& Tiny0OS * 5 7 TDMA #5+1

Implementing a TDMA Mechanism on TinyOS

& Tiny0S * 7 3 TDMA 41

Implementing a TDMA Mechanism on TinyOS

Moyod i mEE Student : Chun-Hua Chen
ERR i R R S Advisor : Yu-Chee Tseng
Bz o2~ F

Fagr Fag

oL <

A Thesis
Submitted to College of Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master of Science

in
Computer Science

July 2008

Hsinchu, Taiwan, Republic of China

PER R4 L g

WX R LB eEFEEE

Ak ERERALAREE AW W mAEE B

PR 4R 3w 3L
() # Tiny0S EE3m TDMA #%l

(#3x) Implementing a TDMA Mechanism on Tiny0S

ERNEEERAKRE S FEREE GFFRT -

b Y

v % RBEIT4HLA 6

& TinyOS * % 3= TDMA %+

B4 G E PR i R Rk
B o2 oo % & T FoF &g L

5SS RIRE o BATE NS AR ALk TinyOS L s
PlgER Y AR ¥ L eniTE ki sod 2t ksak k 5 CSMA-CA 541
REEE R 3rh s S S R R et SR) S

He EATBE DGR LAFREREFIR AT P rhHm

B A 229 TDMA $4)4c 3] TinyOS £% % 59 > > 6 B
E* Micaz o & TDMA i 50¢ 0 53R Rl Bam- e enp 3 B2

PR T dept BT R F] S 3 A E R £AT
FEoREABrn fAFEREY - RRIBEME RS - LT
FlobE FRMEL g TR LaAWERe ~ EMNP o JE
PEFETRE RS AR R TV UKRE CAEEES T PG

BFER BAE TN o ady TDMA 8 Feff 2t ki gp 4 £ & 07

Implementing a TDMA Mechanism on TinyOS

Student : Chun-Hua Chen Advisors : Dr. Yu-Chee Tseng

Degree Program of Computer Science

National Chiao Tung University

ABSTRACT

Wireless sensor network (WSN) is widespread in several different
application fields now. In WSN, TinyOS is the most popular operating
system. TinyOS adopts CSMA-CA mechanism in its MAC layer. When the
network with heavy traffic loads, packets collision and interference will be
more serious. When packets collision happened, sensor nodes will do
packets retransmission and consume additional power. In this thesis, we try
to implement TDMA mechanism in TinsOS with platform Micaz. TDMA
mechanism can resolve the problem of packets collision because each
sensor node has its time slot and data will be transmitted in the assigned
time slot. We implement the components include time synchronization, slot
assignment algorithm and power saving mechanism. When a sensor node
enters power saving mode, program process will also disable radio
interface for power saving. Time synchronization one of the important
factor for TDMA mechanism and experiment result shows our time
synchronization algorithm can work over many hours with accuracy and

stability.

g RAN B LA RRREROFTL A DRI IE e A o
BEHe 2L RF o NG D] FIEEPF RN R 3 AR
RERRE AT FEIRAG TR R PR TR Y

R W, LA XSRS FETNIPANE .
Il LI S S A li%ﬁfbh P adkisr@dnfiEag Lo
P

CIPRARRA- SR BCRHA LI R R &
FEWFFLARZ DS AL v 2T o BAN R
SHRIEE

Bt HTER L ARG ERPR o SRR Ak g ol

AR R R BT RN - 2R oo

ADSTFACt (IN CINESE) ...vveiieciiece et i

Abstract (in ENGLISN)coovoii e i
Acknowledgement (in ChINESE).......ccceiieiieiie e ii
LO00] 01 1=] 01 S F TP OTRTRTR v
LiSt OFf TabIES ..o Vi
LIS OF FIQUIES ... Vil
IO L] 8 oo 18 Tod « o] o SRR 1
1.1 Overview of Wireless Sensor Network..........cccovcvvevieiieeieeneeseenn 1

2. Related WOIKScoiiiic e 2
2.1 MOTIVALION ..o 2
2.2 Related Papers reSEarCh.........cocveieeiie i 2
2.2.1 Time SynChronization:cccccvevveiieeieecie e, 2

2.2.2 SI0t aSSIgNMENT: ...t 6

3. Hardware and Operating SYSeIM........ccovvviiiriiiiiiienee e 9
3.1 SeNSOr DOAI:ottt 9
3.1.1 . SeNnsOr Doard: ..o 9

3.1.2 Mote Interface Board (MIB):....ccccoveiieriieiie e 9

3.1.3 Mote Processor Radio (MPR):......cccooviiieiiiniiinceee e 10

B2 TINYOS ..o e 11
BLBINEBSC e 12
4. System Architecture to Realize TDMA ..., 15
4.1 System arChiteCtUrecoveiie e 15
4.1.1 FAME STIUCKUIeeeeiieeciee ettt 15

4.1.2 Software components architecture.........c.ccccvvvivcevievceiie s, 17

4.2 TiMe SYNCAroNIZatioNcccvevveiieii e 18
A.2.1 OVEIVIBW ...ttt sttt sttt st nnees 18

4.2.2 Implementation detailccccoooeviiiiinin s 19

4.3 Slot assignment algorithm............cccoooveiiiie i, 21

.31 OVEIVIBW ...ttt e e e e e e e e e e e aeeens 21

4.3.2 Implementation detailcoccoeviiiieniin s 22

4.4 Mode selection MechaniSM..........ccevvriiiiiiiieee e 25
4.4.1 Transmission OPerationcccceevveeveereeiieiie e e seesee s 28
A4.4.1.1 OVEIVIEW .cvviiieiiiiiesie ettt snees 28

4.4.1.2 Implementation detailccccoevveiiieieic e, 28

4.4.2 Basic Receipt Operationccccocvevveieeiieiie s see e 30
O R O AV T VTSR 30

4.4.2.2 IMPIementccovviiiieeeee e 30

4.4.3. 1d1€ OPEIAtIONeeeveieiieiiieeie et 31
A4.4.3.1 OVEIVIEW ..ottt 31

4.4.3.2 Implementation detailccocoovviieeiiieiic e, 32

ST = LT 10 1] o | TSR 35
5.1 Time Synchronization Algorithm ..o 35
5.2 SIOt ASSIGNIMENT ...t 38
5.3 Current CoONSUMPLIONoviiii et 39

6. Conclusions and Future WOorks............ccvvveriiiencse e 41
RETEIENCES ...t 42

List Of Tables:

Table 3-1. Relation between provide and use interface.ccccccveevnneen, 13
Table 4-1. Several packet types in slot assignment.............ccccccceeveevieenenn, 23
Table 4-2. Sleep mode for ATmegal2s8..........cccooeiieeieeieevie e, 32
Table 5-1. Motes slot nuUMbBEr list...........cccoooeiiiini e, 39
Table 5-2. Current consumption in different mode..........c.cccceovviieieennnn, 40

Vi

List Of Figures:

