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Design of an Intelligent Wireless LAN Position System

Student : Chien-Chang Huang Advisor © Yaw-Chung Chen

Degree Program of Computer Science

National Chiao Tung University

Abstract

Due to the fast growing in the user population of Internet and Wireless LAN,
location-aware services and systems become a popular topic. Although GPS systems
are widely deployed for traveling and driving guidance, it is not suitable for indoor
environment. Further, it does not provide sufficient accuracy for face to face
applications. Besides, current GPS system was solely designed for positioning
purpose, so it needs to be combined with wireless communication service to
implement location-aware function for mobile computing purposes. Because of these
GPS disadvantages, quite a few indoor positioning schemes were proposed in the past
years, but most of them are either expensive or featuring low accuracy.

In this thesis, we proposed an Intelligent WiFi LAN Positioning System which
was implemented on the application layer to position the mobile station in indoor

environment. Since it was implemented on application layer, it does not need any

il



change of wireless equipments. Further, it is intelligent because it has the machine

learning capability, which is quite useful for extending the positioned area and system

maintenance. The basic idea of this learning capability is that the positioned locations

can be reused as new samples for future positioning. But there are some potential

problems for using all of these positioned locations as future samples. We will discuss

the problem and provide our solution in this work.

We also introduce schemes to improve the accuracy, performance and flexibility

for our system. After the system has been trained for a certain period, the accuracy

will be improved, but there will be a large number of samples in the Location Tables.

Searching through the table one by one will be a time consuming task on Location

Server, in our system, searching all samples is required only in the beginning or in

few special cases.

Keywords: Positioning, WiFi LAN, Wireless LAN, Access Point, Signal Strength,

Received Signal Strength Indication, and Location Table
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Chapter 1 Introduction

In recent years, because of the explosive growth of Internet population, network
communication has become the most active topic in computer science. And, based on
popular wireless technology and affordable cost, WLAN has become the most
demanded equipment of the network environment in enterprise networks or SOHO
networks. Following the anywhere availability of Wireless LAN, more and more
related services and applications have been proposed based on WLAN environment.
One of them is Wireless LAN positioning application. If there is an efficient and high
accuracy positioning system, lots of other services and applications can be developed
based on this technology. These include guided tour, meeting system, fast roaming

and the active security of wireless network.

For a positioning system, the most popular one is GPS (Global Positioning
System). But there are some limitations on GPS. cannot be used in indoor
environment. So, in indoor environment, WLAN is the best choice for positioning.
There are several advertences as follows: 1. Popularity: WLAN has been mass
produced into market for several years, it can be found anywhere. 2. Affordable Cost:
Even the positioning area without WLAN network, the cost of building an available
one is pretty low. The AP (Access Point) in the market may be lower than $100, it also
features low cost in maintaining. 3. Combined with network communication: Most of
the positioning services need to be combined with network access. WLAN was

designed for this purpose originally.

In this thesis, a novel WiFi LAN Positioning System was proposed. It was built

based on current WiFi LAN and Application Layer. No modification on H/W or F/'W



for Wireless NIC and AP is necessary. This means it can be implemented on any brand
of NIC and AP. Furthermore, any WiFi standard (802.11, 802.11a, 802.11b, 802.11g,

802.11n...) can be used together in this system.

During our study and development, we used wireless Sniffer to check the signal
strength recorded in AP sent packets first. In our measuring, the difference of Signal
Strength between each captured packet at the same location was within 5%. It proves
that we can use it as our comparing measurement. Then, we built our proposed
Intelligent WiFi LAN Positioning System based on this phenomenon. The basic
concept of our system is: 1. Measure the AP Signal Strength Set at few selected
locations. Use as initial samples in location tables. 2. When MN needs to be
positioned, it scans the signal strength of available AP and sends this AP Signal
Strength Set to Location Server to query the location. 3. At Location Server site, it
receives MN’s query and finds out its nearest samples in Location Tables by using
Euclidean Distance. 4. Based on the variation between MN AP Signal Strength Set
and the nearest location (recorded in Location Tables), Location Server positions the
MN current location. 5. The positioned location was replied to MN. And Location
Table was updated for it. According to this scheme, more and more samples will be
added onto Location Table by mass positions. And the accuracy of system will be
improved if there are lots of samples in the Location Table. This positioning system
has such Machine Learning ability. That’s why we call it “Intelligent”. This ability is

very useful for system maintenance and extended positioning area.

The remaining part of this thesis is organized as follows. In Chapter 2, we
survey the background and related work in positioning techniques. In Chapter 3, we
introduce our proposed system and methodology. Chapter 4 presents our simulation

models and the experiment result. Finally, we conclude this thesis in Chapter 5.



Chapter 2 Background and Related Works

2.1 Background

2.1.1 Measurement

For wireless positioning, the basic assumption is that the measured values should
be similar at the same location in the positioned environment. There are several
different types of sensor measurements relevant to wireless network. As Stuart A.
Golden introduced in [1], some of them are TOA (Time of Arrival), TDOA (Time

Difterence of Arrival), AOA (Angle of Arrival) and SS (Signal Strength).

TOA: It directly provides a distance estimate from an MN to a BS. The desired MS
location is determined by the intersection of at least three circles formed by multiple
measurements between the MN and several BSs. TOA measurements need to

timestamp the signals and require synchronization among the BSs

TDOA: Positioning systems can be grouped into two different categories. The First
one uses many synchronized transmitters and one receiver. GPS uses this approach.
However, this approach does not work well for WLAN. It is because all of the access
points do not transmit on the same channel simultaneously. The second one is the
inverse from first one. In this case, there are many synchronized receivers but only a
single transmitter. Here, the client transmits a signal and the access points all listen
and then collaborate to determine the location of the client’s transmitter. Although this
approach can be applied to WLAN, the access points must all be located on the same

channel.

AOA: Because of MIMO technology, WLAN is becoming more attractive. With

angle information and distance measurement, client can be located with only a single



access point. Although MIMO is currently motivated to increase throughput and range,

it can easily be modified to accentuate the direct-path and attenuate other paths.

SS: Distance can be measured by the power loss between the transmitter and receiver.

That is, only with two nodes, SS can be used to estimate the distance.

