
 i

國 立 交 通 大 學

電機資訊學院 資訊學程

碩士論文

高效 RSA密碼系統解密方法及實作

An Efficient Decryption Method for RSA Cryptosystem

And Implementation

研 究 生：陳嘉耀

指導教授：葉義雄 教授

中 華 民 國 九 十 四 年 六 月

 i

高效 RSA 密碼系統解密方法及實作

An Efficient Decryption Method for RSA Cryptosystem

And Implementation

研 究 生：陳嘉耀 Student： Chia-Yao Chen

指導教授：葉義雄 Advisor：Dr. Yi-Shiung Yeh

國 立 交 通 大 學

電機資訊學院 資訊學程

碩 士 論 文

A Thesis

Submitted to Degree Program of Electrical Engineering and Computer Science
College of Electrical Engineering and Computer Science

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of
Master of Science

In
Computer Science

June 2005
Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 四 年 六 月

 ii

高效 RSA 密碼系統解密方法及實作

學生:陳嘉耀 指導教授:葉義雄博士

國立交通大學電機資訊學院 資訊學程﹙研究所﹚碩士班

摘 要

RSA密碼系統在電子商務與安全的網際網路存取等許多應用中

是一種最有吸引力與歡迎的安全技巧。為了安全性的考量，RSA密碼

系統必須在大的指數與模數下執行模指數運算，因此需要大量的計算

成本。所以，在許多RSA的應用中，使用者會使用較小的公開金鑰來

加快加密運算，相對的，在解密的運算還是需要大量的計算。本篇論

文提出一有效率的解密實現方法，其架構在中國剩餘定理與RSA強質

數的標準上。在TMS320C55x family of signal processors上實作，此新

方法大約只須16%傳統解密方法的計算成本，與僅運用中國乘餘定理

的解密法相比，大約只須55%的計算成本。換句話說，我們所提出的

方法大約比運用中國乘餘定理的解密法快1.8倍。所以本方法非常適

合加快RSA的解密運算。

 iii

An Efficient Decryption Method for RSA Cryptosystem

And Implementation

Student: Chia-Yao Chen Advisor: Dr. Yi-Shiung Yeh

Degree Program of Electrical Engineering Computer Science
 National Chiao Tung University

Abstract

In this thesis an efficient method to implement RSA decryption

algorithm is proposed. In applications such as electronic commerce and

internet access security, RSA cryptosystem is the most attractive and most

popular security technique. For security reason, RSA cryptosystem has to

execute modular exponentiation with large exponent and modulus. The

RSA cryptosystem needs a very high computational cost. In many RSA

applications, users use a small public key to speed up the encryption

operation. However, the decryption operation has to take more

computational cost to perform modular exponentiation by this case. In

this thesis we propose an efficient decryption method not only based on

Chinese Remainder Theorem (CRT) but also on the strong prime of RSA

criterion. On the TMS320C55x family of signal processors, the proposed

decryption method only needs 16% computational costs of the original

decryption method. Compared with the computational cost of decryption

method based on CRT, our proposed decryption method only needs 55%

computational costs. Therefore, our proposed method is very useful in

accelerating the speed of the RSA decryption operation.

 iv

致 謝

能夠順利完成論文，首先要謝謝指導老師葉義雄教授，在這兩年中給予我各

方面的教導。還要感謝淡江大學黃仁俊老師及蘇豐富學長的指導及黃龍信學長在

實作上的協助。當然也要感謝所有的口試委員，因為他們細心使論文更加完善。

能順利完成學業，要感謝辦公室各級長官的體諒，特別是彭仁岡處長、林副

座、徐副座及張姐，還有所有學長姐的幫忙，在功課方面，除了要感謝黃定宇學

長、薛明宏學長外，還要感謝那群一起奮鬥的專班同學。

最後要感謝我的父母，由於他們的寬容，讓我可以隨心所欲的作我想作的

事，特別是我的媽媽。

陳嘉耀

中 華 民 國 九 十 四 年 六 月

 v

Contents

Chapter 1 Introduction..1
Chapter 2 RSA ...4

2.1 Algorithm ..4
2.2 The Security of RSA...6

2.2.1 Brute Force: ..6
2.2.2 The Factoring Problem ...6
2.2.3 Timing Attack..10

2.3 Strong Prime..13
2.4 Chinese Remainder Theorem ..14

Chapter 3 New Decryption Method ...18
Chapter 4 Computational complexity..25
Chapter 5 Implementation ..30
Chapter 6 Conclusion ..36
REFERENCES ..37

 vi

List of Figures

FIGURE 1 MIPS-YEARS NEEDED TO FACTOR [13] ..8
FIGURE 2 THE STRUCTURE OF STRONG PRIME ...14
FIGURE 3 NEW DECRYPTION METHOD FOR RSA CRYPTOSYSTEM..............................20

 vii

List of Tables

TABLE 1 PROGRESS IN FACTORIZATION [13]...7
TABLE 2 COMPARISON AMONG THREE TYPES OF DECRYPTION METHODS29
TABLE 3 THE FEATURES OF TMS320C55X [32]...31
TABLE 4 PARAMETERS OF THE RSA DECRYPTION..32
TABLE 5 NUMBERS OF CPU CLOCK CYCLES FOR REALIZATION RSA DECRYPTION

BETWEEN THREE METHODS (KEY LENGTH = 2048 BITS).............................32
TABLE 6 NUMBERS OF CPU CLOCK CYCLES FOR REALIZATION RSA DECRYPTION

BETWEEN THREE METHODS (KEY LENGTH = 1024 BITS).............................32
TABLE 7 NUMBERS OF CPU CLOCK CYCLES FOR REALIZATION RSA DECRYPTION

BETWEEN THREE METHODS (KEY LENGTH = 512 BITS)...............................33
TABLE 8 THE MEMORY SPACES FOR REALIZATION RSA DECRYPTION BETWEEN THREE

METHODS (KEY LENGTH = 2048 BITS) ..34
TABLE 9 THE MEMORY SPACES FOR REALIZATION RSA DECRYPTION BETWEEN THREE

METHODS (KEY LENGTH = 1024 BITS) ..34
TABLE 10 THE MEMORY SPACES FOR REALIZATION RSA DECRYPTION BETWEEN

THREE METHODS (KEY LENGTH = 512 BITS)...34

 1

Chapter 1 Introduction
With the rapid progress of modern information technology, security

is an important technique of many applications. The RSA cryptosystem

was proposed by R. Rivest, A. Shamir, L. Adleman in 1978 [2]. It is the

most popular and well-defined security primary technique. RSA is a

cryptosystem widely used to ensure data privacy in many fields such as

communication and PKCS#1 standard lines out a way of encrypting data

using the RSA cryptosystem [3]. Moreover, in digital signature and

digital envelope, RSA provides non-repudiation and confidentiality of

communication [3]. Actually, many good security protocols using RSA

cryptosystem are applied in the modern information technology, for

example, virtual private networks, electronic commerce, and secure

Internet access.

