
 i

國 立 交 通 大 學 

電機資訊學院 資訊學程 

碩士論文 
 
 
 

高效 RSA密碼系統解密方法及實作 

 

An Efficient Decryption Method for RSA Cryptosystem 

And Implementation 
 
 
 
 
 
 
 
 
 
 

研 究 生：陳嘉耀 

指導教授：葉義雄  教授 

 

中 華 民 國  九 十 四 年 六 月 



 i

高效 RSA 密碼系統解密方法及實作 

An Efficient Decryption Method for RSA Cryptosystem 

And Implementation 

研 究 生：陳嘉耀          Student： Chia-Yao Chen 

指導教授：葉義雄          Advisor：Dr. Yi-Shiung Yeh 

 

國 立 交 通 大 學 

電機資訊學院 資訊學程 

碩 士 論 文 

 
A Thesis 

Submitted to Degree Program of Electrical Engineering and Computer Science 
College of Electrical Engineering and Computer Science 

National Chiao Tung University 
in Partial Fulfillment of the Requirements 

for the Degree of  
Master of Science 

In 
Computer Science  

June 2005 
Hsinchu, Taiwan, Republic of China 

 
 
 

 

中 華 民 國  九 十 四 年 六 月 

 

 



 ii

高效 RSA 密碼系統解密方法及實作 

 

學生:陳嘉耀      指導教授:葉義雄博士 
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摘  要 

RSA密碼系統在電子商務與安全的網際網路存取等許多應用中

是一種最有吸引力與歡迎的安全技巧。為了安全性的考量，RSA密碼

系統必須在大的指數與模數下執行模指數運算，因此需要大量的計算

成本。所以，在許多RSA的應用中，使用者會使用較小的公開金鑰來

加快加密運算，相對的，在解密的運算還是需要大量的計算。本篇論

文提出一有效率的解密實現方法，其架構在中國剩餘定理與RSA強質

數的標準上。在TMS320C55x family of signal processors上實作，此新

方法大約只須16%傳統解密方法的計算成本，與僅運用中國乘餘定理

的解密法相比，大約只須55%的計算成本。換句話說，我們所提出的

方法大約比運用中國乘餘定理的解密法快1.8倍。所以本方法非常適

合加快RSA的解密運算。 
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Abstract 

In this thesis an efficient method to implement RSA decryption 

algorithm is proposed. In applications such as electronic commerce and 

internet access security, RSA cryptosystem is the most attractive and most 

popular security technique. For security reason, RSA cryptosystem has to 

execute modular exponentiation with large exponent and modulus. The 

RSA cryptosystem needs a very high computational cost. In many RSA 

applications, users use a small public key to speed up the encryption 

operation. However, the decryption operation has to take more 

computational cost to perform modular exponentiation by this case.  In 

this thesis we propose an efficient decryption method not only based on 

Chinese Remainder Theorem (CRT) but also on the strong prime of RSA 

criterion. On the TMS320C55x family of signal processors, the proposed 

decryption method only needs 16% computational costs of the original 

decryption method. Compared with the computational cost of decryption 

method based on CRT, our proposed decryption method only needs 55% 

computational costs. Therefore, our proposed method is very useful in 

accelerating the speed of the RSA decryption operation. 
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Chapter 1 Introduction 
With the rapid progress of modern information technology, security 

is an important technique of many applications. The RSA cryptosystem 

was proposed by R. Rivest, A. Shamir, L. Adleman in 1978 [2]. It is the 

most popular and well-defined security primary technique. RSA is a 

cryptosystem widely used to ensure data privacy in many fields such as 

communication and PKCS#1 standard lines out a way of encrypting data 

using the RSA cryptosystem [3]. Moreover, in digital signature and 

digital envelope, RSA provides non-repudiation and confidentiality of 

communication [3]. Actually, many good security protocols using RSA 

cryptosystem are applied in the modern information technology, for 

example, virtual private networks, electronic commerce, and secure 

Internet access.  

RSA cryptosystem is easy to understand and implement. It is based 

on modular exponentiation. This modular exponentiation is performed by 

repeated modular multiplications. In general, the modular multiplication 

has to be performed a certain number of times to ensure security, but the 

consequence is that the RSA operation has to take much more 

computational cost for security consideration. In order to include RSA 

cryptosystem practically in many protocols, it is desired to devise faster 

encryption and decryption operations. Under this consideration, many 

hardware implementation methods have been proposed [4, 5, 6], in which 

high speed can be achieved but not flexibility. 

In these applications, users usually select a small number such as 3, 

17, or 65537 to be the public key to speed up the encryption operation [7].  
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However, by this way, the corresponding decryption operation costs more 

computational time because of the larger private key. Another choice is 

the Chinese Remainder Theorem (CRT). The decryption operation can be 

accelerated by applying the CRT [8, 9, 10] if the prime factors of modulus 

are known. It is reasonable that someone who holds the private key can 

get the prime factors of modulus. By means of the CRT, the speed for the 

RSA decryption operation could be 4 times faster [6]. In addition, 

Hayashi proposed a new modular exponentiation method [12] to improve 

the computational time of RSA. In his method, the modular 

exponentiation with the modulus n transforms into two substitute 

operations with factorable moduli n + 1 and n + 2. If moduli n + 1 and n 

+ 2 can be factored, user can apply CRT to these modular operations 

modulo to n + 1 and n + 2 for each.  The final result can be generated by 

Hayashi’s formula. But this method is not very practical, especially when 

n is an odd number; it would be a difficult job to factor n + 2. 