Since our purpose is implementing our system on the application layer of WiFi
LAN, we adopt SS in our scheme. The SS information can be obtained from
analyzing the packets. Figure 1 shows the packets sent from AP and captured by
wireless Sniffer. According to the packet information, we can use the SS information

of received packets in MN for our measurements.
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Figure 1: AP packets captured by wireless Sniffer.

We captured AP packets at different locations and make statistics as in Figure: 2,
3,4 and 5. Each of the statistic data shows in the same location received packets with

similar SS.
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Figure 2: SS of packets measured at 1m from AP (Avg = -36.88 dbm)
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Figure 3: SS of packets measured at next room from AP (Avg = -56.12 dbm).
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Figure 4: SS of packets measured at lower floor from AP (Avg = -81.26 dbm)
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Figure 5: SS of packets measured at outside (Avg = -91.33 dbm)

According to Figure 2 and 5, we calculate the difference (Error Rate) and show
the data on Figure 6 and 7. On both figures, the error rate for most of packets is within
5% for the same location. In our simulation, we will use it as the error rate (+5%) for

simulated signal strength.
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Figure 6: Error rate of packets SS measured at 1m from AP (Avg = 1.2%)
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Figure 7: Error rate of packets SS measured at outside (Avg = 1.7%)

2.1.2 Similarity

As Bahl pointed shown in [2], pattern match approaches have higher accuracy
than propagation models. We use it as the basic concept in our system. To perform
pattern match scheme, we adopt similarity as the indicator in our system. It is

calculated by Euclidean Distance as below.

® [f2 nodes, a=[al, a2, ..., ad],b=[bl, b2, ..., bd], Euclidean Distance is:

7



dist (a,b) =

1)

® Using [al, a2, ..., ad] & [bl, b2, ..., bd] to represent AP signal strength set of

node a and node b,

® The larger the dist (a, b), the lower the Similarity (a, b).

2.2 Related Works

Several positioning systems have been proposed in the literature. There are
two basic approaches to designing a wireless positioning system. The first one is to
separate the signaling system and network infrastructure which was focusing on
wireless location application. The second approach is to use an existing wireless
network infrastructure to locate a target. The advantage of the first approach is that the
designers are able to control physical specification and the quality of the location

sensing results. The advantage of the second approach is that it single and low cost.

2.2.1 GPS-Based

GPS (Global positioning system) is one of the most successful positioning
systems in outdoor environments. However, poor coverage of satellite signal for
indoor environments decreases its accuracy and makes it unsuitable for indoor
location estimation. The other problem is the precision issue. Although there are some
schemes of GPS proposed for indoor positioning [3], SnapTrack', Atmel® and U-blox’,

but most of them either have low accuracy or need additional system.

'SnapTrack: http://www.snaptrack.com/
*Atmel Corporation: http://www.atmel.com/
’U-blox AG. http://www.u-blox. com



2.2.2RFID

RFID system has several basic components, including RFID readers, RFID
tags, and communication between them. The RFID reader is able to read the data
emitted from RFID tags. Both readers and tags use defined RF and protocol to

transmit and receive data. RFID tags are categorized as either passive or active.

Passive RFID tags operate without a battery. However, its ranges are limited in
1 to 2 meters, and the cost of the readers is relatively high. Active RFID tags are small
transceivers, which can actively transmit their ID (or other additional data) in reply to
an interrogation. The advantages of active RFID are the smaller antenna and its longer
range (>10m). But comparing to GPS or WiFi LAN, this range is still not large
enough for positioning. For positioning in a wide area, lots of RFID tags need to be
allocated and the cost of maintaining the positioning environment is high. SpotON[4]
and LANDMARC]S5] are the indoor location sensing systems which were constructed

based on this technology.

2.2.3 Cellular-Based

A number of systems have used Global System of Mobile/Code Division
Multiple Access (GSM/CDMA) mobile cellular network to estimate the location of
outdoor mobile clients. However, the accuracy of the method using cell-ID or
enhanced observed time difference (E-OTD) is generally low (in the range of 50-200
m), depending on the cell size. Generally speaking, the accuracy is higher in densely
covered areas (e.g. urban places) and much lower in rural environments [6]. Otsasen

et al. presented a GSM-based indoor localization system in [7].

2.2.4 Bluetooth (IEEE 802.15)

Bluetooth operates in the 2.4-GHz band. Compared to WLAN, the gross bit
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rate is lower (1 Mbps), and the range is shorter (typically 10—15 m). On the other hand,
Bluetooth is a “lighter” standard, highly ubiquitous (embedded in most phones,
personal digital assistants (PDAs), etc.) and supports several other networking
services in addition to IP. Bluetooth tags are small size transceivers, like any other
Bluetooth device, each tag has a unique ID. This ID can be used for locating the

Bluetooth tag. [8].

Antti et al. present the design and implementation of a Bluetooth Local
Positioning Application (BLPA) [9]. The accuracy of BLPA is reported to be 3.76 m.

A similar work has been done by Hallberg et al. [10].

2.2.5 WLAN (IEEE 802.11)

Wireless local area network (WLAN) operating in 2.4-GHz has become very
popular in public hotspots and enterprise environments in the last few years. It is,
therefore, appealing to use an existing WLAN infrastructure for indoor location as
well, by adding a location server. The accuracy of typical WLAN positioning systems

using RSS is 3-30 m, with an update rate in the range of few second.

RADAR: Bahl et al.[2] proposed a location and tracking system—RADAR,
which adopts the nearest neighbor(s) in signal-space technique. The authors proposed
empirical measurement and signal propagation modeling. Its accuracy is about 2~3 m.
In the enhanced RADAR the result is around 2.37~2.65 m and its 90 percentile is

around 5.93~5.97 meters.

Horus system [11], [12] proposed a joint clustering technique for location
estimation. Each candidate location coordinate is regarded as a class or category. The
location with highest likelihood is chosen for result. The experiment results show the

accuracy is more than 90% within 2.1 meters. Roos et al. [13] developed a grid-based
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Bayesian location-sensing system over a small region of their office building, the
result is within 1.5 m over 50% of the time. Nibble [14], used a probabilistic approach

(based on Bayesian network) to estimate a device’s location.
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Chapter 3 Intelligent WiFi LAN Positioning System

In this chapter, we introduce the architecture of our proposed system, describe

the methodology and explain its working process.