RSA cryptosystem is easy to understand and implement. It is based

on modular exponentiation. This modular exponentiation is performed by

repeated modular multiplications. In general, the modular multiplication

has to be performed a certain number of times to ensure security, but the

consequence is that the RSA operation has to take much more

computational cost for security consideration. In order to include RSA

cryptosystem practically in many protocols, it is desired to devise faster

encryption and decryption operations. Under this consideration, many

hardware implementation methods have been proposed [4, 5, 6], in which

high speed can be achieved but not flexibility.

In these applications, users usually select a small number such as 3,

17, or 65537 to be the public key to speed up the encryption operation [7].

 2

However, by this way, the corresponding decryption operation costs more

computational time because of the larger private key. Another choice is

the Chinese Remainder Theorem (CRT). The decryption operation can be

accelerated by applying the CRT [8, 9, 10] if the prime factors of modulus

are known. It is reasonable that someone who holds the private key can

get the prime factors of modulus. By means of the CRT, the speed for the

RSA decryption operation could be 4 times faster [6]. In addition,

Hayashi proposed a new modular exponentiation method [12] to improve

the computational time of RSA. In his method, the modular

exponentiation with the modulus n transforms into two substitute

operations with factorable moduli n + 1 and n + 2. If moduli n + 1 and n

+ 2 can be factored, user can apply CRT to these modular operations

modulo to n + 1 and n + 2 for each. The final result can be generated by

Hayashi’s formula. But this method is not very practical, especially when

n is an odd number; it would be a difficult job to factor n + 2.

We propose an efficient method to implement RSA decryption

operation in this thesis. This method is not only based on CRT but also on

the strong prime of RSA criterion. The security of RSA is based on the

difficulty of factoring problem. So, the prime factors of modulus of RSA

algorithm must be strong primes. The large modular exponentiation result

can be generated from small exponents and moduli. The proposed method

enhances the performance of RSA algorithm.

The rest of this article is organized as follows: we will briefly review

RSA algorithm in Chapter 2. In Chapter 3 we introduce our new

decryption method. In Chapter 4 we analyze the computational

complexity. In Chapter 5 we talk about the implementation of new

 3

decryption method. Finally, we make some conclusion in Chapter 6.

 4

Chapter 2 RSA
RSA cryptosystem is a typical public-key cryptosystem. Although

the cryptanalysis neither proved nor disproved RSA’s security, it dose

suggest confidence level in the algorithm. RSA gets its security from the

difficulty of factoring large number. The public and private keys are

functions of a pair of large prime numbers. Recovering the plaintext from

the public key and the ciphertext is conjectured to be equal to factoring

the product of the two primes.

2.1 Algorithm
RSA algorithm can be described briefly as follows:

ⅠKey Generation:

1. Choose two large strong primes, p and q.

2. Calculate n = p⋅q.

3. Compute Euler value of n: Φ(n) = (p - 1)(q - 1)

4. Find a random number e satisfying 1 < e < Φ(n) and gcd(e,

Φ(n)) = 1.

5. Compute a number d such that d = e-1 mod Φ(n)

Public key = {e , n}

Private key = {d , n}

ⅡEncryption:

Plaintext: m satisfying m < n,

Ciphertext: c = me mod n

ⅢDecryption:

 5

m = cd mod n. �

[Example 1]

Let p = 47 and q = 59, then n = pq = 2773 and (p-1)(q-1) = 2668.

The value of e must be chosen somewhere between 1 and 2668.

Assume e = 17. The value of d is 157.Assume further that the

alphabet is represented by decimal values, i.e. a = 01, b = 02, c =03,

etc. and a blank space is given the value 00. The plaintext is given as:

m = RSA CRYPTOSYSTEM

or in decimal representation by:

m = 1819 0100 0318 2516 2015 1925 1920 0513

The plaintext is enciphered by an individually encrypted

message, which contains a block of four digits:

m1 = 1819

m2 = 0100

m3 = 0318

m4 = 2516

m5 = 2015

m6 = 1925

m7 = 1920

m8 = 0513

 The first block is encrypted as:

181917 mod 2773 = 0818

 Performing the same operation on the subsequent blocks

generates an encrypted message:

c = 0818 1952 0578 2666 0774 0246 2109 0772

Decrypting the message requires performing the same

 6

exponentiation using the decryption key of 157, so

0818157mod2773 = 1819 = m1

The rest of the plaintext can be recovered in this manner. �

2.2 The Security of RSA
There are three possible approaches to attack the RSA algorithm

as follows: Brute force, Mathematical attacks, and time attacks.

 Brute force: This involves trying all possible private keys.

 Mathematical attacks: There are several approaches, all

equivalent in effect to factoring the product of two primes.

 Timing attacks: These depend on the running time of the

decryption algorithm.

2.2.1 Brute Force:

To defense the Brute-force attack, the approach for RSA

cryptosystem is the same as for other cryptosystems ─ use a large

key space. That mean, the larger the number of bits in e and d, the

better. However, because the calculations involved, both in key

generation and in encryption/decryption, are complex, the larger the

key length, the slower the system operates.

2.2.2 The Factoring Problem

Three approaches to attacking RSA mathematically can be

identified as follows:

 Factor n into its two prime factors. This enables calculation

of Φ(n) = (p - 1)(q - 1) and d = e-1 mod Φ(n).

 7

 Direct Determine Φ(n). This enables determine of d = e-1

mod Φ(n).

 Direct Determine d.

Most discussions of the cryptanalysis of RSA have focused on

the task of factoring n into two prime factors. Determine Φ(n) given

n is equivalent to factoring n. With all known algorithms, determine d

only given e and n, appears to be at least as time-consuming as the

factoring problem.

To factor a large n with only two large prime factors is a hard

problem, but not as hard as it used to be. With great computational

capability, this problem can be solved in reasonable time. In table 1

shows the progress in factorization. The level of effort is measured in

MIPS-years: a million-instructions-per-second processor running for
Table 1 Progress in Factorization [13]

one year, which is about 3 × 1013 instructions executed. A 200-MHz

Pentium is about a 50-MIPS machine.