We propose an efficient method to implement RSA decryption 

operation in this thesis. This method is not only based on CRT but also on 

the strong prime of RSA criterion. The security of RSA is based on the 

difficulty of factoring problem. So, the prime factors of modulus of RSA 

algorithm must be strong primes. The large modular exponentiation result 

can be generated from small exponents and moduli. The proposed method 

enhances the performance of RSA algorithm. 

The rest of this article is organized as follows: we will briefly review 

RSA algorithm in Chapter 2. In Chapter 3 we introduce our new 

decryption method. In Chapter 4 we analyze the computational 

complexity. In Chapter 5 we talk about the implementation of new 
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decryption method. Finally, we make some conclusion in Chapter 6. 
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Chapter 2 RSA  
RSA cryptosystem is a typical public-key cryptosystem.  Although 

the cryptanalysis neither proved nor disproved RSA’s security, it dose 

suggest confidence level in the algorithm. RSA gets its security from the 

difficulty of factoring large number. The public and private keys are 

functions of a pair of large prime numbers. Recovering the plaintext from 

the public key and the ciphertext is conjectured to be equal to factoring 

the product of the two primes. 

 

2.1 Algorithm 
RSA algorithm can be described briefly as follows: 

ⅠKey Generation: 

1. Choose two large strong primes, p and q. 

2. Calculate n = p⋅q. 

3. Compute Euler value of n: Φ(n) = (p - 1)(q - 1) 

4. Find a random number e satisfying 1 < e < Φ(n) and gcd(e, 

Φ(n)) = 1. 

5. Compute a number d such that d = e-1 mod Φ(n) 

Public key = {e , n} 

Private key = {d , n} 

ⅡEncryption: 

Plaintext:    m satisfying m < n,  

Ciphertext:    c = me mod n 

ⅢDecryption: 
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m = cd mod n.                   � 

[Example 1] 

Let p = 47 and q = 59, then n = pq = 2773 and (p-1)(q-1) = 2668. 

The value of e must be chosen somewhere between 1 and 2668. 

Assume e = 17. The value of d is 157.Assume further that the 

alphabet is represented by decimal values, i.e. a = 01, b = 02, c =03, 

etc. and a blank space is given the value 00. The plaintext is given as: 

m = RSA CRYPTOSYSTEM 

or in decimal representation by: 

m = 1819 0100 0318 2516 2015 1925 1920 0513 

The plaintext is enciphered by an individually encrypted 

message, which contains a block of four digits: 

m1 = 1819 

m2 = 0100 

m3 = 0318 

m4 = 2516 

m5 = 2015 

m6 = 1925 

m7 = 1920 

m8 = 0513 

 The first block is encrypted as: 

181917 mod 2773 = 0818 

 Performing the same operation on the subsequent blocks 

generates an encrypted message: 

c = 0818 1952 0578 2666 0774 0246 2109 0772 

Decrypting the message requires performing the same 
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exponentiation using the decryption key of 157, so  

0818157mod2773 = 1819 = m1 

The rest of the plaintext can be recovered in this manner.  � 

 

2.2 The Security of RSA 
There are three possible approaches to attack the RSA algorithm 

as follows: Brute force, Mathematical attacks, and time attacks.  

 Brute force: This involves trying all possible private keys.  

 Mathematical attacks: There are several approaches, all 

equivalent in effect to factoring the product of two primes.  

 Timing attacks: These depend on the running time of the 

decryption algorithm. 

2.2.1 Brute Force: 

To defense the Brute-force attack, the approach for RSA 

cryptosystem is the same as for other cryptosystems ─ use a large 

key space. That mean, the larger the number of bits in e and d, the 

better. However, because the calculations involved, both in key 

generation and in encryption/decryption, are complex, the larger the 

key length, the slower the system operates. 

2.2.2 The Factoring Problem 

Three approaches to attacking RSA mathematically can be 

identified as follows: 

 Factor n into its two prime factors. This enables calculation 

of Φ(n) = (p - 1)(q - 1) and d = e-1 mod Φ(n). 
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 Direct Determine Φ(n). This enables determine of d = e-1 

mod Φ(n). 

 Direct Determine d. 

Most discussions of the cryptanalysis of RSA have focused on 

the task of factoring n into two prime factors. Determine Φ(n) given 

n is equivalent to factoring n. With all known algorithms, determine d 

only given e and n, appears to be at least as time-consuming as the 

factoring problem.  

To factor a large n with only two large prime factors is a hard 

problem, but not as hard as it used to be. With great computational 

capability, this problem can be solved in reasonable time. In table 1 

shows the progress in factorization. The level of effort is measured in 

MIPS-years: a million-instructions-per-second processor running for 
Table 1 Progress in Factorization [13] 

 

one year, which is about 3 × 1013 instructions executed. A 200-MHz 

Pentium is about a 50-MIPS machine. 

The threat to larger key sizes is twofold: the continuing increase 

in computing capability, and the continuing refinement of factoring 

algorithm. If a different algorithm is used, it can result in a 

tremendous speedup. It can expect further refinements in the 
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generalized number field sieve, and the use of an even better 

algorithm is also a possibility. For example, a related algorithm, the 

special number field sieve, can factor number with a specialized from 

considerably faster than the generalized number field sieve. In Figure 

1 we compar the performance of two algorithms. It is reasonable to  

 
Figure 1 MIPS-years Needed to Factor [13] 

expect a breakthrough that would enable a general factoring 

performance in about the same time as the special number field sieve, 

or even better. Thus, we need to be careful in choosing a key size for 
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RSA. In the near future, a key size in the range of 1024 to 2048 bits 

seems reasonable. 

In some special case, there are some factoring algorithms, 

which can easy to factor n such like Pollard’s p - 1 algorithm. 