3.1 Components in the System

The following is the description of each component in our system:

® LS (Location Server) - The most important component in our system. It is

responsible for the following:

» Maintain Location Tables: The Location Server manages the Location
Table based on the AP Signal Strength Set measured by mobile nodes
(MNs). It includes AP Signal Strength Set provided by the initially

sampled and positioned MN.

» Confirm MN’s predicted location: If MN’s positioning query is
performed with MN’s predicted location, check if it is a correct location
based on similarity threshold. If not, performs location server prediction

as next one.

» Evaluate current MN location: If the positioning query is performed
without MN’s predicted location or failure in confirming MN’s predicted

location, it evaluates the new MN’s location based on our scheme.

® Posited AP: Wireless base stations with location information recorded on
Location Server, and broadcast beacons continuously. If necessary, beacon

interval can be configured shorter.

® Initial Samples: This is to measure AP Signal Strength Set at known location

12



address. It provides the initial samples with AP Signal Strength Set.

MN: Mobile Nodes to be positioned.

>

Maintain traveling history (4 location addresses and 1 AP Signal
Strength Set): Four location addresses are used for Prediction by
Uniform Linear Motion. One AP Signal Strength Set is used for
prediction using signal variation ratio. Each of them will be discussed

in Section 3.3.2 and 3.3.3.

Scan wireless channels and get the AP Signal Set: At each position, MN
needs to perform all channels scanning to measure each available AP
Signal Strength. It may spend 2~3 seconds to scan all channels. This

time duration can be shortened by modifying wireless driver.

Predict possible current location of MN: Based on our scheme, MN can
predict its location first and send it to Location Server for confirmation.
Through this feature, it is not necessary to perform fully search on

Location Table to find out the most suitable sample.

Location Table: It is centrally maintained by Location Server. Location server

uses it to manage location information of positioned samples and evaluating

MN’s current location.

>

The location table for each AP features

v" A 60 x 60 matrix for each AP with each entry in the matrix
representing the location related to this AP.

v" It does not need to rebuild location table when position area is
extended. It just adds AP and the associated location table.

v' The absolute location is represented by location table and AP
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location.

» Data and information on each entry of Location Table:

Evaluation
Base

AP Signal Similarity Next 5 AP
Strength Threshold Locations List

Table 1: Location Information Format in Location Table

Evaluation Base: Besides initial samples, most of the samples in
Location Table were based on other samples. Recording the
previous sample for “Exception Location Detection” when
Location Server is used for positioning MN’s location. We will
explain this in Section 3.4.4.

AP Signal Strength: In our design, each AP has its own Location
Table. This field records the Signal Strength of the selected AP at
this location.

Similarity Threshold: The average similarity of this entry
(Location) compared with its 2meter-distance neighbors. When
samples in Location Table were increased up to a high threshold, it
will be very useful to speedup the position process. How to
generate and how it works will be described in each prediction and
confirmation process.

Next 5 Location: It is used for “Potential Locations Prediction” on
MN prediction.

AP List: Each Location Table only records the location
information for its AP. To perform positioning, AP Signal Strength
Set is required. Referring to this field can get other AP’s Signal

Strength of its absolute location.
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3.2 Architecture & Flow Diagram

Figure 8 shows the architecture and flow diagram of our proposed system.

Generally, it can be divided into two phases. The first phase is performed in MN site

and it includes wireless channels scanning, predicting location before sending position

query and sending MN position query. The second phase is executed on Location

Server site and its task includes confirming or evaluating MN’s current location,

responding MN position query and maintaining Location Table. We will use Figure 8

in the discussion in next two sections.
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Figure 8: Proposed system architecture and flow diagram.

3.3 Tasks in MN Site

As shown in Figure 8, the first task on each positioning is that MN scans wireless

channels and measures the Signal Strength of each detectable AP. After collecting the

AP Signal Strength Set, positioning process can be started.
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3.3.1 Predicting by Potential Locations

This is the first stage to predict MN’s location. Considering the moving behavior,
most of them may follow the same tracking. That is, if someone traveled to location A
and went to location B, the next one who comes to A may follow this track and go to
B. As discussed in Location Table data, each location records its 5 next locations.
These data will be updated in recent positioning (Machine Learning). These 5
locations and their related information (AP Signal Strength Set and Similarity
Thresholds) will be sent to MN at each succeed position. So, when an MN starts to
perform positioning, it checks whether any potential location has been sent by last
positioning first. If so, it compares MN’s current measured AP Signal Strength Set
with these locations’ AP Signal Strength Set and selects the one with maximum
similarity. If the maximum similarity is larger than the selected location’s Similarity
Threshold, we can consider this selected location as its current location. MN sends an
informing message to Location Server to update the Location Tables by its measured
AP Signal Strength Set. Location Server updates this location information on Location
Tables and re-calculates the Similarity Threshold of this location and its neighbors
with 2 meter distance. Then AP replies an ACK with next potential location list to MN
for later usage. The Location Server needn’t to position or confirm MN’s location in

this stage.

If this is not the previous position or there is no any potential location sent by
Location Server, or predicting by potential locations was failed, it will go to next

stage: Predicting by Uniform Linear Moving.

3.3.2 Prediction based on Uniform Linear Moving

Considering the moving objects, most of them are moving in uniform linear
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behavior. If this behavior is detected, it can be used for location prediction. As we
discussed in Section 3.1, MN keeps four history locations, these locations can make 3
vectors. In our design, if these 3 moving vectors are similar, we can use it to predict

MN’s current location. Please refer to Figure 9.

e

Figure 9: Prediction based on Moving Vector

When Uniform Linear Moving happened and was detected, MN sends a Location
Query with measured AP Signal Strength Set and the predicted location to Location
Server. Location Server confirms this predicted location by the location information
(AP Signal Strength Set and Similarity Threshold) recorded in Location Table. If it
succeeded, that is, the similarity of AP Signal Strength Set between “MN measured”
and “location table recorded” is larger than the recorded Similarity Threshold, the
Location Server updates this predicted location’s information in Location Tables and
re-calculated the Similarity Threshold of this location and its 2-meter neighbors. Then
the Location Server replies an ACK with next potential location list to MN for next

positioning.