The threat to larger key sizes is twofold: the continuing increase

in computing capability, and the continuing refinement of factoring

algorithm. If a different algorithm is used, it can result in a

tremendous speedup. It can expect further refinements in the

 8

generalized number field sieve, and the use of an even better

algorithm is also a possibility. For example, a related algorithm, the

special number field sieve, can factor number with a specialized from

considerably faster than the generalized number field sieve. In Figure

1 we compar the performance of two algorithms. It is reasonable to

Figure 1 MIPS-years Needed to Factor [13]

expect a breakthrough that would enable a general factoring

performance in about the same time as the special number field sieve,

or even better. Thus, we need to be careful in choosing a key size for

 9

RSA. In the near future, a key size in the range of 1024 to 2048 bits

seems reasonable.

In some special case, there are some factoring algorithms,

which can easy to factor n such like Pollard’s p - 1 algorithm.

 Pollard’s p - 1 algorithm

Pollard’s p - 1 algorithm [17] is efficient only if n has a

prime factor p such that p - 1 is smooth. The algorithm can be

described as follows:

1. Select a ∈ ℤ/Nℤ at random. Select a positive integer k that

is divisible by many prime powers, for example, k =

lcm(1,2,⋯,B) for a suitable bound B (the larger B is the

more likely the method will be to succeed in producing a

factor, but the longer the method will take to work).

2. Compute ak = ak mod N.

3. Compute d = gcd (ak-1 , N).

4. If 1 < d < N, then d is a nontrivial factor of N, output d and

go to step 6.

5. If d is not a nontrivial factor of N and still want to try more

experiment, then go to step 2 to start all over again with a

new a and/or a new k, else go to step 6.

6. Terminate the algorithm. �

The Pollard’s p - 1 algorithm is usually successful in the

fortunate case where N has a prime divisor p for which p – 1

has no large prime factors. Suppose that (p – 1)|k and that pɫa.

 10

Since |(ℤ/pℤ)* | = p – 1 and ak ≡ 1 (mod p), thus p| gcd (ak-1 , N).

In many cases, p = gcd (ak-1 , N).

[Example 2]

Input N = 540143, and B = 8

let k = 840 = 23*3*5*7, and a = 2

gcd (2840 – 1 mod 540143 , 540143)

= gcd (53046 , 540143) = 421

421 is a factor of 540143. In fact, 540143 = 421*1283. �

The drawback of this algorithm is that it requires N to have

a prime factor p such that p – 1 has only “small” prime factors.

In RSA algorithm, it would be very easy to Factor n into its two

prime factors, if p - 1 or q - 1 has only “small” prime factors.

Note that the p + 1 algorithm, proposed by H. C. Williams in

1982, is an algorithm very similar to Pollard’s p - 1 algorithm. It

is efficient only if n has a prime factor p such that p + 1 is

smooth.

2.2.3 Timing Attack

The main idea of timing attack is that a snooper can determine a

private key by keeping track of how long a computer takes to

decipher message [20]. Timing attacks are applicable not only to

RSA, but also to other public-key cryptography system. This attack is

alarming for two reasons: It comes from a completely unexpected

direction and it is a ciphertext-only attack.

The attack assumes that the attacker knows the design of the

 11

target system, although practically this could probably be inferred

from timing information. The attack can be tailored to work with

virtually any implementation that does not run in fixed time, but is

first outlined using the simple modular exponentiation algorithm

below which computes R = cd mod n, where d is w bits long:

Let s0 = 1.

For k = 0 to w - 1:

If (bit k of d) is 1 then

Let Rk = (sk • c) mod n.

Else

Let Rk = sk.

Let sk+1 = Rk
2 mod n.

End.

Return (Rw-1). �

The attack allows someone who knows exponent bits 0…(b-1) to

find bit b. To obtain the total exponent, begin with b equal to 0 and

repeat the attack until the total exponent is known.

Because the first b exponent bits are known, the attacker can

compute the first b iterations of the ″For″ loop to find the value of sb.

The next iteration requires the first unknown exponent bit. If this bit

is ″1″, Rb = (sb • c) mod n will be computed. If it is ″0″, the operation

will be skipped. The attack will be described first in an extreme

hypothetical case. Suppose the target system uses a modular

multiplication function that is normally extremely fast but

occasionally takes much more time than an entire normal modular

exponentiation. For a few sb and c values the calculation of Rb = (sb •

 12

c) mod n will be extremely slow, and by using knowledge about the

target system's design the attacker can determine which these are. If

the total modular exponentiation time is ever fast when Rb = (sb • c)

mod n is slow, exponent bit b must be zero. Conversely, if slow Rb =

(sb • c) mod n operations always result in slow total modular

exponentiation times, the exponent bit is probably set. Once exponent

bit b is known, the attacker can verify that the overall operation time

is slow whenever sb+1 = Rb
2mod n is expected to be slow. The same

set of timing measurements can then be reused to find the following

exponent bits.

Although the timing attack is a serious threat, there are simple

countermeasures that can be used, including the following:

 Constant exponentiation time: Ensure that all

exponentiation takes the same amount of time before

returning result. This is a simple fix but does degrade

performance.

 Random delay: Better performance could be achieved by

adding a random delay to the exponentiation algorithm to

confuse the timing attack. If defenders do not add enough

noise, attackers could still succeed by collecting additional

measurements to compensate for the random delay.

 Blinding: Multiply the ciphertext by a random number

before performing exponentiation. This processed prevents

the attacker from knowing what ciphertext bits are being

processed inside the computer and therefore prevents the

bit-by-bit analysis essential to the timing attack.

 13

2.3 Strong Prime
The security of RSA depends critically on the problem of

factoring n into its prime factors p and q. Therefore it is important

for the user to select primes p and q in such a way that the problem of

factoring n = p×q is computationally infeasible for an adversary.

The recommended way of maximizing the difficulty of factoring n is

to choose p and q as strong primes. Ogiwara [21, 22, 23] defined

that a prime p is said to be strong if p satisfies the following

constraints:

1. p - 1 should contain a large prime factor p1 so that p – 1 = p1×α,

where gcd(p1, α) = 1.

2. p + 1 should contain a large prime factor p2 so that p + 1 = p2×β,

where gcd(p2, β) = 1.

3. p1 - 1 has a large prime factor r1 so that p1 – 1 = r1×χ, where

gcd(r1, χ) = 1.

4. p1 + 1 has a large prime factor s1 so that p1 + 1 = s1×δ, where

gcd(s1, δ) = 1.

5. p2 - 1 has a large prime factor r2 so that p2 – 1 = r2×ε, where

gcd(r2, ε) = 1.

6. p2 + 1 has a large prime factor s2 so that p2 + 1 = s2×γ, where

gcd(s2, γ) = 1.

