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once per second which is acceptable for welding process control
although further development of hardware and algorithm optimization
would significantly improve the speed. Hence, the proposed algorithm
appears to have the potential to be used in online control of metal
transfer process.

V. CONCLUSION

• The bilinear interpolation is effective for image enhancement to-
ward better edge detection.

• The proposed brightness-based selection and edge-based separa-
tion algorithm can detect droplets from the image and try to detect
adequate edge information from interpolated images.

• The proposed model for droplet edge gives an effective method
to estimate the size of the droplet robustly and accurately and the
proposed model validation assures that the model used meets a
minimal accuracy requirement.

• The speed of the image processing appears to meet the minimal
requirement for real-time control.

It should be mentioned that certain algorithm parameters and equa-
tions are ad hoc for the well-defined and constrained problem under
investigation. In case welding conditions change, appropriate modifi-
cations may become necessary.
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An Efficient Approach for Dynamic Calibration
of Multiple Cameras

I.-Hsien Chen and Sheng-Jyh Wang

Abstract—In this paper, we propose a new algorithm for dynamic cali-
bration of multiple cameras. Based on the mapping between a horizontal
plane in the 3-D space and the 2-D image plane on a panned and tilted
camera, we utilize the displacement of feature points and the epipolar-plane
constraint among multiple cameras to infer the changes of pan and tilt an-
gles for each camera. This algorithm does not require a complicated cor-
respondence of feature points. It can be applied to surveillance systems
with wide-range coverage. It also allows the presence of moving objects in
the captured scenes while performing dynamic calibration. The sensitivity
analysis of our algorithm with respect to measurement errors and fluctu-
ations in previous estimations is also discussed. The efficiency and feasi-
bility of this approach has been demonstrated in some experiments over
real scenery.

Note to Practitioners—For a surveillance system with multiple cameras,
the poses of cameras may be changed from time to time to acquire different
views of the monitored scene. Whenever the poses of cameras are changed,
the relative positioning and orientation among cameras need to be recali-
brated. In this paper, we demonstrate a new and efficient approach to cal-
ibrate multiple cameras dynamically. The concept of our approach origi-
nated from the observation that people usually can identify the directions of
the pan and tilt angles, and even make a rough estimate about the changes
of pan and tilt angles, simply based on some clues revealed in the captured
images.

In our approach, a set of cameras are first calibrated based on a static
calibration method. As cameras begin to pan or tilt, the images of these
cameras change accordingly. We keep extracting and tracking a few fea-
ture points from these images. Based on the displacement of these feature
points in consecutive images, the pan and tilt angle changes of the cam-
eras can be automatically estimated via the proposed approach. There is
no need to place calibration patterns or landmarks while performing dy-
namic calibration. In addition, there is no need to perform the complicated
correspondence of feature points among cameras. The proposed approach
is practical for a wide-range surveillance system with multiple cameras and
is applicable for complicated environments. In the future, we will combine
the proposed approach with an object tracking system to develop an effi-
cient active surveillance system with multiple cameras.

Index Terms—Dynamic camera calibration, multiple cameras.

I. INTRODUCTION

For a surveillance system with multiple cameras, cameras may pan or
tilt from time to time to acquire different views of the monitored scene.
However, when a camera pans or tilts, its extrinsic parameters change
accordingly. For this type of surveillance systems, how to accurately
and efficiently recalibrate the extrinsic parameters of multiple cameras
has become an important issue.

Up to now, various kinds of approaches have been developed to cal-
ibrate static camera’s intrinsic and extrinsic parameters, such as the
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techniques proposed in [1]–[6]. Nevertheless, it is impractical to re-
peatedly perform these elaborate calibration processes over a camera
when the camera is under panning or tilting all the time. On the other
hand, [7]–[9] have proposed plane-based calibration methods specially
designed for the calibration of multiple cameras. However, for a wide-
range surveillance system with multiple active cameras, these planar
calibration objects may not be properly observed by all cameras when
cameras are under movement.