If the confirmation was failed, Location Server performs Evaluating by AP
Signal Set of MN to get MN’s current location, and updates location table then

replies an ACK with next potential location list to MN for next positioning, too.

If the condition in this stage does not exist, it will go to next stage: Predicting

by Signal Variation Ratio.
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3.3.3 Predict by Signal Variation Ratio

Before an MN sends a query to Location Server to perform positioning on
Location Server, it can predict its own location by its signal variation from previous
location. That’s why we keep previous location information (Location and AP Signal
Strength Set) in MN. That is, if an MN is not doing the first time positioning in this
area, it can predict its location based on signal variation ratio first. This predicted
location also can be added into position query to be sent to Location Server for
confirmation. If confirmation is successful, complement positioning process is not
needed on Location Server. This can reduce large amount of loading for Location

Server especially when number of entries in the Location Table is large.

3.3.4 Location Query without MN Predicting

If all of above stages cannot be satisfied, the MN will send location query to
Location Server with AP Signal Strength Set only. Location Server will evaluate the

MN current location based on AP Signal Strength Set, and response to MN.

3.3.5 Algorithm on MN Site

Definition:

Pot_Lo: potential locations;

Pot_Lo_SminTh: Similarity Threshold of each Pot Lo;

Pot_Lo_APSS: AP Signal Set of each Pot Lo;

TRK_Lo0: 4 MN last locations,

PAPSS: MN previous AP Signal Set;

Prd_Lo: Predicted Location;

Prd_Inf: MN predicted informing message. It asks Location Server to update
Location Tables;

Lo_Query: MN Location Query message. Query for MN current location

Simi(APSS1,APSS2): Similarity between APSS1 (AP Signal Strength Set)
and APSS2
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Input: CAPSS: MN’s current AP Signal Set;
Output: MN’s location;

Begin:

End

Scan all Wireless Channels to get AP Signal Set(CAPSS);
if (Pot_Lo exists && Max[Simi(CAPSS, Pot Lo APSS)] = Pot Lo SminTh)
{

send Prd_Inf(Pot Lo(with Max Similarity), CAPSS);

return (Pot Lo(with Max Similarity));

else if (there are 4 TRK Lo && all moving vectors are similar)

{

Prd Lo (4th moving vector);
send Lo Query (Prd Lo & CAPSS);

b

else if (PAPSS exists)

{
Prd Lo(variation between PAPSS and CAPSS);
send Lo Query (Prd Lo & CAPSS);

b

Else

{
send Lo Query (CAPSS);

b

receive ACK or response from Location Server (positioned location, Pot Lo)
{

renew Pot Lo for next positioning;

push positioned location into TRK Lo queue;

save CAPSS to PAPSS;
b

return (positioned location);

Figure 10: Algorithm on MN
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3.4 Location Server Site Tasks

As shown in Figure 8, several different messages may be sent by MN. They are

Predicted Advise (Sent by “MN’s Predicting by Potential Locations” stage),

Location Query with Predicted Location (Sent by “MN Predicting by Uniform

Linear Moving” or “MN Predicting by Signal Variation Ratio” stages), and Location

Query without Predicted Location (Sent if MN has not performed prediction).

Location Server must perform different tasks according different messages. We give a

brief description below, and more details will be addressed in the following sections.

Predicted Advise: If it can satisfy the “Predicting by Potential Locations” stage
on MN site, the only tasks of Location Server are updating Location Tables and
ACK with next potential location list. Location confirmation or positioning is not

necessary.

Location Query with Predicted Location: As we discussed in MN tasks, MN
may predict its location through several methods. Most of the position queries
may include its predicted location. Once the Location Server received a query
with predicted location, it will decide whether to do confirmation by Similarity
Threshold check first. If the similarity check is passed, it responses with
confirmation and the next potential location list. If failed, it performs
“Positioning by AP Signal Set of MN” task and feedbacks with positioned

location and next potential location list.

Location Query without Predicted Location: In the Position Query without
predicted location, Location Server performs “Positioning by AP Signal Set of
MN” task directly. It feedbacks with positioned location and next potential

location list.
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3.4.1 Similarity Threshold

Similarity Threshold has been addressed in our previous discussion. Before
describing Location Server’s tasks, we define and explain what it is and how it works

first.

® Purpose: To check whether a predicted location is close to a sample

location in Location Tables.

® Definition: If the similarity between the predicted location and the selected
sample > the Similarity Threshold of the selected sample, the predicted

location can be considered as equal to this selected sample.

® Calculation: Average Similarity between selected location and its 2-meter
neighbors. For example, L, is one of the locations in Location Tables. N; is

L,’s 2-meter neighbor. The Similarity Threshold of L, is:

Similarity (La, Ny) + Similarity (La, No) = ... + Similarity (La, Ny}

: ()

® Update Operation: If any Location Tables updates for a successful

positioning,

1) If there are more than 2 neighbors at 2-meter distance, it calculates

similarity for this updated location.

2) Recalculate the Similarity Threshold for each 2-meter neighbor.

Calculated from

- / three 2m neighbors

Recalculated when
New Sample

Figure 11: Similarity Threshold Update
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3.4.2 Confirming MN’s Predicted Location

As described above, a Location Server may receive MN’s Position Query with
predicted location. Location Server must confirm whether it is correct or not. Once

Location Server receives such query, it will do the following:

1. Find out all neighbors within 2 meters of predicted location and make
calculation to check whether the similarity with MN’s AP Signal Strength is
larger than their Similarity Threshold or not. If there are more than 50%
successful, consider this confirmation is successful, then it performs the

following process:

® [ocation Server updates the location information onto the Location

Tables with measured AP Signal Strength Set.

® Recalculate Similarity Threshold of this location and its 2-meter

neighbors.
® Feedback confirmation to MN with potential list if any.

2. If the above process was failed, it is a failed confirmation and Location
Server will perform Evaluation by AP Signal Set of MN to be described

in the next section.