These ‘level-3 prime’ numbers r1, s1, r2 and s2 can be easily

found by a probabilistic primarily test. There are many methods

have been proposed to generate strong primes for RSA [21, 24, 25,

26]. These methods first use level-3 primes to find ‘level-2 primes’

 14

p1 or p2. Similarly we use the level-2 primes to find the ‘level-1

prime’ p. In these methods, the bit length of the level-(i + 1) prime

is about half of the bit length of the level-i prime. Figure 2 shows

the strong prime structure. Another prime q also can be generated

by the same method. The private key holder knows these secret

values essentially, because he should select these secret values to

generate his private key by himself.

Figure 2 The Structure of Strong Prime

2.4 Chinese Remainder Theorem
The Chinese remainder Theorem (CRT) is a really method of

solving certain system of congruence. Suppose m1,m2,…,mr are

pairwise relatively prime positive integers, and suppose a1,a2,…,ar are

integers. Then the system of r congruences

x ≡ a1 mod m1
x ≡ a2 mod m2

:

x ≡ ar mod mr

has a unique solution modulo M = m1×m2×…×mr, which is given by

p

p1

p-1 p+1

p1-1 p1+1 p2-1 p2 p2+1

r1 s1 r2 s2

 15

MYMax
r

i

iii mod
1
∑
=

≡

where Mi = M/mi and yi = Mi
-1 mod mi, for 1≤ i ≤ r.

[Example 3]

 Let x ≡ 2 mod 3

 x ≡ 3 mod 5

 x ≡ 2 mod 7

M = m1 m2 m3 = 105

M1 = M / m1 = 35

y1 = M1
-1 mod m1= 35-1 mod 3 = 2

M2 = 21 and y2 = 1

M3 = 15 and y3 = 1

 x = (a1M1y1 + a2M2y2 +a3M3y3) mod M

 = (2*35*2 + 3*21*1 +2*15*1) mod 105

 = 23 �

The CRT is very useful in Cryptography and its applications

very broad. When the factors of the modulus N (i.e., p and q) are

assumed to be known, the RSA decryption operation can be speeded

up by using the CRT [8, 9]. By using the CRT, the computation of M

= Cd mod N can be partitioned into two parts:

Mp = Cp
dp mod p,

Mq = Cq
dq mod q,

 where

Cp = C mod p, dp = d mod (p－1),

Cq = C mod q, dq = d mod (q－1).

 16

Finally, we use CRT to compute M as follows:

 M = (Mp (q-1 mod p)) q + Mq (p-1 mod q)) p) mod N. �

This reduces computation time since dp, dq < d and Cp, Cq < C.

In fact, their sizes are bout half the original sizes. In the ideal case we

can have a speedup of about 4 times. In this case, dp, dq, q-1 mod p

and p-1 mod q can be predict. The extra operations are Cp = C mod p,

Cq = C mod q and M = Mp (q-1 mod p) q + Mq (p-1 mod q) p) mod N.

Compared with the calculation of Mp and Mq, the time spent on the

extra operations is negligible. Therefore, in most cases, the speedup

is close to 4 times.

Another RSA decryption algorithm based on CRT can be

described as follows:

 Compute: a = cd mod p.

b = cd mod q.

u*q = 1 mod p

If a ≥ b mod p, then

cd mod n = (((a – (b mod p))*u)mod p)*q +b

If a < b mod p, then

cd mod n = (((a + p – (b mod p))*u)mod p)*q +b �

If a and b can be easily computed, this algorithm will be more

efficient.

 [Example 4]

From example 1, m1 = 1819, c1 = 0818, m3 = 0318, c3 = 0578, e

= 17, d = 157, p = 47 and q = 59,

a1 = cd mod p = 818157 mod 47 = 33

b1= cd mod q =818157 mod 59 = 49

 17

u = 59-1 mod 47 = 4

a1 < b1

m1 = (((33 + 47 – (49 mod 47))*4)mod 47)*59 +49 = 1819

a2 = cd mod p = 578157 mod 47 = 36

b2= cd mod q =578157 mod 59 = 23

a2 ≥ b2

m3 = (((36 – (23 mod 47))*4)mod 47)*59 +23 = 0318

The result is the same with the result in example 1. �

 18

Chapter 3 New Decryption Method
In this Chapter, we propose an efficient RSA decryption method

based on strong prime criterion. If the highest concern is to ensure data

security, the prime factors p and q of modulus n in RSA cryptosystem

must be strong primes. It is reasonable that the private key holder knows

the prime factors of p – 1, p + 1, q – 1 and q + 1. The proposed decryption

method is based on the strong primes of RSA criterion and Chinese

Remainder Theorem (CRT). The private key holder performs the

decryption procedure: cd mod n by our method as the following steps:

Step 1: Factor p – 1, p + 1, q – 1, and q + 1 to get their prime factors.

We assume that moduli p – 1, p + 1, q – 1, and q + 1 be expressed

as follows.

p – 1 = 2 ⋅ r1⋅…⋅ri,

p + 1 = 2 ⋅ s1⋅…⋅sj,

q – 1 = 2 ⋅ t1⋅…⋅tk,

q + 1 = 2 ⋅ u1⋅…⋅ul.

Step 2: Compute the modular exponentiation with prime factors of p – 1

 as the modulus. Then, apply the CRT to generate individually

y1 = cd mod (p - 1),

y2 = cd mod (p + 1),

y3 = cd mod (q - 1),

y4 = cd mod (q + 1),

The detail steps are as follows:

2.1 Compute c(p-1),i = c mod ri
αi, i = 1, …, h.

2.2 Compute d(p-1), i = d mod Φ(ri
αi), i = 1, …, h.

 19

2.3 Compute the modular exponentiation

 m(p-1),i = c(p-1),i
d(p-1),i mod ri

αi, i = 1, …, h.

2.4 Apply the CRT to generate y1 = cd mod (p – 1) based on

m(p-1),i, i = 1, …, h.

Step 3: Compute

X1 = 2-1(y1 + y2 – z) mod p

where z = 0 if y1 ≥ y2; otherwise z = 1,and

X2 = 2-1(y3 + y4 – z) mod q

where z = 0 if y3 ≥ y4; otherwise z = 1.

Step 4: Apply the CRT to calculate the final result m = cd mod n based on

X1 and X2.

Figure 3 shows the diagram of our decryption method.

The numbers p – 1, p + 1, q - 1 and q + 1 can be individually

decomposed into three prime factors at least in step 1. The bit lengths of

ri
αi (i = 1, …, h) are shorter than p -1. The bit lengths of d(p-1), i (i = 1, …,

h) are shorter than d. In general, the complexity of modular

exponentiation depends on the bit length of exponent and modulus. The

total computation time of Step 2 to get y1 = cd mod (p -1) is shorter than

compute y1 by computing cd mod (p -1) directly. The efficient results are

similar to y2 = cd mod (p + 1), y3 = cd mod (q - 1) and y4 = cd mod (q + 1).