Figure 2-1. (a) Standard critical path (b) RBS critical path.......................... 4
Figure 2-2. Level discovery and level values in TPSN.c.ccccevveviennnnn, 5
Figure 2-3. Calculated clock offset in TPSN..cccccooviviiviieiii e, 6
Figure 2-4. Example of slot assignment algorithm............ccccocevveiieiinenenn, 7
Figure 2-5. Successful round for receiving grant message...........c.cceveveennenn. 8
Figure 2-6. Failed round for receiving reject message.cccveverveerveerennn 8
Figure 3-1. MTS310 and MIB510cocveiiiiiiie e 10
Figure 3-2. MPR2400 and Block Diagramccccoevvieniinnieninsiesieee 10
Figure 3-3. Example for wiring modules.cccccevviiiiininieseeeee,s 14
Figure 4-1. TDMA mechanism overview, N modes in network................. 17
Figure 4-2. Components ArchiteCtUIe..........cocvvveeveevee e 18
Figure 4-3. IEEE 802.15.4 packet fOrmat.cccccvvvvevveviiesie e 19
Figure 4-4. Timestamp with the SFD (a) sending packet (b) receiving packet
... 20
Figure 4-5. (a) One hop neighbor link list (b) Mixed hop neighbor link list
... 22
Figure 4-6. Build up mixed hop neighbor link list.cccoovveiiiniiiinenn. 25
Figure 4-7. Mode selection mechanismccccoccevieiiiieiec i, 26
Figure 4-8. Time slot and INterruptccccovvevieiie v 26
Figure 4-9. Set hardware timer in ATmegal28..........ccccccevvevvevieiieeninenn 28
Figure 4-10. AM message packet format............ccccccovviieveeniniiesie e, 29
Figure 4-11. Flow chart for transmission operation.............cccccevevervesrenenne 30
Figure 4-12. ATmegal28 Clock Distribution...........ccccevvevveerveniieiiiesieene, 31
Figure 4-13. Interfaces relations for power saving mode.ccccceevennee. 34
Figure 5-1. Time synchronization environment.............cccooeeveeneeniesienennn 35
Figure 5-2. Time synchronization test results.ccccccevvivveviieiic i, 36
Figure 5-3. Two-hop time synchronization environment.ccc.cue..... 37

vii

Figure 5-4. Two-hop time synchronization test results..........c.cccceevervennen,
Figure 5-5. Slot assignment enVironMeNntcocceveevieniinneenee s

Figure 5-6. Current consumption test environment...........cccocceveeevieenneennn.

viii

Chapter 1

Introduction

1.1 Overview of Wireless Sensor Network

Wireless Sensor Network (WSN) [1] has become a very popular technology and
research area in recent years. WSN systems are composed of many power-limited and
small size sensor nodes distributed deployed over indoor or outdoor environment.
People use this technology on several fields [2], [3] such as remote environment
monitoring, military surveillance, health monitor and target motion tracking. When the
sensors monitor and detect events happened in their sensing region, the sensed data will
be transferred to the sink. Users can retrieve useful data form sink then analyze it and do
the corresponded actions. A wireless sensor node is the embedded system inside; it
consists of processor unit, storage unit, one or more sensor units and low-power
transceiver unit.

The following chapters will describe this thesis in detail. Chapter 2 describes our
motivation and related research in time synchronization and slot assignment. In Chapter 3, it
describes the detail information of software and hardware platform. In Chapter 4, we present the
basic concepts of time synchronization, slot assignment, packet transmission and power saving.
We also explain how to implement new components for this project. Chapter 5 shows how to do
the experimental and testing results. Chapter 6 describes conclusion and future works of this

thesis.

Chapter 2
Related Works

2.1. Motivation

TinyOS [4] is a popular operating system in WSN and it adapts B-MAC [5] as its
MAC layer protocol. B-MAC is base on of CSMA-CA [6] mechanism and there are
some drawbacks for this mechanism obviously. The major disadvantage of CSMA-CA
Is packets collision can not be avoided. When the network traffic is heavier, the packets
collision will be more serious. Under this situation, more packets will be re-transmitted
and the transmission nodes will consume more power. There also has two hop neighbors
hidden terminal problem because the carrier sensing does not work beyond one hop
distance. Although RTS/CTS [6] policy can resolve hidden terminal problem but it will
cause more overhead in the system.

TDMA is one of the solutions for above problems because each node has its own
time slot and send packet in different time slot. It could avoid packet collision and no
hidden terminal problem. The goal of this thesis is to implement the TDMA mechanism
in TinyOS. We will focus on time synchronization, slot assignment, packet transmission,
packet receipt and power consumption. We will modify and add some components in
TinyOS with Micaz platform. It is useful for us to research hardware abstraction layer in

the future.

2.2. Related Works

2.2.1. Time synchronization

In TDMA mechanism, accurate time synchronization is needed. There are some
limitations in WSN and the time synchronization methods [7], [8], [9], [10] are different
than wired system. When the packets from sender to receiver, there are some factors
will be varied and uncertain. We list some factors as below.

® Clock Offset: The time differences between system nodes. The reason is that each

2

mote is powered on at different time.

Clock drift: The crystal frequency differences between system nodes. It is because of
manufactured crystal tolerance.

Send time: Sender node program calls system APIs to constructs message and put it
on the radio interface. It depends on current system and processor loading.

Access time: Message in radio buffer and waits to access transmit channel.

Interrupt handle time: Delay between the radio chip raising and the microcontroller
responding to an interrupt.

Encoding time: Sender node radio chip to encode and transform binary data
messages into electromagnetic waves.

Transmission Time: depending on the length of the message and the speed of the
radio media.

Propagation time: Time spent for transmitting message from sender to receiver.
Decoding time: Receiver node radio chip will transform and decode message from
electromagnetic waves into binary data.

Receive time: Receiver node program will be notified that message had been arrived

already.

We will review two time synchronization approaches in WSN:

Reference Broadcast Synchronization (RBS) [7]: Instead of synchronizing the sender

with a receiver, RBS synchronizes a set of receivers with one another. A transmitter

broadcasts a reference packet to two receivers and each receiver records the time for

receiving reference packet. Then receivers exchange their observation time then

calculate clock offset between the nodes. For high precision demand, it can increase the

number of reference packets then average the values of clock offset.

This scheme has the following advantage:

® Completely eliminating transmitter side uncertainties. The critical path will be

changed and eliminate sender’s send and access time. Figure 2-1 shows the

differences between standard critical path and RBS critical path.

This scheme has the following disadvantages:

® Number of messages exchange is high.

® For n nodes, one node broadcasts the reference packet and n-1 messages exchange
for time synchronization. There are more network traffic overhead and high energy

consumption in system and nodes.

NIC
Sender —
. NIC
Receiver -
Time
—— (Critical Path ——
(a)
Sender
Receiver | -
Receiver 2 \ NIC
-
Time
-g— (Critical Path

(b)
Figure 2-1. (a) Standard critical path (b) RBS critical path

Timing-sync protocol for sensor networks (TPSN) [8]: This algorithm includes level

discovery phase and synchronization phase.

When the system in level discovery phase, it will do the following steps.

® Sink node is selected as the root node and broadcasts discovery packet. The packet
contains node level value and local node id. Level value denotes the hop counts
from sink.

® \When nodes receiving discovery packets, nodes will record the source packet’s node
id as parent id then rebroadcast discovery packets with local node id and new level
value. When nodes receiving several discovery packets, nodes will accept packet

with smallest level value and update their level values.

® \When all the nodes know their level values and parents node id, it means the level
discovery procedure is completed.

The parent-child tree is shown in Figure 2-2 and the label numbers represent node’s

level values.
@ 2 9
2 @
- '\ -
! G
® 1
0 i 2 :

C’>. smk\ 3

° \ /\O/

r::
/ AN 7

%

"<_.: \.Q

Figure 2-2. Level discovery and level values in TPSN.

When the system in synchronization phase, it will do the following steps.

® Using two-way messages exchange.

® Child node initiates synchronization by sending the synchronization message which
includes node’s level value and timestamp.

® Parent node receives synchronization message and replies an acknowledge message
which includes timestamp.

® Child node will calculates clock offset and propagation delay then it will
synchronize its system time with parent node.

The packets exchange is shown in Figure 2-3.