3.4.3 Evaluation by AP Signal Set of MN

This task was performed when predicted location confirmation failed or
received Location Query without Predicted Location from MN. It can be divided into

2 steps: Nearest Sample Discovery and Location Evaluation from Nearest Sample.

Step 1. Nearest Sample Discovery
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On Location Server, it tries to find out the nearest known node (Sample) in the
Location Tables based on MN’s measured AP Signal Strength Set. That is, to calculate
each AP Signal Strength Set for the similarity between MN’s measurement and each
sample’s record in Location Tables. The sample with maximum similarity will be the

nearest sample.
Nearest Sample = Max [Similarity(MN, Sample;)] 3)
Step 2. Location Evaluation from Nearest Sample

Once the nearest sample was discovered on Location Table, the MN’s location
can be evaluated by the difference of each AP Signal Strength. Based on radio power
Equation (4), we can obtain that in the same condition (same transmitter, receiver and
other environment condition) the radio power is directly proportion to (1 / distance?)

as follows.

£ = (AugeGr = Procd
Pr m RGT == R d__ (4)

And based on dBm (decibel relative to one milliwatt) Equation (5), we can predict the
distance between each AP and MN by nearest sample distance to AP, nearest sample’s

AP signal strength and MN’s AP signal strength as follows.

P

dbm = 10*logw =
& (lm\-\') (5)

Replacing P by 1/d7,

1/d?

=> dbm = 10*log 1111“_,) ©)
We get the distance d:
=>d = (1 /(10" * Imw)) @)
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If we have the distance between the nearest sample (dy), AP Signal Strength of nearest
samples (dbmy) and AP Signal Strength of MN (dbm,), based on Equation (7), we can

predict the distance between MN (a) and AP as:

10(( nt/10)

= da=d * 1 O(dbnla.-"'l()}

(8)

For an MN, it selects 3 located AP with strongest signal strength and calculates the
distance to each of them by Equation (8). We can get MN’s location based on
trigonometry as shown in Figure 12. Where N, denotes MN and N, denotes Nearest

Sample on Location Tables.
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Figure 12: Evaluating MN’s location (Na) by trigonometry.

3.4.4 Issues on Positioning and Location Tables Update

Since Signal Strength may have £5% inaccuracy, the positioned location is not
always precise. It is not proper to add any positioned into Location Tables as sample.
Take an example as the worst case as shown in Figure 13, at 1% position reference
from Initial Pattern, it may have 5% inaccuracy. At 2" position reference from 1
positioned location, it may have even larger inaccuracy because of the 1 and 2™ 5%

inaccuracy. And the inaccuracy may be become larger and larger because of the
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accumulation of inaccuracy in each previous positioning.

3rd Positioned
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Figure 13: Worst case in positioning

To prevent such case from impacting the positioning accuracy, we setup 2
conditions and propose their solution in our system. “Exceptional Location

Detection” and “Trusted Location Checking”.

Exceptional Location Detection

In each positioning, the system will check the positioned location to verify
whether it is reasonable. Exceptional location means that it is unlikely an MN at this
location to sense some AP, but it did and recorded in its measured AP Signal Strength
Set. That is, after positioning, the system calculates the distance between positioned
location and each of the sensed AP. If there is any one larger than a specific distance
(we give 40m in indoor environment), it must be too far from actual location. When
this situation happened, it means the nearest sample cannot be trusted. Therefore the
system will remove it from location table and re-calculate it again. Furthermore, any
positioned location on Location Tables which reference to this error sample also needs
to be removed. This is why we give an “Evaluation Base” field in location entry of
Location Tables. According to this method, number of error samples can be reduced in

Location Table.

Trusted Location Checking
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Due to unstable signal in indoor environment, sometimes positioned location
may not be trusted for being used as sample recorded in Location Table. This is
because the nearest sample may be far away from MN location, and it may happen at
the beginning of the system operation with only few samples. We proposed a method
to detect it. If the distance between the positioned location and its nearest sample is
larger than a specific value (we give 5 meters in our system), it can be used as
positioning result but not for the new sample. That is, only the positioned case whose
distance between positioned location and nearest sample is less than 5 meter can be

added into Location Tables as a new sample.

3.4.5 Algorithms on Server Site

Definition:
Prd_Adv: MN’s predicted advise message;
Prd_Adv_ACK: ACK for Prd_Inf;
Lo_Query: MN’s location query message;
Lo_Reply; Reply for Lo_Query;
SimiTh: Similarity Threshold;
Pot_Lo: Potential locations;
Pot_Lo_SminTh: Similarity Threshold of each Pot Lo;
Pot_Lo_APSS: AP Signal Strength Set of each Pot Lo;
APSS: AP Signal Strength Set;
CAPSS: MN’s current AP Signal Strength Set;
Prd_Lo: Location predicted by MN;
Simi(APSS1,APSS2): Similarity between APSS1 and APSS2;
LoTable: Location Tables;
NB_2m: The neighbors with 2m distance;
NB_in2m: The neighbors within 2m distance;
num: The number of ...
Evaluate_by APSS(): Subroutine to Evaluate MN Location by APSS;
Eval_Lo: Location evaluated by Evaluate by APSS();

Input: MN message;
Output: Pos Lo, Pot Lo, Pot Lo SminTh, Pot Lo APSS;
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Begin:
receive message from MN;
if (message == Prd_Adv) //MN Predicted Informing message arrived
{
update CAPSS to Location Table for Prd Lo;
re-calculate SimiTh(Prd Lo, NB 2m);
send Prd Adv. ACK(Pot Lo, Pot Lo SminTh, Pot Lo APSS);
// ACK Pot Lo, Pot Lo SminTh and Pot Lo APSS for Prd Lo

else if (message == Lo_Query (Prd Lo, CAPSS))
//MN Location Query message with Prd_Lo arrived