For dynamic camera calibration, [10] proposed an offline method,
where they tried to find the relationship between the realized rotation
angle and the requested angle. In [11], the pose of a calibrated camera
was estimated from a planar target. However, both [10] and [11] only
demonstrated the dynamic calibration of a single camera, but not the
calibration among multiple cameras. In [12], the authors utilized the
marks and width of parallel lanes to calibrate PTZ cameras. Although
this method is practical for traffic monitoring, it is not general enough
for other types of surveillance systems. In [13], a dynamic camera cal-
ibration with narrow-range coverage was proposed. For a pair of cam-
eras, this method performed the correspondence of feature points on
the image pair and used coplanar geometry for camera calibration. In
[14], the relative pose between a calibrated camera and a projector was
determined via plane-based homography. This approach requires the
correspondence of feature points. However, for surveillance systems
with wide-range coverage, the matching of feature points is usually a
difficult problem.

In this paper, we propose a new algorithm for dynamic calibration of
multiple cameras. This algorithm does not require a complicated cor-
respondence of feature points. Our algorithm also allows the presence
of moving objects in the captured scenes, while performing dynamic
calibration. As cameras begin to pan or tilt, we keep extracting and
tracking feature points based on the Kanade–Lucas–Tomasi (KLT) al-
gorithm [15]. Next, we utilize the displacement of feature points and the
epipolar-plane constraint among multiple cameras to infer the changes
of pan and tilt angles for each camera. Compared with [13], we only
need the correspondence of epipolar lines but not the exact matching
of feature points. The use of epipolar lines greatly simplifies the cor-
respondence process and makes our approach suitable for complicated
surveillance environments.

This paper is organized as follows. First, in Section II, we explain
how we utilize the displacement of feature points and the epipolar-
plane constraint to infer the changes of pan angle and tilt angle. We also
describe how to filter out undesired feature points when moving ob-
jects are present. The sensitivity analysis with respect to measurement
errors and the fluctuations of previous estimations will be addressed in
Section III. Some experimental results over real data are demonstrated
in Section IV. Finally, in Section V, the conclusion is drawn.

II. DYNAMIC CALIBRATION OF MULTIPLE CAMERAS

In this section, we explain how we perform dynamic calibration
process based on temporal and 3-D spatial information. We will first in-
troduce how to calibrate a dynamic camera based on the displacement
of feature points in the temporal domain. After that, we will apply the
epipolar-plane constraint over each pair of cameras to obtain more ro-
bust calibration. Moreover, since people or moving objects may enter
or leave the scene while cameras are capturing images, we need to filter
out their interferences to avoid the degradation of calibration accuracy.
In Fig. 1, we show an overall picture of the proposed dynamic calibra-
tion algorithm.

A. Dynamic Calibration of a Single Camera

The basic camera model and related formulae can be found in our
previous work [17]. When a camera with a rotation radius � has a tilt
angle � and a pan angle �, we may deduce (1), to express the back
projection function ���� �� �� ���� from the image coordinates � �

Fig. 1. Flowchart of the proposed dynamic calibration algorithm.
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Here,�	� �	� �
, and �
 represent ������� ��	���� ������ and ��	���,
respectively. Additionally,� represents the set of intrinsic parameters
of the camera.

Assume we have a set of cameras. At the beginning, we calibrate
the 3-D pose of each camera via the static calibration method proposed
in [17]. As a camera starts to pan or tilt, its image content changes. To
recalibrate the new pose of the camera, we check the temporal displace-
ment of a few feature points in the image. Here, we use the KLT method
[15] to extract and track feature points in consecutive images. We also
assume all extracted feature points correspond to some unknown static
points in the 3-D space.

Typically, we may assume the rotation radius � is far smaller than the
distances between these 3-D points and the camera. We also assume the
changes of pan angle and tilt angle are very small during the capturing
of two successive images. With these two assumptions, the projection
center of the camera can be thought to be fixed with respect to the 3-D
points, while the camera is panning or tilting. In other words, the pro-
jection lines, which connect the projection center to each of these ob-
served 3-D points, are fixed in the 3-D space, as long as these 3-D points
stay static during the capture of images. By using these projection lines
as a reference, we may recalibrate the new pose of the camera. More-
over, as illustrated in Fig. 2, if three 3-D points,����� , and�� , are
replaced by another three points, 
��� 
��, and 
�� on their projection
lines, there is no influence on the projected points on the image plane.
Hence, even if we do not actually know the real locations of these 3-D
points, we may simply back project all feature points in the 2-D image
onto a 3-D pseudo plane with a constant � coordinate, as shown in
Fig. 2.

