various investigations of theoretical aspects in quantum pumping 

were carried out, a representative collection found in Refs. [3-20]. However, contrary 

to the even magnetic filed symmetry of the measurements of Ref. [1], the results of 

theoretical studies revealed no definite magnetic field symmetry for the pumped 

currents. The possible modifications resulted from rectification effects were suggested 

by Brouwer [21]. Soon, DiCarlo et al. [22] show indeed the rectification effects could 

dominate in the adiabatic regime, while the pure pumping effects were obviously 

given in the non-adiabatic regime. 
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In this chapter, the investigations are shown the properties of the currents in a 

pump driven MZI. In contrast to the voltage driven setup, the currents are created via 

the quantum pump effects. Working in the adiabatic, low frequency regime, the 

system is kept close to equilibrium and the effects of the dephasing are minimized. 

The true quantum effects of the currents and the elementary structure of the MZI 

make it a promising candidate for a quantum pump. Previous studies of pumping in 

mesoscopic interferometers have concerned Aharonov-Bohm, [16, 23, 24] double 

slit-quantum dot [15] and two-particle [25] interferometers, however, to the best of 

our knowledge, not MZIs. 

We use a Floquet scattering approach to the quantum pump problem. [26-28] 

This allows us to calculate the currents in the MZI for arbitrary pumping strength, 

frequency and temperature. In the Floquet picture, currents arise due to photon 

assisted interference. It is found that the pumped current contains both an Aharonov 

Bohm flux dependent part  I  , due to interfering paths enclosing the flux, and a 

flux independent part  I0  . Both current parts depend linearly on the pump 

frequency in the low frequency, adiabatic regime and show oscillations as a function 

of frequency in the high frequency, non-adiabatic regime. The oscillations in the 

non-adiabatic regime occur on two different frequency scales, governed by the 

interferometer arm length difference and the mean arm length respectively. For the 

flux dependent current  I  , the oscillations have a constant amplitude while the 

amplitude of the  I0   oscillations increases linearly with frequency. The two 

current parts also display a different dependence on temperature; the flux independent 

part is insensitive to temperature while the flux dependent part is monotonically 

suppressed with increasing temperature. 

In the experiments in Refs. [1, 22] rectification effects made it difficult to 

distinguish the pumped current. Importantly, in the MZI it is found that in the regime 
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of low amplitude, adiabatic pumping, rectification effects [21] are absent for 

semitransparent beam-splitters. In order to investigate the effect of dephasing on the 

pumped current, we consider one of the interferometer arms connected to a voltage 

probe. Electrons injected into the probe scatter inelastically and hence lose phase 

coherence before being emitted out of the probe again. Two limiting regimes of the 

charge relaxation, or RC, time of the voltage probe compared to the pump period are 

considered; the long relaxation time regime, where the potential of the probe is 

constant during the measurement, and the short relaxation time regime where the 

potential of the probe adjusts instantaneously in order to keep zero time dependent 

current at the probe. In the long time regime the flux dependent current  I   as 

well as the part of the flux independent  I0   flowing in the arm connected to the 

probe are successively suppressed by increasing the dephasing, i.e. the strength of the 

coupling to the probe. In the short time regime, only  I   is suppressed by 

dephasing. 

 

 

3.2 Theory and Model 
 

3.2.1 Floquet scattering approach 
 

For completeness we first briefly review the Floquet scattering approach to 

pumping in mesoscopic conductors. [26, 27] A mesoscopic system connected to  N   

reservoirs via single channel leads is considered. The system is perturbed by some 

time-dependent parameters which all vary with the same frequency    . The current 

flowing in the system in response to the time-periodic perturbation is periodic in time. 

Expanding the current  It   at reservoir     into a Fourier series, we have  
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It ∑
l−



exp−iltI,l,

I,l  
0

T dt
T expiltIt,

                  (3.1) 

where  T  2/   is the period of the oscillations. The Fourier component  I,l   

can be written [29]  

I,l  e
h 0


dE b̂ Eb̂El − 〈â EâEl ,  

       (3.2) 

with  〈. . .    denoting a quantum statistical average. Here  El  E  l   and  

b̂E   and  âE   are annihilation operators for particles coming into and going 

out from the reservoirs respectively. The operators  b̂E   and  âE   are 

related via the Floquet scattering matrix  sF   as  

b̂E ∑
1

N

∑
n−



sF,E,En âEn ,
             (3.3) 

where the element  sF,E,En    is the amplitude for scattering of an electron from 

reservoir     at energy  En   to reservoir     and energy  E  . All the 

reservoirs are in thermal equilibrium, giving the average  

〈â En âEm   fEn nm ,                 (3.4) 

where  ( ) [ ]{ } 1/exp1 −+= αα TkEEf Bnn   is the Fermi distribution function with  T   

the temperature of reservoir     and  kB   is the Boltzmann constant. 

Substituting Eq. (3.3) into Eq. (3.2) and taking into account the unitarity of the 

Floquet scattering matrix, [27]  

∑
1

N

∑
n−



sF,
∗ E,En sF,El,En   l,0,,

           (3.5) 

we can, with Eq. (3.4), rewrite Eq. (3.2) as  
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I,l  e
h −


dE∑

1

N

∑
n−



fE − fEn 

 sF,
∗ En ,EsF,Enl,E.              (3.6) 

Note that to get the above equation we have, compared to Eq. (3.3), made the shift  

En → E  . At  l  0   the equation (3.6) defines a dc current  

I,dc  e
h −


dE∑

1

N

∑
n−



|sF,En ,E|2

 fE − fEn .               (3.7) 

 

3.2.2 Mach Zehnder interferometer 
 

We consider a pump-driven Mach-Zehnder interferometer (MZI) implemented in 

a conductor in the quantum Hall regime, as shown in Fig. 3.1. Transport takes place 

along a single edge state (filling factor one) and is unidirectional. Two electrostatic 

split gates  A   and  B , defining quantum point contacts (QPCs)  BAj ,=  , are 

subjected to time dependent potentials  Vjt, j  Vsj  Vj cost   j   with   j   

the pumping phase. The pumping potentials give rise to scattering of electrons 

between the edges as well as absorption or emission of one or several quanta of 

energy    . An Aharonov-Bohm flux     penetrates the interior of the 

interferometer. The conductor is connected to four electronic reservoirs    1   to  

4  . All four reservoirs are kept at the same potential (grounded) and temperature  

TT =α  . Thus, the Fermi distribution functions for all the reservoirs are the same,  

( ) ( )EfEf 0=α  , and in the absence of the pumping potentials there is no current 

flow. 

The scattering at the QPCs A and B, taking place both in real space and in energy 

space, can be described by the Floquet scattering matrices  
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SjEn ,Em  
rjEn ,Em  t j

′En ,Em 

t jEn ,Em  rj
′En ,Em 

,

          (3.8) 

with primed amplitudes for particles incident on the QPCs from left in Fig. 3.1. The 

QPCs thus act as inelastic beam splitters. We consider the scattering amplitudes to be 

independent on energy on the scale of the pump frequency. Consequently,  

SjEn ,Em  ≡ Sj,n−m E   can be expressed in terms of the Fourier coefficients for the 

corresponding frozen scattering matrix [30]  SjE, t   as  

Sj,n−m E  
0

T dt
T ein−m tSjE, t.

                (3.9) 

Moreover, it is assumed that the scale of the energy dependence of the QPC scattering 

amplitudes is much larger than the thermal energy  TkB  , allowing us to neglect the 

energy dependence of the Floquet scattering matrix of the QPCs all together,  

Sj,n−m E  Sj,n−m  . 

Propagating ballistically along the edges between the QPCs the electrons pick up 

a phase containing both a geometrical part  km Li   and a part   i   due to the 

Aharonov-Bohm flux, with  RLi ,=  . Here  L  R  2/0   where  

0  h/e   is the flux quantum. It is assumed that the wavenumber  km  kEm    

can be taken linear in energy, [31, 32]  

km Li  i 
Li
vD

E  m,
               (3.10) 

where  i   is the accumulated phase at the Fermi energy and  vD   the drift 

velocity of the edge states. The lengths of the interferometer arms are  LL   and  

LR   respectively, where we without loss of generality take  LL ≥ LR  . The total 

Floquet scattering amplitude can thus be expressed in terms of the scattering 

amplitudes of the QPCs and the phases acquired along the interferometer arms. For 

scattering from energy  E   at reservoir  1   to energy  En   at reservoir  3   the 

amplitude is   
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( ) [ ]mA
iLik

mnBmA
iLik

mnB
m

nF tetrerEEs LLmRRm
,,,,31, , ψψ +′

−
−

−

∞

−∞=

+= ∑             (3.11) 

and similarly for the other amplitudes. Inserting these scattering amplitudes into Eq. 

(3.7) we arrive at the expression for the dc current. 

To perform an analysis of the entire parameter space, in the plots we model for 

simplicity the QPC potentials with oscillating delta function potentials  

Vjt, j  xVsj  2Vj cost   j.             (3.12) 

We note that this choice leads to completely symmetric scattering matrices,  

t j,n  t j,n
′

  and  rj,n  rj,n
′

 . It is pointed out explicitly in the text below where this 

additional symmetry qualitatively affects the result. The frozen scattering amplitudes 

of the QPCs are given by  

t jt, j  1
1  ime/2kVsj  2Vj cost   j

,
         (3.13) 

and  rjt, j  t jt, j − 1  , with  me   the effective electron mass and  k   the 

wavenumber at the Fermi energy. Note that Eq. (3.13) is valid as the passing time of 

electrons at the QPCs are much smaller than the pump period. This gives from Eq. 

(3.9) the Fourier coefficients  

t j,n  e−in j

1  iaj 
2
 bj

2

 i
bj

1  iaj − 1  iaj2  bj
2

|n |

,

rj,n  t j,n − n,0 ,              (3.14) 

with  aj  Vsjme/2k   and  bj  2Vjme/2k . 
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3.3 Pumped current 
 

In the Floquet scattering picture, the pumping current arises due to interference 

between different paths of the electrons in energy space, i.e. photon-assisted 

interference. [33] Due to the absence of closed orbits in the MZI, there are only two 

different types of interfering paths; the two paths either go along the same 

interferometer arm, L or R, or along different arms. The latter paths enclose the flux  

   in and give rise to an Aharonov-Bohm effect in the pumped current. In Fig. 3.2 

different interfering paths contributing to the current are shown. We note that an 

Aharonov-Bohm effect in the pumped current was also predicted for other 

interferometers. [15, 16, 23, 24] 

It is thus natural to part the total current into a flux dependent and a flux 

independent part. Focusing on the current at reservoir  3  , we write  

I3,dc  I3
0  I3

.                      (3.15) 

Inserting the scattering amplitudes in Eq. (3.11) into the current expression Eq. (3.7) 

and carrying out the energy integrals we arrive at the flux independent part  

I3
0  e

2 ∑
n−



∑
m−



∑
p−



n

 rA,m rA,p
∗  tA,m

′ tA,p
′∗ tB,n−m

′ tB,n−p
′∗

 exp im − p   
2Ec

 rA,m
′ rA,p

′∗  tA,m tA,p
∗ rB,n−m rB,n−p

∗

 exp im − p  − 
2Ec              (3.16) 

and the flux dependent part  



 71

I3
  2eEc

h gT∑
n−



∑
m−



∑
p−



sin n
2Ec

 2 rB,n−m tB,n−p
′∗ rA,m tA,p

∗  tA,m
′ rA,p

′∗

 exp i LR   m − p  n − p − m 
2Ec

,

       (3.17) 

where  

gT  kBT
Ec

kBT
Ec

,
                 (3.18) 

the phase  LR  L − R − 2/0   and     denoting the real part. 