Node X & ———o— e _— >
Time t
NodeY --—-rr;:;i:;;i:;iiteem—— e e e - -
T2 3
T2 ="T1 + propagation delay + clock offset

T4 = T3 + propagation delay - clock offset

clock offset={(T2 - T1) - (T4 - T3)}/2
propagation delay = {(T2 - T1)+ (T4 - T3)} /2

Figure 2-3. Calculated clock offset in TPSN.

This scheme has the following advantages:
® The protocol is scaleable when the size of network is increased.
® |t is more accuracy than RBS.
This scheme has the following disadvantage:
® TPSN is a hierarchical topology and it is not suitable for highly mobile nodes.
2.2.2. Slot assignment

In TDMA system, each node should have its own time slot and transmits packets in
the pre-scheduled time slot. We will introduce some slot assignment algorithms [11],
[12], [13] which are related to WSNs.

Wireless Fire Sensor Network Demonstrator [11]: This slot assignment algorithm is

composed of report wave phase and acknowledge wave phase.

® In report wave: Each node will send its aggregated alive information in the assigned
slot when the system in report wave phase. After system report wave has finished,
the sink initiates system acknowledge wave. If all registered nodes are reported, the
whole network will enter sleep mode.

® Network slot schedule is calculated at the sink then it propagates the needed
information through acknowledge wave. There are some rules for slot assignment.
B Nodes with the higher hop counts to the sink have earlier slots assigned.

B When several nodes with the same hop counts then the ordering between nodes

6

is random.
B The slot numbers are assigned contiguous from the latest slot number towards to
the earliest slot number.
® In acknowledge wave: Sink propagates slot number for each node.
Figure 2-4 shows one example for a network which consists of N = 16 nodes and
every wave is divided into N slots.

pE‘ﬂOq I“erjod

N

4 N _ h
- —~
Report wave Acknowledge wave | sleep ¢
Slot .. T
112314 (5[6|7|8|910/11[12|13|14(15|16 r
b

Figure 2-4. Example of slot assignment algorithm [11].

Distributed randomized TDMA scheduling for wireless ad-hoc networks [12]: Each

node maintains its state machine and there are four states: IDLE, REQUEST, GRANT

and RELEASE. The DRAND algorithm runs by rounds and the main procedures as

following.

® Node A into REQUEST state and broadcasts request message to its one-hop
neighbors.

® Neighbor B receives a request from A. When node B is in IDLE or RELEASE state
then it changes into the GRANT state and sends a grant message to node A. When
node B is in the REQUEST or GRANT state then node B sends a reject message to
node A.

® \When node A receiving the grant packets from its entire one-hop neighbors for
responding request packer, it decides on its time slot to be the minimum of the time

slots that have not been taken by its two-hop neighbors before this round. Then node

A enters the RELEASE state and broadcasts a release message which contains
information about its selected time slot to its one-hop neighbors.
® \When node A receiving a reject from any node then node A sends a fail message to
all its one-hop neighbors and changes its state to the IDLE state.
Figure 2-5 shows successful round where node A decides on a time slot after it
receives grant messagess from all of its one-hop neighbors. Figure 2-6 shows failed
round because node B has sent a grant message to another one-hop neighbor before

receiving the request packet from node A.

."'“-—h____q__ B ﬂ
grant

&

Figure 2-6. Failed round for receiving reject message [12].

Chapter 3

Hardware and Operating System

In this chapter, we will introduce sensor node with hardware platform and operating
system software aspects. We can see more information about hardware platform Micaz.
For the software, TinyOS [4] is the most popular embedded operating system in WSN.

We will review the basic mechanisms and features about it.

3.1 Micaz Motes

Micaz is one of the series products for WSNSs. It is designed by UC Berkeley and
produced by Crossbow Technology, Inc. Sensor board and interface board will integrate
with Micaz for data sensing and program downloaded purpose.

3.1.1 Sensor board

MTS310 is a flexile sensor board with a variety of sensing modalities. These
modalities include dual-axis accelerometer, dual-axis magnetometer, light, temperature,
acoustic and sounder. The sensor detects physical world phenomena and produce analog
signals to ADC.

3.1.2 Mote Interface Board (MIB)

MIB510 [14] allows for the aggregation of sensor network data on a PC as well as
other standard computer platforms. This interface board includes serial port
programming for IRIS, MICAz and MICA2 platforms. It also supports JTAG for code
debugging.

The MIB510 has one system processor which is named Atmegal6L on board. Code
is downloaded to system processor through the RS-232 serial port. Then system
processor programs the code into the mote. The system processor runs at a fixed baud

rate of 115.2 k.

Figure 3-1. MTS310 and MIB510

3.1.3. Mote Processor Radio (MPR)

MPR2400 [14] is a 2.4 GHz mote module used for enabling low-power, wireless

sensor networks. The key features of the platform as below.

IEEE 802.15.4 compliant RF Transceiver Chipcon CC2420 [17].

Microcontroller Atmel ATmegal28L [16] with 128K Bytes in system flash. It
contains analog inputs, digital 1/0, 12C, SP1 and UART interfaces.

250 kbps data rate.

2.4 t0 2.48 GHz, a globally compatible ISM band and programmable in 1 MHz steps.
Indoor range up to 20 m or 30 m.

Direct sequence spread spectrum radio which is resistant to RF interference and

provides inherent data security.

|:| MMCX connactor I
2
Logger o
=
Flash -
Fad
=
=1
=1
o
ATMegal28L e
pcontroller O
Analog /O o S
Digital 110 > §
g
w -
CC2420 DSSS]
Radio m m
=]
. w

Figure 3-2. MPR2400 and Block Diagram [14]

10

3.2 TinyOS

TinyOS [4] is initially developed by the U.C. Berkeley EECS Department and it is a
standard framework used in wireless embedded sensor networks. The components and
interfaces are reusable.

TinyOS has several important features. It is a component-based architecture with
simple event-based concurrency model and split-phase operations. We will descript
these concepts by sequence later.
® Component-based architecture

TinyOS [18] contains several build-in components such as timer, ADC, LED and
hardware control modules. Each program is composed of different components. There
are two types of components, module and configuration. When upper application
program wants to set up a periodical timer, it will include the related modules and these
modules are wired together by configuration files. By this way, application can
manipulate the needed modules by wiring method.

Each module component can provide or use interfaces. There are a set of functions
declared in interfaces. When the module “provide” interface, it means the module must
implement all of the declared functions in interfaces and these functions will be called
by other module’s interfaces. When the module “use” interfaces, it means the module
can call all of the declared functions in the interface. But the interface also has to
prepare some callback functions which will be called by “provide” interface modules.

Briefly, modules will interact with others modules by interfaces. The advantage for
this architecture is components reusable. For example, when one programmer has
implemented the hardware ADC modules then the other programs also can use the
related ADC functions by wiring ADC modules into current modules. When there are
some problems in ADC component, the developer will focus on one module and there is
no need to rewrite the whole program. When the known issues in ADC component are
fixed then the related programs can work properly again. In this architecture, program

looks like a chain of components and upper application does not need to know the detail

11

low level hardware behaviors. Each component will focus on its current scope. It will
active and increase efficiency for software developing and debugging.
® Tasks and event-based concurrency

In TinyOS [18], there is no kernel-space, user-space and context switching. The
standard scheduler of TinyOS [18] follows a FIFO policy to execute tasks, task runs to
completion in background and could not be preempted by other tasks. But tasks could
be preempted by interrupt handler event. Many events are triggered by hardware, such
as timer, sending packets and receiving packets. When the task is preempted by
hardware interrupt, it will face concurrency problem. The programmer must handle
above situations and protect shared variables carefully.