In our approach, based on a few feature points on a pair of successive
images �
�� and �
, we first back project these feature points in �
��
onto a 3-D pseudo plane with a constant � . Then, we try to find a new
pose of the camera that can map the corresponding feature points in �

onto the same 3-D pseudo points. That is, if we assume the camera has
the pan angle �
�� and the tilt angle �
��, while capturing �
��, and
has the pan angle �
�� � ��
 and the tilt angle �
�� � ��
, while
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Fig. 2. Illustration of a pseudoplane �’.

capturing ��, we try to find ��� and ��� that minimize the following
formula:

� �

�

���

� ������� ���� ����� ���� �����

� ������ ����� ������
�
� (2)

In (2), �� represents the back projection function of an image feature
point onto a pseudo 3-D plane ��. Here, we especially use “hat” to
denote that the back-projection is restricted to a vertical pseudo plane
��. Besides, �� denotes a feature point in ���� and ��� denotes the
same feature point in ��. 	 is the total number of image feature points
for calibration. Note that in (2), we ignore the altitude parameter 

of these back-projected points. This is because the altitude 
 can be
deduced from (1) once if the � coordinate is fixed. We also ignore the
intrinsic parameters � since they are not changed when the camera
pans and tilts.

B. Dynamic Calibration of Multiple Cameras Based on
Epipolar-Plane Constraint

In the previous section, we assume the projection center of a single
camera is fixed during panning and tilting. The projection lines are
then used as a reference to calibrate the new pose of that camera. To
further increase the accuracy of calibration, we add on the 3-D spatial
relationship among cameras.

In Fig. 3, we show the epipolar geometry for a pair of cameras [16].
For these two cameras, their projection centers,��� and���, together
with a 3-D point ��, determine an epipolar plane �. This epipolar
plane� intersects the image planes of the cameras to form two epipolar
lines 
� and 
�. If ��� and ��� are the projected points of �� on the
image planes, they must lie on 
� and 
�, respectively. This epipolar
constraint implies that ���� �����

�

�, and ��� are coplanar and the
epipolar plane � can be expressed as

������ ���� �
�

�� �
�
� �

��

� ������ ���������� �
�� ���

�	 ������ ���� �
�
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�
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�� ���� (3)

In (3), we use the ���� function defined in (1). Note that we ignore the
altitude parameter 
 because the formation of epipolar plane is actually
independent of 
. That is, no matter what value 
 is, the epipolar plane
is still the same.

As illustrated in Fig. 3, we assume a pair of cameras has initially
been calibrated via some kind of calibration algorithm. We assume a
few features, like ���� �

�

� � �
�

� � �
�

�� �
�

� , and ��	 , are located on a pair

Fig. 3. Illustration of epipolar-plane constraint.

of corresponding epipolar lines. Without performing pointwise corre-
spondence, we do not actually know where these feature points are pro-
jected from. However, we are still confident of the fact that these 3-D
points must be “somewhere” on the epipolar plane. As long as these
3-D points remain static in the 3-D space, this epipolar plane is fixed.
Hence, the epipolar planes that have been identified at the previous mo-
ment can be used as a reference for the calibration of cameras at the
current moment.

In Fig. 3, we assume a pair of cameras has been calibrated at the time
instant ��
 and an epipolar pane� has been identified. Assume at that
time instant ��
, the pan and tilt angles of Camera-1 are ����� and�����,
while the pan and tilt angles of Camera-2 are ����� and �����. Camera-1
captures the image �����, while Camera-2 captures �����. On the other
hand, at the time instant �, Camera-1 rotates to a new pan angle �������
���� � and a new tilt angle ������ � ���� �, while Camera-2 rotates to
����������� � and ����������� �. Here, we only discuss the calibration
of Camera-1. The calibration of Camera-2 can be implemented in a
similar way.