In order to explicitly display the relevant energy and time scales we have 

introduced the asymmetry energy  Ec  vD/LL − LR    and the average time  

  LL  LR/2vD   for ballistic propagation between the QPCs. By definition  

  /2Ec  . There are thus three different, possible pumping regimes depending on 

the relation between the pump frequency     and the frequency scales  Ec/   and  

1/  : (i) For    1/   the pumping is adiabatic, the total scattering amplitudes of 

the MZI are independent on energy on the scale of the pumping frequency    . For 

non-adiabatic pumping there are in addition two regimes. (ii) In the intermediate 

frequency regime  1/    Ec/   the pumped current is independent on the 

interferometer asymmetry but depends on the total time    . (iii) For  Ec/    , 

in the high frequency regime, the pumped current depends both on the asymmetry and 

the total time. 

Several important observations can be made directly from the formal expressions 

in Eqs. (3.16) and (3.17). First, the flux independent current  I3
0

  is an incoherent 

sum of the currents pumped through the left and right arms. The two currents are 

denoted  I3L
0

  [upper term in Eq. (3.16)] and  I3R
0

  (lower term) respectively. 

Each current term,  I3L
0

  or  I3R
0

 , depends explicitly on the time for ballistic 
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propagation through the corresponding left or right arm,    /2Ec  LL/vD   and  

 − /2Ec  LR/vD  . For the flux dependent current, no such partitioning into left 

and right arm currents is possible. 

Second, while the flux independent current  I3
0

  is independent on the 

temperature, the flux dependent current  I3


  is monotonically suppressed with 

increasing temperature. Despite the fact that both terms are of interference nature, 

they thus depend on temperature in very different ways. The energy scale of the decay 

of  I3


  is set by the asymmetry energy  Ec  : the factor  gT   is equal to unity 

for  kBT  Ec   and decays as  exp−kBT/Ec   for  kBT  Ec  . This is 

qualitatively similar to the voltage biased MZI [31] and can be understood as an effect 

of energy averaging. Notably, the temperature dependence of the current is affected 

neither by the pumping frequency     nor by the average time    . 

Third, the qualitative behavior of the currents as a function of frequency can also 

be understood from Eqs. (3.16) and (3.17). It is clear that both currents  I3
0

  and  

I3


  show oscillations in the non-adiabatic regime as a function of    , on the 

scales  Ec/   and  1/  . In the intermediate frequency regime (ii), for  

1/    Ec/  , the pumped current is however insensitive to the asymmetry and 

shows oscillations with the basic period     only. In regime (iii), for  Ec/    , 

the pumped current shows oscillations as a function of frequency on both the scales  

1/   and  Ec/  . For a small asymmetry,  Ec  /  , the oscillations show a 

beating pattern with rapid oscillations on the scale  1/   periodically modulated in 

amplitude on the scale  Ec/  . This is illustrated in the plots in Fig. 3.3. We point out 

that for the flux independent current  I3
0

  the beating pattern can simply be 
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understood as the effect of adding the two currents terms  I3L
0

  and  I3R
0

  with the 

two different time periods    /2Ec  . 

Importantly, the amplitudes of the oscillations of  I3
0

  and  I3


  show a 

different frequency dependence. As is clear from Eq. (3.16), in the high frequency 

regime,  Ec/    , the flux independent current is proportional to     while the 

flux dependent current has no frequency dependent prefactor. Plotting the currents 

divided by the elementary pumped current  I0  e/2  , the oscillations of the 

normalized current  I3
0/I0   have a constant amplitude as a function of frequency 

while the amplitude of  I3
/I0   decreases as  1/  . This is illustrated in Fig. 3.3. 

In the adiabatic regime,    1/  , both currents  I3
0

  and  I3


  in 

general show a linear dependence in    . We however note that the our choice of a 

spatially symmetric model potential for the QPCs leads to a flux independent part of 

the current proportional to  2  . This quadratic frequency dependence is not clearly 

visible in the plot in Fig. 3.3. This sensitivity of  I3
0

  to spatial symmetry is further 

discussed below. 

 

 

3.3.1 Weak amplitude pumping 
 

Several of the properties of the pumped current become more transparent in the 

limit of weak pumping, [26] where only one quantum of energy     can be 

absorbed or emitted when scattering through the MZI. This allows us to write the two 

current parts on the form  
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I3
0  −2e

 ℑtB
′ tB

∗′ tAtA
∗  rA

′ rA
′∗

 sin A − B −    
2Ec

 rBrB
∗ rArA

∗  tA
′ tA

′∗

 sin A − B −   − 
2Ec             (3.19) 

with  ℑ   the imaginary part and  

I3
  8eEc

h gTsin 
2Ec

ℑeiLR

 rBtB
′∗  rBtB

′∗rAtA
∗  tA

′ rA
′∗

 sinA − B − 

rBtB
′∗rAtA

∗  tA
′ rA

′∗ sin 
2Ec

.
            (3.20) 

Here we introduced the notation  jjjjjj ttrrrr === ′′
0,0,0, ,,   and  t j,0

′  t j
′
  for the 

amplitudes to scatter elastically, without absorbing or emitting any energy quantum, 

and  rj,1  rje∓i j, rj,1
′  rj

′∓i j, t j,1  t je∓i j   and  t j,1
′  t j

′∓i j

  for the 

amplitudes to emit (-) or absorb (+) a single energy quantum. 

Importantly, the terms in the current expressions directly correspond to the first 

order scattering processes shown in Fig. 3.2. For  I3
0

 , the upper term in Eq. (3.19),  

I3L
0

 , arises due to interference between electrons that propagate along the left arm 

and pick up or lose a quantum     at either  A   or  B . These processes are 

shown at the top of panel (a) in Fig. 3.2. The lower term in Eq. (3.19),  I3R
0

 , arises 

from the corresponding processes for electrons propagating in the right interferometer 

arm. 

For the flux dependent current  I3


 , the interfering paths go along different 

interferometer arms  L   and  R  . The upper term in Eq. (3.20) arises from 

processes where electrons pick up or lose one quantum     at different QPCs  A   

and  B . These processes are depicted to the right in panel (b). The lower term in Eq. 
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(3.20) arises from processes where both electrons pick up or lose one quantum     

at the same QPC,  A   or  B  , depicted to the left in panel (b). Importantly, 

electrons which scatter inelastically at the same QPC pick up the same information on 

the pumping phase. Consequently, the corresponding interference term is independent 

on the pumping phase, as seen in the lower term in Eq. (3.20). 

The weak amplitude expressions for the current also clearly demonstrate the 

origin of the sign change of the current as a function of frequency, as shown in Fig. 

3.3. In the low frequency, adiabatic limit the weak amplitude pumped current is 

always [2] proportional to  sinA − B  , i.e. the sign of the current is determined 

by the pumping phase difference. In Eqs. (3.19) and (3.20) the frequency formally 

enters the current expressions as an additional pumping phase, thus leading to an 

oscillating sign of the current as a function of frequency. 

 

 

3.3.2 Adiabatic, weak pumping 
 

It is of particular importance to consider the weakly pumped currents in the 

adiabatic limit, where the effects of inelastic dephasing are minimized. In the 

adiabatic limit the current reduces to, using the unitarity relations in Eq. (3.5)  

I3,ad
0  ie

 sinA − BrBrB
∗  rB

∗rB 

 tAtA
∗ − tA

′ tA
′∗ − rArA

∗  rA
′ rA

′∗              (3.21) 

and  

I3,ad
  2e

 sinA − BgTℑeiLR

 rBtB
′∗  rBtB

′∗rAtA
∗  tA

′ rA
′∗.             (3.22) 

Note that the second line in Eq. (3.21) is purely imaginary. From the expression of the 

flux independent current  I3,ad
0

  we see explicitly the dependence on spatial 
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symmetry of QPC  A  . For a completely symmetric scattering potential, i.e. primed 

scattering amplitudes equal to unprimed, the adiabatic phase independent current is 

zero and the low frequency current is   2  . We point out that the absence of a 

noticeable magnetic flux through the point contact area, i.e.  tA  tA
′  , is not enough 

to suppress the adiabatic current. We also note that only the spatial symmetry of QPC  

A   is relevant, a consequence of the chiral transport. That is, reversing the sign of the 

quantum Hall magnetic field, the pumped currents, now at reservoirs  1   and  2  , 

would be sensitive to the symmetry of QPC  B  only. 

From the dependence of  I3,ad


  on  LR  , as well as the fact that  LR   

depends both on the Aharanov-Bohm flux as well as phases picked up propagating 

along the edges [see definition below Eq. (3.18)], we can conclude that the flux 

dependent part has no definite magnetic field symmetry. We also note that in the 

adiabatic expression for the flux dependent current, the lower term in Eq. (3.20), 

independent on the pumping phases, does not contribute. 

 

 

3.3.3 Rectification effects 
 

For mesoscopic conductors, an unavoidable feature is stray capacitances between 

the various circuit elements, i.e. the electronic reservoirs, the electrostatic gates and 

the mesoscopic sample itself. A capacitive coupling between the pumped QPC gates 

and the electronic reservoirs induces an ac potential at the reservoirs (for nonzero 

impedance of the current measurement circuit). This gives rise to a rectification 

current which can obscure the pumped current. [1, 14, 21, 22, 27] In the MZI, for 

weak, adiabatic pumping, the rectified dc-current is in the most general situation 

given by [21]  
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I3,rect  cA1
∂G31
∂VA

 cB1
∂G31
∂VB

 cA2
∂G32
∂VA

 cB2
∂G32
∂VB

,
               (3.23) 

where the constants  cj   depend on the capacitive couplings , the impedance of the 

measurement circuit, the pumping phases and the pumping amplitudes and  

G  dI/dV   is the conductance. From the theory for the conductance of the MZI 

in Ref. [31] we have  

∂G31
∂VA

 ∂TA
∂VA

∂G31
∂TA

 ∂TA
∂VA

2e2

h

 TB − RB  H RBTBRA − TA
2 RATARBTB            (3.24) 

and similarly for the other conductance derivatives. Here  22 ||||1 ′==−= AAAA ttRT   

is the transmission probability of the static QPC  A   and similarly for QPC  B  

and  H  HkBT,Ec,   a function dependent on the different energy scales  TkB   

and  Ec   and the enclosed flux    . The rectification current and the pumped 

current thus depend differently on the scattering parameters, the magnetic flux and the 

energy scales, allowing one to distinguish experimentally between the two currents. In 

particular, from Eq. (3.24) it is clear that working with semitransparent beam splitters  

TA  RA  1/2   and  TB  RB  1/2   the rectification currents are zero. This 

holds independently on the values of the individual couplings  cj  . 