 Pollard’s p - 1 algorithm 

Pollard’s p - 1 algorithm [17] is efficient only if n has a 

prime factor p such that p - 1 is smooth. The algorithm can be 

described as follows: 

1. Select a ∈ ℤ/Nℤ at random. Select a positive integer k that 

is divisible by many prime powers, for example, k = 

lcm(1,2,⋯,B) for a suitable bound B (the larger B is the 

more likely the method will be to succeed in producing a 

factor, but the longer the method will take to work).  

2. Compute ak = ak mod N. 

3. Compute d = gcd (ak-1 , N). 

4. If 1 < d < N, then d is a nontrivial factor of N, output d and 

go to step 6. 

5. If d is not a nontrivial factor of N and still want to try more 

experiment, then go to step 2 to start all over again with a 

new a and/or a new k, else go to step 6. 

6. Terminate the algorithm.        � 

The Pollard’s p - 1 algorithm is usually successful in the 

fortunate case where N has a prime divisor p for which p – 1 

has no large prime factors. Suppose that (p – 1)|k and that pɫa. 
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Since |(ℤ/pℤ)* | = p – 1 and ak ≡ 1 (mod p), thus p| gcd (ak-1 , N). 

In many cases, p = gcd (ak-1 , N). 

[Example 2] 

Input N = 540143, and B = 8 

let k = 840 = 23*3*5*7, and a = 2 

gcd (2840 – 1 mod 540143 , 540143)  

= gcd (53046 , 540143) = 421 

421 is a factor of 540143. In fact, 540143 = 421*1283.  � 

The drawback of this algorithm is that it requires N to have 

a prime factor p such that p – 1 has only “small” prime factors. 

In RSA algorithm, it would be very easy to Factor n into its two 

prime factors, if p - 1 or q - 1 has only “small” prime factors. 

Note that the p + 1 algorithm, proposed by H. C. Williams in 

1982, is an algorithm very similar to Pollard’s p - 1 algorithm. It 

is efficient only if n has a prime factor p such that p + 1 is 

smooth.  

 

2.2.3 Timing Attack 

The main idea of timing attack is that a snooper can determine a 

private key by keeping track of how long a computer takes to 

decipher message [20]. Timing attacks are applicable not only to 

RSA, but also to other public-key cryptography system. This attack is 

alarming for two reasons: It comes from a completely unexpected 

direction and it is a ciphertext-only attack. 

The attack assumes that the attacker knows the design of the 
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target system, although practically this could probably be inferred 

from timing information. The attack can be tailored to work with 

virtually any implementation that does not run in fixed time, but is 

first outlined using the simple modular exponentiation algorithm 

below which computes R = cd mod n, where d is w bits long: 

Let s0 = 1. 

For k = 0 to w - 1: 

If (bit k of d) is 1 then 

Let Rk = (sk • c) mod n. 

Else 

Let Rk = sk. 

Let sk+1 = Rk
2 mod n. 

End. 

Return (Rw-1).                                        � 

The attack allows someone who knows exponent bits 0…(b-1) to 

find bit b. To obtain the total exponent, begin with b equal to 0 and 

repeat the attack until the total exponent is known. 

Because the first b exponent bits are known, the attacker can 

compute the first b iterations of the ″For″ loop to find the value of sb. 

The next iteration requires the first unknown exponent bit. If this bit 

is ″1″, Rb = (sb • c) mod n will be computed. If it is ″0″, the operation 

will be skipped. The attack will be described first in an extreme 

hypothetical case. Suppose the target system uses a modular 

multiplication function that is normally extremely fast but 

occasionally takes much more time than an entire normal modular 

exponentiation. For a few sb and c values the calculation of Rb = (sb • 
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c) mod n will be extremely slow, and by using knowledge about the 

target system's design the attacker can determine which these are. If 

the total modular exponentiation time is ever fast when Rb = (sb • c) 

mod n is slow, exponent bit b must be zero. Conversely, if slow Rb = 

(sb • c) mod n operations always result in slow total modular 

exponentiation times, the exponent bit is probably set. Once exponent 

bit b is known, the attacker can verify that the overall operation time 

is slow whenever sb+1 = Rb
2mod n is expected to be slow. The same 

set of timing measurements can then be reused to find the following 

exponent bits. 

Although the timing attack is a serious threat, there are simple 

countermeasures that can be used, including the following: 

 Constant exponentiation time: Ensure that all 

exponentiation takes the same amount of time before 

returning result. This is a simple fix but does degrade 

performance. 

 Random delay: Better performance could be achieved by 

adding a random delay to the exponentiation algorithm to 

confuse the timing attack. If defenders do not add enough 

noise, attackers could still succeed by collecting additional 

measurements to compensate for the random delay. 

 Blinding: Multiply the ciphertext by a random number 

before performing exponentiation. This processed prevents 

the attacker from knowing what ciphertext bits are being 

processed inside the computer and therefore prevents the 

bit-by-bit analysis essential to the timing attack. 
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2.3 Strong Prime  
The security of RSA depends critically on the problem of 

factoring n into its prime factors p and q.  Therefore it is important 

for the user to select primes p and q in such a way that the problem of 

factoring n = p×q is computationally infeasible for an adversary.  

The recommended way of maximizing the difficulty of factoring n is 

to choose p and q as strong primes.  Ogiwara [21, 22, 23] defined 

that a prime p is said to be strong if p satisfies the following 

constraints:  

1. p - 1 should contain a large prime factor p1 so that p – 1 = p1×α, 

where gcd(p1, α) = 1. 

2. p + 1 should contain a large prime factor p2 so that p + 1 = p2×β, 

where gcd(p2, β) = 1. 

3. p1 - 1 has a large prime factor r1 so that p1 – 1 = r1×χ, where 

gcd(r1, χ) = 1. 