For Camera-1, assume a prominent feature point ��� has been ex-
tracted from �����. This feature moves to ���� in ��� . Based on ���� �

�

���,
and �����, we may form an epipolar plane �. At the time instant �, we
then seek to find the angles ����������� � and ����������� � such that
���� is still located on the same epipolar plane. That is, we seek to find
���� and ���� such that

� ����� �
�

��� ����� � �
�

��� �����

�� ���� ���� �
�

�� �
�

���� �
�

��� � �� (4)

Similarly, for ��� and ��� that share the same epipolar line with ���,
we have

� ���� � �
�
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�
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� ���� � �
�
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�
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�

�� �
�

���� �
�

��� � (5)

Note that in (4) and (5), the projection center ��� may have a slight
movement when Camera-2 rotates. That movement can be taken into
account to achieve more accurate calibration. Here, we simply ignore
that part to simplify the formulation.

For Camera-1, assume we have extracted � epipolar lines. More-
over, on the �th epipolar line, where � � 
� �� 
 
 
 ��, we have ex-
tracted �
 feature points ���
����

�


��� 
 
 
 ��
�


�� � on �����. These �


feature points move to ����
��� ��
�
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�� � on ��� . Besides, we as-
sume ��
 denotes one of the feature points in ���
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�� �.
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Based on the epipolar-plane constraint, we can estimate ���� and ����
that minimize
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	 (6)

Furthermore, by integrating (2) and (6), the changes of pan angle and
tilt angle of Camera-1 can be estimated by minimizing the following
formula:
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Similarly, the changes of pan angle and tilt angle of Camera-2 can be
estimated by minimizing
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Here, � is a parameter to weight the contributions of temporal clues and
3-D spatial clues. In our experiments, we simply set � � �. In theory,
for each camera, one feature point is sufficient for the first right term of
(7) or (8) to solve ��� and ���. Whenever a pair of epipolar lines can
be determined, any feature point on the epipolar lines can be used for
the second right term of (7) or (8) to make the estimation more robust.

To deduce���� ���
�

����
�

� , and�����, we adopt the Levenberg–Mar-
quardt (LM) algorithm. In our experiments, the initial guesses of pan/
tilt angle changes are set to be 0�. Note that for a pair of corresponding
epipolar lines, Camera-1 and Camera-2 may have very different num-
bers of feature points. That is, the �� in (7) may be different from the
�� in (8). This is because we do not actually seek to perform the corre-
spondence of feature points. Instead, we seek for a consistent matching
of epipolar lines between 
��� and 
�. This strategy greatly simplifies
the correspondence problem. Moreover, formulae (7) and (8) can also
be merged together into a single formula in the optimization process.

In summary, for the proposed dynamic calibration algorithm, we per-
form the following steps.
Step 1) We perform static camera calibration based on the method

proposed in [17]. After that, cameras are allowed to pan and
tilt freely.

Step 2) On each image, a few feature points are extracted and
tracked based on the KLT algorithm [15]. Feature points
moving out of the image are removed, while new feature
points entering the image are added.

Step 3) For each pair of cameras, based on the previous calibration
results, we generate pairs of epipolar lines that pass through
these extracted feature points. Actually, as long as a fea-
ture point is within a predefined distance from an epipolar
line, we say that the feature point is passed through by the
epipolar line. In our experiments, the predefined distance is
set to be 3 pixels.

Fig. 4. Image pairs captured at two different time instants. Green lines indicate
three pairs of corresponding epipolar lines.

Fig. 5. (a) Image captured by a camera with 55.1 tilt angle. (b) Image captured
by a camera with 54.6 tilt angle. Red crosses represent feature points extracted
by the KLT algorithm.

Step 4) Based on the extracted feature points and the information of
epipolar lines, we calibrate the new pan angle and tilt angle
for each pair of cameras by minimizing (7) and (8). After
that, go back to Step 2.

The above procedure is repeated to acquire the new poses of all
cameras. In Fig. 4(a) and (b), we show images captured by two dif-
ferent cameras at two different time instants, overlapped by three pairs
of epipolar lines. Note that even though the feature points on these
epipolar lines come from different 3-D points, we may still be able to
achieve reliable dynamic calibration based on the matching of epipolar
lines.

C. Dynamic Calibration With Presence Of Moving Objects

So far, we have assumed all the feature points used for calibration
correspond to some fixed 3-D points in the scene. However, in real
applications, such as object tracking or 3-D positioning, some moving
objects may be present. To guarantee accurate calibration, we need to
get rid of these feature points related to moving objects.