The proposed decryption method is more efficient than the original

method. In chapter 4 we will prove these results in detail.

In Step 3, we use (y1, y2) to compute X1, and (y3, y4) to compute X2.

Theorem 1 demonstrates that X1 and X2 are generated as Step 3 correctly.

 20

Figure 3 New Decryption Method for RSA Cryptosystem

m(p-1), 0, m(p-1), 1,
…, m(p-1), j

m(p+1), 0, m(p+1), 1,
…, m(p+1), j

m(q-1), 0, m(q-1), 1,
…, m(q-1), k

m(q+1), 0, m(q+1), 1,
…, m(q+1), l

CRT CRT CRT CRT

y1 y2 y3 y4

2-1(y1 + y2 – z) mod p 2-1(y3 + y4 – z) mod q

X1 X2

CRT

m

Factoring

n

c, d
2⋅r1⋅…⋅ri 2⋅s1⋅…⋅sj 2⋅t1⋅…⋅tk 2⋅u1⋅…⋅ul

Modular
Exponentiation

Modular
Exponentiation

Modular
Exponentiation

Modular
Exponentiation

 21

 [Lemma 1]
Given

y1 = X mod (p – 1),

y2 = X mod (p + 1)

where 0 ≤ X < (p2 - 1)/2, and p is a prime, then

X = (p + 1)y1/2 – (p –1)y2/2 + (p – 1)(p + 1)z/2

where z = 1 or 0.

Proof:

From y1 = X mod (p – 1) and y2 = X mod (p + 1), we have

y1 + (p – 1)z1 = X (1)

y2 + (p + 1)z2 = X (2)

z1 and z2 are two positive integers

Equation (1) × (p+1):

(p + 1)y1 + (p + 1)(p – 1)z1 = (p + 1)X. (3)

Equation (2) × (p - 1):

(p - 1)y2 + (p + 1)(p – 1)z2 = (p - 1)X. (4)

Equation (3) – Equation (4):
2X = (p + 1)y1 – (p –1)y2 + (p – 1)(p + 1)(z1 - z2)

Let z = z1 - z2

X = (p + 1)y1/2 – (p –1)y2/2 + (p – 1)(p + 1)z/2 (5)

We will proof z is 0 or 1 in Equation (5) by contradiction as follows:

Case 1:

Assume that z < 0.Since y1 ≤ p - 2 and y2 ≥ 0, it follows that

X = (p + 1)y1/2 – (p –1)y2/2 + (p – 1)(p + 1)z/2

X ≤ (p + 1) (p –2)/2 - (p – 1)(p + 1)/2

= -(p + 1)/2

X < 0.

This result contradicts the given condition X ≥ 0. Hence, z is not

 22

smaller than 0.

Case 2:

Assume that z > 1.Since y1≥0 and y2≤ p, it follows that

X = (p + 1)y1/2 – (p –1)y2/2 + (p – 1)(p + 1)z/2

X ≥ –(p –1)p/2 + (p – 1)(p + 1)

= (p – 1) (p + 2)/2

X > (p – 1) (p + 1)/2.

This result contradicts the given condition X < (p2 - 1)/2. Hence, z is

not larger than 1.

By Cases 1, 2 and z1, z2 are integers, z must be either 0 or 1. Q.E.D.

[Theorem 1]
Given

y1 = X mod (p – 1),

y2 = X mod (p + 1)

where 0 ≤ X < (p2 - 1)/2, and p is a prime, then

X = 2-1(y1 + y2 – z) mod p

The value of z is

if y1 ≥ y2 ; z = 0,

otherwise ; z = 1.

Proof:
By Lemma 1,

X = (p + 1)y1/2 – (p – 1)y2/2 + (p – 1)(p+1)z/2,

where z is either 0 or 1.

We get

X = 2-1(y1 + y2 – z) mod p, (6)

where z is either 0 or 1.

In addition, we will demonstrate the conditions of Equation (6) that z

 23

= 0 or z = 1.

By Equation (2) – Equation (1)
y2 – y1 = (p – 1)z1 – (p + 1)z2 = (p – 1) (z1 – z2) – 2z2

where y1 ≥ 0, y2 ≥ 0, p > 0 , both z1 and z2 are two positive integers.

Let (z1 – z2) = z.

 y2 – y1 = (p – 1) z – 2z2 (7)

By Equation (2), and 0 ≤ X < (p2 - 1)/2, 0 ≤ y2 ≤ p, we get

0 ≤ y2 + (p + 1) z2 < (p2 - 1)/2.

Hence, we get

0 ≤ z2 < (p – 1)/2.

By Equation (7),

 y2 – y1 > (p – 1)z – (p - 1) = (p – 1) (z – 1). (8)

Case 1: y1 ≥ y2

Since y1 ≥ y2, from Equation(8)

0 ≥ y2 – y1 > (p – 1) (z – 1)

0 > (p – 1) (z – 1)

and, (p – 1) > 0,

0 > z – 1

1 > z

By Lemma 1, z = 0.

Case 2: y1 < y2

The value of z must be a positive integer. Thus z = 1.

To sum up, z = 0 if y1 ≥ y2; otherwise z = 1. Q.E.D.

 [Example 4](y1 < y2)

Let p = 19, X = 169

p + 1= 20 = 4*5

p – 1 = 18 =3*6

 24

y1 = 169 mod 18 = 7

y2 = 169 mod 20 = 9

y1 < y2

y ≡ 2-1(7 +9 -1) mod 19

≡ 17 mod 19 �

[Example 5](y1 ≥ y2)

Let p = 2773, X = 9202

p+1 = 2774 = 38*73

p-1 = 2772 = 36*77

y1 = 9202 mod 2772 = 940

y2 = 9202 mod 2774 = 330

y1 ≥ y2

y ≡ 2-1(330 + 940) mod 2773

≡ 635 mod 2773 �

Although we need to compute the multiplicative inverse of 2

modular p in Step 3, Theorem 2 provides an efficient method to compute

the inverse value.

[Theorem 2]

Let p be a prime, the multiplicative inverse of 2 modulo p can be

computed by 2-1 mod p = (p + 1)/2.

Proof:

2 × (p + 1)/2 = p + 1 ≡ 1 mod p.

The multiplicative inverse of 2 modulo p is equal to (p + 1)/2. Q.E.D

 25

Chapter 4 Computational complexity
In this chapter we will demonstrate our proposed decryption method,

which is more efficient than the original decryption method and

decryption method based on CRT. First, we will define some

denotations as follows:

 MODE(y, z) denotes an operation of modular exponentiation (xy

mod z).