In NesC [19], we can declare a section of codes with syntax “atomic” and it means
current process should not be preempted by interrupts. Absolutely, we can use syntax
“atomic” to protect shared variables in a task. Although above mechanism can do
variables protection, it is better to keep tasks and atomic sections shorter. With shorter
tasks, system will have faster reaction time to handle interrupt events.
® Split-phase operations

It is better to split long-latency operations into different phases. In a blocking system,
the program calls a long running operation and the function does not return until the
needed operation is complete. Obviously, the system will waste time for waiting and
nothing can do. In a split-phase system, when the program calling a long running
operation then the function returns immediately and CPU can do the other things. When
the operation is completed, system will signal the corresponded callback function to

remind current process. With this mechanism, it avoids blocking state in the system.

3.3 NesC

NesC [19] means Network Embedded System C and it is an extension type of the
C language. All of the TinyOS operating system, libraries and applications are written in

NesC. The basic concepts for NesC are listed as below.

12

® Code will be generated by program compilers.
It can increase runtime efficiency and robust design, so the components are statically
linked to each other via their interfaces. It provided a better code generation and
static analysis and it can detect data race at compile-time.

® Component behaviors are specified in a set of interfaces.
The provided interfaces are intended to represent the functionalities that the
components provide to its user. The used interfaces used the functionalities that
component needs to perform its job.

® Interfaces are bidirectional:
There are two kinds of interface, “provide” and “use” interface. Provide interface
means components implement a set of functions, then other components can wire to
the interfaces and used these functions. Use interface means components implement
a set of callback functions. The provide interface will call these callback functions
when some commands had done.

For the bidirectional interface aspect:

Interface Command Event
Use Call Implement functions
Provide Implement functions Signal

Table 3-1. Relation between provide and use interface.
One example in Figure 3-3, it shows how the configuration files to wire modules
together. Configuration wires modules BlinkM and SingleTimet by interface Timer and

it also wires modules BlinkM and LedsC by interface Leds.

13

Component configuration:

Configuration Blink { }

implementation |
components Main, BlinkM, SingleTimer, LedsC:
Main.StdControl - SingleTimer.StdControl:
Main.StdControl -= BlinkM.StdControl;
BlinkM.Timer -> SingleTimer. Timer;
BlinkM.Leds -= LedsC . Leds;

Lse Interface

Provide Interface

Module

BlinkM

Timer

1 Tin

wer Leds

Leds

Module

Single'Timer

LedsC

Figure 3-3. Example for wiring modules.

14

Module

Chapter 4

System Architecture to Realize TDMA

In this chapter, we will introduce the components in TDMA mechanism and focus on
components implementation. The goal is to design the suitable modules and use these
modules to realize TDMA mechanism. The exported functions will be declared in
interfaces then application layer programs can wire these modules together and use the

provided functions.

4.1 System architecture

In this section, we will overview TDMA mechanism in two aspects. Fame
structure is for system running time period and software components architecture is for
the relation between components. There are three basic components in TDMA
mechanism which includes time synchronization, slot assignment algorithm and mode
selection.

4.1.1 Fame structure

The frame structure is composed of control phase and transmission phase. There
are three types of periods: time synchronization period, slot assignment period and
mode selection period. The overview of TDMA scheme is shown in Figure 4-1.

In control phase, each node will recognize and record its parent node then system
will build up a parent-child forwarding tree. After each node has learned its parent node,
system will do time synchronization (section 4.2) for each pair of parent and child nodes.
In time synchronization period, each child node will send time synchronization packets
to its parent node and parent node will send back acknowledge packets with timestamp.
Then child node will depend on timestamp to calculate time offset then modifies its
local time to match with parent node. When this period is completed, system will enter
slot assignment period.

In slot assignment period, each mote will collect all of its one-hop and two-hop

15

neighbor’s information through packets exchange then node will execute slot
assignment algorithm (section 4.3). After executed the algorithm, every node in the
system will get its slot number. Then each node sends packet to sink with its slot
number through parent-child forwarding tree. Sink will receive all the reports from each
node then sink calculates cycle length by this information. Finally, sink will broadcast
packets with total cycle length inside.

In transmission phase, there is mode selection period inside. Mode selection period
(section 4.4) will be divided into transmission operation, receipt operation and idle
operation. After control phase completed, each node got its slot number. At the
beginning of each time slot, node will enter one of above operation modes. When node
owns current time slot, it will enter basic transmission operation and node can transmit
packets in this time slot. When one of the node’s one-hop neighbors owns current time
slot, node will enter basic receipt operation and wait for receiving packets from its
neighbors. When current time slot is neither owned by the node nor by its one-hop
neighbors then node will enter idle mode.

At the beginning, system enters control phase and each node executes time
synchronization and slot assignment algorithm. Then system enters transmission phase
after system nodes have synchronized with their parent nodes and get their own time
slots. In transmission phase, system nodes will transmit and receive packets under
TDMA mechanism for a long period of time. After a long time, system will enter
control phase again. Then nodes will re-synchronize with their parent nodes and do slot

assignment algorithm again.

16

Control phase | Transmission phase | Transmission phase | <<=« | Transmission phase | Control phase

Time Synchronization Slot Assignment Mode Selection
period period period
Slotnumber | 1|2 [3 |4 . N-1|N N nodes in system
to TX | or [RX |or | Idle t
' -

Figure 4-1. TDMA mechanism overview, N modes in network
4.1.2 Software components architecture

In the thesis, we do not design new MAC layer protocol and physical interface. So
the TDMA mechanism is still base on the B-MAC protocol. Actually, it works as the
middleware between application layer program and low-level hardware. The relation
between TDMA components and TinyOS’s components is shown in Figure 4-2. TDMA
module will provide several interfaces then upper application will wire them and use the
related commands or evenits.

Time synchronization, slot assignment algorithm and mode selection components
will process packets transmission, packet receipt and message exchange. So these
components will connect to TinyOS transmit and receive component groups. In these
groups, active message component will provide interfaces with packet transmission and
receipt for upper application. CC2420 related components will control the interrupt of
packets sending and receiving, switch hardware into transmit mode or receive mode,
read and write data from FIFO queue, RF power and so on.

Time synchronization component will connects to timestamp component group. In
this group, time component provides system time and we use it for time synchronization.
Mode selection component will connect to power management components group

which will control ATmegal28 in active, idle and other power saving modes. Power

17

management components also can turn on and turn off CC2420’s crystal oscillator. By

this way, it can disable RF interface when the mote into idle mode.

Application Tm_yO_S
Application
v
Time Slot Assignment Mode TDMA
Synchronization Algorithm selection Components
! , y
/
TimeStamp Transmit and Power TinyOS
component Receive components Management components| Com ponents
TimeStamping GenericComm HPLPowerManagement
Timer AMsStandard CC2420ControlM
CC2420RadioM
HPLCC2420M
HPLCC2420FIFOM
A + y
h 4 A\
ATMEL ATmegal28 Chipcon CC2420 Hardware

Figure 4-2. Components Architecture

4.2. Time synchronization

In TDMA architecture, time synchronization is an important topic because every
system mote will power on at different time. Without accurate time synchronization,
some motes will transmit packets at the same time. It will cause interference, packets
collision and reduce the performance.

4.2.1. Overview

Our time synchronization is designed base on TPSN[8] and we have introduced the

18

basic concepts in section 2.2.1. At the beginning of control phase, TPSN protocol is
running. Child node will synchronize system time with its parent node and it can
eliminate clock offset issue between itself and parent node. Actually, there are some
uncertain factors in time synchronization. In TPSN, send time, access time and receive
time are important because system posts task for packet transmission and signal receive
event.

In Micaz platform, Chipcon CC2420 [17] will access 802.15.4 radio packet and it
connected to ATmegal28 through SPI interface. Packet format is shown in Figure 4-3.
There is one pin which named “SFD” in Chipcon CC2420. SFD pin goes active when
the start of frame delimiter (SFD) field in radio packet has been completely transmitted
or radio packet’s SFD field in 802.15.4 [20] packet has been completely received.