We also emphasize that induced ac-potentials at the reservoirs do not simply lead 

to a rectification current which is incoherently added to the pumped current; there is 

in general also a current due to interference between processes responsible for the 

pumped current and the rectification current. [27] However, the induced ac-potential 

is proportional to [21]  dVA/dt,dVB/dt     and in the weak amplitude, adiabatic 

limit the interference current is consequently   2  . 
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A related issue is the effect of the temporary charging of the MZI itself due to the 

pumping. In the calculations and discussions of the pumped current above we have 

neglected this effect, i.e we have considered noninteracting electrons. An interacting 

theory should also take into account screening at the edges and the effect of capacitive 

couplings of the edges to e.g. each other and to the electrostatic gates. This would 

require a self-consistent determination of the time dependent edge state potentials. [34, 

35] Such an interacting theory however goes beyond the scope of this work. 

 

 

3.4 Daphasing 

 

An important problem in the study of interference phenomena in mesoscopic 

conductors is decoherence. Phase information of the electrons propagating in the MZI 

is lost. Various approaches to dephasing in the voltage biased MZI were discussed in 

last chapter. Here we introduce dephasing in the MZI by coupling one of the arms of 

the interferometer to a voltage probe as shown in Fig. 3.4. A voltage probe is an 

additional electronic reservoir with the potential left floating. Electrons entering the 

voltage probe are incoherently fed back into the interferometer arm, thereby 

suppressing phase coherence. Voltage probes as means to introduce incoherent, 

inelastic scattering was proposed by Büttiker. [36, 37] The concept has thereafter been 

extended and applied to a large number of mesoscopic conductors, both theoretically 

and experimentally. A recent account of this development was given in Ref. [38]. 

For our purposes, in quantum Hall systems the theory of current and noise in the 

presence of voltage probes was developed in Ref. [39] and applied to a voltage biased 

MZI in Refs. [31, 40, 41]. We point out that the very recent experiments by 

Oberholzer et al,[42] investigating the current cross correlations in a quantum Hall 
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geometry coupled to a voltage probe, were in excellent agreement with the theory of 

Ref. [39]. Moreover, dephasing of the pumped current via voltage probes was 

considered in Refs. [43-45]. 

The elastic scattering matrix of the contact to the probe is given by  

1 −  i 

i  1 − 
.

                   (3.25) 

Here     governs the strength of the dephasing. For    1   the dephasing is 

complete, i.e. the probe is fully coupled to the MZI and all electrons propagating 

along the interferometer arm enter the probe. For    0   the transport is fully 

coherent, the probe is decoupled from the MZI. 

An important property of the voltage probe is the charge relaxation time of the 

voltage probe, [46, 47] i.e. the time scale on which the probe is charged or discharged. 

The charge relaxation time determines the dynamics of the potential  Vt   of the 

probe and consequently the response to the injected, time dependent charge. The 

charge relaxation time is given by the RC-time  RC  RC  , with  R   the charge 

relaxation resistance and  C   the capacitance (see Fig. 3.4). Büttiker and one of the 

authors [43] considered adiabatic pumping in a conductor connected to a voltage 

probe, assuming instantaneous charge conservation at the probe, i.e. a relaxation time 

much shorter than the pump period. Cremers and Brouwer [44] investigated the 

pumped current in a chaotic quantum dot in the same short relaxation time limit. 

Considering the experimental setup of Ref. [1], Polianski and Brouwer [48] 

investigated the adiabatic dynamics of the floating potential of reservoirs. They 

considered the two limiting cases of long and short relaxation time compared to the 

pump period. Here we will consider the same limiting cases of short and long 

relaxation time for the voltage probe, without the restriction to adiabatic pumping. 
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3.4.1 Long charge relaxation time  RC  T   
 

First, the case with long relaxation time is considered, where the potential of the 

probe does not react on the injected charge on the time scale of the pumping period,  

RC  T  . In this situation the potential of the probe is constant during the 

measurement. Since the particles entering the probe have scattered at the adiabatically 

pumped QPC A only, there is no dc-current flow into the probe and the potential of 

the probe  V   stays at the same potential as the four reservoirs of the MZI. We 

thus have an extended pumping problem with five instead of four equipotential 

reservoirs, which can be treated along the same lines as above. 

First, the coupling of the MZI to the probe leads to a modification of the 

scattering amplitudes in Eq. (3.11), as  sF, → s̃F,  , with e.g.  

( ) [
]mA

iLik
mnB

mA
iLik

mnB
m

nF

tet

rerEEs

LLm

RRm

,,

,,31,

1

,~

ψ

ψ

ε +′
−

−
−

∞

−∞=

−+

= ∑
           (3.26) 

and similar for the other amplitudes to scatter from reservoirs  1   and  2   to  3   

and  4  . Moreover, there are now the amplitudes to scatter to and from the probe, as 

e.g. from     to  3    

( ) ,,~ 220
,3,

LL iLik
nBnF etiEEs ψ

ϕ ε +′=                   (3.27) 

where  LL2   is the length along the left edge between the probe and QPC B (see Fig. 

3.4). Inserting the scattering amplitudes  s̃F,   into the formula for the dc-current, 

Eq. (3.7), we arrive at the result that the coherent current is modified as  

I3L
0 → 1 − I3L

0,

I3
 → 1 −  I3

.                      (3.28) 

The flux independent current in the arm to which the probe is coupled,  I3L
0

 , is 

successively suppressed for increasing coupling     to the probe. For perfect 
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coupling,    1  , the current  I3L
0

  is zero. The pumped current flowing through 

the arm not connected to the probe is however unaffected by the coupling to the probe. 

In contrast, the entire flux independent current  I3


  is suppressed for increasing 

coupling to the probe, down to zero for perfect coupling. 

 

3.4.2 Short charge relaxation time  RC  T   
 

In the limit of a response time much shorter than the pumping period,  

RC  T  , the potential of the probe  Vt   adjusts instantaneously, in order to 

keep the time dependent current at the probe zero,  It  0  . This corresponds to 

that all frequency components of the current [see Eq. (3.1)] are zero,  

I,l  0.                          (3.29) 

Since the electrons entering the voltage probe are rapidly thermalized, the electrons in 

the probe can be considered in the same way as electrons in a reservoir with 

oscillating potential, i.e. in dynamical equilibrium. The oscillating potential gives rise 

to a nonequilibrium distribution of the electrons leaving the probe. Formally, 

assuming a uniform potential of the probe, we follow the scattering approach in Ref. 

[35] and introduce annihilation operators for the electrons emitted from the probe as  

â′ E  ∑
n−



L−n âEn .
                   (3.30) 

Here the operators  âE   describe equilibrium electrons:  

〈â En âEm   f0En n,m .   The amplitudes  Ln   are defined as  

Ln  
0

T dt
T expintexp −i dteVt/ .

           (3.31) 

The annihilation operators for particles injected into the probe can then be written as  
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           (3.32) 

Importantly, the amplitudes  Ln   in Eq. (3.30) effectively describe forward, 

inelastic scattering from the probe out into the MZI. We can consequently combine 

the amplitudes  Ln   for excitation of the electrons in the probe and the amplitudes  

s̃F,   for scattering in the MZI with zero probe potential into a new, unitary Floquet 

scattering matrix  s̄F,  . This gives  s̄F,E,En  s̃F,E,En   for   ≠    

and  s̄F,E,En  1 − L−n   and similarly for  s̄F,3   and  s̄F,4  . It is then 

possible to proceed as above and insert the scattering amplitudes  s̄F,   into the 

formula for the fourier components of the current, Eq. (3.1). This gives  

I,l  e
h 0


dE ∑

m−



f0Em  − f0E

∑


s̄F,
∗ E,Em s̄F,El,Em ,

            (3.33) 

where     runs over  1,2   and    . The requirement of instantaneous current 

conservation, Eq. (3.29), then directly gives  

∑


s̄F,
∗ E,Em s̄F,El,Em   0,

              (3.34) 

which in terms of the amplitudes  Ln   can be written  

Lm
∗ Lml  1

 ∑
1,2

s̄F,
∗ E,E−m s̄F,El,E−m .

         (3.35) 

We will then use Eq. (3.35) to calculate the dc-current at reservoir  3  . The 

dc-current is given by Eq. (3.7), now with the scattering amplitudes  s̄F,3  . Via the 

amplitude  s̄F,3   the current depends on the product  Lm
∗ Lml  . Inserting the 
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expression for  Lm
∗ Lml   from Eq. (3.35) we arrive at the result for the flux 

dependent part of the current  

I3
 → 1 −  I3

,                      (3.36) 

while in contrast to the long relaxation time result in Eq. (3.28), the current part  I3
0

  

is unaffected by the dephasing. 

Importantly, the different dephasing behaviors in the two regimes of probe 

relaxation time are clearly manifested in the pumped current. In the long time regime 

the suppression of the current in the left arm  I3L
0

  leads to that the measured 

current only depends on the time for ballistic propagation in the right arm, see Eq. 

(3.16). As a consequence, the beating pattern in the frequency dependence of the 

pumped current (see Fig. 3.3) is suppressed on increasing dephasing. In the short time 

regime there is no such suppression. 

 

 

3.5 Summary 

 
We have investigated the pumped currents in a MZI implemented in a conductor 

in the quantum Hall regime. The motivation for our investigation was twofold. First, a 

MZI is the most elementary interferometer, due to the absence of closed electronic 

orbits. In our proposal the pumped current in the MZI is moreover operated solely by 

modulating the potential at the two QPCs. This makes pumping in the MZI both 

fundamentally important and experimentally achievable. Second, recent experiments 

[49-51, 67] on transport in a voltage biased MZI has demonstrated the relevance of 

dephasing and raised a number of questions on the coherence properties of MZIs. 
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Working in the adiabatic pumping regime makes it possible to investigate these 

coherence properties close to equilibrium, keeping dephasing at a minimum. 

The dependence of the current on pumping frequency, pumping strength, 

temperature and lengths of the arms of the MZI were investigated. The two parts of 

the current, the flux dependent and the flux independent ones, were demonstrated to 

depend in a qualitatively different way on frequency and temperature. The two current 

parts also showed a different sensitivity to dephasing, introduced by coupling a 

voltage probe to one of the interferometer arms. The flux dependent current was 

successively suppressed for increasing coupling, while only the part of the flux 

independent current flowing in the arm connected to the probe was sensitive to 

dephasing in the limit of long charge relaxation time of the probe. We also 

demonstrated that rectification effects, preventing an unambiguous demonstration of 

quantum pumping of current, are absent in the MZI when working with 

semitransparent beam splitters in the adiabatic, weak pumping regime. 

In a broader perspective, a better understanding and control of coherence 

properties of edge state transport is important for a successful realization of 

two-particle Hanbury Brown Twiss interferometers,[52] entanglement production [52, 

53] and quantum state transfer [54] in quantum Hall systems. In the context of 

entanglement, an unambiguous demonstration of quantum pumping in the MZI also 

opens up for schemes for entanglement generation based on quantum pump effects. 