In Fig. 5, we show two successive image frames where the camera
tilts up by 0.5�. For each feature point, we calculate its spatial displace-
ment (��� ��). The distribution of (��� ��) is plotted in Fig. 6, where
most displacements cluster around �����	. These clustered displace-
ments correspond to the movements of static feature points caused by
camera rotation. On the other hand, there exist some outlier displace-
ments which correspond to the movement of feature points lying on the
moving person.

However, the displacement of feature points depends not only on the
pose of camera but also on the contents inside the 3-D scene. Theoret-
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Fig. 6. The distribution of spatial displacement for the extracted feature points
in Fig. 5.

Fig. 7. The x-component displacement of feature points with respect to the
changes of pan angle for four different cameras, without the presence of moving
objects. The relationships for Camera-1, Camera-2, Camera-3, and Camera-4
are plotted in red, blue, green, and magenta, respectively.

ically, by taking the partial derivative of the image coordinates with
respect to the pan angle �, we have
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 �� � ����� � 	����� � ��
(9)

which indicates how the location of a feature point varies with respect
to the change of pan angle. To simplify the formula, we assume 
 � �
to ignore the influence of tilt angle. The simplified formula is expressed
in (10), shown at the bottom of the page. Similarly, by ignoring the
effect of pan angle, (11), shown at the bottom of the page, indicates how

Fig. 8. (a) Standard deviation of �� with respect to the median of �� when
cameras are under panning. (b) Standard deviation of �� with respect to the
median of �� when cameras are under panning.

the location of a feature point varies with respect to the change of tilt
angle. Both (10) and (11) indicate the crucial role of the 3-D location
��� 
� �� in the displacement of feature points. Hence, for different
scenes, we expect different degrees of feature point displacements. On
the other hand, if the same scene observed by the same camera but with
two different pan-angle changes, not only the displacement magnitudes
but also the distributions of displacement are different. The distribution
with a smaller pan angle change is more compact.

Since the distribution of the displacement highly depends on the ob-
served scene and the magnitude of angle change, we obtain the charac-
teristics of displacement via a learning process for each camera. In the
learning stage, we intentionally pan and tilt each camera to capture a se-
quence of images, without the presence of moving objects. In our exper-
iments, four cameras are used and Fig. 9 shows an example of images
captured by these four cameras. In Fig. 7, we show the �-component
displacement of feature points with respect to the change of pan angle
for each of our four cameras. It can be observed that Camera-1 and
Camera-3 have roughly the same statistical behaviors, while Camera-2
and Camera-4 have similar behaviors. In Fig. 8(a), we further plot the
relationship between the standard deviation of �� and the median of ��
when cameras are under panning. Again, Camera-1 and Camera-3 have
roughly the same statistical behaviors, while Camera-2 and Camera-4
have similar behaviors. Even though different cameras may have very
different statistical behaviors, the relationship between the standard de-
viations of �� and the median of �� is roughly linear for each camera.
Similarly, Fig. 8(b) shows the statistical relationship between the stan-
dard deviation of �� and the median of ��. On the other hand, for the
tilting case, we also observed similar statistical behaviors between the
standard deviation of �� (or ��) and the median of ��. All these sta-
tistical relationships offer useful knowledge about the displacement of
feature points when the 3-D scene is stationary.

When moving objects are present, these feature points caused by the
moving objects usually have very different statistical behaviors. Hence,
in the dynamic calibration process, we may calculate the median of dis-
placements for all feature points. Based on the median, we estimate the
standard deviation of displacement according to these already learned
statistical relationships. When the displacement of a feature point is
away from the median by three standard deviations, that feature point
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is treated as an undesired feature point and is discarded in the dynamic
calibration process.

III. SENSITIVITY ANALYSIS

Based on (7) and (8), we can dynamically estimate the changes of
pan angle and tilt angle while a camera is rotating. In this section, we
will analyze how sensitive our algorithm is with respect to the calibra-
tion errors at the previous time instant and the measurement errors at
the current time instant. Here, we assume there could be some errors
in the calibration results at the previous time instant � � �. Moreover,
there could be some errors in the extraction of feature points, including
tracking errors and the departure of feature points from the epipolar
lines.