For packet transmission [21], application layer program sent radio packets by
posting a task. System will prepares packet header and payload then put this task into
task FIFO queue. In the FIFO queue, task will be handled by sequence. It is not suitable
to add timestamp in application layer. Because there must have uncertain time
difference between calling system function and packet leaving radio interface. One
better way is to add packet timestamp in MAC layer instead of adding it in application
layer. For packet receipt, time difference still exist between packet arrived at MAC layer

and application program been noticed to retrieve packet from receive buffer.

Bytes: 2 1 0to 20 n 2
Frame Data Frame Check
MAC
Layer Control Field Sequence In’?:ﬁ;:?iin Frame payload Sequence
(FCF) Number (FCS})
MAC Header (MHR) MAC Payload MAC Foater
(MFR}
Bytes: 4 1 1 5+ (010 20)+n
PHY Freamble S“ageﬁfmﬁtr::]e Frame Mﬁz@ﬁfd
Layer Sequence (SFD) Length (MPDU)
Synchronisation Header FPHY Header| FHY Senvice Data Unit
(SHR) (PHR) (PSDU)

11+ (4t020)+n

PHY Protocol Data Unit
(PPDU)

Figure 4-3. IEEE 802.15.4 packet format.
4.2.2. Implementation detail
For TPSN implementation, sink node will broadcast discovery packet in initial

time. This packet contains level value and local node id. Nodes receive discovery packet

19

will record source node id as parent node id then re-broadcast it with increment level
value by one. Nodes not receive discovery packet will broadcast request packet for
getting level value. Any node receives request packet will send discovery packet to it.
For time synchronization, it is the two way packets exchange with timestamp.
During synchronization, if there is no response from parent node, child node will send
synchronization packet again. If it is still no response for several times, child node will
send request packet then retrieve level value and parent node again. It is important not
to add timestamp in application layer. In packet transmission procedure, sending system
function will prepare packets and put them into Chipcon CC2420 TXFIFO buffer
through module HPLCC2420FIFOM. During packet transmission, CC2420 SFD pin
will active when the packet SFD field (start of frame delimiter) has been sent. It will
trigger interrupt then we have to capture current system time and add timestamp in
sending packet. Above procedures are implemented in interrupt handler. For packet
receipt, packets will put in CC2420 RXFIFO. During this period, SFD pin will active
when the packet SFD field has been received. We also capture current system time in
the interrupt handler and record it as receipt time. Figure 4-4 shows the relation between

timestamp and SFD pin.

SFD transmitted,
Capture system time: T e

Modify buffer with T .
Y +
SEND Preamble SFD Frame Length | MAC Header | Payload Ti:"L' FCS ¢
value
SFD pin |_
| | |
I | I
Automatically generated Data fetched from TXFIFO
preamble and SFD
SFD received,
Capture system time: Toypren:
\ A
RECEIVE Preamble SFD Frame Length | MAC Header | Payload Ti:""' FCS t
value
SFD pin | |_

Figure 4-4. Timestamp with the SFD (a) sending packet (b) receiving packet

20

During code implementation, something should be noticed:
® During packet transmission period, SFD interrupt is happened. It is important to
generate timestamp and add it into packet as soon as possible. Otherwise, packet
had been transmitted already and packet payload will not be modified.
® In time synchronization, there are many packets with different types such as level
discover, time synchronization and synchronization acknowledge packets. It is a
good idea to assign different type packet with different handle ID. The handle ID can
be assigned in configuration files. TinyOS will dispatch these packets to the
corresponded functions and it will be easier for code implementation and debugging.
Reference to Figure 4.2, time synchronization operation uses all the components in

“Transmit and Receive components” and “TimeStamping components”.

4.3. Slot assignment algorithm

4.3.1. Overview
In control phase, each mote can get its own slot number through slot assignment
algorithm. We use node ID, request packets and grant packets to do slot assignment.
Every node will maintain one-hop and mixed-hop neighbor link lists which include
neighbor’s information such as node 1D, node slot number and so on.
The main procedures of slot assignment algorithm as following:
® Mote X will collect its entire one-hop and two-hop neighbor’s information then
build up one-hop and mix-hop neighbor link lists.
® According to mixed-hop neighbor link list, mote X will send slot request packets to
all of its one-hop and two-hop neighbors.
® \When mote Y received slot request packet from mote X.
B [f mote Y does not get its slot number yet and Y.id < X.id then mote Y will reply
slot grant packet to mote X.
B Otherwise, mote Y will do nothing.
® Once mote X receives all grant packets from its one-hop and two-hop neighbors

then mote X will select one slot number which is not used by its one-hop and two-

21

hop neighbors.
® Mote X will send slot number grant packet to its one-hop and two-hop neighbors

with selected slot number.
® Mote X will send packet to sink with selected slot number.
® Sink receives all of these packets from system nodes and calculates slot cycle length.
® Finally, sink will broadcast packets with slot cycle length information.
4.3.2. Implementation detail

Each node will maintain one-hop and two-hop neighbor information. Because the

numbers of neighbors are uncertain so we create two link lists. One-hop neighbor link
list contains node’s one-hop neighbor node id. The link list will be used by other nodes
to build up mixed-hop neighbor link list. Mixed-hop neighbor link list contains node’s
one hop and two hop neighbor node id and slot number. Slot assignment algorithm will
use above information to calculate system nodes slot number. These two link lists are

shown in Figure 4-5.

One hop neighbor node id

i 3 v

i E— - |
I
! ¥ o
) | NULL
Indicated flag
(a)
One and two hop neighbor node id
v v v
! ¥ o
| NULL

Slot number
(b)
Figure 4-5. (a) One-hop neighbor link list (b) Mixed-hop neighbor link list

In this section, there are several different packet types and we list some packet

types as shown in Table 4-1. The following steps show how the slot assignment works.

22

Packet Type Description

One hop request packet Request for node’s one-hop neighbor.

One-hop neighbor replies to
One hop reply packet
request node with node id.

Node broadcasts all of its
One hop information packet
one-hop neighbors node id.

Slot request packet Request for one / two-hop grant packet.

Slot grant packet Reply to request node with grant information.

Node informs its one and two hop

Slot number grant packet . .
g P neighbor with selected slot number.

Node informs sink with

Slot number sink packet
selected slot number.

Table 4-1. Several packet types in slot assignment

First, node X will broadcast one hop request packets with node id. All of node X’s
one hop neighbor nodes will receive these request packets then send one hop reply
packets to node X. Node X will build up one-hop neighbor link list by these one hop
reply packets. By the same way, node X’s one-hop neighbors also build up their one-hop
neighbor link list.

Second, node X will broadcast one hop information packets which contains all of
its one-hop neighbor nodes id and local node id. When node Y received these packets, it
will know the entire two hop nodes id. By the same way, node X also knows the entire
two hop nodes id. Node X will receive many one hop information packets from its one
hop neighbors and it will filter out the redundant packets then build up the mixed hop
neighbor link list.

Third, node X refers its mixed hop neighbor link list and sends slot request packets
to its one hop and two hop neighbors with local node id. According to slot assignment
algorithm (section 4.3.1), node X’s neighbors will send slot grant packets to node X
when its nodes id are small than node X’s id.

Fourth, node X received slot grant packets and it will check all of the neighbor’s

23

grant packets are ready or not. After all of the grant packets are received, node X will
select one slot number different than its neighbors. Node X will send slot number grant
packets to its entire one hop and two hop neighbors. These nodes will modify their
mixed hop neighbor link list.

Fifth, node X will send slot number sink packet to sink. Sink will calculate total
slot cycle length and broadcast slot cycle length information.