{
if (num[Simi(CAPSS,APSS(NB_in2m)) =SimiTh(NB_in2m)] =
0.5*num[NB_in2m])  // Confirming Succeed by within 2m neighbors
{
update LoTable(Prd Lo) by CAPSS and SimiTh(Prd Lo);
re-calculate and update SimiTh(NB_2m);
send Lo _Reply(Prd Lo, Pot Lo, Pot Lo SminTh, Pot Lo APSS);
// reply with Prd Lo and its Pot Lo, Pot Lo SminTh and Pot Lo APSS
h
else // Confirming Failed
{
Eval Lo = Evaluate by APSS(CAPSS);
send Lo Reply(Eval Lo, Pot Lo, Pot Lo SminTh, Pot Lo APSS);
// reply with Eval Lo and its Pot Lo, Pot Lo SminTh and Pot Lo APSS
h
b

else if (message == Lo_Query (Prd Lo, CAPSS))
//MN Location Query message without Prd_Lo arrived

{
Eval Lo = Evaluate by APSS(CAPSS);
send Lo Reply(Eval Lo, Pot Lo, Pot Lo SminTh, Pot Lo APSS);
// reply with Eval Lo and its Pot Lo, Pot Lo SminTh and Pot Lo APSS
b

End

28




Figure 14: Algorithm on Location Server

// Evaluate by APSS()
Definition:
APSS: AP Signal Strength;
LoTable: Location Table;
EvalBase: The previous sample which this sample was evaluated from,;
SimiTh: Similarity Threshold,
Pot_L o: Potential Locations of the sample;
Sample: Samples recorded in LoTable. With data of EvalFrom, APSS,
SimiTh, and Pot_Lo;
NSmp: Nearest sample in LoTable;
Simi(APSS1,APSS2): Similarity between APSS1 and APSS2;
Dist(a, b): the distance from a node to b;
dbm(N): the selected AP signal strength at N node;
AP_Lo: AP Location;
Trig((AP_Lo & DistAP)*3): Subroutine to evaluate MN location by
Trigonometric;

Eval_Lo: The location evaluated by Location Server

Input: CAPSS;
Output: Eval Lo;
Begin:
NSmp = Max[Simi(CAPSS, all sample APSS)]; //Discover the nearest sample
for (1 ~ 3" strongest AP signal duplicated in NSmp(APSS))
{
Dist(APi, MN) = Dist(APi, NSmp) * V(10®mNSmp/10 /1 odbm(MN)10,
//Calculate DistAPi(MN) by Equation (8)
1++;
next AP;

Eval Lo=Trig (AP, Lo, AP, Lo, AP; Lo, Dist(AP;), Dist(AP,), Dist(AP3));
//Evaluate MN Location by Trigonometric
if (any Dist(APi, Eval Lo) > 40m) //Bvaluated location is impossible

{

remove NSmp from LoTable; //NSmp cannot be trusted as sample
remove Samples(EvalBase =NSmp) from LoTable;
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//Those samples evaluated from NSmp also cannot be trusted

perform Evaluate by APSS() again,;

b
else
{
if (Dist(Eval Lo, NSmp) = 5) //Checking if can be trusted for sample
{
update LoTable(Eval Lo) by CAPSS and SimiTh(Eval Lo);
re-calculate and update SimiTh(NB_2m);
}
return (Eval Lo)
b

End

Figure 15: Evaluation_by APSS(): Subroutine for Evaluating Location by APSS
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Chapter 4 Experiment and Numerical Results

4.1 Experiment Setup — Simulation Model

To evaluate our proposed system, we built a simulator to verify its accuracy and

capability. In our simulation, we define an area as the positioned area first. Then we

setup several APs in this area. Finally, we give some initial samples. At each position

simulation, it will do the following:

1.

Randomly select a location in the defined area (Actual Location).

At this location, calculate the distance to each AP, simulate the signal
strength of each AP through Equation (9), and add +5% error rate to the
result. If the signal strength is less than -94 dBm, consider the AP as out of
awareness at this location, as we can see in captured packets (Signal dbm=

-35 ~ -94).
Signal dBm = -35 + 20*log;o(1/d?) (9)

Insert the AP Signal Strength Set (simulated at Step.2) into the proposed

system, and evaluate the location.

Calculate the distance between Actual Location and Evaluated Location as
Error Distance. The smaller the Error Distance, the higher accuracy the

positioning.

There are 4 simulation models in our experiment to estimate our system. A

20x20 m” small area, a 50x50 m”big area, a 20x100 m® rectangular area which is

separated into 4 sub areas, and an extended positioning area case. For simulation

model 1~3, we add two cases as the contrast cases.
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Sample Every Location: Before system initialization, every location
already been measured to obtain the AP Signal Strength. The location with

maximum similarity will be the positioned result.

Without Machine Learning: This is for positioning only. The evaluated

locations will not be added into Location Table as samples.
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4.1.1 20x20 m* with three Access Points
This is the basic positioning experiment, and the testing cases include:

® Sample Every Location Case

® Without Machine Learning Case

® One Initial Sample: Only one initial sample before the system starts.

® One Initial Sample for each AP: To measure one initial sample near each

AP before the system starts.
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Figure 16: Environment for simulation model in 20x20 m? area.
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4.1.2 50x50 m? with 13 Access Points

This is basic positioning experiment, too. The testing cases include:

Sample Every Location Case
Without Machine Learning Case
4 Initial Sample: Only 4 initial samples before system starts.

One Initial Sample for each AP: To measure one initial sample near each

AP before system starts.

® 33 Initial Sample: To speedup the training time, we add another 20 initial
samples randomly in addition to that for each AP before the system starts.

® 50 Initial Sample: To speedup training time much quickly and get higher

accuracy earlier, we set initial samples to 50 before the system starts.

APL: (15,15)

AP2: (45,15)
AP3: (15.45)
AP4: (45,45)
AP3: (30,0)
AP6: (0,30)

_AP?: (30,60)
APS: (60.30)
AP9: (30.30)
AP10: (0,0)
AP11: (0,60)
AP12: (60,60)
AP13: (60,0)

PT1: (16,16)
PT2: (44,16)
PT3: (16,44)

_PT«I: (44.44)
PT5: (30,1)
PT6: (1,30)
PT7: (30,59)
PT8: (59.30)
PT9: (31,31)
PT10: (1,1)
PT11: (1,59}
PT12:(59.59)
PT13:(59,1)

Figure 17: Environment for simulation model in 50x50 m? area.
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4.1.3 100x20 m? with 12 Access Points
It is another basic positioning experiment. The testing cases include:

® Sample Every Location Case

® Without Machine Learning Case

® 4 Initial Sample: Only 4 initial samples before the system starts.