Without loss of generality, we only discuss the sensitivity of our al-
gorithm in the dynamic calibration of Camera-1. In theory, for the es-
timation of ���� and ���� , the optimization of (7) conforms to �� �
�� �

� ������� � � � and �� � �� �
� ������� � � �. Note that in (7), the

projection center ��� actually has a slight movement when Camera-2
rotates. This is because the rotation center is not exactly the same as
the projection center. To simplify the formulation of (7), we intention-
ally ignored that part in Section II. However, in the implementation of
our algorithm, we actually had taken this fact into account to achieve
more accurate calibration. Hence, in the following analyses, �� and ��
depend not only on ����� and �����, but also on ����� and �����. On
the other hand, �� and �� also depend on the measurement errors of
��	����
 �	

�
���
 � � � 
 �	

�
��� �, where � � �
 	
 � � � 
 � and 
 � � or 	. Here,

� denotes the number of epipolar-lines used for dynamic calibration.
To find how ���� and ���� deviate with respect to the fluctuations of

�����, where 
 � � or 	, we may apply the implicit function theorem
over �� and �� to get
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Similarly, we can deduce the formulae for ������ ��
��������
 ������ �����

�
����
 ������ �����	

�
����, and ������ �����	

�
����.

If we assume the total variations of ���� and ���� are the combina-
tion of individual variation with respect to the fluctuations in ����� and
����� and the measurement errors in ��	����
 �	

�
���
 � � � 
 �	

�
��� �, we have
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To verify the above formulae, we perform the following simulations.
Here, two cameras are assumed to have been accurately calibrated.
Camera-1 is hung at a height 2.06 m. If Camera-1 is translated by
�����
�����, and 6.25 m along � , � , and � axes, respectively, and
then rotated by �������� about � axis, Camera-1 will coincide with
Camera-2. At first, Camera-1 has the pan angle ��� � � and tilt angle
��� � 	�, while Camera-2 has the pan angle ��� � � and tilt angle
��� � ��. Moreover, based on the rectified world coordinate system
of Camera-1, we assume there is an epipolar plane � with the homo-
geneous coordinates � � �����
 ����
 ����
 �����. Based on this plane
�, we deduce the corresponding epipolar lines on the image planes of

TABLE I
VARIATIONS OF ESTIMATION RESULTS WITH RESPECT TO PREVIOUS

ESTIMATION ERRORS AND MEASUREMENT ERRORS

TABLE II
VARIATIONS OF ESTIMATION RESULTS WITH RESPECT TO DISTANCE

FLUCTUATIONS IN EPIPOLAR LINES

these two cameras. On each of these two epipolar lines, we randomly
choose three image points �	����
 	

�
���
 	

�
���� as the feature points, with


 � � or 	. After that, the tilt angle of Camera-1 is changed to 20.5�

so that the feature points on the image plane of Camera-1 will move to
the new positions ��	����
 �	

�
���
 �	

�
����. Besides, the intrinsic parameters

���
 ��
 ��
 ��� are set to be ���	
���
 ��	��
 ����.
In the simulation, we change individually the initial pan and tilt an-

gles ����
 �
�
�
 �

�
� 
 �

�
�� of Camera-1 and Camera-2 to see how the es-

timated values of ���� and ���� vary. Moreover, we also change the
measurement �	���� whose coordinates are defined as �������
 ��

�
���� to see

how ���� and ���� vary. Here, the LM algorithm is applied to (7) for
the estimation of ���� and ����. The variations of these estimation re-
sults, together with the variations deduced by (13) and (14) are listed
in Table I. Besides, we also show in Table II how ���� and ���� vary
with respect to the distance fluctuation � in epipolar lines. In our sim-
ulation, we change the measurement �	���� to be away from its epipolar
line. The deduced variations can be expressed as
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and
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It can be seen that the all deduced variations in Tables I and II well
approximate the simulation results.

Additionally, when the number of epipolar line pair doubles, the er-
rors of estimated���� and���� caused by the fluctuations of the feature
points are roughly halved. On the other hand, the errors of estimated
���� and ���� caused by the fluctuations of ����
 �

�
�
 �

�
� 
 �

�
�� have no

apparent changes. Besides, if we change the value of ���� up to 5�,
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Fig. 9. Test images with the presence of landmarks. The images captured by
Camera-1, Camera-2, Camera-3, and Camera-4 are arranged in the left-to-right,
top-to-bottom order.

the variations of estimated���� and���� caused by the fluctuations of
����� �

�

�� �
�

�� �
�

�� and �������� ��
�

���� ��
�

���� still confirm to that in Tables I
and II. Finally, we also change the tilt angle ��� from 20� to 80� with
a 20� step, and repeat the simulation. The variations of the simulation
results also confirm to that in Tables I and II. In practice, the initial
static calibration is usually accurate enough so that the fluctuations of
����� �

�

�� �
�

�� �
�

�� are usually less than 0.5�. Moreover, the measurement
errors of �������� ��

�

���� ��
�

���� are likely to be less than 2 pixels. Hence, the
estimation errors of���� and���� are expected to be acceptable in real
cases.