According to slot assignment algorithm (section 4.3.1), node with largest id will
collect the entire one hop and two hop neighbor’s grant packets earlier than the other
nodes. So the node with largest id will select its slot number first the smallest id node
will select its slot number at the end.

One example is shown in Figure 4-6. This example explains how to build up mixed hop
neighbor link list.
® Node 1: One hop neighbor link list: {2, 3, 5}
Node 2: One hop neighbor link list: {1, 3, 4}
® Node 1: Broadcast one hop information packet: {1, 2, 3, 5}
Node 2: Broadcast one hop information packet: {2, 1, 3, 4}
® Node 1: Received one hop information packet from node 2.
Builds up mixed neighbor link list: {2, 3, 4, 5}
Node 2: Received one hop information packet from node 1.
Builds up mixed neighbor link list: {1, 3, 4, 5}
® Node 1: Knows node 4 is two-hop neighbor now. Node 1 will send slot request
packet to node 4 later.
Node 2: Knows node 5 is two-hop neighbor now. Node 2 will send slot request

packet to node 5 later.

24

@ Node 4

—— —
S o S
-

Kf’; @ Node 3 R

A

& b
r . b
! Node 2
! |
/ \
I |
: @ Node | :
1 .
\ f
Y !
% /
b @® Node 5 y
s &
T e
e -~
S -

Figure 4-6. Build up mixed hop neighbor link list.
In the real environment, radio interference and packet loss can not be avoided, so
something should be noticed:
® \When mote X broadcasts one hop request packet and it receives over two one hop
reply packets from mote Y. Mote X will add mote Y in one-hop neighbor link list.
® Mote X sends slot request packet to all of its one-hop and two-hop neighbors, when
packet timeout happened it will send request packet again.
Reference to Figure 4.2, slot assignment algorithm uses all the components in “Transmit

and Receive components”.

4.4. Mode selection mechanism

After each node doing time synchronization with its parent node and getting its slot
number (section 4.3), system will enter transmission phase. There are three operations
in mode selection mechanism, transmission, receipt operation and idle operation.

In mode selection phase, mote will wake up in the beginning of each time slot
period. In this moment, mote will check some conditions and enter one of the following
operations.
® Transmission operation: Mote owns current time slot, it means the mote has the

possibility to transmit packets.

25

® Receipt operation: One of mote’s one hop neighbor nodes owns current time slot, it
means the mote has the possibility to receive packet.

® |dle operation: None of above conditions then mote enters power saving mode.

Timer interrupt trigger
callback function

Both node and node's one-hop
neighbors not own current slot

Node's one-hop neighbor
own current slot

Callback function
check current slot number

Node owns current slot

v v
Idle Operation Transmission Operation Receipt Operation

Figure 4-7. Mode selection mechanism
We will explain how to implement TDMA time slot. Each mote manipulates its
hardware timer counter and the corresponding interrupt will be triggered when the timer
counter is overflow. Timer interrupt handler will trigger the prepared callback function.
With above relations, timer interrupt will cut time axis into several time slices. Motes
will do mode selection in the interrupt handler function.

Timer Interrupt
|

()
W
I
7
Z

Slot number 1

Figure 4-8. Time slot and interrupt
In MICAz, ATmegal28L [16] provides four hardware timers. TimerO is used by
system timer and Timerl is used by Chipcon CC2420 [17] radio stack. Timer3 is a 16
bit timer, it will be better than 8 bit Timer2 in time resolution.

Before hardware timer works properly, there are some configurations and initial

26

procedures must be done. We list the main procedures as below.

Step 1: Disable Timer3 output compare match interrupt.

Step 2: Select timer to Clear Timer on Compare match (CTC) mode.

Step 3: Select clock prescaler value.

Step 4: Select output compare register.

Step 5: Assign default values for output compare register and Timer3 counter register.
Step 6: Prepare interrupt handler function.

Step 7: Enable Timer3 output compare match interrupt.

The relations between application layer program and Timer3 components are shown in
Figure 4-9.

® Timer3M and HPLClock3 are components for implementation.

® Configuration Timer3C wired components MainC and Timer3M.

® Configuration Clock3C wired components Timer3M and HPLClock3.

In HPLClocka, it will handle the timer and interrupt ISR by accessing the register
value in ATmegal28.

Both of transmission operation and receipt operations will do packets communication.
There are something should be noticed as below.

® Specifying the message data to send.

® Specifying destination node to receive the message.

® Determining when the memory associated with the outgoing message can be reused.
® Buffering the incoming message.

® Processing the message on receipt event.

27

Clock3C

Timer3 —h--> Timer3 Clock3 | [>———m"> Clock?
MainC Timer3M HPLClock3

StdComtrol _...} StdControl StdControl :—;\._....:“_::. St ontrol

Read / Write registers

Atmel ATmegal28
Figure 4-9. Set hardware timer in ATmegal28
4.4.1 Transmission Operation
4.4.1.1 Overview

When one mote in transmission operation, it owns current time slot and it can send
packets to other motes. Each mote maintains one application layer TX buffer and the
data payload are stored in EEPROM.

In transmission operation, data will be retrieved from EEPROM and put it into TX
buffer. Mote will read data from TX buffer and construct packet payload. Then the
packet data will into Chipcon CC2420 TXFIFO through system function call. When the
packet has sent done, system will signal callback function. In the callback function, we
will check TX buffer and current time slot. Briefly, mote will try to transmit packets as
possible as it can until TX buffer is empty or current time slot is not owned by node.
4.4.1.2 Implementation detail

In TinyOS, radio packet communication follows Active Message (AM) model, AM
data structure is shown in Figure 4-10. It contains destination address, message type
(AM handler ID), length, payload, etc. Each packet on the network with an AM handler
ID. When a node receiving the message, system will check packet hander ID and the
associated received event will be triggered. With this mechanism, we can simplify the
complex transmission and receipt procedures and the source code architecture will be

more clarified.

28

AM.h:

typedef struct TOS_Msg
{
uint8_t length;
uint8_t fcfhi;
uint8_t fcflo;
uint8_t dsn;
uint16_t destpan;
uintl6_t addr;
uint8_t type;
uint8_t group;
uint8_t data TOSH_DATA _LENGTH];
uint8_t strength;
uint8_t lqi;
bool crc;
uint8_t ack;
} TOS_Msg;

Figure. 4-10 AM message packet format.

When one node wants to communicate with other nodes by radio packet, its
application program will wire to module GenericComm. In this module, it will provide
many low level interfaces such as SendMsg and ReceiveMsg. When application
program have prepared the data payload already, it will call the related commands in
interface SendMsg and data payload will put into Chipcon CC2420 TXFIFO buffer.
Then packet will be sent through radio interface.

For the purpose to retrieve data from EEPROM, application layer program need to
wire component Logger and call related commands in interface LoggerRead to read data

from EEPROM. The detail information for packet transmission is shown in Figure.4-11.

29

Transmission Operation

Check node owns Mo

current slot

Empty o

Mot empty

Retrieve data from TX queue
and prepare AM message

Sending packets |
_[Packet transmission dong

QUIT g y

Figure 4-11. Flow chart for transmission operation.

4.4.2 Basic Receipt Operation
4.4.2.1 Overview

In basic receipt operation, node’s radio interface is still in active mode and the
node is ready to receive packets from its one-hop neighbors. When mote receiving radio
packets, it will store the packets into EEPROM and the data will be retrieve when mote
in transmission operation.
4.4.2.2 Implement

As transmission operation, application layer program will wire component Logger
for EEPROM access. Application also calls related commands in interface LoggerWrite

and write data into EEPROM by SPI bus. One thing should be noticed, EEPROM will

30

be read and written in 16-byte blocks and both are split-phase operations.