 M(w), A(w) and Mod(w) denote operations of multiplication,

addition and modulus with the bit length of operand is w.

 l(w) denotes lengths of w.

 S denotes an operation of shift.

By the additional chain method [27] the modulo operation cd mod n

can be expressed as:

 MODE(d, n) = 1.5 × l(d)[M(l(n) + 2 Mod(l(n)) + 1). (9)
The multiplication and addition operations can be expressed as

follows [28]:

M(w) = 3M(w/2) + 5A(w) + 2S, (10)

A(w) = w/32. (11)

Also, the modular operation could be expressed as the following

equations based on the divide and conquer concept [29]:

Mod(w) = Mod(w/2) + 4M(w/2) + 1.5A(w) + 3S. (12)

Without loss of generality, we assume all of Mod(32), M(32), A(32)

and S take one clock cycle. By the equations (10) and (11), we get

 M(1024) = 3M(512) + 5A(1024) + 2S

 = 3M(512) + 162

 = 3[3M(256) + 5A(512) + 2S] + 162

 26

 = 9M(256) + 408

 = 9[3M(128) + 5A(256) + 2S] + 408

 = 27M(128) + 786

 = 27[3M(64) + 5A(128) + 2S] + 786

 = 81M(64) + 1380

 = 81[3M(32) + 5A(64) + 2S] + 1380

 = 243M(32) + 2352

 = 2595.

By the equations (10), (11) and (12), we get

 Mod (1024) = Mod(512) + 4M(512) + 1.5A(1024) + 3S

 = [Mod(256) + 4M(256) + 1.5A(512) + 3S] + 3295

 = [Mod(128) + 4M(128) + 1.5A(256) + 3S] + 4294

 = [Mod(64) + 4M(64) + 1.5A(128) + 3S] + 4577

 = [Mod(32) + 4M(32) + 1.5A(64) + 3S] + 4646

 = 4657

We use the recursion down to the 32-bit level, then

 M(128) = 9M(32) + 50A(32) + 8S,

 M(256) = 27M(32) + 190A(32) + 26S,

 M(512) = 81M(32) + 650 A(32) + 80 S,

 M(1024) = 243M(32) + 2110A(32) + 242S,

 Mod(128) = Mod(32) + 16M(32) + 49A(32) +14S,

 Mod(256) = Mod(32) + 52M(32) + 261A(32) +49S,

 Mod(512) = Mod(32) +160M(32) +1045A(32) + 156S,

 Mod (1024) = Mod (32) + 484M(32) + 3693A(32) + 479S.

In order to ensure data security, the bit length of modulus should be

1024 at least. By Equation (9), the original decryption method can be

repressed as

 27

 MODE(d, n) = 1.5 × 1024[M(1024) + 2 Mod(1024)+1].

 = 3072Mod(32) + 1860096M(32) + 14585856A(32)

 + 1843200S + 1536.

 = 18293760

That is to say, the original decryption method should take 18293760

clock cycles.

In the decryption method based on CRT, we assume that l(p) and l(q)

are equal. Thus the length of the exponent is about n/2. The total

number of operations of the decryption method based on original CRT is

equal to:

2MODE(d/2, n/2) + A(3d/2) + 4M(n/2) + 2Mod(n/2) + Mod(n),

 that is:

 MODE(d, n) = 2{1.5× 512[M(512) + 2 Mod(512) + 1]}

 + A(1536) + 4M(512) + 2Mod(512) + Mod(1024)

 = Mod(1024) + 1540M(512) + 3074Mod(512)

 + A(1536) + 1536

 = 2[243M(32) + 2110A(32) + 242S]

 + Mod (32) + 484M(32) + 3693A(32) + 479S

 + 1540[81M(32) + 650 A(32) + 80S]

 + 3074[Mod(32) +160M(32) +1045A(32) + 156S]

 + 48A(32) + 1536

 = 3075Mod(32) + 617550M(32) + 4221291A(32)

 + 603707S + 1536

 = 5447159

By this case, the decryption method takes 5447159 clock cycles.

In our proposed method, p - 1, p + 1, q - 1 and q + 1 can be factored

 28

into at least three numbers. Without loss of generality, we assume that bit

length of the largest prime factor is about l(n)/4 and others are about

l(n)/8 [21, 22, 24, 25]. The total number of operations of our proposed

method is

4[2MODE(d/4, n/4) + A(3d/4) + 4M(n/4) + 2Mod(n/4) + Mod(n/2)]

+ 2[2A(n/2) + M(n/2) + Mod(n/2)]

+ 4A(n/2) + 2M(n/2) + Mod(n/2)

 MODE(d, n) = 4{2{1.5× 256[M(256) + 2 Mod(256) + 1]} + A(768)

 + 4M(256) + 2Mod(256) + Mod(512)}

 + 2[2A(512) + M(512) + Mod(512)]

 + 4A(512) + 2M(512) + Mod(512)

 = 8A(512) +4M(512) + 7Mod(512)

 + 3088M(256) + 6152Mod(256)

 + 4A(192) + 3072

 =6159Mod(32) + 404724M(32) + 2202459A(32)

 + 383148S + 3072

 =2995062

It takes 2995062 clock cycles.

The original decryption method take 18293760 clock cycles. The

decryption method based on CRT takes 5447159 clock cycles; however,

our proposed method only takes 2995062 clock cycles. If we suppose the

computational costs of the original decryption method is 100%,

Compared with the original decryption method, the decryption method

based on CRT takes 30% computational costs, but our proposed method

takes only approximately 16%. The result will show in the table 2. The

 29

speed of our proposed method is almost 1.8 times faster than the

decryption method based on CRT only.
Table 2 Comparison Among Three Types of Decryption Methods

 Clock Cycles Computational Cost

Original Decryption
Method 18293760 100%

Decryption Method
Based on CRT 5447159 29.78%

New Decryption
Method 2995062 16.37%

 30

Chapter 5 Implementation
In order to evaluate the performance of our method, we examine

these methods mentioned above based on Texas Instruments

TMS320C55x family of signal processors. In table 3[34], we show the

features of TMS320C55x. In addition, we assume the calculated CPU

clock cycles of the realization of the RSA decryption with the following

parameters as Table 4. The CPU clock cycles needed for processing the

original RSA decryption method, decryption method based on the CRT,

and our proposed method are given in Table 5, Table 6, and Table 7. The

critical factor in influencing the speed of RAS decryption is the

computation of modular multiplication. We apply the square and multiply

algorithm to compute the modular exponentiation [27]. The square and

multiply algorithm needs 3n/2 modular multiplications for an n-bit

exponent. The original RSA decryption method needs modular

multiplication only one time. The decryption method based on the CRT

needs modular-multiplication two times. Because there is a difference in

the length of d and n in modular multiplication, the clock cycles needed

by the decryption method based on the CRT are less and the speed of this

method is faster than the speed of the original decryption method.