® One Initial Sample for each AP: To measure one initial sample near each
AP before the system starts.

® 32 Initial Samples: To speedup training time, we add another 20 initial
samples randomly in addition to that each AP before the system starts.

® 50 Initial Samples: To speedup training time much quickly and get higher

accuracy earlier. We set initial samples to 50 before the system starts.

AP1: (5,5) AP2:(10,15) AP3:(20,5)
AP4: (30.15) ADPS: (40,5) AP6: (45,15)
APT: (535,5) APR: (65,15) AP9: (70,5)
AP10: (B0,15)  AP11:(90.5) AP12:(95,15)

i, 8

AP10 ) API2

4

rs
(= 4
I

¥ —

3 8 I N
o ] ~ i
17 ap1 AP3 N APT AP9 API1

PTI: (5.6) PT2:(10,14)  PT3:(20,6)

PT4: (30,14) PT5: (40.6) PT6: (45,14)

PT7: (55,6) PTR: (65,14) PT9; (70,6)

PT10: (80,14) PTI11: (90,6) PT12: (95,14)

Figure 18: Environment for simulation model in 100x20 m?area.
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4.1.4 20x20 m? Extended Case:

Only one case in this simulation model, the scenario is:

1. Use 1000 positioning for training the existing position area (Original

Area).

2. Add another 3 AP to extend the position area (Extended Area).

3. In Extended Area, run the positioning test.

/ ™ 7
s &b
il ~ _AP3

Figure 19: Environment for extended simulation model in20x20 m? area.
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4.2 Experiment Result

In this section, we present our experiment result. We show it by separating the

“Basic Positioning Scenario” and “Extended Area Scenario”.

4.2.1 Basic Positioning Scenario

Before showing the result of our proposed system, we present the contrast
models in our simulator first. The first one is “Sample Every Location” case which
was shown in Figure 20~22. As we can observe, the average distance error for 20x20
m” area is 1.44 meter with 1000 positions. It is 1.54 meter for 50x50 m” area and 1.77
meter for 100x20 m” area. Although this method has highest accuracy in our simulator,
but it is a time consuming work to measure samples at every location. System
construction and maintenance will be a large burden. As a consequence, this method

doesn’t have extending ability.

20x20 (Sample Every Location)
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Figure 20: Average distance error on “Sample Every Location” Case in 20x20 m*area.
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50x50 (Sample Every Location)
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Figure 21: Average distance error on “Sample Every Location” Case in 50x50 m? area.

100x20 (Sample Every Location)

Distance (M)

.00 LU P P il

1 131 A 301 401 51 601 0 801 901
Position (Times)

Figure 22: Average distance error on “Sample Every Location” Case in 100x20 m’ area.

The second contrast model is “Without Machine Learning”. Figure 23~25

show the average distance error for each simulation model is 5.10 m, 4.79 m and 4.70
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m, respectively. Besides low accuracy, it doesn’t have extending ability.

20x20 (Without Learning)
1.00
6.00
- MMWM
-
2
o A.00
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=
2 3m
A
2.00
1.00
ﬂ-m NI N I I N N N N N I N I NN NN}
1 1 23 34 41 501 601 HH a1 901
Position {Times)
Figure 23: Average distance error on “Without Learning” Case in 20x20 m? area.
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Figure 24: Average distance error on “Without Learning” Case in 50x50 m*area.
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100x20 (Without Learning)
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Figure 25: Average distance error on “Without Learning” Case in 100x20 m? area.

Now, let us show the result of our system simulation. Figure 26~28 show
experiment results with few Initial Samples for 20x20 m?*, 50x50 m* and 100x20 m*
respectively. Figure 26 indicates that the average distance error is down to less than 3
meters after 900 positioning. In Fig. 27, for 50x50 m” area case, it also has the same
result after 6400 positioning. Figure 28 shows100x20 m” area case, it reaches the
same result after 10000 positioning. It proves that our system can get significant result

after certain period of training.
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20x20 (From 1 Pattern)
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Figure 26: Average distance error on the case with few Initial Samples in 20x20 m? area (1).
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Figure 27: Average Distance Error on the case with few Initial Samples in 50x50 m? area(4).
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100x2 0 Average Error (From 4 Patterns)
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Figure 28: Average distance error on the case with few Initial Samples in 100x20 m? area(4).

Somebody may have judgment for the above result that it spends too long time
to train the system for significant positioning. This issue can be improved by adding
few Initial Samples manually. In the following figures, we show the result of each

model with different Initial Samples.

20x20 (Pattern for each AP)
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Figure 29: Average distance error on 20x20 m? area (One Initial Samples per AP).
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Figure 30: Average distance error on 50x 50 m? area (One Initial Samples per AP).
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Figure 31: Average distance error on 100x20 m? area (One Initial Samples per AP).
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Figure 32: Average distance error on 50x50 m? area (33 Initial Samples).
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Figure 33: Average distance error on 50x50 m? area (50 Initial Samples).
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Figure 34: Average distance error on 100x20 m? area (32 Initial Samples).
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Figure 35: Average distance error on 100x20 m? area (50 Initial Samples).
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Finally, we compare all test cases in precision for each model. For 20x20 m?

model, the comparison is shown in Figure 36.

— Sample Every Location = * "No Learmning
- From 1 Patterns — — Pattern for each AP
100.00% — —
90.00% 7 S —
80.00% / e R
’ | e

 70.00% / yd N e
5" R - a ca
= 60.00% v e
= / s L = A =
S 50.00% - -
= A
£ 40.00% / P

30.00% 7 L

20.00% / S o

10.00% -

O_OO% ("T:- 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 >7

Error Distance (M)

Figure 36: Comparison for the case on 20x20 m? area (all positions).

<Im | <2m | <3M | <4m | <5m | <6m | <7m

Sample Every Location | 21 67 89 95 98 99 99.5

No Learning 7 26 42 54 62 71 76
1 Initial Sample 5 28 49 63 71 77 80
Sample Per AP 9 48 74 86 91 93 94

Table 2: Precision (%) table in 20x20 m?area (all positions).