4. p1 + 1 has a large prime factor s1 so that p1 + 1 = s1×δ, where 

gcd(s1, δ) = 1. 

5. p2 - 1 has a large prime factor r2 so that p2 – 1 = r2×ε, where 

gcd(r2, ε) = 1. 

6. p2 + 1 has a large prime factor s2 so that p2 + 1 = s2×γ, where 

gcd(s2, γ) = 1. 

These ‘level-3 prime’ numbers r1, s1, r2 and s2 can be easily 

found by a probabilistic primarily test.  There are many methods 

have been proposed to generate strong primes for RSA [21, 24, 25, 

26].  These methods first use level-3 primes to find ‘level-2 primes’ 
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p1 or p2.  Similarly we use the level-2 primes to find the ‘level-1 

prime’ p.  In these methods, the bit length of the level-(i + 1) prime 

is about half of the bit length of the level-i prime.  Figure 2 shows 

the strong prime structure.  Another prime q also can be generated 

by the same method. The private key holder knows these secret 

values essentially, because he should select these secret values to 

generate his private key by himself. 

 
Figure 2 The Structure of Strong Prime 

 

2.4 Chinese Remainder Theorem  
The Chinese remainder Theorem (CRT) is a really method of 

solving certain system of congruence. Suppose m1,m2,…,mr are 

pairwise relatively prime positive integers, and suppose a1,a2,…,ar are 

integers. Then the system of r congruences  

x ≡ a1 mod m1 
x ≡ a2 mod m2 

: 

x ≡ ar mod mr 

has a unique solution modulo M = m1×m2×…×mr, which is given by  

p

p1 

p-1 p+1

p1-1 p1+1 p2-1 p2 p2+1 

r1 s1 r2 s2 
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MYMax
r

i

iii mod
1
∑
=

≡  

where Mi = M/mi and yi = Mi
-1 mod mi, for 1≤ i ≤ r. 

[Example 3] 

     Let x ≡ 2 mod 3 

      x ≡ 3 mod 5 

      x ≡ 2 mod 7 

M = m1 m2 m3 = 105 

M1 = M / m1 = 35 

y1 = M1
-1 mod m1= 35-1 mod 3 = 2 

M2 = 21 and y2 = 1 

M3 = 15 and y3 = 1 

   x  = (a1M1y1 + a2M2y2 +a3M3y3 ) mod M 

    = (2*35*2 + 3*21*1 +2*15*1 ) mod 105 

    = 23                    � 

The CRT is very useful in Cryptography and its applications 

very broad. When the factors of the modulus N (i.e., p and q) are 

assumed to be known, the RSA decryption operation can be speeded 

up by using the CRT [8, 9]. By using the CRT, the computation of M 

= Cd mod N can be partitioned into two parts: 

Mp = Cp
dp mod p, 

Mq = Cq
dq mod q, 

 where 

Cp = C mod p, dp = d mod ( p－1), 

Cq = C mod q, dq = d mod (q－1). 
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Finally, we use CRT to compute M as follows: 

   M = ( Mp ( q-1 mod p) ) q + Mq ( p-1 mod q) ) p) mod N.   � 

This reduces computation time since dp, dq < d and Cp, Cq < C. 

In fact, their sizes are bout half the original sizes. In the ideal case we 

can have a speedup of about 4 times. In this case, dp, dq, q-1 mod p 

and p-1 mod q can be predict. The extra operations are Cp = C mod p, 

Cq = C mod q and M = Mp ( q-1 mod p) q + Mq ( p-1 mod q ) p) mod N. 

Compared with the calculation of Mp and Mq, the time spent on the 

extra operations is negligible. Therefore, in most cases, the speedup 

is close to 4 times. 

Another RSA decryption algorithm based on CRT can be 

described as follows:   

 Compute:    a = cd mod p. 

b = cd mod q. 

u*q = 1 mod p 

If a ≥ b mod p, then  

cd mod n = (((a – (b mod p))*u)mod p)*q +b 

If a < b mod p, then  

cd mod n = (((a + p – (b mod p))*u)mod p)*q +b     � 

If a and b can be easily computed, this algorithm will be more 

efficient.  

 [Example 4] 

From example 1, m1 = 1819, c1 = 0818, m3 = 0318, c3 = 0578, e 

= 17, d = 157, p = 47 and q = 59,  

a1 = cd mod p = 818157 mod 47 = 33 

b1= cd mod q =818157 mod 59 = 49 
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u = 59-1 mod 47 = 4 

a1 < b1 

m1 = (((33 + 47 – (49 mod 47))*4)mod 47)*59 +49 = 1819 

 

a2 = cd mod p = 578157 mod 47 = 36 

b2= cd mod q =578157 mod 59 = 23 

a2 ≥ b2 

m3 = (((36 – (23 mod 47))*4)mod 47)*59 +23 = 0318 

The result is the same with the result in example 1.   � 
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Chapter 3 New Decryption Method 
In this Chapter, we propose an efficient RSA decryption method 

based on strong prime criterion. If the highest concern is to ensure data 

security, the prime factors p and q of modulus n in RSA cryptosystem 

must be strong primes. It is reasonable that the private key holder knows 

the prime factors of p – 1, p + 1, q – 1 and q + 1. The proposed decryption 

method is based on the strong primes of RSA criterion and Chinese 

Remainder Theorem (CRT). The private key holder performs the 

decryption procedure: cd mod n by our method as the following steps:     

Step 1: Factor p – 1, p + 1, q – 1, and q + 1 to get their prime factors.  