[25, 55-58]   
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3.6 Appendix A: Oscillating Barriers 

 

In this appendix, we determine the Floquet scattering matrix of a system varying 

periodically with time [59]. In such system, the time-dependent Schrödinger equation 

for an electron wave function ( ),x tΨ  reads 

 ( ) ( ) ( ),
, , ,

x t
i H x t x t

t
∂Ψ

= Ψ
∂

h  

 ( ) ( )
2 2

2, , .
2

H x t V x t
m x

∂
= − +

∂
h                 (A.1) 

( , ) ( , )V x t V x t= + T  is the potential form with time period T . Since the 
Hamiltonian ( , )H x t  depends on time, the system has no stationary eigenstates. 
However, the Floquet theorem tells us that because the Hamiltonian is periodic in 
time the eigenstates of Eq. (A.1) can be represented as a superposition of wave 
functions with energies shifted by n ωh : 

 ( ) ( )/, .iEt in t
E n

n
x t e x e ωψ

∞
− −

=−∞

Ψ = ∑h                  (A.2) 

As electrons propagate along an open system, the system may be constituted of 
several different scattering areas. Each scattering area is described by the local 

Schrödinger equation. Away from the oscillating potentials, the functions ( )n xψ  are 

a superposition of plane waves 

 ( ) ,n nik x ik x
n n nx a e b eψ −= +                     (A.3) 

where the electron momentum 

 ( )2

2 .n
mk E n ω= + h
h

                     (A.4) 

The connections between electron wave functions of different areas are required 

to fulfill two boundary conditions: (i) the conservation of the currents (ii) the 

continuity of the wave functions. For simplicity, bellow the delta potential forms 

are used for discussion.    

First, we discuss the condition of the system with only one oscillating barrier 



 86

[60]: 

 ( ) ( ) ( )0, 2 cos .sV x t x V V tδ ω φ= + +⎡ ⎤⎣ ⎦              (A.5) 

In this case, the functions ( )n xψ  are 

 
( )
( )

,00 ,

0 .

n n

n

ik x ik x
n n n

ik x
n n

x e r e

x t e

ψ δ

ψ

−< = +

< =
                (A.6) 

Here the coefficients nr  and nt  for propagating modes (for which 0nE > ) are the 
amplitudes of reflection from and the transmission through the system absorbing 

( 0n > ) or emitting ( 0n < ) an energy n ωh , respectively. From the boundary 

conditions, we get  

 ( ) ( )0 , 0 , ,E Ex t x t− +Ψ = = Ψ =  

 ( ) ( ) ( ) ( )
0 0

, ,
0, ,E E

E
x x

x t x t
V t x t

x x− += =

∂Ψ ∂Ψ
− = Ψ =

∂ ∂
     (A.7) 

where ( ) ( )2 0
2 2 cos .s

mV t V V tω φ= + +⎡ ⎤⎣ ⎦h
 Inserting Eqs. (A.2) and (A.6) into (A.7), 

we get  

 0 ,n n nr tδ + =  

 ( ) ( )0 0 1 0 12

2 .i i
n n n n s n n n

mik r t V t V t e V t eφ φδ −
+ −− − = + +

h
       (A.8) 

After simple matrix manipulations for Eq. (A.8), the coefficients nr  and nt are found. 

The transmission probabilities are expressed as ( ) ( )2 2
0,LL n n nS E E k k r=  and 

( ) ( )2 2
0,RL n n nS E E k k t= , where the indices L and R correspond to the left and right 

reservoirs, respectively. To obtain the matrix elements RRS  and LRS  we need to 
solve the same problem with plane wave coming from the right. 
    Next, we consider the system with two oscillating barriers [26]: 

 ( ) ( ) ( ) ( ) ( )1 2, ,2 2
L LV x t x V t x V tδ δ= + + −              (A.9) 

with ( ) ( )2 , 0,
2 2 cos ,  1,  2.j s j j j

mV t V V t jω φ⎡ ⎤= + + =⎣ ⎦h
 The functions ( )n xψ  are  

 ( ) ,0 ,2
n nik x ik x

n n n
Lx e r eψ δ −< − = +  
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 ( ) ,2 2
n nik x ik x

n n n
L Lx A e B eψ −− < < = +  

 ( ) .2
nik x

n n
L x t eψ < =                         (A.10) 

The boundary conditions give 

 ( ) ( )0 , 0 , ,2 2E E
L Lx t x t− +Ψ = − + = Ψ = − +  

 ( ) ( )0 , 0 , ,2 2E E
L Lx t x t− +Ψ = + = Ψ = +  

 ( ) ( ) ( ) ( )1
0 02 2

, ,
, ,2

E E
E

L Lx x

x t x t LV t x t
x x− +=− + =− +

∂Ψ ∂Ψ
− = Ψ = −

∂ ∂
      

 ( ) ( ) ( ) ( )2
0 02 2

, ,
, ,2

E E
E

L Lx x

x t x t LV t x t
x x− += + = +

∂Ψ ∂Ψ
− = Ψ =

∂ ∂
 (A.11) 

where ( ) ( )2 , 0,
2 2 cos .j s j j j

mV t V V tω φ⎡ ⎤= + +⎣ ⎦h
 Inserting Eqs. (A.2) and (A.10) into 

(A.11), we get  

 2 2 2 2
0 ,n n n nik L ik L ik L ik L

n n n ne r e A e B eδ − −+ = +  

 2 2 2 ,n n nik L ik L ik L
n n nA e B e t e−+ =  

 
( ) ( ) ( )

( ) ( )1 1 1 11 1

2 2 2 2
0 1 02

2 2 2 2
01 1,0 1 01 1,0 1

2

,

n n n n

n n n n

ik L ik L ik L ik L
n n n n n n s n n

ik L ik L ik L ik Li i
n n n n

mik e A ik e r B V e r e

V e e r e V e e r eφ φ

δ δ

δ δ+ + − −

− −

− −−
+ + − −

⎡− − − = +⎣

⎤+ + + + ⎦

h  

 

( ) ( )1 122 2 2 2 2 2
2 02 1 12

2 .n n n n n nik L ik L ik L ik L ik L ik Li
n n n n s n n n

mik A e B e t e V t e V e t e t eφ + −−
+ −

⎤⎡− − = + +⎣ ⎦h

                                                               (A.12) 

After the a lengthy matrix manipulations, Eq. (A.12) gives the coefficients ,  ,  n n nt r A  
and .nB  The transmission probabilities are given by following the similar way as one 
barrier problem. For the systems with more barriers than two, the transmission and the 
reflection could be found by following the similar derivation shown above. In the next 
chapter, we will use this Floquet matrix method for a gate array system, where 
multiple time-dependent potentials are considered to pump currents and the 
instantaneous Bragg reflection are found to be the mechanism of transport.  
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3.7 Appendix B: Time Representation of Pumped Currents 

 

Here we will show the equivalent expression of the pumped currents within the 

time representation. For specificity, the potentials of two beam splitters are assumed 

with spatial symmetry.  

Following the similar line in the main body of chapter 3, the scattering 

amplitudes from lead 1 to lead 3 by substituting Eqs. (3.9) and Eq. (3.10) into Eq. 

(3.11) are given 

sF,31En ,E  s31,nE  
0

T dt
T eints31E, t

           (B.1) 

with  

s31,nE  
0

T dt
T

dt ′
T eint ∑

m−



e−imt−t′−j

∑
jL,R

R31,jE, t, t ′ei31,jE,t,t′iPjE

          (B.2) 

and  

s31E, t  ∑
jL,R

R31,jE, t, t − jei31,jE,t,t− jiPjE,  

       (B.3) 

where  

R31,LE, t, t ′ei31,LE,t,t′  t2E, tt1E, t ′,

R31,RE, t, t ′ei31,RE,t,t′  r2E, tr1E, t ′,

PLE  L  ELL/vD − L,

PRE  R  ELR/vD  R .
          (B.4) 
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Eq. (B.3) is reduced from Eq. (B.2) by taking the summation over index  m  , which 

gives the Dirac delta-function. Therefore, the scattering matrix elements ,Fs αβ  are 

given 

sF,En ,E  s,nE  
0

T dt
T eintsE, t

            (B.5) 

with 

sE, t  ∑
jL,R

R,jE, t, t − jei,jE,t,t−jiPjE,  

         (B.6) 

where  R,j    and  ,j   are the norm and the phase of an amplitude 

corresponding to scattering from lead     to lead     through the arm  j  , 

respectively. The presence of a delay time  j   in Eq. (B.6) defines the different 

regimes of pumping, adiabatic at  L ,R  T   and non-adiabatic at  

L or R  T  . 

The Fourier coefficients  I,l   of the time-dependent current are calculated for 

the availability of the time-dependent currents. Using Eqs. (3.6), (B.5) and (B.6), we 

get  

I,l  e
h 0

T dt
T

dt ′
T −


dE∑

1,2
∑
n−



eilte−int′−t

 s
in,
∗ E, t ′sin,E, tf0E − f0En .

          (B.7) 

We split the current into two parts as  

I,l  e
h 0

T dt
T

dt ′
T −


dE∑

1,2
∑
n−



eilte−int′−t

 F
0E, t, t ′  F

E, t, t ′ f0E − f0En 

        (B.8) 

with the flux-independent part  
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F
0E, t, t ′  ∑

1,2
∑
jL,R

 R,jE, t, t − jR,jE, t ′, t ′ − j

 ei,jE,t,t−j−i,jE,t′,t′−j          (B.9) 

and the flux-dependent part 
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        (B.10) 

Here the phase  Θ   reads as follows  

ΘE, t, t ′    ,LE, t, t − L

−,RE, t ′, t ′ − R ,
 

with    L − R.   

In the energy integral, only energies of order  max,kBT   away from     

contribute, i.e.  ,kBT    . Then the energy dependence of the scattering 

matrices of the point-like splitters could be neglected and take them at  E    . 

Using the notations:  R,j, t, t − j  R,jt, t − j   and  

,j, t, t − j  ,jt, t − j   , and integrating over energy in Eq. (3.6), we get 

I,l  e
2 ∑

n−




0

T dt
T

dt ′
T eilte−int′−t nF

0t; t ′

 kBT
Ec

csch kBT
Ec

F,n
t; t ′  

       (B.11) 

with  
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          (B.12) 

To find the time-dependent current  It,   we perform the inverse Fourier 

transformation of Eq. (3.6) and get: 

It  − e
2 G

0t  kBT
Ec

csch kBT
Ec

G
t  

      (B.13) 

with 

G
0t  ∑

1,2
∑
jL,R

R,j
2 t, t − j∂t,jt, , t − j  

        (B.14) 

and 

G
t  2 Ec

 ∑
1,2

R,Lt, t − LR,Rt, t − R 

 sin 2
0

− Θt, t .  
      (B.15) 

Averaging Eqs. (B.13)-(B.15) over the pumping period  T   gives a direct current. 

The effects of dephasing on the instantaneous currents under the long or the short 

relaxation time conditions are found the same as the discussions in the main text. 

 

3.8 Appendix C: Shot Noise 

 
Subjective to the analysis of shot noise, the cross correlation between leads 3 and 

4 is observed due to the vanishment of the contribution of the thermal noise. The 

characteristics of the zero frequency shot noise in a pump driven MZI are shown here. 