IV. EXPERIMENTS

To verify the effectiveness of our dynamic calibration algorithm, we
performed the following experiments over real scenes. In the first ex-
periment, test images were captured by four cameras mounted on the
ceiling. These four cameras kept panning and tilting while capturing
images. In total, each camera captured 1000 test images, with the reso-
lution of 320 � 240 pixels. Besides, in order to evaluate the calibration
results, we placed test landmarks in the scene with a 100-frame interval.
That is, we capture 100 image frames; stop and place some landmarks
in the scene; capture an image with the presence of landmarks; stop and
remove these landmarks; and then resume image capturing for another
100 frames. This procedure was repeated till we captured all 1000 im-
ages for every camera. Fig. 9 shows an example of captured images by
these four cameras, with the presence of landmarks.

At the beginning of the experiment, the static calibration proposed
in [17] was applied to calibrate the initial setup of these four cameras.
The static calibration results are listed in Table III. The left part of
Table III lists for each camera the estimated tilt angle and its altitude
above the brown table in the scene. The right part of Table III lists
for each camera the estimated position and orientation with respect to
Camera-2. In addition, we also calculated the 3-D coordinates of the
test landmarks and used them as a ground truth for the evaluation of
our dynamic calibration algorithm.

As cameras began to pan and tilt, we extracted 50 prominent feature
points from each of these four initial images and tracked these feature
points by the KLT method. In our experiment, we fixed one of the four
cameras. Based on (7) and (8), we performed dynamic calibration for
every image pair.

Fig. 10. (a) Differences of the pan angles and (b) differences of the tilt angles
between the dynamic calibration results and the static calibration results, with
one of the cameras being fixed all of the time.

Fig. 11. Evaluations of dynamical calibration at the 1000th frame.

To evaluate the results of dynamic calibration, we performed static
calibration at the period of every 100 frames, based on these images
with the presence of landmarks. The result was verified by projecting
the aforementioned 3-D landmarks onto the image plane of each
camera. Fig. 10 shows the differences of the estimated pan angles
and tilt angles between the dynamic calibration results and the static
calibration results. Note that the static calibration results are performed
based on the 3-D landmarks that have been well calibrated at the
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Fig. 12. One sample of the test sequence with the presence of a moving person.

Fig. 13. Evaluated corresponding relationship of the 1000th frame in the test
sequence with a moving person.

TABLE III
RESULTS OF THE STATIC CALIBRATION

beginning of the experiment. In Fig. 10, it shows that the deviation at
the 1000th frame is still acceptable and is within the range of ����

�.
Besides, the differences do not gradually increase. Moreover, based on
the results of dynamic calibration, we may also directly pick up a few
landmark points in the image captured by Camera-2 and project them
onto the other three images, as shown in Fig. 11.

We also test the situation when a moving object is present during the
dynamic calibration process. Limited by our camera control system,
we cannot simultaneously control four cameras in real time. Hence, we
only allow two cameras to pan and tilt in this experiment. Again, we
captured 1000 frames for each camera and Fig. 12 shows a sample of
the captured sequence. In Fig. 13, we show the corresponding relation-
ship of the 1000th frame based on our dynamic calibration result. This
reasonable correspondence demonstrates the effectiveness and feasi-
bility of our dynamic calibration algorithm.

V. CONCLUSION

In this paper, a dynamic calibration method is proposed that can be
applied to a wide-range surveillance system with multiple cameras.
This method does not require specific calibration patterns or compli-
cated correspondence of feature points. It also allows the presence of

moving objects in the captured scenes, while performing dynamic cal-
ibration. This kind of dynamic calibration process can be very useful
for applications related to active video surveillance.
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