However, as our proposed method needs modular multiplication four

times and the length of d and n is much shorter, the clock cycles needed

are much less and the speed is much faster.

As demonstrated in Table 6, due to the characteristics of chip

TMS320C55x, the clock cycles needed by original decryption method is

more than the clock cycles assessed in chapter four. Nevertheless, the

 31

Table 3 The Features of TMS320C55x [32]

High-Performance, Low-Power, Fixed-Point

TMS320C55x Digital Signal Processor (DSP)

– 6.25-/5-ns Instruction Cycle Time

– 160-/200-MHz Clock Rate

– One/Two Instructions Executed per Cycle

– Dual Multipliers (Up to 400 Million

Multiply-Accumulates Per Second (MMACS))

– Two Arithmetic/Logic Units

– One Internal Program Bus

– Three Internal Data/Operand Read Buses

– Two Internal Data/Operand Write Buses

Instruction Cache 24K Bytes

160K x 16-Bit On-Chip RAM – Eight Blocks of 4K × 16-Bit Dual-Access RAM

(DARAM) (64K Bytes)

– 32 Blocks of 4K × 16-Bit Single-Access RAM

(SARAM)(256K Bytes)

16K × 16-Bit On-Chip ROM 32K Bytes

8M × 16-Bit Maximum Addressable External

Memory Space

32-Bit External Memory Interface (EMIF) – Asynchronous Static RAM (SRAM)

– Asynchronous EPROM

– Synchronous DRAM (SDRAM)

– Synchronous Burst SRAM (SBSRAM)

On-Chip Peripherals – Two 20-Bit Timers

– Six-Channel Direct Memory Access(DMA)

Controller

– Three Multichannel Buffered Serial Ports

(McBSPs)

– 16-Bit Parallel Enhanced Host-Port Interface

(EHPI)

– Programmable Digital Phase-Locked Loop

(DPLL) Clock Generator

– Eight General-Purpose I/O (GPIO) Pinsand

Dedicated General-Purpose Output (XF)

On-Chip Scan-Based Emulation Logic

IEEE Std 1149.1 (JTAG) Boundary ScanLogic

3.3-V I/O Supply Voltage

1.6-V Core Supply Voltage

 32

Table 4 Parameters of The RSA Decryption

RSA modulus n 2048bits 1024bits 512bits

RSA exponent length 2048bits 1024bits 512bits

message length 2048bits 1024bits 512bits

level-1 prime length 1024bits 512bits 256bits

level-2 prime length 512bits 256bits 128bits

Table 5 Numbers of CPU Clock Cycles for Realization RSA Decryption
between Three Methods (Key Length = 2048 bits)

 Clock Cycles Computational Cost

Original Decryption
Method 269083092 100%

Decryption Method
Based on CRT 55491364 20.62%

New Decryption
Method 30634747 11.37%

Table 6 Numbers of CPU Clock Cycles for Realization RSA Decryption
between Three Methods (Key Length = 1024 bits)

 Clock Cycles Computational Cost

Original Decryption
Method 35635338 100%

Decryption Method
Based on CRT 9985827 28.02%

New Decryption
Method 5506659 15.45%

 33

Table 7 Numbers of CPU Clock Cycles for Realization RSA Decryption
between Three Methods (Key Length = 512 bits)

 Clock Cycles Computational Cost

Original Decryption
Method 5145156 100%

Decryption Method
Based on CRT 1633335 31.75%

New Decryption
Method 897929 17.45%

computational cost needed by each kind of decryption method is almost

the same with the computational cost that we assessed before. Comparing

the results in Table 5, Table 6, and Table 7, we find that, with the increase

of key length, the computational costs which can be saved by decryption

method based on the CRT and by our new decryption method also

increase. Let’s take another example. In table 7, when the key length is

2048bits, the decryption method based on the CRT only needs 20% of the

computational cost of original decryption method. Furthermore, our new

decryption method only needs 11% of the computational cost of original

decryption method.

The memory spaces needed for processing the original RSA

decryption method, decryption method based on the CRT, and our

proposed method are given in Table 8, Table 9, and Table 10. As

demonstrated in Table 8, Table 9, and Table 10, our new decryption

method and decryption method based on the CRT need more memory

space respectively than original decryption method does. When key

length is 1024bits, the memory space needed by decryption method based

 34

Table 8 The Memory Spaces for Realization RSA Decryption between
Three Methods (Key Length = 2048 bits)

 Memory Space Increase Percentage

Original Decryption
Method 11347bytes 100%

Decryption Method
Based on CRT 12440bytes 109.63%

New Decryption
Method 14704bytes 129.58%

Table 9 The Memory Spaces for Realization RSA Decryption between
Three Methods (Key Length = 1024 bits)

 Memory Space Increase Percentage

Original Decryption
Method 6611bytes 100%

Decryption Method
Based on CRT 7558bytes 114.23%

New Decryption
Method 8985bytes 135.91%

Table 10 The Memory Spaces for Realization RSA Decryption between
Three Methods (Key Length = 512 bits)

 Memory Space Increase Percentage

Original Decryption
Method 4243bytes 100%

Decryption Method
Based on CRT 5048bytes 118.97%

New Decryption
Method 6005bytes 141.53%

 35

on the CRT is 14% more than the memory space needed by the original

decryption method. The memory space needed by our proposed method is

36% more than the memory space needed by the original decryption

method. Comparing the results in Table 8, Table 9, and Table 10, we find

that, with the increase of key length, the memory space increased by

decryption method based on the CRT and by our new decryption method

is lessening respectively. For example, in Table 8, when key length is

2048bits, the memory space of decryption method based on the CRT

increases 10% and the memory space of our proposed method only

increases 30%.

As demonstrated by the results of implementation, when little

amount of memory space is increased, the speed of RSA decryption

operation can be greatly accelerated. Furthermore, when the key length is

increased, the memory space needed to increase is reducing, but the speed

of RSA decryption operation can be accelerated much significantly.

Therefore, as it can be seen from the results of implementation, our new

decryption method is more efficient than other two kinds of decryption

method.