The used method follows the same as Ref. [61]. Two beam splitters are modeled by 
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the form of the delta potentials, i.e. Eq. (3.12). Then, the shot noise (cross correlation) 

between leads  3   and  4   are given by 

P34
sh  P34

0  P34
  P34

2.                  (C.1) 

The flux-independent part is  

P34
0  e2

h ∑
n,m ,p,m 1m 4

T34;n,m ,p,m 1m 4

0

 −2kBT  m − n coth m − n
2kBT ,

       (C.2) 

with the scattering probability dependent function 
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L;R
1  eim 4−m 3Lm 2−m 1R  ,                  (C.4) 

L;R
2  eim 4−m 1Lm 2−m 3R  ,                 (C.5) 

L
3  ei−m 1m 2−m 3m 4L.                    (C.6) 

The flux-dependent parts corresponding to the contributions of  h/je    j  1,2   

oscillations are  

P34
j  4e2

h ∑
n,m ,p,m 1m 4

T34;n,m ,p,m 1m 4

j

 gn,m k BT,,Ec/j              (C.7) 

with the energy dependent function 

gn,m kBT,,Ec/j  kBT csch kBT
Ec

 − kBT
Ec

cos m − n
2Ec

coth m − n
2kBT sin m − n

2Ec             (C.8) 
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and the     dependent functions 

T34;n,m ,p,m 1m 4

 

 13rB,−m 2
rB,p−m4 tB,p−m 3

∗ rB,−m 1
∗

  13tB,−m 4
tB,p−m 2

tB,p−m 1
∗ rB,−m 3

∗

  23tB,−m 2
rB,p−m 4

rB,p−m 3
∗ rB,−m 1

∗

  23tB,−m 4
rB,p−m 2

tB,p−m 1
∗ tB,−m 3

∗ ,
             (C.9) 

1  eim 4L−m 1m 2−m 3R eiLR−imn/2Ec ,          (C.10) 

2  eim 2−m 3m 4L−m 1R eiLR−imn/2Ec ;           (C.11) 

T34;n,m ,p,m 1m 4

2

 eim 2m 4L−m 1m 3R ei2LR−imn/Ec

1tB,−m 2
rB,p−m4 tB,p−m 3

∗ rB,−m 1
∗ .

          (C.12) 

Here we use 

1  tA,m 3−m
∗ rA,m 2−m  rA,m 3−m

∗ tA,m 2−m

 tA,m 1−n
∗ rA,m 4−n  rA,m 1−n

∗ tA,m 4−n ,
           (C.13) 

2  tA,m 3−m
∗ tA,m 2−m  rA,m 3−m

∗ rA,m 2−m

 tA,m 1−n
∗ tA,m 4−n  rA,m 1−n

∗ rA,m 4−n ,
           (C.14) 

3  tA,m 3−m
∗ tA,m 2−m  rA,m 3−m

∗ rA,m 2−m

 tA,m 1−n
∗ rA,m 4−n  rA,m 1−n

∗ tA,m 4−n .
           (C.15) 

Notice that, each sideband contribution of the flux-independent and the 

flux-dependent parts of the current correlations is given by the product of the 

transmission probability and the energy dependent parts. Due to the conservation law 

of the shot noise [61], the auto-correlations in lead 3 are found as  P33
0  −P34

0,    

P33
  −P34


  and  P33

2  −P34
2

 , i.e.  P33  −P34  . 

The low temperature condition— Turning to the low temperature condition  

kBT    , Eqs. (C.2) and (C.7) are respectively simplified as 
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P34
0  e2

2 ∑
n,m ,p,m 1m 4

|m − n|T34;n,m ,p,m 1m 4

0 ,  

        (C.16) 

and 

P34
j  4e2Ec

jh ∑
n,m ,p,m 1m 4

T34;n,m ,p,m 1m 4

j

 sin jm − n
2Ec

,
            (C.17) 

with  ,1=j  2  . The variations of the flux-independent part  P34
0

  and the 

flux-dependent parts  P34


  and  P34
2

  of the current correlation are plotted as a 

function of the frequency in the up panel of Fig. 3.5. The parameters are chosen as  

LL  10m  ,  LR  5m  ,  vD  105s/m  ,  k  108/m  ,  Vs  2k  ,  

VA  VB  0.01k   and  B − A ≡   3.2  . The weak pump condition  

VA,VB  Vs   is considered for simplicity. As the frequency increasing, the 

flux-independent part  P34
0

  shows a proportion to the frequency with the small 

oscillations. The variations follow  −xf  y   with the coefficients  y  x   

and a harmonic function  f   formed by  sinj   and  cosj  ,  

RLj  ,=  . In the other hand, the flux-dependent parts  P34


  and  P34
2

  just 

show the oscillations with the invariant amplitudes. The sum of those parts is a 

negative value revealing the nature of fermions [38]. In high frequency regime  

  Ec  , the flux-independent part of shot noise becomes the dominative 

contributions. The period of the oscillations is found as the common multiple of two 

frequency scales  2/L, 2/R /Ec  ≃ 6.28   resulted from the existence of the 

phases  L   and  R  . The down panel of Fig. 3.5 shows the variations of the 

currents  I3   in lead 3 with respective to the frequency. Contrast to the current 

correlation, as increasing the frequency the currents  I3   fluctuate up and down 
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around zero with the amplitude proportional to the frequency and vary approximately 

with the form  f ′ .  As the discussion above, the frequency comes into play as 

an additional pumping phase which alters the sign of the currents. I4  −I3   is given 

from the current conservation. The different behaviors of the current correlations and 

the currents with respective to the frequency give rise to the regimes in which 

although the pumped currents become zero the shot noise still exists. Similar results 

were found in one parameter pump [11], where the created noise is due to the 

time-dependent excitation while the electron currents and the hole currents are 

canceled to each other. 

The cross correlations  P34   varying with two tunable phases     and  

/0   are shown in Fig. 3.6(a) and Fig. 3.6(b), which are respectively taken into 

account under the non-adiabatic (   15GHz  ) and the adiabatic (   1.43GHz  ) 

situations. Other parameters are the same as Fig. 3.5. In both situations, the cross 

correlations show some valley structures with the negative values. However, contrary 

to the non-adiabatic situation, the noiseless regimes are found in the maximum of the 

red areas of the adiabatic situation, indicated by the symbols of the triangles at 

parameters    0,    /0  0.075   and    0.99,    /0  0.58 . We 

note that here the currents do not vanish. 

Taking the analytical expressions as   → 0  , we get 

P34
0  −

e21  a2  a4 b2

1  a2 4  O3 ,
               (C.18) 

P34
  − e2 cos cosLR b2

1  a2 2  O2 

               (C.19) 

and 

P34
2  − e2a2 cos2LR b2

1  a2 4  O3 ,
                (C.20) 
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where  a     Vs,A/k     Vs,B/k  ,  b  2VA/k  2VB/k  . As the condition   

0=φ  and /0  0.075 of Fig. 3.6(b), the phases show  cosLR    −1   

and  cos2LR  2  1   in our choosing parameters. Thus, from Eqs. 

(C.18)-(C.20) we get  P34  P34
0  P34

  P34
2  0  . Similar results are found for 

the condition    0.99,    /0  0.58  of Fig. 3.6(b). The higher orders of  

P34
0

  and  P34
2

  are in order  3  , while that of  P34


  is in order  2  . 

Therefore, for the non-adiabatic regime the cancellation between the flux-independent 

and the flux-dependent parts would not occur. The noiseless regime is only given in 

the adiabatic regime.  

In the other hand, along the transverse transections in Fig. 3.6(a) [Fig. 3.6(b)], 

the cross correlations vary with the phase   . The cross correlations in the adiabatic 

condition vary approximately with a simple form  cos  , while the cross 

correlations in the non-adiabatic condition vary without a simple relation with the 

phases    . From Eqs. (C.18)-(C.20), in the adiabatic limit the flux-independent part  

P34
0

  and the  h/2e   contribution  P34
2

  are reduced as phase     

independent functions, while the  h/e   contribution shows the dependence of the  

cos   variation. Thus, the current correlations  P34   vary as a function of  

cos  . However, in the non-adiabatic regime, the more complicate phase     

dependence is involved and has no such simple form. 

Furthermore, in the adiabatic limit the current correlations vary linearly with the 

frequency at the low temperature condition, shown in the solid line of Fig. 3.7(a). 

However, the current correlations at the low frequency condition, i.e.  

  kBT  Ec   (the second inequality gives no thermal effects), behavior 

quadratically as increasing frequency, shown in the solid line of Fig. 3.7(a). Notice 
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that, the dash line is fifty times the original value. Other parameters are the same as 

Fig. 3.5. In the following the analysis is performed in the low frequency condition. 

The low frequency condition— At the condition:    kBT  , Eqs. (C.2) and 

(C.7) are respectively simplified as 

P34
0  e2

h
2

6kBT ∑
n,m ,p,m 1m 4

m − n2

 T34
0n,m,p,m1m4              (C.21) 

and 

P34
j  e2

h 2 g̃kBT,Ec/j ∑
n,m ,p,m 1m 4

m − n2

 T34
jn,m,p,m1m4         (C.22) 

with 

g̃kBT,Ec/j  
3Ec/j csch kBT

Ec/j 1  kBT
Ec/j

2

,  

   (C.23) 

 j  1,  2 . 

Using Eqs. (C.21)-(C.23), the variations of the flux-independent and the 

flux-dependent parts of the current correlations are shown as a function of the 

temperature in Fig. 3.7(b). Choose    0.5   and other parameters the same as 

those for Fig. 3.5. As increasing the temperature, the  h/2e   contributions show the 

most rapid decrease than other contributions and approach zero around  kBT/Ec  1. 

From Eq. (C.23), the decay rate follows  exp−2kBT/Ec 1  2kBT/Ec 
2

. The  

h/e   contributions vanish around  kBT/Ec  2   and follow the decay rate  

exp−kBT/Ec  1  kBT/Ec
2

. However, the flux-indpendent part of the current 

correlation shows the very slowly suppression by the temperature effects. Up to the 

scales  kBT/Ec  4 , the flux-independent part still survives. From Eq. (C.21), the 
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suppression rate is inversely proportional to the temperature. Contrary to the current 

correlations, the pump currents would not be totally suppressed by the temperature. 

Similar to the low temperature condition, the noiseless regime is found here. As 

the condition without thermal effects  kBT  Ec  , the similar variations of the 

current correlations subject to the phases     and  /0   could be found, 

however, with a smaller order. The conditions for the noiseless regimes are also found 

at the same parameters. At    0  , the current correlations varying with the 

magnetic phases  /0   are shown in Fig. 3.7(c) subject to different temperatures. 

As  kBT  0.1Ec   the solid line approaches to zero around  /0  0.075  . As 

temperature increases, the noiseless regime found is removed. The inset of Fig. 3.7(c) 

enlarges the transition between the noiseless regime and the noisy regime. Otherwise, 

the amplitudes of the current correlations are suppressed as the temperature increases. 

Performing the limit   → 0   on Eqs. (C.21)-(C.23), we get  

P34
0  −

e22b21  a2  a4 

3hkBT1  a2 4  O3 ,
           (C.24) 

P34
  − e22b2 cos cosLR

h1  a2 2 g̃kBT,Ec   O3   

       (C.25) 

and 

P34
2  − e22a2b2 cos2LR 

h1  a2 4 g̃kBT,Ec/2  O3 .  