We assume that moduli p – 1, p + 1, q – 1, and q + 1 be expressed 

as follows. 

p – 1 = 2 ⋅ r1⋅…⋅ri, 

p + 1 = 2 ⋅ s1⋅…⋅sj, 

q – 1 = 2 ⋅ t1⋅…⋅tk, 

q + 1 = 2 ⋅ u1⋅…⋅ul. 

Step 2: Compute the modular exponentiation with prime factors of p – 1

 as the modulus. Then, apply the CRT to generate individually 

y1 = cd mod (p - 1), 

y2 = cd mod (p + 1), 

y3 = cd mod (q - 1), 

y4 = cd mod (q + 1), 

The detail steps are as follows: 

2.1 Compute c(p-1),i = c mod ri
αi, i = 1, …, h. 

2.2 Compute d(p-1), i = d mod Φ(ri
αi), i = 1, …, h. 
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2.3 Compute the modular exponentiation  

   m(p-1),i = c(p-1),i
d(p-1),i mod ri

αi, i = 1, …, h. 

2.4 Apply the CRT to generate y1 = cd mod (p – 1) based on 

m(p-1),i, i = 1, …, h. 

Step 3: Compute  

X1 = 2-1(y1 + y2 – z) mod p 

where z = 0 if y1 ≥ y2; otherwise z = 1,and 

X2 = 2-1(y3 + y4 – z) mod q 

where z = 0 if y3 ≥ y4; otherwise z = 1. 

Step 4: Apply the CRT to calculate the final result m = cd mod n based on 

X1 and X2. 

Figure 3 shows the diagram of our decryption method. 

The numbers p – 1, p + 1, q - 1 and q + 1 can be individually 

decomposed into three prime factors at least in step 1. The bit lengths of 

ri
αi (i = 1, …, h) are shorter than p -1. The bit lengths of d(p-1), i (i = 1, …, 

h) are shorter than d. In general, the complexity of modular 

exponentiation depends on the bit length of exponent and modulus. The 

total computation time of Step 2 to get y1 = cd mod (p -1) is shorter than 

compute y1 by computing cd mod (p -1) directly. The efficient results are 

similar to y2 = cd mod (p + 1), y3 = cd mod (q - 1) and y4 = cd mod (q + 1).  

The proposed decryption method is more efficient than the original 

method. In chapter 4 we will prove these results in detail. 

In Step 3, we use (y1, y2) to compute X1, and (y3, y4) to compute X2. 

Theorem 1 demonstrates that X1 and X2 are generated as Step 3 correctly. 
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Figure 3 New Decryption Method for RSA Cryptosystem 
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 [Lemma 1]  
Given  

y1 = X mod (p – 1), 

y2 = X mod (p + 1) 

where 0 ≤ X < (p2 - 1)/2, and p is a prime, then 

X = (p + 1)y1/2 – (p –1)y2/2 + (p – 1)(p + 1)z/2 

where z = 1 or 0. 

Proof:  

From y1 = X mod (p – 1) and y2 = X mod (p + 1), we have 

y1 + (p – 1)z1 = X          (1) 

y2 + (p + 1)z2 = X       (2) 

z1 and z2 are two positive integers 

Equation (1) × (p+1): 

(p + 1)y1 + (p + 1)(p – 1)z1 = (p + 1)X.    (3) 

Equation (2) × (p - 1):  

(p - 1)y2 + (p + 1)(p – 1)z2 = (p - 1)X.    (4) 

Equation (3) – Equation (4):  
2X = (p + 1)y1 – (p –1)y2 + (p – 1)(p + 1)(z1 - z2) 

Let z = z1 - z2 

X = (p + 1)y1/2 – (p –1)y2/2 + (p – 1)(p + 1)z/2    (5) 

We will proof z is 0 or 1 in Equation (5) by contradiction as follows: 

Case 1: 

Assume that z < 0.Since y1 ≤ p - 2 and y2 ≥ 0, it follows that  

X = (p + 1)y1/2 – (p –1)y2/2 + (p – 1)(p + 1)z/2 

X ≤ (p + 1) (p –2)/2 - (p – 1)(p + 1)/2 

= -(p + 1)/2 

X < 0. 

This result contradicts the given condition X ≥ 0. Hence, z is not 
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smaller than 0. 

Case 2: 

Assume that z > 1.Since y1≥0 and y2≤ p, it follows that  

X = (p + 1)y1/2 – (p –1)y2/2 + (p – 1)(p + 1)z/2 

X ≥ –(p –1)p/2 + (p – 1)(p + 1) 

= (p – 1) (p + 2)/2 

X > (p – 1) (p + 1)/2. 

This result contradicts the given condition X < (p2 - 1)/2. Hence, z is 

not larger than 1. 

By Cases 1, 2 and z1, z2 are integers, z must be either 0 or 1.     Q.E.D. 

[Theorem 1] 
Given  

y1 = X mod (p – 1), 

y2 = X mod (p + 1) 

where 0 ≤ X < (p2 - 1)/2, and p is a prime, then 

X = 2-1(y1 + y2 – z) mod p 

The value of z is  

if y1 ≥ y2 ; z = 0,  

otherwise ; z = 1. 

Proof:  
By Lemma 1,  

X = (p + 1)y1/2 – (p – 1)y2/2 + (p – 1)(p+1)z/2, 

where z is either 0 or 1. 

We get  

X = 2-1(y1 + y2 – z) mod p,     (6) 

where z is either 0 or 1. 

In addition, we will demonstrate the conditions of Equation (6) that z 
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= 0 or z = 1. 

By Equation (2) – Equation (1) 
y2 – y1 = (p – 1)z1 – (p + 1)z2 = (p – 1) (z1 – z2) – 2z2 

where y1 ≥ 0, y2 ≥ 0, p > 0 , both z1 and z2 are two positive integers. 