Reference to Figure 4.2, both transmission and receipt operations use all the
components in “Transmit and Receive components” and LoggerM component in
“Power Management components”.

4.4.3. Idle Operation

In WSN, power saving [15] is an important topic because battery life is limited.
Our target is to minimum mote power consumption. When one mote is neither in
transmission nor receipt operations, it means there is no packets communication in this
time slot. So we disable radio interface and trigger processor into power saving mode to
reduce power consumption.
4.4.3.1. Overview

Micaz MPR2400 consists of two main chips, ATMEL ATmegal28 [16] and
Chipcon CC2420. For ATmegal28, there are five types of clock shown in Figure 4-12
and the different power saving modes is shown in Table 4-2.

In processor idle mode, we also turn off CC2420 radio interface because there is no
need for packet communication. At this moment, ATmegal28 clock clkyo is still
working and Timer/Counter overflow will trigger interrupt then wakes up processor. We
use Timer3 to do the overflow and trigger operation. When the mote is awakened, it will
check whether the mote into transmission or receipt mode then turn on CC2420 radio

interface again.

Asyachronons General 110) Flash and
Timer/Counter madules il LG RAM EEFROM
' A A A fy A
clkanc
clkio AVR Clock Control Unit clkery
Ulk.".!%‘r' L'“{F]..-\.q”

Figure 4-12. ATmegal28 [16] Clock Distribution

31

Mode Active Clock | Wake up source

® The same items as ADC Noise
C|k|o , ClkADC Reduction.

Idle
clkasy ® Timer / Counters overflow.

® USART transmit complete interrupt.

® The same items as Power down.
® Timer/Counter0 Interrupt.

ADC Noise Reduction | clkapc, clkasy
® ADC Conversion Complete interrupt

® SPM/EEPROM ready interrupt.

Oscillator,
Extended Standby ® The same as Power save.
ClkASY
Standby oscillator ® The same as Power down.
@® The same items as Power down.
Power save clkasy
@® Timer/Counter 0 (asynchronously).
® External Reset.
Power down None ® \\atchdog Reset.

® Two-wire Serial Interface address.

Table 4-2. Sleep mode for ATmegal28 [16].

4.4.3.2 Implementation detail

In TinyOS, power management functions are implemented in component
HPLPowerManagement which provides interface PowerManagement. In this interface,
it access MCU control register in ATmegal28 and make Micaz into different power
saving modes. Upper application can wire this interface and use the provided commands
to get processor current state and manipulate it into different state in Table 4-2.

We can reduce power consumption in Chipcon CC2420 by disable radio interface
when the processor into sleep mode. Component CC2420ControlM provides interface
SplitControl and CC2420Control which control CC2420 radio interface voltage

regulator and oscillator. In interface CC2420Control, we can enable and disable voltage

32

regulator by commands VREFON() and VREFOff(). Some commands are declared to
enable and disable oscillator by OscillatorOn() and OscillatorOff(). Upper application
wired to interface SplitControl and call provided commands to control radio interface.

Interface CC2420Control access Chipcon CC2420’s registers through interface
HPLCC2420 and HPLCC2420Interrupt. Module PowerControl TDMA works as the
middleware between upper application program and CC2420Control and the relations
are shown in Figure 4-13.

Reference to Figure 4.2, idle operation uses HPLPowerManagement and
CC2420ControlM components in “Power Management components” for different

power consumption.

33

MainC

Power“ontrol

Power“ontrol

PowerControl TDM A

Timer PowverManagement SpliControl

\

e

W Ve WV
Timer PowerMunupement SplitControl CC2420 0ntral
TimerM HPLPowerManagement CC2420Control

HPLCC2420 HPLCC2420Interrupt

HPLCC24 20 ntermupe
HPLCC2420C

W
HPLCC2420

7

HPLCC2420 HPLCC2420Internupt
v W
HPLCC2420 HPLCC24200ntermpt
HPLCC2420M HPLCC2420InterruptM

Figure 4-13. Interfaces relations for power saving mode.

34

Chapter 5

Experiment

In this chapter, we will show the experiment results for the independent components

such as time synchronization, slot assignment and power consumption.

5.1. Time Synchronization Algorithm

In order to measure the accuracy of time synchronization, we set up the test
environment with four sensor nodes. Each mote connects to a mote interface board and
interface board also connects to personal computer through serial port. Test environment
is shown in Figure 5-1.

The source mote will broadcast information packets and all of its one-hop neighbor
motes will receive these packets then record timestamp. We summary the test steps as
below.
® All motes execute time synchronization algorithm (section 4.2) first.
® Mote W will broadcast one hundred packets per hour.
® Motes X, Y, Z receive above broadcast packets from mote W and record current

system time. System will do the comparison for the difference of packet’s timestamp

between motes X, Y, Z.

Figure 5-1. Time synchronization environment.

35

For the purpose to test the stability of time synchronization algorithm, we continue
this experiment until four hours. The testing results show that most of the timestamp
difference between motes X, Y, Z within 2 ticks (17.36 us). After four hours pasting,
timestamp difference is still stable as the beginning of this experiment.

At 0 hr, average error is 2.15 ticks (18.622 us) and result is shown in Figure 5-2 (a).
At 1 hr, average error is 2.09 ticks (18.141 us) and result is shown in Figure 5-2 (b).
At 2 hr, average error is 2.14 ticks (18.53 us) and result is shown Figure 5-2 (c).

At 3 hr, average error is 2.46 ticks (21.35 us) and result is shown Figure 5-2 (d).

At 4 hr, average error is 1.97 ticks (17.099 us) and result is shown Figure 5-2 (e).
Between Ohr ~ 4 hr, average error is shown in Figure 5-2 (f).

Packet number Packet number Packet number

f A 1
[fil fil

50
40
30
20
10

)

(a) (b) (c)
Packet number Packet number average ermoT (us)
4 4 4
ikl Lalh] 72
30 30

20

40 40

I8
30
20

10

16

5

0 0

i) I 2 3 4 i {Hr)
(d) (e) ()
Figure 5-2. Time synchronization test results.
Next, we will do another time synchronization experiment for two-hop neighbors.
We set up the test environment with three sensor nodes. Each mote connects to a mote

interface board and interface board also connects to personal computer through serial

36

port. The test environment is shown in Figure 5-3.
The source mote sends unicast packets to its one-hop neighbor which will send the

packet to its one-hop neighbor mote again. We summary the test steps as below.

® All motes execute time synchronization algorithm (section 4.2) and calculate the
propagation delay between mote X and Y, mote Y and Z.

® Mote X sends one hundred unicast packets with timestamp to mote Y per hour.

® Mote Y receives above packets from mote X then re-sends these packets to mote Z.
The packet content is composed of mote X’s sending timestamp, mote Y’s receipt
timestamp and mote Y’s sending timestamp.

® Mote Z will receive above packets from mote Y then records receipt timestamp.
System will do the comparison for the difference of mote X’s sending timestamp and
Z’s receipt timestamp. The difference value should minus propagation delay and

time difference for mote Y’s receipt timestamp and sending timestamp.

Figure 5-3. Two-hop time synchronization environment.
The testing results show that most of the timestamp difference between mote X and Z
within 3 ticks (26.04 us).
At 0 hr, average error is 2.60 ticks (22.568 us) and result is shown in Figure 5-4 (a).

At 1 hr, average error is 2.37 ticks (20.5716 us) and result is shown in Figure 5-4 (b).

37

At 2 hr, average error is 2.42 ticks (21.0056 us) and result is shown in Figure 5-4 (c).
At 3 hr, average error is 2.35 ticks (20.398 us) and result is shown in Figure 5-4 (d).
At 4 hr, average error is 2.63 ticks (22.8284 us) and result is shown in Figure 5-4 (e).
Between Ohr ~ 4 hr, average error is shown in Figure 5-4 ().