    (C.26) 

As  kBT  Ec  , the energy dependent function is simplified as  

g̃kBT,Ec/2 ≃ 3kBT−1  . Three parts of the currents correlation have the same 

trend with the temperature. At  /0  0.075   the magnetic phases are  

cosLR    −1   and  cos2LR  2  1   in our choosing parameters. 

Thus, as    0   the relation between Eqs. (C.24)-(C.26) gives  
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P34
0  P34

  P34
2  0  . However, as increasing the temperature, the  h/e   and  

h/2e   contributions reveal the different decay rates. Thus, the summation of three 

ingredients of the current correlation would not be zero. 

The variations of the current correlations are plotted with the phase     at  

/0  0.25   subject to different temperatures. Other parameters are chosen as 

those in Fig. 3.5. Similar to the adiabatic variations of the low temperature condition, 

the  cos   behavior of the current correlation is found. However, the larger 

temperatures become, the smaller amplitudes of the current correlations are found. 

From Eqs. (C.24)-(C.26), the dependence of  cos   appears only in the  h/e   

contribution. Thus, the smeared rate of the amplitudes is with the form  

exp−kBT/Ec  1  kBT/Ec
2

. The temperature shift of the  cos   oscillations 

depends on the mixed temperature decaying rates of the flux-dependent and the 

flux-independent parts. Note that, at the low frequency regime the order of the shot 

noise may be too small and hard to be detected by the measuring equipment. Although 

the visible signal could be found by increasing the pump amplitude, the specific 

variations would not be shown. We hope in the near future those interesting 

phenomena could be observed. 

    Summary— The characteristics of shot noise in pump-driven Mach-Zehnder 

interferometers (MZI) are investigated at the low temperature and the low frequency 

conditions. At the low temperature condition the shot noise grows negatively with 

some small oscillations with increasing the frequency. The negative values of the shot 

noise shows the nature of fermion. The period in frequency of the shot noise is found 

as a common multiple of the frequency  2/L   and  2/R . Contrary to the shot 

noise, the currents vary with the frequency up and down around zero. Thus, some 

regimes show the occurrence of the noise while with zero currents. Tuning the 
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additional phase     and the magnetic phase  /0  , the shot noises show some 

valley structures in the adiabatic and the non-adiabatic conditions. Contrary to the 

non-adiabatic consideration, the noiseless regimes are found in the adiabatic 

consideration. The variations of the shot noises with the additional phases     

become simply as a function of  cos   in the adiabatic condition. In the 

non-adiabatic condition, the complicate phase dependence is involved. In the other 

hand, at the low frequency condition, the temperature smears one flux-independent 

part and two flux-dependent parts of the shot noise with different decay rates. 

Contrary to the currents, the shot noise are totally suppressed. The noiseless regimes 

and the  cos   variations of the shot noise are also found at the low frequency 

condition. However, as the temperature increasing the noiseless regimes are removed 

and the  cos   variations of the shot noise are suppressed. 
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Fig. 3.1 The pump driven MZI implemented in a conductor in the quantum Hall 

regime, supporting a single, unidirectional edge state. The conductor is connected to 

four reservoirs    1   to  4   kept at the same potential. Two electrostatic split 

gates, at  A   and  B  , are acting as QPCs. The corresponding gate potentials  

VAt,A   and  VBt,B  , with  A   and  B   the pumping phases, vary 

periodically in time. The time dependent potentials give rise to scattering in both real 

and energy space and are driving the pump current. An Aharanov-Bohm flux     

threads the MZI. 
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Fig. 3.2 Two qualitatively different types of first order photon-assisted interference 

processes contributing to the current: (a) along the same spatial paths L or R and (b) 

along the different spatial paths L and R. The paths in (b) are sensitive to the enclosed 

flux    . Filled balls indicate inelastic scattering, the electrons pick up or lose one 

quantum of energy    , while empty balls indicate elastic scattering. 
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Fig. 3.3 The flux independent current  I3
0

  (upper panel) and the flux dependent 

current  I3


  (lower panel) as a function of pump frequency. Guided by the 

experiments in Ref. [50], [51], we have taken an asymmetry,    5/Ec  , and 

symmetric static beam splitters,  aA  aB  1  . The other parameters are  

bA  0.4,bB  1.3   (strong pumping),  A  0  ,  B  0.8   and  

LR  0.8  . 
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Fig. 3.4 The pump driven MZI of Fig. 3.1 with the left arm connected with strength  

   to a voltage probe    . The dynamics of the potential  V   of the probe is 

governed by the charge relaxation time (see text). 
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Fig. 3.5 At the low temperature condition  kBT    , the variations of the 

flux-independent part  P34
0

  and the flux-dependent parts  P34
,    P34

2
  of the 

shot noises (the up panel) and the currents (the down panel) are plotted with 

respective to the pumping frequency. The parameters are shown in the text. 
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Fig. 3.6 At the low temperature condition  kBT    , the shot noises  P34   

are shown as a function of the phase differences    B − A   and the magnetic 

phases  /0   subject to the frequencies (a)    15GHz   and (b)  

  1.43GHz  . Contrary to the non-adiabatic, large frequency condition, the 

noiseless regimes (denoted by triangle) are found at the adiabatic, low frequency 

condition.  

 

(a) 

(b) 
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Fig. 3.7 (a) In the adiabatic limit, the current correlations vary with the frequency at 

the conditions:  kBT     and    kBT  Ec   (the second inequality 

ensures no thermal effects). At the low frequency condition    kBT  , we find 

that (b) the decaying of three parts of current correlations  P34
0

 ,  P34


  and  

P34
2

 with respective to the temperature; (c) contrary to fig. 3(b), at    0  and 

75.0/ 0 =ΦΦ  the temperature suppresses the amplitudes of the current correlations 

and removes the noiseless regime, enlarged in the inset; (d) contrary to fig. 3(b) along  

/0  0.25  , the cosine behaviors of the current correlations are smeared as 

increasing temperature. Other parameters are shown in the text. 
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Chapter 4 

Finger-gate array quantum pumps: pumping characteristics    

and mechanisms 

 

 

4.1 Introduction of potential array pumping 

 

Quantum charge pumping (QCP) has become an active field, [1-21] since the 

experiment has been reported by Switkes et al. [4]. The configuration of the 

experiment was that a quantum dot patterned by some metal gates on the two 

dimensional electron gases was modulated slowly by two electrostatic gates. Two 

gates are ac biased by the same frequency but differed by a tunable phase difference. 

DC response across the source and drain electrodes is the signature of the QCP. The 

further intensive studies of QCP were explored in various systems: quantum dots, [6-8] 

double-barrier quantum wells, [9] pumped voltage, [12] noiseless AQP, [13] heat 

current, [14] incoherent processes, [15, 16] quantum rings, [19, 20] and interacting 

wires. [21] 

Original proposal of QCP, in the adiabatic regime, was due to Thouless. [1] He 

considered the current generated by a slowly varying traveling wave in an isolated 

one-dimensional system. The number of electrons transported per period was found to 

be quantized if the Fermi energy lies in a gap of the spectrum of the instantaneous 

Hamiltonian. Latter, Niu proposed variational one-dimensional periodic potentials for 

the adiabatic quantum pumping (AQP) and pointed out the importance of the 

quantized charge pumping in utilizing it for a direct-current standard. [2] 
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Surface acoustic waves (SAW) were alternate experimental efforts in generating 

AQP. [22-26] An interdigitated transducer located deep on an end-region of a narrow 

channel produced the SAW propagating to the other end-region of the narrow channel. 

A wave of electrostatic potential was induced inside the channel. The trapped 

electrons in the minima of the potentials transport along the narrow channel. Both 

Mott-Hubbard electron-electron repulsion in each such trap and the adiabaticity in the 

transport were needed to give rise to the quantization of the pumped current. [23] As 

such, the channel has to be operated in the pinch-off regime. [24] 

In this chapter, we propose to study yet another experimental configuration for 

QCP in a narrow channel. The potential waves are generated by a FGA pair, which 

consists of N  finger gates (FG's) in each FGA, shown in Fig. 4.1. One cell of a FGA 

pair comprises two FG's. Each FGA is modulated by ac potentials and with the same 

frequency. A phase difference   is kept between two FGAs. As the number of FG's 

2>N , the time-dependent Bragg reflections become the dominant mechanisms of 

QCP, no longer solely the processes of the photon-assisted interferences. 

 

 

4.2 FGA pair model  
 

The potential  Vx, t   in a narrow constriction induced by a FGA pair is 

represented by  

Vx, t ∑
i1

N

V1ixcost  V2ixcost  ,  

        (4.1) 

where  N   is the number of FG's per FGA. We assume that the ac biased FG's in 

i-th cell are localized, respectively, at positions  x i   and  x i  x i  , namely that  

V1ix  V1x − x i   and  V2ix  V2x − x i − x   with a relative phase 
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difference    . These FG’s of two FGAs are evenly spaced, with a pitch  d  , and 

are located at  x i  i − 1d   for one FGA and  x i  x   for the other. The 

relative shift between the FGA pair is  x  d  , where  0    1  . In the 

following, we consider the case of the same modulation amplitude  V1  V2  V0  . 

Depending on the choice of the values for     and    ,  Vx, t   will be either 

predominantly of a propagating or a standing wave type. A main form of waves can be 

found from taking the lowest order Fourier component of  Vx, t  , given by  

V1 
2V0

d cosKx cost  cosKx − xcost  ,  
     (4.2) 

where  K  2/d  . For our purposes in this chapter, an optimal choice is    /2   

and    1/4  , in which  Vx, t   is a predominant left-going wave. 

The Hamiltonian of the system is  H  Hy  Hxt  in a dimensionless form, 

where  Hy  −∂2/∂y2  y
2y2

  contains a transverse confinement, leading to 

subband energies  n  2n  1y  . The time-dependent part of the Hamiltonian  

Hxt   is of the form  Hxt   =  −∂
2/∂x 2  Vx, t  . Here the appropriate units of 

the Hamiltonian have been chosen similarly that in Ref. 27. 

In the QCP system, the chemical potential     is the same in all reservoirs. 

Thus the pumped current, at zero temperature, can be expressed as [10]  

[ ].)()(2
0

ETETdE
h
eI ←→ −−= ∫

μ
                  (4.3) 

Here the total current transmission coefficients include the contributions by electrons 

which are incident at energy  E   of subband  n   and may absorb ( 0m > ) or emit 

(- 0m < )  m   to energy  Em  E  m   by the FG pumping potentials, given 

by  
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T→←E  ∑
n0

NS−1

∑
m−



Tn→←Em ,E,
             (4.4) 

where  SN   stands for the number of occupied subbands. The summations are over 

all the propagating modes of the transmitted electrons and include both the subband 

index  n   and the sideband index  m  . The subscripted arrow in the total current 

transmission coefficient indicates the propagating direction of electrons. These 

coefficients are calculated numerically by the Floquet scattering matrix method 

(shown in appendix A of chapter 3).  