Let (z1 – z2) = z.   

      y2 – y1 = (p – 1) z – 2z2          (7) 

By Equation (2), and 0 ≤ X < (p2 - 1)/2, 0 ≤ y2 ≤ p, we get  

0 ≤ y2 + (p + 1) z2 < (p2 - 1)/2. 

Hence, we get  

0 ≤ z2 < (p – 1)/2. 

By Equation (7),  

    y2 – y1 > (p – 1)z – (p - 1) = (p – 1) (z – 1).        (8) 

Case 1: y1 ≥ y2 

Since y1 ≥ y2, from Equation(8)  

0 ≥ y2 – y1 > (p – 1) (z – 1) 

0 > (p – 1) (z – 1) 

and, (p – 1) > 0, 

0 > z – 1 

1 > z  

By Lemma 1, z = 0. 

Case 2: y1 < y2   

The value of z must be a positive integer. Thus z = 1. 

To sum up, z = 0 if y1 ≥ y2; otherwise z = 1.                   Q.E.D. 

 [Example 4]( y1 < y2) 

Let p = 19, X = 169 

p + 1= 20 = 4*5 

p – 1 = 18 =3*6 
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y1 = 169 mod 18 = 7 

y2 = 169 mod 20 = 9 

y1  <  y2 

y ≡ 2-1(7 +9 -1) mod 19 

≡ 17 mod 19                       � 

[Example 5]( y1 ≥ y2) 

Let p = 2773, X = 9202 

p+1 = 2774 = 38*73  

p-1 = 2772 = 36*77 

y1 = 9202 mod 2772 = 940 

y2 = 9202 mod 2774 = 330 

y1 ≥ y2 

y ≡ 2-1(330 + 940) mod 2773 

≡ 635 mod 2773         � 

Although we need to compute the multiplicative inverse of 2 

modular p in Step 3, Theorem 2 provides an efficient method to compute 

the inverse value.   

[Theorem 2] 

Let p be a prime, the multiplicative inverse of 2 modulo p can be 

computed by 2-1 mod p = (p + 1)/2. 

Proof:  

2 × (p + 1)/2 = p + 1 ≡ 1 mod p. 

The multiplicative inverse of 2 modulo p is equal to (p + 1)/2.    Q.E.D 
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Chapter 4 Computational complexity 
In this chapter we will demonstrate our proposed decryption method, 

which is more efficient than the original decryption method and 

decryption method based on CRT.  First, we will define some 

denotations as follows: 

 MODE(y, z) denotes an operation of modular exponentiation (xy 

mod z). 

 M(w), A(w) and Mod(w) denote operations of multiplication, 

addition and modulus with the bit length of operand is w. 

 l(w) denotes lengths of w. 

 S denotes an operation of shift. 

By the additional chain method [27] the modulo operation cd mod n 

can be expressed as: 

  MODE(d, n) = 1.5 × l(d)[M(l(n) + 2 Mod(l(n)) + 1).  (9) 
The multiplication and addition operations can be expressed as 

follows [28]: 

M(w) = 3M(w/2) + 5A(w) + 2S,     (10) 

A(w) = w/32.         (11) 

Also, the modular operation could be expressed as the following 

equations based on the divide and conquer concept [29]: 

Mod(w) = Mod(w/2) + 4M(w/2) + 1.5A(w) + 3S.  (12) 

Without loss of generality, we assume all of Mod(32), M(32), A(32) 

and S take one clock cycle. By the equations (10) and (11), we get 

 M(1024) = 3M(512) + 5A(1024) + 2S 

  =  3M(512) + 162 

   = 3[3M(256) + 5A(512) + 2S] + 162 
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   = 9M(256) + 408 

   = 9[3M(128) + 5A(256) + 2S] + 408 

   = 27M(128) + 786 

   = 27[3M(64) + 5A(128) + 2S] + 786 

   = 81M(64) + 1380 

   = 81[3M(32) + 5A(64) + 2S] + 1380 

  = 243M(32) + 2352 

  = 2595. 

By the equations (10), (11) and (12), we get 

 Mod (1024) =  Mod(512) + 4M(512) + 1.5A(1024) + 3S 

 =  [Mod(256) + 4M(256) + 1.5A(512) + 3S] + 3295 

 =  [Mod(128) + 4M(128) + 1.5A(256) + 3S] + 4294 

 = [Mod(64) + 4M(64) + 1.5A(128) + 3S] + 4577 

 = [Mod(32) + 4M(32) + 1.5A(64) + 3S] + 4646 

 = 4657 

We use the recursion down to the 32-bit level, then 

 M(128) = 9M(32) + 50A(32) + 8S, 

 M(256) = 27M(32) + 190A(32) + 26S, 

 M(512) = 81M(32) + 650 A(32) + 80 S, 

 M(1024) = 243M(32) + 2110A(32) + 242S, 

 Mod(128) = Mod(32) + 16M(32) + 49A(32) +14S, 

 Mod(256) = Mod(32) + 52M(32) + 261A(32) +49S, 

 Mod(512) = Mod(32) +160M(32) +1045A(32) + 156S, 

 Mod (1024) = Mod (32) + 484M(32) + 3693A(32) + 479S. 

In order to ensure data security, the bit length of modulus should be 

1024 at least. By Equation (9), the original decryption method can be 

repressed as 
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  MODE(d, n) = 1.5 × 1024[M(1024) + 2 Mod(1024)+1]. 

     = 3072Mod(32) + 1860096M(32) + 14585856A(32) 

       + 1843200S + 1536. 

     = 18293760 

That is to say, the original decryption method should take 18293760 

clock cycles. 