Above are the figure and table of comparison data for all positions on 20x20 m?

model. It includes the data during system beginning.
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In the following figure and table, we show the data which was run after 4000
position trainings. As we can see in Figure 37, for “Pattern for each AP, it is very close
to Sample Every Location. According to Table.3, 82% of positions are within 3 meter

positioning accuracy.

— Sample Every Location — - "MNo Leamning
- - - 'From 1 Patterns — — Pattern for each AP
100.00% == =
90.00% /,/" et
80.00% //’ et
70.00% - —
7 ™
= 60.00% / i o
S 50.00% L -
> /; il
£ 40.00% / T
30.00% 7 -t
20.00% e,
fo
10.00% =
0.00% -
0 1 2 3 4 5 6 7 >7
Error Distance (M)
Figure 37: Comparison on 20x20 m? area (after training).
<Im | <2m | <3m | <4m | <5m | <6m | <7m
Sample Every Location | 21 67 89 95 98 99 99.5
No Learning 7 26 42 54 62 71 76
1 Initial Sample 7 32 57 71 80 84 87
Sample Per AP 10 56 82 93 95 97 98

Table 3: Precision (%) table on 20x20 m? area (after training).
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The following figures and tables are comparison data for 50x50 m” area, with

display for “all positions™ and “after training”, respectively.

—S%ample Every Location @~ No Leaming
— - -From 4 Patterns — - -Patter for each AP
From 33 Patterns — — From 50 Patterns
100.00%
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£ 0
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20.00%
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0.00%
o 1 2 3 4 5 6 7 >7
Error Distance (M)

Figure 38: Comparison on 50x50 m? area (all positions).

<Im | <2m | <3mM | <4m | <5m | <6m | <7m

Sample Every Location | 16 63 90 97 98 99 100

No Learning 14 31 46 58 72 78

4 Initial Samples 25 49 64 74 81 85

Sample Per AP 29 53 68 77 85 88

(S I EN-N RSN

33 Initial Samples 30 56 72 81 87 90

50 Initial Samples 7 39 65 80 87 92 94

Table 4: Precision (%) table on 50x50 m? area (all positions).
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— Sample Every Location - No Leamning
— - *From 4 Patterns — - -Pattern for each AP
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Figure 39: Comparison on 50x50 m? area (after training).
<Im | <2m | <3m | <4m | <5m | <6m | <7m
Sample Every Location | 16 63 90 97 98 99 100
No Learning 2 14 31 46 58 72 78
4 Initial Samples 5 28 59 64 74 81 85
Sample Per AP 6 31 57 71 81 88 90
33 Initial Samples 5 35 61 76 85 91 93
50 Initial Samples 7 41 72 85 91 95 96

Table 5: Precision (%) table on 50x50 m? area (after training).

49




The following figures and tables are comparison data for 100x20 m” area, with

display for “all positions” and “after training” respectively.

= Lample Every Location - Mo Learning
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Figure 40: Comparison on 100x20 m? area (all positions).

<Im | <2m | <3m | <4m | <5m | <6m | <7m
Sample Every Location 13 55 84 93 97 98 99
No Learning 8 27 44 55 63 72 77
4 Initial Samples 5 28 49 63 71 77 80
Sample Per AP 8 39 62 72 78 83 86
32 Initial Samples 10 45 69 79 85 89 91
50 Initial Samples 10 49 72 83 88 92 94

Table 6: Precision (%) tables on 100x20 m? area (all positions).
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Figure 41: Comparison on 100x20 m? area (after training).
<Im | <2m | <3m | <4m | <5m | <6m | <7/m
Sample Every Location | 13 55 84 93 97 98 99
No Learning 27 44 55 63 72 77
4 Initial Sample 32 Sk 71 80 84 86
Sample Per AP 42 69 80 85 89 91
32 Initial Sample 11 48 74 85 92 94 95
50 Initial Sample 11 49 75 86 92 94 95

Table 7: Precision (%) table on 100x20 m? area (after training).
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4.2.2 Extended Area Scenario

As described in Section 4.1.4, we setup an extended area scenario to verify our
system in auto learning ability. First, we perform positioning in the original area
(Simulation Model in Section 4.1.1 with one sample for each AP). Then we add
another 3 AP in the extended area and perform positioning in it. Figure 42 shows our

result.
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Figure 42: Average distance error on Extended Area Scenario.

Compared with Figure 28 (positioning in original area), although it spends more
time for training the system to reach significant accuracy, it really proves that our
system has the ability to do positioning in the extended area by just adding the AP and

recording its locations into system table.
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Chapter 5 Conclusions

In recent years, location awareness issue becomes interesting research topic in
network communications area, especially with the advance of wireless network
technology. As we know, GPS is the widely used and most popular location awareness
service which can be seen everywhere. But GPS has its limitations as we discussed in
the beginning of this thesis. Since WiFi LAN (Wireless LAN) is so popular now,
implementing position service based on WiFi LAN should be feasible and affordable.
It can provide positioning and communication service at the same time without any

other system assistance.

In this thesis, we studied some measurements and introduced several proposed
positioning systems. Then we proposed an intelligent positioning system which was
built on application layer based on WiFi LAN. In our scheme, we adopt empirical and
machine learning concept to provide the ability of self adjustment for environment
change. This ability is very helpful for system maintenance and positioned area
extension. Our experiment shows that the proposed scheme has significant accuracy
after self training. And based on the result of Extended Position Area testing, it also
has good effect on extended area by setup AP and registering its location only. It has

similar accuracy with the area we built by measuring initial samples manually.

Our work is not considered as completed yet, we will investigate the following

topics as future works:
® Implement the system on real-world environment.

® Combine more moving behavior or perform more efficient algorithm to

improve the positioning accuracy.

® Reduce the self training time.
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® Resolve user dependent issues.

Nowadays, more and more location awareness services have been proposed or
developed. But most of them are not as popular as GPS for driving and traveling. If
the position system is built on WiFi LAN with high precision, friendliness, flexibility,
and low cost, much more useful services can be implemented. We believe there will

be more epochal services to be devised in the near future.
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