 

 

4.3 Numerical results 
 

In this section, we present the numerical results for the pumping characteristics 

of either a single-FG pair  N  1   or a finite FGA pair  N  2  . In these two 

cases that the pumping characteristics are due to different inelastic scattering 

processes. For definiteness, the unit scales in our numerical results are taken from the 

GaAs-Al x Ga 1−x As based heterostructure. The values that we choose for our 

configuration parameters are  y  0.007  , subband level spacing  Δ  2y    

≃ 0.13  meV  , d  40 ≃ 0.32      m   and  V0  0.04 ≃ 28.7meVA  . 

From the value of  V0  , and the assumed FG width   0.05  m, the amplitude of 

the potential induced by a FG is   0.057  mV. 

 

4.3.1 Single FG pair case 
 

In this subsection we investigate the pumping characteristics for the case of a 

single-FG pair. Figure 4.2 presents the dependence of the total current transmission 

coefficients on the incident electron energy E. We replace E by  
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,
2
1

+
Δ

=
ε

EX E                          (4.5) 

whose integral value corresponds to the propagating subband in the narrow channel. 

The chosen pumping frequency is as   0.6Δ    /2 ≃ 18 GHz  in Fig. 4.2(a) 

and   0.1Δ    /2 ≃ 3 GHz  in Fig. 4.2(b). We select the phase   /2   

and the fractional constant    1/4  . 

At integral values of  EX  , the total current transmission coefficients  

)()( EXT ←→   exhibit abrupt changes. This is due to the changes in the number of 

contributed propagating subbands in the narrow channel. Between integral values of  

EX ,  )(←→T   both show dip structures. The dip structures are located at  

6.0+= Sdip NX   in Fig. 4.2(a) and at  1.0+= Sdip NX   in Fig. 4.2(b). These dip 

structure locations are the same for both  T→   and  T←  , and show resonant 

structures associated with inelastic scattering that causes an electron to jump into a 

quasibound state (QBS) just beneath a subband bottom. [28] The peak structures at  

2.0+= SNX E   in  T←   of Fig. 4.2(b) are  2   resonant structures. 

In Fig. 4.2, we see that  )( EXT←   does not equal to  )( EXT→  , which allows 

the occurrence of the pumped current. Moreover, in our chosen parameters, between 

integral values of   EX  we find →← > TT  ( →← < TT ) on the left (right) region of a 

dip structure. This has an important bearing on the dependence of the pumped current 

on chemical potentials, as is shown in Fig. 4.3. Along  EX , the pumped current rises 

on the left region of  Xdip  and then drops on the right region of Xdip , in accord with 

the relative changes in  T→   and  T←   about the same  Xdip  . Hence the peaks 

of the pumped current depend on the pumping frequency at  

,)(

εΔ
Ω

+= S
peak NX E                       (4.6) 
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assuring that the occurred positions of the maximum pumped currents could be 

predicted by the aforementioned resonant inelastic process. The variations of  T→   

and  T← , as a result of the pumped currents, are  due to the photon-assisted 

interferences and change with system parameters, e.g. the pumping frequency and the 

length of each cell of a FGA pair. [29] 

Besides the trend that the pumped current in Fig. 4.3 drops with the pumping 

frequency, we would like to remark on a more interesting result: the instantaneous and 

the non-instantaneous regimes can be found in the same curve. Since the 

instantaneous condition is given by  Ω>>μ  , the curve for     0.1Δ   in the 

regions  1/ +≤<ΔΩ+ ss NXN με   corresponds to the instantaneous regimes, 

while the other  μX   regions are non-instantaneous regimes. This has been checked 

within the Brouwer method [5], not shown here. For the higher pumping frequency,  

  0.6Δ  , the instantaneous result is not satisfied in the entire  μX   region. 

 

4.3.2 Finite FGA case 
 

In this subsection, we present the numerical results for the pumping 

characteristics of a finite FGA pair. QCP for two prominent tuning modes are 

considered. These are (i) tuning the electron density by the back-gate technique and 

(ii) tuning the channel width by split-gate technique. 

 

4.3.2.a Tuning back-gate 
 

We present the numerical results for the pumping characteristics of a FGA pair 

with  N  4   that is realized by the back-gate technique. The dependence of the 

total current transmission probability on  EX   is shown in Fig. 4.4, in which the 



 121

pumping frequencies are (a)    0.6Δ   and (b)    0.1Δ  . The choices of 

the parameters  d  ,     and     are the same as those in the previous subsection, 

but the latter two parameters give rise here to an equivalent left-going wave in the 

pumping potential  Vx, t  . 

The curves in Fig. 4.4 show additional structures, other than the dip structures 

that have been discussed in the last subsection. These additional structures are valley 

structures that occur at different  EX   values for  )( EXT→   and  )( EXT←  . In a 

region between two integral values of  EX  , the valley structure of  )( EXT→   

occurs at a lower  EX  than that of  )( EXT← . This shows clearly the breaking of 

the transmission symmetry by the pumping potentials. Furthermore, the valleys are 

separated by  εΔΩ=Δ /EX  . This can be understood from resonant coupling 

conditions  k  k−K −    and  kK  k −    for, respectively, the right-going 

and the left-going  k  . From these conditions, the valley locations are at  

k2  K
2 1 ∓ 

K2

2
,

                   (4.7) 

where the upper sign is for positive, or right-going,  k  . These locations, expressed 

in terms of  EX  , are given by  

,
2

εΔ
+= ±kNX E S                       (4.8) 

and are at  EX   = 1.19, 1.79, 2.19, 2.79, 3.19 and 3.79 for the case of Fig. 4.4(a), 

and  EX   = 1.39, 1.49, 2.39, 2.49, 3.39 and 3.49 for the case of Fig. 4.4(b). The 

matching between these numbers and our numerical results in Fig. 4.4 is remarkable. 

In addition, the energy gaps are opened up at these  k2   locations, causing the drop 

in the transmission and the formation of the valley structures. [10] All these results 

assure us that the time-dependent Bragg's reflection is the dominant resonant inelastic 

scattering in our FGA pair structure. 
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On the other hand, the instantaneous condition is here given by  gap    , 

where  gap   is the effective energy gap of the Hamiltonian. [2] Since  gap   is 

given by the widths of the valley structures, the contributions of the valleys to the 

pumped current are non-instantaneous in Fig. 4.4(a) as a result of the well-separated 

valleys and instantaneous in Fig. 4.4(b) due to the overlap of the valleys. 

In Fig. 4.5, we present the  X   dependence of the pumped current for the 

cases in Fig. 4.4. The pumped current peaks at the places that lie in the middle 

between a valley of  )( EXT→   and the corresponding valley of  )( EXT←  . The 

locations are around  

X  NS  K2

4Δ 1  2

K4 ,
              (4.9) 

which depends on both the pitch  d   and the pumping frequency    . The peaks 

have flat tops for the solid curve, when    0.6Δ  . Comparing with the total 

current transmission curves in Fig. 4.4(a), we see that the flat-topped peak profile is 

associated with the complete separation between the valleys of  )( EXT→   and  

)( EXT←  . This is in the non-instantaneous regime. In contrast, for the case with the 

valleys overlapping, such as those in Fig. 4.4(b), the pumped current no longer peaks 

with a flat-top profile, as is shown by the dashed curve in Fig. 4.5. This is in the 

instantaneous regime. Meanwhile, their peak values are lowered. It is because the 

cancellation sets in when the valleys overlap. We note that the pumped currents are of 

order nA. 

The robustness of the time-dependent Bragg reflection, on the other hand, is 

demonstrated most convincingly by the number of charge pumped per cycle at the 

maximum  IMax   of the pumped current. In the dashed curve of Fig. 4.5, the 

pumped charge per cycle per spin state  QP  2/IMax/2e  0.495  , where  

IMax  0.48   nA and  03.31.0 ≈Δ=Ω ε   GHz. To get a unity, or quantized, 
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charge pumped per cycle per spin state, one can fix the pumping frequency  

  0.1Δ  ,  N  4  ,    /2  , and  d  40  , then tune the other pumping 

parameters as  V0  0.09   and    0.15   to obtain  QP  0.992   at  

X  3.465   (not shown here). In this frequency regime, the pumping would be 

expected to be adiabatic, according to Thouless [1] and Niu [2] when  gap    . 

However, in our case here, the energy gap is at best only partially opened, as we can 

see from the nonzero transmission in Fig. 4.4(b), because we have only  N  4   FG 

pairs. Thus, our result shows that the condition of the occurrence of the AQP is less 

stringent than we would have expected originally. [2] In other words, the pumping 

effect of our FAG configuration is robust. 

It is also worth pointing out that the pumped currents are positive in Fig. 4.5, 

showing that the net number flux of the pumped electrons is from right to left. This is 

consistent with the propagation direction of the electrostatic wave in  Vx, t  . [10] 

 

4.3.2.b Tuning split-gate 
 

Thus far, we have explored the dependence of the FGA pair's QCP characteristics 

on electron energy by the use of the back-gate technique. Another way of tuning the 

QCP characteristics is via the modulation of the channel width (or subband level 

spacing  Δ  ). This can be realized experimentally by the use of the so-called 

split-gate technique. Hence we present, in Fig. 4.6, the transverse confinement 

dependence of both the total current transmission probability and the pumped current. 

The transverse confinement is depicted by  

,
2
1

+
Δ

=
ε

μ
NX                      (4.10) 
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which is related to the effective channel width and whose integral value corresponds 

to the number of propagating subbands in the channel. In this mode of tuning the QCP 

characteristics,     is fixed. 

In Fig. 4.6(a), except for    , which is fixed at 0.049, and  y  , which varies 

with  NX  , other parameters such as    0.0084  ,    /2  , and    1/4   

are the same as those in Fig. 4.4(a). The solid (dashed) curve is for  T→   ( T←  ). 

Both the features of the QBS and the time-dependent Bragg reflection are found. The 

expected locations of the QBS, given by the expression  

,
2
1

2
1

Ω−
⎟
⎠
⎞

⎜
⎝
⎛ ++=

μ
μnX N                 (4.11) 

are at 1.1, 2.3 and 3.5, and they match the QBS locations in Fig. 4.6(a) perfectly. Here  

n   is the subband index. The expected locations of the valleys, associated with the 

time-dependent Bragg reflection, are given by the expression  

,
2
1

2
1

2
±−

⎟
⎠
⎞

⎜
⎝
⎛ ++=

k
nX N μ

μ                (4.12) 

and thus they should be at  NX   = 1.03, 2.1, 3.14 for  )( NXT→   and at  NX   = 

1.15, 2.4, 3.73 for  )( NXT←  . Again, they match the valley locations in Fig. 4.6(a) 

remarkably. 

Besides, in Fig. 4.6(a) there are two additional valley structures, indicated by 

arrows, at which  )( NXT→   and  )( NXT←   fall one on the top of the other. These 

structures do not contribute to the pumped current, and they are due to the 

time-dependent Bragg reflection from the second order Fourier component of  

Vx, t  . The second Fourier component of  Vx, t   is in the form of a standing 

wave, given by  cos2Kxcost  sint  . Both of the additional valleys all 

appearing in  )( NXT→   and  )( NXT←   can be understood from the fact that more 

resonant coupling conditions come into play for the case of standing wave. The 
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resonant coupling conditions are  k  k2K     and  k  k2K ∓   . As such, 

the valley locations are given by the expression  

⎥
⎦

⎤
⎢
⎣

⎡
−

+=
±εμ

μ1
2
1

NX                     (4.13) 

for  n  0   and    K1 ∓ /2K22  . Accordingly, these  2K   

time-dependent Bragg reflection valley locations are expected to be at 1.36 and 1.73, 

which coincide with the two additional valleys, indicated by arrows, in Fig. 4.6(a). We 

note, in passing, that contributions from higher Fourier components of Vx, t  

diminishes gradually. 