In the decryption method based on CRT, we assume that l(p) and l(q) 

are equal.  Thus the length of the exponent is about n/2.  The total 

number of operations of the decryption method based on original CRT is 

equal to: 

2MODE(d/2, n/2) + A(3d/2) + 4M(n/2) + 2Mod(n/2) + Mod(n), 

 that is: 

   MODE(d, n) = 2{1.5× 512[M(512) + 2 Mod(512) + 1]}  

   + A(1536) + 4M(512) + 2Mod(512) + Mod(1024) 

 = Mod(1024) + 1540M(512) + 3074Mod(512)  

   + A(1536) + 1536 

  = 2[243M(32) + 2110A(32) + 242S]  

   + Mod (32) + 484M(32) + 3693A(32) + 479S  

   + 1540[81M(32) + 650 A(32) + 80S]  

   + 3074[Mod(32) +160M(32) +1045A(32) + 156S]  

   + 48A(32) + 1536 

 = 3075Mod(32) + 617550M(32) + 4221291A(32)  

  + 603707S + 1536 

 = 5447159 

By this case, the decryption method takes 5447159 clock cycles. 

In our proposed method, p - 1, p + 1, q - 1 and q + 1 can be factored 
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into at least three numbers. Without loss of generality, we assume that bit 

length of the largest prime factor is about l(n)/4 and others are about 

l(n)/8 [21, 22, 24, 25].  The total number of operations of our proposed 

method is 

4[2MODE(d/4, n/4) + A(3d/4) + 4M(n/4) + 2Mod(n/4) + Mod(n/2)]  

+ 2[2A(n/2) + M(n/2) + Mod(n/2)]  

+ 4A(n/2) + 2M(n/2) + Mod(n/2) 

   MODE(d, n) = 4{2{1.5× 256[M(256) + 2 Mod(256) + 1]} + A(768)  

   + 4M(256) + 2Mod(256) + Mod(512)}  

     + 2[2A(512) + M(512) + Mod(512)]  

     + 4A(512) + 2M(512) + Mod(512) 

  = 8A(512) +4M(512) + 7Mod(512)  

  + 3088M(256) + 6152Mod(256)  

  + 4A(192) + 3072 

  =6159Mod(32) + 404724M(32) + 2202459A(32)  

  + 383148S + 3072 

  =2995062 

It takes 2995062 clock cycles. 

The original decryption method take 18293760 clock cycles. The 

decryption method based on CRT takes 5447159 clock cycles; however, 

our proposed method only takes 2995062 clock cycles. If we suppose the 

computational costs of the original decryption method is 100%, 

Compared with the original decryption method, the decryption method 

based on CRT takes 30% computational costs, but our proposed method 

takes only approximately 16%. The result will show in the table 2. The 
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speed of our proposed method is almost 1.8 times faster than the 

decryption method based on CRT only. 
Table 2 Comparison Among Three Types of Decryption Methods 

 Clock Cycles Computational Cost 

Original Decryption 
Method 18293760 100% 

Decryption Method 
Based on CRT 5447159 29.78% 

New Decryption 
Method 2995062 16.37% 
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Chapter 5 Implementation 
In order to evaluate the performance of our method, we examine 

these methods mentioned above based on Texas Instruments 

TMS320C55x family of signal processors. In table 3[34], we show the 

features of TMS320C55x. In addition, we assume the calculated CPU 

clock cycles of the realization of the RSA decryption with the following 

parameters as Table 4. The CPU clock cycles needed for processing the 

original RSA decryption method, decryption method based on the CRT, 

and our proposed method are given in Table 5, Table 6, and Table 7. The 

critical factor in influencing the speed of RAS decryption is the 

computation of modular multiplication. We apply the square and multiply 

algorithm to compute the modular exponentiation [27]. The square and 

multiply algorithm needs 3n/2 modular multiplications for an n-bit 

exponent. The original RSA decryption method needs modular 

multiplication only one time. The decryption method based on the CRT 

needs modular-multiplication two times. Because there is a difference in 

the length of d and n in modular multiplication, the clock cycles needed 

by the decryption method based on the CRT are less and the speed of this 

method is faster than the speed of the original decryption method. 

However, as our proposed method needs modular multiplication four 

times and the length of d and n is much shorter, the clock cycles needed 

are much less and the speed is much faster. 

As demonstrated in Table 6, due to the characteristics of chip 

TMS320C55x, the clock cycles needed by original decryption method is 

more than the clock cycles assessed in chapter four. Nevertheless, the  
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Table 3 The Features of TMS320C55x [32] 

High-Performance, Low-Power, Fixed-Point 

TMS320C55x Digital Signal Processor (DSP) 

– 6.25-/5-ns Instruction Cycle Time 

– 160-/200-MHz Clock Rate 

– One/Two Instructions Executed per Cycle 

– Dual Multipliers (Up to 400 Million 

Multiply-Accumulates Per Second (MMACS))

– Two Arithmetic/Logic Units 

– One Internal Program Bus 

– Three Internal Data/Operand Read Buses 

– Two Internal Data/Operand Write Buses 

Instruction Cache 24K Bytes 

160K x 16-Bit On-Chip RAM – Eight Blocks of 4K × 16-Bit Dual-Access RAM 

(DARAM) (64K Bytes) 

– 32 Blocks of 4K × 16-Bit Single-Access RAM 

(SARAM)(256K Bytes) 

16K × 16-Bit On-Chip ROM 32K Bytes 

8M × 16-Bit Maximum Addressable External 

Memory Space 

 

32-Bit External Memory Interface (EMIF) – Asynchronous Static RAM (SRAM) 

– Asynchronous EPROM 

– Synchronous DRAM (SDRAM) 

– Synchronous Burst SRAM (SBSRAM) 