 36

Chapter 6 Conclusion
In this thesis, we propose an efficient method to implement RSA

decryption algorithm. This decryption method is not only based on CRT

but also on the strong prime of RSA criterion. By our computational

performance analysis, the 1024 bits RSA original decryption method

without any tricks must require 18256896 clock cycles. The decryption

method based on CRT takes 5447159 clock cycles. However, our

proposed decryption method only takes 2995062 clock cycles. The

complexity of our proposed method is only 16% of that of the original

decryption method. Compared with decryption method based on CRT,

our proposed method reduces approximately 45% computational costs.

In a word, on the TMS320C55x family of signal processors, the speed of

our proposed method is almost 1.8 times faster than the speed of the

decryption method based on CRT. Our method can be applied not only

decryption operation but also signing phase of digital signature. This

efficient decryption method can enhance the performance of the RSA

algorithm.

 37

REFERENCES
[1] R.-J. Hwang, F.-F. Su, Y.-S. Yeh and C.-Y. Chen, ″An Efficient

Decryption Method for RSA Cryptosystem″, Proc. The IEEE 19th

International Conference on advanced Information Network and

Applications, vol.1 pp.585-590, 2005.

[2] R. Rivest, A. Shamir, and L. Adleman, ″A method for obtaining

digital signature and public-key cryptosystems″, Commun. of ACM,

vol.21, no.2, pp.120-126, 1978.

[3] RSA Laboratories, PKCS#1: RSA Cryptography, Version 2.1, 2002

[4] A. Cilardo, A. Mazzeo, L. Romano, and G. P. Saggese, ″Exploring the

design-space for FPGA-based implementation of RSA″,

Microprocessors and Microsystems, vol.28, pp.183-191, 2004.

[5] G. P. Saggese, L. Romano, N. Mazzocca and A. Mazzeo, ″A tamper

resistant hardware accelerator for RSA cryptographic applications″,

Journal of Systems Architecture, vol.50, pp.711-727, 2004.

[6] N. Koblitz, A course in Number Theory and Cryptology, 2nd Edition,

Graduate Text in Mathematics, vol.114, Springer, Berlin, Germany,

1994.

[7] B. Schneier, Applied Cryptography: protocols, algorithms, and source

code in C, 2nd ed, John Wiley & Sons, Inc., 1996.

[8] Johann Groβschädl, ″The Chinese remainder theorem and its

application in a high-speed RSA crypto chip″, Proc. 16th IEEE Annual

Computer Security Applications Conference, pp.382-393, 2000.

[9] J.-J. Quisquater, and C. Couvreur, ″Fast decipherment algorithm for

RSA public-key cryptosystem″, Electronics Letters, vol.18, no.21,

pp.905-907, 1982.

 38

[10] M. Shand, and J. Vuillemin, ″Fast implementation of RSA

cryptography″, Proc. 11th Symposium on Computer Arithmetic,

pp.252-259, 1993.

[11] D. W. Davies, W. L. Price, Security for Computer Network, 2nd

Edition, , John Wiley & Sons, 1994.

[12] A. Hayashi, ″A new fast modular multiplication method and its

application to modular exponentiation-based cryptography″,

Electronics and Communications in Japan vol.83, no.12, pp.88-93,

2000.

[13] W. Stallings, Cryptography and Network Security: principles and

practices, 3nd ed, Prentice Hall International, Inc., 2002.

[14] Jan C. A. van der Lubbe, Basic Methods of Cryptography, Cambridge

University Press, 1999.

[15] D. R. Stinson, Cryptography: Theory and Practice, 2nd ed, Chapman

& Hall/CRC, 2002.

[16] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of

Applied Cryptography, CRC Press LLC, 1997.

[17] J. M. Pollard, ″Theories on Factorization and Testing Primality″, Proc.

Cambridge Philosophical Society, vol.76 pp.521 - 528, 1974.

[18] H. C. Williams, ″A p + 1 Method of Factoring″, Mathematics of

Computation, vol.39 pp.225 - 234, 1982.

[19] S. Y. Yan, Number Theory for Computing, 2nd Edition,

Springer-Verlag Berlin Heidelberg, 2002.

[20] P. Kocher, ″Timing Attacks on Implementation of Diffie-Hellman,

RSA, DSS, and Other System.″, Proc. Crypto ‘96, pp.104-113,1996.

[21] M. J. Ganley, ″Note on the generation of P0 for RSA keysets″,

Electronics Letters, vol.26, no.6, pp.369, 1990.

[22] M. Ogiwara, ″A Method for Generating Cryptographically Strong

 39

Primes″, IEICE Trans. Fundamentals, E73, vol.6, pp.985-994, 1990.

[23] R. D. Diaz, and J. M. Masque, ″Optimal strong primes″, Information

Processing Letters, vol.93, pp.47-52, 2005.

[24] C.-S. Lai, W.-C. Yang, and C.-H. Chen, ″Efficient method for

generating strong primes with constraint of bit length″, Electronics

Letters, vol.27, no.20, pp.1807-1808, 1991.

[25] J. Gordon, ″Strong RSA keys″, Electronics Letters, vol.20, no.12,

pp.514-516, 1984

[26] L. Batina, S. B. Örs, B. Preneel, and J. Vandewalle, ″Hardware

architectures for public key cryptography, Integration″, VLSI Journal,

vol. 34, pp.1-64, 2003.

[27] D. E. Knuth, Seminumerical Algorithms, Volume 2 of The Art of

Computer Programming, 3rd edition, Addison-Wesley, Reading, MA,

USA, 1997.

[28] Davida GI, Wells DL, and Kam JB, ″A database encryption system

with subkeys″, ACM Trans. Database Systems, vol.6, pp.312-328,

1981.

[29] M.-S. Hwang, ″Dynamic participation in a secure conference scheme

for mobile communications″, IEEE Trans. Vehicular Technology,

vol.48, no.5, pp.1469-1474, 1999.

[30] G. Dorðević, T. Unkašević, and M. Markocić, ″Optimization of

modular reduction procedure in RSA algorithm implementation on

assembler of TMS320C54x signal processors″, Proc. of the IEEE 14th

International Conference on Digital Signal Processing, pp.811-814,

2002.

[31] ANSI Standard X9.31, Digital Signatures Using Reversible Public

Key Cryptography for the Financial Services Industry (rDSA), 1998.

[32] C-H Wu, J-H Hong, and C-W Wu, ″RSA Cryptosystem Design

 40

Based on the Chinese Remainder Theorem″, Proc. of the 2001
conference on Asia South Pacific design automation, pp.391- 395,
2001.

[33] RSA Laboratories, ″RSAREF: A Cryptographic Toolkit,″ Version 2.0,

1994, avail-able via FTP from rsa.com.

[34] Texas Instruments, TMS320VC5510 Fixed-Point Digital Signal
Processor Data Manual, Literature Number: SPRS076D, June 2000.