The  NX   dependence of the pumped current for the case in Fig. 4.6(a) is 

represented by the solid curve in Fig. 4.6(b). The peaks have flat tops because the 

valleys in the corresponding  )( NXT→  ,  )( NXT←   are well separated. The 

pumped current for    0.0014  , the same frequency as in the case of Fig. 4.4(b), 

is depicted by the dotted curve in Fig. 4.6(b). The peaks are not flat-topped and the 

magnitudes are much smaller because the transmission valleys overlap. For 

comparison, we also present the case when parameter values differ slightly from that 

of the optimal choice. As is shown by the dashed curve in Fig. 4.6(b), where all 

parameters are the same as those for the solid curve except that     is changed from 

1/4 to 1/5, the basic pumped current peaks, shown also in the solid curve, remain 

intact. This demonstrates the robustness of the QCP against the deviation in values of 

the configuration parameters from the optimal choice. 

Interestingly, there are two additional features in the dashed curve of Fig. 4.6(b), 

namely, an additional pumped current peak at  5.1=NX  , and an increase in the 

peak value for the pumped current near  5.3=NX  . Both of these features found to 

arise from the second Fourier component of  Vx, t   is supported by the outcome 

of our analysis performed upon the Fourier component of  Vx, t  . This method of 
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analysis has thus far been successful in providing us insights on the pumping 

characteristics presented in this work. The m -th Fourier component of  Vx, t  , 

apart from a constant factor, is given by the form  

Vm  cosm − sinm cosmKx ′ − t − /4
 cosm  sinm cosmKx ′  t  /4,

       (4.14) 

where  x ′  x − x/2  .  Vm   consists, in general, of waves propagating in both 

left and right directions. But when    1/4  , as we have discussed before,  V1   

becomes a pure left-going wave and  V2   becomes a pure standing wave. The case 

of    1/5  , however, have both  V1   and  V2   consisting of waves in 

opposite propagation directions. Therefore, in contrast with the    1/4   result, 

additional contributions from the  2K   Bragg reflection are expected for the case  

  1/5  . This additional contribution should peak at the mid-point between two 

transmission valleys for the  2K   Bragg reflections, and the expression for  NX   

is given by  

,
2
1

2
1

M
N nX

εμ
μ

−
⎟
⎠
⎞

⎜
⎝
⎛ ++=                  (4.15) 

where  22 )2/( KKM Ω+=ε  . For the case of the dashed curve in Fig. 4.6(b), the 

values of  NX   =  1.54   and  3.6   are shown to match the locations of the 

additional features nicely. Finally, we can extract information of the sensitivity of the 

pumped current characteristics to     by looking at the coefficients of the left-going 

and right-going waves in  Vm  . For    1/5  , the coefficients of  V1   for, 

respectively, the right-going and the left-going waves are  0.22   and  1.4  . This 

shows that  V1   is still dominated by the left-going wave and thus explains the tiny 

modifications to the pumped current peaks at  NX   =  1. 1  , and  2.3  . But for  

V2  , the coefficients for, respectively, the right-going and the left-going waves are  

−0.95   and  1.57  . This shows that  V2   deviates quite significantly from that of 



 127

a standing wave and so explains that the additional peaks from the  2K   Bragg 

reflections are quite large. 

 

4.4 Summary 

 
It is interesting to note in passing that our proposal of the FGA pair configuration 

is different, in three aspects, from the voltage lead pattern proposed earlier by Niu. [2] 

First of all, the pumping mechanisms to which the configurations are catering are 

different. It is the mechanism of translating the Wannier functions in a given Bloch 

band in Ref. 2, while it is the mechanism of the time-dependent Bragg reflection in 

this work. The former mechanism is adiabatic by nature but the latter mechanism is 

shown, in this work, to hold in both the instantaneous and non-instantaneous regimes. 

Second, the configurations are different in the number of sets of voltage leads 

invoked. A third set of voltage leads was instituted by Niu to fix the Fermi energy at 

the middle of the instantaneous energy gap in order to maintain the adiabaticity of the 

pumping. Since our interest here is on the general pumping characteristics, including, 

in particular, their dependence on the Fermi energy, it suffices us to consider a simpler 

configuration---the FGA pair configuration. Third, the number of voltage lead 

expected and needed in a voltage lead set is different. Our results demonstrate the 

resonant nature of the time-dependent Bragg reflection and the robust pumping 

characteristic---requiring only a FGA pair with small  N  . Hence the FGA pair 

configuration proposed in this work should be more accessible experimentally. 

In conclusion, we have proposed a finger-gate array pair configuration for the 

generation of quantum charge pumping. Detail pumping characteristics have been 
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analyzed; the robustness of the time-dependent Bragg reflection in QCP has been 

demonstrated; the pumping mechanism has been understood. 
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Fig. 4.1 Top view of the proposed system structure is for the case of FG number     

N  4  . A FGA pair locates on top of a narrow channel.  Ṽi   denotes the amplitude 

of the potential energy and     is the phase difference.
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Fig. 4.2 Total current transmission probability versus XE  for a pair of FG at (a)  

  0.6     and (b)    0.1    . The transmissions of the right-going 

(left-going) electrons are represented by the solid (dotted) curve. The subband level 

spacing is  Δ  . Parameters    1/4   and    /2   are chosen to meet the 

optimal condition. 
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Fig. 4.3 The pumped currents versus  X   with the same parameters used in Fig. 

4.2. The solid and dashed curves correspond, respectively, to    0.6Δ   and  

  0.1Δ  . 
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Fig. 4.4 Total current transmission probability versus XE  for  N  4  at (a)  

  0.6Δ   and (b)    0.1Δ  . The transmissions of the right-going (left-going) 

electrons are represented by the solid (dotted) curve. The parameters    1/4   and  

  /2  . 
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Fig. 4.5 Pumped current versus  X  . The choices of parameters are the same as in 

Fig. 4.4. The solid and dashed curves correspond, respectively, to    0.6Δ   and  

  0.1Δ  . 
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Fig. 4.6 The dependence on subband level spacing  Δ  of (a) the total current 

transmission probability, and (b) the pumped current. The abscissa is depicted by Eq. 

(4.10) where    0.049   and  N  4  . Pumping frequency    0.0084   in 

all curves except for the dotted curve in (b), where    0.0014  . Parameters  

  /2   and    1/4   for all curves except for the dashed curve in (b), where  

  1/5  . In (a), the solid (dashed) curve is for  )( NXT→    [ ])( NXT←  , and 
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contributions from the second Fourier component of  Vx, t   are indicated by 

arrows. 
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Chapter 5 

Conclusions 

 

For the conclusion of this thesis, firstly in chapter 2, we investigate the visibility 

of the current and shot-noise correlations of electrical analogs of the optical 

Mach-Zehnder interferometer and the Hanbury Brown Twiss interferometer. The 

electrical analogs are discussed in conductors subject to high magnetic fields where 

electron motion is along edge states. The transport quantities are modulated with the 

help of an Aharonov-Bohm flux. We discuss the conductance (current) visibility and 

shot noise visibility as a function of temperature and applied voltage. Dephasing is 

introduced with the help of fictitious voltage probes. Comparison of these two 

interferometers is of interest since the Mach-Zehnder interferometer is an amplitude 

(single-particle) interferometer whereas the Hanbury Brown Twiss interferometer is 

an intensity (two-particle) interferometer. A direct comparison is only possible for the 

shot noise of the two interferometers. We find that the visibility of shot noise 

correlations of the Hanbury Brown Twiss interferometer as function of temperature, 

voltage or dephasing, is qualitatively similar to the visibility of the first harmonic of 

the shot noise correlation of the Mach-Zehnder interferometer. In contrast, the second 

harmonic of the shot noise visibility of the Mach-Zehnder interferometer decreases 

much more rapidly with increasing temperature, voltage or dephasing rate. 

In chapter 3, we have investigated the characteristics of the currents in a 

pump-driven fermionic Mach-Zehnder interferometer. The system is implemented in a 
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conductor in the quantum Hall regime, with the two interferometer arms enclosing an 

Aharonov-Bohm flux    . Two quantum point contacts with transparency 

modulated periodically in time drive the current and act as beam-splitters. The current 

has a flux dependent part  I   as well as a flux independent part  I0  . Both 

current parts show oscillations as a function of frequency on the two scales 

determined by the lengths of the interferometer arms. In the non-adiabatic, high 

frequency regime  I   oscillates with a constant amplitude while the amplitude of 

the oscillations of  I0   increases linearly with frequency. The flux independent 

part  I0   is insensitive to temperature while the flux dependent part  I   is 

exponentially suppressed with increasing temperature. We also find that for low 

amplitude, adiabatic pumping rectification effects are absent for semitransparent 

beam-splitters. Inelastic dephasing is introduced by coupling one of the interferometer 

arms to a voltage probe. For a long charge relaxation time of the voltage probe, giving 

a constant probe potential,  I   and the part of  I0   flowing in the arm 

connected to the probe are suppressed with increased coupling to the probe. For a 

short relaxation time, with the potential of the probe adjusting instantaneously to give 

zero time dependent current at the probe, only  I   is suppressed by the coupling 

to the probe. 

Otherwise, the characteristics of the shot noise in pump-driven electronic 

Mach-Zehnder interferometers have been also investigated. The low temperature and 

the low frequency conditions are explored. Both conditions reveal the noiseless 

regimes and the  cos   variations of the shot noise in the adiabatic consideration. 

Contrary to the low temperature condition, at the low frequency condition increasing 
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the temperature causes the remove of the noiseless regimes and the suppression of the  

cos   variations. Furthermore, at the low temperature condition the shot noises 

show the negative growing with small oscillations as the frequency increases, while 

currents change up and down around zero. The different frequency dependent 

behaviors lead to some noise regimes with the vanishing currents. 

In chapter 4, we study the pumping effects, in both the instantaneous and non- 

instantaneous regimes, of a pair of finite finger-gate array (FGA) on a narrow channel. 

Connection between the pumping characteristics and associated mechanisms is 

established. The pumping potential is generated by ac biasing the FGA pair. For a pair 

of finger gates (FG's) ( N  1  ), the pumping mechanism is due to the 

photon-assisted interferences. For a pair of FGA with pair number  N  2  , the 

dominant pumping mechanism becomes that of the time-dependent Bragg reflection. 

The contribution of the time-dependent Bragg reflection to the pumping is enabled by 

breaking the symmetry in the electron transmission when the pumping potential is of 

a predominant propagating type. This propagating wave condition can be achieved 

both by an appropriate choice of the FGA pair configuration and by the monitoring of 

a phase difference     between the ac biased in the FGA pair. The robustness of 

such a pumping mechanism is demonstrated by considering a FGA pair with only pair 

number N  4 . 
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