Packet number Packet number Packet numbser

' A A
Al fili] ali]

30
40

a0 S0

40 40

a0 30 30

20 0 Pat)

10 .

o o Tick

]] 0

| 253 4 5 6 1 2 3 4 5 6
(@) (b) (c)
Packet number Packet number averge error (us)
F 'y '

ild]] 3
30 50

22

40
21

30
20
10

20

10

) {1

1] | 2 3 4 ti{Hr)

(d) (e) (f)

Figure 5-4. Two-hop time synchronization test results.

5.2. Slot Assignment

In order to confirm slot assignment algorithm, we set up the test environment with four
sensor nodes. Each mote connects to a mote interface board and interface board also
connects to personal computer through serial port. Test environment is shown in Figure
5-5. We summary the test steps as below.

® |Install firmware in mote W, X, Y, Z with different node id.

® Run slot assignment algorithm.

® Record each mote's slot number.

38

- S
e -~ e
)"f < ", 4 < B \\"
g ¢ 7 / . \
p / 7 / 5 y
; ! ! / 1 \
) f ! ! %
/ Y oy / A !
* | |’ f | |
I I
i o @ B o |
\ | i 1 / i
\ | \ \ N
\ \ \ i !
\ it Y ! !
5 AY b N)
h *u AN . *
=, i o i Y .-"'/

— — e e =

Figure 5-5. Slot assignment environment.
In slot assignment algorithm, each node will select its slot number which is different
with its one-hop and two-hop neighbors. For slot number sequence, mode with larger id

will select slot number first. The test result is shown in Table 5-1.

Node w X Y z
ID 4 3 2 1

Slot number 1 2 3 1
ID 1 3 4 2

Slot number 3 2 1 3

Table 5-1. Motes slot number list.

5.3. Current Consumption

In this experiment, we switch mote ATmegal28 into different power saving mode
and measure the current consumption. We will disable radio interface when the mote is
not in packet transmission and packet receipt mode.

We set up the test environment with one mote, power supply and current meter.

Test environment is shown in Figure 5-6 and test steps as below.

® |Install firmware in the mote then switch the mote into different power saving mode
every ten seconds.

® Power supply connects to mote for power providing.

® Current meter connects to mote and we use it to measures current consumption.

39

Power Supply

+ -
|

Mote

Current meter

Figure 5-6. Current consumption test environment

The current consumption in different power save mode is shown in Table 5-2.

Mode Current consumption
Active mode 8.34 mA
Active mode with packet transmission 23.51 mA
Active mode with packet receipt 23.80 mA
Idle 3.6 mA
ADC Noise Reduction 1.28 mA
Power down 17 uA
Power save 33 UA
Standby 170 uA
Extend standby 182 uA

Table 5-2. Current consumption in different mode
This experiment result shows that mote current consumption in idle mode is about
15% in packet transmission or packet receipt mode. In WSN, it is necessary to extend
device working time. So we make mote into idle mode with radio interface disabled
when there is no need to handle radio packets.
Assumption two AAA batteries contain 2000 mAHTr then the mote can work for 3.5
days in packet transmission or packet receipt mode. Under the same scenario, mote can

work for 23.1 day in idle mode.

40

Chapter 6

Conclusions and Future Works

In this thesis, we implement the TDMA prototype in TinyOS with hardware
platform Micaz. It includes some essential elements such as time synchronization and
slot assignment. We create TDMA modules as new component and other components
can use it through the exported interfaces and commands. Because upper layer program
will focus on the interfaces and commands name so it is simple to insert new time
synchronization or slot assignment algorithm into TDMA modules. Another, we try not
to do many modifications in TinyOS low level components for compatibility reason.

In the process of code implementation, it is important to understand TinyOS
working flow, packet transmission, packet receipt and hardware interrupt handing.
Review the experiment result, it shows stability in time synchronization which is
important in TDMA model. For power consumption, we just make mote into idle mode.
But the current consumption in idle mode is still too much when comparing with other
power saving modes. In future work; we can do more efforts in current consumption.
Another, we can implement some enhanced mechanisms for system robustness when

the system motes are broken or battery resource exhausted.

4

References:

[1] C.-Y. Chong and S.P. Kumar, “Sensor Networks: Evolution, Opportunities, and
Challenges,” in Proceedings of the IEEE, Vol. 91, No. 8, pp. 1247-1256, August
2003.

[2] H.Yang and B.Sikdar, “A Protocol for Tracking Mobile Targets using Sensor
Networks” in Proceedings of the First IEEE International Workshop on Sensor
Network Protocols and Applications (SNPA 2003), pp.71-81, Alaska, USA, May
2003.

[3] A. Mainwarning, D. Culler, J. Polastre, R. Szewczyk, J. Anderson, “Wireless Sensor
Network for Habitat Monitoring”, Proceedings of the first ACM International
Workshop on Wireless Sensor Networks and Application, pp.88-97, September 2002.

[4] TinyOS, “http://www.tinyos.net/”

[5] J. Polastre, J. Hill, and D. Culler. “Verstile Low Power Media Access for Wireless
Sensor Networks”. Proc. 2nd ACM Conf. Embedded Networked Sensor System
(SenSys 2004).

[6] IEEE 802.11, “http://www.ieee802.org/11/index.shtml”.

[7]J. Elson, L. Girod, and D. Estrin, “Fine-Grained Time Synchronization Using
Reference Broadcasts,” in Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, pp. 147-163, December 2002.

[8] S. Ganeriwal, R. Kumar, M. B. Srivastava, “Timing-sync protocol for sensor
networks”, ACM Conference on Embedded Networked Sensor Systems, Nov 2003.

[9] M. L. Sichitiu, and C. Veerarittiphan, “Simple, accurate time synchronization for
wireless. sensor networks”, IEEE WCNC, p.1266-73, Mar 2003.

[10] M. Mardti, B. Kusy, G. Simon, and A. Lédeczi, “The Flooding Time

Synchronization Protocol,” in Proceedings of the 2nd International Conference

on Embedded Networked Sensor Systems, pp. 39-49, November 2004.

42

[11] Roman Lim, “Wireless Fire Sensor Network Demonstrator”, Master Thesis,
Oct. 2006.

[12] J.M. Injong Rhee, Ajit Warrier, and L. Xu, “DRAND: Distributed randomized
TDMA scheduling for wireless ad-hoc networks”, Proc. 7th ACM Symp. Mobile
Ad Hoc Networking and Computing (MobiHoc'06), May 2006.

[13] Chih-Yu Lin, “Exploiting Spatial Correlation on the Link Layer for Event-driven
Sensor Networks”.

[14] "MPR-MIB Users Manual", Crossbow, June 2007.

[15] Roman Amstutz, “Wake-up Time Estimation for a Wireless MAC Protocol”,
Master Thesis, Aug 2007.

[16] ATMEL ATmegal28(L) DataSheet, ATMEL Incorporated, 2006.

[17] Chipcon CC2420 DataSheet “2.4 GHz IEEE 802.15.4 / ZigBee-ready RF
Transceiver”, Texas Instrument, Mar 2007.

[18] Philip Levis. “TinyOS Programming”, June 2006.

[19] “nesC 1.1 Language Reference Manual”, David Gay, Philip Levis, David Culler,
Eric Brewer. 2003.

[20] IEEE 802.15 TG4, http://www.ieee802.0rg/15/pub/TG4.html.

[21] Barbara Hohlt and Eric Brewer. “Network Power Scheduling for TinyOS
Applications”, IEEE International Conference on Distributed Computing in

Sensor Systems, June 2006.

43