On-Chip Peripherals – Two 20-Bit Timers 

– Six-Channel Direct Memory Access(DMA) 

Controller 

– Three Multichannel Buffered Serial Ports 

(McBSPs) 

– 16-Bit Parallel Enhanced Host-Port Interface 

(EHPI) 

– Programmable Digital Phase-Locked Loop 

(DPLL) Clock Generator 

– Eight General-Purpose I/O (GPIO) Pinsand 

Dedicated General-Purpose Output (XF) 

On-Chip Scan-Based Emulation Logic  

IEEE Std 1149.1 (JTAG) Boundary ScanLogic  

3.3-V I/O Supply Voltage  

1.6-V Core Supply Voltage  
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Table 4 Parameters of The RSA Decryption 

RSA modulus n 2048bits 1024bits 512bits 

RSA exponent length 2048bits 1024bits 512bits 

message length 2048bits 1024bits 512bits 

level-1 prime length 1024bits 512bits 256bits 

level-2 prime length 512bits 256bits 128bits 

Table 5 Numbers of CPU Clock Cycles for Realization RSA Decryption 
between Three Methods (Key Length = 2048 bits) 

 Clock Cycles Computational Cost 

Original Decryption 
Method 269083092 100% 

Decryption Method 
Based on CRT 55491364 20.62% 

New Decryption 
Method 30634747 11.37% 

Table 6 Numbers of CPU Clock Cycles for Realization RSA Decryption 
between Three Methods (Key Length = 1024 bits) 

 Clock Cycles Computational Cost 

Original Decryption 
Method 35635338 100% 

Decryption Method 
Based on CRT 9985827 28.02% 

New Decryption 
Method 5506659 15.45% 
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Table 7 Numbers of CPU Clock Cycles for Realization RSA Decryption 
between Three Methods (Key Length = 512 bits) 

 Clock Cycles Computational Cost 

Original Decryption 
Method 5145156 100% 

Decryption Method 
Based on CRT 1633335 31.75% 

New Decryption 
Method 897929 17.45% 

computational cost needed by each kind of decryption method is almost 

the same with the computational cost that we assessed before. Comparing 

the results in Table 5, Table 6, and Table 7, we find that, with the increase 

of key length, the computational costs which can be saved by decryption 

method based on the CRT and by our new decryption method also 

increase. Let’s take another example. In table 7, when the key length is 

2048bits, the decryption method based on the CRT only needs 20% of the 

computational cost of original decryption method. Furthermore, our new 

decryption method only needs 11% of the computational cost of original 

decryption method.  

The memory spaces needed for processing the original RSA 

decryption method, decryption method based on the CRT, and our 

proposed method are given in Table 8, Table 9, and Table 10. As 

demonstrated in Table 8, Table 9, and Table 10, our new decryption 

method and decryption method based on the CRT need more memory 

space respectively than original decryption method does. When key 

length is 1024bits, the memory space needed by decryption method based  
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Table 8 The Memory Spaces for Realization RSA Decryption between 
Three Methods (Key Length = 2048 bits) 

 Memory Space Increase Percentage 

Original Decryption 
Method 11347bytes 100% 

Decryption Method 
Based on CRT 12440bytes 109.63% 

New Decryption 
Method 14704bytes 129.58% 

Table 9 The Memory Spaces for Realization RSA Decryption between 
Three Methods (Key Length = 1024 bits) 

 Memory Space Increase Percentage 

Original Decryption 
Method 6611bytes 100% 

Decryption Method 
Based on CRT 7558bytes 114.23% 

New Decryption 
Method 8985bytes 135.91% 

Table 10 The Memory Spaces for Realization RSA Decryption between 
Three Methods (Key Length = 512 bits) 

 Memory Space Increase Percentage 

Original Decryption 
Method 4243bytes 100% 

Decryption Method 
Based on CRT 5048bytes 118.97% 

New Decryption 
Method 6005bytes 141.53% 
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on the CRT is 14% more than the memory space needed by the original 

decryption method. The memory space needed by our proposed method is 

36% more than the memory space needed by the original decryption 

method. Comparing the results in Table 8, Table 9, and Table 10, we find 

that, with the increase of key length, the memory space increased by 

decryption method based on the CRT and by our new decryption method 

is lessening respectively. For example, in Table 8, when key length is 

2048bits, the memory space of decryption method based on the CRT 

increases 10% and the memory space of our proposed method only 

increases 30%.  

As demonstrated by the results of implementation, when little 

amount of memory space is increased, the speed of RSA decryption 

operation can be greatly accelerated. Furthermore, when the key length is 

increased, the memory space needed to increase is reducing, but the speed 

of RSA decryption operation can be accelerated much significantly. 

Therefore, as it can be seen from the results of implementation, our new 

decryption method is more efficient than other two kinds of decryption 

method. 

 

 

 

 

 

 

 

 



 36

Chapter 6 Conclusion 
In this thesis, we propose an efficient method to implement RSA 

decryption algorithm. This decryption method is not only based on CRT 

but also on the strong prime of RSA criterion. By our computational 

performance analysis, the 1024 bits RSA original decryption method 

without any tricks must require 18256896 clock cycles. The decryption 

method based on CRT takes 5447159 clock cycles. However, our 

proposed decryption method only takes 2995062 clock cycles. The 

complexity of our proposed method is only 16% of that of the original 

decryption method. Compared with decryption method based on CRT, 

our proposed method reduces approximately 45% computational costs.  

In a word, on the TMS320C55x family of signal processors, the speed of 

our proposed method is almost 1.8 times faster than the speed of the 

decryption method based on CRT. Our method can be applied not only 

decryption operation but also signing phase of digital signature. This 

efficient decryption method can enhance the performance of the RSA 

algorithm. 
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